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1 Introduction

Towards Theoretical Spectroscopy with Error Bars:
Systematic Quantification of the Structural Sensitivity
of Calculated Spectra

Tobias G. Bergmann,* Michael O. Welzel,* and Christoph R. Jacob®

Molecular spectra calculated with quantum-chemical methods are subject to a number of uncer-

tainties (e.g., errors introduced by the computational methodology) that hamper the direct com-
parison of experiment and computation. Judging these uncertainties is crucial for drawing reliable
conclusions from the interplay of experimental and theoretical spectroscopy, but largely relies on
subjective judgment. Here, we explore the application of methods from uncertainty quantification
to theoretical spectroscopy, with the ultimate goal of providing systematic error bars for calculated
spectra. As a first target, we consider distortions of the underlying molecular structure as one
important source of uncertainty. We show that by performing a principal component analysis, the
most influential collective distortions can be identified, which allows for the construction of sur-
rogate models that are amenable to a statistical analysis of the propagation of uncertainties in
the molecular structure to uncertainties in the calculated spectrum. This is applied to the calcu-
lation of X-ray emission spectra of iron carbonyl complexes, of the electronic excitation spectrum
of a coumarin dye, and of the infrared spectrum of alanine. We show that with our approach
it becomes possible to obtain error bars for calculated spectra that account for uncertainties in
the molecular structure. This is an important first step towards systematically quantifying other
relevant sources of uncertainty in theoretical spectroscopy.

relevant energy range, which is usually calculated as,

The quantum-chemical calculation of molecular spectra has
nowadays become an essential tool for determining the struc-
ture of molecules'. In many cases, structural information can
only be extracted from experimental spectra by combining them
with computations?. Examples include the elucidation of the gas-
phase structure of polypeptides with vibrational spectroscopy=Z,
the assignment of the absolute configuration of chiral molecules
with chirooptical spectroscopic techniques®l, and the identi-
fication of active species and catalytic intermediates with X-ray
spectroscopy 1212,

While in some cases, high-resolution spectroscopic experiments
can resolve the individual spectroscopic transition, this is usually
not the case for most common applications that aim at obtaining
structural information from spectroscopic experiments, such as
those mentioned above. Instead, the quantity of interest is the
spectral intensity as a function of the radiation energy, 6(E), in a
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G(E)=Y fuG(E—E,), €))

where E, and f, are the excitation energy and oscillator strength
of the n-th excitation, respectively, which are provided by
quantum-chemical calculations, and G(E) is a suitable — usually
empirical — line broadening function. To extract structural in-
formation from experimental spectra (e.g., in the examples cited
above), the spectral intensity o(E) calculated for suitable struc-
tural models is compared to a measured spectrum, and conclu-
sions are drawn based on the agreement or disagreement of ex-
periment and theory.

However, quantum-chemical calculations are affected by nu-
merous uncertainties and in general the agreement between ex-
periment and computation cannot be expected to be perfect.
Sources of uncertainties include the structure of the molecular
model, the description of environment effects, and errors of the
quantum-chemical methods used for calculating spectra. The
comparison of measured and calculated spectra thus requires
carefully judging these uncertainties. To this end, one generally
relies on the often rather subjective judgement of computational
chemists.
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Methods for the systematic assessment of uncertainties in com-
puter simulations are developed in the field of uncertainty quan-
tification, which is a subfield of applied mathematics that has de-
veloped in the past decades (for textbooks, see, e.g., Refs.1607),
It provides tools that are widely used in simulation science 1811,
However, their application in quantum chemistry is only just
emerging (for a recent review, see Ref.2%). For quantifying un-
certainties in reaction energies that are due to errors of approx-
imate density-functional theory (DFT), Ngrskov, Sethna, Jacob-
sen, and coworkers have developed the Bayesian error estima-
tion exchange-correlation functional (BEEF)21"24 while Reiher
and coworkers extended this approach by parametrizing problem-
specific exchange—correlation functionals with built-in error es-
231261 Recently, the BEEF family of xc functionals has
been applied to quantify uncertainties in calculated vibrational
frequencies?Z. Several groups have addressed the assignment of
uncertainties to the parameters of calibration models2®, such as
scaling factors for harmonic vibrational frequencies223%, or linear
regression models for the quantum-chemical calculation of Moss-
bauer isomer shifts®L. Similarly, uncertainties in the parameters
of the semi-empirical PM7 method2, of Grimme’s D3 dispersion
correction®®?, and of neural networks for the exploration of chem-
ical space% have been assessed.

timation

Here, our objective is to further explore the application of
methods of uncertainty quantification to the quantum-chemical
calculation of molecular spectra. Within a chosen quantum-
chemical model, the calculated spectral intensity will depend on
the input molecular structure R that is used in the quantum-
chemical calculation, i.e.,

QC model
Ty

R

{En fu} —25 6 (E:R).

Here, we specifically chose ¢ (E) instead of the positions and/or
intensities of individual peaks as quantity of interest, because in
many spectroscopic experiments for complex chemical systems
the individual transitions are not resolved.

Previously, some authors have addressed the quantification
of uncertainties introduced by approximations in the quantum-
chemical model on spectroscopic properties2Z29:3l Here, we
aim at systematically quantifying a further source of uncertainty,
namely the dependence of ¢(E;R) on the input molecular struc-
ture®?, The structural sensitivity presents a challenging case be-
cause the calculated spectrum depends on a rather large number
of independent parameters (i.e., the nuclear coordinates R). In
this respect, it fundamentally differs from, e.g., uncertainties due
to approximation in the quantum-chemical model, which are usu-
ally related to only a few parameters. Thus, while the structural
sensitivity is only one of many relevant sources of uncertainty, it
serves as a first step towards establishing a methodological frame-
work that can be extended to other sources of uncertainty.

Specifically, we set out to establish “error bars” that account for
the structural sensitivity of a calculated spectrum. In this paper,
we present a methodology that allows us to answer the follow-
ing two questions: (1) Given distortions AR of a reference struc-
ture Ry with |AR| < dmax, what is the range of calculated spectra
6(E;Ry+AR)? (2) Given a probability distribution for distortions
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of a reference structure Ry, how can we characterize the result-
ing probability distribution for the calculated spectra? This can
then be employed to obtain error bars for the calculated spec-
trum of the reference structure that either represent bounds on
the calculated spectra of distorted structures or that quantify the
uncertainty due to structural distortions in a statistical fashion.

We aim at developing a methodology that is generally applica-
ble for any type of computational spectroscopy providing a spec-
tral intensity o(E) that can be compared to an experimental spec-
trum. To this end, we will consider typical applications in which
structural information in extracted from the comparison of ex-
perimental and calculated spectra, such as X-ray emission spec-
troscopy (XES) of transition metal complexes, vibrational spec-
troscopy, and UV/Vis spectroscopy.

This work is organized as follows. In Section [2| we show how
the structural distortions that are most influential for the calcu-
lated spectrum can be identified. This is then used in Sec. [3] to
construct nonlinear surrogate models of the dependence of the
calculated spectrum on the input molecular structure, and we use
this model for analyzing the propagation of uncertainties in the
molecular structure to the calculated spectrum in Sec. {4} In Sec-
tions [2]-[4] we illustrate our methodology for the calculated XES
spectrum of ironpentacarbonyl Fe(CO); as a test case. Results for
further test cases covering XES, UV/Vis spectroscopy, and infrared
spectroscopy are presented in Section[5] Finally, in Section [6]we
present our conclusions as well as perspectives for future work.
The computational details are given in Appendix[f]

2 Identification of influential structural dis-
tortions

As the space of possible molecular structures R for a given atomic
composition is intractably vast and because large parts of this
space are chemically irrelevant, we only aim at analyzing the
structural sensitivity of calculated molecular spectra around a
chosen reference structure Ry, i.e., R = Ry + AR. Usually, this will
be the structure obtained as a minimum on the potential energy
surface, but other choices are also possible. In the following, we
will consider distortions of this reference structure,

AR = Z Y ARigea, 2)
=10=x,y2
where ¢j, is a unit vector for a displacement of the /-th nucleus in
o = (x,y,z) direction, i.e., our target is the change in the spectral
intensity
Ac(E;AR) =

6(E;Ry+AR)—o(E;Ry) 3
N——

=R
The dependence of the calculated spectrum on the molecular

structure around R can the be subjected to a local sensitivity anal-

ysis=9 which considers the linearized model

AG(E;AR) =~ §(E;AR) Zéo;a JAR/q, @

with the linear structural sensitivity with respect to a Cartesian

This journal is © The Royal Society of Chemistry [year]
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displacement in ejq-direction,

-~ 80(E;R) N 6(E;Ry +he]a)—G(E;R()—he]a)
Soiq(E) = IRy N 2 7 .
5)

This linear structural sensitivity can be calculated by numeri-
cal differentiation, i.e., by calculating the spectrum for displaced
molecular structures=>. Here, we employ a symmetric two-point
formula [see Eq. (B)] and a displacement of » = 0.5 pm. Tests in-
cluded in our earlier work showed that the numerical derivative
is rather insensitive with respect to the magnitude of the displace-
ment and found that 4 = 0.5 pm should be a resonable choice'>.
Overall, the calculation of the linear structural sensitivity for all
3N Cartesian displacements requires 6N calculations of spectra for
displaced structures.

To identify the linear combinations of structural distortions that
are most influential on the calculated spectrum, a principal com-
ponent analysis=Z can be performed. After discretizing the energy
axis of the calculated spectrum E = {E;} (with j=1,...,M, where
M > 3N), the linear structural sensitivities can be collected in a
(3N x M)-matrix X with

Xia,j = 007q(Ej), (6)

i.e., the rows of this matrix contain the discretized linear struc-
tural sensitivities with respect to the 3N Cartesian displacements.
Here, we use M = 10,000 evenly spaced points in the relevant
energy range. With the singular value decomposition of X =
U-S-VT we obtain

vl x=s-vT, @

where U is an orthogonal (3N x 3N)-matrix, V is an orthogonal
(M x M)-matrix, and the (3N x M) diagonal matrix S contains the
3N singular values s; on its diagonal.

Here, the columns of U define principal component distortions,
qk = ZUIoc,k €la (8)
Io

i.e., g is the unit vectors of a collective distortion correspond-
ing to the k-th principal component. These principal component
distortions {g; } constitute an alternative basis of the full space of
structural distortions, in which the displacement vector AR can be
expressed,

AR =Y Oiqy, 9
k

where Qy, is the displacement in direction of the collective coor-
dinate g. The vector Aq = (Q;,0,,...)T = U AR describes the dis-
placement in the basis of our new collective coordinates. Note
that despite the notational and conceptual similarity, the col-
lective coordinates {g;} describing the principal component dis-
tortions and the displacements Q, differ from the normal coor-
dinates and normal modes appearing in theoretical vibrational
spectroscopy (see Sect. S1 in the Supporting Information for a
detailed analysis). Nevertheless, because of this analogy we will
refer to the collective coordinates {g,} as sensitivity modes in the
following.

The linear structural sensitivities can now also be expressed

This journal is © The Royal Society of Chemistry [year]
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with respect to the principal component distortions as

Jdo(E;R
86/ C(E) =Y Uiqx801a(E) = % . (10)
I Ok Ro
By comparing with Eq. (7)), we find
86 C(E;) = Y. Urq k8010 (E;) = siVix, 1n
I

i.e., the k-th column of the matrix V multiplied by the k-th sin-
gular value s; corresponds to the discretized principal component
structural sensitivity 56,5 C with respect to distortions along the
sensitivity mode g;. Note that because V is an orthogonal matrix,
its columns are normalized. Therefore,

Emax E —E_.
667C(E)|* = / SOFC(E)2dE = Tmax " Pmin 2 (19

M

min

and the norm of & Glf C is proportional to the corresponding singu-
lar value s;. Thus, the k-th singular value provides a quantitative
measure for the linearized influence of distortions along sensitiv-
ity mode ¢; on the calculated spectrum.

Altogether, the linearized model of Eq. can NOw we ex-
pressed as

3N kmaX
86 (E:AR)=80(E:Aq) =Y 86 (E)Qx~ ), 56{C(E)Qk, (13)
=1 k=1

which makes it possible to truncate the sum over principal com-
ponents by neglecting the contributions that correspond to small
singular values. In general, the linearized dependence of the cal-
culated spectra on structural distortions can thus be described
accurately by including only a few displacements along the kmax
most influential sensitivity modes ¢y, ...,q; . Note that the re-
sulting linearized model will depend on the choice of the quantity
of interest, i.e., on the relevant energy range and on the parame-
ters used for an empirical line broadening.

As an example, we consider the structural sensitivity of the cal-
culated XES spectrum of Fe(CO)s. XES is widely used to obtain
insights into the geometrical and electronic structure at transition
metal centers from the combination of experimental and theoret-
ical spectroscopy14il>, Fe(CO)s is a prototypical transition metal
complex, and its XES spectrum has been previously studied both
experimentally and computationally. As the calculation of XES
spectra within a ADFT approximation® only requires a ground-
state calculation, it constitutes an ideal first test case. For this
example, we already explored the dependence on manually se-
lected structural distortions in our previous work=2, An in-depth
experimental and computational study of the XES spectrum of
Fe(CO)s can be found in Ref.22.

Starting from the minimum energy structure of Fe(CO)s, we
calculated the linear structural sensitivity 66y (E) with respect to
all 33 Cartesian displacements by numerical differentiation and
performed the principal component analysis outlined above. The
resulting singular values are plotted in Fig. [lh. We find that
the four largest singular values (s; = 9.44, s, = 3.58, s3 = 2.54,
s4 = 0.88) account for over 95 % of the sum of all singular val-
ues. The sum of the remaining 29 singular values amounts to

Journal Name, [year], [vol.], 1{17] |3
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Fig. 1 Principal component analysis of the linearized structural sensitivity of the calculated XES spectrum of Fe(CO)s. (a) Singular values s; (red) and
sum of the singular values (blue) in descending order. (b) Visualization of the sensitivity modes ¢, corresponding to the four largest singular values. (c)
Calculated XES spectrum (upper panel) and principal component structural sensitivities 50,?0 (lower panel). The color-coded shaded areas indicate
the linearized change in the calculated spectrum for distortions of O, = +4 pm.
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only 0.36. The corresponding sensitivity modes g are visualized
in Fig.|1p and the corresponding principal component structural
sensitivities § olf C are shown in Fig. .

For the largest singular value sy, the sensitivity mode ¢, is given
by a collective symmetric C=0 stretching coordinate. Distorting
the molecular structure along this mode will mainly affect the po-
sition and intensity of the first peak as well as the intensity of
the second peak in the calculated XES spectrum, while it leaves
the third peak mostly unchanged (see blue graphs in Fig. [If).
The second sensitivity mode ¢, corresponds to a symmetric Fe-C
stretching coordinate. A distortion along this mode will affect all
three peaks, but to a much smaller extent than for the first sensi-
tivity mode (see green graphs in Fig. ). The third and forth sen-
sitivity modes g3 and ¢, are asymmetric Fe—C and C=0 stretching
coordinates, respectively, in which the distortions of the axial and
equatorial ligands form an out-of-phase combination. Again, it
is obvious form Fig. [1c (see red and cyan graphs) that the effect
of a distortion along ¢3 and g, further decreases, and is already
almost negligible for g,.

Finally, the lower panel of Fig. |1 also includes the sum of the
principal component structural sensitivities corresponding to all
remaining singular values (magenta line), which turns out to be
negligible. Thus, a principal component analysis allows for a sig-
nificant reduction of the dimensionality of the linearized change
in the calculated spectrum,

00 (E;AR) = 60(E;Aq) = 60(E; Q1. .., Ok, )- 14

For the example of Fe(CO)s only four collective displacements
01,...,04 along sensitivity modes instead of the full 33 Carte-
sian displacements AR;, are required for accurately describing

4| Journal Name, [year], [vol.],1

— 5;=358 __ 25k=0.36
— 53=2.54 k>4
7098 7101 7104 7107 7110
Energy / eV

the dependence of the calculated XES spectrum on the underlying
molecular structure. All remaining principal component distor-
tions turn out to be non-influential within the linearized model.

3 Construction of nonlinear surrogate mod-
els

Based on a principal component analysis, the dimensionality of a
linearized model can be significantly reduced by only considering
the most influential principal component distortions and neglect-
ing non-influential distortions. This can now be used as starting
point for constructing nonlinear surrogate models of the struc-
tural sensitivity of calculated spectra within this reduced space,
ie.,

AG(E;AR) ~ AG(E;Q1,..., Ok, ) 15)

The use of such a reduced space is based on the assumption that
the sensitivity modes that are non-influential in the linearized
model also only have a small influence when considering the full
structural sensitivity. Additional tests to verify this assumption
are presented in the Supporting Information (Sect. S2).

A general ansatz for a nonlinear surrogate model within the
reduced space of the displacements that are most influential in
the linearized model is given by

kmax kmax
AG(E;Q1,.., Q) = Y, AGIEI)(E;Qk)‘F Y AG/EZZ)(E§Q1¢7Q1)+"'
k=1 k<l
(16)
with the one-mode contributions
Ac(E;Qp) = AG(E:0, .., Oy, .., 0), an

This journal is © The Royal Society of Chemistry [year]
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two-mode contributions
AG/EIZ>(E’Q/€7Q[) :AG(E;O7'"7Qk7"'7Ql7"'7O)
~ a0 (E:0) - Ac) (E:0)), (18)

and possibly further higher-order contributions. In the literature
on uncertainty quantification, this ansatz is referred to as high-
dimensional model representation (HDMR) 40 and is closely re-
lated to the Sobol expansion*!. The specific form considered
here is known as Cut-HDMR#2, In theoretical chemistry, such an
ansatz is well known from the N-mode expansion commonly used
in anharmonic theoretical vibrational spectroscopy and quantum
dynamics*3#©, Note that this ansatz is exact within our reduced
space if all contributions up to order kmax are included, but gen-
erally a truncation at a lower order is used as an approxima-
tion. Furthermore, the Cut-HDMR expansion of Eq. provides
the possibility for introducing further approximations to the indi-
vidual one-mode, two-mode, and possibly higher-order contribu-
tions.

In the linearized model of Eq. (I3)), two-mode and higher-order
contributions are neglected while the one-mode contributions are
approximated as

Ao (E:Qp) ~ 56FC(E) 0y (19)

To improve upon this linear approximation for the one-mode con-
tributions, one can employ a Taylor expansion, i.e.,

1 0°6(E;R)

1 1 936(E;R)
2 902

Qi+
Ro

a0y (E: Q1) ~ 80f°(E) O+ AT
k

Ry
(20)

Similarly, instead of neglecting the two-mode contributions, these
could be approximated via a Taylor expansion,

2D

1 9%6(E;R
AG/EZZ)(E;Qk,Qz)N O(E:R) 0101+

T2 9090

Ro

Here, the quadratic term is the lowest order entering the two-
mode contributions. The required higher derivatives can be cal-
culated by numerical differentiation. As before, for the one-mode
contributions we use a displacement of = 0.5 pm in combination
with a three-point finite-difference formula for the second deriva-
tive, a four-point formula for the third derivative, and possibly a
five-point formula for the fourth derivative along one mode.

As an alternative to a Taylor expansion, the one-mode, two-
mode, higher-order contributions could also be approximated by
a discretized representation on a suitable grid of distortions in the
relevant range. Note that the fact that the surrogate model is only
constructed in the reduced space of the most influential sensitivity
modes significantly reduces the number of additional quantum-
chemical calculations of the spectrum for distorted structures that
are required for its construction.

The accuracy of different approximations within a surrogate
model can be assessed by comparing the change in the spectrum
predicted by the model to the one obtained from a calculation of
the spectrum for a distorted structure. For the example of the XES

This journal is © The Royal Society of Chemistry [year]
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spectrum of Fe(CO)s, such a comparison is shown for selected
terms in Fig.

For the one-mode contributions, we consider a distortion of
+4 pm along the most influential sensitivity mode in Fig. [2a and
b. The exact one-mode contribution obtained from a calculations
of the spectrum for distorted structures (red line) is in good agree-
ment with the linearized model (blue line), but some differences
appear in the region of the first and second peak. When going to a
3rd order Taylor expansion (dashed green line), these differences
disappear and an almost perfect agreement with the exact one-
mode contribution is found on the scale of the figure. Fig.[2c and
d shows the exact two-mode contribution obtained from calcu-
lating the spectrum for structures that were simultaneously dis-
torted by |Ag| = 4 pm along the two most influential sensitivity
modes. The plots show that these two-mode contributions are
almost negligible.

Based on these tests, in the following we use a 3rd order Taylor
expansion for the one-mode contributions and neglect all two-
mode contributions. Of course, such a choice will have to be
reassessed for different test cases. More systematic schemes for
the construction of non-linear surrogate models that include ad-
ditional terms on-the-fly as needed can also be envisioned.

4 Analysis of uncertainty propagation

A surrogate model of the change in the calculated spectrum
Ac(E;AR) can be evaluated for arbitrary structural distortions
without significant computational effort. This now makes it pos-
sible to analyze the propagation of uncertainties in the molecular
structure to uncertainties in the calculated spectrum.

First, we consider the molecular structures that can be obtained
from the reference structure by distortions up to a given mag-
nitude dmax, i.e., with |AR| < dmax. As the transformation from
Cartesian distortions to sensitivity modes is orthogonal, this is
equivalent to |Ag| < dmax. Such distortions will result in changes
in the calculated spectrum, for which we want to determine up-
per and lower bounds. For a surrogate model expressed as HDMR
expansion up to two-mode contributions we find,

kmax
max AG(E;AR) <

1
|Ag|<d, NES AGIS >(E; %)

k=1 ‘Qk‘gdmax

kmax
-+ Z max

2
Ao (E: 04, 01)
k<l Qf"rQ[Z <dmax

(22)

with the analogous expression for the minimum. Note that on the
right-hand side we applied the triangle inequality, i.e., the upper
and lower bounds given by this equation are not tight.

The calculation of the maximum and minimum of the change
in the spectrum is thus reduced to determining the maximum
and minimum for the one-mode and two-mode contributions,
i.e., for simple one- or two-dimensional functions. For the lin-
earized model, only the one-mode contributions at the maximum
displacements Q; = +dmax need to be considered. In the general
case, the maximum and minimum can be found by sampling the
one-mode and two-mode contributions in the relevant interval

Journal Name, [year], [vol.], 1{17] | 5
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Fig. 2 Analysis of the accuracy of different approximations of the one-mode and two-mode contributions to the structural sensitivity of the calculated
XES spectrum of Fe(CO)s. (a,b) One-mode contributions obtained from calculations for displaced structures with Q) = +4 pm (solid red line) compared
to a linearized approximation (solid blue line) and a 3rd order Taylor expansion (dashed green line). The top panels show the corresponding spectra
while the lower panels show the change in the calculated spectra. (c,d) Two-mode contributions obtained from calculations for displaced structures with

0= i% pm and Q; = i% pm (i.e., |Ag| = 4 pm).
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Fig. 3 Calculated XES spectrum of Fe(CO)s (black line) including er-
ror bars (shaded area) giving upper and lower bounds for distortions of
the minimum energy reference structure with |AR| < 4 pm. The different
colors of the shaded area indicate the contributions of the four most influ-
ential sensitivity modes (¢, blue; ¢, green, ¢ red, g, cyan). (a) Error bars
calculated for the linearized surrogate model and (b) for the non-linear
surrogate model based on a 3rd-order Taylor expansion for the one-mode
contributions and neglecting two-mode and higher-order contributions.
(c) Spectra calculated for 100 random distortions with |AR| =4 pm (black
lines) as well as 20 evenly spaced distortions between Q; = +4 pm along
each of the four most influential sensitivity modes (red lines). The total
error bars from (b) are included as green shaded area for comparison.
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(e.g., using 100 evenly spaced points between —dmax and +dmax
for the one-mode contributions).

For the test case of the XES spectrum of Fe(CO)s, the error bars
for distortions of up to 4 pm calculated according to Eq. are
shown in Fig.|3p for the linearized model and in Fig. [3p for a non-
linear surrogate model based on a 3rd-order Taylor expansion for
the one-mode contributions.

For the linearized model, some artifacts are observed for the
error bars. In particular, there are points at which the error almost
vanishes between the first two peaks at ca. 7101 €V and close to
the maximum of the second peak. Moreover, for the second peak
the error bars appear rather bumpy. These features disappear for
the nonlinear surrogate model, for which smooth error bars are
obtained that seem overall reasonable.

To verify the accuracy of the obtained error bars, we have ex-
plicitly calculated the spectra for 100 distorted molecular struc-
tures with |AR|. These are shown as black lines in Fig. [3c. We
notice that for these random distortions, the effect on the calcu-
lated spectra is significantly below the maximum indicated by the
error bars, but their spread follows the same patterns. However,
with only 100 distorted structures in the 33-dimensional space of
possible distortions, it is not surprising that the distortions that

This journal is © The Royal Society of Chemistry [year]
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have the largest effect on the calculated spectra are not sampled.
Therefore, Fig. [3c also includes the spectra calculated for struc-
tures distorted along the four most influential sensitivity modes as
red lines. For these distortions, we see a significantly larger effect
than for random distortions. The spread of the calculated spectra
now approaches the error bars, while all spectra calculated for
distorted structures remain within the calculated error bars.

The error bars in Fig. indicate that the uncertainty in the
position and intensity of the first peak is larger than for the third
peak. For the second peak, the uncertainty is rather small for
the position of the peak while there is a larger effect of structural
distortions for its intensity. Eq. [22) allows for a decomposition
into contributions of the different sensitivity modes that is also
included in Fig.[3|and allows for a further analysis. For instance,
the uncertainty for the first and second peak is mostly due to
the first sensitivity mode, while for the third peak the first three
sensitivity modes contribute roughly equally to the uncertainty.

Second, we turn to a probabilistic picture and set out to deter-
mine the propagation of statistical uncertainties in the underlying
molecular structure to the calculated spectrum. To this end, we
consider the distortions in the molecular structure as a random
variable with the probability density p(Ag). Here, we assume that
distortions along the different sensitivity modes are uncorrelated,
ie.,

3N
p(Aq) = [T Pe(Q), (23)
k=1
and that the mean value corresponds to the undistorted structure,
i.e., (Qr) =0. A generalization is usually possible by applying a
suitable coordinate transformation.

The calculated spectrum will thus also become a random vari-
able with an associated probability density,

uncertainty

24

p(Aq) p(o(E))

propagation

The probability distribution for the calculated spectrum can be
characterized by calculating its moments,

ma[o(E)] = /

—oo

" 6(E) p(o(E)) do

4o oo
:/_w /_N o(E:Aq)" p(Ag) dQ;---dQy .. (25)

most importantly its mean (o(E)) = m;[c(E)| and its vari-
ance Var[o(E)| =my[o(E)] — <G(E)>2 or its standard deviation

s|o(E)] = \/Var[c(E)].

For our surrogate model with up to two-mode contributions,
the mean value of the probability distribution for the calculated
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spectrum can be calculated as,

kmax
(o(8)) = o(Eiko) + ). / A6V (E: Q1) pi(Qr) 40

kmax
/ Ale (E; Ok, Q1) pi(Qx)p1(Qr) A0 dQy

k<l
- o(E;RO){mﬁ: (ac]! >+ki"l (s (26)
k<l

Note that this mean value does not necessarily agree with the
spectrum calculated for the undistorted structure, even tough the
mean of the distribution of the distortions equals the reference
structure.

If only one-mode contributions are included, the variance can
be calculated as,

kmax

Var[o(E)| = Y, (/ (AG/EI)(Qk))zpk(Qk)ko—<AG,£1)>2)

k=1

kmax

_ (1)
k; Var [Aak }

27)

For surrogate models including two-mode contributions, explicit
expressions are given in the Supporting Information (Sect. S3).
More elaborate approaches (such as polynomial chaos expan-
sions47) for calculating the variance with higher-order surrogate
models and for its analysis are available in the literature on un-
certainty quantification (global sensitivity analysis)42.

For the test case of the XES spectrum of Fe(CO)s, we assume a
normal distribution with a mean of zero and with standard devi-
ation sy for distortions along all sensitivity modes,

- QZ—
1 2s;

7
Thus, the probability that a distortions is within 425 is ca. 95%.
In Fig. [ we plot the error bars corresponding to two standard de-
viations s[c (E)] for the calculated spectrum. Assuming the calcu-
lated spectra follow a normal distribution, the calculated spectra
would lie within the error bars with a probability of 95 %. There-
fore, with sp =2 pm in this setup we expect similar error bars
as when considering maximum distortions of +4 pm. Note, how-
ever, that because independent, normally-distributed distortions
along all sensitivity modes are assumed, the expectation value
of |AR| amounts to v/3Nsgp. Thus, the considered distortions are
much larger than those considered above, but their largest part
will always be along non-influential sensitivity modes.

(28)

Pe(Qr) = A (0,5) =

The calculation of the error bars requires calculating the inte-
grals in Eq. and Eq. (27). With our surrogate model based
on a Taylor expansion of the one-mode contributions and nor-
mally distributed distortions these could be obtained analytically,
but using a numerical integration scheme such as Gauss—Hermite
quadrature or Monte—Carlo sampling is more general. For sim-
plicity, here we apply numerical integration with a grid of 1000
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evenly spaced points between —4sp and +4s¢.

Fig.|4p shows the calculated XES spectrum of Fe(CO)s with 2s
error bars assuming a normal distribution with 25y =4 pm for
the structural distortions within the linearized surrogate model.
In this case, the mean of the calculated spectrum coincides with
the spectrum of the undistorted structure. Again, the error bars
obtained with the linearized surrogate model show some unphys-
ical features at the minimum at ca. 7101 €V and close to the maxi-
mum of the second peak at ca. 7103 eV. With the surrogate model
employing a 3rd order Taylor expansion (see Fig.[4p) these mostly
disappear and the error bars become overall smooth.

When increasing the standard deviation of the normal distri-
bution assumed for the structural distortions to 259 = 8 pm, the
error bars increase (see Fig. ). However, this increase is not
proportional and different new features are introduced for the in-
dividual peaks in the spectrum. For instance, the error bars for the
second peak are larger for an increase in the intensity than for a
decrease and also show a larger probability for a shift of this peak
to lower energies. This also results in a shift of the mean of the
calculated spectrum compared to the spectrum of the undistorted
structure.

To verify the accuracy of the obtained error bars, we re-
calculated the XES spectrum for 100 random distortions sampled
from independent normal distributions for each Cartesian coor-
dinate. These randomly sampled calculated spectra are shown
in Fig. and for 2sp = 4 pm and 2sp = 8 pm, respec-
tively, together with the corresponding error bars, obtained as
two standard deviations of the calculated spectra. For 259 =4 pm
(see Fig. [Ad), we find an almost perfect agreement of the error
bars obtained from random sampling with the error bars derived
from our non-linear surrogate model. On the other hand, for
259 = 8 pm (see Fig. ) larger deviations appear. For the first
peak, the surrogate model predicts too large error bars at the
low-energy shoulder of the peak, and for the third peak it over-
estimates the uncertainty for a shift of the peak position. These
differences points to a breakdown of the 3rd order Taylor expan-
sion for larger distortions. In addition, for larger distortions it
is also not clear whether with only 100 random distortions, all
relevant distortions are sampled sufficiently.

The main features of the error bars in Fig. [4| are overall simi-
lar to those already observed in Fig.|3] The largest error bars is
found for the first and second peak, whereas the uncertainty is
smaller for the third peak. To allow for a further analysis, Tab.
collects quantitative statistical metrics for the intensity at the po-
sitions of the three peaks. At the first and third peak, the mean on
the calculated intensity (c(E;)) coincides with the intensity that
is calculated for the undistorted structure o(E;;Ry), while for the
second peak the mean intensity slightly deviates from the inten-
sity for the reference structure. This deviation increases when
increasing the standard deviation of the normal distribution that
is assumed for the structural distortions.

Tab. further includes the variance of the intensity
at the peak maxima Var[o(E;)|, its standard deviation

s[o(E;)] = y/Var[o(E})], and the coefficient of variance (COV),
s[o(E;)]/(c(E})). As it is normalized to the mean intensity, the

This journal is © The Royal Society of Chemistry [year]
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Fig. 4 Calculated XES spectrum of Fe(CO)s (black line) including error bars (blue shaded area) corresponding to two standard deviations when
assuming a normal distribution with standard deviation sy for the distortions of the underlying molecular structure. If different from the spectrum
calculated for the reference structure, the mean of the calculated spectrum is included as dashed red line. (a) Error bars calculated for sp =2 pm with
the linearized surrogate model; (b,c) Error bars calculated for (b) sp =2 pm and (c) so =4 pm with the non-linear surrogate model based on a 3rd order
Taylor expansion for the one-mode contributions and neglecting two-mode and higher-order contributions. (d,e) Spectra calculated for 100 random
distortions sampled from independent normal distributions with (d) sp =2 pm and (e) so = 4 pm (black lines) as well as the error bars corresponding to
two standard deviations (blue lines). For comparison, the error bars from (b) and (c), respectively, are included as blue shaded area.
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Table 1 Quantitative statistical metrics for the uncertainty of the calculated XES spectrum of Fe(CO)s at the maxima of the three considered peaks (E;,
indicated by vertical lines in the spectra in Fig. ED assuming a normal distribution with standard deviation so =2 pm and sy = 4 pm for the distortions
of the underlying molecular structure. Listed are the intensity for the undistorted structure 6(E;;Ry), the mean of the intensity (c(E;)), its variance
Var[o(E;)], its standard deviation s[c(E;)], and the coefficient of variance COV[o(E;)]. All metrics refer to the non-linear surrogate model based on a
3rd order Taylor expansion for the one-mode contributions and neglecting two-mode and higher-order contributions.

E;j/eV  o(Ej;Ry)) (o(E;)) Var[o(E;)| s|o(E;)] COV[o(E))]
Pr(Qx) = A4(0,2 pm)

7099.8 4.06 4.06 0.16 0.40 0.10
7103.1 9.36 9.41 0.12 0.35 0.04
7107.9 4.23 4.23 0.02 0.15 0.04
pr(Qx) = A4(0,4 pm)

7099.8 4.06 4.06 0.74 0.86 0.21
7103.1 9.36 9.54 0.47 0.69 0.07
7107.9 4.23 4.23 0.09 0.30 0.07
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latter gives a measure of the relative uncertainty. The quantitative
metrics confirm the observations already made in Fig. 4] i.e., the
absolute uncertainty, as measured by the variance or the standard
deviation, is largest for the first and the second peak, while it is
considerably lower for the third peak.

The COV shows that the relative uncertainty is the largest for
the first peak, while it is considerably smaller for the second and
third peak. When increasing the uncertainty that is assumed for
the structural distortions by a factor of two, the standard devi-
ation and COV approximately double for all three peaks. Note,
however, that the considered metrics only account for the inten-
sity at the position of the peak, and thus only partly capture dif-
ferences in the uncertainty of the peak position.

5 Further test cases: XES, UV/Vis, and IR

The methodology for quantifying the structural sensitivity of cal-
culated spectra developed in the previous sections is not restricted
to the test case of the XES spectrum of Fe(CO)5 considered so far,
but should be generally applicable to different spectroscopies. To
demonstrate this and to explore the limitations of the current ap-
proach, in this section we investigate additional test cases from
XES, ultraviolet/visible (UV/Vis), and infrared (IR) spectroscopy.
These test cases cover a divers set of computational spectroscopies
treated with different computational approaches (ground-state
ADFT, time-dependent DFT, and harmonic vibrational analysis).

First, we consider the XES spectrum of another iron complex,
Fe(CO)3(cod) (cod = cyclooctadienly, CgHj;) 39149 This is an-
other typical transition metal complex, but features a more com-
plex coordination environment compared to Fe(CO)s. The sen-
sitivity of the calculated XES spectrum with respect to selected
distortions has been explored previously in Ref.22. Here, we now
consider distortions with respect to all possible distortions as de-
scribed above.

The sensitivity modes resulting from the principal component
analysis are shown in Fig. [Sh. We find that only 11 of the in total
81 sensitivity modes are required to account for 95% of the sum
of all singular values. For these 11 sensitivity modes, we set up
our surrogate model in the same fashion as for Fe(CO)s, i.e., a 3rd
order Taylor expansion was used for the one-mode contributions
while neglecting two-mode and higher-order contributions. The
calculated spectrum together with error bars is shown in Fig. [Bp—
d. A comparison to the error bars obtained from randomly sam-
pling 100 distortions, which shows an excellent agreement with
our non-linear surrogate model for both sp =2 pm and sy =4 pm,
is given in Fig. S2 in the Supporting Information.

As for Fe(CO)s, the two most influential sensitivity modes cor-
respond to C=O stretching and Fe-C stretching vibrations. The
third sensitivity mode can be interpreted as a Fe—cod stretching
mode, whereas the fourth and fifth sensitivity mode describe de-
formations of the CO ligand sphere. Note that the most influential
sensitivity modes do not include any changes of the structure of
the cod ligand, which indicates that such distortions do not alter
the calculated XES spectrum significantly.

The calculated error bars are similar to those found for Fe(CO)5
for the three most intense peaks (see also Sect. S5 in the Support-
ing Information for a discussion of quantitative metrics). For the
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weak features between ca. 7092 and 7095 eV, the error bars are
very small, i.e., even though it is only weak this region appears
to be rather insensitive to structural distortions. Noteworthy are
also the error bars for the third peak at ca. 7106-7109 eV. Within
the error bars, this peak could show only one maximum (as for
the reference structure) or two maxima. Such insights provided
by the error bars for calculated spectra will potentially be crucial
for the the comparison of calculated and measured spectra.

As a second test case, we consider the electronic excitation
(UV/Vis) spectrum of the dye molecule aminocoumarin C151.
Such coumarin dyes are a widely used for studying photochem-
istry and thus provide a typical test case. We have previously
investigated aminocoumarin C151 as a model system for simulat-
ing solvent effects on electronic excitations®?, Besides the effect
of the solvent environment, a further contribution to such solvent
effects are fluctuations of the molecular structure which have dis-
tinct effects on the calculated UV/Vis spectrum.

For analyzing the structural sensitivity of the calculated UV/Vis
spectrum of aminocoumarin C151 we considered the region be-
tween 2.5 and 5.0 eV, in which four allowed electronic transitions
are found. We performed a principal component analysis of the
linear structural sensitivities as described above. Here, only five
sensitivity modes, which are shown in Fig. [Bh, are required to
account for 95% of the sum of all 66 singular values. These all
correspond to different ring breathing modes of the conjugated
aromatic system. Note that the influence of the first sensitivity
mode is already more than three times larger than for the second
sensitivity mode.

For the calculation of error bars, we used both the linearized
model and a 4th order Taylor expansion of the one-mode contri-
butions, while neglecting two-mode and higher-order contribu-
tions. The resulting error bars are shown in Fig. @),c and e f. First,
we notice that the effect of structural distortions on the calculated
spectra is much larger than for XES. Therefore, we only consider
maximum distortions of up to 1 pm and assumed a normal dis-
tribution with a standard deviation of sy = 0.5 pm, respectively.
Even for these smaller distortions, the difference between the lin-
earized model and the non-linear model using a 4th order Taylor
expansion of the one-mode contributions is rather pronounced.
With the linearized model, the error bars extend quite far to neg-
ative intensities, which is unphysical and indicates a breakdown
of the linear approximation. This is to a large extent corrected
when switching to a 4th order Taylor expansion.

Further inspection shows that for all peaks, the dominating ef-
fect of structural distortions is a shift of the peak position. Once
this shift becomes large compared to the width of the peak, it is
not well described by a linear expansion of the difference spec-
trum. This is most obvious in Fig. [6f for the first peak. Here, the
4th order Taylor expansion is mostly sufficient for recovering such
a shift in the peak position (see Fig.[6[d), but for larger shifts even
a higher-order Taylor expansion might not be adequate. How-
ever, even though the 4th order Taylor expansion improves upon
the linearized model, it still results in some unphysical extent of
the calculated error bars to negative intensities. Note, that our
form of the nonlinear surrogate model is also able to accommo-
date other approximations than a Taylor expansion for the one-

This journal is © The Royal Society of Chemistry [year]
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Fig. 5 Analysis of the structural sensitivity of the calculated XES spectrum of Fe(CO)s(cod). (a) Visualization of the six most influential sensitivity
modes. (b) Calculated spectrum including error bars giving upper and lower bounds for distortions with |[AR| < 4 pm. The colors of the shaded area
indicate the contributions of the different sensitivity modes. (c,d) Calculated spectrum including error bars corresponding to two standard deviations
when assuming a normal distribution with standard deviation (c) sp =2 pm and (d) s =4 pm for the distortions of the molecular structure. All error bars
are obtained using the non-linear surrogate model based on a 3rd order Taylor expansion for the one-mode contributions and neglecting two-mode and
higher-order contributions.
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Fig. 6 Analysis of the structural sensitivity of the calculated UV/Vis spectrum of aminocoumarin C151. (a) Visualization of the five most influential
sensitivity modes. (b,c) Calculated spectrum including error bars giving upper and lower bounds for distortions with |AR| < 1 pm obtained within (b) the
linearized model and (c) the non-linear surrogate model based on a 4th order Taylor expansion for the one-mode contributions and neglecting two-mode
and higher-order contributions. (d) Spectra calculated for 100 random distortions with |AR| = 1 pm (black lines) as well as 20 evenly spaced distortions
between Q; = +1 pm along each of the four most influential sensitivity modes (red lines). The total error bars from (c) are included as green shaded
area for comparison. (e,f) Calculated spectrum including error bars corresponding to two standard deviations when assuming a normal distribution
with standard deviation sy = 0.5 pm for the distortions of the molecular structure obtain within (e) the linearized model and (f) the non-linear surrogate
model. (g) Spectra calculated for 100 random distortions sampled from independent normal distributions with s = 0.5 pm as well as the error bars
corresponding to two standard deviations (blue lines). For comparison, the error bars from (f) are included as blue shaded area.
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mode (and possibly higher-order) contributions, which might be
more suitable for describing larger shifts in peak positions.

To assess the accuracy of the error bars obtained with our
nonlinear surrogate model, Fig. [fd and g show the spectra ob-
tained for 100 randomly sampled distortions. For random dis-
tortions with [AR| = 1 pm (see Fig. [6{d), all calculated spectra
are within the boundaries for the maximum change in the cal-
culated spectrum. However, the magnitude of the change is
significantly smaller because the most influential distortions are
not sampled sufficiently. When considering explicit distortions
along the most influential sensitivity modes, the error bars are
approached more closely. When sampling independent normally-
distributed distortions (see Fig. ), we find that the error bars
obtained from the standard deviation of the calculated spectra
are in very good agreement with those obtained from the nonlin-
ear surrogate model. Note that even though the spectra always
remain positive, these error bars extend to negative intensities,
which might appear unphysical. However, this is a consequence
of the fact that the calculated spectrum do not follow a normal
distribution anymore, which leads to a breakdown of the inter-
pretation of the 2s error bars as 95% confidence intervals.

Finally, we consider the calculated harmonic IR spectrum of the
amino acid alanine as a third test case. Vibrational spectroscopy
is a prime example for a spectroscopic method that is used for
making structural assignments based on the direct comparison of
calculated and measured spectra (see, e.g., Refs.*"7). As many
such studies concern polypeptides, alanine as one of the simplest
amino acids is well suited as a first test case. Note that for vibra-
tional spectra, the sensitivity of the calculated harmonic spectra
with respect to structural distortions is related to the anharmonic-
ity of the potential energy surface and the resulting error bars
thus also give an indication for uncertainties resulting from the
neglect of anharmonicities.

For the IR spectrum of alanine, we analyzed the structural sen-
sitivity in the region between 500-4000 cm~!. Here, we find that
13 out of 39 sensitivity modes need to be included to account for
95% of the sum of all singular values. The nine most influen-
tial sensitivity modes are visualized in Fig. [7p. The comparison
with the color-coded error bars for maximum distortions of up
to 0.5 pm in Fig. [7p shows that different peaks are affected by
the individual sensitivity modes. For instance, the amide I (C=0
stretching) vibration at ca. 1650 cm~! is almost exclusively in-
fluenced by the second sensitivity mode, which corresponds to a
change of the C=0 bond length.

As for UV/Vis spectroscopy, we find that also the calculated IR
spectra are much more sensitive to structural distortions than the
XES spectra. Therefore, we consider only normally distributed
distortions with a standard deviation of sp = 0.25 pm in Fig.
and d. Again, we find that going from a linearized model to a
4th order Taylor expansion of the one-mode contributions signifi-
cantly reduces the extent of the error bars to negative intensities.
We also note that when going to normally distributed distortions
with a standard deviation of 5o = 0.5 pm (see Fig. , the 4th
order Taylor expansion breaks down, i.e., more sophisticated ap-
proximations for the one-mode contributions will be required for
describing such larger distortions. This is confirmed by the com-
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parison with the error bars obtained from randomly sampled dis-
tortions that is shown in Fig.|7e and g.

Inspecting the error bars in Figs. as well as the corre-
sponding quantitative statistical metrics listed in Tab. [2| reveals
rather different uncertainties in different regions of the spectrum.
While the fingerprint region below ca. 800 cm™! is subject to
large absolute uncertainties as well as for the amide I peak at
ca. 1650 cm~! (which mainly consists of the C=0 stretching vib-
bration), a rather small absolute uncertainty is found for the po-
sition of the peak at ca. 1016 cm™! as well as for low-intensity
peaks between ca. 1050 and 1500 cm~! (which are due to the
C%-N stretching, C*-H bending and the symmetric CH3 bending
vibrations). In the high-wavenumber region, the C-H stretch-
ing vibrations in the region between ca. 2800-3150 cm™~! is af-
fected by a significantly smaller absolute uncertainty that the O-
H and N-H stretching vibrations in the region between ca. 3200-
3700 cm™!.

Considering the COV, the latter stand out as the peaks with
the highest relative uncertainty. For the C-H stretching, amide I
(C=0 stretching), and the fingerprint region, the COV is smaller
by about a factor of two, but is still sizable. The intensities of the
peaks in the region between ca. 1050 and 1500 cm~' show not
only the smallest absolute uncertainty, but also the smallest COV.

Such a systematic assessment of the uncertainties in the posi-
tions and intensities of different peaks in calculated vibrational
spectra will potentially enable a much more reliable assignment
of experimental spectra. Most importantly, it allows one to iden-
tify spectral features that are subject to high uncertainties. For
these peaks, one can then selectively refine the computational
methodology in order to reduce the uncertainty.

6 Conclusions and Outlook

Altogether, we have presented a methodology for systematically
quantifying the structural sensitivity of calculated molecular spec-
tra. It allows for the inclusion of error bars indicating the uncer-
tainties in a calculated spectrum that are due to uncertainties in
the underlying molecular structure. It is thus a crucial first step
towards theoretical spectroscopy with error bars and will enable
a systematic assessment of the agreement between computational
and experimental spectra. While we demonstrated its applicabil-
ity to XES, UV/Vis, and IR spectroscopy, our methodology is not
specific to certain spectroscopies but should be generally applica-
ble to any type of computational spectroscopy providing a spectral
intensity as function of excitation energy.

Our starting point for quantifying the structural sensitivity is
a principal component analysis of the linear structural sensitivity
with respect to all possible Cartesian displacements. This leads
to sensitivity modes, which correspond to collective distortions of
the reference structure. We could show that only a small frac-
tion of all sensitivity modes need to be included to describe the
full linear structural sensitivity. Currently, our approach initially
requires the calculation of 6N spectra for displaced structures,
which can be a significant increase of the computational effort.
However, different strategies for making this step more efficient
could be explored in future work, e.g., the analytical calculation
of the derivative of the spectra with respect to structural distor-
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Fig. 7 Analysis of the structural sensitivity of the calculated IR spectrum of alanine. (a) Visualization of the nine most influential sensitivity modes; (b)
calculated spectrum including error bars giving upper and lower bounds for distortions with |AR| < 0.5 pm. (c,d,f) Calculated spectrum including error
bars corresponding to two standard deviations when assuming a normal distribution with standard deviation (c,d) s = 0.25 pm and (f) sp = 0.5 pm for
the distortions of the molecular structure. In (c) the error bars are obtained using the linearized model, while in (b), (d) and (f) a non-linear surrogate
model is used that is based on a 4th order Taylor expansion for the one-mode contributions and neglecting two-mode and higher-order contributions.
(e,9) Spectra calculated for 100 random distortions sampled from independent normal distributions with (e) sp = 0.25 pm and (g) so = 0.5 pm as well
as the error bars corresponding to two standard deviations (blue lines). For comparison, the error bars from (d) and (f), respectively, are included as
blue shaded area.
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Table 2 Quantitative statistical metrics for the uncertainty of the calculated IR spectrum of alanine at the maxima of selected peaks (E;, indicated by
vertical lines in the spectra in Fig. |ZD The statistical analysis assumes a normal distribution with standard deviation sy = 0.25 pm for the distortions
of the underlying molecular structure. Listed are the intensity for the undistorted structure ¢(E;;Ry), the mean of the intensity (c(E;)), its variance
Var[o(E;)], its standard deviation s[c(E;)], and the coefficient of variance COV[o(E;)]. All metrics refer to the non-linear surrogate model based on a
4th order Taylor expansion for the one-mode contributions and neglecting two-mode and higher-order contributions. See Table S11 in the Supporting
Information for the metrics for sg = 0.5 pm.

E;j/cm™'  assignment o(E;;Ry) (o(E;)) Var|o(E;)] s[o(E;)] COV[o(E))]
534.7 fingerprint 11.12 8.66 8.77 2.96 0.34
1015.6 X-H bend 7.70 7.22 0.48 0.69 0.10
1191.3 C%-N stretch 0.88 0.86 0.00 0.04 0.05
1313.1 C%-H bend 0.99 0.96 0.02 0.15 0.16
1412.5 symm. CHj bend 1.08 1.07 0.00 0.06 0.06
1650.9 C=O stretch 8.31 7.18 3.52 1.88 0.26
2922.2  C-H stretch 0.79 0.66 0.05 0.22 0.34
3014.7 C-H stretch 0.59 0.54 0.02 0.13 0.24
3390.2 O-H stretch 2.07 1.10 0.88 0.94 0.85
3547.1 N-H stretch 0.58 0.37 0.05 0.23 0.62
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tions (see, e.g., Ref.2l), the determination of the most influential
sensitivity modes at a lower level of theory, or an iterative calcula-
tion of the largest singular values and the corresponding singular
vectors>2,

Within the reduced space of the most influential sensitivity
modes, one can subsequently set up a nonlinear surrogate model
of the structural sensitivity, for which an HDMR expansion pro-
vides a convenient and general ansatz. Here, we employed a 3rd
or 4th order Taylor expansion for the one-mode contributions and
neglected two-mode and higher-order contributions. We found
that such an approximation is sufficient as long as the shifts in
peak positions remain small compared to their width. If this is
no longer the case, more sophisticated approximations will be re-
quired, but can easily be accommodated within the general form
of the surrogate model introduced here. For the systematic con-
struction of surrogate models of the structural sensitivity, iterative
schemes that include additional data points as needed could be
devised in analogy to methods available for the construction of
anharmonic potential energy surfaces=324,

With a surrogate model of the structural sensitivity, it becomes
possible to perform a statistical analysis of the propagation of un-
certainties in the molecular structure to the calculated spectra,
which ultimately provides error bars for the calculated spectra.
In the present work, we assumed an ad hoc uncertainty for the
molecular structure, either by specifying a maximum distortion or
by assuming a normal distribution with a certain standard devi-
ation. In future applications, these structural uncertainties could
be obtained from more physical considerations, e.g., by assuming
a thermal population of vibrational modes. Here, we character-
ized the uncertainty in the calculated spectrum either by giving
upper and lower bounds or by calculating the standard devia-
tion of the probability distribution for the calculated spectra. This
could be extended by performing additional statistical analyses,
e.g., by explicitly calculating confidence or credible intervals for
the calculated spectrum.

The resulting error bars make it possible to identify which spec-
tral features are associated with a large structural sensitivity and
which spectral features are rather insensitive to distortions of the
underlying molecular structure. For instance, our analysis of the
structural sensitivity of the calculated IR spectrum of alanine re-
veals that peaks that are due to stretching modes show a sig-
nificantly larger uncertainty than those due to bending modes.
Moreover, the analysis of the sensitivity modes reveals the col-
lective distortions that have the largest influence on the calcu-
lated spectrum. For alanine, we find that changes of the N-H,
O-H, and C=0 bond lengths have the largest effect on the calcu-
lated IR spectrum. Altogether, the novel analysis tools developed
here make it possible to assess the relationship between molecu-
lar structure and calculated spectra in a quantitative way and will
ultimately make structural assignments based on the comparison
of experimental and calculated spectra more reliable.

Here, we have considered distortions of the underlying molec-
ular structure as the only source of uncertainty. Of course, calcu-
lated spectra are also subject to additional sources of uncertainty,
most importantly errors of the approximate exchange—correlation
functional in DFT. The methodology presented here can be com-
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bined with existing approaches for quantifying such uncertain-
ties of quantum-chemical approximations (see e.g., Refs.23727),
Moreover, our general methodology can be extended to other
sources of uncertainties that depend on a larger number of pa-
rameters, e.g., uncertainties introduced by an environment that
is described by an embedding potential®>. Ultimately, we envi-
sion the quantification of all relevant sources of uncertainties in
calculated spectra, and consider the present work an important
step in this direction.

Computational Details

All quantum-chemical calculations have been performed using
the Amsterdam Density Functional (ADF) program package=0/57,
The calculations were automated using the PyADF scripting
framework®®, and the methodology for the analysis of the struc-
tural sensitivity of calculated spectra described here has been im-
plemented as an add-on to PyADF. Normally-distributed random
distortions (used in Fig.[4d,e, Fig.[6]g, and Fig.[7k,g) are obtained
by drawing each component of the displacement vector AR from
an independent normal distribution with the desired standard de-
viation. Random distortions with a given magnitude |AR| (used in
Fig.[3k and Fig.[6ld) are obtained from these normally-distributed
random distortions by rescaling the displacement vector accord-
ingly.

The molecular structures of Fe(CO)5 and of Fe(CO)3(cod) were
optimized employing the BP86 exchange-correlation (xc) func-
tional®2€¥ in combination with a Slater-type TZ2P basis set®,
For aminocoumarin C151, the structure was optimized using
BP86 and a TZP basis set. For alanine, BP86 and a DZ basis set
were used in combination with a COSMO solvation model®2 with
default parameters.

For the calculation of XES spectra, we employed the ADFT ap-
proach of Lee et al. 28, in which excitation energies are calculated
as occupied orbital energy differences. This ADFT approach is a
rather simple approximation, but it has been shown to be reli-
able for valence-to-core XES spectra of diverse transition metal
complexes©371
tensities are obtained from transition moments between occupied
orbitals, including contributions beyond the electric dipole ap-
proximationZ273, All calculations of XES spectra were performed
with the BP86 xc functional and a QZ4P basis set in combina-
tion with the COSMO solvation model®2 with default parame-
ters. The calculated spectra were shifted by 180.62 eV3242 and
a Gaussian line broadening with a full-width at half maximum of
1.5 eV was applied to each calculated transition. For Fe(CO)s,
we considered the region between 7094.62 €V and 7110.62 eV
as relevant energy range, whereas for Fe(CO)3(cod) the region
between 7088.62 €V and 7110.62 eV was used.

The UV/Vis spectrum of aminocoumarin C151 was calculated
using time-dependent DFT (TD-DFT) as implemented in ADFZ4,
In all TD-DFT calculations, the SAOP model potentialZ278 was
used in combination with a TZP basis set. The spectra were ob-
tained by applying a Gaussian line broadening with a FWHM
of 0.08 eV, and the broadened spectrum in the region between
2.5 eV and 5.0 €V was used as quantity of interest.

Harmonic infrared spectra of alanine were calculated with ADF

, including the ones considered here?. XES in-
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using its analytical frequency moduleZZ using BP86/DZ and a
COSMO solvation model. A Gaussian line broadening with a
FWHM of 50 cm~! was employed. Here, the broadened spectrum
was considered in the region between 500 cm~! and 4000 cm™!.
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Uncertainty quantification is applied in Theoretical Spectroscopy to obtain error bars

accounting for the structural sensitivity of calculated spectra.
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