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Subsystem density-functional
theory
Christoph R. Jacob1∗ and Johannes Neugebauer2∗

Subsystem density-functional theory (subsystem DFT) has developed into a pow-
erful alternative to Kohn–Sham DFT for quantum chemical calculations of com-
plex systems. It exploits the idea of representing the total electron density as a sum
of subsystem densities. The optimum total density is found by minimizing the to-
tal energy with respect to each of the subsystem densities, which breaks down the
electronic-structure problem into effective subsystem problems. This enables cal-
culations on large molecular aggregates and even (bio-)polymers without system-
specific parameterizations. We provide a concise review of the underlying theory,
typical approximations, and embedding approaches related to subsystem DFT
such as frozen-density embedding (FDE). Moreover, we discuss extensions and
applications of subsystem DFT and FDE to molecular property calculations, ex-
cited states, and wave function in DFT embedding methods. Furthermore, we
outline recent developments for reconstruction techniques of embedding po-
tentials arising in subsystem DFT, and for using subsystem DFT to incorporate
constraints into DFT calculations. C© 2013 John Wiley & Sons, Ltd.

INTRODUCTION

T he increasing accuracy of approximate
electronic-structure methods and the availability

of ever-more powerful computational resources has
led to a widespread application of quantum-chemical
methods to molecular systems of ever larger com-
plexity and size.1–3 More and more detailed analyses
of effects of environments surrounding reaction
centers, interactions between functional components,
and potentially active ingredients in large chemical
systems are carried out.4–6 This has triggered an im-
mense activity in the quantum chemistry community
to develop methods specifically suited for treating
large systems (see, e.g., Refs 1,5,7–10).
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Conventional wave function–based quantum
chemical methods face the so-called “curse-of-
dimension” problem, which is related to their unfa-
vorable scaling with the system size.11,12 Ideally, one
would hope that a linear scaling of computational ef-
fort with the number of atoms in a chemical system
can be achieved, whereas the (potentially exact) full
configuration interaction method shows a factorial
scaling with system size. A natural way of reducing
the scaling behavior is to partition the total system
into fragments or subsystems13 and to treat each sub-
system individually. This idea forms, in one way or
another, the basis for most low-order scaling quan-
tum chemical methods, usually at the expense of more
or less drastic approximations.

One strategy in this field is subsystem density
functional theory (subsystem DFT), which achieves
a partitioning into subsystems on the basis of the
electron density ρ(r).14–16 Subsystem DFT has several
important advantages compared to other fragment-
based approaches, although it is not yet at a stage
where it can be applied to arbitrary partitionings in
a black-box manner. The advantages are in partic-
ular: (i) Subsystem DFT is an alternative to other
density-functional theory methods, most notably
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the Kohn–Sham (KS) method and thus potentially
exact in the limit of exact energy functionals. (ii) An
embedding potential naturally arises in the context
of subsystem DFT, which describes the effect of all
other subsystems onto the one for which the elec-
tronic structure shall be determined. This embedding
potential carries a dependence only on the electron
density of the other subsystems, but not on their wave
functions or other quantities. This forms the basis
of the so-called frozen-density embedding (FDE)
theory.17 (iii) Subsystem DFT achieves a partitioning
in terms of the measurable real-space quantity ρ(r),
and thus also leads to a very intuitive partitioning in
line with chemical concepts.

In the following, we will first discuss fundamen-
tal theoretical aspects of subsystem DFT and FDE,
followed by a review of the properties of the embed-
ding potential arising in the subsystem DFT working
equations. Besides other aspects, the following sec-
tion deals with the quality of electron densities ob-
tained from subsystem DFT, which is determined by
the quality of the potential, and the reconstruction of
exact embedding potentials. Afterward, we concen-
trate on interaction energies calculated from subsys-
tem DFT, which also includes the interaction between
“quasi-diabatic” potential energies constructed from
approximate subsystem DFT methods. We summa-
rize and review the state-of-the-art in property and
spectra calculations on the basis of subsystem DFT.
We continue with a presentation of mixed wave func-
tion/DFT subsystem methods, before we conclude on
the current status of this field.

FUNDAMENTALS OF SUBSYSTEM DFT
AND RELATED METHODS

Kohn–Sham DFT
The total energy expression in Kohn–Sham DFT is
usually written as (using Hartree atomic units and
including the nucleus–nucleus terms),18,19

E[ρ] = Ts[ρ] + Vnuc[ρ] + J [ρ] + Exc[ρ] + Vnn

(1)
where Vnuc is the electron–nucleus interaction,

Vnuc[ρ] =
∫

ρ(r)vnuc(r)dr (2)

vnuc(r) = −
∑

I

ZI

|RI − r| , (3)

Vnn is the nucleus–nucleus repulsion,

Vnn =
∑
I,J

ZI ZJ

|RI − RJ | , (4)

which is constant for a fixed geometric structure, J [ρ]
is the electron–electron Coulomb repulsion,

J [ρ] = 1
2

∫
ρ(r)ρ(r′)
|r − r′| drdr′ (5)

Ts[ρ] is the (noninteracting) kinetic energy of the
Kohn–Sham reference system, and Exc[ρ] is the
exchange–correlation energy functional defined as

Exc[ρ] = (Vee[ρ] − J [ρ]) + (T[ρ] − Ts[ρ]). (6)

Exc[ρ] has to be approximated in KS-DFT calcula-
tions, as its precise analytic form is unknown. In the
above equation, Vee[ρ] is the full electron–electron in-
teraction energy, and T[ρ] is the true kinetic energy
of the n-electron system. Both are not known explic-
itly as functionals of the electron density, but can be
expressed through the n-electron wave function �,
This n-electron wave function � is determined by the
electron density ρ. In Levy’s constrained search for-
mulation of DFT,20,21 � can be obtained from the
minimization,

FHK [ρ] = min
�→ρ

〈�|T̂ + V̂ee|�〉

= min
�→ρ

〈
�

∣∣∣∣∣∣
n∑
i

−∇2
i /2 +

n∑
i> j

1/ri j

∣∣∣∣∣∣�
〉

, (7)

where the constrained search includes all wave func-
tions that correspond to the electron density ρ. With
this wave function available as a functional of the
electron density, the full electron–electron interaction
energy and the true kinetic energy can be calculated
as

Vee[ρ] =
〈
�[ρ]

∣∣∣∣∣∣
n∑
i j

1/ri j

∣∣∣∣∣∣�[ρ]

〉
(8)

T[ρ] =
〈
�[ρ]

∣∣∣∣∣
n∑
i

−∇2
i /2

∣∣∣∣∣ �[ρ]

〉
. (9)

Also Ts[ρ] is unknown as an explicit density func-
tional in general, but can be defined as

Ts[ρ] = min
�s→ρ

〈
�s

∣∣∣∣∣
n∑
i

−∇2
i /2

∣∣∣∣∣ �s

〉

= min
{ψi }→ρ

n∑
i

〈
ψi

∣∣−∇2/2
∣∣ ψi

〉
. (10)

Here, the constrained search is performed over all
wave functions �s of a reference system of noninter-
acting electrons with the density ρ (i.e, single Slater
determinant wave functions). The Kohn–Sham or-
bitals ψi are the orthonormal orbitals appearing in
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this Slater determinant. In terms of these KS orbitals,
the electron density is given by

ρ(r) =
n∑
i

|ψi (r)|2. (11)

In the following, we will denote Ts[ρ] as an ex-
plicit functional of the Kohn–Sham orbitals,

Ts[{ψi }] =
n∑
i

〈
ψi

∣∣ −∇2/2
∣∣ ψi

〉
. (12)

The Kohn–Sham energy expression should thus better
be written as,

E[{ψi }] = Ts[{ψi }] + Vnuc[ρ] + J [ρ] + Exc[ρ] + Vnn.

(13)

Minimization of E[{ψi }] in Kohn–Sham DFT
with respect to the Kohn–Sham orbitals, under the
constraint that these remain orthonormalized, leads
to effective single-particle Schrödinger Equations for
the Kohn–Sham orbitals, the so-called Kohn–Sham
equations,(

−∇2

2
+ veff[ρ](r)

)
ψi (r) = εiψi (r), i = 1, . . . , n

(14)

where the effective Kohn–Sham potential is given
by

veff[ρ](r) = vnuc(r) + vCoul[ρ](r) + vxc[ρ](r), (15)

with the electronic Coulomb and exchange–
correlation potentials

vCoul[ρ](r) =
∫

ρ(r′)
|r − r′|dr′ (16)

vxc[ρ](r) = δExc[ρ]
δρ(r)

. (17)

Subsystem DFT
Starting point for subsystem DFT14–16 (for earlier re-
views, see Refs 22 and 23, and the overview over the
field given in Ref 24) is a partitioning of the electron
density,

ρ(r) = ρtot(r) =
∑

I

ρI (r). (18)

The subsystem densities ρI are then each expressed
through systems of noninteracting particles, that is,
through orbitals of the corresponding subsystem,

ρI (r) =
nI∑
i I

|ψi I (r)|2, (19)

where the sum runs over all nI occupied orbitals in
subsystem I. The essential difference between this
ansatz and the Kohn–Sham approach is that we are
no longer able to use Ts[{ψi (r)}], the noninteracting
kinetic energy of the total system, since this would
require knowledge of the orbitals of the total system.
Instead, we can define subsystem kinetic energies,

Ts[{ψi I }] =
nI∑
i I

〈
ψi I

∣∣−∇2/2
∣∣ ψi I

〉
. (20)

As a rough approximation to the total Ts , one could
use the sum of all subsystem kinetic energies,

Ts[{ψi }] ≈
∑

I

Ts[{ψi I }]. (21)

The expression can be formally made exact again by
introducing a nonadditive kinetic energy term,

T nad
s [{ψi }, {{ψi I }}] = Ts[{ψi }] −

∑
I

Ts[{ψi I }], (22)

or, expressed as a density functional,

T nad
s [{ρI}] = Ts[ρtot] −

∑
I

Ts[ρI ], (23)

where the subsystem kinetic energies are defined in
analogy to Eq. (10).

The subsystem-DFT energy expression is thus

E[{ψi I }] =
∑

I

Ts[{ψi I }] + Vnuc[ρ] + J [ρ]

+ Exc[ρ] + Tnad
s [{ρI}] + Vnn. (24)

Minimization of this energy expression with respect
to the Kohn–Sham-like orbitals {ψiK } of subsystem K,
under the constraint that these subsystem orbitals are
orthonormal and the electron densities of the other
subsystems are fixed, leads to Kohn–Sham-like equa-
tions for this subsystem. These are known as the
Kohn–Sham equations with constrained electron den-
sity (KSCED17,22),(

−∇2

2
+ v

(K)
eff [ρK ](r) + v

(K)
emb[ρK , ρtot](r)

)
ψiK (r)

= εiK ψiK (r), i = 1, . . . , n. (25)

Here, v
(K)
eff [ρK ](r) has to be understood as

v
(K)
eff [ρK ](r) = v(K)

nuc(r) + vCoul[ρK ](r) + vxc[ρK ](r),

(26)

and contains all the terms that would also be present
in a Kohn–Sham DFT calculation for the isolated
subsystem K. In particular, the nuclear potential
v

(K)
nuc(r) considers all nuclei assigned to subsystem K.
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The additional embedding potential for system K
is given by

v
(K)
emb[ρK , ρtot](r)

=
∑

I,I 
=K

v(I)
nuc(r) + vCoul[ρtot − ρK ](r)

+ vnad
xc [ρK , ρtot](r) + vnad

kin [ρK , ρtot](r). (27)

Note that, in addition to the densities ρK and ρtot,
this embedding potential also depends on the nuclear
potentials v

(I)
nuc of the other subsystems. It is thus sub-

system specific, which is indicated by the superscript
(K). The nonadditive kinetic energy introduces a cor-
responding contribution to the embedding potential,
which is given by

vnad
kin [ρK , ρtot](r) = δTnad

s [{ρI}]
δρK (r)

= δTs[ρtot]
δρtot(r)

− δTs[ρK ]
δρK (r)

. (28)

Here and in the following, expressions like δTs [ρK ]
δρK (r) have

to be understood as δTs [ρ]
δρ(r)

∣∣∣
ρ(r)=ρK (r)

, that is, the func-

tional derivative of Ts[ρ], evaluated for the density
ρK (r). In the following, we will refer to the contri-
bution vnad

kin [ρK , ρtot] as nonadditive kinetic potential.
A similar nonadditive contribution arises from the
exchange–correlation functional, which is given by

vnad
xc [ρK , ρtot](r) = vxc[ρtot](r) − vxc[ρK ](r)

= δExc[ρtot]
δρtot(r)

− δExc[ρK ]
δρK (r)

. (29)

The essential ingredients of subsystem DFT can
already be found in the work of Senatore and
Subbaswamy,14,15 whereas a more formal derivation
has been given by Cortona.16 Non-selfconsistent pre-
decessor methods can be traced back to the work by
Gordon and Kim,25,26 and the density partitioning
idea is already expressed by Gombas.27

Finally, we would like to note that subsys-
tem DFT can be extended within the generalized
Kohn–Sham context to allow for hybrid exchange–
correlation energy functionals and the correspond-
ing nonlocal potentials.28–30 Usually, however, sim-
ple semilocal approximations are then still employed
for the nonadditive part of the exchange–correlation
potential.

Frozen-Density Embedding Theory
While in a conventional KS-DFT calculation, the
whole system is treated as one entity (see Fig. 1(a)), in
subsystem DFT it is split into subsystems, which are

each treated on an equal footing (see Fig. 1(b)). Start-
ing from a subsystem description, one can set up em-
bedding methods in which one particular subsystem
is considered to be embedded in an effective environ-
mental potential. This potential can be derived from
a given environmental density. This so-called frozen-
density embedding (FDE) theory was first proposed in
a seminal paper by Wesołowski and Warshel,17 and—
being a formally exact theory—provides the reference
point for any approximate embedding method used
in practical applications. In FDE, one partitions the
electron density into an active subsystem and a frozen
environment part,

ρ(r) = ρA(r) + ρB(r) (30)

= ρactive(r) + ρenvironment(r). (31)

The properties of the active system (system A) can
then be determined in the presence of an environ-
ment with density ρB(r), which is approximated at the
beginning of the calculation and subsequently kept
fixed. Note that this frozen environment could be
further decomposed into subsystems. In this way, the
environment density is defined based on a reasonable
starting point, usually the density of the environment
without the active system. One then calculates the
density of the active subsystem in the presence of this
(approximate) environment density (see Fig. 1(c)) by
employing the embedding potential of Eq. (27).

Some fundamental aspects of FDE, which have
been controversially discussed in the recent literature,
deserve special attention. One point of view can be
expressed as follows: If we define the target density
to be produced by the embedding potential as the
difference between the exact density and the frozen
environment density,

ρ
target
A (r) := ρexact(r) − ρfrozen

B (r), (32)

and if this target density is vs-representable, that is, if
it can be represented as the density obtained from the
ground state of a reference system of noninteracting
electrons,18,22 then an energy minimization of the to-
tal energy with respect to ρA will lead to the correct
total electron density and energy in the limit of exact
functionals. An important necessary condition for this
vs-representability is that ρ

target
A (r) ≥ 0 everywhere in

space. In practice, it turns out that this condition is
rather difficult to fulfill. This can be investigated by
accepting the error introduced by the approximate
exchange–correlation functional, both in the KS- and
the FDE calculation, and replacing the “exact” den-
sity in Eq. (32) by the result of a Kohn–Sham DFT
calculation. As shown in Ref 31, the target density
usually shows negative areas if ρfrozen

B is obtained from
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FIGURE 1 Schematic illustration of the different theoretical approaches available for large molecular systems, using the example of
aminocoumarin C151 surrounded by twenty water molecules. (a) In conventional KS-DFT, a single calculation is performed for the full system. (b) In
subsystem DFT, the system is split into fragments, and the densities of all fragments are optimized self-consistently. (c) In frozen-density embedding
theory, an approximate density is used for the environment, and only the density of the active subsystem is optimized.

a simple isolated molecule calculation on system B.
This can be improved by an iterative protocol known
as “freeze-and-thaw” (see below),32 but even in this
case some negative areas usually remain. In fact, it
has been argued that in the case of such nonadmissi-
ble frozen densities, the variational problem in FDE
is ill-posed.33,34

This formal difficulty disappears if we adopt a
different point of view—disconnected from a subsys-
tem DFT framework—and instead define the target
density of FDE rigorously as the density of the ac-
tive system that minimizes the total energy of the
total system, given an arbitrary frozen environment
density.35,36 If we follow the original strategy17 and
express ρA by a Kohn–Sham like system with a set
of orbitals {ψiA}, this means that we define our target
density as the density resulting from the set of orbitals
that minimizes the functional,

EFDE[{ψiA}, ρfrozen
B ] = Ts[{ψiA}] + Ts[ρfrozen

B ]

+ Tnad
s [ρA, ρfrozen

B ]

+ Vnuc[ρA + ρfrozen
B ]

+ J [ρA + ρfrozen
B ]

+ Exc[ρA + ρfrozen
B ]. (33)

As a consequence, FDE is no longer able to lead to
the exact ground state energy and density of the total
system (not even in principle), but can only yield an
upper bound for the energy.37 It can, therefore, not be
considered an alternative to Kohn–Sham DFT, unless
the chosen frozen density happens to be admissible
in the sense mentioned above. In that case, the target
density is again given by Eq. (32).

The restriction to a Kohn–Sham like system A
can be lifted, and other quantum mechanical descrip-
tors such as reduced density matrices38 or multideter-
minantal wave functions35 can instead be used for

subsystem A. Hence, the vs-representability condi-
tion can be lifted, and one can argue that FDE de-
fined in this way is more generally applicable than
subsystem DFT. As far as the environment is con-
cerned, this holds even when embedding a Kohn–
Sham-like system, as is reflected, for example, in
applications involving statistically averaged environ-
mental densities.39

To overcome the restriction resulting from the
first point of view, Gritsenko and Visscher formu-
lated a related embedding approach in which the ac-
tive subsystem is not represented by its density, but
by a “density orbital”.33 This way, the active sub-
system can account for regions in which its electron
density has to become negative. However, an imple-
mentation of this density-orbital embedding method
has not been presented so far.

Subsystem DFT and FDE in Practice
Another point of view on the relation of subsystem
DFT and FDE is that FDE is an approximation to sub-
system DFT, in which not the entire variational free-
dom of optimizing all subsystem densities is used, but
some of the subsystems’ densities are kept fixed at a
chosen starting approximation. In other words, a con-
strained minimization of the total energy functional
in Eq. (24) is carried out.40 This directly reflects how
the two theories are connected in computational prac-
tice: In so-called freeze-and-thaw cycles,32 the roles of
active and environmental system in FDE calculations
are iteratively interchanged until all subsystem den-
sities are converged. This procedure thus generalizes
FDE (in a variational sense) and makes it equivalent
to a fully variational subsystem DFT. Interestingly,
one could argue that such a freeze-and-thaw strategy
should not even be necessary if the correct nonaddi-
tive kinetic energy functional was known, provided
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the initially chosen frozen density is vs-representable
(see also Ref 34). In practice, however, freeze-and-
thaw can be helpful to improve the starting density.
Physically speaking, it allows for a fully self-consistent
polarization of the subsystem densities.

Since it is essentially impossible in such com-
putational applications to draw the line between
what might be called “iteratively improved FDE” and
“not fully self-consistent subsystem DFT,” the term
“frozen-density embedding” (FDE) is often used as
a more general expression for multilevel simulation
methods based on a density partitioning. We will, in
subsequent parts of this review, distinguish between
the two expressions where possible and unambiguous.

Nonuniqueness of the Density Partitioning
A conceptual problem that arises in subsystem DFT
is that there may be infinitely many ways to obtain a
correct partitioning.41 As an example, consider that
two subsystem densities,

ρA(r) + ρB(r) = ρtot(r), (34)

sum up to the correct total density ρ(r). Then also the
two densities

ρ̃A(r) = ρA(r) + δρ(r) (35)

ρ̃B(r) = ρB(r) − δρ(r) (36)

with δρ(r) arbitrary (but integrating to zero to en-
sure the correct number of electrons per subsystem)
will give rise to the correct total density and identi-
cal total energies. However, if an approximate func-
tional is used for the nonadditive kinetic energy, these
different partitionings are usually not equivalent and
correspond to different total energies.

Carter and co-workers have devised a way to
avoid the nonuniqueness of the density partition-
ing by requiring that active system and environ-
ment share the same embedding potential, that is,
v

(A)
emb(r) = v

(B)
emb(r).41 This idea originates from the par-

tition density-functional theory (PDFT) of Wasser-
man and co-workers, which is a generalization of sub-
system DFT.42,43 In PDFT, the system of interacting
fragments is mapped to an effective system of non-
interacting fragments sharing a common embedding
potential (called partition potential in the context of
PDFT), which is found as the Lagrange multiplier in
a functional minimization of the sum-of-fragment en-
ergies. PDFT is formulated without constraints on
the electron numbers, so that fractional occupation
numbers may occur for the fragments. In fact, the
total energy is minimized with respect to the parti-
cle numbers within all fragments, and only the total
number of electrons is fixed. Within PDFT, it can be

shown that a common embedding potential for the ac-
tive subsystem and the environment exists.44 On the
other hand, in the case of integer electron numbers
per subsystem the existence of a common embedding
potential has to be assumed and only its uniqueness
can be established.41

THE EMBEDDING POTENTIAL

General Properties of the Embedding
Potential
The embedding potential arising in subsystem DFT
and FDE, given in Eq. (27), has a number of im-
portant properties. In particular in comparison with
more approximate, empirical embedding potentials,
there are several differences that should be stressed:

� This embedding potential is exact in the
limit of exact functionals. Provided that the
vs-representability conditions are met, it will
thus lead to the exact total density, that is,
subsystem DFT is equivalent to conventional
KS-DFT in this limit.

� The main contribution to the embedding po-
tential in the active region, in particular for
weakly overlapping densities, are usually the
electrostatic potentials of the nuclei and the
electrons in the frozen environment. These
contributions are always treated exactly in
subsystem DFT and FDE. In contrast, most
other subsystem methods, such as QM/MM
approaches,45,46 employ additional approxi-
mations for these contributions.

� The embedding potential also contains short-
range quantum mechanical effects. Among
these, the exchange–correlation effects can be
treated within the same approximations as
used in KS-DFT calculations.

� In addition, also effects usually referred to
as Pauli repulsion are included through the
kinetic energy contribution.47 For this part,
one can either employ additional approxima-
tions, or the kinetic energy contributions can
be treated exactly with reconstruction meth-
ods. These different options will be explored
further in this section.

� In the case of spin-DFT (see, e.g., the recent
review in Ref 48),  also the embedding po-
tential becomes spin dependent, and the FDE
embedding potential can, therefore, describe
spin-polarization effects.41,49–51
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For polar environments, one can argue that a proper
representation of the electrostatic terms, including
polarization (in the fully self-consistent subsystem
DFT variant), is the most important advantage over
empirical point-charge or general multipole models
for the environmental electrostatic effect. However,
a problem well known in pure electrostatic embed-
ding schemes is the electron-leak problem (also called
electron spill-out or overpolarization).4,52 If no ad-
ditional contributions accounting for Pauli repulsion
are present in the embedding potential, electrons of
the active subsystem will unphysically localize at the
nuclei of the frozen environment, provided the ba-
sis set is sufficiently flexible. In a study on electron-
density topologies, it was shown that electrostatic-
only embedding yields seemingly good results as long
as the basis set is restricted to the active subsystem,
whereas including basis functions of the frozen sub-
system in a so-called supermolecular basis set expan-
sion leads to a drastic failure.31 More recently, Frade-
los and Wesołowski have investigated numerical in-
stabilities and overpolarization effects arising when
neglecting the intermolecular Pauli repulsion.47,53

Therefore, the use of the full electrostatic em-
bedding potential makes it necessary to also include
short-range quantum-mechanical contributions. In
the FDE embedding potential, these are accounted
for by the exchange–correlation and kinetic energy
contributions. However, the commonly used approx-
imations for the nonadditive kinetic energy (see be-
low) might not always be accurate enough to pre-
vent the electron-leak problem completely.54–56 For
an overview, see Ref 23.

The Nonadditive Kinetic Energy
While the electrostatic contributions to the embed-
ding potential in FDE and subsystem DFT can be
treated exactly and for the exchange–correlation com-
ponent the same approximations as employed in con-
ventional KS-DFT can be used, the kinetic energy part
requires more attention. This contribution arises from
the nonadditive kinetic energy [Eqs. (22) and (23)]. It
cannot be calculated directly, because the KS orbitals
{ψi } of the full system are not available in subsystem
DFT.

The situation may be considered different for
subsystems with densities constructed from subsets
of the orthogonal orbitals of a (spin compensated)
Kohn–Sham solution. For the special case of two sub-
systems (A and B), such pairs of densities have been
called vAB-representable pairs of densities,22,57 and
this can easily be generalized to vABC...-representable
sets of densities obtained in a similar manner for
many subsystems. In the two-partitioning case, con-

sider the ground state density ρ(0) of the supersystem
and the corresponding ground state Kohn–Sham or-
bitals {ψ (0)

i }. Then, we assign a subset of these orbitals
to one of the subsystems, and the remaining orbitals
to the other,

Ts[ρ(0)] = Ts

[{
ψ

(0)
i

}]
=

n∑
i=1

〈
ψ

(0)
i

∣∣−∇2/2
∣∣ ψ (0)

i

〉

=
nA∑
j=1

〈
ψ

(0)
j

∣∣−∇2/2
∣∣ ψ (0)

j

〉

+
nA+nB∑

k=nA+1

〈
ψ

(0)
k

∣∣−∇2/2
∣∣ ψ (0)

k

〉

(37)

where nA and nB are the numbers of electrons in sys-
tems A and B, respectively, with n = nA + nB, and

ρA(r) =
nA∑
j=1

∣∣ψ (0)
j (r)

∣∣2 and ρB(r) =
nA+nB∑

k=nA+1

∣∣ψ (0)
k (r)

∣∣2.
(38)

The orbitals are thus assumed to be ordered in a
proper way, reflecting the definition of the subsys-
tems. If we express the kinetic energy through a given
set of orbitals, we can write (see, e.g., Ref 58),

Ts

[{
ψ

(0)
i

}]
= Ts

[{
ψ

(0)
i

}
i∈A

]
+ Ts

[{
ψ

(0)
i

}
i∈B

]
,

(39)

from which one could conclude that the nonadditive
kinetic energy as a functional of the two sets of or-
thogonal orbitals vanishes for vAB-representable pairs
of densities,

Tnad
s

[{
ψ

(0)
i

}
i∈A

,
{
ψ

(0)
i

}
i∈B

]
= 0. (40)

However, the Levy-constrained search definition
of the kinetic energy density functional Ts[ρ]
[cf. Eq. (10)] requires that the orbitals are those of
the ground state, which is in general not the case for
orbitals as chosen here. Thus, we have

Ts[ρA/B] ≥ Ts

[{
ψ

(0)
i

}
i∈A/B

]
(41)

and it can only be shown in general that the nonad-
ditive kinetic energy as a functional of the densities is
nonnegative,57

Tnad
s [ρA, ρB] ≥ 0. (42)

At this point, it is important to note that none of
the above implies that the corresponding nonadditive
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kinetic potential vanishes. For explicit examples, see
Ref 59. As shown in Ref 58, a practical strategy can
be to employ vAB-representable pairs of densities and
the corresponding sets of orthogonal orbitals and to
introduce a projection operator that keeps the orbitals
of one subsystem orthogonal to those of the other one.

Finally, it is interesting to note that the nonad-
ditive kinetic energy vanishes for subsystem densities
that do not overlap, that is, if ρA(r)ρB(r) = 0 at every
point in space (see Appendix A in Ref 60).

Decomposable Approximations for the
Nonadditive Kinetic Potential
The most straightforward strategy for approximating
the nonadditive kinetic energy and the nonadditive
kinetic potential is the use of an approximate, explic-
itly density-dependent kinetic energy functional T̃s[ρ].
In such so-called decomposable approximations, one
uses

T̃nad
s [{ρI}] = T̃s[ρtot] −

∑
I

T̃s[ρI ] (43)

for the nonadditive kinetic energy and

ṽnad
kin [ρK , ρtot](r) = δT̃nad

s [{ρI}]
δρK (r)

= δT̃s[ρtot]
δρtot(r)

− δT̃s[ρK ]
δρK (r)

,

(44)

for the nonadditive kinetic potential. Here and in the
following, the tilde is used to indicate approximate
functionals. Thus, the problem of approximating the
nonadditive kinetic energy reduces to the one of find-
ing suitable approximate kinetic energy functionals.
Note, however, that in subsystem DFT such approx-
imate kinetic energy functionals are only used for
the nonadditive part of the kinetic energy, which is
in many cases only a small part of the total kinetic
energy. Therefore, finding suitable approximations
for subsystem DFT is simpler than finding explicitly
density-dependent kinetic energy functionals that can
approximate the full kinetic energy accurately to al-
low for orbital-free DFT calculations.61

There are certain model systems for which the
kinetic energy functional can be specified exactly. One
example is the uniform electron gas, for which the
noninteracting kinetic energy is given by the Thomas–
Fermi (TF) expression,18,19

TTF
s (ρ) = CF ρ5/3, with CF = 3

10
(3π2)2/3.

(45)

When applied to a nonuniform electron density, this
turns into the local-density approximation (LDA) for

the kinetic energy,

T̃TF
s [ρ] = T̃LDA

s [ρ] = CF

∫
ρ5/3(r)dr. (46)

On the basis of this expression, we can obtain an LDA
approximation for the nonadditive kinetic energy,

T̃nad,LDA
s [{ρI}] = T̃TF

s [ρ] −
∑

I

T̃TF
s [ρI ]

= CF

∫ [
ρ5/3(r) −

∑
I

ρ
5/3
I (r)

]
dr

(47)

The corresponding nonadditive kinetic potential for
subsystem K is given as

ṽ
nad,LDA
kin [ρK , ρ](r) = 5

3
CF

{
ρ2/3(r) − ρ

2/3
K (r)

}
.

(48)

Another class of exactly known cases are one-
electron and spin-compensated two-electron systems
(i.e., systems in which there is only one Kohn–Sham
orbital). Here, the kinetic energy is given exactly by
the von Weizsäcker expression,

T̃vW
s [ρ] = 1

8

∫ |∇ρ(r)|2
ρ(r)

dr. (49)

This implies that a corresponding nonadditive kinetic-
energy functional will be exact if the von Weizsäcker
functional is exact both for the total system and all
the subsystems.

The kinetic energy potential arising from the
von Weizsäcker functional has the form,18

ṽkin,vW(r) = δT̃vW
s [ρ]
δρ(r)

= −1
4

∇2ρ(r)
ρ(r)

+ 1
8

|∇ρ(r)|2
ρ(r)2

.

(50)

Note that the negative of the von Weizsäcker poten-
tial also arises (up to a constant shift) if one inverts
the Schrödinger equation for a single orbital with
|ψ(r)|2 = ρ(r).

These two kinetic energy functionals, T̃TF
s and

T̃vW
s , can be used to construct the lowest order

approximations to the true Tnad
s [{ρI}] in a regular

density-gradient expansion (DGE; also known as gra-
dient expansion approximation, GEA, or conven-
tional gradient expansion, CGE),18,22,61,62

T̃nad,DGE0
s [{ρI}] = T̃nad,TF

s [{ρI}], (51)

T̃nad,DGE2
s [{ρI}] = T̃nad,TF

s [{ρI}] + 1
9

T̃nad,vW
s [{ρI}],

(52)
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T̃nad,DGE4
s [{ρI}] = T̃nad,TF

s [{ρI}] + 1
9

T̃nad,vW
s [{ρI}]

+ T̃nad,H
s [{ρI}]. (53)

T̃nad,H
s is constructed in the usual way from the un-

derlying kinetic energy functional,63

T̃H
s [ρ] = (3π2)−2/3

540

∫
ρ1/3

[(∇2ρ

ρ

)2

− 9
8

(∇2ρ

ρ

) (∇ρ

ρ

)2

+ 1
3

(∇ρ

ρ

)4
]

dr.

(54)

Note that only even terms appear in the regular gra-
dient expansion for the kinetic energy. Full details on
the density-gradient expansion can be found in chap-
ter 5 of Ref 62.

If used self-consistently, the DGE route is nei-
ther very successful for the kinetic energy in general18

nor for the nonadditive kinetic energy in particular.22

There has therefore been a large activity in the field
of generalized gradient approximation (GGA) func-
tionals for the kinetic energy, which can be expressed
as

T̃GGA
s [ρ] = CTF

∫
ρ5/3(r)F

(
s(r)

)
dr, (55)

where the quantity F (s) is known as the enhancement
factor. It is usually expressed in terms of one of the
dimensionless quantities

x(r) = |∇ρ(r)|
ρ4/3(r)

, (56)

or

s(r) = x(r)
2(3π2)1/3

. (57)

The latter is called reduced density gradient. Nonad-
ditive kinetic energy functionals can be constructed
from such GGA-type functionals in the usual (decom-
posable) way.

Several GGA-type kinetic energy function-
als have been constructed using the conjointness
hypothesis.64,65 Lee et al. assumed that the same
form of the enhancement factor can be used for
exchange and kinetic energy functionals64 and con-
structed a kinetic energy functional based on Becke’s
1988 exchange functional known as B88.66 A widely
used functional constructed from this recipe is de-
rived from the Perdew–Wang (PW91) exchange
functional67 and is thus often denoted as PW91k.
Since the parameters in this functional were adapted
for the kinetic energy by Lembarki and Chermette,68

it is also known as the LC94 functional. Table 1 col-
lects a number of enhancement factors used for
GGA-type kinetic-energy functionals (a more exten-
sive overview is given in Ref 69).

Another class of kinetic energy functionals
builds in the known linear response of a homoge-
neous, noninteracting electron gas, which is given
by the Lindhard response function.61,81,82 Other re-
cent developments in this field are given in Ref 83.
Since the resulting functionals are nonlocal in space,
their evaluation is much more demanding than that
of (semi)local functionals.78,84 They can be computed
rather efficiently in reciprocal space for periodic sys-
tems, but care has to be taken for nonperiodic sys-
tems, for which Choly and Kaxiras suggested an
alternative way of computation.82 For more recent
progress in the field of nonlocal kinetic energy func-
tionals, see the work by Carter and co-workers.85,86

For spin-polarized cases, we can use the spin-
scaling relation87 to express Ts as a functional of the
α- and β-spin density components ρα/β ,

Ts[ρα, ρβ ] = 1
2

Ts[2ρα] + 1
2

Ts[2ρβ]. (58)

Conversely, we can also express the functional for the
spin-compensated system as

Ts[ρ] = 2Ts[(ρ/2), 0]. (59)

As noted for the corresponding case of exchange func-
tionals by Scuseria and Staroverov,88 we mention that
kinetic energy functionals are often expressed in the
spin-compensated form Ts[ρ] only, whereas the spin-
polarized form Ts[ρα, ρβ] is usually the one that is
actually used. The two can be interconverted using
the relationships given above. Differences in prefac-
tors in the functionals can arise depending on which
form is used. For the Thomas–Fermi functional in its
spin-polarized form, we get

T̃TF
s [ρα, ρβ] = 22/3CF

∫ (
ρ5/3

α (r) + ρ
5/3
β (r)

)
dr (60)

= 22/3 (
T̃TF

s [ρα] + T̃TF
s [ρβ]

)
, (61)

whereas the von Weizsäcker functional in the spin-
polarized case is given as

T̃vW
s [ρα, ρβ ] = 1

8

∫ |∇ρα(r)|2
ρα(r)

dr + 1
8

∫ |∇ρβ(r)|2
ρβ(r)

dr

(62)

= T̃vW
s [ρα] + T̃vW

s [ρβ]. (63)

If we want to rewrite a particular spin-compensated
GGA functional as a spin-polarized one, we again use

333

 



 2013 John Wiley & Sons, Ltd. Volume 4, July/August 2014

Advanced Review wires.wiley.com/wcms

TABLE 1 Enhancement Factors F (s) of Typical Kinetic Energy Functionals. The Constant β is Defined as β = 2(6π 2)1/3, respectively.
The Parameters in the LC94 (or PW91k) Functional Are A = 76.320, A1 = 0.093907, A2 = 0.26608, A3 = 0.0809615, A4 = 100.00,

B1 = 0.57767 · 10−4. The s-Dependent Parameter in APBEKint and revAPBEKint is μint
s (s) = (

5
9

+ 5 · 0.23899s2)/(3 + 5s2).

Name Acronym F (s) Reference

Thomas–Fermi TF 1 70, 71

von Weizsäcker vW
5
3

s2 72

2nd order DGE DGE2 1 + 5
27

s2 63

modified DGE2 MGEA2 1 + 5
27

· 1.290s2 73

Ou-Yang, Levy OL1 1 + 5
27

s2 + 0.0187βs 74

OL2 1 + 5
27

s2 + 0.0245 · βs
1 + 25/3βs

74

Lee, Lee, Parr LLP 1 + 0.0044188 (βs)2

1 + 0.0253 βs sinh−1(βs)
64

conjoint Perdew, Wang PW86 (1 + 1.296s2 + 14s4 + 0.2s6)1/15 75

Tran, Wesołowski TW 1 + 0.2319s2

1 + 0.2319
0.8438

s2

76

Thakkar TK92 1 + 0.0055(βs)2

1 + 0.0253 βs sinh−1(βs)
− 0.072βs

1 + 25/3βs
77

Lembarki, Chermette PW91k or LC94
1 + A1s sinh−1(As) + (A2 − A3e−A4s2

)s2

1 + A1s sinh−1(As) + B1s4
68

Karasiev, Trickey, Harris PBE2 1 + 2.0309s2

1 + 0.2942s2
78

PBE3 1 − 3.7425s2

1 + 4.1355s2
+ 50.258s4

(1 + 4.1355s2)2
78

PBE4 1 − 7.2333s2

1 + 1.7107s2
+ 61.645s4

(1 + 1.7107s2)2
− 93.683s6

(1 + 1.7107s2)3
78

exp4 0.8524(1 − e−199.81s2
) + 1.2264(1 − e−4.3476s4

) 78

asymptotic PBE APBEK 1 + 0.23889s2

1 + 0.23889
0.804

s2

79

revised APBEK revAPBEK 1 + 0.23889s2

1 + 0.23889
1.245

s2

79

modified APBEK APBEKint 1 + μint
s (s)s2

1 + μint
s (s)

0.804
s2

80

modified revAPBEK revAPBEKint 1 + μint
s (s)s2

1 + μint
s (s)

1.245
s2

80
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the spin-scaling relation,

T̃GGA
s [ρα, ρβ] = 1

2

∑
σ

CTF

∫
(2ρσ )5/3 F (sσ )dr, (64)

= 22/3CTF

∫ ∑
σ

ρ5/3
σ F (sσ )dr, (65)

where σ ∈ {α, β}, and sσ is given as

sσ = |∇(2ρσ )|
2(2ρσ )4/3(3π2)1/3

= |∇ρσ |
2ρ

4/3
σ (6π2)1/3

= xσ

2(6π2)1/3
.

(66)

The last equality defines xσ = |∇ρσ |/ρ4/3
σ . We can

thus easily express any GGA-type functional known
in the spin-compensated form as a spin-polarized one
by (i) using sσ instead of s as an argument for the en-
hancement factor, (ii) summing over spin components
σ , and (iii) including a prefactor of 22/3. Note that us-
ing x and xσ instead of s and sσ as a variable for the
enhancement factor makes it necessary to account for
these prefactors by converting the additional coeffi-
cients entering the enhancement factor.

Calculation of Charge Densities and
Multipole Moments
The accuracy of the approximate embedding poten-
tials used in subsystem DFT governs the quality of the
subsystem electron densities. Hence, the sum of the
subsystem densities is the key benchmark quantity to
test the suitability of a particular approximate poten-
tial. Since both subsystem and KS-DFT have to make
an approximation for the exchange–correlation en-
ergy functional Ẽxc[ρ] and its functional derivatives,
and since this approximation can be chosen consis-
tently if pure density functionals are employed, sub-
system DFT should be able to reproduce the electron
density distribution of a KS-DFT calculation employ-
ing the same expression for Ẽxc[ρ]. This provides a
protocol for assessing the error introduced by the ap-
proximations employed for the nonadditive kinetic
potential by comparing the electron density from a
fully self-consistent subsystem DFT calculation (i.e.,
a calculation in which the densities of all subsystems
are updated in freeze-and-thaw iterations) to the one
from a supermolecular KS-DFT calculation.

However, the supermolecular results can only
be reproduced exactly if the basis set is chosen appro-
priately. For direct comparability with Kohn–Sham
DFT, a so-called supermolecular expansion should
be used, that is, a basis set covering all atoms of the
total system in all of the subsystem calculations.89,90

However, for practical applications one would pre-
fer a monomer (subsystem) basis set,91 which is also

the natural choice to have full benefit of the compu-
tational advantages of a subsystem approach. Often,
such a monomer expansion already provides enough
flexibility, in particular if large basis sets are used. Ob-
vious exceptions are systems with strong polarization
or charge-transfer character at the boundary between
subsystems. A strategy that can keep the computa-
tional cost manageable even for large total systems
is to employ a monomer expansion plus a few addi-
tional ghost basis functions in the boundary region
where the polarization shall be described. Besides the
generally (much) smaller computational cost per sub-
system calculation, it should also be stressed that sub-
system DFT calculations with monomer basis sets are
inherently free of basis set superposition errors.

A number of studies of electron densities ob-
tained from subsystem DFT have been performed
to assess approximations for the nonadditive kinetic
potential.89,92,93 Note, however, that the accuracy
of the electron density does not necessarily corre-
late with the one of the parent energy functional
T̃nad

s [{ρI}].89 We will return to the calculation of the
interaction energies from subsystem DFT in the sec-
tion Interaction Energy Calculations. Nevertheless,
the accuracy of the resulting electron densities and
of energetic properties have often been considered to-
gether when recommending approximate functionals
for the use in subsystem DFT and FDE.89,92,94 There-
fore, in the following we will highlight some recent
systematic studies that only focused on the electron
density or on quantities derived from it.

A topological electron density analysis has been
performed for several hydrogen-bonded systems by
Kiewisch et al.,31 comparing the densities from fully
self-consistent subsystem DFT calculations with the
TF and PW91k nonadditive kinetic energy functions
to reference densities from supermolecular KS-DFT
calculations. This study included systems connected
through several hydrogen bonds and the strong
symmetric hydrogen bond in F−H−F−. It was shown
that even in those cases the qualitative changes in the
electron density topology, for example, the coordi-
nates of bond critical points, can be reproduced by
FDE. However, usually it was necessary to employ
a supermolecular basis for good agreement. More
strongly interacting systems such as coordination
compounds were investigated in Ref 95, where it
was found that systems like ammonia borane can still
be reasonably handled by subsystem DFT, whereas
it fails dramatically for transition-metal complexes
with π -backbonding like Cr(CO)6. Another study
on weak covalent bonds with subsystem DFT was
presented in Ref 96, where noble gas–gold fluoride
complexes were studied.96 The authors came to the
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conclusion that none of the standard approximations
(i.e., LDA or GGA kinetic energy functionals) worked
for these systems, even though the interactions are
only weak. Hence, it is more the type of interaction
that determines whether subsystem DFT with stan-
dard approximations is applicable: For systems with
covalent interactions, this is typically not the case.

Dipole and higher multipole moments can be
used as simple descriptors for the electron-density
distribution and have therefore been used as a quality
measure for FDE and subsystem DFT calculations
from early on. The dipole moment of water in water,
for instance, was studied already in 1994 with limited
success,97 probably because of a too small basis.
A later study98 reported a much larger increase in
the dipole moment (from 1.80 to 2.71 D) for an
aqueous environment and also showed that higher
multipole moments were in good agreement with
those from polarizable classical force field methods.
Other early studies presented dipole moments for
hydrogen-bonded dimers and found them in good
agreement with supermolecular reference results.89

Beyhan et al. calculated dipole moments in their
study on covalently bonded noble gas–gold fluoride
complexes. Interestingly, the PBE2 kinetic energy
functional78 employed for T̃nad

s with a supermolecu-
lar basis showed very good results for all noble gases
tested, whereas essentially all other functionals failed.
Again, this case has to be interpreted with caution, as
the system comprises a weak covalent bond. Laricchia
et al. have compared subsystem DFT densities and
dipole moments for calculations within the gener-
alized Kohn–Sham context, which employed hybrid
exchange–correlation functionals for the intrasub-
system contributions, whereas the intersubsystem
contributions were approximated by GGA-type
functionals.28 They reported an increased accuracy
for those calculations employing hybrid functionals.

We would like to take the opportunity to
illustrate the features of subsystem DFT with a
small example calculation. Employing the Becke88
exchange functional66 and the Perdew1986 corre-
lation functional (together in the following denoted
as BP86) as implemented in the Amsterdam Density
Functional (ADF) program,99–101 the triple-zeta plus
polarization (TZP) basis set from the ADF basis
set library, and the reparameterized PW91k (LC94)
functional for a decomposable approximation to
Tnad

s in the case of subsystem DFT calculations, we
calculated the dipole moment for several oligomers
of HCN both with subsystem and with Kohn–Sham
DFT. For this comparison, we employed the opti-
mized (BP86/TZP) monomer structure, which was
copied along the molecular axis in such a way that

FIGURE 2 Structure of the HCNn systems investigated here
(example with n = 4) and schematic representation of a certain step
in the subsystem DFT calculation, in which the density of the second
monomer is determined under the influence of an embedding potential
derived from the density of the other systems (densities represented
through isosurface plots).

1 2 3 4 5 6 7
Number of monomers

2.8

3.0

3.2

3.4

3.6

3.8

4.0

D
ip

ol
e 

m
om

en
t p

er
 m

on
om

er
 / D KS-DFT

subsystem DFT

FIGURE 3 Average dipole moment of the HCNn systems
(n = 1 . . . 7) from subsystem DFT (BP86/TZP/PW91k) and KS-DFT
(BP86/TZP).

the carbon–carbon distance between two neighboring
HCN molecules was as large as the corresponding
distance in the BP86/TZP-optimized dimer (4.43 Å;
see Figure 2). The H-bonding distance was thus
2.19 Å. The results for the average dipole moment
per monomer are shown in Figure 3, where it can
clearly be seen that there is a cooperative effect in the
dipole moment: The more monomers are added, the
larger is the average dipole moment. Subsystem DFT
and KS-DFT values are in nice agreement, although
the former leads to slightly smaller changes: The in-
crease from (HCN)1 to (HCN)7 is 0.90 D for KS-DFT
and 0.83 D for subsystem DFT. However, it should
be noted that subsystem DFT was applied here with
a monomer expansion (and three freeze-and-thaw
cycles), so that the dipole moments are not affected
by the basis set superposition error. A nice feature
of subsystem DFT is that a very easy analysis of the
results is facilitated. In contrast to the supermolecular
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FIGURE 4 Analysis of the dipole moment of the HCNn chains from subsystem DFT (BP86/TZP/PW91k) calculations; (a) contributions of
individual monomers in HCN7; (b) contributions of first and last monomer in HCNn chains (n = 1 . . . 7) as well as largest monomer contribution.

KS results, which have to be assigned/partitioned into
monomer contributions afterward, the subsystem
calculation constructs the total dipole moment from
contributions of each of the monomers in the chain,
which arise naturally as intermediate quantities in the
calculation. For example, Figure 4(a) shows the indi-
vidual monomer dipole moments from the subsystem
DFT calculation on (HCN)7, and Figure 4(b) shows
the contributions of the first and last monomer as
well as the largest individual dipole moment in the
chain as a function of the chain length. Subsystem
DFT thus offers great advantages in terms of an
analysis of molecular interactions and cooperative
effects due to many interacting subunits.

Nondecomposable Approximations for the
Nonadditive Kinetic Potential
Instead of using decomposable approximations de-
rived from a parent kinetic energy functional, one can
also attempt to approximate the nonadditive kinetic
energy or the nonadditive kinetic potential directly.
Such approximations are referred to as nondecompos-
able approximations. For those classes of applications
in which the desired quantity can be obtained directly
from the potential (e.g., the electron density, multi-
pole moments, excitation energies, or several other
molecular properties), it can be considered advan-
tageous to construct approximations for this quan-
tity itself, instead of approximating the kinetic en-
ergy functional.94,102,103 This strategy, which is also
known in the context of exchange–correlation func-
tionals in Kohn–Sham DFT (see, for example, Refs
104–106), does, however, not allow one to obtain the
energy of the system from a consistent functional.

For approximating the nonaddive kinetic poten-
tial, one promising strategy is to study the exact non-
additive kinetic potential in cases where it is known.
This can serve as guidance for developing approxima-
tions that can describe covalent bonds between sub-
systems. The nonadditive kinetic potential is given by

vnad
kin [ρK , ρtot](r) = δTs[ρ]

δρ(r)

∣∣∣∣
ρ(r)=ρtot(r)

− δTs[ρ]
δρ(r)

∣∣∣∣
ρ(r)=ρK (r)

= vkin[ρtot](r) − vkin[ρK ](r). (67)

The calculation of this term thus requires the knowl-
edge of the functional derivative of the noninteracting
kinetic energy δTs[ρ]/δρ(r) for two different densities,
the total electron density ρtot(r), and the density of the
active subsystem ρK (r).

For a given vs-representable density ρ(r), there
exists a potential vs[ρ](r) that yields this density
as the ground state solution of the noninteract-
ing Schrödinger equation,

[ − ∇2/2 + vs(r)
]
ψi (r) =

εiψi (r). For this potential vs[ρ](r), the density ρ(r)
minimizes the noninteracting energy functional,

Es[ρ̃] = Ts[ρ̃] +
∫

ρ̃(r)vs[ρ](r)dr (68)

under the constraint that the density integrates to the
correct number of electrons. Thus, for this density the
corresponding Euler–Lagrange equation

δEs[ρ̃]
δρ̃(r)

∣∣∣∣
ρ̃(r)=ρ(r)

= δTs[ρ̃]
δρ̃(r)

∣∣∣∣
ρ̃(r)=ρ(r)

+ vs[ρ](r) = μ

(69)

is fulfilled. This provides the possibility to calculate
the functional derivative of the noninteracting kinetic
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energy as107

δTs[ρ̃]
δρ̃(r)

∣∣∣∣
ρ̃(r)=ρ(r)

= −vs[ρ](r) + μ. (70)

Thus, except for a constant shift μ, the func-
tional derivative of the noninteracting kinetic energy
δTs[ρ̃]/δρ̃, evaluated for the density ρ(r), is given by
the negative of the potential vs[ρ] that yields this den-
sity ρ(r) as its noninteracting ground state. Here, it is
important to note that in general the potential vs[ρ] is
different from the effective potential veff[ρ]. The for-
mer is defined by yielding a given ground state density,
whereas the latter is calculated from Eq. (15), that is,
it is the sum of the nuclear potential for a specific
molecular system and of the Coulomb and exchange–
correlation potentials evaluating for the given density.
The two potentials are equal if and only if ρ is the ex-
act ground state density for the considered molecule.

Applying this result to the kinetic energy com-
ponent of the embedding potential, we arrive at102

vnad
kin [ρK , ρtot](r) = vs[ρK ](r) − vs[ρtot](r) + �μ,

(71)

where the constant shift is given by �μ = μtot − μK .
Therefore, calculating the kinetic energy part of the
embedding potential exactly is possible if we can de-
termine the potentials vs[ρtot] and vs[ρK ] that have the
total density ρtot and the density of the active subsys-
tem ρK , respectively, as their noninteracting ground
states.

Equation (71) can be used to study exact
properties of the nonadditive kinetic potential. In
Ref 102, the limit of two subsystems at large sep-
aration has been investigated. It can be shown that
in this limit, the embedding potential at the frozen
subsystem should vanish, that is, the kinetic energy
contribution has to cancel all other parts of the
embedding potential. However, with LDA and GGA
approximations the nonadditive kinetic potential is
not repulsive enough to achieve such a cancellation.
Based on this analysis, a long-distance correction to
the nonadditive kinetic potential has been developed,
which enforces the correct behavior at the frozen
subsystem.102 Including such a correction results in
a nondecomposable approximation to the nonad-
ditive kinetic potential. In a similar spirit, one can
enforce the correct form of the nonadditive kinetic
potential close to the nuclei of the frozen subsystem
(where the electron density is dominated by a single
orbital) by switching on a von Weizsäcker term
in these regions.94 The resulting nondecomposable
approximation to the nonadditive kinetic energy

potential, termed nondecomposable approximant
using first and second derivatives (NDSD), has been
shown to yield improved electron densities compared
to the conventional PW91k approximation. While
in computational practice, the two approaches of
Refs 94, 102 are similar as far as the potentials are
concerned, the approach of Ref 94 is more general
as it also provides a consistent NDSD energy ex-
pression (see also the discussion in Refs 108,  109 on
whether or not NDSD should formally be considered
preferable for the corresponding potential).

If the active subsystem contains only two elec-
trons of opposite spin (i.e., is described by a single KS
orbital), the kinetic energy component of the embed-
ding potential can be evaluated (partly) analytically.
In this case, the von Weizsäcker functional provides
the exact kinetic energy and its functional derivative
exactly gives the negative of the potential vs[ρ

(2e)
K ]

yielding the two-electron density ρ
(2e)
K , plus a constant

shift. Therefore, one has110

vnad
kin

[
ρ

(2e)
K , ρtot

]
(r) = 1

4
∇2ρ

(2e)
K (r)

ρ
(2e)
K (r)

− 1
8

∣∣∣∇ρ
(2e)
K (r)

∣∣∣2(
ρ

(2e)
K (r)

)2

− vs[ρtot](r) + μtot, (72)

which provides an analytical expression for
vnad

kin [ρ(2e)
K , ρtot] if the potential vs[ρtot] corresponding

to the total density is known.
This analytical expression was applied by Savin

and Wesołowski110 to study the exact nonadditive
kinetic potential in a four-electron system with the
total density ρtot = 2|ψ1s |2 + 2|ψ2s |2, where ψ1s and
ψ2s are the 1s and 2s orbitals of the hydrogen atom.
In this case, the corresponding potential is given by
vs[ρtot] = 1/r . For this simple model system, it is then
possible to determine the nonadditive kinetic poten-
tial analytically for different partitionings of the total
electron density into subsystems. To study more re-
alistic molecular systems, da Silva and Wesołowski
subsequently generalized this scheme111 by choosing
the total density as the ground state density obtained
from a supermolecular KS-DFT calculation, while still
limiting the active subsystem to two electrons. In this
case, the effective potential veff[ρtot] from this super-
molecular calculation can be used for vs[ρtot]. Note,
however, that this is only exact for the exact ground
state density.112 Thus, the use of a finite basis set in
the supermolecular KS-DFT calculation introduces a
slight inconsistency here.

Such exact reference nonadditive kinetic poten-
tials for analytically solvable cases as well as reference
potentials reconstructed numerically (see following
section) can be used for analyzing the failure of the
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currently available LDA and GGA approximations
for covalent bonds between subsystems.59 The anal-
ysis in Ref 59 suggests that the currently available
approximations for the nonadditive kinetic potential
are not able to distinguish situations in which
electrons should be transferred to the frozen sub-
system (e.g., in the case of covalent bonds) and
situations where this is not the case and the correct
long-distance limit should be enforced. To overcome
this limitation, it might be promising to develop
nondecomposable approximations that make use of
the Kohn–Sham orbitals of the subsystems. Finally, it
should be mentioned that the limitations of approxi-
mate functionals for the nonaddtive kinetic potential
can be circumvented by using capping groups.113

This allows for an efficient treatment of proteins with
subsystem DFT.114

Reconstructing the Exact Nonadditive
Kinetic Potential
So far, we have discussed the calculation of the ex-
act nonadditive kinetic potential for certain special
cases. For the general case of an arbitrary number of
electrons, vs[ρK ] has to be reconstructed numerically.
For vs[ρtot], one can either use the potential from a
supermolecular KS-DFT calculation or also apply a
numerical reconstruction to avoid the inconsistency
due to the use of a finite basis set. A large number of
algorithms for reconstructing the potential vs[ρt] from
a given target density ρt(r) have been developed. Con-
ceptually simplest are schemes in which the potential
is represented numerically on a real-space grid. In this
case, one starts with an initial guess for the potential,
usually of the form

v(0)
s (r) = vnuc(r) + vCoul[ρt](r) + vFA[ρt](r), (73)

where vFA[ρt](r) = −(1/n)
∫

ρt(r)/|r − r′| d3r ′ is the
Fermi–Amaldi exchange potential, which ensures the
correct asymptotic form of the potential,115 and n is
the number of electrons. The potential vs[ρt] is then
determined iteratively. In each iteration, one solves
the noninteracting Schrödinger equation with the cur-
rent potential v

(n)
s (r) to obtain the corresponding den-

sity ρ(n)(r). This density is then compared to the target
density at each grid point. If the density ρ(n)(r) is too
large, the potential is updated to be more repulsive at
this grid point, and if it is too small the potential is
made more attractive. This is repeated until conver-
gence is reached. For updating the potential in each
iteration, different formulas have been suggested. In
the scheme of van Leeuwen and Baerends (LB),116 the
ratio of the density in the current iteration and the

target density is used, that is,

v(n+1)
s (r) = ρ(n)(r)

ρt(r)
v(n)

s (r) (74)

This assumes that the potential is negative at each
point, and, therefore, the update formula is usually
applied to the exchange–correlation part of the poten-
tial only. To reach convergence, it is usually necessary
to introduce an additional damping [i.e., a prefactor
smaller than one in Eq. (74)] as well as a maximum
allowed stepsize at each grid point. An alternative
update formula has been suggested by Kadantsev and
Stott.117 It uses the difference between the density in
the current iteration and the target density to update
the potential as

v(n+1)
s (r) = v(n)

s (r) + [
ρ(n)(r) − ρt(r)

]
(75)

Our experience suggests that this scheme often pro-
vides a more robust convergence than the original LB
scheme. A number of additional schemes for updat-
ing the potential at each grid point have also been
proposed.118,119

An alternative to the LB scheme and its variants
is the method of Zhao, Morrison, and Parr (ZMP).115

Its starting point is the solution of the KS equations
under the constraint ρ(r) = ρt(r). This constraint can
be implemented by using the potential

vλ
s (r) = vnuc(r) + λ

∫
ρ(r) − ρt(r)

|r − r′| dr (76)

and considering the limit λ → ∞. In practice, one
solves these modified KS equations for several large
values of λ and extrapolates to infinity. Even though
the ZMP scheme has been used extensively to generate
reference exchange–correlation potentials for atoms
and small molecules, it turns out to be cumbersome
for larger molecules. In particular, it becomes numeri-
cally unstable for large values of λ and the need for an
extrapolation introduces additional difficulties.50,120

More efficient than potential reconstruction al-
gorithms based on a real-space representation of the
potential is the expansion of the potential in an aux-
iliary basis set {gt(r)} as

vs(r) = v(0)
s (r) +

∑
t

btgt(r) (77)

Following Wu and Yang (WY),121,122 the potential
yielding the target density can be determined from
the unconstrained maximization of the Lagrangian

Ws[vs] = Ts[{ψi }] +
∫

vs(r)[ρ(r) − ρt(r)]dr (78)

with respect to the potential, where the KS orbitals
{ψi } are those obtained from the potential vs(r) and
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ρ is the density corresponding to these orbitals. After
inserting the basis set expansion of vs(r), the first and
second derivatives of the Lagrangian Ws with respect
to the expansion coefficients {bt} can be calculated
analytically as122

∂Ws[vs]
∂bt

=
∫ [

ρ(r) − ρt(r)
]
gt(r)dr (79)

and

∂2Ws[vs]
∂bt∂bu

= 4
occ.∑

i

virt∑
a

〈ψi |gt(r)|ψa〉〈ψa|gu(r)|ψi 〉
εi − εa

,

(80)

respectively. With this gradient and Hessian available,
the maximization of the Lagrangian can be performed
using a standard Newton optimization, which usually
converges quickly. Note that the grid-based optimiza-
tion using Eq. (75) corresponds to a steepest-ascent
maximization using only the gradient at each grid
point.

With all these schemes for reconstructing the
potential vs[ρt] that yields a given target density ρt,
an additional complication arises. If a finite basis
set is used for expanding the orbitals when solving
the KS equations, the reconstructed potential is not
unique,123,124 that is, different potentials can result
in the same density within the finite orbital basis set.
To illustrate the origin of this nonuniqueness of the
potential, it is instructive to consider the change in
the electron density �ρ(r) caused by a change in the
potential �v(r). To first order in perturbation theory,
one finds

�ρ(r) = 4
occ.∑

i

virt∑
a

〈ψi |�v(r)|ψa〉
εi − εa

ψi (r)ψa(r). (81)

With a finite orbital basis set, the sum over virtual
orbitals is truncated. Therefore, there can be changes
in the potential �v(r) for which all matrix elements
between occupied and virtual orbitals vanish. For
such a change in the potential, the density will remain
the same. While in this case varying the potential has
no effect on the density, it does affect the KS orbitals
and their energies. In general (but not necessarily125),
the different sets of KS orbitals corresponding
to identical densities will be related by a unitary
transformation.

A number of ways of addressing this ambiguity
of the reconstructed potential have been suggested.
First, it is possible to obtain a unique potential if the
basis sets for the orbitals and for the potential are cho-
sen carefully. In particular, the basis set used for the
potential should be such that none of the matrix ele-
ments in the numerator of Eq. (81) vanishes. This can

be achieved by explicitly constructing potential basis
sets that are balanced with respect to a certain orbital
basis set126 or implicitly by discarding potential basis
functions that correspond to small singular values of
the linear response function entering in Eq. (81).127

However, choosing the potential basis set to be bal-
anced with respect to the orbital basis set restricts the
flexibility available for the potential, which in turn
makes the use of very large orbital basis sets necessary.
This is a severe obstacle for the routine application of
this approach for obtaining the exact embedding po-
tential in subsystem DFT calculations. Moreover, the
balancing between orbital and potential basis set will
in general be system dependent, because the occupied
and virtual orbitals appear in Eq. (81).

An alternative scheme has been developed by
Yang and co-workers, who suggested to chose the
potential that is as smooth as possible among those
that yield the same density. This constraint can be in-
cluded into the direct optimization of the potential128

by adding a penalty function to the Lagrangian, that
is, by using

Wλ
s [vs] = Ts[{ψi }] +

∫
vs(r)

[
ρ(r) − ρt(r)

]
dr

+ λ

∫
|∇(vs(r) − v(0)

s (r))|2 dr (82)

instead of the Lagrangian of Eq. (78). Here, the pa-
rameter λ has to be chosen such that the resulting
potential is smooth, while the density should still be
unchanged.129 While the requirement that the poten-
tial should be smooth is easy to include in the direct
optimization of the reconstructed potential, it is, how-
ever, not clear whether it leads to the correct potential,
that is, whether the potential obtained in the basis set
limit should be smooth.

Alternatively, one can employ a two-step pro-
cedure that first determines a (nonunique) potential,
yielding the target density, for instance via a direct op-
timization, and subsequently uses the (nonunique) KS
orbitals obtained from this potential to single out an
unambiguous potential. With the exact KS orbitals,
any single KS orbital ψi (r) could be used to calculate
the corresponding potential—up to a constant shift—
as the functional derivative of the von Weizsäcker
functional evaluated for the orbital density ρi (r) =
|ψi (r)|2. Therefore, King and Handy (KH)130 pro-
posed to calculate the potential as the density-
weighted average of the potentials obtained from each
single occupied KS orbital (see also Ref 131),

v(K H)
s [{ψi }] =

occ.∑
i

|ψi (r)|2
ρ(r)

[
�ψi (r)
2ψi (r)

+ εi

]
(83)
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where the KS orbital energies provide the shifts
of the different orbital potentials relative to each
other. While this KH potential is exact for the exact
orbitals, it is not for those obtained from a nonunique
reconstructed potential. In particular, the KH poten-
tial is not invariant under unitary transformations
of the occupied KS orbitals. Moreover, the density
obtained from the KH potential will in general
differ from the one corresponding to the orbitals
employed to calculate the KH potential. Thus, it
does not provide an unambiguous potential, but can
nevertheless be used to improve upon the nonunique
potential obtained from a potential reconstruction
using finite orbital basis sets.

In Ref  131, a related two-step procedure has
been proposed. Starting from a nonunique recon-
structed potential yielding the target density and the
corresponding KS orbitals, one can single out an un-
ambiguous potential by requiring that the target den-
sity is still obtained when a complete orbital ba-
sis set is used. This potential can be obtained by
minimizing

∫
1

ρ(r′)

(
occ.∑

i

〈ψr′ |T̂ + vs |ψi 〉
)2

dr′ → min. (84)

where ψr′ (r) is an auxiliary basis set for the virtual
orbitals, which can be chosen as

ψr′ (r) = δ(r′ − r) −
occ.∑

j

ψ j (r′)ψ j (r). (85)

This leads to a linear system of equations for the ex-
pansion coefficients of the potential. Here, it is im-
portant to note that the above condition is invari-
ant under unitary transformations of the occupied
orbitals. Therefore, the resulting potential is unam-
biguous, that is, it is independent of the outcome of
the potential reconstruction in the first step. While
the scheme of Ref  131 is not as straightforward
as those described earlier, numerical tests indicate
that it provides potentials that are very close to the
exact ones already with relatively small orbital ba-
sis sets,131,132 which is essential for applying poten-
tial reconstruction schemes within subsystem DFT
calculations.

Even though with a suitable algorithm for re-
constructing the potential that yields a given target
density it becomes possible to calculate the exact em-
bedding potential in subsystem DFT, this still requires
a supermolecular DFT calculation for the full system.
Therefore, such an exact subsystem DFT approach
will not provide any computational advantage over a
conventional DFT treatment. Nevertheless, such ex-

act subsystem DFT calculations can serve a number
of important purposes.

First, the calculation of the exact embedding po-
tential, in particular of its kinetic energy component,
can provide important insights for the construction
of better approximations for vnad

kin [ρK , ρtot]. To this
end, exact reference potentials have been calculated
and analyzed, both for analytically solvable cases110

and for (molecular) subsystems connected by different
types of chemical bonds.59 While these studies provide
some possible directions for future improvements of
the approximations for the nonadditive kinetic en-
ergy, these have not been developed into generally
applicable functionals so far.

Second, one can make the reconstruction of the
exact vnad

kin [ρK , ρtot] more efficient by exploiting the
locality of the interactions between subsystems. This
was suggested by Miller and co-workers,120 who in-
troduced a pair approximation,

vnad
kin [ρK , ρtot](r) ≈

∑
I

(vs[ρK ](r) − vs[ρK + ρI ](r)).

(86)

This way, the potential reconstruction for the total
system is replaced by a potential reconstruction for
dimers. This could be further simplified by restricting
the summation to subsystems in the neighborhood of
the active subsystem K. With such a pair approxima-
tion, a treatment of subsystems connected by covalent
bonds becomes possible.

Finally, the calculation of the exact embedding
potential can be used within generalizations of subsys-
tem DFT for embedding wave function theory (WFT)
in DFT. In such calculations, the computational bot-
tleneck is usually the accurate wave function–based
calculation for one subsystem of interest, and a con-
ventional DFT calculation of the full system becomes
affordable. Such WFT-in-DFT embedding schemes
are discussed in more detail in the section Wave
Function/DFT-Embedding.

INTERACTION ENERGY
CALCULATIONS

The energy of a system in subsystem DFT or FDE can
be expressed as a sum of subsystem energies Esub

I plus
an interaction energy contribution Eint,

E[ρtot] =
∑

I

Esub
I [ρI ] + Eint[{ρI}]. (87)

The subsystem energy has the same form as the
Kohn–Sham energy expression, but is evaluated with
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subsystem orbitals or a subsystem density,

Esub
I [ρI ] = Ts[{ψi I }] + V(I)

nuc[ρI ] + J [ρI ]

+ Exc[ρI ] + V(I)
nn . (88)

The interaction energy in the context of subsystem
DFT is then defined as

Eint[{ρI}] = Tnad
s [{ρI}] + Enad

xc [{ρI}] +
∑
I 
=J

V(I)
nuc[ρJ ]

+
∑
I<J

J [ρI , ρJ ] +
∑
I<J

VI J
nn (89)

where Enad
xc [{ρI}] is defined in analogy to Tnad

s [{ρI}] as

Enad
xc [{ρI}] = Exc[ρtot] −

∑
I

Exc[ρI ], (90)

and the Coulomb interaction energy J [ρI , ρJ ] is given
as

J [ρI , ρJ ] =
∫

ρI (r)ρJ (r′)
|r − r′| drdr′. (91)

The nucleus–nucleus interaction energy between two
subsystems is simply,

VI J
nn =

∑
A∈I

∑
B∈J

ZAZB

|RA − RB| (92)

and V(I)
nuc[ρJ ] represents the electrostatic attraction be-

tween the nuclei of system I and the electron density
ρJ ,

V(I)
nuc[ρJ ] = −

∑
A∈I

∫
ρJ (r)

ZA

|RA − r|dr (93)

One should keep in mind that the true interaction en-
ergy between different subsystems is usually defined
in a different way, namely as the difference in ener-
gies of the total system (e.g., a complex of molecules;
E[ρtot]) and the sum of energies of its separate, iso-
lated constituting fragments,

Eint′ = E[ρtot] −
∑

I

Esub,iso
I

[
ρ iso

I

]
. (94)

Hence, this true interaction energy contains addi-
tional effects, namely (i) structural rearrangements be-
tween isolated subsystems and subsystems in the com-
plex (indicated by the usage of the symbol Esub,iso

I ),
and (ii), even if structural differences are neglected, a
possible polarization in the electron density. To fully
compare subsystem DFT results with those of KS-
DFT, one thus also has to compare how well equi-
librium structures are represented and how well the
electron densities of the interacting subsystems are
reproduced by subsystem DFT (see the section Calcu-
lation of Charge Densities and Multipole Moments).

The subsystem DFT interaction energy denoted
as Eint[{ρI}] above, in contrast, only contains the in-
teraction energy terms of prearranged subsystem elec-
tron densities as appearing in the complex. In cases
where both structural and polarization effects are neg-
ligible, for example, for interacting rare gas atoms, the
two definitions of interaction energies will coincide.
In the following, we will give an overview over studies
investigating interaction energies for several classes of
interacting subsystems.

Choice of the Nonadditive Kinetic Energy
Functional
The accuracy of interaction energies from subsystem
DFT (relative to KS-DFT) depends on two main is-
sues: First, the density of the total system must be
described correctly, which necessitates an accurate
embedding potential and thus an accurate functional
derivative of the nonadditive kinetic energy. Second,
also the parent nonadditive kinetic energy functional
must be of sufficient accuracy. The analysis of the
accuracy of a certain consistent approximation for
nonadditive kinetic energy and potential is of course
complicated by the fact that error cancellation effects
may take place, which mask deficiencies in the poten-
tial by errors in the energy functional with opposing
effect. Studies of the accuracy of electron densities
from subsystem DFT have already been discussed in
the section Calculation of Charge Densities and Mul-
tipole Moments, and we will give an overview over
tests concentrating on interaction energies in the fol-
lowing after a few general remarks.

As far as weak interactions are concerned, we
first observe that the electrostatic interaction between
different subsystems is described exactly for a given
electron density distribution in subsystem DFT, just
like in KS-DFT. Also the electrostatic potential is
included exactly in self-consistent subsystem DFT.
Hence, the mutual polarization of the subsystems
(taken isolated subsystem densities as a reference) is
fully captured, at least as far as electrostatic terms
are concerned. This is in contrast to, for example,
QM/MM embedding schemes, in which electrostatic
terms are often expressed in terms of multipole
expansions of the electrostatic potential. For the
exchange–correlation potential, typically the same
approximations can be used as in KS-DFT, so that
also short-range quantum mechanical polarization
effects due to exchange and correlation are described
in the same way as in KS-DFT. The only difference
in the potential, and thus in the density change, may
arise from approximations in the nonadditive kinetic

342



Volume 4, July/JAugust 2014  2013 John Wiley & Sons, Ltd.

WIREs Computational Molecular Science Subsystem density-functional theory

energy functional. This, in turn, can also lead to
errors in the electrostatic interaction energy.

For nonoverlapping subsystem densities, that
is, ρ1(r)ρ2(r) = 0 for every point r, the nonadditive
exchange–correlation and nonadditive kinetic energy
contributions from LDA- and GGA-type approxi-
mations are zero. Hence, the asymptotic −(C/R6)
distance dependence known for London dispersion
forces cannot be reproduced correctly by subsystem
DFT relying on this type of approximation, as was al-
ready observed by Senatore and Subbaswamy.14 Pos-
sible solution strategies are the same as those used for
Kohn–Sham DFT,133 although special care should be
taken in regions of small density overlap, where sub-
system DFT shows a different behavior than Kohn–
Sham DFT due to the approximations in Tnad

s [{ρI}].
Nevertheless, one can adopt the point of view that
subsystem DFT is a well-defined approximation to
KS-DFT and that empirical dispersion corrections
used for the latter can be used in the same way in sub-
system DFT calculations, as their only purpose is to
correct problems in the exchange–correlation energy.
This has been tried and combined with a subsystem-
DFT based energy decomposition analysis by Visscher
and co-workers.134

Extensive studies of different nonadditive ki-
netic energy functionals have been carried out in self-
consistent subsystem DFT calculations. Wesołowski
and co-workers conducted a large number of
tests for weakly interacting systems, for example,
hydrogen-bonded complexes,89,92 van der Waals
complexes,60,135,136 the physisorption of H2 on
polycyclic aromatic hydrocarbons,137 and π -stacked
systems.138 A systematic comparison of LDA and
GGA-type nonadditive kinetic energy functionals was
presented in Ref 40, where it was found that GGA-
type functionals significantly improve interaction en-
ergies for complexes with larger density overlap. LDA
was found to predict very good interaction ener-
gies for weakly overlapping densities, as for example
for rare gas dimers. The most important finding of
these early studies on interaction energies are sum-
marized in the review in Ref 22. In particular, it was
observed that interaction energies from subsystem
DFT were consistently better than the correspond-
ing Kohn–Sham DFT interaction energies for weakly
bound complexes when comparing to accurate wave
function–based calculations.40 In that study, the error
in the interaction energy was also analyzed in terms
of zeroth- and first-order energy contributions when
expanding the error as a functional of the density
change upon complexation. The error in electrostatic
interaction terms was not considered in that expres-
sion, which was justified by their analytically known

forms. However, the density change upon complex-
ation of course depends on the approximations in
the potential derived from the kinetic energy func-
tional and leads to changes in the electrostatic energy
contributions. The analysis in Refs 22, 40 must thus
be considered to be limited to those cases in which
no significant errors are introduced into the density
change upon complexation by employing an approx-
imate nonadditive kinetic energy potential.

Based on extensive tests, a nonadditive kinetic
energy functional derived from the PW91 exchange
functional67 and reparameterized for the kinetic en-
ergy by Lembarki and Chermette68 was recommended
by Wesołowski in 1997.89 This functional is often
called PW91k or LC94 as mentioned in the sec-
tion Decomposable Approximations for the Nonad-
ditive Kinetic Potential, though the term “GGA97”
has been introduced later56,139 to highlight the dif-
ference between a kinetic-energy approximation and
a nonadditive kinetic energy approximation. The
acronym GGA97 is only used for the latter, following
the recommendations for nonadditive kinetic energy
functionals in Refs 89,92.

A comparative study of KS and subsystem
DFT using the test sets established by Zhao and
Truhlar140,141 was conducted in Ref 91. This
study showed that a consistent LDA approxi-
mation for the nonadditive kinetic energy and
exchange–correlation functionals worked best among
all electronic-structure methods tested for weakly
interacting complexes, and was still very good for
hydrogen-bonded complexes  (see also Ref 142) and
dipolar interacting systems. It was found to be less
well suited for π -stacking interactions and charge-
transfer systems. GGA functionals for the nonaddi-
tive kinetic energy contributions showed reasonably
good results for hydrogen bonding, charge-transfer,
and dipolar interactions, whereas they were found to
be much worse for the weakly interacting systems.
A recent test including also more strongly interacting
compounds demonstrated, however, that within the
class of GGA kinetic energy functionals, none is of
much better accuracy than and thus preferable over
the others.143 For zinc coordination compounds, sur-
prisingly good interaction energies were reported for
DGE-derived functionals in that study, even though
the absolute errors are still rather disappointing for
such strongly interacting systems. Della Sala and co-
workers have conducted a benchmark study in which
they compared the accuracy of several nonadditive ki-
netic energy functionals derived from PBE and com-
pared them to KS-DFT.80 On the basis of this study,
they concluded that the quality of the results de-
pends on the balance of the enhancement factor for
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regions of low and high reduced density gradients,
and they recommended the nonempirical revAPBEK
functional for nonbonded interactions. This group
also presented a study within the generalized Kohn–
Sham context, employing the localized Hartree–Fock
exchange functional as well as nonlocal hybrid func-
tionals, and reported energies comparable to or better
than those obtained with semilocal approximations.30

Besides this large number of benchmark appli-
cations, in particular the Warshel group has carried
out studies where FDE and/or subsystem DFT were
employed in larger scale calculations, for example,
on proton transfer in aqueous solution97 or assisted
by a metal complex,144 on the autodissociation of
water,145 and on the reduction potential of redox
proteins.146 In the latter case, FDE was used as an
alternative to QM/MM treatments to increase the
quantum mechanical region. A completely different
field has been investigated by Trail and Bird,147 who
have implemented FDE in a plane wave context. They
studied the energy and density of bulk fcc aluminum,
in which one cubic sublattice of aluminum atoms was
embedded in three other sublattices. The best results
in that case were obtained with a nonlocal approx-
imation for the nonadditive kinetic energy. Energy
levels and other properties of solids have also been
studied by Boyer and co-workers in a series of arti-
cles on the basis of a so-called self-consistent atomic
deformation method, which can be regarded as a vari-
ant of subsystem DFT.148–153 Another related method
has been used by Zhang and co-workers in studies of
bulk metals.154–156

Overall, it can be concluded from the tests
of subsystem DFT for interaction energies that this
method is usually quite good and often better than
KS-DFT even with highly parameterized functionals
for weakly interacting systems. However, the errors
are usually quite system dependent, so that caution is
required when applying them to quantify interactions
between subsystems.

FDE as a Constrained DFT Variant
In the limit of an exact functional Tnad

s [{ρI}] and an
exact treatment of the corresponding contribution to
the potential, FDE and subsystem DFT would become
equivalent to KS-DFT (provided the representability
conditions are met). This also means that they would
suffer from the same deficiencies as observed in KS-
DFT calculations which arise from the necessity to
use approximate exchange–correlation energy func-
tionals and potentials.

A particularly interesting aspect of FDE calcu-
lations is that some of these deficiencies, most no-

tably the overdelocalization problem arising from the
self-interaction error in KS-DFT,12,51 can actually be
avoided if standard approximations for Tnad

s and its
functional derivatives are employed. It clearly has to
be stated that this is a case of error cancellation effect,
but with very fortunate practical consequences. One
reason is that the standard approximations in the po-
tential are often too repulsive in the vicinity of (but
not directly at) the nuclei of the environmental sys-
tem (see, e.g., the examples in Ref 59).  This together
with the fact that embedding calculations are usually
carried out (i) using only a monomer basis set and (ii)
starting from the properties of the isolated system, of-
ten allows to introduce specific constraints into DFT
calculations. Furthermore, a certain partitioning and
an assignment of a certain number of electrons to each
fragment has to be provided by the user, which again
can introduce specific restrictions to a calculation.

As an example, consider the case of an SN2
reaction of the type,

X− + CH3Y −→ XCH3 + Y−.

From a quantum mechanical point of view, nothing
but the geometric assembly of the nuclei has changed
in the system: The number of nuclei, their charges,
and the number of electrons stay the same during the
reaction. However, we can also think of this reaction
in a more chemical way, describing the left-hand side
by a (quasi)diabatic state with the characteristics of
the CH3Y molecule and an approaching X− ion. In
contrast, the right-hand side can be characterized
by a (quasi)diabatic state consisting of the XCH3

molecule and a leaving Y− ion. At a certain point
along the reaction coordinate, the two diabatic states
will cross. In a subsystem DFT or FDE calculation us-
ing approximate functionals, we can actually choose
one of the two diabatic representations by assigning
the corresponding nuclei and electrons to one of the
subsystems. In this way, diabatic potential energy
surfaces can be generated. Warshel and co-workers
have used this possibility for modeling nucleophilic
substitution reactions in solution and parameterized
an effective empirical valence bond Hamiltonian on
the basis of FDE calculations.157 Similarly, they stud-
ied proton transfer reactions in solution.158 For the
use of subsystem DFT and FDE in connection with
the empirical valence bond approach, see also the
review by Kamerlin and Warshel159; note that FDE
(with a completely frozen environmental density) is
denoted as “frozen DFT” (FDFT) in that review,
whereas the relaxed variant including freeze-and-
thaw cycles (subsystem DFT) is dubbed “constrained
DFT” (CDFT). The expression “CDFT” is, however,
in the context of DFT usually used in a broader
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context and often refers to calculations in which an
explicit constraining potential is incorporated into
the KS equations.160 Two typical applications of this
type of CDFT are calculations on charge- and spin-
localized states in DFT. Without such constraints,
DFT calculations on charged and open-shell systems
often suffer from an overdelocalization problem due
to the self-interaction error. It has recently been
demonstrated that FDE can, in a similar spirit, be
employed to generate diabatic states and couplings
for charge-161 and spin-localized states,51 thus
pragmatically overcoming some of the limitations
of Kohn–Sham DFT with conventional approxima-
tions. In fact, a recent study demonstrated that highly
accurate charge-transfer excitation energies can be
obtained from this type of calculations.162

PROPERTY AND SPECTRA
CALCULATIONS

Many molecular properties are strongly influenced by
a surrounding medium. Among the most prominent
examples are solvent effects on molecular spectra such
as UV/vis, fluorescence, infrared, electron spin res-
onance, and nuclear magnetic resonance spectra.163

But also more complex environmental and/or aggre-
gation effects can change the properties of molecules,
for example, when arranged on surfaces, in crystals,
or in biological environments such as proteins. This
has triggered a large activity in the quantum chem-
istry community to develop environmental models
for electronic-structure calculations.6 Subsystem DFT
and FDE are ideally suited to describe environmental
effects, as the properties of a subsystem are calculated
under the influence of an explicit surrounding repre-
sented in electronic-structure detail and taking into
account all quantum mechanical interactions. In fact,
the original papers on subsystem DFT were aiming
at molecular properties, such as the in-crystal polar-
izabilities of rare gas atoms,14 from which dielectric
constants can be estimated, or structural and cohesive
properties of ionic crystals.16 Cortona already men-
tions the applicability to molecular systems,16 and the
initial FDE work by Wesołowski and Warshel specif-
ically addresses solvated systems.17 It is thus not very
surprising that a large activity has occurred in the field
of molecular property and spectra calculations on the
basis of FDE and subsystem DFT. Previous overviews
have been given in Refs       22,        23. The following sections
will thus concentrate on the most recent work.

One additional remark should be made here,
however. From a purist’s point of view, the indi-
vidual subsystems, theirs densities and orbitals are

just auxiliary quantities in the subsystem-DFT calcu-
lation, and what should be interpreted are only the
results for the total system. However, because we
usually start from an intuitive isolated subsystem per-
spective, the changes in a subsystem density and the
corresponding properties (e.g., a dipole moment) are
typically interpreted as changes in the properties of
that particular molecule or fragment. That this can be
misleading is easily demonstrated for a Bader charge
analysis164: The density formally associated with sub-
system A can extend to regions in space that belong
to the atomic basin of an atomic nucleus of a different
subsystem. Hence, Bader charges derived from a sub-
system density will be different from those obtained
in Bader analysis of the total density, which is the
proper way.31,95 The same problem occurs for Mul-
liken charges if a supermolecular basis is employed,
but not if a monomer expansion is used.

Structural Parameters and Dynamics
There have been several studies in which structural
parameters of chemical systems have been determined
on the basis of subsystem DFT and FDE. Several in-
vestigations addressed systems with only one or a few
degrees of freedom, for example, the metal–ligand dis-
tance in transition metal complexes.165 A basic com-
putational requirement for efficient investigations on
the structure and dynamics of general molecular sys-
tems is the availability of analytic energy-gradient im-
plementations. A first gradient implementation in the
deMon package166 was mentioned and used in a study
of CO adsorbed on zeolite in 2001,167 though only
very few technical details were given there. A system-
atic study of structures obtained with LDA and GGA
approximations in the context of subsystem DFT cal-
culations was conducted later by Dułak et al.168 This
study used test cases from Refs 140,141,  and the re-
sults supported the findings of earlier studies: LDA for
the nonadditive kinetic energy gave favorable results
for hydrogen-bonding complexes and other weakly
bound systems, whereas a GGA functional did not
lead to significant improvements. Only for complexes
involving interactions with π systems, the GGA-type
nonadditive kinetic energy approximation was found
more suitable.

Molecular dynamics (MD) simulations based on
forces from subsystem DFT have been conducted by
Iannuzzi et al. in 2006.169 They reported “consistently
longer and weaker hydrogen bonds” than with the
corresponding Kohn–Sham methods, and “no signa-
ture of a second solvation shell.” A related, yet sim-
plified dynamics was presented by Hodak et al.170

These authors used fixed solvent electron densities in
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molecular dynamics simulations, while the density of
an active system was optimized via FDE-like equa-
tions. Another method related to subsystem DFT was
presented by Shimojo et al.,171 who performed a study
on CdSe with a focus on parallelization and scalability
issues of their “embedded divide-and-conquer” algo-
rithm. This algorithm has later also been used for MD
studies on energetic nanocomposite materials.172

NMR and ESR Properties, Spin Densities
One of the present authors has presented a subsystem
DFT generalization for nuclear magnetic resonance
(NMR) shieldings173 and employed it for calculations
on acetonitrile–solvent complexes. An assumption
that is implied in these calculations is that not only the
density but also the current density of the total system
can be partitioned into subsystem contributions.
Absolute accuracies of the solvent-induced shifts in
the nitrogen shieldings of about 2 ppm could be
achieved in comparison to KS-DFT reference results.
Aspects of NMR shielding calculations in the context
of a multilevel setup have been discussed in Ref 101.
In a later extension, a conformational sampling was
carried out, which indicated a significant dependence
on the type of molecular dynamics simulation used
for the sampling.174

Another field of application of FDE and subsys-
tem DFT are spin-dependent properties. The KSCED
equations can straightforwardly be extended to the
spin-polarized case (see, e.g., Refs 41, 50, 161).
Wesołowski applied the spin-dependent FDE and sub-
system DFT formalisms to investigate the effect of
rare gas matrices on the hyperfine coupling constants
of Mg+,175 and found a good agreement with exper-
imental data. This study was subsequently extended
to hyperfine coupling constants of alkali metal atoms
in charge-transfer complexes with CO2,49 in which
the subsystems are much more strongly interacting.
In the case of LiCO2 and NaCO2, again a good
agreement was observed both with experiment and
with KS-DFT results. For the case of potassium, how-
ever, the (spin-)density changes induced by the carbon
dioxide subsystem were found to be too strong to be
described correctly on the basis of the PW91k func-
tional employed. Later on, solvent effects on the 14N
and 1H hyperfine coupling constants were modeled
based on conformational samplings176 and demon-
strated the usefulness of FDE in this context. Sub-
system DFT is in principle capable of modeling spin-
polarization in closed-shell systems through nearby
open-shell systems, though this effect was found to
be negligible in a test in Ref 176. Apart from hyper-
fine coupling constants, also isotropic g-values have

been studied with subsystem DFT. In Ref 177, mod-
els for a biliverdin radical in a complex with a phy-
cocyanobilin:ferredoxin oxidoreductase protein were
studied. These models comprised three or five amino
acids. This study concentrated mostly on technical
details of the calculation, and indicated that also
isotropic g-values can be strongly affected if large ba-
sis sets are used in connection with Coulombic-only
embedding.

A study of spin-density distributions from FDE
was recently reported in Ref 51. This study clearly
demonstrated the ability to describe spin-polarization
of formally closed-shell fragments in terms of spin-
subsystem DFT, which is interesting for studies of
solvated radicals. The results showed that the spin-
polarization effect is not generally negligible. This ap-
proach was then also used to study spin-polarization
effects in a model for the special pair radical cation
in photosynthetic reaction center complexes of pur-
ple bacteria. This special pair is a dimer of (bac-
terio)chlorophyll molecules located at the top of a
chain of electron donors/acceptors arranged in two
branches of approximate C2 symmetry. Interestingly,
only one of the two branches is active in the pho-
tosynthetic charge transport.178–180 It was shown by
an investigation of the spin populations that histidines
directly bound to the special pair reduce the difference
in spin polarization in the two halves of the special
pair radical cation, while an inclusion of a larger part
of the environment actually increases this asymmetry
again.

Excited States, Electronic Spectra, and
Response Properties
Modeling environmental effects on excited electronic
states and electronic spectra is one of the most impor-
tant fields of application of subsystem and embedding
schemes. It is thus not surprising that FDE and subsys-
tem DFT have been used as explicit models for solva-
tochromism and general environmental effects on op-
tical spectra. In first studies on excited states, ligand-
field splitting parameters were extracted from orbital
energy differences of metal complexes, for example,
lanthanide–halide clusters in elpasolite crystals,181,182

or MnF4
6− complexes in fluoroperovskites.165 A dis-

cussion of the relation of simpler ligand field splitting
methods to FDE can be found in Ref 183.

Another simple pragmatic way of obtaining ex-
cited states of an active subsystem in an environ-
ment is to perform a �SCF-DFT calculation, in which
the environment is represented in terms of a density-
dependent embedding potential. FDE has been used
to estimate singlet–triplet splittings in a study on the
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mechanism of nitrate reduction, which can be re-
garded as a �SCF-DFT type calculation.139

The most widely used approach for excitation
energies in DFT is time-dependent density functional
(response) theory, TDDFT. A response variant
of subsystem DFT was developed by Casida and
Wesołowski in 2004.184 The underlying idea is to
express the response in the electron density to a
time-dependent external field as a sum of subsystem
contributions. For the Fourier components of the
density change at a certain angular frequency ω, we
thus write,

δρ(r, ω) = δρA(r, ω) + δρB(r, ω). (95)

In KS-TDDFT, the density response is determined
through the linear-response equation (the frequency
dependence will be dropped for brevity in the
following),23,185–190

δρ(r) =
∫

χs(r, r′)δveff(r′)dr′, (96)

where

χs(r, r′) = δρ(r)
δveff(r′)

, (97)

is the single-particle response function. The change
in the potential, δveff(r), contains the applied external
field δvext(r) and a part induced by the density change,
which is expanded to first order in the density change,
δvind(r),

δveff(r) = δvext(r) + δvind(r) (98)

= δvext(r) +
∫

f (r, r′)δρ(r′)dr′, (99)

with the kernel,

f (r, r′) = δveff(r)
δρ(r′)

= 1
|r − r′| + fxc(r, r′), (100)

where fxc is the so-called exchange–correlation
kernel. Usually, the adiabatic approximation is made
here and the exchange–correlation kernel is evalu-
ated as a frequency-independent second functional
derivative of the ground state exchange–correlation
energy functional Exc. In a symbolic notation, the
density change can be rewritten as184

δρ = χs(δvext + f δρ), (101)

where actually two integrations are involved on the
right-hand side. In this symbolic form, the equation
can be rewritten as

(χ−1
s − f )δρ = δvext (102)

From this equation, one can determine the excitation
energies of the system as resonance frequencies of

(χ−1
s − f ), that is, as frequencies for which the den-

sity change becomes infinite even for a vanishingly
small external perturbation δvext. This problem can
be cast into an eigenvalue equation for the (squares
of the) excitation energies.

Casida and Wesołowski have derived, in a simi-
lar spirit, a symbolic expression for the corresponding
operator of subsystem A in a supersystem consisting
of two fragments, [(χ A

s )−1 − f A
eff)], and pointed out

that it is enough to determine the explicit form of
the kernel if also the orbitals and orbital energies of
subsystem A are known, which determine χ A

s .184 The
symbolic form of the effective kernel for subsystem A
given in their work contains the response function of
the other subsystem, thus showing that the responses
of the two subsystems are, of course, coupled. Shortly
after, Wesołowski implemented a simplified version
of this subsystem-based response theory, in which
it is explicitly assumed that the response contribu-
tion from the environment (subsystem B) is zero.191

This case, later called “uncoupled FDE” (FDEu)192

or “neglect of dynamic response of the environment”
(NDRE),193 may be regarded as a strict FDE-TDDFT
variant, in which the environmental density is con-
sidered frozen also in the response framework. The
corresponding response equation looks like that of
the isolated system A, only that the orbitals and or-
bital energies are obtained under the influence of the
effective embedding potential given in Eq. (27), and
instead of the kernel for the isolated system A,

f A
iso(r, r′) = 1

|r − r′| + δ2 Exc[ρA]
δρA(r′)δρA(r)

(103)

we have to use an effective kernel,

f A
eff(r, r′) = δv

(A)
eff (r)

δρA(r′)
+ δv

(A)
emb(r)

δρA(r′)
(104)

= 1
|r − r′| + δ2 Exc[ρA + ρB]

δρA(r′)δρA(r)

+ δ2Tnad
s [ρA, ρB]

δρA(r′)δρA(r)
. (105)

In 2007, one of the present authors derived a
generalization of subsystem TDDFT for an arbitrary
number of subsystems, in which the effect of the den-
sity change of all subsystems is explicitly taken into
account in a coupled manner.192 The induced poten-
tial in a certain subsystem K is then expressed as,

δv
(K)
ind (r) =

∑
I

∫ (
δv

(K)
eff (r)

δρI (r′)
+ δv

(K)
emb(r)

δρI (r′)

)
δρI (r′)dr′,

(106)
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Since this approach allows to calculate excitations
which are delocalized over several subsystems and
which can be considered as excitonically coupled
monomer excitations,194 this method is also denoted
as coupled FDE or FDEc for excited states (referring
to FDE in a more general sense). This subsystem
TDDFT formalism has been rederived recently (i)
with an emphasis on the similarity to Hartree–Fock
based approaches, which also allowed to introduce
the Tamm–Dancoff approximation195 and (ii) yield-
ing Dyson-type equations that allow to distinguish
coupled and uncoupled response functions.196

As far as excited-state applications of FDE- and
subsystem-TDDFT are concerned, we have to distin-
guish between two common types. In the first type,
the system of interest is a chromophore embedded in
a larger environment, for example, a solvent, a pro-
tein, or a crystal. In this case, the FDEu approxima-
tion is typically working well, since the excitation can
be assumed to be localized, although there may be a
certain polarization of the environment in response
to the excitation. The second type concerns systems
with several interacting chromophores, for example,
aggregates of dyes. The interaction between the dyes
can lead to significant changes in the electronic spec-
tra and cannot be described in terms of changes of
local transitions alone. Here, the FDEc approach has
to be employed.3,10,23,197 We would also like to note
that in excited-state applications, a strict distinction
between subsystem DFT and FDE is even more diffi-
cult than in ground state applications. The reason is
that the variational optimization of electron densities
in the ground state and inclusion of (approximate)
response can be chosen independently for the subsys-
tems in practice.

The first investigations of excited states with
FDE and subsystem DFT were all restricted to the
FDEu approximation for local excitations. A pilot
study on nucleic acid dimers showed that hydrogen-
bonding induced shifts in excitation energies can re-
liably be reproduced by FDEu.191 Since the local
excitations on the different monomers have rather
similar excitation energies, this case was reinvesti-
gated later, lifting the uncoupled approximation.197

It was confirmed that the excitation energies from
FDEu are already quite good, but exciton-like inter-
actions between the local transitions can lead to a
mixing in character and to a redistribution of os-
cillator strengths. Additional investigations demon-
strated for the examples of solvated acetone198 and
aminocoumarin C151199 that the FDEu approxima-
tion can successfully be used as an explicit quantum
chemical solvation model. This work mostly con-
centrated on possible improvements of the efficiency

by employing simplified environmental densities if a
large number of molecular dynamics snapshots of the
solvated chromophore shall be investigated. In partic-
ular, the superposition of densities of individual sol-
vent molecules for (outer) solvation shells was tested.
A recent study along the same lines used an even more
approximate, yet more efficient setup of the environ-
mental electron density of a zeolite by superimposing
spherical atomic densities.200 This facilitated the in-
vestigation of several hundred MD snapshots of the
fluorenone chromophore in zeolite L. A comparison
of FDEu and a polarizable classical force field for exci-
tation energies showed that the classical model is still
computationally much less demanding, but predicted
smaller solvent-induced shifts, most probably due to
an incomplete description of short-range effects.98

Another comparison of an acetone–water complex
demonstrated that FDEu nicely reproduces the dis-
tance dependence of the hydrogen-bond induced shift
in the n → π∗ excitation energy of acetone, and that
a neglect of the non-classical contributions in the em-
bedding potential would lead to an increased mis-
match with the supermolecular TDDFT results.201 In
contrast to that, a significant offset of the excited-
state potential energy curve was observed with the
polarizable classical model if no system-specific repa-
rameterization was carried out.

FDEu can be preferable over conventional
TDDFT calculations for large systems not only in
terms of efficiency but also because the latter can lead
to a large number of (at least partially) spurious ex-
cited states, which are absent in FDE calculations.
This was shown for solvated molecules, where inter-
molecular charge-transfer excitations may affect the
interpretation,198 for organic host–guest complexes
suffering from similar problems,202 and for molecules
adsorbed to surfaces,201 where bulk transitions can
hamper the assignment of valence excitations of the
adsorbate.

The necessity to average over a large number
of snapshots from an MD simulation for obtaining
accurate results is one of the drawbacks of explicit
solvent models as far as their efficiency is concerned.
In contrast to that, implicit solvent models im-
plicitly contain such an averaging over the solvent
degrees of freedom.6,203 An attempt to combine
the advantages of the electron-density–based FDE
embedding potential with such an implicit inclusion
of different solvent conformations was presented
by Kaminski et al.39 To evaluate the solvent effect
on excitation energies, the environmental density
was constructed based on statistically mechanically
averaged site distribution for the solvent derived
from the so-called three-dimensional (3D) reference
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interacting site model with the Kovalenko–Hirata clo-
sure approximation (3D-RISM-KH).204 Good results
were observed in comparison to explicitly averaged
solvation studies as well as to the implicit conductor-
like screening model.205 The key assumption in this
3D-RISM-KH–based model is thus that instead of
averaging over several excitation energy calculations
obtained with different embedding potentials, one
can employ one single embedding potential with a
statistically averaged environmental electron density.
Another successful application of this method was
presented by Zhou et al.206 for the solvatochromic
shift of coumarin 153 in nine different solvents, thus
underlining that FDE can, with a few additional
assumptions, also be employed as a competitive
implicit solvent model.

Several studies investigated hydrogen-bond–
induced shifts in excitation energies. Fradelos et al.
demonstrated that the effect of an increasing num-
ber of solvent molecules in microsolvated cis-7-
hydroxyquinoline is highly non-additive.193 For the
same chromophore, it was later shown that solva-
tochromic shifts induced by hydrogen bonds are actu-
ally better described by FDEu than by supermolecular
TDDFT calculations, taking equation-of-motion cou-
pled cluster (EOM-CC) calculations as a reference.53

Interestingly, it was found there that nonrelaxed sol-
vent densities lead to better agreement with the EOM-
CC results than densities relaxed by freeze-and-thaw
cycles. This study was extended by Fradelos et al.
in Ref 207, where additional details of the EOM-
CC and FDEu approach were investigated. In yet
another study on this chromophore, Fradelos and
Wesołowski later also demonstrated that erroneous
solvatochromic shifts may be obtained if only the
Coulomb contribution to the effective embedding po-
tential is employed.47 This is, however, typically only
the case with large basis sets, where the electrons have
the variational freedom to probe regions of space be-
longing to the frozen environment, where most ap-
proximations to the effective embedding potential
show an incorrect behavior.59,94,95,102,109

In addition to the calculation of excitation en-
ergies and UV–vis absorption spectra, FDEu was also
employed in a study on induced circular dichroism
(ICD)202. This study showed that, on the one hand,
FDEu can reliably predict ICD effects due to hydro-
gen bonding or complexation in crown ether moi-
eties. On the other hand, however, it indicated for
the first time a clear failure of the uncoupled ap-
proximation for the case of a phenol molecule in a
host–guest complex with a β-cyclodextrin. Through
an additional comparison of FDEu and supermolecu-
lar calculations for a benzaldehyde dimer, it could

clearly be shown in that work that the FDEu ap-
proximation breaks down for excitonically coupled
chromophores, in which excitations delocalized over
several molecules occur, which can be understood as
linear combinations of local excitations.

The subsystem TDDFT (or FDEc) approach
developed in Ref 192 solves this problem and pro-
vides a very powerful method for the investigation
of chromophore aggregates embedded in complex
environments. An important field of application is
photosynthetic light-harvesting complexes, which can
contain a large number of pigments such as different
chlorophyll derivatives, bilins, and carotenoids.3

Consequently, subsystem TDDFT has been employed
to study the local transition energies, excitonic cou-
plings, and possible energy transfer pathways derived
from these data for the light-harvesting complex
II (LHII) of purple bacteria,194 the light-harvesting
complex II (LHCII) of green plants,208 and the
Fenna–Matthews-Olson (FMO) complex of green
sulfur bacteria.209 The latter calculations addressed
almost the entire protein–pigment complex in a fully
quantum-chemical fashion, treating more than 7000
atoms. A picture of this complex containing the site
energies and the most important excitonic couplings
obtained from the largest structural model of the
FMO protein is shown in Figure 5. An important
result gained from the investigations in Ref 209 is
that the site energies employed in model theories
for excitation energy transfer are very sensitive
to the setup of the structural model, whereas the
exciton couplings appear to be much more stable
against such variations. Apart from calculations in
the context of photosynthesis, also the spectroscopy
of astaxanthin in crustacyanin proteins was inves-
tigated with FDEc.210 There, it could be shown
on the basis of absorption and circular dichroism
spectra that exciton couplings are qualitatively not
suited to explain the observed color change upon
release of astaxanthin from the protein. Reviews
over subsystem-based applications in biomolecular
spectroscopy in general and photosynthetic systems
in particular are provided in Refs 3,10.

The work in Ref 192 has made it possible to
address entirely new classes of problems on the basis
of subsystem DFT. For example, the question of dif-
ferential polarization effects by the environment on
solvatochromic effects could be studied. In Ref 197,
several earlier calculations without this effect were re-
peated including the coupling to excited states of the
environment. It could be shown that in particular for
microsolvation studies, the effect was typically rather
small. In the context of excitonically coupled dyes,
the response of a solvent can lead to a change in the
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FIGURE 5 Structure of the model for the FMO complex (>7000
atoms), site energies of the bacteriochlorophyll subsystems, and most
important excitonic couplings obtained in Ref 209.

exciton splitting. Also this can be modeled with FDEc,
as has been shown in Ref 211. Since this requires an
explicit coupling to many excited states of the solvent,
that work also introduced additional algorithmic im-
provements to select and couple selectively those ex-
cited states which can be expected to have the highest
impact on differential polarization. Two additional
subsequent developments are (i) the re-derivation
and implementation of subsystem TDDFT within the
Tamm–Dancoff approximation to TDDFT,195 which
can be advantageous in studies involving carotenoids,
and (ii) the combination of hybrid functionals for
local excitations with a nonhybrid treatment of ex-
citon interactions to distinguish direct from indirect
exchange- (or Dexter-)type couplings.212

The response formalism formulated by Casida
and Wesołowski184 can in principle also be extended
for calculations of frequency-dependent response
properties. Within the local response (FDEu or
NDRE) approximation, this was tested for the
first time in Ref 98 and compared to finite field
calculations and calculations using a polarizable
force-field method. The results for polarizabilities
were, however, rather disappointing and must be

traced back to the neglect of the response of the
environment. Again, a coupled response treatment is
necessary, which was developed in explicit form in
Ref 213. This led to much better agreement of polar-
izabilities and also of optical rotatory dispersion with
reference results from supermolecular Kohn–Sham
response theory in systems with induced chirality.
This is an important prerequisite if “unusual” solvent
effects in chiroptical spectroscopy shall be described,
like chiral imprinting effects.214,215 Since the solvent
plays an active (and even dominant) role in these
effects, subsystem DFT offers a unique possibility as
a solvent model in such cases.

WAVE FUNCTION/DFT-EMBEDDING

In subsystem DFT, as described in the preceding
sections, all subsystems are treated using approx-
imate exchange–correlation functionals. However,
one of the advantages of subsystem approaches is
the possibility to selectively employ more accurate
wave function–based methods (wave function theory,
WFT) for only a few subsystems. The fact that sub-
system DFT uses only the electron density, which is
available in any quantum-chemical method, to take
the interaction between the subsystems into account
makes it particularly easy to set up such WFT-in-
DFT embedding schemes (for previous reviews, see
Refs 216,217).

As a starting point, one can use the ex-
pression for the total energy in subsystem DFT
[Eq. (24)] and replace the terms referring to subsys-
tem K by those provided by a wave function–based
description,218,219

E[�K , {ρI}I 
=K ] = 〈�K |T̂ + V̂K
ext + V̂ee|�K〉 + VK

nn

+
∑
I 
=K

Esub
I [ρI ] + Eint[{ρI}].

(107)

Here, one keeps the evaluation of the interaction en-
ergy using DFT, and the wave function–based descrip-
tion of subsystem K enters the interaction energy only
via its density ρK (r). As long as all density functionals
are assumed to be exact, this energy expression is also
exact.

To determine the wave function �K of subsys-
tem K, one minimizes the above energy expression.
This leads to an embedded Schrödinger equation for
subsystem K,217,219

[
T̂ + V̂K

ext + V̂ee + V̂K
emb[ρK , {ρI}]

]
�K = E′

K�K

(108)
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in which the interaction with all other subsystems
enters as an embedding operator

V̂K
emb[ρK , {ρI}] =

∑
i

vemb[ρK , {ρI}](ri ), (109)

where vemb[ρK , {ρI}](ri ) is the embedding potential
that is also present in subsystem DFT [Eq. (27)]. The
embedded Schrödinger equation for subsystem K can
now be solved using any (approximate) quantum-
chemical method. Note, however, that the energy
eigenvalue E′

K contains part of the interaction en-
ergy, and thus differs from the energy of subsystem K
as defined previously.

The original formulation of WFT-in-DFT out-
lined here (and also the acronym itself) can be un-
derstood as a hybrid energy scheme, in which the
energy for the active system is calculated on the basis
of WFT, whereas the energy of the surroundings and
the interaction energy are obtained from DFT. A strict
formal derivation of WFT-in-DFT embedding within
the theoretical framework of DFT has been given by
Wesołowski.35 In this derivation, all density function-
als are considered exact, whereas the wave function
is obtained from a truncated expansion, that is, it is
considered as only approximate. In this case, an ad-
ditional correction term that accounts for the error
in the wave function arises in the embedding poten-
tial. However, there is no way to account for this
correction in practical calculations.220 Moreover, in
general the DFT treatment of the environment will
introduce larger errors than the wave function–based
calculation for a selected subsystem. Consequently, it
is difficult to see the advantages of introducing such a
correction term when applying WFT-in-DFT embed-
ding schemes in practice. Note that another general-
ization that concerns an embedded system described
by a one-particle reduced density matrix has been de-
rived by Pernal and Wesołowski.38

WFT-in-DFT embedding schemes based on
subsystem-DFT have been first proposed by Carter
and co-workers for studying atoms and molecules ad-
sorbed on metallic surfaces.221,222 In this situation,
WFT-in-DFT calculations can be used to improve the
periodic DFT description by using WFT for a smaller
cluster consisting of the adsorbate and a small part
of the surface. To have a WFT density available, it is
necessary to employ quantum-chemical methods for
which the electron density can be calculated easily
and efficiently. For this reason, configuration inter-
action (CI) and complete active space self-consistent
field (CASSCF) have mainly been used in WFT-in-
DFT embedding calculations so far.

The application of WFT-in-DFT to adsorbates
on surfaces faces additional difficulties when defining

the subsystems and when attempting to update the
subsystem densities self-consistently. The active sub-
system K should be chosen as a cluster consisting of
the adsorbate and a small part of the surface. Thus,
the complementary frozen subsystem would consist
of the periodic surface, from which some atoms have
been removed. This results in a system with unsat-
urated valances and treating such an isolated frozen
subsystem appropriately is difficult. To overcome this
problem, in their initial setup,218,219,221,222 Carter
and co-workers used a periodic DFT calculation to
determine the total density ρtot. This total density is
then kept fixed, and the frozen density is obtained as
ρB = ρtot − ρWFT.

While such a setup does not require calculations
on an unphysical system for obtaining the frozen den-
sity, it becomes more difficult to update the frozen
density self-consistently. A number of schemes have
been developed to provide a possibility to determine
the densities of all subsystems iteratively.223,224 Re-
cently, Carter and co-workers proposed a potential-
functional embedding approach, in which the mini-
mization with respect to the subsystem densities is re-
placed by a minimization with respect to the (unique)
embedding potential.225 Such a formulation provides
a conceptually simple way to determine the densities
of all subsystems self-consistently.

One important application of WFT-in-DFT em-
bedding schemes is the description of local elec-
tronic excitations, for instance of molecules adsorbed
on surfaces, of impurities in solids, or of solvated
molecules. Here, one has to distinguish between state-
specific WFT excited-state methods, in which a dif-
ferent wave function is calculated for each electronic
state, and methods based on response theory, which
calculate the linear response of the ground state
wave function to a time-dependent external pertur-
bation. For the case of state-specific WFT methods,
the formal theory has been derived by Khait and
Hoffmann,226 whereas Höfener et al. considered the
case of WFT methods based on response theory227

using the theoretical framework of the quasi-energy
formalism.228 For a comprehensive review, we refer to
Ref 217.

The simplest approach for applying WFT-
in-DFT embedding to excited states neglects the
response of the frozen environment to the electronic
excitation in the active subsystem, which corre-
sponds to the FDEu scheme outlined above. In this
approximation, the same frozen density is used for
all excited states. With state-specific WFT methods
for the active subsystem, the embedding potential
for different electronic states n only differs because
different densities ρ

(n)
K enter when evaluating the
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embedding potential. This approach has been applied
to study the local excited states of CO on a Pt(111)
surface221,222 and of local excited states in MgO229

using CI and CASSCF for the active subsystem. With
response methods, the dependence of the embedding
potential on the density of the active subsystem enters
via an embedding contribution to the response kernel
in analogy to Eq. (105). This approach has been
tested for the local excitations of a water molecules
inside a cluster of 127 water molecules using TDHF
for the active subsystem.227

For modeling local excitations with WFT-in-
DFT, it is often possible to apply additional approx-
imations. In many cases, one can neglect the contri-
bution arising from the dependence of the embedding
potential on the density of the active subsystem230

and use the same ground state embedding potential
for all electronic states. This approximation is justi-
fied by the observation that the additional embedding
contribution to the response kernel is usually small.98

Moreover, in many cases DFT already provides an
accurate ground state density and WFT is only nec-
essary to overcome the difficulties of TDDFT in de-
scribing certain types of excitations. Therefore, it has
been suggested to determine the embedding potential
in a conventional subsystem-DFT calculation and to
use this fixed embedding potential in a subsequent
WFT-in-DFT calculation of local excited states.230

This simplified scheme has been assessed for acetone
solvated in water, using coupled-cluster response the-
ory (CC2) for the acetone subsystem, and has been
applied to model the excited states of the neptunyl
ion embedded as impurity into a Cs2UO2Cl4 crystal
with Fock-space coupled cluster theory.

On the other hand, it is also possible to set
up WFT-in-DFT embedding schemes for excited
states that include the response of the environment.
With state-specific WFT methods, this is possible by
iteratively updating the densities of all subsystems
in freeze-and-thaw iterations for each electronic
state.226 However, such an approach can be com-
putationally demanding and leads to excited-state
wave functions for the active subsystem that are not
orthogonal to the ground state (and to each other),
which complicates the calculation of transition
moments. Recently, a first study employing approx-
imate state-specific embedding potentials based on
DFT-derived ground and excited state densities of the
active system has been presented,231 which explicitly
allows to include differential polarization effects.
With excited-state WFT methods based on response
theory, an alternative theory can be derived,227 which
is analogous to the FDEc approach outlined above
for subsystem-DFT. While working equations have

been derived for coupled-cluster response theory, an
implementation or applications of such a coupled
scheme have not been presented yet. This would
allow for the efficient inclusion of the polarization of
the environment as well as the calculation of exciton
couplings with WFT-in-DFT, which could further be
generalized to a WFT description for all or several
subsystems (WFT-in-WFT embedding.232)

In the applications of WFT-in-DFT embed-
ding schemes discussed so far, the kinetic energy
contribution to the embedding potential has been
calculated using approximate functionals, but exact
WFT-in-DFT embedding schemes using potential
reconstruction methods have also been developed
recently. For WFT-in-DFT embedding the full,
supermolecular DFT calculation required for the
reconstruction of the embedding potential is not
a computational bottleneck anymore because the
accurate WFT calculation for the active subsystem
is usually more expensive. This was first realized
by Roncero et al.,233 who devised a variant of the
simplified WFT-in-DFT scheme of Ref 230 using an
embedding potential reconstructed from a partition-
ing of the density from a supermolecular calculation.
Such a partitioning can either be obtained by using
localized orbitals233 or can be determined iteratively
in freeze-and-thaw iterations.234

In a similar fashion, Miller and co-workers de-
vised a fully self-consistent subsystem-DFT method
using the reconstructed embedding potential,120

and recently extended their work to WFT-in-DFT
embedding.235 In contrast to Roncero et al., the
scheme of Miller and co-workers does not use the
embedding potential from a subsystem-DFT calcula-
tion, but the density from the WFT calculation is used
when reconstructing the embedding potential. Thus,
this scheme presents the first fully self-consistent
WFT-in-DFT scheme using an accurate reconstructed
embedding potential. It has been demonstrated that
this scheme can be employed to treat covalent bonds
between the active subsystem and its environment.
Moreover, this scheme has been extended to open
shell systems to allow for the treatment of transition
metal complexes. For a Fe(H2O)2+ complex (in which
the central iron ion forms the active subsystem treated
with CASSCF whereas the water ligands constitute
the environment treated with DFT), it was shown that
such WFT-in-DFT schemes can be used to overcome
the deficiencies of standard exchange–correlation
functionals in predicting the energy difference be-
tween the high-spin and the low-spin states. Finally,
we note that also the potential-functional embed-
ding theory approach of Carter and co-workers225

provides a conceptually simple and flexible method
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for fully self-consistent WFT-in-DFT embedding
calculations using the exact embedding potential.

The results of such “exact” WFT-in-DFT em-
bedding calculations will depend sensitively on the
choice of the method for the potential reconstruction.
Here, the nonuniqueness of the reconstructed embed-
ding potential will affect the outcome of the WFT
calculation for the active subsystem, even though
the same density would be obtained in a DFT cal-
culation. In the works of Roncero et al. the ZMP
method was used for the potential reconstruction,
and the nonuniqueness of the reconstructed embed-
ding potential was not addressed further.233,234 Ini-
tially, Miller and co-workers also employed the ZMP
scheme,50,235 but switched to the direct optimization
of WY in combination with a smoothness constraint
in their subsequent work.235 To regularize the recon-
structed embedding potential, they further calculate
the KH potential in a second step from the recon-
structed orbitals. Carter and co-workers41,225 also
used the direct optimization of WY in combination
with a smoothness constraint, but employed the re-
sulting potentials directly. As discussed above, none
of these reconstruction methods provides a truly un-
ambiguous potential in finite basis sets, and the con-
sequences of this shortcoming for the results of the
corresponding WFT-in-DFT calculations will have to
be explored in more detail in future work.

CONCLUSIONS AND OUTLOOK

In this review we have shown that subsystem DFT
in its different variants is one of the most appealing
strategies to describe large chemical systems based on
first principles. It can be regarded as an exact vari-
ant of DFT in the limit of exact functionals, provided
the corresponding representability conditions are met.
By focusing on one or a few selected subsystems, the
frozen-density embedding method as well as WFT-
in-DFT embedding schemes emerge naturally from
subsystem DFT. The interactions between the sub-
systems can be described without recourse to system-
specific parameters, which is an advantage over other
hybrid methods such as QM/MM,45,46 ONIOM,236

or the fragment molecular orbital method,237,238 even
though these methods are certainly very successful in
practice. Another advantage over QM/MM methods
is the fact that the (often dominant) electrostatic con-

tribution of the environment is represented exactly
for a given density in the embedding potential arising
in subsystem DFT, and that short-range quantum me-
chanical effects are also incorporated. The latter are in
particular important to avoid spurious charge leaking
in cases of large, diffuse basis sets. The ability to repre-
sent spin-dependent environmental potentials is a fur-
ther important aspect of subsystem DFT calculations.

The extensions of subsystem DFT and FDE
for molecular property calculations are diverse, and
often offer great advantages over the corresponding
KS calculations. In contrast to other environmental
models, response contributions of a surrounding
medium can be incorporated into the calculation,
and even cases in which the response of several (or
many) subsystems needs to be included explicitly can
easily be handled. This gives access to calculations
of, for example, aggregates of excitonically coupled
chromophores, or to unusual solvent effects which
are dominated by the solvent rather than the solute. If
solvent response contributions are less important, sta-
tistically mechanically averaging for the construction
of the environmental density in an FDE calculation
can greatly enhance the efficiency and establish a
connection to implicit models for environmental
effects.

Density-dependent approximations for the non-
additive kinetic energy functional and its functional
derivatives often work well for weakly interacting sys-
tems. For stronger interactions (ranging up to cova-
lent bonds), one can resort to potential reconstruction
techniques, which make it possible to set up formally
“exact” embedding schemes. In practice, there is no
significant computational saving in such a calcula-
tion, but potentials obtained in this way are important
references for the development of new approximate
embedding potentials. Furthermore, and maybe even
more important, such potentials can be transferred
to WFT-in-DFT embedding, so that highly correlated
wave function methods can be combined with DFT
descriptions of those parts of a molecule which can
be treated with lower accuracy in a given context.
We believe that using such methods in applications to
subsystems treated with highly accurate wave func-
tion methods, which are embedded in a larger envi-
ronment described in terms of DFT, is currently one
of the most promising directions for high-accuracy
quantum chemical descriptions of complex systems.
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72. von Weizsäcker CF. Zur Theorie der Kernmassen. Z
Phys 1935, 96:431–458.

73. Lee D, Constantin LA, Perdew JP, Burke K. Con-
dition on the Kohn–Sham kinetic energy and mod-
ern parametrization of the Thomas–Fermi density. J
Chem Phys 2009, 130:034107.

74. Ou-Yang H, Levy M. Approximate Noninteract-
ing Kinetic Energy Functionals from a Nonuniform
Scaling Requirement. Int J Quantum Chem 1991,
40:379–388.

75. Lacks DJ, Gordon RG. Tests of nonlocal kinetic en-
ergy functionals. J Chem Phys 1994, 100:4446–4452.

76. Tran F, Wesolowski TA. Link between the Kinetic-
and Exchange-Energy Functionals in the General-
ized Gradient Approximation. Int J Quantum Chem
2002, 89:441–446.

77. Thakkar AJ. Comparison of kinetic-energy density
functionals. Phys Rev A 1992, 46:6920–6924.

78. Karasiev VV, Trickey SB, Harris FE. Born–
Oppenheimer interatomic forces from simple, local
kinetic energy density functionals. J Compu-Aid Mat
Des 2006, 13:111–129.

79. Constantin LA, Fabiano E, Laricchia S, Sala FD.
Semiclassical Neutral Atom as a Reference System
in Density Functional Theory. Phys Rev Lett 2011,
106:186406.

80. Laricchia S, Fabiano E, Constantin L, Sala FD. Gener-
alized Gradient Approximation of the Noninteracting
Kinetic Energy from the Semiclassical Atom Theory:
Rationalization of the Accuracy of the Frozen Den-
sity Embedding Theory for Nonbonded Interactions.
J Chem Theory Comput 2011, 7:2439–2451.

81. Wang YA, Govind N, Carter EA. Orbital-free kinetic-
energy functionals for the nearly free electron gas [Er-
rata: Phys. Rev. B 60 (1998), 17162; Phys. Rev. B
64 (2001), 129901]. Phys Rev B 1998, 58:13465–
13471.

82. Choly N, Kaxiras E. Kinetic energy density func-
tionals for non-periodic systems. Sol State Commun
2002, 121:281–286.

83. Garcı́a-Aldea D, Alvarellos JE. Fully nonlocal kinetic
energy density functionals: A proposal and a general
assessment for atomic systems. J Chem Phys 2008,
129:074103.

84. Karasiev VV, Trickey SB. Issues and challenges in
orbital-free density functional calculations. Comput
Phys Commun 2012, 183:2519–2527.

85. Huang C, Carter EA. Nonlocal orbital-free kinetic
energy density functional for semiconductors. Phys
Rev B 2010, 81:045206.

86. Xia J, Huang C, Shin I, Carter EA. Can orbital-free
density functional theory simulate molecules. J Chem
Phys 2012, 136:084102.

87. Oliver GL, Perdew JP. Spin-density gradient expan-
sion for the kinetic energy. Phys Rev A 1979, 20:397–
403.

88. Scuseria GE, Staroverov VN. Progress in the develop-
ment of exchange–correlation functionals. In: Dyk-
stra CE, Frenking G, Kim KS, Scuseria GE, eds. The-
ory and Applications of Computational Chemistry:
The First Forty Years. Amsterdam: Elsevier; 2005,
669–724.

89. Wesolowski TA. Density functional theory with ap-
proximate kinetic energy functionals applied to hy-
drogen bonds. J Chem Phys 1997, 106:8516–8526.

356



Volume 4, July/JAugust 2014  2013 John Wiley & Sons, Ltd.

WIREs Computational Molecular Science Subsystem density-functional theory

90. Dulak M, Wesolowski TA. The Basis Set Effect on
the Results of the Minimization of the Total Energy
Bifunctional E[ρA, ρB]. Int J Quantum Chem 2005,
101:543–549.

91. Dułak M, Wesołowski TA. Interaction energies in
non-covalently bound intermolecular complexes de-
rived using the subsystem formulation of density
functional theory. J Mol Model 2007, 13:631–642.

92. Wesolowski TA, Chermette H, Weber J. Accuracy of
approximate kinetic energy functionals in the model
of Kohn-Sham equations with constrained electron
density: The FH· · ·NCH complex as a test case. J
Chem Phys 1996, 105:9182.

93. Wesolowski TA, Weber J. Kohn–Sham Equations
with Constrained Electron Density: The Effect of Var-
ious Kinetic Energy Functional Parametrizations on
the Ground-State Molecular Properties. Int J Quan-
tum Chem 1997, 61:303.

94. Garcı́a-Lastra JM, Kaminski JW, Wesolowski TA.
Orbital-free effective embedding potential at nuclear
cusps. J Chem Phys 2008, 129:074107.

95. Fux S, Kiewisch K, Jacob Ch R, Neugebauer J, Rei-
her M. Analysis of electron density distributions from
subsystem density functional theory applied to coor-
dination bonds. Chem Phys Lett 2008, 461:353–359.

96. Beyhan SM, Götz AW, Jacob Ch R, Visscher L. The
weak covalent bond in NgAuF (Ng=Ar, Kr, Xe): A
challenge for subsystem density functional theory. J
Chem Phys 2010, 132:044114.

97. Wesolowski T, Warshel A. Ab Initio Free Energy Per-
tubation Calculations of Solvation Free Energy Us-
ing the Frozen Density Functional Approach. J Phys
Chem 1994, 98:5183–5187.

98. Jacob Ch R, Jensen L, Neugebauer J, Visscher L.
Comparison of frozen-density embedding and dis-
crete reaction field solvent models for molecular prop-
erties. Phys Chem Chem Phys 2006, 8:2349–2359.

99. Amsterdam density functional program. Theoreti-
cal Chemistry, Vrije Universiteit, Amsterdam. URL:
http://www.scm.com. (Accessed January 1, 2013).

100. te Velde G, Bickelhaupt FM, Baerends EJ, van Gis-
bergen SJA, Fonseca Guerra C, Snijders JG, Ziegler T.
Chemistry with ADF. J Comput Chem 2001, 22:931–
967.

101. Jacob Ch R, Neugebauer J, Visscher L. A flexible
implementation of frozen-density embedding for use
in multilevel simulations. J Comput Chem 2008,
29:1011–1018.

102. Jacob Ch R, Beyhan SM, Visscher L. Exact functional
derivative of the nonadditive kinetic-energy bifunc-
tional in the long-distance limit. J Chem Phys 2007,
126:234116.

103. Jacob Ch R, Visscher L. Towards the description
of covalent bonds in subsystem density-functional
theory. In: Wesolowski TA, Wang YA, eds. Recent

Progress in Orbital-Free Density Functional Theory.
Singapore: World Scientific; 2013, 299–324.

104. Gritsenko OV, Schipper PRT, Baerends EJ. Approxi-
mation of the exchange–correlation Kohn–Sham po-
tential with a statistical average of different orbital
model potentials. Chem Phys Let 1999, 302:199–
207.

105. Gritsenko OV, Schipper PRT, Baerends EJ. Ensur-
ing Proper Short-Range and Asymptotic Behavior of
the Exchange–Correlation Kohn–Sham potential by
Modeling with a Statistical Average of Different Or-
bital Model Potentials. Int J Quantum Chem 2000,
76:407–419.

106. Schipper PRT, Gritsenko OV, van Gisbergen SJA,
Baerends EJ. Molecular calculations of excitation en-
ergies and (hyper)polarizabilities with a statistical av-
erage of orbital model exchange–correlation poten-
tials. J Chem Phys 2000, 112:1344–1352.

107. Liu S, Ayers PW. Functional derivative of noninter-
acting kinetic energy density functional. Phys Rev A
2004, 70:022501.

108. Wesolowski TA. Comment on “Accurate frozen-
density embedding potentials as a first step towards a
subsystem description of covalent bonds” [J. Chem.
Phys. 132, 164101 (2010)]. J Chem Phys 2011,
135:027101.

109. Fux S, Jacob Ch R, Neugebauer J, Visscher L, Rei-
her M. Response to “Comment on: ‘Accurate frozen-
density embedding potentials as a first step towards a
subsystem description of covalent bonds’ ”. J Chem
Phys 2011, 135:027102.

110. Savin A, Wesolowski TA. Orbital-free embedding
effective potential in analytically solvable cases. In:
Piecuch P, Maruani J, Delgado-Barrio G, Wilson S,
eds. Advances in the Theory of Atomic and Molecular
Systems. Dordrecht: Springer; 2009, 311–326.

111. de Silva P, Wesolowski TA. Exact non-additive ki-
netic potentials in realistic chemical systems. J Chem
Phys 2012, 137:094110.

112. de Silva P, Wesolowski TA. Pure-state noninteracting
v-representability of electron densities from Kohn-
Sham calculations with finite basis sets. Phys Rev A
2012, 85:032518.

113. Jacob Ch R, Visscher L. Density–functional theory
approach for the quantum chemical treatment of pro-
teins. J Chem Phys 2008, 128:155102.

114. Kiewisch K, Jacob Ch R, Visscher L. Quantum-
Chemical Electron Densities of Proteins and of Se-
lected Protein Sites from Subsystem Density Func-
tional Theory. J Chem Theory Comput 2013,
9:2425–2440.

115. Zhao Q, Morrison RC, Parr RG. From electron den-
sities to Kohn-Sham kinetic energies, orbital ener-
gies, exchange-correlation potentials, and exchange-
correlation energies. Phys Rev A 1994, 50:2138–
2142.

357



 2013 John Wiley & Sons, Ltd. Volume 4, July/August 2014

Advanced Review wires.wiley.com/wcms

116. van Leeuwen R, Baerends EJ. An exchange–
correlation potential with correct asymptotic be-
haviour. Phys Rev A 1994, 49:2421–2431.

117. Kadantsev ES, Stott MJ. Variational method for in-
verting the Kohn-Sham procedure. Phys Rev A 2004,
69:012502.

118. Wang Y, Parr RG. Construction of exact Kohn-Sham
orbitals from a given electron density. Phys Rev A
1993, 47:R1591.

119. Colonna F, Savin A. Correlation energies for some
two- and four-electron systems along the adiabatic
connection in density functional theory. J Chem Phys
1999, 110:2828.

120. Goodpaster JD, Barnes TA, Miller TF. Embedded
density functional theory for covalently bonded and
strongly interacting subsystems. J Chem Phys 2011,
134:164108.

121. Yang W, Wu Q. Direct Method for Optimized Ef-
fective Potentials in Density-Functional Theory. Phys
Rev Lett 2002, 89:143002.

122. Wu Q, Yang W. A direct optimization method
for calculating density functionals and exchange–
correlation potentials from electron densities. J Chem
Phys 2003, 118:2498–2509.

123. Hirata S, Ivanov S, Grabowski I, Bartlett RJ, Burke
K, Talman JD. Can optimized effective potentials be
determined uniquely? J Chem Phys 2001, 115:1635–
1649.

124. Staroverov VN, Scuseria GE, Davidson ER. Opti-
mized effective potentials yielding Hartree–Fock en-
ergies and densities. J Chem Phys 2006, 124:141103.

125. Görling A, Heßelmann A, Jones M, Levy M. Rela-
tion between exchange-only optimized potential and
Kohn–Sham methods with finite basis sets, and ef-
fect of linearly depe ndent products of orbital basis
functions. J Chem Phys 2008, 128:104104.
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