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1. Introduction

Vibrational spectroscopy is a powerful technique that can be
used to study the structure and dynamics of biomolecules in
their natural environment.[1] It can probe fast processes that
are inaccessible to X-ray diffraction or nuclear magnetic reso-
nance (NMR) spectroscopy. Therefore, vibrational spectroscopy
offers a unique experimental tool for investigating protein
folding as well as unfolded or disordered proteins.[2, 3] Besides
conventional infrared (IR) and Raman spectroscopy, their chiral
variants, vibrational circular dichroism (VCD)[4] and Raman opti-
cal activity (ROA),[5] have been shown to be suitable for the
identification of residual structures in polyproline peptides[6, 7]

and b-sheet fibrils.[8] Additional insights can be obtained with
multidimensional spectroscopic techniques, in particular two-
dimensional (2D) IR spectroscopy.[9, 10] Recently, 2D-IR spectros-
copy has been used successfully to reconstruct the three-di-
mensional structure of protein complexes[11] and to observe
the fast structural dynamics of proteins.[12, 13]

However, because vibrational spectroscopy does not provide
direct structural information, these achievements largely rely
on theoretical work complementing the experiments. Usually,
the well-known harmonic approximation[14] is the first choice
for the calculation of vibrational spectra.[1] Modern computa-
tional methods are pushing the limit of the system sizes that
can be treated in such calculations with first-principles quan-

tum-chemical methods. For instance, full quantum-chemical
calculations of the ROA spectra of large polypeptide
models[15–17] and even of full proteins[18] have become possible
in the past years. By focusing on only specific normal
modes[19, 20] or on those with a significant intensity,[21, 22] addi-
tional computational gains are possible without introducing
approximations. Moreover, by applying additional approxima-
tions,[23] harmonic vibrational spectra of large biomolecular sys-
tems can be made even more efficient, albeit at the price of
possibly introducing significant errors.[24, 25]

However, the harmonic approximation often does not repro-
duce experimental vibrational spectra accurately. This becomes
particularly relevant for flexible biological molecules, which in-
clude strongly anharmonic floppy vibrations. Pronounced an-
harmonic effects are also present in modes involved in hydro-
gen bonds or noncovalent interactions.[26, 27] Gas-phase experi-
ments can be used to reveal such anharmonic effects for bio-
logical model systems,[28–31] because they allow for a direct
comparison of accurate experimental data with quantum-
chemical calculations. Anharmonicities are especially relevant
for the calculation of vibrational spectra of polypeptides and
proteins, and it can be expected that anharmonicities might
significantly alter the intensity patterns in the VCD and ROA
spectra of such biomolecular systems. Moreover, the harmonic
approximation allows only for fundamental transitions, where-
as it has been shown that overtone and combination bands
are often needed to reproduce experimental spectra accurate-
ly.[32] These overtones and combination bands are probed di-
rectly in 2D-IR experiments, which makes using computational
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methods beyond the harmonic approximation mandatory for
investigating 2D spectra.

Numerous computational first-principle methods have been
developed to tackle vibrational anharmonicities. Time-depen-
dent methods are based on classical molecular dynamics simu-
lations, from which vibrational spectra can be extracted as the
Fourier transformation of autocorrelation functions (see, for ex-
ample, Thomas et al.[33]). However, even though these methods
employ a fully anharmonic potential energy surface, the quan-
tum-mechanical anharmonic effects are not included in such
approaches because of the classical treatment of the nuclear
dynamics. In fact, for low temperatures, only the harmonic vi-
brational frequencies are recovered and the anharmonic shifts
for combination bands and overtones are not reproduced.[33, 34]

In contrast, time-independent methods aim to provide
a direct solution of the nuclear Schrçdinger equation. Here,
two main approaches are well-established: vibrational pertur-
bation theory (VPT) and variational methods. The first ap-
proach assumes that the anharmonicities are a perturbation of
the harmonic normal modes and uses analytical expressions
depending on third, fourth, and possibly higher derivatives of
the potential energy surface at the equilibrium geometry.[32] In
this case, the treatment of resonances is problematic and re-
quires special attention.[35–37] Note that such resonances
become more abundant for larger molecules, for which almost
degenerate harmonic vibrational frequencies are very
common. The latter approach is based on the variational solu-
tion of the nuclear Schrçdinger equation with methods that
are conceptually similar to those used in electronic structure
theory. The most important examples of such methods are the
vibrational self-consistent field (VSCF) and vibrational configu-
ration interaction (VCI) methods.[38]

For both variational and perturbative approaches, the main
computational bottleneck that limits their applicability to small
and medium-sized molecules, respectively, is the evaluation of
the potential energy surface. This either requires calculation of
the higher-order energy derivatives or calculation of the poten-
tial energy surface on an integration grid. The number of such
higher-order derivatives or the number of grid points grows
rapidly—at least quadratically—with the size of the molecules,
which presently precludes anharmonic vibrational calculations
for larger molecules. Here, this main bottleneck is addressed
by developing variational methods (i.e. VSCF and VCI) based
on localized vibrational modes instead of the commonly used
normal modes. We show that a localization of the normal
modes leads to a representation of the potential energy sur-
face that is sparse for large molecules and that allows many
couplings between vibrational modes to be omitted without
compromising the overall accuracy.

2. Expansion of the Potential Energy Surface

For the calculation of vibrational spectra, one has to solve the
nuclear Schrçdinger equation given by Equation (1):

ĤðRÞ Ynuc
n ðRÞ ¼ En Ynuc

n ðRÞ ð1Þ

with the nuclear wavefunction Ynuc
n for state n and with the

nuclear Hamiltonian in atomic units given in Equation (2):

ĤðRÞ ¼ �
XNnuc

I¼1

1
2mI

X

a¼x;y;z

@2

@R2
Ia

þ VðRÞ ð2Þ

where mI is the mass of the I-th nucleus, RIa are the Cartesian
coordinates of the nuclei, the vector R ¼ fRIag collects all Car-
tesian nuclear coordinates, and V(R) is the potential energy sur-
face defined by the solution of the clamped-nuclei electronic
Schrçdinger equation for nuclear positions R. For simplicity,
displacement coordinates can be introduced, that is, the origin
is chosen such that for the equilibrium geometry R0 = 0. By in-
troducing mass-weighted coordinates RðmÞIa ¼

ffiffiffiffiffi
mI

p
RIa, the nu-

clear Hamiltonian simplifies to Equation (3):

Ĥ ¼ � 1
2

XNnuc

I¼1

X

a¼x;y;z

@2

ð@RðmÞIa Þ2
þ VðRðmÞÞ ð3Þ

In the harmonic approximation, the potential energy surface is
approximated by a second-order Taylor expansion at the equi-
librium structure, given by Equation (4):

VðRðmÞÞ � Vð0Þ þ 1
2

XNnuc

I;J¼1

X

a;b¼x;y;z

HðmÞIa;Jb RðmÞIa RðmÞJb ð4Þ

with the potential energy of the equilibrium structure V(0) and
the mass-weighted Hessian given by Equation (5):

HðmÞIa;Jb ¼
1ffiffiffiffiffiffiffiffiffiffiffi

mImJ

p @2E
@RIa@RJb

� �

0

ð5Þ

where the subscript 0 indicates that the second derivatives are
taken at the equilibrium geometry. This Hessian is diagonalized
by a unitary matrix Q as given in Equation (6):

HðqÞ ¼ QT HðmÞQ ð6Þ

which contains the normal modes Qi as its columns. The diago-
nal Hessian H(q) contains squared angular frequencies of the vi-
brations HðqÞii ¼ w2

i ¼ 4 p2n2
i , where ni is the vibrational frequen-

cy of the i-th normal mode. The normal modes define the
normal coordinates, as Equation (7):

qi ¼
XNnuc

I¼1

X

a¼x;y;z

Qi
IaRðmÞIa ¼

XNnuc

I¼1

X

a¼x;y;z

ffiffiffiffiffi
mI

p
Qi

IaRIa ð7Þ

In these normal coordinates, the nuclear Schrçdinger equation
in the harmonic approximation is given by Equation (8):

� 1
2

XM

i¼1

@2

@q2
i

þ 1
2

XM

i¼1

HðqÞii q2
i

 !
Yharm

n ðqÞ ¼ EnYharm
n ðqÞ ð8Þ
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where M is the number of normal modes and the vector q =

{qi} collects all normal coordinates. In the harmonic approxima-
tion, the normal coordinates are decoupled and the exact nu-
clear wavefunctions are given by Equation (9):

Yharm
n ðqÞ ¼ Yharm

n ðqÞ ¼
YM

i¼1

�ni
i ðqiÞ ð9Þ

where �ni
i ðqiÞ is a harmonic oscillator wavefunction for the i-th

normal mode (i.e. with vibrational frequency ni) in its ni-th
state. Here, a collective index n = {ni}, containing the vibrational
quantum numbers for each mode, is introduced to label the
nuclear wavefunctions. The six (five for linear molecules)
normal modes describing translations and rotations can be
separated from the remaining vibrational modes because in
the harmonic approximation all modes are decoupled; that is,
only M = 3 Nnuc�6 normal modes are considered.

The full anharmonic nuclear Hamiltonian can be now be re-
written in the normal coordinates as Equation (10):

Ĥ ¼ � 1
2

XM

i¼1

@2

@q2
i

þ VðqÞ ð10Þ

If all 3 Nnuc normal modes are included, this nuclear Hamiltoni-
an is still exact. However, one usually separates translations
and rotations from the M = 3 Nnuc�6 vibrational modes. For the
anharmonic nuclear Hamiltonian, this separation can be
achieved by using the Eckart conditions, resulting in the
Watson Hamiltonian.[39] This contains an additional term de-
scribing the rotational–vibrational coupling, which has been
neglected in Equation (10). It has been shown that, for small
molecules, the error arising from this approximation can be up
to 10–20 cm�1. However, because the Coriolis coupling coeffi-
cients are inversely proportional to the moment of inertia, for
large systems the error can be expected to be significantly
smaller.[40]

It is noteworthy that the nuclear Hamiltonian can also be de-
fined in more general coordinates. One can use more natural
curvilinear coordinates to solve the vibrational problem.[41–43]

However, for those coordinates, the form of the kinetic energy
operator is more sophisticated, which further complicates the
solution of the nuclear Schrçdinger equation. The present
study is restricted to the use of rectilinear coordinates within
the simplified Hamiltonian of Equation (10).

2.1. N-Mode Expansion in Normal Modes

The main computational difficulty at this point is posed by the
need to evaluate the potential energy surface V(q). A complete
evaluation of V(q) is feasible only for the smallest systems be-
cause of the many degrees of freedom. Therefore, to calculate
vibrational properties of larger molecules, an approximated po-
tential energy surface has to be introduced. To this end, a hier-
archical expansion of the potential energy surface is employed
in Equation (11):[44, 45]

VðqÞ ¼
XM

i

V ð1Þi ðqiÞ þ
XM

i<j

V ð2Þij ðqi; qjÞ þ . . . ð11Þ

Here, the potential energy surface is decomposed into contri-
butions coming from a limited number of normal modes. The
one-mode and two-mode terms are defined as, Equations (12)
and (13):

V ð1Þi ðqiÞ ¼ V0
i ðqiÞ � Vð0Þ ð12Þ

V ð2Þij ðqi; qjÞ ¼ V0
ij ðqi; qjÞ �

X

r2fi;jg
V ð1Þr ðqrÞ � Vð0Þ ð13Þ

where V0
i ðqiÞ and V0

ij ðqi; qjÞ denote the potential energy for
structures distorted along the normal coordinate qi or the two
normal coordinates qi and qj, respectively, and all other coordi-
nates are kept at their equilibrium positions. Higher-order
(three-mode, four-mode, etc.) contributions can be defined
analogously. By truncating this n-mode expansion, the dimen-
sionality of the potential energy surface can be limited. How-
ever, the description of the surface can be systematically im-
proved by including higher-order terms in the expansion. It
has been reported that at least the three-mode terms should
be included for small molecules to achieve an accuracy of ca.
1 cm�1.[46, 47] However, the inclusion of all three-mode potentials
becomes infeasible for all but the smallest molecules. There-
fore, only the one-mode and two-mode contributions are con-
sidered here.

In the harmonic approximation the normal modes are fully
decoupled, thus only the one-mode potentials are nonzero,
and are given by Equation (14):

V ð1Þi ðqiÞ ¼
1
2

q2
i HðqÞii

ð14Þ

The terms of the n-mode expansion can be evaluated on
a grid. For the one-mode potentials, one commonly uses
equally-spaced grids of Ngrid points along normal coordinates
(i.e. a set of normal coordinates), given in Equation (15):

qðkÞi ¼ �qmax
i þ ðk � 1Þ Dq with k ¼ 1; . . . ;Ngrid ð15Þ

with the grid spacing Dq ¼ 2 qmax
i =ðNgrid � 1Þ and the grid

range defined by Equation (16):

qmax
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ðAþ 1

2Þ
wi

s
ð16Þ

where A is the maximal (harmonic) vibrational quantum
number that is considered, and where wi is the (harmonic) an-
gular frequency of the i-th normal mode. Thus, the maximal
grid value qmax

i is the distance along the normal coordinate for
which the total energy of the A-th harmonic vibrational state is
equal to the harmonic potential energy. For the two-mode po-
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tentials, the grid is a product of the linear grids of the consid-
ered modes, which results in a square grid of N2

grid points. The
number of grid points must be sufficient to describe the po-
tential and wavefunction accurately, while at the same time
the amplitude, and thus the A parameter of Equation (16), has
to be large enough to cover a sufficient range of the normal
coordinate. The number of required single-point calculations
grows rapidly with the system size because for the anharmonic
potentials every grid point requires a single-point quantum-
chemical calculation. If only one- and two-mode potentials are
included, the number of required single-point calculations is
M � Ngrid þ M�ðM�1Þ

2 N2
grid, and the computational effort for each

single-point calculation also grows at least linearly with the
system size. This makes vibrational anharmonic calculations
very computationally demanding already for medium-sized
molecules, and unfeasible for large systems such as polypep-
tides and proteins.

To address this bottleneck, several methods have been de-
veloped to limit the number of two-mode potentials that have
to be evaluated. Pele and Gerber suggested that not all of the
normal modes are strongly coupled and that, therefore, some
couplings can be neglected.[48] The strongest coupling was as-
sumed to occur for modes presenting similar displacements of
the same groups of atoms, and the authors proposed a statisti-
cal tool to measure this similarity. Benoit proposed a prescreen-
ing scheme based on semiempirical methods, which can be
used to decide which two-mode potentials can be neglect-
ed.[49] In both schemes, couplings below a given threshold can
be neglected without losing good overall accuracy of the vi-
brational calculation. Similar prescreening approaches have
been explored for VPT calculations.[50]

However, the number of non-negligible couplings grows
with the system size. Furthermore, in many cases, all modes
are strongly coupled and none or a very small number of cou-
plings could be neglected. As an example, a hexa-alanine pep-
tide in a 310-helical conformation is considered. The molecular
structure of this model system is shown in Figure 1. Specifical-

ly, the amide I and amide II bands are studied, which are char-
acteristic bands in the vibrational spectrum of polypeptides.
The first, lying at around 1650 cm�1, is mainly a C=O stretching
motion, whereas the latter, lying at around 1550 cm�1, is a com-
bination of the N�H in-plane bending and C�N stretching vi-
brations. In Figure 2 a the couplings of the normal modes be-
longing to amide I and amide II bands of hexa-alanine are
shown. The magnitude of these couplings are measured as
sums of absolute values of the two-mode potentials on all grid
points for each pair of modes,[49] and is given by Equation (17):

hij ¼
XNgrid

k

XNgrid

l

V ð2Þij ðq
ðkÞ
i ; qðlÞj Þ

���
��� ð17Þ

where a grid with 16 points was used.

For the amide I band, a strong coupling is observed for
nearly all pairs of normal modes. Only for three pairs (1st$6th,
3rd$6th, and 4th$6th) the couplings are significantly smaller
and could, most likely, be neglected; however, this would not
significantly reduce the total number of two-mode potentials
that have to be evaluated. The amide II modes are generally
weaker coupled, but also in this case only a few of the cou-
plings can be neglected. This even distribution of the coupling
strengths over all pairs arises from the fact that the normal
modes are delocalized over several residues of the peptide,
which is shown for one of the amide I normal modes in Fig-
ure 1 a. This leads to a strong coupling between all of the pairs
of modes. Therefore, in the space of such delocalized normal
modes, most of the couplings are important, and none of the
prescreening methods can bring significant computational sav-
ings.

2.2. Expansion in Localized Modes

To overcome the large number of strong non-negligible cou-
plings arising from the delocalization of the normal modes in
large molecules, a different approach is presented here. In-
stead of expanding the potential energy surface in terms of
normal modes, the expansion can be performed in rigorously
defined localized modes. Such localized modes can be ob-
tained by performing a unitary transformation of the normal
modes[51] and have previously been established as a tool for
analyzing (harmonic) vibrational spectra of large mole-
cules.[15, 16, 52–54] A detailed description for the methodology for
localizing vibrational normal modes was presented previous-
ly,[51] and we will, therefore, only provide a brief overview.

Here, we proceed as follows: First the normal modes are ob-
tained by diagonalizing the molecular Hessian [see Eq. (6)] . A
subset of k normal modes, for example those modes corre-
sponding to one band in the spectrum, is chosen and collect-
ed in a matrix Qsub. To these modes a unitary transformation U
is applied [Eq. (18)]:

~Q
sub ¼ QsubU ð18Þ

Figure 1. The optimized molecular structure of the helical hexa-alanine pep-
tide used as a test case. a) One of the amide I normal modes (1666.96 cm�1).
b) A corresponding localized mode for the amide I band (1667.20 cm�1).
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Here and in the following, the tilde denotes quantities refer-
ring to the localized modes. The unitary transformation is de-
termined such that it maximizes a function xð~QsubÞ measuring
the localization of the subset of the modes (see Ref. [51]). The
localization then yields a set of localized modes, each of which
is usually localized on a different residue. As an example, one
of the localized modes obtained for the amide I band in hexa-
alanine is shown in Figure 1 b.

Once the localized modes are obtained it is noteworthy that
these modes are no longer the eigenvectors of the mass-
weighted Hessian H(m). Instead, the Hessian with respect to the
localized modes is given by Equation (19):

~H
sub ¼ UT HðqÞ;subU ð19Þ

The diagonal elements of the ~H
sub

deliver fictitious vibrational
frequencies ~ni of the localized modes [Eq. (20)]:

~H
sub

ii ¼ ~w2
i ¼ 4 p2~n2

i
ð20Þ

and the off-diagonal elements ~H
sub

ij describe the harmonic cou-
pling between pairs of localized modes. Note that the nuclear
Hamiltonian of Equation (10) is invariant under unitary transfor-
mation. Therefore, it is possible to employ localized mode
coordinates [Eq. (21)]:

~qi ¼
XNnuc

I¼1

X

a¼x;y;z

~Q
i

IaRðmÞIa ð21Þ

instead of the normal mode coordinates. However, the n-mode
expansion is not invariant with respect to a transformation of
the coordinates. In particular, within the harmonic approxima-
tion, the one-mode potentials are now determined by the di-
agonal elements of ~H

sub
as Equation (22):

V ð1Þi ð~qiÞ ¼
1
2

~q2
i
~H

sub

ii
ð22Þ

while the two-mode potentials no longer vanish in the har-
monic approximation, but are now given by Equation (23):

V ð2Þij ð~qi; ~qjÞ ¼ ~qi ~qj
~H

sub

ij
ð23Þ

thus, they are determined by the off-diagonal elements of
~H

sub
.

In Figure 2 b the magnitude of the two-mode potentials
with respect to localized modes is shown for the amide I and
amide II bands of hexa-alanine. Here, the localization has been
performed for each of these bands separately. In both cases,
the localized modes are more weakly coupled than the normal
modes, and the strongest coupling can be observed to the
first and second nearest neighbors. This sparsity of couplings
with respect to localized modes comes from the fact that each
of the localized modes is localized on a single residue, so that

Figure 2. Magnitude hij of the coupling between pairs of amide I (top) and amide II (bottom) modes in hexa-alanine with respect to different coordinates.
The magnitude of the couplings is measured according to Equation (17) and plotted here on a logarithmic scale. a) The magnitudes of the two-mode cou-
plings with respect to normal mode coordinates, and b) with respect to localized mode coordinates. c) Magnitude of the anharmonic part of the two-mode
couplings with respect to localized modes, obtained from the difference between the anharmonic and harmonic couplings.
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different atoms are involved in each of the localized vibrations.
This reduces the size of all couplings significantly. Especially for
the amide I band, all but the first-nearest neighbor couplings
appear to be negligible. The remaining anharmonic couplings
are slightly larger for the amide II band than for the amide I
band. Taken together, Figure 2 suggests that significant com-
putational savings might be achieved by performing anhar-
monic vibrational calculations in the basis of localized modes
instead of normal modes, because the reduction in the
number of couplings could allow many couplings to be ne-
glected a priori.

The use of local vibrational modes has previously been
shown to be advantageous for treating anharmonicities in
computational vibrational spectroscopy in various contexts.
Most prominent are vibrational exciton models[55–58] in which
local anharmonic oscillators are coupled harmonically. Such
models are extensively used in combination with molecular dy-
namics simulations to describe 2D-IR spectra.[57–59] The parame-
ters entering vibrational exciton models (i.e. the local mode
frequencies and their couplings as well as the anharmonicity
of the local modes) are usually obtained empirically by fitting
to experimental data or quantum-chemical calculations of
model compounds, or by assuming more simplified models,
such as the transition dipole coupling model.[60, 61] In particular
for the amide I band in polypeptides and proteins (see, for ex-
ample Refs. [62] , [63] and references therein) and for the O�H
stretch vibrations in water (see, for example Ref. [64] and refer-
ences therein), such parameters are well-established.

Nevertheless, local modes have so far not found widespread
use in first-principles anharmonic calculations. Rauhut em-
ployed localized modes to study size-consistency effects in VCI
calculations.[65] Bowman and co-workers introduced a local-mo-
nomer (LMon) model[66] to study the anharmonic vibrational
spectra of water clusters, which was later also extended to
clusters of HCl.[67] In this model, local modes from (embedded)
monomer calculations are employed to perform VSCF/VCI cal-
culations in the space of the monomer local modes. The result-
ing frequencies can then be modified by using a H�ckel-like
correction.[68] The use of optimized coordinates that minimize
the VSCF energy has also been explored.[69] Often, such opti-
mized coordinates turn out to be more localized than the
normal mode coordinates. Recently, it was shown that such
optimized coordinates lead to a faster convergences with re-
spect to the excitation level in VCI[70] and vibrational coupled
cluster (VCC) calculations.[71] However, all these methods either
introduce ad hoc assumptions or do not lead to computational
saving in the evaluation of the potential energy surface.

3. VSCF and VCI in Localized Modes

To explore the potential advantages of localized modes for an-
harmonic vibrational calculations, we have implemented VSCF
and VCI methods in terms of rigorously defined localized
modes. These methods will be termed L-VSCF and L-VCI, re-
spectively. As there are several comprehensive descriptions of
VSCF and VCI available,[38, 47, 72] we will only recall the most im-

portant steps here and focus on the specific details of our im-
plementation.

In L-VSCF, a product ansatz is used for the vibrational wave-
function [Eq. (24)]:

Ynð~qÞ � ynð~q1; . . . ; ~qMÞ ¼
YM

i

�ni
i ð~qiÞ ð24Þ

Here, �ni
i ð~qiÞ is a so-called modal for the i-th localized mode,

and ni is the vibrational quantum number for this modal. Every
modal is further expanded as a linear combination of distribut-
ed Gaussians (DGs) basis functions.[73] Each of these basis func-
tions is centered on a single point of the modal’s grid, where
the same grid, of Ngrid points, as used for the evaluation of the
potential is applied [Eq. (25)]:

�ni
i ð~qiÞ ¼

XNgrid

m

cni
mi

cmð~qiÞ ð25Þ

with cni
mi

being the expansion coefficients and [Eq. (26)]:

cmð~qiÞ ¼
2 Am

p

� �1=4

e�Am ~qi�~q
ðmÞ
ið Þ2

ð26Þ

where ~q
ðmÞ
i is the center of the DG function, and Am is a grid-

spacing-dependent parameter, which for an equally-spaced
grid is given by Equation (27):

Am ¼
C2

Dq2
ð27Þ

with C being a free parameter, here taken as C = 0.7. Such
a choice of the basis set and the grid allows for the efficient
evaluation of the required integrals with Gauss–Hermite quad-
rature. For details, we refer to Ref. [73] . Inserting this wave-
function ansatz into the nuclear Schrçdinger equation [Eq. (1)]
and applying the variational principle reduces the many-body
problem to a set of one-mode equations for each modal
[Eq. (28)]:

ĥn
i ð~qiÞ �ni

i ð~qiÞj i ¼ eni
i �

ni
i ð~qiÞj i ð28Þ

with the effective Hamiltonian [Eq. (29)]:

ĥn
i ð~qiÞ ¼ �

1
2
@2

@~q2
i

þ V ð1Þi ð~qiÞ þ Vn
i ð~qiÞ ð29Þ

containing an effective mean-field potential [Eq. (30)]:

Vn
i ð~qiÞ ¼

XM

j 6¼i

�
nj

j ð~qjÞ V ð2Þij ð~qi; ~qjÞ
���

����nj

j ð~qjÞ
D E

ð30Þ

The one-mode equations reduce to a matrix eigenvalue prob-
lem, which can be solved to obtain the modal energies eni

i

and, indirectly, the expansion coefficients cni
mi

as eigenvalues
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and eigenvectors, respectively. In our implementation, the ei-
genvalue problem is solved by means of the collocation
method.[74] Note that for a given effective potential, this
method not only provides the modal for the considered state,
denoted by the vector n, but also gives solutions for all values
of the vibrational quantum number ni (up to Ngrid). The effec-
tive potential implicitly depends on the wavefunction and,
therefore, the set of one-mode equations must be solved in
a self-consistent manner.

Due to the mean-field potential, VSCF calculations do not in-
clude the correlation between the modals. By analogy to elec-
tronic structure calculations, several methods to tackle the lack
of correlation have been developed. Among others, a perturba-
tive MP2-like correction (CC-VSCF), the vibrational configura-
tion interaction method (VCI), or the vibrational coupled clus-
ter method (VCC) are available. For comprehensive reviews of
the available methods, see Refs. [38] , [75] , and [76].

The vibrational configuration interaction (VCI) method pro-
posed by Bowman et al.[77] becomes useful when the coupling
(correlation) of the molecular motions is strong and can no
longer be treated as a perturbation and/or if degeneracies in
the vibrational energies occur. In this method, a total (VCI)
wavefunction for a considered vibrational state is built as
a linear combination of Nstates VCI basis states [Eq. (31)]:

Y iðqÞ � YVCI
i ðqÞ ¼

XNstates

I

cðiÞI y0
nI
ðqÞ ð31Þ

Here, the functions y0
nI

(with the collective index nI ¼ nI
i

� �
i)

are constructed from the VSCF modals �
nI

i ;0
i obtained for vibra-

tional quantum number nI
i with the effective potential con-

structed from the ground-state modals (i.e. for n = 0). This is in-
dicated by the additional superscript 0. Note that using
modals obtained for different VSCF states is also common,[78]

but will not be considered here. Applying the variational prin-
ciple with the ansatz of Equation (31) leads to a CI eigenvalue
equation with the CI-matrix [Eq. (32)]:

y0
nI

D ���Ĥ y0
nJ

���
E
¼
XM

i

�
nI

i ;0
i � 1

2
@2

@~q2
i

þ V ð1Þi

����

�����
nJ

i ;0
i

� 	YM

j 6¼i

dnI
j
nJ

j

þ
XM

i<j

�
nI

i ;0
i �

nI
j ;0

j V ð2Þij

���
����nI

i ;0
i �

nJ
j ;0

j

D EYM

k 6¼i;j

dnI
k

nJ
k

ð32Þ

The diagonalization of this CI-matrix yields VCI energies and
VCI wavefunction coefficients. In practice, the CI expansion in
Equation (31) is limited to a given order of excitation. For ex-
ample, one can consider VCI singles (VCIS) with a ground state
and singly excited states. Further inclusion of doubly excited
configurations results in VCISD, and the additional consider-
ation of triple excitations is denoted as VCISDT. It has been
shown that inclusion of even higher excitations—at least quad-
ruples in VCISDTQ—is required for an accuracy of 1 cm�1 in
small molecules. However, the inclusion of higher excitation
levels also increases the computational effort to construct and
diagonalize the CI-matrix,[65, 79] because the size of the VCI

matrix grows factorially with both the number of modes and
the excitation level. Thus, eventually the construction and di-
agonalization of the VCI matrix will become the bottleneck for
large molecules. Neff and Rauhut reviewed and proposed sev-
eral methods to improve the efficiency of different steps of VCI
calculations for large systems.[78] At the same time, the need to
include higher excited states also increases the computational
effort for the evaluation of the potential energy surface. The
wavefunctions of higher excited states extend over a wider
range of space compared with the ground state, and thus re-
quires the use of a larger number of grid points.

Once the VCI eigenvalues and eigenvectors are obtained,
the infrared intensities for the considered transitions can be
calculated. The IR intensity of the transition between two VCI
states, namely i and j, is proportional to the square of the tran-
sition dipole moment [Eq. (33)]:

Ii!j / YVCI
i


 ��mðqÞ YVCI
j

���
E���
���

2
ð33Þ

This transition dipole moment can be evaluated as Equa-
tion (34):

YVCI
i


 ��mðqÞ YVCI
j

���
E
¼
X

I;J

cðiÞI cðjÞJ

YM

p

�
nI

p ;0
p

* �����mðqÞ
YM

q

�
nJ

q ;0
q

�����

+
ð34Þ

With the dipole moment surface expanded in the same way
(and on the same grids) as the potential energy surface (i.e. in
the n-mode expansion), Equation (35) is obtained:

mðqÞ ¼
XM

i

mð1Þi ðqiÞ þ
XM

i<j

mð2Þij ðqi; qjÞ þ � � � ð35Þ

where the one-mode and two-mode contributions are defined
in analogy to Equations (12) and (13), the integrals of Equa-
tion (34) transform into corresponding one- and two-mode in-
tegrals, which can be evaluated numerically with Gauss–Her-
mite quadrature.

4. Test Case: Water Tetramer

As an initial test case, a water tetramer was considered. This
example is a well-established test case for anharmonic vibra-
tional calculations[68, 80, 81] and an analytical potential energy sur-
face is available.[82] The considered tetramer has a symmetric
equilibrium structure, which is depicted in Figure 3. Its calculat-
ed harmonic vibrational spectrum shows three characteristic
bands, each consisting of four normal modes. One is assigned
to the water bending vibration and appears at ca. 1675 cm�1.
At ca. 3600 and at ca. 3910 cm�1 two bands are observed that
are due to the O�H stretching vibrations. The band at lower
wavenumber can be assigned to the stretching vibrations of
the O�H groups that form the intermolecular hydrogen bonds
(Bond-OH), whereas the latter is assigned to the stretching of
the O�H groups not participating in hydrogen bonds (Free-
OH). For noninteracting water molecules, the respective four
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modes of each molecule would have the same vibrational fre-
quencies. For each of the three bands, the interaction splits
this 4-fold degeneracy into one lowest state, a doubly degen-
erate middle state, and one highest state.

As a first test, VSCF and L-VSCF calculations were performed
separately for these three characteristic bands using the har-
monic potential energy surface. For the L-VSCF, the localization
was performed for each of these three bands separately. The
corresponding one- and two-mode potentials were calculated
at each grid point according to Equation (14) for the case of
normal modes, and Equations (22) and (23) for localized modes
(see Section 2.2). The use of the harmonic potential energy sur-
face provides a quick check of the implementation and the in-
tegration grid. In particular, VSCF and L-VSCF calculations
should reproduce the harmonic or localized mode frequencies,
respectively. In addition, the L-VCI calculations should repro-
duce the normal mode harmonic frequencies.

Here, the close connection of L-VCI with a harmonic poten-
tial energy surface to the (harmonic) vibrational exciton
model[55, 83] (for a concise review, see for example Ref. [84]) be-
comes clear: In the harmonic case, the VSCF effective potential
vanishes, with respect to both normal and localized modes.
Thus, the resulting modals, from which the VCI basis states are
constructed, are harmonic oscillator wavefunctions corre-
sponding to the normal or localized mode angular frequencies
wi and ~wi , respectively. With respect to localized modes, the
singly-excited manifold of the VCI matrix then contains the di-
agonal elements HCI;ð1Þ

ii ¼ 3 ~wi=2þ
P

i ~wi=2 and the off-diago-
nal elements HCI;ð1Þ

ij ¼ ~H
sub

ij =ð2
ffiffiffiffiffiffiffiffiffi
~wi ~wj

p
Þ. After subtracting the

energy expectation value of the L-VSCF ground state
HCI;ð0Þ ¼

P
i ~wi=2 from the diagonal elements, these reduce to

HCI;ð1Þ
ii ¼ ~wi . Thus, the L-VCI matrix in the singly-excited mani-

fold is exactly equal to the Hamiltonian used in harmonic vi-
brational exciton models. If we assume that the off-diagonal el-
ements are much smaller than the diagonal elements (i.e.
HCI;ð1Þ

ij ! HCI;ð1Þ
ii ), and that the differences between local mode

frequencies j~wi � ~wjj are small compared with the frequencies
themselves, the L-VCI matrix in the singly-excited manifold be-
comes equal to the coupling matrix introduced in Ref. [51] .
This coupling matrix has the harmonic vibrational frequencies
as its eigenvalues, which should thus be recovered in L-VCIS
calculations. The differences arising from the assumptions
made above are corrected by the inclusion of higher excited
states in the L-VCI, but should be negligible for the examples
considered here.

The results obtained for the water tetramer with a harmonic
potential energy surface are presented in Table 1. The VSCF

calculations reproduce the harmonic frequencies obtained
from the diagonalization of the Hessian, and a proper splitting
of the degeneracy is observed. The localized mode frequencies
show a 4-fold degeneracy because each of them corresponds
to a similar vibration localized on a different water molecule,
as shown in Figure 3. As expected, L-VSCF reproduces the fre-
quencies of the localized modes and maintains this degenera-
cy. Already L-VCIS, where only single excitations are included,
reproduces the harmonic frequencies of the normal modes
and the correct degeneracy pattern. Inclusion of higher excita-
tions, namely doubles, triples, and quadruples, does not
change the frequencies.

Calculations were then performed with the full anharmonic
potentials—obtained with the WHBB water potential.[82] In this
case, VSCF and VCI calculations were carried out in terms of
both normal and local modes. For each band, the calculations
were performed in the space limited to the considered band,
hence only two-mode potentials between modes belonging to
this band were included, and all the other two-mode poten-
tials were neglected. The calculated vibrational frequencies are
given in Table 2. A VSCF ground-state wavefunction was used
as starting point for performing the VCI calculations.

For the bending modes, VSCF leads to a lowering of the har-
monic frequencies. Subsequently, the VCI frequencies converge
quickly when increasing the excitation level. With respect to lo-
calized modes, L-VSCF delivers a 4-fold degeneracy, which is
split already for L-VCIS. Subsequently, the L-VCI frequencies do
not change with the inclusion of higher excitations. For the
bending modes, L-VCIS already reproduces the VCISDTQ fre-
quencies of the normal mode with a maximal deviation of
1 cm�1.

The role of the anharmonicities becomes more important in
the case of the Bond-OH stretch mode. Here, the normal
modes VSCF does not reproduce the proper degeneracy pat-

Figure 3. Molecular structure of the considered symmetric water tetramer,
together with one of the bending normal modes (left) and a corresponding
localized mode (right).

Table 1. Vibrational frequencies obtained for the characteristic bands of
a water tetramer obtained with VSCF, L-VSCF, and L-VCI for a harmonic
potential energy surface. Here, harm. denotes the normal modes harmon-
ic frequencies obtained from the diagonalization of the Hessian and used
to construct the potential energy surface, and ~n denotes localized modes
harmonic frequencies. All values given in cm�1.

Normal modes Localized modes
harm. VSCF ñ L-VSCF L-VCI

S SD SDT SDTQ

Bend mode
1669 1669 1681 1681 1669 1669 1669 1669
1676 1676 1681 1681 1676 1676 1676 1676
1676 1676 1681 1681 1676 1676 1676 1676
1701 1702 1681 1681 1702 1702 1701 1701
Bond-OH stretch mode
3575 3575 3600 3600 3575 3575 3575 3575
3600 3600 3600 3600 3600 3600 3600 3600
3600 3600 3600 3600 3600 3600 3600 3600
3625 3625 3600 3600 3625 3625 3625 3625
Free-OH stretch mode
3900 3900 3909 3909 3900 3900 3900 3900
3909 3909 3909 3909 3909 3909 3909 3909
3909 3909 3909 3909 3909 3909 3909 3909
3918 3918 3909 3909 3918 3918 3918 3918
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tern. This degeneracy pattern is, however, recovered with VCI
methods, already for VCIS, but the convergence with respect
to the excitation level is very slow. When going from VCISDT
to VCISDTQ, changes in the vibrational frequencies of up to
88 cm�1 are still found. As previously, L-VSCF delivers degener-
ate frequencies, but these are already split for L-VCIS. The fre-
quencies do not change upon inclusion of higher excitations,
and they are very close to normal mode VCISDTQ frequencies,
with maximal deviation of 9 cm�1. However, it appears that, in
contrast to L-VCI, VCISDTQ in normal modes is not yet con-
verged with respect to the excitation level, and that the devia-
tions can be attributed to errors in the VCISDTQ results.

Similarly, for the Free-OH stretch modes, the VSCF in normal
modes results in an incorrect degeneracy pattern. The proper
degeneracy is reproduced with VCI methods if at least double
excitations are included. The frequencies converge slowly up
to VCISDTQ. In the localized modes, an initial 4-fold
L-VSCF degeneracy is transformed into a proper pic-
ture already for L-VCIS, and as for the other bands,
the frequencies do not change with the inclusion of
higher excitations. For this band, deviations between
VCISDTQ and L-VCISDTQ frequencies are observed
for each mode, and reach at most 5 cm�1. Again, the
oscillating convergence behavior of the VCI calcula-
tions employing normal modes suggests that even
VCISDTQ may not yet be converged with respect to
the excitation level.

These initial tests showed that the choice of the
number of grid points used here is sufficient for the
harmonic potential energy surface used in the calcu-
lations. Both VSCF and L-VSCF reproduced the har-
monic vibrational frequencies of normal and local-
ized modes, respectively. As expected, L-VCI with the
harmonic potentials, already with only single excita-
tion included, recovers the corresponding harmonic
frequencies of the normal modes. For the anharmon-

ic potential energy surfaces, VCI and L-VCI converged
to the same vibrational frequencies, with a maximal
deviation of 9 cm�1. However, L-VCI converged signif-
icantly faster, and it appears that the inclusion of
only single excitations is sufficient. In contrast, VCI re-
quired inclusion of higher excitations and, in some
cases, does not seem to be converged even for
VCISDTQ, which accounts for the differences between
VCI in normal modes and L-VCI.

5. Limiting the Number of Anharmonic
Couplings: Hexaalanine as a Test Case

As a more complex test case, hexa-alanine was inves-
tigated. Here, two characteristic bands, namely
amide I and amide II, are considered. With the full an-
harmonic potential energy surfaces, VSCF and VCI
calculations in terms of both normal and localized
modes were performed. Similar to the water tetramer
test case, the anharmonic potentials were calculated

only in terms of the investigated modes. Hence, the VSCF and
VCI calculations were performed in limited spaces, neglecting
coupling to modes not belonging to the considered bands.
The calculated vibrational frequencies are presented in Table 3.
First, the VSCF and L-VSCF calculations were performed, and
the resulting ground-state wavefunctions were used as starting
point for the VCI and L-VCI calculations, respectively.

For the amide I band, the normal mode VCI vibrational fre-
quencies converge slowly up to VCISDTQ, so that it is unclear
whether the results are already converged at this excitation
level. In the localized modes space, the L-VSCF frequencies
differ from the VSCF in terms of normal modes, with maximal
deviation of 8 cm�1. However, L-VCIS already yields frequencies
that are converged with respect to the excitation level, and
which are within maximally 3 cm�1 compared with VCISDTQ.

In the case of the amide II band, VSCF and VCI frequencies
are very similar, with a maximal deviation of 1 cm�1, and VCIS

Table 2. Vibrational frequencies obtained for the characteristic bands of a water tetra-
mer obtained with VSCF, L-VSCF, and L-VCI for the fully anharmonic potential energy
surface. All values given in cm�1.

Normal modes Localized modes
VSCF VCI L-VSCF L-VCI

S SD SDT SDTQ S SD SDT SDTQ

Bend mode
1655 1656 1655 1655 1654 1667 1655 1655 1655 1655
1663 1664 1663 1663 1662 1667 1662 1662 1662 1662
1663 1664 1663 1663 1662 1667 1662 1662 1662 1662
1692 1692 1691 1691 1690 1667 1690 1690 1690 1690
Bond-OH stretch mode
3454 3508 3438 3479 3407 3421 3398 3398 3398 3398
3454 3575 3470 3510 3422 3421 3422 3422 3422 3422
3508 3576 3470 3510 3422 3421 3422 3422 3422 3422
3549 3601 3492 3534 3448 3421 3440 3440 3440 3440
Free-OH stretch mode
3849 3874 3798 3835 3761 3770 3758 3758 3758 3758
3795 3893 3806 3842 3766 3770 3770 3770 3770 3770
3796 3899 3806 3843 3767 3770 3770 3770 3770 3770
3875 3900 3812 3849 3786 3770 3781 3781 3781 3781

Table 3. Vibrational frequencies obtained for the amide I and amide II bands of hexa-
alanine obtained with VSCF, L-VSCF, and L-VCI for the fully anharmonic potential
energy surface. All values given in cm�1.

Normal modes Localized modes
VSCF VCI L-VSCF L-VCI

S SD SDT SDTQ S SD SDT SDTQ

Amide I
1649 1654 1648 1650 1645 1648 1644 1644 1644 1644
1656 1655 1649 1652 1647 1648 1650 1650 1650 1650
1662 1667 1662 1664 1660 1657 1657 1657 1657 1657
1669 1672 1669 1671 1668 1663 1665 1665 1665 1665
1673 1673 1673 1675 1672 1672 1672 1672 1672 1672
1739 1739 1739 1741 1739 1739 1739 1739 1739 1739
Amide II
1470 1469 1469 1469 1469 1475 1470 1470 1470 1470
1482 1482 1482 1482 1482 1481 1482 1482 1481 1481
1494 1494 1494 1494 1494 1500 1493 1494 1493 1493
1511 1511 1511 1511 1511 1505 1510 1511 1510 1510
1514 1514 1514 1514 1514 1510 1514 1514 1514 1514
1614 1614 1614 1614 1614 1614 1614 1614 1614 1614
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already delivers converged results. Similar to the amide I band,
the L-VCIS already reproduces normal mode VCI results, with
maximal discrepancies of 1 cm�1. Again, in this case, the inclu-
sion of higher excitations does not change the L-VCI frequen-
cies. The results show that for both the amide I and the ami-
de II bands, L-VCIS provides accurate and converged results.

As already discussed in Section 2.2, the localized modes are
strongly coupled to at most the second nearest neighbor (see
Figure 2), and the coupling patterns are very regular and sys-
tematic. In contrast, because of
the delocalization in the normal
modes space, the couplings are
irregular and do not provide any
prospect of neglecting a signifi-
cant number of two-mode po-
tentials. The potential advantage
of the localized modes for ne-
glecting small couplings was our
motivation to use them in anhar-
monic vibrational calculations.
The analysis of the coupling pat-
terns led us to the assumption
that the evaluation of the two-
mode potentials could be limit-
ed only to those pairs of local-
ized modes that are relatively
strongly coupled. Nevertheless,
the gain in terms of the compu-
tational time should not com-
promise the overall accuracy of
the vibrational spectra, with re-
spect to both the frequencies
and the intensities. To explore
such L-VCI calculations with a re-
duced number of anharmonic
couplings, different approxima-
tions have been tested. The re-
sults for both vibrational fre-
quencies and infrared intensities
are presented in Table 4, and the
spectra are plotted in Figure 4.

The L-VCIS results obtained
for the full anharmonic poten-
tials were chosen as our refer-
ence because they already pro-
vide converged frequencies and
intensities. These can be com-
pared to the different approxi-
mated models, both in terms of
the normal and localized modes.
The different approximated
models can be characterized by
the number of single-point cal-
culations required to obtain the
anharmonic potentials and
dipole-moment surfaces. All the
potentials were evaluated on 16-

point grids. Thus, if no couplings are neglected, in total 3936
single-point calculations are required for each band, 96 for the
one-mode potentials, and 3840 for the two-mode potentials.

First, in terms of the normal modes, the potential energy
surface and the dipole moment surface can be approximated
quadratically and linearly, respectively, leading to the double-
harmonic approximation—denoted here as “Harmonic” in
Table 4 and Figure 4. The double-harmonic approximation for
both the amide I and amide II bands yields spectra that are

Table 4. Vibrational frequencies (n) and infrared intensities (I) for the amide I and amide II bands in hexa-ala-
nine obtained with the different reduced coupling approximations introduced in the main text. Frequencies
and intensities are given in cm�1 and km mol�1, respectively.

Normal modes Localized modes
harmonic anharmonic
n I VSCF-d L-VCIS L-VCIS-1 �12 �1 + h �0 + h

n I n I n I n I n I n I

Amide I
1652 110 1660 110 1644 120 1645 135 1644 113 1644 111 1644 110
1658 643 1654 636 1650 653 1651 411 1650 626 1650 650 1650 642
1667 118 1672 117 1657 104 1656 137 1657 121 1658 107 1658 106
1674 359 1669 356 1665 347 1665 451 1665 320 1665 344 1665 354
1682 221 1673 216 1672 210 1672 273 1672 239 1672 214 1672 211
1753 327 1739 319 1739 323 1739 339 1739 332 1739 318 1738 317
Amide II
1465 154 1467 155 1470 160 1471 183 1469 166 1470 161 1471 163
1476 101 1478 102 1482 112 1482 161 1482 125 1482 114 1481 116
1486 67 1488 67 1494 61 1494 68 1494 61 1494 62 1494 57
1502 196 1507 197 1511 208 1508 255 1510 197 1511 209 1510 205
1505 264 1512 265 1514 254 1515 128 1514 247 1514 251 1514 256
1616 51 1614 52 1614 53 1614 53 1614 53 1614 53 1614 53

Figure 4. Infrared spectra for the amide I and amide II bands in hexa-alanine obtained with the different reduced
coupling approximations introduced in the main text. The red frame marks the reference spectra obtained with L-
VCIS and fully anharmonic one- and two-mode potentials.
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shifted by maximally 14 and 9 cm�1 with respect to the fully
anharmonic L-VCIS reference, respectively. The intensity pat-
tern is well reproduced, with some minor deviations of maxi-
mally 14 and 12 km mol�1, respectively. The harmonic approxi-
mation can be defined as neglecting the (anharmonic) one-
mode and all two-mode potentials, thus no single-point calcu-
lations are required to obtain the anharmonic potentials. As
for the investigated amide I and amide II bands, there is no
reasonable way of neglecting only some of the couplings
(compare Figure 2 a). Therefore, all the anharmonic two-mode
potentials and two-mode dipole moments were neglected,
and only one-mode properties were included, introducing so-
called diagonal VSCF, which is denoted as VSCF-d in Table 4
and Figure 4. The VSCF-d calculations require only 96 single-
point calculations to obtain the one-mode potentials and
dipole moments. In this case, the spectrum lies closer to the
reference, with a maximal deviation of 12 cm�1 for the amide I
band and 6 cm�1 for the amide II band. However, the discrep-
ancies in the shape of the spectra, especially for the amide I
band, are clearly visible in Figure 4.

Due to regular patterns observed for the couplings in terms
of the localized modes, a few possible reduced models were
tested. Initially, only the first nearest neighbor anharmonic cou-
plings and two-mode dipole moment contributions were con-
sidered, and all other contributions were neglected. This
model is denoted as L-VCIS-1, and requires 1376 single-point
calculations to obtain the potential energy surface. The result-
ing spectrum shows that, for both of the bands, the frequen-
cies are slightly shifted and the intensities pattern is incorrect.
The intensities deviate from the reference by up to
242 km mol�1 for the amide I and 126 km mol�1 for the amide II
band.

The second nearest neighbor anharmonic contributions
were then also included, which gives the L-VCIS-12 model. This
improves the spectra significantly. The frequencies of the refer-
ence are reproduced, with maximally 1 cm�1 discrepancy, and
the deviation of intensities is notably smaller. However, the in-
clusion of the second nearest neighbor couplings increases the
total number of single-point calculations to 2400.

From the (nondiagonal) Hessian with respect to localized
modes, ~H

sub
, the harmonic two-mode potentials in terms of

the localized modes can be evaluated without requiring addi-
tional single-point calculations. These harmonic two-mode po-
tentials were added to the L-VCIS-1 model in the place of the
omitted anharmonic potentials ; thus, the first nearest neighbor
couplings remained anharmonic, whereas the remaining cou-
plings were replaced by harmonic two-mode potentials. This
model is denoted as L-VCIS-1 + h. Now, the spectra are very
similar to the references. The frequencies are very well repro-
duced, and only minor deviations of at most 9 km mol�1 for
the amide I can be observed for the intensities. However, the
total computational cost is the same as for the L-VCIS-1 model,
namely 1376 single points, because the harmonic couplings
are obtained as a result of the localization procedure.

Finally, in the most approximate reduced coupling model L-
VCIS-0 + h, all of the anharmonic two-mode potentials were
substituted with their harmonic analogues. Here, for the dipole

moment surface only one-mode contributions were taken into
account. The computational cost of this model decreases sig-
nificantly, because it requires only 96 single-point calculations
to generate the anharmonic one-mode potentials. Note that
such an approximation is similar to the one underlying vibra-
tional exciton models, in which anharmonic local oscillators are
coupled harmonically. The spectra present very good agree-
ment with the references, and there are only minor discrepan-
cies of the intensities, lying in the region of 11 km mol�1. Nev-
ertheless, the overall agreement is better than for the case
with L-VCIS-1, where at least the first nearest neighbor anhar-
monic couplings were included. At the same computational
cost, calculations in the normal modes space (VSCF-d) yield
spectra closer to those obtained within the double harmonic
approximation, with worse reproduction of the intensities with
respect to the L-VCIS reference.

The tests carried out show that the use of the localized
modes can decrease the computational cost of anharmonic vi-
brational calculations significantly. These modes present regu-
lar coupling patterns, which can be used for an a priori reduc-
tion of the number of two-mode potentials in the anharmonic
calculations. In our ultimate approximation, LVCIS-0 + h, the an-
harmonic two-mode potentials can be easily substituted by
the harmonic potentials obtained from the localization proce-
dure, without losing much accuracy. In contrast, the delocal-
ized and mutually strongly coupled normal modes do not
allow for such an efficient prescreening.

6. Conclusions

We explored the use of localized modes for anharmonic vibra-
tional calculations. To this end, we employed the previously
developed methodology for the localization of normal
modes[51] and used the resulting localized modes obtained for
specific bands for VSCF and VCI calculations. This gave rise to
the L-VSCF and L-VCI methods, which we applied to a symmet-
ric water tetramer and a hexa-alanine peptide as test cases.

Our tests demonstrate that L-VSCF/L-VCI reproduces the re-
sults obtained with conventional VSCF/VCI calculations in
terms of normal modes. However, it turns out that L-VCI pro-
vides a significantly faster convergence with respect to the ex-
citation level than conventional VCI and, for the examples con-
sidered here, L-VCIS provides converged results. This feature
can lead to a reduction of the computational cost for both the
L-VCI calculation itself and for the construction of the potential
energy surface, because fewer grid points are required for the
smaller excitation space.

Furthermore, the localized modes are each localized on
a particular residue of the peptide or on a single molecule of
the cluster. Therefore, they are less coupled than the delocal-
ized normal modes. The magnitudes of the couplings follow
a regular pattern, and the strongest couplings occur with the
nearest neighbors, whereas other couplings are negligible. This
low number of couplings between modes, which is not pres-
ent for normal modes, helps to address the main bottleneck of
the anharmonic vibrational calculations, which is the tedious
evaluation of the anharmonic two-mode potentials. Thus, sev-
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eral reduced coupling models were presented, in which some
of the anharmonic two-mode potentials were omitted. This
made it possible to reduce the total number of single-point
calculations and to decrease the scaling of the number of re-
quired single-point calculations with the system size. We
showed that the omitted anharmonic two-mode potentials can
be substituted with their harmonic equivalents, which were
provided by the localization of the modes. In our ultimate ap-
proximation, all of the anharmonic two-mode potentials were
substituted with their harmonic equivalents. The presented re-
sults show that this approximation provides vibrational spectra
that are in very good agreement with the fully anharmonic ref-
erence.

In the present study, we applied L-VSCF and L-VCI only to
specific spectroscopically relevant spectral bands such as the
amide I or amide II bands of polypeptides. The localization and
the subsequent anharmonic calculations were performed in
a space limited to the modes included in the considered
bands, whereas couplings between the considered band and
other vibrational modes were completely neglected. However,
such couplings can be included in future calculations. Here,
the locality can be exploited further by considering two-mode
potentials only for localized modes that are, for example, local-
ized on the same residue. To this end, we will explore reliable
screening criteria for discarding couplings between localized
modes a priori in our future work.

We note that although only VSCF and VCI were considered
here, the use of localized modes is not restricted to these
methods. In particular, VPT could also be formulated in terms
of localized modes, which might make it possible to restrict
the number of higher-order derivatives that have to be evalu-
ated. Similarly, the use of localized modes is not restricted to
the inclusion of only two-mode potentials, but could also be
used to restrict the number of three-mode potentials (and pos-
sibly higher-order contributions) that have to be evaluated to
those combinations of localized modes that are strongly cou-
pled.

Computational Methodology

To study the properties of the water tetramer discussed herein, the
analytical water potential WHBB, developed by Bowman and co-
workers,[82] was employed. By using this potential, the equilibrium
structure was optimized with the PyADF[85] and SciPy[86] packages.
For hexa-alanine, geometry optimizations as well as single-point,
dipole moment, and gradient calculations were carried out by
using density-functional theory with the Turbomole 6.5 program
package.[87, 88] The BP86 exchange-correlation functional[89, 90] with
Ahlrichs’ def-TZVP basis sets[91] in combination with the resolution
of identity (RI) approximation and suitable auxiliary basis set was
used.[92, 93] For both of the systems, using the same methods, semi-
numerical Hessians, normal modes, and harmonic frequencies were
obtained by using the SNF module[94] of MoViPac.[95] The normal
modes were localized by using the LocVib tools.[51, 95]

L-VSCF and L-VCI have been implemented in a newly developed
Python code “Vibrations”, which makes use of the PyADF scripting
framework[85] and the NumPy[96] and SciPy[86] packages. After read-
ing in normal or localized modes, Vibrations generates the respec-

tive grids. In this study, the choice of the number of grid points
and of the amplitude parameters was tested extensively. These
tests showed that for both of the studied systems, the amplitude
parameter describing the range of the grid [parameter A of
Eq. (16)] should be greater than or equal to 14, and this value was
used throughout this study. The grids for the water tetramer were
built of 20 points for each considered mode, whereas those for
hexa-alanine employed 16 points. Subsequently, Vibrations uses
PyADF to obtain the one-mode and two-mode potentials as well
as—if necessary—dipole moment surfaces. Here, these have been
calculated with the methods mentioned above, namely the WHBB
potential for the water tetramer and BP86/TZVP for hexa-alanine.
The VSCF and L-VSCF calculations were performed, and the result-
ing ground-state wavefunctions were then used in VCI and L-VCI
calculations, respectively. It has to be emphasized that, in this
study, all (L-)VSCF and (L-)VCI calculations were performed in limit-
ed spaces; thus, only couplings between the considered modes
were included. As a result, the calculated frequencies may still
differ from the experimental values.
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