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a b s t r a c t

The recently developed 3-FDE method (Jacob and Visscher, 2008) combines ideas from the Molecular
Fractionation with Conjugate Caps (MFCC) method (Zhang and Zhang, 2003) with Frozen Density Embed-
ding (FDE) (Wesołowski and Warshel, 1993) and is thus able to produce fully quantum-chemical electron
densities of entire proteins. In contrast to the original FDE method, 3-FDE facilitates a fragmentation into
covalently bound subunits. We apply the method for the first time to the calculation of excitation ener-
gies, where we use the Fenna–Matthews–Olson (FMO) pigment–protein complex as a test case. Several
technical and conceptual parameters for the preparation stages are tested and a robust protocol for this
type of embedding is established. We present calculations of excitation energies of the individual pig-
ments (site energies) under the influence of full protein densities obtained with different settings and
compare them to the results from a simple point charge model. Our results indicate that 3-FDE is a
well-suited method for the description of excitation energies within density-based embedding.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Photosynthesis is one of the most important processes in nature
and a prerequisite for almost all life on earth. A prototypical exam-
ple of a pigment–protein complex occuring in photosynthesis is
the Fenna–Matthews–Olson (FMO) protein, which is found in
green sulfur bacteria. It acts as an antenna complex that transfers
excitation energy from the peripheral regions to the photosyn-
thetic reaction center, where the actual conversion of light to
chemical energy takes place [1]. Since the experimental determina-
tion of site energies [2] and the discovery of long-lived coherences
in this complex [3,4], many theoretical studies aimed at modeling
the energy transfer dynamics on the basis of electronic structure
calculations (see, e.g., the two recent reviews in Refs. [5,6]). In all
these studies, the key quantities are the individual excitation
energies of the bacteriochlorophyll (BChl) a pigments under the
influence of the protein environment (site energies) and the exci-
tonic couplings between them. Recently, an interesting comparison
to earlier work by Schulten, Kleinekathöfer and co-workers [7] was
published by Shim et al. [8], wherein it was demonstrated that the
details of the electronic structure method, which is used to obtain
the optical properties, determine the simulated dynamics to a large
extent. It is therefore most desirable to be able to carry out reliable
first-principles calculations of the pigments including as much of
the environment as possible in the quantum-chemical description.

Unfortunately, the size of even the smallest light-harvesting
complexes makes a direct calculation of the entire electronic struc-
ture practically unfeasible. Numerous studies concerning the FMO
complex have therefore resorted to a QM/MM approach, where the
environment of the pigments is represented by a point charge
distribution (see, e.g., Refs. [8–11]) or continuum models such as
the polarizable continuum model (PCM) [12,13] (often in its inte-
gral equation formalism [14–16]) or the conductor-like screening
model (COSMO) [17–19], which can mimick at least the bulk ef-
fects of a protein environment on a solute. However, it is obvious
that such approaches cannot capture effects of a quantum-
mechanical nature, but solely coarse-grained electrostatic
influences. A more accurate way to model the influence of the sur-
roundings on the pigments is provided by density-based embed-
ding approaches, in which also the environmental degrees of
freedom are calculated from first principles. Examples in this field
are the Fragment Molecular Orbital method by Kitaura et al.
[20–22], which can be regarded as a truncated incremental
scheme, and the Effective Fragment Potential method by Gordon
and co-workers [23,24], where the total interaction energy of an
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Fig. 1. Schematic representation of the partitioning and capping in the MFCC and
3-FDE methods.
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active subsystem is approximated as the sum of the interaction
energies of individual environmental subsystems with the embed-
ded one, which partly have to be parametrized. Both schemes have
been applied to obtain excitation energies and optical properties of
embedded subsystems [25–30]. The two methods have also been
combined with each other [31].

An alternative to the aforementioned schemes is Subsystem
Density Functional Theory [32] and the related Frozen Density
Embedding (FDE) formalism [33] (for details, see the recent review
in Ref. [34]). Strictly speaking, one has to distinguish FDE, where
only one subsystem’s density is optimized in a given, fixed
background density, and subsystem DFT, where all subsystem den-
sities are optimized in the environmental density given by all other
subsystems. But for the reasons discussed in full detail in Ref. [34],
we use the acronym FDE as a general term for both methods in the
following. In contrast to physically motivated embedding methods,
it is an approximation to DFT free of system-specific parameters
and can be considered exact in the limit of exact exchange–corre-
lation and non-additive kinetic energy functionals. FDE in combi-
nation with Time-Dependent Density Functional Theory (TDDFT)
[35] is already well-established as a useful tool for calculations of
excited-state properties of light-harvesting complexes [36,37].
However, one drawback of FDE within standard approximations
is its failure to describe fragments which are connected through
covalent bonds. This is a well-known problem and can be traced
back to the absence of a suitable approximation for the non-
additive kinetic energy functional (and thus, the corresponding
component of the embedding potential). Possible solutions for this
problem are offered by potential reconstruction schemes [38–41];
however, in general these methods also require a calculation of the
supermolecular complex and are therefore not applicable for the
present purpose. Past attempts to calculate the effects of a large,
single covalent unit (e.g., a protein) on the optical properties of
chromophores have therefore necessitated the use of fragmented
model structures (see, e.g., Ref. [42]). In these schemes, some con-
necting groups are removed to split the protein into a few peptide
chains. The remaining fragments are saturated to generate a num-
ber of environmental subsystems which are large, but still small
enough to be treated in a conventional Kohn–Sham DFT calcula-
tion. Even if most of the protein is kept intact in this way, this pro-
cedure naturally forces one to alter the structure of the protein.

One way to avoid the calculation of subsystems with dangling
bonds without resorting to such disconnected-environment mod-
els is the method of Molecular Fractionation with Conjugate Caps
(MFCC) pioneered by Zhang and co-workers [43]. Although the
method in its original form was intended for the calculation of
energy terms only, it was soon extended to densities and related
quantities [44]. In the MFCC scheme, the protein is fragmented
by cutting covalent bonds, but every fragment is then saturated
with capping groups in order to circumvent the problem of dan-
gling bonds. To reconstruct the density of the supermolecule, com-
binations of the individual capping groups are also calculated and
their density is subtracted from the sum of capped fragment den-
sities. This is an approximation and leads to density errors, espe-
cially in the regions around the cut bonds [45,46]. Based on an
earlier idea by Casida and Wesołowski [47], Jacob and Visscher
combined the MFCC scheme with the FDE method to improve
the quality of the reconstructed density. The resulting approach
was termed the 3-FDE method [45,46]. Similar to regular FDE, an
embedding potential is constructed from the densities of the indi-
vidual subsystems (in this case the capped protein fragments). The
electronic structure of each subsystem is then relaxed in the poten-
tial resulting from all the other fragments in so-called freeze-
and-thaw cycles [48]. The 3-FDE method has only been used to
calculate ground-state properties such as densities and dipole mo-
ments so far. In this work, we apply the MFCC and 3-FDE methods
to the calculation of excited-state properties of the FMO protein
and test a number of model parameters as well as technical factors
with regard to performance, robustness and accuracy of the results.

The remainder of this article is organized as follows: In
Section 2, the MFCC and 3-FDE methods are presented and their
crucial points are briefly explained. In Section 3.1, the commonly
used point-charge embedding is applied to generate reference
data, which are then compared to results from a disconnected-
environment model for a binding pocket in Section 3.2. In
Section 3.3, different parameters are tested with regard to their
performance in the preparation of the protein MFCC density.
Finally, the resulting densities are used in 3-FDE(0) calculations
and their effect on the excitation energies is assessed in Section 3.4.
Section 3.5 briefly describes some of the difficulties in performing
3-FDE calculations for the whole protein. A summary and conclu-
sions are given in Section 4.

2. Computational methods

In this section, a brief introduction to the MFCC and 3-FDE
methods is given. For details and derivations, see Refs. [43,45,46].

2.1. MFCC

The basic idea of the MFCC scheme is as follows: A supersystem
is partitioned into smaller entities that are connected through
covalent bonds. To saturate the resulting dangling bonds, capping
groups are introduced as illustrated in Fig. 1. A separate calculation
is then carried out for each capped fragment. Subsequently, neigh-
bouring (conjugated) capping groups are combined to form one
cap molecule which is also subjected to a calculation. Finally, the
density of the supermolecule is reconstructed by summing up
the densities of all capped fragments A and subtracting the densi-
ties of the cap molecules B:

qtot ¼
XK

A

qcapped
A �

XL

B

qcap
B ð1Þ

Here, K is the total number of fragments and L is the corresponding
number of cap molecules. Of course it is not necessary for the super-
system to consist of only one covalent unit; oligomers of interacting
proteins or non-covalently bound cofactors (like the pigments in
this work) can be treated just as well. In the latter case, each



A. Goez et al. / Computational and Theoretical Chemistry 1040–1041 (2014) 347–359 349
cofactor can be considered as an individual subsystem without any
capping groups.
2.2. 3-FDE

The 3-FDE method is based on the MFCC scheme and requires a
complete calculation of all capped fragments and capping mole-
cules beforehand. In the first step, an embedding potential for each
fragment (with density qI) is constructed from the MFCC densities
of all the other fragments. This results in the Kohn–Sham-like
equations [45]

�r
2

2
þ v3-FDE

eff qI;qII½ �ðrÞ
" #

/ðIÞi ðrÞ ¼ �i/
ðIÞ
i ðrÞ; ð2Þ

where qI denotes the density of the currently active subsystem and
qII represents the frozen density containing contributions from all
the other capped fragments (i.e., qII is calculated from Eq. (1), with
the sums over A and B excluding the active fragment). This equation
is very similar to the standard FDE case [33]. However, one specialty
of the 3-FDE method is the form of the effective embedding poten-
tial v3-FDE

eff . To guarantee that the total density is non-negative at all
points in space when the cap density is subtracted, a constraint is
introduced to ensure that the density at each grid point in the cap
region of the capped fragment is equal to the one in the subtracted
cap molecule. To this end, the regular embedding potential is re-
placed by a special cap potential within a certain region around
the cap atoms (in the current implementation, this area is defined
by all grid points within 3a0 of any cap atom that are not closer
to a non-cap atom). The embedding potential thus is of the follow-
ing form [45]:

v3-FDE
eff qI;qII½ �ðrÞ ¼ vKS

eff qI½ �ðrÞ þ vemb
eff qI;qII½ �ðrÞ for r R V cap

I

vcapðrÞ for r 2 Vcap
I

(
ð3Þ

In the first line, vKS
eff qI½ �ðrÞ is the regular Kohn–Sham potential of the

active subsystem density and vemb
eff qI;qII½ �ðrÞ is the effective embed-

ding potential due to the presence of the frozen capped fragment
densities. However, it must be noted that all terms resulting from
the frozen caps are excluded from the latter term.

The cap potential vcapðrÞ is constructed in an iterative fashion.
As a starting point, the potential of the corresponding atoms in
the isolated cap molecule is used and the Self-Consistent Field
(SCF) procedure starts. As soon as the capped fragment is con-
verged under the current cap potential and the embedding poten-
tial caused by the other fragments, the cap potential is updated to
change towards reproducing the desired density. Two mechanisms
are available for the update, with the error in the number of elec-
trons being the decisive factor as to which one is used. If the num-
ber of electrons is far from the correct value (more than 0.05
electrons in the current implementation), a direct shift is equally
applied to the potential at all grid points. If the error falls below
that threshold, the cap potential is updated according to the proce-
dure by van Leeuwen and Baerends (LB step) [49]. As soon as a cap
potential is converged, it is kept fixed. When all caps present in the
fragment are converged, one last SCF cycle is passed and an up-
dated density for the whole capped fragment is obtained. Details
concerning the implementation can be found in Ref. [46].

Usually, each fragment density is updated once in the embed-
ding potential due to the MFCC density resulting from all other
fragments, which is denoted as 3-FDE(0) (see Section 3.4). When
all capped fragments have been relaxed within this initial
potential, freeze-and-thaw cycles are employed, i.e., the fragment
densities are updated in the embedding potential of all the other
fragments in turns. In this case, the embedding potential changes
after every fragment calculation, not only after a complete cycle.
This procedure is called 3-FDE(n) in the following.
2.3. Structure preparation

The structure of the Fenna–Matthews–Olson complex used in
all calculations presented here was prepared by a Molecular
Dynamics (MD) equilibration run. We used a setup closely related
to the one by Olbrich et al. [50]. In compliance with that setup, the
initial coordinates were those of one monomer of the seven-
pigment X-ray structure by Tronrud et al. [51] taken from the RCSB
Protein Data Bank (PDB ID: 3ENI). Hydrogen atoms were added and
the complex was then immersed in water. After a short energy
minimization, a 15 ns equilibration run was carried out and the
resulting final structure was extracted from the trajectory. We
used the program NAMD2 [52] with the CHARMM27 [53,54] parame-
ters for protein and water and a specially developed set of param-
eters for the BChl a pigments [55,56]. Details concerning the setup
of the MD simulation can be found in the Supporting Information.
After the equilibration, the system was stripped of water and ions
to yield a structure with 6505 atoms to be used for the following
quantum-chemical calculations. The resulting structure is shown
in Fig. 2.

It should be noted that this arbitrary snapshot merely serves as
an example in this pilot study. The purpose of our present efforts is
to establish a robust protocol for the calculation of excitation ener-
gies in pigment–protein complexes using 3-FDE. Strictly speaking,
there is thus no need to produce an entire MD trajectory. However,
since we are aiming at establishing the methodology presented
here for subsequent studies on dynamical effects in light-harvest-
ing proteins, we use a setup that in principle allows sampling over
many snapshots.

It has to be kept in mind that the structure from the simulation
was used directly without any post-optimization procedure. This
can lead to two problems: First, there is always an uncertainty
concerning how realistically the used parameters can model the
molecule. For instance, it was found that in the present structure,
the phytyl double bond in all pigments is significantly non-planar.
It is known that the phytyl tail does not affect the excitations of the
pigments to a large degree [57,37], but this serves as an example
on how carefully MD parameters have to be checked. Second, if
the structure in a quantum-chemical calculation differs much from
the equilibrium structure that would be obtained with the first-
principles method at hand, SCF convergence problems can arise.
At the moment, however, parametrized MD simulations are still
the only way to obtain enough conformations of a protein like
the FMO complex to reliably sample properties like excitation
energies.
2.4. Electronic structure calculations

All calculations were carried out with the Amsterdam Density
Functional (ADF) program suite [58,59] and the PBE exchange–
correlation functional [60,61]. If not stated otherwise, a DZP basis
set with a 1s frozen core for C, N and O, and a ½1s;2s;2p� frozen core
for S and Mg was used. All MFCC and 3-FDE calculations were set
up with the aid of the PYADF scripting framework [62]. We use
the FDE implementation in ADF [45], including the extension to
(uncoupled) excited states [35,63]. If not stated otherwise, all given
excitation energies correspond to the excitation that is dominated
by the transition from the highest p orbital to the lowest p� orbital.
This is expected to be the BChl Q y excitation [1]. In some cases, an
unambiguous assignment was not possible and a second value is
given in brackets in the corresponding tables.



Fig. 2. Cartoon representation of the MD-equilibrated structure of a monomer from the Fenna–Matthews–Olson complex with its seven BChl pigments. Figure created with
VMD [74,75].
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3. Results

In this section, the results of the different methods used to
evaluate the effect of the surroundings on the optical properties
of the pigments are presented.
3.1. Classical embedding

As the most simple scenario, the seven BChl molecules were ex-
tracted from the generated snapshot and calculated individually in
vacuo. The resulting excitation energies are presented in Table 1.
Furthermore, the complete array of seven pigments was subjected
to an uncoupled FDE (FDEu) calculation with one freeze-and-thaw
cycle, in which every pigment was treated as an individual subsys-
tem. In such an approach, only the polarization (no excitonic inter-
action) by the neighbouring subsystems is taken into account. In
the present case, the polarization effect of the uncharged pigments
is expected to be minor. However, an FDEu calculation is a
prerequisite for a so-called coupled FDE (FDEc) calculation [64],
which makes it possible to obtain excitonic coupling parameters.
The latter might be the target of a subsequent study. For complete-
ness, the FDEu results are also given in Table 1.

The computationally most efficient way to include polarization
of the pigments by the surrounding protein is to model the latter as
a point charge distribution. This is easily possible for the given sce-
nario, as the force field charges from the MD simulation can be
used directly. The number of point charges hardly affects the
CPU demands of the calculations, so that all charges (protein,
water, ions, other pigments) can easily be included. However, it
Table 1
Excitation energies of the individual pigments in the FMO complex and the seven-
pigment array with and without a background point charge (PC) distribution
resembling the protein. All values in eV.

Pigment Isolated Array (FDEu) Isolated (PC) Array (FDEu, PC)

1 1.858 1.876 1.850 1.850
2 1.869 1.872 1.850 1.855
3 1.826 1.823 1.807 1.806
4 1.815 1.815 1.812 1.804
5 1.887 1.876 1.878 1.881
6 1.854 1.848 1.841 1.839
7 1.887 1.904 1.893 1.889

(1.811)
has to be kept in mind that these charges are not parametrized
to be used in QM calculations, but to reproduce correct interactions
between molecular building blocks in an MD simulation. The cal-
culated excitation energies are also presented in Table 1.

In all cases, the changes in the excitation energies are fairly
small and reach maximum values of around 0.02 eV. For the com-
parison between isolated pigments and the seven-pigment array,
this was expected (see above) and the shifts for the point charge
distribution are of the same order of magnitude as in an earlier
study that used the seven-pigment model and point charges from
the CHARMM27 force field [65]. The results will be compared to those
from 3-FDE calculations in Section 3.4.

3.2. Disconnected-environment models

Following our previous work [42], a first quantum-chemical
model of the pigment surroundings was constructed by setting
up binding-pocket models for the individual pigments. Each bind-
ing pocket included the amino acid residues and water molecules
with at least one atom closer than 8 Å to the pigment’s central
Mg atom. Contrary to Ref. [42], the resulting oligopeptides were
not saturated with hydrogen atoms, but capped with neutral ami-
no acid termini from the official CHARMM27 topology files [53,54]
and no subsequent optimization was carried out here. Note that
no other pigments were allowed in the calculations, as the purpose
of the setup was to study the pigment–protein interactions. As an
example, BChl 3 in its 8 Å binding pocket is shown in Fig. 3.

The binding pocket models obtained in this way were then cal-
culated by four different strategies of increasing complexity:

(a) Isolated pigments
For reference, each pigment was extracted from the structure
and calculated in vacuo. This setup is identical to the isolated
calculations in Section 3.1.
(b) Point charges
In this case, only the pigment itself was treated quantum-
mechanically, whereas the capped amino acid fragments were
not modeled explicitly, but as classical point charges.
(c) FDE
The model of the pigment in its binding pocket was partitioned
into individual subsystems, where the pigment as well as
each covalently saturated protein fragment and each water
molecule constituted one subsystem. The electron densities of



Fig. 3. 8 Å binding pocket around BChl 3 from the FMO protein. The pigment is
colored green, while the protein surroundings are blue. Figure created with VMD

[74]. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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the subsystems were then relaxed in two consecutive
freeze-and-thaw cycles and the excitation energies were
calculated only for the pigment subsystem.
(d) Supermolecular calculation
Owing to the relatively small size of the overall 8 Å binding
pockets (about 370 atoms on average), a supermolecular refer-
ence calculation was still feasible and was carried out for each
of them.

It must be noted that the minimal environment in this setup is
not an accurate representation of the whole pigment–protein
complex, since long-range electrostatic interactions between the
pigments and remote parts of the protein are neglected. However,
the purpose of this test is to benchmark the point charge approach
and FDE against supermolecular calculations. Unfortunately, some
of the supermolecular calculations for the artificially cut-out
binding pockets could not be converged, which is probably due
to the fact that the structure was obtained from a parametrized
simulation (see Section 2.3). However, no significantly different
behaviour is expected for these structures concerning their
excitation energies.
Table 2
Excitation energies of the individual pigments in their binding pockets calculated
with different approximations to the environmental interaction for two basis sets. A
dash denotes that the respective calculation could not be converged. All values in eV.

Pigment Isolated Point charges FDEu Supermolecular

DZP
1 1.858 1.854 1.835 1.794
2 1.869 1.851 1.835 1.799
3 1.826 1.837 1.815 1.768
4 1.815 1.796 1.793 1.748
5 1.887 1.859 1.871 1.842
6 1.854 1.848 1.824 1.795
7 1.887 1.899 1.880 –

TZP
1 1.795 1.797 1.797 1.765
2 1.839 1.805 1.788 1.757
3 1.792 1.794 1.782 1.760

(1.716)
4 1.783 1.759 1.757 –
5 1.842 1.838 1.844 1.791
6 1.814 1.800 1.783 1.756
7 1.866 1.848 1.849 –

(1.778)
The results from the different models are presented for two ba-
sis sets (DZP and TZP) in Table 2.

When comparing the resulting DZP excitation energies, it can be
easily seen that neither a point charge model, nor FDE are able to
fully reproduce the shift from the supermolecular calculation.
However, in line with these reference calculations, FDE predicts a
redshift for all pigments, while the point charge model yields a
blueshift for some of them. Naturally, both methods are not capa-
ble of describing the differential polarization caused by the excited
chromophore, which is expected to be responsible for part of the
residual shift. Furthermore, though we consider the supermolecu-
lar approach as a reference here, there are arguments for actually
favouring a subsystem approach. One reason is that FDE as used
here is inherently free from the Basis Set Superposition Error, since
all basis functions are confined to their respective fragments. The
supermolecular calculations of the present binding-pocket models
most likely suffer from this problem, so that the resulting excita-
tion energies are artificially low. This is supported by the fact that
the shifts between supermolecular and model calculations for all
pigments are much smaller in the TZP case. Furthermore, it was
shown that the well-known self-interaction error in DFT is reduced
in a subsystem formalism [66]. In conclusion, we note that in many
cases FDE can improve the excitation energies compared to a point
charge model, even though the differences may be small.

3.3. Convergence of individual fragments in the MFCC framework: role
of embedding in preparation steps

The basis for each 3-FDE calculation is a complete MFCC run for
the system, from which the initial frozen density qII is constructed
(see Section 2.2). We therefore decided to conduct a systematic
test to analyze how different computational settings affect the effi-
ciency of the calculation and the convergence behaviour for the
individual capped fragments. From now on, we use the whole
structure of the FMO complex that was obtained from the MD sim-
ulation (see Section 2.3) as our test system. Starting from default
settings (see below), the following parameters were adjusted:
Basis set, fragmentation pattern, environment model and miscella-
neous SCF settings. In each of the following subsections, only one
setting was varied while the others were kept constant.

As a starting point, a systematic fragmentation pattern with 10
amino acids per fragment was chosen, and the calculations were
carried out with a DZP basis set and ADF default settings for the
SCF. The environment was modeled to be pure water in the
framework of COSMO [17–19] (the requirement of an environment
model already in the preparation steps is detailed below). If not
stated otherwise, these defaults were used in all the following tests.

� Computational settings
A variety of SCF settings were tested to accelerate SCF conver-
gence. These included the mixing parameter in a simple damp-
ing scheme, the number of expansion vectors for the ‘‘Direct
inversion in the iterative subspace’’ (DIIS) method [67] as well
as its starting criteria, and the usage of the Augmented Root-
haan–Hall DIIS (ADIIS) scheme [68]. However, the optimal SCF
parameters that emerged from this test resembled the ADF

default settings (see Supporting Information) so closely that it
was decided to use the latter for the sake of simplicity.
� Environment model

Converged densities of the individual building blocks of the sys-
tem are required as a prerequisite for the 3-FDE procedure. The
more complicated these fragments are, e.g., in terms of charged
side chains, the higher the chance that their isolated densities
cannot be converged in vacuo. Thus it can be necessary to
already introduce a model of the surroundings for the individ-
ual fragments in the preparation stage. In the following, we



Fig. 4. Convergence of individual 10-amino-acid fragments in a cartoon representation of the FMO protein for different amounts of environment point charges. Yellow
residues belong to non-converged fragments, blue residues are converged. Figure created with VMD [74,75]. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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refer to this type of environment model as ‘‘preparational
embedding’’ in order to distinguish it from any embedding in
the subsequent 3-FDE excitation energy calculations, which will
be referred to as ‘‘outer embedding’’.
Different environmental models for the individual fragments of
the pigment–protein complex were tested. Starting from calcu-
lations in vacuo, the model was gradually expanded to include
different sections of the background point charges from the
MD simulation. As the largest point charge model, all water
molecules, ions and protein residues (apart from the fragment
in question) were taken into account. Furthermore, the usage
of the polarizable continuum model COSMO was explored.
– Vacuo

When the protein fragments are isolated from the snapshot
and no environment whatsoever (besides the capping
groups) is used, most fragment calculations suffer from
severe convergence problems. In a test calculation with the
default settings (10 residues per fragment), 28 of 36
fragments did not converge within 100 SCF cycles. This sug-
gests that stabilizing interactions between specific amino
acid fragments and their surroundings play an important
role for the overall electronic structure of the protein.
A graphical representation of the non-converged fragments
is given in Fig. 4, panel (a).

– Water and ion point charges
If all surrounding water molecules and solvated ions from
the MD simulation are included as a background charge dis-
tribution, convergence is substantially improved compared
to the isolated situation. However, 11 out of 36 fragments
still have convergence problems, which points to the fact
that not only the interaction with the solvent on the outside
of the protein is important, but also electrostatic interactions
between spatially close (although not necessarily neighbour-
ing) amino acids stabilize the electronic structure. The con-
vergence behaviour for this scenario is depicted in Fig. 4,
panel (b).
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– Water, ion and protein point charges
To include the electrostatic effect of water, ions and
neighbouring protein residues, all atoms from the MD-
equilibrated structure were considered in the fragment
calculations. However, the calculated fragment itself as well
as the neighbouring amino acid on each side of the fragment
were deleted from the distribution to avoid overlap of the
capping groups with some of the point charges. When using
this approach with the aforementioned parameters, all frag-
ments but one converge easily. Upon inspecting the struc-
ture of the non-converged fragment, one deprotonated ASP
residue turned out to feature a strong interaction with a pro-
tonated LYS residue through a H3N+–COO� ion bridge (see
Fig. 5). However, the LYS residue was not included in the
point charge distribution, as it is one of the directly neigh-
bouring amino acids that partly overlapped with the capping
group of the fragment in question.
A calculation in which only the LYS backbone charges over-
lapping with cap atoms of the neighbouring fragment were
deleted and the ones representing the LYS side chain were
kept, could be converged without any problems. This exam-
ple stresses the importance of individual interactions
between the protein fragments and the necessity to model
them as realistically as possible.
Unfortunately, with this kind of environment model, conver-
gence is hampered again when going to large fragment sizes
(beyond 30). For both our models with larger fragment size
(40 and 50 amino acids per fragment), about half of the frag-
ments could not be converged.

– COSMO
When applying COSMO with parameters corresponding to
water (� ¼ 78) to the individual calculations of the frag-
ments in the MFCC framework, all fragments converge with-
out problems, even for fragmentation sizes of 40 or 50 amino
acids per fragment. However, a continuum model for water
is certainly not a very realistic depiction of the individual
fragments’ environment, since several of them are buried
. 5. Stabilizing interaction between a protonated amino group and a deproto-
ed carboxyl group of a second-nearest neighbour amino acid side chain. The
id purple line denotes the connection of one fragment to the next one. The
hed green line represents the ion bridge. Figure created with VMD [74]. (For
rpretation of the references to colour in this figure legend, the reader is referred
he web version of this article.)
deeply in the protein and have thus very little or no contact
to actual water. When setting the relative permittivity to
� ¼ 4, which has been suggested as a suitable value to mim-
ick a protein environment [69], no convergence problems
are encountered either. Continuum models are therefore
very helpful in constructing initial densities, which can then
be further refined using the 3-FDE scheme. Still, it should be
kept in mind that a continuum model cannot incorporate
specific interactions between amino acids in different
fragments.

In conclusion, we find that both continuum models and the inclu-
sion of background charges from the MD simulation are promising
ways to obtain initial densities for the isolated fragments. If possi-
ble, we suggest to use a point charge distribution of as much envi-
ronment as possible in this preparation step to mimick individual
stabilizing interactions most closely. An embedding potential
constructed from the resulting MFCC densities is then already
pre-polarized and will probably change much less in the subse-
quent 3-FDE calculation than one constructed from non-polarized
fragments. This should reduce the number of required freeze-
and-thaw cycles. However, if very large protein fragments are used
or if no suitable parameters for the point charges are available, it is
advisable to use a continuum model for the preparational embed-
ding. It has to be kept in mind, though, that apart from the result-
ing computational overhead this does not represent a very realistic
environment for the individual fragments, as some of them will
experience an aqueous environment, while others are surrounded
by neighbouring amino acids.
� Basis set effects

Several standard basis sets from the ADF library were compared
with regard to their applicability to the problem at hand. The
use of a minimal SZ basis was explored first in order to simplify
the construction of the protein density as much as possible.
With this choice, however, 16 out of 36 fragments failed to con-
verge. Various additional adjustments of the SCF parameters
could not change this outcome. Apparently, this minimal basis
does not offer sufficient flexibility for the electronic structure
of the present protein environment.
When going beyond a minimal basis, convergence presents no
problems if at least a double-zeta basis with one set of polariza-
tion functions (DZP) is used. It should be mentioned that the
construction of a DZP-quality protein density with the MFCC
scheme took only around 10 h on a 12-core Intel Xeon machine
(2.67 GHz) in the present case. Enlarging the basis even more to
TZP or TZ2P increases the total wall times to 16 or 22 h, respec-
tively. No convergence problems were encountered here either.
The influence of the basis set on the calculated excitation ener-
gies will be discussed in Section 3.4.
� Fragmentation patterns

The choice of fragmentation pattern is critical for the MFCC/
3-FDE procedure, as it represents a trade-off between accuracy
and computational cost. The smaller the fragments are chosen,
the lower the overall computational demands will be. With
small fragments, however, many bonds have to be cut, which
leads to larger errors in the density and the derived quantities.
Different systematic fragmentation patterns have been tested to
analyze the dependence of the convergence on the fragment
size N. Interestingly, calculations with different values of N
between 1 and 50 exhibit no convergence problems at all, as
long as a sufficiently large basis set (DZP or larger) is used.
When using a minimal SZ basis, very small fragments can be
converged, but already fragments with a size of 10 amino acids
each present serious convergence problems. We did not try to
increase the fragmentation size further than 50, since the
calculations naturally become more and more time-consuming
(see below). Furthermore, common DFT weaknesses such as



Fig. 6. Difference density plots for the first 100 amino acid residues from the FMO complex with different systematic fragmentation patterns of (a) 1, (b) 2, (c) 5, (d) 10, (e) 20,
and (f) 50 residues per fragment (Isovalue: 0.0025). Figure created with VMD [74,75].
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over-delocalization, especially concerning multiple charged
amino acids in one fragment, can partially be avoided by
restricting the electrons to certain fragments in the calculation
[46,66]. Such advantages would be forfeit when increasing the
fragmentation size to large numbers.
To visualize the density errors brought about by the
partitioning, we created some difference density plots. Since a
supermolecular calculation of the whole FMO protein is not
feasible, we extracted the first 100 amino acid residues from
the total structure. This subunit of 1510 atoms could be
converged in a reasonable amount of time with a DZP basis
set. We then applied systematic fragmentation patterns for
N ¼ 1 (single residues) up to N ¼ 50 (only two fragments in
total) to the structure and computed the density differences.
The resulting plots are shown in Fig. 6.
As expected, very large density errors arise with the smallest
fragmentation size. Already with N ¼ 5, these are much smaller
and concentrate in the regions around the cuts. With the largest
fragmentation size, a very good match to the supermolecular
density is obtained. Apart from the single fragmentation site,
some more errors can still be observed relatively far away from
it, mainly due to hydrogen bonds of the b-sheet structure. How-
ever, these are very small.
As mentioned above, the computer time spent for constructing an
MFCC density with our default fragmentation size of 10 residues
per fragment and a DZP basis set was approximately 120 CPU
hours. For the smallest tested N of 1 the calculations took only
36 CPU hours, while for N ¼ 5 this time increased only a little to
50 CPU hours. Calculations using large fragments with N of 30
and 50 required 330 and 580 CPU hours, respectively. Although
such calculations are still feasible for single structures, the effort
spent is too large to be useful for sampling along a trajectory.
Apart from systematically fragmenting the protein, an adaptive
pattern was tested in which the number of charged residues



Table 3
Comparison of the 3-FDE(0) excitation energies of the individual BChl Q y transitions
in the FMO protein with different basis sets. All values in eV.

Pigment DZP TZP TZ2P

1 1.852 1.794 1.794
2 1.856 1.809 1.810
3 1.795 1.758 1.759
4 1.805 1.764 1.754

(1.772)
5 1.883 1.843 1.845
6 1.844 1.803 1.803
7 1.891 1.861 1.859
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was limited to one or two per fragment. For the former, this
resulted in 83 fragments of between one and seventeen amino
acids with a mean size of 4.3 residues per fragment, for the latter
it yielded 42 fragments of between two and 24 residues with an
average size of 8.5 residues. Both setups did not present any con-
vergence problems either. The effect of the fragmentation pattern
on the excitation energies is discussed in the next section.

3.4. The influence of a QM environment on excitation energies

Our primary motivation for the usage of the MFCC/3-FDE meth-
od is the construction of an approximate protein density to study
the protein’s effect on the electronic properties of pigments in
pigment–protein complexes. Depending on the level of self-
consistency to which the environment density was constructed,
different cases can be distinguished:

� MFCC: Since the pigments in our setup are neither cut nor
capped, their densities (and thus, their electronic properties)
are identical to those from calculations of the isolated pigments.
Therefore, the MFCC scheme by itself cannot improve the
description of the excitation energies.
� 3-FDE(0): The first step towards modeling the effect of the pro-

tein on the chromophores consists of relaxing the individual
subsystem densities in the embedding potential constructed
by all the other subsystem densities (i.e., the sum of MFCC den-
sities of all fragments as in Eq. (1), but with all contributions of
the active subsystem removed). However, the relaxed densities
are not used to update the embedding potential until the first
cycle is complete. In compliance with Refs. [45,46], this is
denoted as 3-FDE(0).
This scheme offers a first glance at the expected changes in the
optical properties of the chromophores and is computationally
not very demanding, since it is not even necessary to walk
through a single complete 3-FDE cycle. As long as the protein
density is not of direct interest, only the changes in the pigment
densities need to be evaluated and used as a basis for excitation
energy calculations. In fact, the use of unrelaxed environment
densities often (but not always) gives surprisingly good results,
partially due to error cancellation effects. For a more detailed
discussion, see, e.g., Refs. [70–72].
� 3-FDE(n): Further improvement requires to complete the

3-FDE(0) cycle and successively update the individual fragment
densities using freeze-and-thaw cycles. Here, n denotes the
number of complete cycles in which every fragment was
relaxed in the new embedding potential constructed from the
other fragment densities. The outcome of a 3-FDE(n) calculation
generally depends on the order of going through the subsys-
tems. However, as soon as self-consistency is reached, this
dependence should be lifted. Our first attempts to obtain also
3-FDE(n) excitation energies for the FMO protein revealed
several unforeseen challenges, which are discussed in
Section 3.5. The remainder of this section is dedicated to
describing the effects of different computational setups on the
3-FDE(0) excitation energies.

The following test calculations were carried out analogously to
the tests in Section 3.3, i.e., with the default settings listed there, if
not stated otherwise. Apart from the embedding potential, which
only models the protein itself, an outer embedding model to
describe the solvation shell around the protein should be applied.
As explained in more detail in Section 3.5, the current COSMO
implementation in ADF is not optimized for 3-FDE calculations
and led to technical problems in our applications. All calculations
were therefore carried out with a background point charge
distribution resembling water and ions from the MD simulation.
This choice should not have a large effect on the calculated excita-
tion energies, since the protein (which is modeled by the embed-
ding potential) wraps the pigments almost completely.

3.4.1. Basis set effects
We have evaluated three different basis sets (DZP, TZP, TZ2P)

with regard to their description of the excitation energies. In each
case, a frozen core approximation was applied to the 1s electrons of
C, N and O and to the 1s, 2s and 2p electrons of S and Mg. It should
be noted that the frozen-core approximation was only applied in
order to simplify the construction of the protein density. In princi-
ple, one can use a different basis set for the embedded pigments.
However, it is desirable to use a consistent description for all frag-
ments if freeze-and-thaw cycles are to be employed in a 3-FDE(n)
calculation. The results for the different basis sets are presented in
Table 3.

It is observed that the excitation energies with a TZP and TZ2P
basis set hardly differ at all (maximum deviation: 0.002 eV), with
the exception of BChl 4. In that case, however, the assignment of
the excitations is not trivial, as an orbital from the twisted phytyl
side chain (see Section 2.3) mixes with the p! p� transitions in
the TZ2P calculation. Additional basis functions are thus not ex-
pected to improve the energies very much. In contrast, the DZP re-
sults are all blue-shifted by approximately 0.04 eV. However, the
relative energies among the individual pigments are completely
conserved, with the exception of BChl 1, where the shift is about
0.01 eV larger. Thus, it is already possible to assess the qualitative
features of the pigment network with a medium-sized basis set,
although the excitation energies are certainly more reliable when
a triple-zeta basis set is used.

To investigate the consequences of the frozen core approxima-
tion, additional all-electron calculations as well as calculations
with an intermediate degree of frozen cores (ADF: ‘‘Frozen Core
Small’’) were carried out for the case of the DZP basis set. The cor-
responding excitation energies are listed in Table 4.

As expected, the usage of a frozen core does not change the
resulting excitation energies dramatically. The mean absolute
deviation for a ‘‘Large’’ frozen core from the all-electron calculation
is merely 0.004 eV and it is thus concluded that a frozen core
approximation for all but the valence electrons is justified for the
research question at hand.

3.4.2. Fragmentation pattern
3-FDE(0) calculations were carried out for different systematic

fragmentation patterns between 1 and 50 amino acids and two
special partitioning schemes where the number of charged
residues per fragment was limited to one and two, respectively.
The resulting excitation energies are plotted in Fig. 7.

For small fragmentation sizes, the largest changes in excitation
energy are observed, although these are already fairly small. Inter-
estingly, with fragment sizes of only around 5, all pigment excita-
tion energies are relatively well converged. From a size of 20 on,
hardly any changes can be spotted. This weak dependence of the



Table 4
Comparison of the 3-FDE(0) excitation energies of the individual BChl Qy transitions
in the FMO protein with different frozen core approximations. All values in eV.

Pigment Large Small None

1 1.852 1.854 1.855
(1.812)

2 1.856 1.857 1.854
3 1.795 1.796 1.793
4 1.805 1.806 1.802
5 1.883 1.883 1.882
6 1.844 1.844 1.841
7 1.891 1.892 1.891

Table 5
Comparison of the 3-FDE (0) excitation energies of the individual BChl Q y transitions
in the FMO protein for different solvent models in the MFCC calculations. All values in
eV.

Pigment COSMO PC

1 1.846 1.852
2 1.856 1.856
3 1.797 1.795
4 1.792 1.805
5 1.875 1.883
6 1.838 1.844
7 1.896 1.891
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pigment excitations on the fragmentation size can be interpreted
as a quality assessment of the MFCC scheme for the preparation
of a frozen density. As it is not expected that the excitation ener-
gies will change any further when going to even larger fragmenta-
tion sizes up to a hypothetical supermolecular calculation, it can be
concluded that at least for the given purpose, the MFCC density is
equivalent to a non-fragmented protein density. The two models
created with the adaptive partitioning scheme (in order to mini-
mize the number of charged amino acids per residue, see Sec-
tion 3.3) did not exhibit any special behaviour. Their excitation
energies were very similar to those observed with fragmentation
patterns of similar average fragment size. This indicates that the
fragment size is the decisive parameter and the exact location of
the cuts does not play a major role.

3.4.3. Preparational embedding
In this section, the effect of the preparational embedding for the

individual fragments is analyzed. The preparation of the MFCC
fragments in vacuo was not considered any further due to the mas-
sive convergence problems. As the most promising approaches, the
calculation of the capped fragments with COSMO (water) and in a
background point charge distribution resembling the complete
protein in water were compared. The results are presented in Ta-
ble 5. In both cases, the outer embedding model for the 3-FDE(0)
calculations was constructed by using the water and ion point
charges from the MD simulation.

Apparently, the preparational environment has a small effect on
the excitation energies in a 3-FDE(0) step, although the embedding
potential seems to be dominated by the intrinsic properties of the
protein fragments and not by the way they were prepared. The
largest effect occurs for BChl 4, where a shift of 0.013 eV is
observed. This is comparable, in the present case, to the shifts
between isolated pigment calculations and calculations using a
point charge model (see Section 3.1). The pre-polarization due to
the preparational embedding with point charges may thus not be
considered negligible in general. Our initial preference for a prep-
arational embedding of atomistic nature is therefore reassured,
3

30

Fig. 7. 3-FDE (0) excitation energy of the Qy transition for the BChl pigments in the
FMO complex for different fragment sizes.
as we expect that less freeze-and-thaw cycles will be required to
obtain fully self-consistent excitation energies. Furthermore, in
cases where not the properties of non-covalently bound cofactors,
but those of the protein are of interest, the effects of the pre-
polarization might be much larger.

3.5. Outlook: Relaxation of the obtained MFCC fragment densities
using the 3-FDE method: current challenges

As shown in the previous chapter, 3-FDE(0) already represents a
very good compromise between the accuracy of the embedding
density and the efficiency of the calculation. The next step would
be the improvement of the fragment densities within the 3-FDE
framework. For this purpose, however, several technical challenges
have to be overcome.

3.5.1. Cap convergence problems
Converging the cap potentials that assure a positive density

everywhere in space proved to be very difficult for the present sys-
tem. As explained in Section 2.2, in a 3-FDE fragment calculation
these potentials have to be converged first, and only when they
are fixed, the final relaxation of the fragment density can happen.
Since, strictly speaking, the cap convergence procedure adds an-
other layer of self-consistency to the overall procedure, we in-
creased the maximum number of SCF iterations to 300, but for
29 of 36 fragments, one or both caps could still not be converged
in a representative 3-FDE calculation. This could not be changed
by including COSMO as an outer embedding model. Furthermore,
we find that the current COSMO implementation in ADF [73] is
not optimized for calculations of this type (see next paragraph).
Choosing smaller fragments could not remedy the convergence
problems either. We suspect the reason to be the currently used
procedure for converging the cap potentials. When using the LB
step, an extra damping factor is applied, which is identical for all
grid points. However, the deviation from the desired potential at
points near the nuclei is naturally very different from the one at
grid points far away from the latter. This can lead to oscillations
in the potential updates if too large steps are used. On the other
hand, the smaller the steps have to be, the more iterations are
needed to converge each potential. Since every potential update re-
quires electronic self-consistency for the whole capped fragment,
this can dominate the overall procedure very easily and make
the calculation very lengthy. The step size can be adjusted in the
current implementation (see also Ref. [46]), but different choices
seem to be necessary for different fragments, which makes the
whole process very cumbersome. In the future, we will therefore
try to find improved schemes to converge the cap potentials.

3.5.2. Usage of COSMO with 3-FDE
As mentioned in the last paragraph, embedding calculations for

full-size proteins with COSMO lead to some difficulties. The pri-
mary problem is that in contrast to the preparation-stage MFCC
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calculations, where a cavity is constructed around each small frag-
ment, in the 3-FDE case a vast cavity has to be created around the
entire system. This leads to an enormous number of point charges
and the disk I/O spent on storing their interaction matrix makes
the calculation unfeasible. To circumvent this problem, we pre-
pared a locally modified version of the ADF code in order to re-cal-
culate the matrix directly whenever it is needed instead of writing
it to disk. With this scheme the calculation actually becomes pos-
sible. However the CPU time spent on calculating the interaction
matrix completely dominates the calculation (for details, see the
Supporting Information).

The update of all COSMO charges in every SCF step turns out to
be rather inefficient in the context of subsystem approaches, be-
cause only the charges near the active fragment will differ signifi-
cantly from their values in the previous step. To make the COSMO
scheme more efficient for FDE and 3-FDE calculations for large sys-
tems, it could be advantageous to introduce a distance criterion,
based upon which it is decided whether an update is required.

Both of the issues discussed in this section will be adressed in
our future work in order to facilitate also fully polarized 3-FDE(n)
calculations for pigment-protein complexes.

4. Summary and conclusions

In this paper, we have established a robust protocol for density-
based embedding calculations of chromophores in pigment–pro-
tein complexes using the 3-FDE(0) method. First, we tested differ-
ent technical and conceptual parameters with regard to the
individual MFCC calculations, which represent the preparation
stage for the embedding calculations. We found that at least a
medium-sized basis set (e.g., DZP) has to be used to be able to con-
verge the individual protein fragments. The choice of an environ-
ment model already for the individual capped fragments
(preparational embedding) proved to be crucial. Only with the
aid of either COSMO or a background distribution of point charges
from the MD simulation, we could converge all the fragments. If
possible, we suggest to use the latter approach, in which the frag-
ments will already be pre-polarized in the subsequent 3-FDE calcu-
lations. It is thus expected that less iterations of the embedding
potential will be required, or that even the initial embedding po-
tential constructed from the frozen MFCC density will model the
real environment with fairly good accuracy. For very large frag-
ments we found that only the continuum solvation model was able
to reliably provide converged electron densities, even for fragment
sizes of up to 50 amino acid residues per subsystem. This may,
however, partly be due to the non-relaxed, force-field derived
structure employed in this pilot study.

We also compared several of the mentioned parameters with
respect to the corresponding 3-FDE(0) excitation energies.
Concerning the fragmentation pattern, we found that the excita-
tion energies hardly depend on this decision as long as at least five
amino acid residues are treated within one fragment, which is eas-
ily possible on modern computers. This is an encouraging result, as
it shows that the approximation of representing the protein den-
sity through the sum of its fragments is justified, at least with re-
gard to the calculation of cofactor excitation energies. We also
compared different basis sets and it was shown that already with
DZP, the relative excitation energies among the pigments are al-
most identical to those with a triple-zeta basis set, although a com-
mon redshift is observed. The effects of the preparational
embedding were very small, but not negligible in the present case.

When comparing the excitation energies for our default settings
(fragmentation size of ten residues per fragment, preparational
embedding with point charges and a DZP basis set) to the values
initially obtained with a simple point charge model, we find that
they are very similar. On the one hand, this is encouraging as it
shows that the embedding procedure does not produce any arti-
facts connected with the partitioning of the protein. It seems that
at least for the present arbitrary snapshot, the conceptually more
simple point charge approach already gives results which are sim-
ilar to density-based embedding. In this sense, 3-FDE may also
serve as a benchmark reference for computationally even more
efficient point-charge models in future applications.

Our future plans include using the methodology tested and
established in this paper to sample along an MD trajectory in order
to produce site energy distributions of the pigments. When com-
bined with the FDEc approach, also excitonic coupling parameters
can be produced with our current setup. In conjunction with the
site energies, these can be used to model excitation energy transfer
dynamics. Furthermore, we want to probe the effects of a relaxa-
tion of the initial frozen MFCC density in freeze-and-thaw cycles
(3-FDE(n) calculations). To this end, we plan to improve the
existing cap convergence procedure so that routine calculations
of excitation energies with fully polarized protein densities
become possible.
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