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ABSTRACT: We computationally investigate the mechanism of the reduction half-cycle of the
selective catalytic reduction of nitrogen oxides with ammonia. We compare both Fe- and Cu-
exchanged zeolite catalysts and aim at exploring all accessible reaction pathways. From our
calculations, a comprehensive picture emerges that unifies several previous mechanistic proposals.
We find that both for Fe and for Cu catalysts different reaction pathways are feasible but some of the
possible reaction pathways differ in these two cases. Our computational results provide a basis for
the interpretation of in situ spectroscopic investigations that can possibly distinguish the different mechanistic pathways.

1. INTRODUCTION
The selective catalytic reduction (SCR) is widely used for the
removal of nitrogen oxides (NOx) in exhaust-gas aftertreat-
ment systems of vehicles with diesel engines.1−4 In the
presence of suitable heterogeneous catalysts, NOx can be
reduced by reaction with ammonia injected into the exhaust-
gas flow. Transition-metal zeolite catalysts are available for
SCR and are predominately used in automotive applica-
tions.2,4−6 The most widely used zeolite catalysts are the iron-
based Fe-ZSM-57−9 and copper-exchanged zeolites with the
chabazite structure, particularly Cu-SSZ-13 and Cu-SAPO-
34.10,11 The latter are particularly attractive due to their
hydrothermal stability. More recently, the chabazite iron-
catalyst Fe-SSZ-13 has also been demonstrated to show high-
temperature SCR activity.12

Both the structure of the catalytically active metal centers in
these catalysts and the catalytic mechanism of the SCR
reaction have been studied extensively both experimentally and
computationally. For the chabazite-based catalysts, the nature
of the catalytically active sites has been investigated, both for
Cu-SSZ-1313−16 and Cu-SAPO-3417 as well as for Fe-SSZ-
13.18,19 Different studies agree that the major active species are
single CuII or FeIII centers located in the 6-membered or 8-
membered rings of the zeolite framework, where they balance
the negative charge of an Al3+ site. Depending on the
coordination of further ligands such as water, NH3, or NO
as well as on temperature, the Cu centers can detach from the
zeolite framework and can become mobile.15,20−24 On the
other hand, Fe centers are believed to be more strongly bound
and remain immobile within the zeolite framework.19

Even though many details of the catalytic mechanism have
been elucidated, the SCR mechanism is still not fully
understood.25−28 This is particularly true for Fe-exchanged
zeolite catalysts, which have been studied less extensively than
Cu-exchanged zeolite catalysts. Although for Cu catalysts
computational studies explored different possible mechanistic

pathways,17,22,29−32 a comprehensive computational picture of
the SCR mechanism for Fe catalysts is still lacking.26,33 Here,
we aim at closing this gap by computationally exploring
different possible mechanistic pathways for the reduction half-
cycle of the SCR reaction with Fe catalysts. In addition, we set
out to compare these reaction pathways for Fe and Cu zeolite
catalysts to provide a unified picture.
There is general agreement that the SCR reaction proceeds

via the redox cycle schematically shown in Figure 1a (ref 28).
First, in the reduction half-cycle, NO and NH3 react to N2 and
H2O while reducing the catalytic metal center. Second, in the
oxidation half-cycle, the catalytic metal center is reoxidized.
This slow reoxidation is generally considered to be the rate-
determining step. The reaction equation of the oxidation half-
cycle will differ depending on the availability of NO2 (see
Figure 1a). Different detailed mechanistic proposals have been
made for the oxidation half-cycle with Cu-exchanged zeolite
catalysts under both standard SCR and fast SCR condi-
tions.17,22,29−31,34 Most likely, the oxidation half-cycle proceeds
via the formation of dimeric Cu species.22,35

Here, we focus on the reduction half-cycle of the SCR
reaction. Most generally, this first part of the SCR reaction can
proceed via two different mechanistic pathways (see Figure
1b) by adsorbing either NH3 or NO at the catalytic metal
center in the first step. If NH3 is coordinated first (NH3-first
pathway), a proton needs to be transferred either to another
ligand or to the zeolite framework. NO can subsequently either
be adsorbed at the metal center or directly attack the
coordinated NH2 ligand. Both possibilities lead to the release
of N2 and H2O via an NH2NO intermediate. If NO reacts first
(NO-first pathway), one generally assumes the intermediate
formation of a HONO ligand, either via an intermediate NO
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complex or via a direct attack of NO at an OH− ligand.
Subsequently, this HONO ligand reacts with NH3 to form N2
and 2H2O. Again, this step could proceed either via
intermediates in which NH3 is coordinated with the metal
center or via a direct attack of NH3 at the HONO ligand.
Previous computational studies for Cu-exchanged zeolite

catalysts provide an ambiguous picture for the reduction half-
cycle. Although refs 17, 22, 30 assume the SCR reduction half-
cycle to proceed via the NH3-first pathway, refs 29, 31 consider
the NO-first pathway. In ref 34, both pathways are explored,
with the computational results suggesting that the reaction via
a HONO intermediate is preferred. Further details of these
different mechanistic proposals will be discussed below. Based
on kinetic and spectroscopic studies of SCR catalyzed by Fe-
ZSM-5, mechanisms proceeding via different variants of an
NO-first pathway have been suggested,36,37 whereas computa-
tional investigations assumed mechanisms via the NH3-first
pathway.33,38

2. RESULTS AND DISCUSSION

To computationally explore the mechanism of the SCR
reaction with Fe and Cu zeolite catalysts, we employ minimal
models of the active center33,39 as shown in Figure 2b,c. These
models are based on the optimized structure of the model
shown in Figure 2a. In both cases, we consider overall neutral
models of the active center (see the Supporting Information
for further discussions). The use of a minimal active-site model
will allow us to identify feasible reaction pathways and to reveal
intrinsic mechanistic differences between Fe and Cu catalysts
that are independent of the precise nature of the active center.
A comparison to a larger active-site model as well as to an
NH3-solvated active-site model is provided in the Supporting
Information.
We start by considering possible reaction pathways for the

reduction half-cycle of the SCR reaction with Fe-exchanged
zeolite catalysts (see Figure 3) and start from the overall
neutral model [Z−FeIII(OH)2] (A, see Figure 2b) with a d5

high-spin electron configuration. Such species have been
identified as the major monomeric Fe species in Fe-SSZ-13
catalysts.18

The first possible SCR reaction pathway (NH3-first pathway,
see the right part of Figure 3a) starts with the adsorption of
NH3, leading to [Z−FeIII(OH)2(NH3)] (B). This step is

exothermic by −56 kJ/mol. Subsequently, a proton is shifted
from the NH3 ligand to one of the OH− ligands, resulting in
[Z−FeIII(OH)(H2O)(NH3)] (C), which can abstract a water
molecule to arrive at [Z−FeIII(OH)(NH2)] (D). This proton
shift and the water abstraction are endothermic and altogether
require 82 kJ/mol. However, we could not identify any feasible
alternatives on the NH3-first pathway.
Intermediate D can now react with NO in two different

ways. First, NO can be coordinated to form [Z−FeII(OH)-
(NH2)(NO)] (E), reducing FeIII to low-spin (S = 0) FeII. A
rearrangement, in which the NH2 ligand shifts to form a N−N
bond, then leads to [Z−FeII(OH)(NONH2)] (G). According
to our computations, G has a high-spin (S = 2) ground state,
i.e., this step requires a spin crossover. Species G can release N2
and H2O via (I), finally resulting in a reduced iron species [Z−
FeII(OH)] (J). Alternatively, one could assume a direct
reaction of NO from the gas phase with the NH2 ligand.
The only plausible resulting intermediate that we could find in
our calculations is species F, which contains an ON−NH2
ligand coordinated with the Fe center via the nitrogen atoms.
Again, our computations show a high-spin (S = 2) ground state
for this species, which could further react to J under release of
N2 and H2O. However, the formation of the alternative

Figure 1. (a) Schematic redox cycle for the standard and the fast SCR reaction. Mx (blue) denotes the oxidized catalytic metal center, whereas
Mx−1 (red) refers to a reduced form of the catalytic metal center. (b) Possible simplified reaction mechanisms for the SCR reduction half-cycle on
the NH3-first pathway (left) and the NO-first pathway (right).

Figure 2. (a) Optimized molecular structure of a model of the active
metal center in Cu-SSZ-13. The atoms shown herein as balls and
sticks are used in the minimal model of the catalytic centers employed
in our calculations. (b) Optimized molecular structure of our starting
model of the active centers in Fe-doped zeolite catalysts [Z−
FeIII(OH)2]. (c) Optimized molecular structure of our starting model
of the active centers in Cu-doped zeolite catalysts [Z−CuII(OH)].
Color code: Fe (dark brown), Cu (orange), O (red), N (blue), Al
(gray), Si (light brown), and H (white). The coordinates of the atoms
highlighted in cyan for models (b) and (c) are kept fixed at their
positions in model (a) in all our calculations.

ACS Omega Article

DOI: 10.1021/acsomega.9b00600
ACS Omega 2019, 4, 7987−7993

7988

http://pubs.acs.org/doi/suppl/10.1021/acsomega.9b00600/suppl_file/ao9b00600_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsomega.9b00600/suppl_file/ao9b00600_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsomega.9b00600/suppl_file/ao9b00600_si_001.pdf
http://dx.doi.org/10.1021/acsomega.9b00600


intermediate E from D is exothermic by −119 kJ/mol, whereas
F is 60 kJ/mol higher in energy than E. Therefore, this reaction
path would most likely proceed via E with a coordination of
NO with the iron center instead of a direct reaction of NO
from the gas phase.
The second possible SCR reaction pathway (NO-first

pathway, see the left part of Figure 3a) starts with the
adsorption of NO, leading to [Z−FeII(OH)2(NO)] (K) while
reducing the Fe center to low-spin (S = 0) FeII. This step is
exothermic by −95 kJ/mol. The subsequent formation of an
intermediate [Z−FeII(OH)2(NO)(NH3)], in which NO and
NH3 are simultaneously coordinated with the Fe center, was
not stable in our computations. Instead, K rearranges under
formation of a HONO ligand, which could be coordinated
either via an oxygen atom (L) or via the nitrogen atom (M),
which are almost equal in energy. Both L and M have a high-
spin (S = 2) ground state in our calculations, and the formation
of the HONO ligand thus requires a spin crossover.
After the formation of L orM, NH3 can coordinate, resulting

in [Z−FeII(HONO)(NH3)], with HONO coordinated via the
oxygen atom (N) or via the nitrogen atom (O), respectively.
This step is exothermic by 57 and 68 kJ/mol, respectively, and
the two intermediates N and O differ in energy by only 14 kJ/
mol. Abstraction of H2O from O leads to [Z−FeII(OH)-
(NH2)(NO)] (E), which can release N2 and H2O via G and I
or via F and I (see above).
Overall, according to our calculations, a mechanism via the

NO-first pathway seems more likely as it does not require the
energetically unfavorable intermediate D that needs to be
formed on the NH3-first pathway. The highest-energy

intermediates on the NO-first pathway are L and M, which
are 41−44 kJ/mol lower in energy than D. Both the
mechanisms via L and M, i.e., via the formation of a HONO
ligand and subsequent adsorption of NH3, are possible
according to our computational results. According to our
calculations, all accessible reaction pathways require a spin
crossover from low-spin to high-spin FeII. However, because of
the known insufficiencies of density-functional approximations
for spin-state energy differences,40−42 it cannot be ruled out
that for some of our high-spin FeII intermediates the
corresponding low-spin species are actually more stable (see
the Supporting Information for additional calculations and
discussion).
For comparison, we considered the same possible reaction

pathways for the SCR reaction catalyzed by Cu-exchanged
zeolites (see Figure 4). Here, we start from the overall neutral
model [Z−CuII(OH)] (A, see Figure 2c), which is in line with
the neutral models considered in refs 22, 29, 34. Similar results
are obtained for a negatively charged model [Z−CuII(OH)2]−
resembling the models used in refs 17, 30, 31 (see the
Supporting Information).
For the NH3-first pathway (see the right part of Figure 4),

the same possible reaction steps and intermediates as for the
case of Fe-exchanged zeolite catalysts were found, even though
the relative energies of the different intermediates differ. Most
importantly, the transfer of a proton from the NH3 ligand to
the OH ligand and the subsequent abstraction of water (B to
D) now require only 56 kJ/mol, with D lying lower in energy
by 20 kJ/mol than the starting point A. Note that some
previous calculations assume a proton transfer to the zeolite

Figure 3. (a) Reaction pathways considered for the mechanism of the reduction half-cycle of the SCR reaction catalyzed by Fe-exchanged zeolite
catalysts. Both pathways starting with the adsorption of NO (left) and with the adsorption of NH3 (right) are considered. (b) Calculated energy
profiles (BP86/TZ2P) for the considered reaction pathways. For all FeIII species (blue), the high-spin (S = 5/2) state is the ground state. For the
FeII species, the calculated energies of both the high-spin (S = 2, red) and low-spin (S = 0, green) states are included.
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framework in this step,17,22,30 which cannot be described by
our small model. However, according to ref 17, such a proton
transfer would require 114 kJ/mol. The further reactions via
the formation and decomposition of an ON−NH2 ligand (F or
G) can proceed via steps that are all exothermic or require only
little energy.
For the NO-first pathway (see the left part of Figure 4),

there are some fundamental differences to the case of Fe-
exchanged zeolite catalysts. After coordination of NO (K), the
formation of a HONO ligand coordinated via its oxygen atom
L leads to the dissociation of the HONO ligand after
coordination of NH3 (N). Thus, this path does not lead to
the reduction of NO. Instead, the formation of a HONO
ligand coordinated via its nitrogen (M) atom is preferred and

leads to O after coordination of NH3. Alternatively, ammonia
can coordinate with K under formation of P. Such an
intermediate was not available in the case of an Fe zeolite
catalyst. Here, the formation of P is energetically preferred
compared to that of M by 28 kJ/mol, but both can further
react to the same intermediate O. The remaining steps proceed
via the formation of E, which is endothermic by +70 kJ/mol,
and match those discussed above for the Fe zeolite catalyst.
Overall, also for Cu-based zeolite catalysts, the NO-first

pathway seems to be preferred, even though on the NH3-first
pathway the high-energy intermediate D is more favorable in
the case of a Cu catalyst than for an Fe catalyst. However, for a
Cu catalyst, the NO-first pathway cannot proceed via an
intermediate L as it does for Fe catalysts. Instead, the SCR

Figure 4. (a) Reaction pathways considered for the mechanism of the reduction half-cycle of the SCR reaction catalyzed by Cu-exchanged zeolite
catalysts. Both pathways starting with the adsorption of NO (left) and with the adsorption of NH3 (right) are considered. (b) Calculated energy
profiles (BP86/TZ2P) for the considered reaction pathways.

Figure 5. Calculated (BP86/QZ4P) Fe K-edge and Cu K-edge XES spectra of selected intermediates on the considered catalytic reaction pathways
of the SCR reaction with Fe catalysts (left) and with Cu catalysts (right). The indicated assignment refers to the in operando measurements of refs
45 and 32. Calculated XES spectra of all considered intermediates are shown in the Supporting Information.
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reaction will most likely proceed via intermediate P, which is
not accessible with an Fe catalyst. The only slightly disfavored
route via M is available for both Cu and Fe catalysts.
Our computational elucidation of the possible catalytic

reaction pathways provides the basis for spectroscopic
identification of catalytic intermediates. A unique method for
this purpose is provided by X-ray spectroscopy.43,44 Based on
in operando valence-to-core X-ray emission spectroscopy
(VtC-XES), we previously observed a peak at ca. 7087 eV
(“peak A”) for Fe-ZSM-5 that appears at lower energies than
the peak due to the lone pair at ligands coordinated via oxygen
(ca. 7091 eV, “peak B”) and the peak due to the lone pair at
ligands coordinated via nitrogen (ca. 7096 eV, “peak C”). This
led us to the conclusion that with Fe-ZSM-5 the SCR reaction
proceeds via the NO-first pathway45 with an intermediate
featuring HONO coordinated via its central oxygen atom that
bears a positive partial charge. On the other hand, for Cu-SSZ-
13, such a peak is absent from the in operando XES spectra
and thus a different mechanism via the NH3-first pathway
seems to be employed.32

To reconcile these earlier spectroscopic results with our
present computational study, we calculated the XES spectra of
all considered intermediates. The calculated spectra of selected
intermediates are shown in Figure 5 (see the Supporting
Information for all calculated spectra). These results confirm
the previous assignment of peaks B and C. For Fe catalysts, a
spectroscopic feature that is clearly shifted to lower energies by
ca. 3 eV with respect to peak B is found only for the low-spin
states of L, N, andM. Thus, the peak A that was experimentally
observed in ref 45 could indeed indicate that the SCR reaction
proceeds via the NO-first pathway for Fe catalysts. However,
this assignment holds only if the reaction proceeds via low-spin
FeII intermediates that are not the ground state in our
calculations. On the other hand, we can clearly rule out that
peak A is due to the coordination of NO with the iron center,
as was suggested in ref 28.
Of the intermediates considered for Cu catalysts, only the

intermediates L and N show a peak clearly shifted to lower
energies compared to peak B in the calculated spectra.
However, these species do not lie on a feasible reaction path
that leads to the reduction of NO. Thus, the absence of such a
peak in the in operando XES spectra reported in ref 32 does
not allow us to distinguish between the NH3-first and NO-first
(via M or P) reaction pathways.

3. CONCLUSIONS
We could computationally identify several possible catalytic
reaction pathways for the reduction half-cycle of the selective
catalytic reduction of NOx with Fe- and Cu-exchanged zeolite
catalysts. They provide a comprehensive picture that unifies
several previous mechanistic proposals. We find that both for
Fe and for Cu catalysts different reaction pathways are
available and both an NH3-first pathway and an NO-first
pathway seem feasible, of which the NO-first pathway is
preferred according to our computational results. Although on
both pathways a coordination of NO at the metal center and
its direct reaction of NO with ligands coordinated at the metal
center are both possible, NH3 can react further only after its
adsorption at the metal center. However, some of the available
reaction pathways differ for Fe and Cu catalysts. Although for
Fe catalysts the SCR reaction can proceed via an intermediate
with a HONO ligand coordinated with the metal center via its
central oxygen atoms, this pathway is not possible for Cu

catalysts. This is in agreement with previous in operando XES
measurements. On the other hand, for Cu catalysts, a reaction
path via an intermediate that simultaneously coordinates NO
and NH3 is available, which is inaccessible for Fe catalysts.
A distinction between the different pathways that are feasible

according to the present computational results will require
further spectroscopic and computational studies. Computa-
tionally, larger models of the active site as well as the use of
higher accuracy computational methods could decrease the
computational error bars and possibly distinguish between
different pathways. For Fe catalysts, quantum-chemical
methods beyond density-functional theory (DFT) might be
required to provide more accurate spin-state energy differ-
ences. Moreover, the determination of the transition states
connecting different intermediates as well as the calculation of
the corresponding activation energies will be required for a
complete picture. Of course, additional reaction pathways
might become possible when considering larger active-site
models, e.g., by involving a second metal center or by allowing
for mobile, NH3-solvated metal centers. Nevertheless, the
unified mechanistic picture provided here will form an ideal
starting point for such future studies.

4. COMPUTATIONAL METHODS
The molecular structures of all considered models have been
optimized using DFT as implemented in the Amsterdam
density functional program package,46,47 employing the BP86
generalized-gradient approximation exchange−correlation
functional48,49 in combination with the Slater-type TZ2P
basis set.50 Further details on the construction of our model
structures are given in the Supporting Information. All relative
energies refer to the differences in the total electronic energy
without additional corrections. For all FeIII species, the ground
state is the high-spin (S = 5/2) state, whereas for FeII, both the
low-spin (S = 0) and the high-spin (S = 2) states were
considered. For all CuI models, we assumed a closed-shell
singlet ground state, whereas for all CuII models, spin-
unrestricted calculations were performed for the doublet (S
= 1/2) ground state. Optimized molecular structures as well as
all calculated relative energies are included in the Supporting
Information. For comparison, all calculations have been
repeated using the B3LYP hybrid exchange−correlation
functional51 with the same basis set as well as including
Grimme’s D3 dispersion correction52 (see the Supporting
Information). XES spectra were recorded using the standard
ΔDFT approach53,54 including higher-order intensity contri-
butions55 with BP86/QZ4P. Fe K-edge and Cu K-edge spectra
have been shifted by 181.34 eV and by 229.14 eV, respectively,
to align them with the experimental energy scale.
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