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In solid state physics, electronic excitations are often classified as plasmons or single-particle excita-
tions. The former class of states refers to collective oscillations of the electron density. The random-
phase approximation allows for a quantum-theoretical treatment and a characterization on a micro-
scopic level as a coherent superposition of a large number of particle-hole transitions with the same
momentum transfer. However, small systems such as molecules or small nanoclusters lack the basic
properties (momentum conservation and uniform exchange interaction) responsible for the formation
of plasmons in the solid-state case. Despite an enhanced interest in plasmon-based technologies and
an increasing number of studies regarding plasmons in molecules and small nanoclusters, their defi-
nition on a microscopic level of theory remains ambiguous. In this work, we analyze the microscopic
properties of molecular plasmons in comparison with the homogeneous electron gas as a model
system. Subsequently, the applicability of the derived characteristics is validated by analyzing the
electronic excitation vectors with respect to orbital transitions for two linear polyenes within second
order versions of the algebraic diagrammatic construction scheme for the polarization propagator.
© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4894266]

I. INTRODUCTION

Over the past few decades, plasmonics has evolved as a
promising field of research. The term plasmons refers to col-
lective oscillations of the valence electron gas in conducting
materials like metals, metal nanoclusters, or graphene. Due to
their high absorption cross sections plasmons usually domi-
nate the optical properties of such materials, which in com-
bination with efficient energy and information transport make
plasmons interesting targets for the field of electronics, e.g.,
as chemical or biological sensors,1–3 photovoltaic devices,4, 5

metamaterials6–9 or high frequency computer chips.10–13 They
have also been used in photocatalytic redox reactions.14–17

In an extended system, such as the degenerate elec-
tron gas, plasmon excitations can be treated as macroscopic
electron density waves using classical electrodynamics. The
random phase approximation (RPA) allows for a quantum-
theoretical treatment of plasmons,18–22 reproducing the clas-
sical result for the plasmon frequency in the long-wavelength
limit. In the microscopic description according to the RPA, a
plasmon emerges as a coherent superposition of a large num-
ber of elementary particle-hole (p-h) excitations, comprising
all elementary excitations with a given momentum transfer. A
dominant uniform exchange interaction of the elementary p-h
excitations is crucial in forming such collective excitations.

a)Present address: Department of Mechanical and Aerospace Engineering,
Princeton University, Princeton, New Jersey 08544-5263, USA. Electronic
mail: Caroline.Krauter@pci.uni-heidelberg.de.

Plasmon excitations have been postulated to arise also in
smaller systems exhibiting molecular-type electronic struc-
tures, e.g., in metal clusters with dimensions of about 2 nm
or even less,23–26 or in organic molecules such as polyacenes
and fullerenes.27–33 However, the question arises how col-
lective excitations could possibly emerge in systems lacking
the essential features of the solid-state case, such as momen-
tum conservation and a preeminent uniform exchange interac-
tion. Nevertheless, various theoretical studies have been per-
formed addressing plasmon-type optical excitations in small
metal clusters (e.g., Refs. 24, 34–42) and molecules (e.g.,
Refs. 33, 43–52). Most of these studies are based on appli-
cations of TDDFT methods53–55 or the RPA.

It should be noted that the concept of plasmon excitations
in small clusters and molecules is by no means unchallenged.
For example, it has been argued that there are no plasmon-
type excitations in small clusters and molecules.56 While a
valid approach was used to analyze the computed excitation
manifold with regard to possible plasmon-type features, some
of the conclusions seem to be unsubstantiated. By contrast,
quantum fluid dynamics and TDDFT simulations have shown
that certain microscopic electronic excitations can indeed be
correlated with collective oscillations, even in very small sys-
tems like Na2.57, 58 Finally, one of us has recently demon-
strated by comparison to the electron gas that the notion of
a plasmon can indeed be transferred to molecular systems.59

While the microscopic quantum-theoretical treatment
based on the RPA or TDDFT methods provide for the
pertinent information on the respective excited states, i.e.,
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energies, transition moments, and eigenvector components,
a clear and comprehensive definition of what constitutes a
plasmon in a small system is still wanting. Often, the term
plasmon is simply attributed to a state having a large spectral
intensity; or to a state characterized as a linear combination
of a few elementary p-h excitations, interpreted as signature
of collective character. More rigorously, Bernadotte et al. de-
rived a scaling approach for TDDFT methods to differentiate
between plasmons and single-particle transitions in a broad
range of molecular systems.59 It is based on the different de-
pendence of the energy of single-particle excitations and plas-
mons on the electron-electron interaction. Such an analysis
has subsequently been applied also by other authors.33, 42

In the present paper we will review the theory of plas-
mons, addressing in particular its implications for molecules
and small clusters. To complement the previous work by
Bernadotte et al.,59 we will focus on the characterization of
the eigenvector components of the states associated with plas-
mons. Recalling the RPA treatment of electronic excitations in
the degenerate electron gas, the plasmon features established
there will be transferred to the analysis and characterization of
low-lying excitations of two polyene molecules. Although the
treatment of electronic excitations in the electron gas by the
RPA has nowadays become textbook knowledge,22, 60 a brief
review will be given here as its understanding is a necessary
prerequisite for an unfamiliar reader to follow our line of ar-
gumentation. Moreover, we will use a formulation in terms
of the polarization propagator here in order to make the con-
nection to quantum chemical wavefunction methods for the
calculation of excited states possible.

This work is organized as follows. In Sec. II an overview
over the theory of plasmons within the RPA is given. The re-
sults for the linear polyenes octatetraene (C8H10) and C16H18
are presented in Sec. III.

II. PLASMON EXCITATIONS IN AN ELECTRON GAS

A uniform gas of electrons, for electric neutrality em-
bedded in a continuous positive background, responds to
a perturbation of the equilibrium electron density by den-
sity oscillations, also referred to as plasma oscillations. Be-
ing a macroscopic phenomenon, these oscillations can be
treated within the framework of classical mechanics and
electrodynamics.22, 61

A well-known approach to electronic excitation is the
RPA. Applied to the electron gas, a plasmon solution is found,
the frequency being identical with the classical result (in the
limit of large wavelengths). Below, we will review the RPA
treatment of the electron gas.

A. The homogeneous electron gas

In the following, we consider a homogeneous electron
gas enclosed in a box with volume V = L3 with periodic
boundary conditions as a model for a metal and assume a uni-
form positively charged background. Neglecting any interac-
tion between the electrons, the single-particle states (spin or-
bitals) ψk σ are obtained as products between a spatial orbital

φk and a spin function γ (s),

ψkγ (x, s) = φk(x)γ (s) = 1√
V

eikxγ (s), γ ∈ {α,β}. (1)

Here, x denotes the Cartesian coordinates and s the spin coor-
dinate. The spatial orbitals are plane-waves characterized by
the wave vectors k. Using the periodic boundary conditions,
their components are given by

ki = 2πni

L
(i = x, y, z, ni = 0,±1,±2, . . . ). (2)

The wave vectors are also referred to as momentum vectors.
The single-particle (orbital) energies ϵk are

ϵk = ¯
2|k|2

2me

. (3)

For V → ∞ the wave vectors can be treated as being continu-
ous. In the ground state of a system containing N electrons, the
N energetically lowest spin orbitals are occupied. The energy
of the highest orbital is called Fermi energy ϵF. The corre-
sponding Fermi wave number (also called Fermi momentum)
kF can be used to define occupation numbers nk,

nk = ((kF − |k|) =
{

0, |k| > kf

1, |k| ≤ kf

. (4)

B. Linear response to an external perturbation
and the polarization propagator

In linear response theory the density change induced by
an external potential is described by the time-space integral
over the product of the retarded density correlation func-
tion DR(x, x′) and the external potential )ext (x, t).22 To al-
low one to evaluate the correlation function in perturbation
theory, it is convenient to define an associated time-ordered
correlation function which then contains the same physical
information.22 Here, we will use the polarization propaga-
tor *(xt, x′t ′). Fourier transformation from the space domain
into the momentum domain and from the time domain to the
frequency domain as well as insertion of a complete set of
eigenstates of Ĥ leads to the well-known spectral or Lehmann
representation of the polarization propagator,22

*pr,p′r ′(ω) =
∑

m̸=0

⟨,0|c
†
r cp|,m⟩⟨,m|c†p′cr ′ |,0⟩

ω − (Em − E0) + iη
︸ ︷︷ ︸

*+
pr,p′r′ (ω)

+
∑

m̸=0

⟨,0|c
†
p′cr ′ |,m⟩⟨,m|c†r cp|,0⟩

ω + (Em − E0) − iη
︸ ︷︷ ︸

*−
pr,p′r′ (ω)

. (5)

Here, the indices p and r denote spin-orbitals,

p ≡ jτ and r ≡ kσ. (6)

The factors ±iη guarantee convergence of the Fourier trans-
formations. The poles of *pr,p′r ′(ω) determine the excitation
energies of the states that are coupled to the ground state via
the density operator.
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The two terms of the matrix "(ω), denoted as "+(ω)
and "−(ω), both contain the same physical information. The
poles of the first term "+(ω) correspond to excitation ener-
gies (p-h states) while those of "−(ω), referred to as deexci-
tations (h-p states), are the negative excitation energies. They
are connected by

*+
pr,p′r ′ (ω) = *−(−ω)r ′p′,rp. (7)

To compute the polarization propagator one has to resort to
suitable approximation schemes. Here a central role is played
by the RPA to be addressed in the following.

C. Random-phase approximation

The RPA was first derived by Pines and Bohm.18–21 They
used an effective screened Coulomb force, among other ap-
proximations, to separate collective modes (plasmons) from
single-particle excitations. The resulting quantum mechanical
description of plasmons constitutes one of the greatest suc-
cesses of the RPA.

Within the RPA approximation, the polarization propaga-
tor is given by

*RPA
pr,p′r ′(ω)

= *0
pr,p′r ′ (ω) + *0

pr,pr (ω)
∑

p′′r ′′

Upr,p′′r ′′ *RPA
p′′r ′′,p′r ′ (ω). (8)

Here, *0
pr,p′r ′ (ω) is the zeroth order (diagonal) polarization

propagator and with the non-interacting homogeneous elec-
tron gas as a reference,

*0
pr,p′r ′ (ω) =

[
(1 − np)nr

ω + ϵr − ϵp + iη
−

np(1 − nr )

ω + ϵr − ϵp − iη

]

δrr ′δpp′ ,

(9)

with ϵp and nr being the single-particle energies and occupa-
tion numbers as defined above. The quantities Urp,r ′p′ are el-
ements of the interaction matrix and have the following form:

Upr,p′r ′ = −Vpr ′[p′r] = −⟨pr ′||p′r⟩ = −⟨pr ′|p′r⟩ + ⟨pr ′|rp′⟩.
(10)

This is the RPA as commonly used in quantum chemistry. In
solid state physics, this expression is usually further approx-
imated by neglect of the Coulomb type term (−⟨pr′|p′r⟩) be-
cause the exchange term dominates for small q:

Upr,p′r ′ = Vpr ′rp′ = ⟨pr ′|rp′⟩. (11)

This additional approximation is discussed in more detail in
Sec. II of the supplementary material.62 Here we adopt this
approach and only work with the latter definition given in
Eq. (11).

The RPA equations decouple into separate equations for
singlet and triplet excitations, which can be achieved by ap-
plying suitable unitary transformations. The general form of
the RPA equations is as given by Eq. (8), the respective spin-
free interaction matrix elements reading

SUjk,j′k′ = 2Vjk′kj′ ,
T Ujk,j′k′ = 0. (12)

Consequently, the triplet states do not include any interaction
between different p-h excitations and at this level of approx-
imation their excitation energies are given directly by orbital
energy differences of the non-interacting reference system.

With this approximate electron-electron interaction the
singlet part of the spin-adapted polarization propagator can
be written as

S*RPA
jk,j′k′(ω)

= S*0
jk,j′k′(ω) + S*0

jk,jk(ω)
∑

j′′k′′

SUjk,j′′k′′
S*RPA

j′′k′′,j′k′(ω).

(13)

We will continue working with the singlet expressions only.
Therefore, the superscript S will be dropped and singlet sym-
metry implicitly assumed.

The matrix "0(ω) is the zeroth order polarization prop-
agator and for the non-interacting homogeneous electron gas
as reference its matrix elements are given by

*0
jk,j′k′(ω) =

[
(1 − nj)nk

ω + ϵk − ϵj + iη
−

nj(1 − nk)

ω + ϵk − ϵj − iη

]

δkk′δjj′ .

(14)

The two-electron integrals as occurring in the expression
for the interaction can be readily evaluated yielding22

Vjk′kj′ = 4πe2

V
1

(j − k)2
δj+k′,j′+k. (15)

The detailed derivation is given in the supplementary
material.62

At this point, momentum conservation comes into play
and renders one of the four indices redundant. By defining
the momentum transfer q ≡ j − k = j′ − k′ and subsequently
writing j = k + q as well as j′ = k′ + q the following expres-
sions are obtained:

Vk,k′ (q) ≡ V(k+q)k′k(k′+q) = 4πe2

V
1
q2

= V (q). (16)

Consequently, Vjk′kj′ is solely determined by the momentum
transfer q = j − k.

As a result of momentum conservation, the polarization
propagator depends on only three independent indices, too.
The matrix elements of the polarization propagator can hence
be rewritten as

*RPA
k,k′ (q,ω)

= *0
k,k′(q,ω) + *0

k,k(q,ω)2V (q)
∑

k′′

*RPA
k′′,k′ (q,ω). (17)

The separation of the polarization propagator with respect to
the momentum transfer is a very important result of this dis-
cussion. The set of RPA equations are now replaced by a sep-
arate set of equations for each value of q. This separability
will become important when discussing the character of the
plasmon states.

In a compact matrix notation the polarization propagator
is given by

"RPA(q,ω) = "0(q,ω) + "0(q,ω)U(q)"RPA(q,ω) (18)
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with the interaction matrix U(q) being a constant and uniform
matrix with elements Uk,k′(q) = 2V (q). The formal solution

"RPA(q,ω) = ("0(q,ω)−1 − U(q))−1 (19)

can be rewritten in the form of the well-known pseudo-
eigenvalue equation,

(
A(q) B(q)

B∗(q) A∗(q)

)(
x
y

)

= ωn

(
x

−y

)

,

with Ak,k′(q) = (ϵk+q − ϵk)δk,k′ + 2V (q), (20)

Bk,k′(q) = 2V (q).

For each value of q a separate pseudo-eigenvalue problem is
obtained due to the decoupling of single-particle excitations
of different momentum transfer. Moreover, single-particle
states with the same value for q interact in a completely uni-
form way. Of course, this is only the case if the Coulomb term
to the interaction is neglected as in Eq. (11).

However, the resulting matrices are extremely large (in
the limit V → ∞ infinite) and it is desirable to replace
such matrix equations by analytical expressions. The ho-
mogeneity of the interaction allows one to write the ma-
trices as q-dependent functions. For this purpose, we de-
fine *RPA(q,ω) ≡

∑
kk′ *RPA

k,k′ (q,ω). In analogy, we define
*0(q,ω) ≡

∑
k *0

k,k(q,ω) and get

*RPA(q,ω) = *0(q,ω) + *0(q,ω)2V (q)*RPA(q,ω)

= (1 − *0(q,ω)2V (q)︸ ︷︷ ︸
ϵRPA(q,ω)

)−1*0(q,ω), (21)

where ϵRPA(q,ω) is the so-called dielectric function at the
RPA level. It describes the modification to the lowest order
interaction by the polarization of the medium and can be used
to determine several properties like the plasma oscillations or
screening effects.22, 61 Determining the poles of the polariza-
tion propagator is equivalent to finding the roots of the dielec-
tric function and the following equation has to be solved for
the eigenvalues ωn:

1 = *0(q,ω)2V (q) (22)

with

*0(q,ω)

=
∑

k

[
(1 − nk+q)nk

ω + ϵk − ϵq+k + iη
−

nk+q(1 − nk)

ω + ϵk − ϵk+q − iη

]

.

(23)

Let us note that in Ref. 59 a distinction between plasmons
and (renormalized) single-particle excitations has been intro-
duced based on Eq. (21), because poles of *RPA can formally
arise from poles of *0 or from roots of the dielectric function
ϵRPA. The single-particle states were obtained from *0 and
the plasmon solutions were extracted from ϵRPA. However,
the poles of *0 are canceled by poles of the dielectric func-
tion (both depending on *0) and thus become renormalized,
with the renormalized states also given as roots of the dielec-
tric function. Consequently, the roots of the dielectric function
ϵRPA give not only plasmons but also the single-particle states.

FIG. 1. Exemplary graphical solution of the eigenvalue equation (24). Based
on Refs. 22 and 60.

D. Graphical solution of the RPA equations

The eigenvalue equation (22) can be solved graphically
by recasting it in the following form:22, 60

1
V (q)

= 2
∑

k

[
(1 − nk+q)nk

ω + ϵk − ϵq+k
−

nk+q(1 − nk)

ω + ϵk − ϵk+q

]

. (24)

The complex factors ±iη have been dropped because they
are not important here. The excitation energies are given by
the intersection points between the right-hand side (r.h.s.) of
Eq. (24) plotted in dependence of the frequency ω and the line
given by the constant function f (ω) = 1

V (q) . This is shown
schematically for an example with m = 3 single-particle re-
placements k → k + q for a specific value of q and the inter-
action strength V (q) in Figure 1.

As a characteristic feature of the RPA, to each posi-
tive excitation energy a negative counterpart exists that cor-
responds to a deexcitation with the same energy. The poles
of the r.h.s correlate with poles of *0 and are thus given by
orbital energy differences. Altogether, there are m excitation
and deexcitation energies each. Here, we consider only ex-
citations. Of these m energies, m − 1 solutions are enclosed
between two successive poles of the r.h.s. while the mth and
highest state, positioned on the right-hand side of the last pole,
is strongly dependent on the interaction strength V (q). This
latter state corresponds to a collective state (plasmon) while
the other m − 1 energetically lower states are ordinary single-
particle states. Consequently, when varying V (q), the ordi-
nary single-particle states change only little in energy in con-
trast to the distinct plasmon solution. Evaluation of the plas-
mon frequency ωpl reveals that ω2

pl ∝ V (q).22, 59, 60

A further simplification via the assumption that the
orbital energy differences are all equal (with ϵj − ϵk
= 1ϵ ∀j, k) allows one to analyze the eigenvectors of the
m possible excitations in more detail. Using the pseudo-
eigenvalue Eq. (20), the eigenvector vpl of the plasmon ex-
citation is now given by

vpl =
(

xpl

ypl

)

(25)

with xpl = N

⎛

⎜⎜⎜⎜⎝

1

1
...

1

⎞

⎟⎟⎟⎟⎠
and ypl = −

ωpl − 1ϵ

ωpl + 1ϵ
N

⎛

⎜⎜⎜⎝

1

1
...
1

⎞

⎟⎟⎟⎠
,
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where N is a normalization factor. The eigenvectors for the (m
− 1) single-particle states can be chosen to be (l = 1, . . . , m
− 1)

vl =
(

xl

0

)

with xl ⊥ xpl and |xl| = 1,

e.g., xi = 1√
2

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1

−1

0
...

0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

. (26)

In contrast to the single-particle excitations, the plasmon is a
positive linear combination of all m possible single-particle
replacements with a given momentum transfer q. All single-
particle transitions with momentum transfer q contribute with
equal phase and weight. In other words, it is a coherent su-
perposition of all single-particle excitations with a given mo-
mentum transfer q. This reflects the collective character of
this state.

Let us note that the manifold of elementary excitations
constituting a plasmon-type excitation need not to be large. In
the case depicted in Figure 1, e.g., there are m = 3 elemen-
tary excitations giving rise to two ordinary and one plasmon
solutions. Even the case m = 1 is conceivable and the single
solution arising here shows the characteristic plasmon-type
behavior with respect to the variation of V (q).

Further evaluation of the transition matrix elements
shows that only the plasmonic excitation has a non-zero
transition strength.22, 60 In a sense, the plasmon collects the
intensity of all the underlying single-particle replacements
explaining the high absorption cross sections observed in ex-
periments. These results finally explain how a plasmon dif-
fers microscopically from ordinary single-particle excitations.

FIG. 2. Molecular orbitals of octatetraene and assignment of momentum
vectors k. The symbol n denotes the quantum numbers of the orbitals. As
an example, the three arrows indicate the three possible single-particle re-
placements with 1n = 3.

Moreover, this behavior is independent of the number of elec-
trons present in the system.

Evaluation of the plasmon frequency ωpl within the ap-
proximation of equally spaced single-particle states, yields

ωpl = 1ϵ

(
1 + 2mV (q)

1ϵ

) 1
2

. (27)

As a consequence, the square of the plasmon frequency de-
pends linearly on the interaction strength (ω2

pl ∝ V (q)) as al-
ready mentioned above. The different behavior of the plas-
mon and single-particle frequencies on the interaction V (q)
was also realized in Ref. 59 using a slightly different ap-
proach where it was used to establish a scaling approach for
the identification of plasmon excitations within the framework
of TDDFT.

Plasmons can also be described in the Tamm-Dancoff ap-
proximation (TDA),22 as well referred to as configuration in-
teraction singles (CIS)63 in the quantum chemistry commu-
nity. The TDA secular matrix corresponds to the submatrix A
of the RPA secular matrix in Eq. (20). Carrying out a similar
graphical analysis as above for RPA, reveals qualitatively the
same results. The plasmon state is the highest in energy, de-
pends strongly on the electron-electron interaction, gathers all
the intensity, and is a linear combination of all single-particle
replacements with the given value of q.

In conclusion, the main characteristic features of the de-
generate electron gas, relevant to the issue of plasmon excita-
tions in molecules are the following:! The momentum transfer is a conserved quantity. As a

consequence, the secular problem for excited states de-
couples with respect to the momentum transfer of the
excited states. For a given momentum transfer q, there
is only a limited number of elementary excitations,
e.g., single-particle excitations, and the corresponding
excitation energies lie within a finite range.! The secular matrix for the single-particle excitations
(singlets) is dominated by the exchange contributions,
establishing a uniform interaction matrix. Note that
this does not apply to triplet excitations.

While the first property here is an indispensable require-
ment, the presence of a dominant uniform interaction may
be of more gradual relevance. One may expect that the non-
uniform direct Coulomb contributions in the secular matrix
will modify the picture to a certain extent but not alter it com-
pletely. This remark should apply also to a treatment taking
two-particle and higher excitations into account.

Consequently, the question arises how collective exci-
tations emerge in molecular systems or small nanoclusters,
which lack these essential features of the solid-state case. This
issue will be analyzed in the following section using two lin-
ear polyenes as illustrative examples.

That plasmonic states are build up from linear combi-
nations of several single-particle transitions has been recog-
nized by several authors, e.g., Refs. 51, 56, 64, 65. However,
a plausible distinction between ordinary excitations, which
as well may be linear combinations of elementary p-h re-
placements, and plasmon excitations, has not been established
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previously. In particular, the crucial role of a symmetry con-
straint (such as momentum conservation) leading to finite sep-
arate manifolds of elementary p-h excitations, has not been
addressed.

III. PLASMONS IN LINEAR POLYENES

In the following we will analyze the electronic excitations
in the linear polyenes C8H10 and C16H18 and validate the pres-
ence of plasmon-type excitations exhibiting the microscopic
characteristics established in Sec. II D.

In linear polyenes the π electrons can be viewed as form-
ing a quasi one-dimensional electron gas along the molecule
(see the π -orbitals shown in Figures 2 and 3). In analogy to
the homogeneous one-dimensional electron gas in a box one
may assign wave vectors to the Hartree-Fock π -orbitals of the
polyenes. While such an assignment of momentum vectors
is not rigorous, it provides for a useful qualitative means to
classify the p-h excitations and to identify plasmon-type ex-
citations. In the one-dimensional case, the wave vectors have
only one component, and a given momentum transfer can be
directly correlated to a corresponding change in the quantum
numbers of the orbitals involved in the respective p-h transi-
tion (compare Figure 2).

It should be noted that the overall phase of a HF orbital
is not determined a priori and different computations may re-
sult in different phases. This has to be taken into account when
the final state eigenvectors are to be inspected. The sign of an
eigenvector component reflects the orbital phases in the cor-
responding elementary p-h excitation. Therefore, the orbitals
have to be defined in the same way as in the respective particle
in a box model in order to evaluate the amplitudes of different
p-h transitions as described above.

The linear polyenes have C2h symmetry and the π -
orbitals transform according to the irreducible representations

Au or Bg. Therefore, the ππ* excitations are either of Ag (even
change in quantum number) or Bu (odd change in quantum
number) symmetry. While excitations of the latter type are
optically allowed, the former ones are dark states and have
no intensity. Obviously, in the latter case the distinction be-
tween ordinary and plasmon-type excitations cannot be based
on oscillator strengths; here an alternative characterization is
indispensable.

A. Computational methods

All calculations have been performed with the Q-Chem
program package. The ground state minimum structures were
obtained by geometry optimizations at the level of Møller-
Plesset perturbation theory of second order (MP2)66 using
the augmented correlation consistent triple-ζ basis set aug-cc-
pVTZ.67 The excitation energies were obtained using differ-
ent methods. At a more elementary level, RPA and CIS were
used (taking into account both the Coulomb and exchange
terms in the first-order electron-electron interaction). In ad-
dition, computations were performed using more accurate
methods based on the second-order algebraic-diagrammatic
construction (ADC(2)) approach.68–73 The basis sets used in
these computations were Dunning’s cc-pVDZ or cc-pVTZ
sets.67

In the ADC(2) computational schemes the excitation
energies are obtained as eigenvalues of an hermitian secu-
lar matrix, the configuration space being spanned by singly
(p-h) and doubly (2p-2h) excited configurations. In the p-h/p-
h block of the secular matrix, the matrix elements derive from
perturbation expansions extending through second order. As
a result, the excitation energies of singly-excited states are
treated consistently through second order. In the strict version,
referred to as ADC(2)-s, doubly-excited states are treated in
zeroth order, the 2p-2h/2p-2h block being a diagonal matrix

FIG. 3. Molecular orbitals of C16H18 and assignment of quantum numbers n.
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TABLE I. Excitation energies, major p-h contributions to the eigenvectors, and oscillator strengths for the first excited states with Bu or Ag symmetry of
octatetraene. The plasmon states are given in bold face. Methods: RPA/cc-pVTZ and CIS/cc-pVTZ. No contributions with an absolute amplitude larger than 0.3
(a weight larger than 9%) were omitted. Orbital numbering and relative signs as in Figure 2. Corresponding transition densities are shown in Figure 4.

RPA CIS

Major p-h contr. Major p-h contr.

State 1 E[eV] Orbital contr. 1n Amplitude Osc. Str. 1 E[eV] Orbital contr. 1n Amplitude Osc. Str.

11Bu 4.58 4 → 5 1 0.9639 1.86 4.85 4 → 5 1 0.9595 1.91
21Ag 6.61 3 → 5 2 0.7456 . . . 7.05 3 → 5 2 0.7548 . . .

4 → 6 2 0.6088 4 → 6 2 0.5762

31Ag 7.60 3 → 5 2 0.5990 . . . 7.65 3 → 5 2 0.5753 . . .
4 → 6 2 −0.7281 4 → 6 2 −0.7464

21Bu 7.83 2 → 5 3 0.5267 0.09 8.25 2 → 5 3 0.3946 0.07
3 → 6 3 0.4568 3 → 6 3 0.4165
4 → 7 3 0.6506 4 → 7 3 0.7392

31Bu 8.73 2 → 5 3 0.7138 0.01 8.79 2 → 5 3 0.7922 0.02
3 → 6 3 | | < 0.2 3 → 6 3 0.1337
4 → 7 3 −0.6075 4 → 7 3 −0.4903

41Bu 10.16 2 → 5 3 0.3012 0.15 10.30 2 → 5 3 0.2942 0.13
3 → 6 3 −0.7354 3 → 6 3 −0.7511
4 → 7 3 | | < 0.2 4 → 7 3 0.1824

of 2p-2h orbital energy differences. The computational cost
of ADC(2)-s scales as N5, where N is the number of basis
functions.

An improved first-order treatment of the doubly-excited
state is obtained at the extended ADC(2)-x level. Here the
2p-2h/2p-2h block is augmented by the first-order contribu-
tions taken from the third-order ADC(3) scheme. However,
the computational cost of the ADC(2)-x treatment scales al-
ready as N6. The better treatment of the doubly-excited states
does not necessarily improve the results for single excitations.
Often the mixing with doubly-excited states is overestimated,
leading to too low excitation energies.74 Recently, the scaled-
opposite spin (SOS) approximation75 was introduced in the
ADC(2)-x scheme, leading to a semi-empirical SOS-ADC(2)-
x variant76 devised to cure the ADC(2)-x deficiencies.

In the attempts to identify plasmon-type states vari-
ous characteristics have been addressed. Besides eigenvec-
tor structures, oscillator strengths (in the case of optically al-
lowed transitions) and transition density patterns have been
analyzed. As was realized by several authors (see, e.g.,
Refs. 37, 38, 51, 58, 59, 64, and 77), transition densities as-
sociated with plasmon excitations have an envelope with a
specific nodal structure. In the plasmon-type excitations diag-
nosed via their scaling behavior, Bernadotte et al.59 observed
that the number of nodes in the transition density envelope
correlates with the (energetic) order of the plasmons, the first
having one node, the second two nodes, and so on.

B. Octatetraene

The assignment of wave vectors to the relevant frontier
orbitals is shown for octatetraene in Figure 2. As an example,
the three possible single-particle replacements with a quan-
tum number change of three (1n = 3) are shown. In the parti-
cle in a box model, they all correspond to the same momentum

transfer, q = 2π1n/L = 6π /L, and 1n is equal to the change
in the number of nodes of the involved orbitals.

1. RPA and CIS results

Inspecting the excitation vectors obtained at the RPA
level (Table I), it can be seen that the first state in Bu sym-
metry is dominated by the HOMO to LUMO transition (1n
= 1) while the next three states are mainly composed of
single-particle replacements with 1n = 3. In the case of Ag
symmetry, the first two states are dominated by transitions
with 1n = 2.

This corresponds to the expectations based on the fore-
going discussion. First of all, the excitations decouple to a
large extent with respect to a given momentum transfer or 1n
value. Furthermore, for 1n = 1 there exists one excited state
while there are two for 1n = 2 and three for 1n = 3. In each
1n manifold, there is a distinguished state characterized as a
coherent superposition of the elementary p-h excitations, each
contributing with significant weight. For the lowest 1n values
these particular states are 11Bu (1n = 1), 21Ag (1n = 2), and
21Bu (1n = 3). They are clearly distinguished from the ordi-
nary excitations, being composed of two or possibly three sig-
nificant elementary excitations with differing relative phases,
e.g., the 31Bu state in Table I. These characteristics allow us to
refer to the distinguished excitations in each 1n manifold as
plasmon-type excitations. Again, it is important to point out
that the case 1n = 1 is special, because there is only one un-
derlying single-particle replacement. Nevertheless, this case
usually corresponds to the most intense excitation.

The corresponding transition densities are displayed in
Figure 4. For the states identified as plasmons the envelopes of
the transition densities show the expected nodal structure. For
11Bu (1n = 1) the envelope of the transition density has one,
for 21Ag (1n = 2) two, and for 21Bu (1n = 3) three nodes.
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FIG. 4. Transition densities of octatetraene for the states of Table I (RPA/cc-
pVTZ).

This nodal structure will become even more pronounced in
the case of C16H18.

It should be noted, however, that the energies of the
plasmon-type excitations are not always larger than the ordi-
nary states within a given 1n manifold. A similar observation
applies to the oscillator strengths. For example, the oscillator
strength of the 1n = 3 plasmon (0.09) is lower than that of
the 41Bu state (0.15), being the third state in the 1n = 3 man-
ifold. Apparently, such deviations from the model behavior
reflect the fact that the Coulomb contributions in the secu-
lar matrix modify the picture associated with a uniform inter-
action. Moreover, also the exchange contributions cannot be
expected to be strictly uniform in the case of molecules. Nev-
ertheless, the conditions for the emergence of plasmon-type
excitations essentially apply to the polyene molecules consid-

ered here, as seen in the characteristic eigenvector structures
and the transition density patterns.

The results of the simpler though related CIS method
agree well with the RPA results (see Table I), and the analysis
and identification of plasmon-type excitations is completely
analogous. For the CIS transition densities, being very simi-
lar to those obtained at the RPA level, the reader is referred to
the supplementary material.62

2. ADC(2) results

In view of the somewhat limited accuracy of the RPA
(and CIS) approximations, it is of interest to test our find-
ings in the outcome of the higher-order ADC(2)-s and SOS-
ADC(2)-x methods. As discussed above, these methods treat
single excitations consistently through second order perturba-
tion theory while double excitations are described in zeroth
and first order, respectively. For linear polyenes the inclusion
of double excitations is known to play a crucial role.74

The ADC results are shown in Table II. As in the case of
RPA, the states separate with respect to momentum transfer.
Again, there is one state dominated by transitions with 1n
= 1, two states with 1n = 2, and so on. Moreover, in each
1n group, there is a particular plasmon-type state formed as
a coherent superposition of the elementary 1n excitations.

Interestingly, the order of the states has changed com-
pared to RPA. Within the 1n = 2 manifold the plasmon-type

TABLE II. Excitation energies, major p-h contributions to the eigenvectors, oscillator strengths, and norm of double amplitudes for the first excited states with
Bu or Ag symmetry of octatetraene. The plasmon states are given in bold face. Methods: ADC(2)-s/cc-pVTZ and SOS-ADC(2)-x/cc-pVTZ. No contributions
with an absolute amplitude larger than 0.3 (a weight larger than 9%) were omitted. “n. c.” stands for not calculated. Orbital numbering and relative signs as in
Figure 2. Corresponding transition densities are shown in Figures 2 and 3 of the supplementary material.62

ADC(2)-s SOS-ADC(2)-x

Major p-h contr.
Norm

Major p-h contr.
Norm

State 1 E[eV] Orbital contr. Amplitude 2p-2h Osc. Str. 1 E[eV] Orbital contr. Amplitude 2p-2h Osc. Str.

11Bu 4.59 4 → 5 0.9438 0.08 1.69 4.91 4 → 5 0.9257 0.11 1.56

21Ag 5.96 3 → 5 0.5058 0.13 . . . 4.47 3 → 5 0.4165 0.67 . . .
4 → 6 −0.3796 4 → 6 −0.3452

31Ag n. c. 6.19 1 → 5 0.4893 0.46 . . .
2 → 6 0.0919
3 → 7 −0.1034
4 → 8 −0.5011

41Ag 6.67 3 → 5 0.4080 0.08 . . . 6.88 3 → 5 0.6314 0.11 . . .
4 → 6 0.5248 4 → 6 0.6643

21Bu 7.04 2 → 5 0.6589 0.13 0.00 5.60 2 → 5 0.4834 0.58 0.00
3 → 6 −0.0402 3 → 6 | | < 0.02
4 → 7 −0.6129 4 → 7 −0.3874

31Bu n. c. 8.00 1 → 6 0.2779 0.76 0.00
2 → 7 −0.0246
3 → 8 −0.3732

41Bu 7.99 2 → 5 0.6043 0.07 0.07 8.06 2 → 5 0.5042 0.13 0.05
3 → 6 0.3499 3 → 6 0.3151
4 → 7 0.6293 4 → 7 0.6825

51Bu 8.71 2 → 5 0.2034 0.12 0.17 8.68 2 → 5 0.1397 0.32 0.10
3 → 6 −0.8364 3 → 6 −0.7654
4 → 7 0.2502 4 → 7 0.1588
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TABLE III. Excitation energies, major p-h contributions to the eigenvec-
tors, oscillator strengths, and norm of double amplitudes for the first excited
states with Bu or Ag symmetry of C16H18. The plasmon states are given in
bold face. Method: SOS-ADC(2)-x/cc-pVDZ. No contributions with an ab-
solute amplitude larger than 0.3 (a weight larger than 9%) were omitted. Or-
bital numbering and relative signs as in Figure 3. Corresponding transition
densities are shown in Figure 5.

Major p-h contr. Norm

State 1 E[eV] Orbital contr. 1n Amplitude 2p-2h Osc. Str.

21Ag 3.20 7 → 9 2 0.3356 0.70 . . .
8 → 10 2 −0.3031

11Bu 3.75 8 → 9 1 0.9009 0.12 3.14

21Bu 3.91 6 → 9 3 0.3859 0.70 0.00
8 → 11 3 −0.3226

31Ag 4.60 5 → 9 4 0.4035 0.65 . . .
8 → 12 4 −0.3103

41Ag 4.98 7 → 9 2 0.1832 0.88 . . .
5 → 9 4 −0.1797
7 → 11 4 −0.1359

51Ag 5.10 7 → 9 2 0.6380 0.12 . . .
8 → 10 2 0.6344

31Bu 5.23 4 → 9 5 0.4158 0.60 0.00
5 → 10 5 0.2007
7 → 12 5 −0.1761
8 → 13 5 −0.3021

41Bu 5.74 4 → 9 5 0.1056 0.88 0.00
5 → 10 5 −0.1894
7 → 12 5 0.1517

51Bu 6.10 2 → 9 7 0.4295 0.50 0.00
3 → 10 7 0.2257
7 → 14 7 0.2066
8 → 15 7 −0.3601

61Bu 6.18 6 → 9 3 0.4517 0.14 0.31
7 → 10 3 0.6415
8 → 11 3 0.4360

state is now highest in energy (as expected), while it ranks
second in the 1n = 3 group. The intensities, however, are
similar to the RPA and CIS results.

The transition densities of the plasmon-type states gen-
erated at the ADC(2) level are very similar to the RPA (or
CIS) transition densities (see supplementary material62). As
discussed above, the node pattern of the transition densities is
consistent with the present eigenvector analysis.

The changes introduced by the transition from ADC(2)-
s to SOS-ADC(2)-x are of special interest. First of all, states
with higher 1n values are substantially lowered in energy and
are now located energetically between the states considered
so far (e.g., 51Bu and 31Ag in Table II). Moreover, the admix-
ture of doubly excited configurations increase for all states ex-
cept for the plasmon-type states. As a result, the plasmons are
still dominated by single-particle transitions, whereas the or-
dinary states have increased double excitation character. The
SOS-ADC(2)-x transition densities (see the supplementary
material62) show the typical nodal patterns seen in the out-
come of the other methods.

To summarize, the microscopic characteristics estab-
lished at the RPA level of theory apply to the more accurate
ADC(2) treatments as well.

C. C16H18

To apply the analysis also to a larger system, the longer
C16H18 polyene was considered. In Figure 3, the Hartree-Fock
π -orbitals are shown together with an assignment of wave
vector quantum numbers n. The results obtained using the
SOS-ADC(2)-x computational scheme and the cc-pVDZ ba-
sis set are listed in Table III. The choice of the SOS-ADC(2)-x
method reflects the fact that low-lying double excitations play
an important role in extended polyenes.

As an analysis of the eigenvectors shows, the separa-
tion with respect to momentum transfer or change in quantum
number 1n is fulfilled to a large extent. Only in the case of
the 41Ag state one finds single-particle contributions with dif-
fering 1n but similar weights. However, the latter state has
strong 2p-2h character and is not comprised in the considered
(p-h) model space.

Like in the SOS-ADC(2)-x results for octatetraene, most
states show significant 2p-2h contributions, the exception

FIG. 5. Transition densities of C16H18 for the states of Table I as obtained with SOS-ADC(2)-x/cc-pVDZ.
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being again the plasmon-type excitations. As to be expected,
the oscillator strengths of the optically allowed plasmon-type
transitions are larger than in octatetraene, reflecting the in-
creased system size and the number of electrons participating
in the “collective” excitations. It should be noted that the low-
est ordinary Bu excitations have virtually vanishing oscillator
strengths, so that the plasmon-type excitations will shape the
optical spectrum in the low-energy region.

The transition densities are shown in Figure 5. Due
to the extended system size the characteristic nodal struc-
ture of the transition densities’ envelopes is easily recog-
nizable, showing the typical nodal patterns for the states
identified as plasmons by the eigenvector analysis. Con-
sequently, the microscopic characteristics of plasmons in
molecular systems derived above are also valid for this larger
system.

IV. CONCLUSION

In this work, a microscopic characterization of plasmon-
type excitations in molecules has been discussed. For this pur-
pose, the RPA treatment of plasmon excitations in the electron
gas was analyzed, allowing one to establish two basic charac-
teristics: First, the secular (RPA) problem decouples with re-
spect to momentum transfer so that the configuration space for
a given momentum transfer is spanned by limited number of
elementary p-h excitations; second, there is an essentially uni-
form interaction matrix owing to the predominant exchange
contributions. As a result, there is a particular collective or
plasmon-type solution, characterized as an equitable superpo-
sition of all elementary p-h excitations of the respective mo-
mentum transfer.

The conditions for the emergence of plasmon-type exci-
tations could be validated in the case of two linear polyene
molecules. Here the delocalized π -electrons can be viewed
as constituting a quasi one-dimensional electron gas con-
fined in a box. Assigning wave numbers (n) to the molecu-
lar π -orbitals, the approximate decoupling of states with dif-
fering momentum transfer (1n values) could be retrieved in
the final state eigenvectors. In particular, plasmon-type exci-
tations could be identified as essentially equitable superpo-
sitions of the eligible elementary p-h excitations. The dis-
tinction of plasmon-type excitations and ordinary electron
excitations based on the analysis of the final state eigenvectors
worked both on the basic RPA/CIS and the higher ADC(2)
levels of theory. The transition densities of states identified as
being of plasmon-type showed the characteristic nodal struc-
tures addressed previously.

The concepts outlined here for linear polyenes should be
transferable to non-linear molecular systems or nanoclusters
provided an analogy can be established to a suitable elec-
tron gas model, e.g., electrons confined in a 2-d or 3-d box,
a cylinder, or sphere. Such analogies have already been real-
ized for a variety of systems for which plasmons are expected
to be of great importance, e.g., acenes51 or silver nanorods.25

However, it is questionable whether this concept is transfer-
able to systems which do not possess any (quasi-)symmetry at
all.
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