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ABSTRACT: The ability to calculate accurate electron
densities of full proteins or of selected sites in proteins is a
prerequisite for a fully quantum-mechanical calculation of
protein−protein and protein−ligand interaction energies.
Quantum-chemical subsystem methods capable of treating
proteins and other biomolecular systems provide a route to
calculate the electron densities of proteins efficiently and
further make it possible to focus on specific parts. Here, we
evaluate and extend the 3-partition frozen-density embedding
(3-FDE) scheme [Jacob, C. R.; Visscher, L. J. Chem. Phys.
2008, 128, 155102] for this purpose. In particular, we have extended this scheme to allow for the treatment of disulfide bridges
and charged amino acid residues and have introduced the possibility to employ more general partitioning schemes. These
extensions are tested both for the prediction of full protein electron densities and for focusing on the electron densities of a
selected protein site. Our results demonstrate that 3-FDE is a promising tool for the fully quantum-chemical treatment of
proteins.

1. INTRODUCTION

The biological function of proteins is governed by their
interaction with other molecules. Protein−protein interactions
are involved in, e.g., signal transduction, protein−RNA
interactions are important for protein synthesis, and the action
of drug molecules is mediated via their interaction with
proteins.
Theoretical methods are an essential tool to study the

structure of the complexes as well as strength and specificity of
their interactions. For protein−protein interactions, determin-
ing binding affinity amounts to a huge task that has seen much
progress in recent years (see ref 1 and references therein),
whereas for protein−ligand complexes a variety of computa-
tional methods is routinely applied in the search for drug leads
(see ref 2 and references therein). Here, much of the effort is
focused on developing better scoring functions for the
estimation of binding affinity approximates. Many available
scoring functions rely heavily on semiempirical parametriza-
tions, which gives rise to a number of shortcomings. To name
just one example, polarization effects are difficult to treat
accurately in the commonly applied force-field based methods,
since the use of polarizable force fields is still nonstandard.3,4

Quantum-chemical methods provide a rigorous and param-
eter-free approach to the description of the binding energy.
Quantum-mechanical (QM) calculations yield a wealth of data
since they are not specifically designed to describe only the
energy or a few properties but to determine molecular orbitals
and electron densities. These contain all information on the

system and could be used to formulate more detailed QM-
based scoring functions. A first step in this direction is the use
of the full electron density instead of point charges for the
evaluation of the electrostatic interaction energy. While
providing high accuracy and flexibility, ab initio quantum-
chemical methods have the drawback of a restriction of the
system size that can be dealt with, which is due to their steep
scaling of computational effort with system size. Although
developers strive to extend the applicability of ab initio
quantum-chemical methods to larger molecules by taking
advantage of linear-scaling approaches,5,6 they are still not
routinely applied to molecules of the size of an average
protein.7,8 For this reason, up until recently, mostly semi-
empirical QM methods9,10 or quantum-mechanics/molecular-
mechanics (QM/MM) approaches11 have been applied to
evaluate protein−ligand bond strengths. Multilevel methods
such as QM/MM approaches12 focus on parts of the molecules
by employing a QM-type method for a local active site and
describing the environment by a more approximate MM
method, where link atoms13 or boundary atoms (see refs 14)
might be used to describe the boundary. However, through the
coupling of two very different methods, problems arise at the
boundary of the two regions.
A variety of fragment-based approaches have been proposed

to overcome the size problem of the brute-force supermolecular
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approach. They all rely on utilizing chemical knowledge to
divide the system into smaller subsystems, e.g., cutting up a
large molecule into fragments. For very large molecules, such
schemes are more efficient since the computational effort scales
with the number of subsystems and at most linear with the
system size. These subsystem methods differ in the way they
treat the fragment boundaries and the interactions between the
subsystems. For extensive current reviews, cf. refs 15−17.
Subsystem methods are not only a practical way to overcome

size restrictions, they also offer a conceptually attractive way of
looking at a system in terms of its chemical constituents. In
typical applications only part of a biomolecule is of interest, for
instance, the interface in protein−protein interactions or a
binding pocket in protein−ligand docking. A fragment-based
approach allows one to employ an accurate but computationally
demanding setup for only the important parts of the system. If
an accurate treatment of the whole system is desired, one may
still benefit from a fragment-based approach as it facilitates
interpretation of the results, while in principle being able to
reproduce the exact result.
An approach suitable for the treatment of large molecules,

especially proteins, has been proposed by Zhang and Zhang:
the molecular fractionation with conjugate cap (MFCC)
scheme.18−20 In this scheme, proteins are partitioned into
their constituting amino acids, and capping groups are added to
saturate the dangling bonds, two of which put together build a
cap molecule, cf. Figure 1. The density of this cap molecule is
subtracted when adding fragment results in order to obtain the
density and other properties of the complete system. Thus, the
total electron density of the molecule is obtained as the sum
over nsub subsystem electron densities minus the sum of the ncap
cap electron densities.
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In improved MFCC schemes, incorporating effects of the
environment, such as hydrogen-bonds or electrostatic embed-
ding, or including polarization by neighboring amino acids has
been addressed,21−24 and MFCC schemes have subsequently
been used to calculate protein−ligand interaction energies; see
refs 24 and 25 and references therein.
The 3-FDE method, an extension of the subsystem density

functional theory (DFT) approach frozen-density embedding
(FDE),26 has been developed by two of us.27 Its name reflects
the way covalent bonds between fragments are dealt with: by
introducing capping groups each severed bond is represented
by three fragments, so that covalent bonds are treated in a
similar way as in the MFCC scheme. Within the 3-FDE
scheme, the influence of all other subsystems is included in the
calculation of the individual fragments via an effective
embedding potential, which is in principle exact and depends
on the density and the nuclei of the surrounding fragments.
The density of the 3-FDE caps is fixed to the density within the
molecules built by the two capping groups and is later
subtracted. This constraint for the cap densities ensures that the
total density is positive, but gives rise to minor errors in the
density of the cap region. The mutual polarization of the
fragments within FDE is accounted for by so-called freeze-and-
thaw (FT) cycles in which the frozen densities of the
subsystems are updated iteratively.28 For hydrogen-bond
interactions, FDE reproduces the densities of supermolecular
calculations well29 and has been successfully applied to describe
solvent effects on molecular properties30−34 and biomolecular
systems.35,36

Capping groups were introduced in 3-FDE to circumvent
problems in approximating the kinetic-energy contribution to
the embedding potential occurring for systems connected by
covalent bonds.37 Alternative methods exist which address this
problem more directly using optimized effective potential
techniques, see e.g., refs 38−41. Other QM-based fragmenta-
tion methods employ alternative approaches for the description

Figure 1. Schematic illustration of the partitioning of peptide bonds in the MFCC and 3-FDE scheme, shown for dialanine. The total electron
density ρtot(r) is obtained by summing up the fragment densities ρI(r) and ρII(r) and subtracting the cap density ρcap(r).
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of the fragment boundaries and encounter different problems.
Some of these methods rely on reproducing the molecular
orbitals at the cut bonds, e.g., the fragment molecular orbital
method (FMO).42−44

We employ the 3-FDE method since it combines the
accuracy of a QM method with the intrinsic favorable linear-
scaling of a fragment-based method. Compared to QM/MM
methods, 3-FDE provides a more detailed description of the
environment with built-in polarization and automatic system-
specific capping but still allows focusing in on specific
fragments. Previously, it has been shown with a pilot
implementation that 3-FDE can be applied as a subsystem
method for subsystems connected by covalent bonds.27 Here,
we want to extend 3-FDE toward a method that can be applied
to study protein−ligand interaction quantum chemically. This
requires the ability to focus on selected parts of a protein by,
first, employing a more accurate description for some fragments
and, second, defining fragments in the most suitable fashion.
For this purpose the partitioning scheme has to be more
general and flexible. Even more importantly, in order to be
applicable to a wider class of proteins, a treatment of disulfide
bridges and of charged residues has to be made possible.
This work is organized as follows: In section 2, the

computational methodology is briefly outlined. In the following
we present the necessary extensions of the 3-FDE scheme,
beginning with the partitioning of the protein in section 3,
demonstrated for ubiquitin, followed by the introduction of
caps for disulfide bonds shown for cystine in section 4 and the
treatment of charged side groups in section 5, with small
charged dipeptides as test cases. We then go on to show the
application of these extensions to the bubble protein in section
6, and discuss possible application to generate electrostatic
potentials for docking purposes, before presenting our
conclusions in section 8.

2. COMPUTATIONAL METHODOLOGY
The theory of the 3-partition FDE scheme and its
implementation in the Amsterdam density functional pack-
age45,46 are given in detail in ref 27. Here, we restrict ourselves
to a brief sketch of the salient points. The partitioning we use is
shown in Figure 1. The capping groups employed here preserve
the electronic structure of the severed peptide bond as much as
possible while still being small at the same time. The first step
of the 3-FDE calculations consists of calculations on the
isolated capped fragments and cap molecules. The total density
obtained from summing up their densities will be denoted as
MFCC as this is equivalent to the procedure proposed by
Zhang and Zhang.18 These fragment densities are then used to
construct the embedding potential for the first 3-FDE
calculations, in which each fragment is optimized in the
presence of the unrelaxed frozen densities. The density
assembled from these calculations will be denoted as 3-FDE(0).
The most outstanding feature of the 3-partitioning scheme is

the fact that the density added at the fragment boundaries in
the capping groups by construction equals the density in the
cap molecule that is subtracted when the density of the total
molecule is obtained from the various fragment calculations.
This constraint has to be introduced to ensure that the total
density is positive everywhere in space.27 In practice, within a
fragment calculation, in the region of the cap(s) a fixed target
density has to be reproduced. In order to fulfill this condition,
in the Kohn−Sham-like (KS) equations used to determine the
orbitals ϕi of the active subsystem I and its density under the

influence of a frozen density ρII, the embedding potential
veff
FDE[ρI,ρII](r) within the cap region is replaced by a cap
potential which is constructed such that it yields the target
density:
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i = 1, ..., NI/2, with NI the number of electrons in subsystem I.
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which outside of the cap region VI
cap consists of the KS potential

of subsystem I, veff
KS[ρI], and of the effective embedding potential
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where vII
nuc and vcap

nuc are the electrostatic potentials of the nuclei
in subsystem II and in the cap group, Exc is the exchange−
correlation energy, and Ts

nadd is the nonadditive kinetic energy.
Within the cap region, the effective potential is given by the cap
potential Vcap. For details and derivations, see ref 27. The 3-
FDE scheme is geared to keep the errors introduced on
partitioning the protein small, but there are still two sources of
error connected to it. First, cutting the peptide bond and
introducing caps fixes the number of electrons per fragment
and does not allow for polarization of the peptide bond.
Second, flaws in the approximate kinetic-energy functional yield
errors in the treatment of hydrogen bonds and other
interactions between fragments.
The cap region is defined by the grid points which are closer

than 3 bohr from an atom in the cap region and not closer to a
noncap atom. The cap potential vcap which yields the target cap
density is obtained iteratively. Starting from the potential of the
isolated cap molecule, the cap potential is updated in a self-
consistent field (SCF) cycle once convergence as measured by
the norm of the commutator of the Fock matrix and the density
matrix falls below 10−3 a.u. Depending on the error in the
number of electrons in the cap region, either a constant shift of
0.2ΔNcap is applied to all grid points to adjust the number of
electrons in the cap, or the cap potential is updated at each grid
point using the scheme of van Leeuwen and Baerends.47 There,
the updated cap potential is calculated as

ρ
ρ

= =v fv f
r
r

r r( ) ( ) with
( )

( )cap,el
new

cap,el
old I
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cap

where vcap,el denotes the total electronic potential in the cap
region, (i.e., the nuclear potential is constant and not part of the
updates). In order to prevent too large changes in the update
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procedure, several measures are taken. A damping factor is
employed, i.e., f = 1 + LBdamp[(ρI

old(r)/ρcap(r)) − 1], and f is
kept within a range of 1 ± LBmaxstep. The default values for
LBdamp and LBmaxstep are 0.25 and 0.05, respectively.
Updates are furthermore restricted to grid points where ρcap(r)
> 0.01 e·bohr−3. The cap potential is regarded as converged as
soon as the error in the cap density, defined as

∫ ρ ρΔ = −
N

r r r
1

( ( ) ( )) d
V

cap
cap

I cap
2

cap

drops below a threshold of 10−4.
A few slight modifications have been made to the original

scheme of ref 27. In the original implementation, in the case of
several caps on a fragment, all cap potentials were updated until
all of them met the convergence criteria. Here, we found that
this lead to oscillations in some cases. Therefore every cap
potential that has converged, is now kept fixed. In practice, it
turns out that when the SCF convergence criteria are met, all
cap potentials are still converged. An additional difficulty we
encountered is that, for some fragments, the norm of the
commutator of the Fock matrix and the density matrix never
meets the update criterion when starting from the potential of
the isolated cap molecule, so that the cap potential update
scheme does not start. This behavior cannot be predicted
beforehand, so that if it occurs, we now force potential update
steps in the 30th, 45th, etc., SCF cycle until the normal update
scheme starts. So far, this scheme has proven to work robustly.
In case the default parameters do not lead to cap convergence, a
particular fragment calculation can be redone with, e.g., a
smaller LBdamp value. For the systems considered here, only a
small number of fragment calculations requires such manual
attention.
For all calculations, the exchange−correlation functional

BP8648,49 and the kinetic-energy functional PW91k50 were
employed. For the 3-FDE and the supermolecular DFT
calculations of the proteins, the DZP basis set from the ADF
basis set was used. In principle, a larger basis set could be
employed for the 3-FDE calculations, but this is not feasible for
the supermolecular reference calculations for the proteins.
Where possible, i.e., for the small test calculations on
dipeptides, we used a TZ2P basis set. In the FT cycles (results
denoted as 3-FDE(n)), densities were updated after a full FT
cycle had been performed and not immediately. For the frozen
fragments the exact densities, i.e., not the density represented
by using fit functions, were employed in the calculation of the
nonadditive exchange−correlation and kinetic-energy potential.
As standard damping factor for the potential updates, LBdamp
= 0.25 was kept. For larger fragments, it turned out that a
smaller damping factor was needed, i.e., for partitioning into
fragments of the size of two amino acids, LBdamp = 0.15 was
used, and for three amino acids and larger fragments, LBdamp
= 0.1. Fragment calculations that did not converge were also
repeated with LBdamp = 0.1. For the bubble protein with
charged residues, calculations with the continuum solvation
method COSMO have been run for both the supermolecular
and the 3-FDE case with the default parameters for water in
ADF. In the case of 3-FDE, the coordinates of the
supermolecule were used to construct the COSMO surface to
ensure a consistent treatment of solvation in the same cavity.
All aspects relating to the partitioning, as well as running the

3-FDE calculations with a number of FT cycles are taken care
of with the scripting framework PyADF,51 which uses

OpenBabel52,53 routines for the manipulation of the protein
structures. The extensions to the existing scripting framework
to allow for different partitionings, partial updates in the FT
cycles, and disulfide bonds are described in the following
sections.
For the analysis of the MFCC and 3-FDE densities, the same

quantities as described in refs 27 and 54 were used, i.e., the
integrated absolute error in the total density,
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the integrated root-mean-square error in the electron density
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and the magnitude of the error in the dipole moment
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Additionally, we calculated the angle between the dipole
moment vectors ϕμ
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The first two measures can also be applied locally if the
integration is restricted to a certain volume. For the numerical
integration, the same integration grid as used by ADF in the
supermolecular calculation was employed. For neutral mole-
cules, |Δμ| can also be given as a percentage of the absolute
value of the dipole moment. For charged molecules, the dipole
moment is origin-dependent, and hence, only the magnitude of
the error in the absolute value is meaningful.

3. STRATEGIES FOR PARTITIONING PROTEINS IN
3-FDE

First, we explore the most suitable strategy for partitioning
proteins in 3-FDE. As a test case, we have chosen ubiquitin,
which is a regulatory protein playing a crucial role in the
degradation of proteins and thereby in numerous biological
processes.55 Its structure is well-studied.56 Ubiquitin contains
only 76 amino acids (1231 atoms, of which 602 non-hydrogen),
which makes it still possible to perform full calculations for
comparison and contains different structural elements: an α-
helix, a β-sheet, a short 310-helix, and several turns and loops. Its
very compact and tightly hydrogen-bonded structure56 involves
overlapping densities and directional polarization effects
between neighboring residues. These constitute challenging
conditions for fragment-based calculations, and ubiquitin is,
hence, a good model case. Here, we consider a hypothetical
neutral form, where all side groups are kept neutral. Previously
it has been demonstrated that for ubiquitin the 3-FDE
approach can be employed to calculate the electron density
for a whole protein using a partitioning into individual amino
acids. For practical purposes usually a subregion of the protein
is particularly relevant for the specific problem at hand. For the
concrete example of ubiquitin, this could, e.g., be the face of the
protein including residues Leu8, Ile44, and Val70 which is
described to take part in protein−protein interactions.57 For a
study of protein−protein interactions, an accurate description
of this interacting face would be most important.
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In this section, we first discuss the reproduction of the
density of the full protein, introducing different partitionings of
the protein into subsystems. Subsequently, we focus our
attention on reproducing only the density of a small region. On
the technical side, this corresponds to studying the influence of
the size or composition of the fragment and the number of
density updates.
With the original implementation of the 3-FDE method in

ADF and PyADF, proteins were partitioned such that each
amino acid constituted one fragment, and the same number of
FT cycles was used for all fragments. Rather than cutting the
whole protein in individual amino acids, it is also possible to
combine a number of amino acids in one fragment. This can
initially speed up a 3-FDE calculation. Which size is most
efficient depends on the computational overhead per cap. In
addition, a small number of caps yields in principle more
accurate results, but apart from the drawback of the increased
computational requirements for larger fragments, cap con-
vergence is also hampered in larger fragments.
While such a partitioning into larger fragments merely in

terms of the size can be automatized, it is also possible to use
chemical insight in the system. For instance, one main source of
error in the 3-FDE densities is due to the description of
hydrogen bonds between different fragments, so that in some
cases it might be desirable to keep these bonds in the same
fragment. This means grouping amino acids belonging to a
helix or another secondary structure element together. Some
protein structures might require larger fragments, e.g., if they
contain bonds that cannot be easily capped, such as a metal
atom coordinated by several Cys residues. An additional
consideration in the choice of the fragment size is the treatment
of charged amino acid residues in the fragmentation scheme.
Options were added to the PyADF routines which partition

the protein. First, automatic partitioning into fragments
containing m amino acids, where m can now be an integer
larger than 1 has been added. Second, the user can define all or
a part of the fragments by specifying lists of residue numbers.
Apart from the fragment size, it is the number of updates per

fragment, i.e. the number of fragment calculations, which
determines the computational cost. Limiting these updates to a
small region of interest, e.g., a binding pocket, while using only
one FT cycle or unmodified fragment densities for the rest of
the system saves on computational effort, while giving a smooth
transition between different levels of approximation.
On the scripting level, a new routine for this partial update

option has been added to allow to specify the number of
updates for every fragment, which corresponds to mixing of 3-
FDE(n) results for different n.
We have partitioned the protein ubiquitin in five different

ways (see Figure 2 for a representation of the partitioning):
three simple partitions according to the fragment size (1 (A), 2
(B), or 3 (C) amino acids), chemically motivated partitioning
into five large fragments (D), consisting of residues 1−20, 21−
38, 39−52, 53−63, and 64−76, where the capped residues were
chosen such that they are far away from the face including
Leu8, Ile44, and Val70, and one partitioning (E) focusing on
the “interacting face”; the two neighboring residues on each
side of Leu8, Ile44, and Val70 were included in the same
fragments, while the remaining part of the protein was
partitioned into fragments each containing one amino acid.
The partitioning according to fragment size (A−D) serves to

illustrate the influence of the partitioning on the quality of the
density. Fewer caps reduce the error introduced in the density

since a significant part of it is due to the caps. Comparing
partitioning A−C to D gives us an indication how large the
contribution of the error introduced in the cap region is
compared to errors caused by the kinetic-energy functional for
the description of hydrogen bond and other interactions
between the fragments. Since partitioning D contains only four
caps, the error must in this case mainly be attributed to noncap
errors.

3.1. Electron Density of Ubiquitin. Error measures for
the densities and dipole moment of ubiquitin obtained with
partitionings A, B, C, and D are given in Table 1. The
partitioning into fragments consisting of only one amino acid,
A, is the same as that used in ref 27.
For 3-FDE calculations, there are two main possibilities for

performing the density updates in the FT cycles. Updated
fragment densities can either be used immediately as frozen
density in the calculation of the next fragment, or the same set
of frozen densities can be retained until all densities have been
updated after a full cycle. The first, sequential option, will be
called “sequential FT”, while updating all fragment densities at
once is called “parallel FT”. The conceptional advantage of the
latter scheme is the independence of the results on the order in
which fragments are updated. This independence of order is
also achieved in embedding schemes that simultaneously
determine new fragment densities, such as in ref 59. Such a
parallel FT scheme also has practical advantages. First, a
fragment calculation in a FDE cycle that did not converge can
be rerun with different parameters without effect on all other
fragments’ results in this cycle. Second, in a parallelized scheme,
calculations on different fragments can be distributed to
different machines easily.
For the MFCC and 3-FDE(0) results obtained for

partitioning A, we observe errors that are in the same order
of magnitude as in the earlier results but which are not
identical. These small differences can be attributed to slight
changes in the implementation in the ADF program suite and
in openbabel and the use of the fitted density for the calculation
of the exchange−correlation potential instead of the nonfitted
density used in the earlier results. With the parallel FT density

Figure 2. Partitioning applied to ubiquitin. Fragments are indicated by
different colors. For partitioning D and E, Leu8, Ile44, and Val70 are
represented by sticks. In the lowermost right panel, the three
overlapping spheres of 5 Å radius around the geometric centers of
these three amino acids are depicted. Graphics created with VMD.58
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update scheme, in the 3-FDE(1) to 3-FDE(3) results, we
observe an oscillation in the results with respect to the FT
cycles. The density errors do not converge with increasing
number of FT cycles, but Δabs and Δrms decrease from MFCC,
3-FDE(0), to 3-FDE(1), before they increase again in the 3-
FDE(2) and 3-FDE(3) results. Repeating the calculations for
partitioning A with the sequential FT cycles, for 3-FDE(1) to 3-
FDE(3) errors in the density converge. Thus, the oscillation in
the density errors with the simultaneous update of all densities
in parallel FT does not occur with the immediate update of the
sequential FT. This is because in sequential FT there is a
mixture of updated and old densities, so that fragment densities
already react to polarization in one part of a system resulting in
a continuous, smooth change. Compared to the oscillatory
behavior, this smooth change is more desirable, however, as
pointed out earlier, it is accompanied with a dependency of the
results on the fragment update order and other practical
disadvantages.
For the errors in the dipole moments, similar observations

are made: with parallel FT, |Δμ| oscillates for calculations using
different numbers of FT cycles, while for sequential FT, the
convergence behavior is smoother. Note, however, that also for
sequential FT, |Δμ| does not decrease monotonously, but still
oscillates slightly.
Apart from the practical advantages, one can still justify the

use of parallel FT updates based on the resulting error values:
For FDE(1) with continuously updated densities, the Δrms

error is already converged, the Δabs error is already practically
converged, and only the error in the dipole moment is still
large. The FDE(1) results with parallel update are very similar
(Δabs error 2.42 × 10−3 vs 2.38 × 10−3 e·bohr−3 and Δrms error
0.023 × 10−3 vs 0.021 × 10−3 e·bohr−3), but the error in the
dipole moment is much smaller (5.03 vs 10.30 D). The cost of
any FT cycle equals the cost of m fragment calculations, with m
being the number of fragments, and determines the cost of the
calculation. Since a reasonable description is already achieved in
the first FDE calculation, i.e., 3-FDE(0), practical application

will only employ multiple FT cycles if this is easily affordable in
special cases. All results presented in the following will refer to
the parallel FT scheme since that will be convenient for future
applications.
Now we turn to the results exploring different partitionings.

The results for fragments containing two- and three residue-
partitionings (B and C, respectively) show smaller errors than
the results obtained with partitioning A, and this holds also for
C compared to B with exception of the error in the dipole
moment obtained with FDE(1). For partitioning B and C,
similar convergence patterns with the number of FT cycles are
found as for partitioning A (cf. Table S2 of the Supporting
Information). What might be surprising at first glance is the fact
that the errors decrease only slightly when the number of caps
is reduced by a half or a third. This is due to the fact that errors
are not only introduced by cutting the protein at the peptide
bonds and introducing capping groups, but also by the
imperfect description of other interactions between the
fragments, foremost hydrogen bonds, using an approximate
kinetic-energy functional. The results of partitioning D
underline this further: only 4 caps are present in this molecule,
the α-helix is treated in one fragment while the β-sheet has
been cut between connected strands twice. These cuts through
the β-sheet cause a major contribution to the error density (cf.
Figure 3). The importance of the secondary structure and the

treatment of hydrogen bonds is also reflected in the large error
in the dipole moment in the MFCC calculations of
partitionings A to C: in these partitionings, the α-helix of
ubiquitin, which has a large contribution to the dipole moment,
is cut into small fragments, which are not polarized in the
MFCC calculation. For partitioning D, where the α-helix is
treated within one fragment, the error in the dipole moment is
considerably reduced. This is in agreement with earlier work on
MFCC,21 in which the importance of the hydrogen bonds
within secondary structure elements has been observed as well.

3.2. Interacting Face of Ubiquitin. In the following, we
focus on the description of the density of only a part of
ubiquitin, which will be relevant for its interactions with other

Table 1. Integrated Absolute Error Δabs in the Electron
Density (e·bohr−3), Root Mean Square Error Δrms in the
Electron Density (e·bohr−3), and Error in the Magnitude and
Direction of the Dipole Moment, Δμ (D) and ϕμ, in the
MFCC and 3-FDE(n) Calculations of Ubiquitin Using
Different Fragment Sizesa

Δabs ×
103

Δrms ×
103

|Δμ|
(D)

ϕμ
(deg)

A MFCC 4.44 0.039 17.51 13.6
3-FDE(0) 3.69 0.028 4.52 3.4

A, parallel FT 3-FDE(1) 2.42 0.023 5.03 4.0
3-FDE(2) 3.91 0.028 8.50 3.9
3-FDE(3) 2.71 0.025 4.26 3.5

A, sequential FT 3-FDE(1) 2.38 0.021 10.30 8.4
3-FDE(2) 2.35 0.021 6.17 3.4
3-FDE(3) 2.36 0.021 6.97 3.8

B, parallel FT MFCC 4.20 0.038 17.01 12.2
3-FDE(1) 1.86 0.018 2.65 2.2

C, parallel FT MFCC 3.99 0.036 14.12 10.0
3-FDE(1) 1.67 0.015 2.96 1.8

D, parallel FT MFCC 2.52 0.025 2.15 1.7
3-FDE(1) 0.85 0.009 0.91 0.2

aThe dipole moment in the supermolecular reference calculation is μ
= (16.61, −53.46, 42.35) D, |μ| = 70.19 D.

Figure 3. Isosurface plots (contour value of 0.002 e/bohr−3) of the
difference densities between the FDE(1) calculations and the
conventional supermolecular DFT calculation for the ubiquitin
molecule using partitionings A−D. Graphics created with VMD.58
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proteins. This small part was for this purpose defined as the
volume of three overlapping spheres with a radius of 5 Å
around the geometric centers of residues Leu8, Ile44, and
Val70. “Focusing” on one region means trying to achieve a
good description for that particular part of the protein, while
choosing a fast approximate description for the rest of the
protein. In the case of the 3-FDE approach this translates to
starting from the sum of the isolated fragment densities and
including polarization effects by adding one FDE cycle, 3-
FDE(0), and possibly a second FT cycle, 3-FDE(1), for a
selected number of fragments. This is comparable to the partial
update scheme used for an FDE water environment description
by Neugebauer et al. in ref 33.
At the same time, one can employ larger fragments in order

to reduce errors introduced by caps. The procedure to achieve a
locally improved description of the density is thus clear-cut:
update the fragment densities in the region of interests and
close to it, and/or combine fragments to larger fragments in
that region. For ubiquitin, we tested both of these aspects. For
partitioning A−F (here A denotes the partitioning, and F, a
focus on a selected part), 3-FDE calculations were performed,
for the 11 amino acids within the three overlapping spheres and
for 4 neighboring amino acids (cf. Table S1 of the Supporting
Information (SI)), the resulting protein density is a combined
MFCC+3-FDE(0) density. For the 11 amino acids, further 3-
FDE calculations were run, yielding a density consisting of
MFCC densities for the residues that are not part of the
interacting face, FDE(0) densities for the four neighboring
fragments, and FDE(1) densities for the 11 selected fragments.
These results will be denoted as MFCC+3-FDE(1). For MFCC
+3-FDE(0), 15 FDE fragment calculations were performed, for
MFCC+3-FDE(1), another 11 FDE fragment calculations had
to be run, which contrasts to 76 FDE fragment calculations for
each 3-FDE(0) and 3-FDE(1) results for the full protein.
In Table 2, the integrated Δabs and Δrms errors of the electron

density, where the integration was restricted to grid points
within the selected volume of three overlapping spheres, are
shown. The results for partitioning A−F and MFCC+3-FDE(0)
are very close to the full 3-FDE(0) calculation. For MFCC+3-
FDE(0), the results are identical to 3-FDE(0) if all fragments
contributing to the density in this region are updated. As can be
seen from small differences, some more distant fragments do
contribute to some extent. The MFCC+3-FDE(1) density will
be different, since in this case the fragment densities of the
environment are partly of MFCC and partly of FDE(0)-type.
This is reflected in the Δabs and Δrms errors, but these are still
sufficiently close to the full 3-FDE(1) results.
Next, we assess the impact of choosing larger fragments at

the interacting face with partitioning E. Here, residues Leu8,
Ile44, and Val70 are grouped together with their respective two
neighboring residues on each side, yielding five-residue
fragments. The remainder of the protein was partitioned into
one-residue fragments (see the SI for details). 3-FDE(0)
calculations were performed first (E−F1) for the three five-
residue fragments and the direct neighbor residues on each
side, resulting in a total of nine FDE(0) fragment calculations.
In this case, FDE(1) calculations were performed only for the
three five-residue fragments. Second, FDE(0) calculations were
run for two neighbor residues on each side (E−F2, total of 15
FDE(0) calculations), and the FDE(1) calculations included
also the direct neighbors of the three-residue fragments (nine
calculations). For both cases, there are also differences in the
MFCC+3-FDE(0) compared to the 3-FDE(0) densities, which

is again due to the fact that not all fragments in the volume we
integrate over are included in the 3-FDE(0) cycle. This explains
the improvement observed when including one neighbor. In
partitioning E compared to A, there are two amino acids
missing in the 3-FDE(0) calculation since we only include the
direct covalently bound neighbors of the five-residue fragments
around Leu8, Ile44, and Val70. Not taking the spatial
arrangement into account causes larger differences between 3-
FDE(0) and MFCC+3-FDE(0), but the difference density
contributions in the outer parts of the volume will be less
important. In the MFCC+3-FDE(1) calculations, the inclusion
of one more neighboring fragment in the updates going from
E−F1 to E−F2 yields again a notable improvement in the
density compared to the fully updated 3-FDE(1). The density
errors for partitioning scheme E are in general smaller than the
density errors for partitioning scheme A. The results for
partitioning D can be regarded as FDE reference calculations
for this integrating volume, as there are no caps within or close
to the volume. All density differences result thus from
(hydrogen-bond) interactions between the different strands.
Partitioning E comes already relatively close to these results.
For all different partitionings, improvement of the density can
be achieved by adding only a few 3-FDE(1) calculations on top.
However, taking into account the relatively small improvement,
for practical purposes, MFCC+3-FDE(0) might often already
be good enough.

4. TREATMENT OF DISULFIDE BONDS IN 3-FDE
Disulfide bonds are important for folding and stability of many
proteins. Treatment of these covalent bonds between residues
is therefore a necessary feature of a generally applicable 3-FDE
method. In the 3-FDE routines within the scripting framework
PyADF, disulfide caps were introduced analogously to the
MFCC scheme described in ref 60 (see Figure 4), i.e., the
dangling bonds were capped with a SCH3 group on both sides.

Table 2. Integrated Absolute Error Δabs in the Electron
Density (e·bohr−3), Root Mean Square Error Δrms in the
Electron Density (e·bohr−3) within a Radius of 5 Å around
the Geometric Center of the Residues Leu8, Ile44, and
Val70, in the MFCC and 3-FDE(n), and Combined
MFCC+3-FDE Calculations of Ubiquitin Using Different
Fragment Sizesa

no. frag calc Δabs × 103 Δrms × 103

A 76 MFCC 4.67 0.141
76 3-FDE(0) 4.12 0.109
76 3-FDE(1) 2.82 0.091

A−F 15 MFCC+3-FDE(0) 4.26 0.114
11 MFCC+3-FDE(1) 3.44 0.102

E 64 MFCC 4.16 0.137
64 3-FDE(0) 2.58 0.070
64 3-FDE(1) 1.49 0.051

E−F1 9 MFCC+3-FDE(0) 2.77 0.080
3 MFCC+3-FDE(1) 2.52 0.074

E−F2 15 MFCC+3-FDE(0) 2.71 0.077
9 MFCC+3-FDE(1) 2.32 0.069

D 5 MFCC 3.04 0.113
5 3-FDE(0) 1.10 0.045
5 3-FDE(1) 0.95 0.040

aFor comparison, the number of fragment calculations (no. frag calc)
is given.
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In order to test this, we consider the dipeptide cystine
consisting of two cysteines connected by a disulfide bond. The
structure of cystine was optimized employing the exchange−
correlation functional BP86 and the TZ2P basis set. This basis
set was also used for the supermolecular reference, MFCC and
3-FDE calculations.
For cystine, the Δabs error, the Δrms error, and |Δμ| for the

MFCC and the 3-FDE(n) calculations are in the same order of
magnitude or slightly smaller (see Table 3 and Table S3 of the

Supporting Information) than for the description of peptide
bonds in ref 27. As was the case for dialanine, for cystine the
MFCC overall density errors are slightly smaller than for 3-
FDE(n). Likewise, the small difference in the densities in the
case of MFCC originates from missing polarization effects on
the carboxylic and amino group (see Figure 5a).

The fact that MFCC already performs particularly well for
this test case can be attributed to the symmetric nature of the
disulfide bond between two Cys residues. The errors in the
density are even smaller than for dialanine, which could be a
consequence of the disulfide bond being less polar than a
peptide bond. Even though the error measures for the density
are small for MFCC, the deviation in the angle of the dipole
moment is at 5.0° fairly large. The missing polarization effects
are captured in the 3-FDE(n) calculation at the cost of small
differences in the cap region, since the density close to the cap
gets slightly distorted because of the constraint in the cap
region (see Figure 5). The direction of the dipole moment is
considerably improved by FDE(1). As for the capped peptide
bonds, already one FT cycle is sufficient for the disulfide bonds,
and further cycles do not decrease the error in the density
significantly. These observations should to a large extent also be
true for disulfide bridges in a protein, since the bond between
two Cys residues will be nonpolar in most cases.

5. TREATMENT OF CHARGED AMINO ACID RESIDUES
IN 3-FDE

A realistic modeling of a protein needs to include correct
protonation states and, therefore, has to be able to treat charged
amino acid residues. Within the 3-FDE scheme, an (integer)
charge is assigned to the fragment containing the charged
group. This leads to charges which are localized by
construction. Previously, only calculations on positively charged
dipeptides were performed. Here, we extend the treatment of
charged residues to negative charges and to zwitterionic
dipeptides.
While for both systems tested earlier,27 H+−His−Leu and

H+−Ala−Ala, density errors are by a factor of 3−4 larger than
for the neutral dipeptides, the dipeptide which was protonated
at the side group (His) instead of the N-terminus, exhibited
smaller density errors. These were attributed to the polarization
of the peptide bond, which is not described properly by the
caps introduced in 3-FDE. Instead, in 3-FDE the number of

Figure 4. Schematic illustration of the partitioning of disulfide bonds in the MFCC and 3-FDE scheme, shown for cystine.

Table 3. Integrated Absolute Error Δabs in the Electron
Density (e·bohr−3), Root Mean Square Error Δrms in the
Electron Density (e·bohr−3), and Error in the Magnitude and
Direction of the Dipole Moment, Δμ (D) and ϕμ, in the
MFCC and 3-FDE(n) Calculations of the Cystine and of
Three Dipeptides with Charged Residues

Δabs × 103 Δrms × 103 |Δμ| (D) ϕμ (deg)

cystine MFCC 0.44 0.020 0.17 5.0
3-FDE(0) 0.51 0.025 0.06 1.5
3-FDE(1) 0.49 0.025 0.06 0.6

Ala−Arg+ MFCC 1.45 0.058 0.81 0.0
3-FDE(0) 1.09 0.059 0.54 0.0
3-FDE(1) 0.99 0.058 0.40 0.0

Ala−Asp− MFCC 1.29 0.062 0.68 0.1
3-FDE(0) 1.04 0.070 0.22 0.0
3-FDE(1) 0.94 0.071 0.12 0.0

Asp−−Arg+ MFCC 4.46 0.183 6.79 4.5
3-FDE(0) 2.62 0.118 4.12 2.3
3-FDE(1) 2.41 0.118 3.87 1.7
3-FDE(2) 2.44 0.119 3.78 1.6
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electrons in each fragment is fixed and a charge-transfer
between subsystems is not possible.
For the dipeptides here we chose an approach identical to

the procedure followed in the calculations for proteins. We
prepared the test molecules for charged residues by cutting out
pairs of amino acids from protein structures on pdb files
(Asp31−Arg32 from 1ubq, Asp14−Ala15 and Ala33−Arg34
from 1e3v) and using the atom coordinates of neighboring
amino acids to generate NH−CH3 and CO−CH3 caps.
Consequently, the dipeptides were (de)protonated at the side
groups. The positions of the missing hydrogen atoms were
determined using openbabel routines without further geometry
relaxation for the resulting structures, as this is difficult in a gas
phase model. The error measures for the electron densities of
the three test systems are given in Table 3 and Table S4 of the
Supporting Information, isosurface plots of the difference
densities are depicted in Figure 5b−d.
For the dipeptides with charged side groups, larger

polarization errors can be expected and are indeed found. For
the capped Ala−Arg+ dipeptide, the MFCC density deviates on
the caps added to both the Ala and Arg residues and on the
methyl group of the Ala residue, which is due to missing
polarization by the other fragment. This is remedied in the 3-
FDE(n) calculations, again at the expense of some errors
introduced in the cap region. One can observe a negative
difference density on the Arg+ residue side of the cap, and a
positive difference density on the Ala residue side of the cap,
i.e., the 3-FDE(n) density is smaller than the reference density
on the Arg+ side. The Δabs error decreases from 1.45 × 10−3 to
1.09 × 10−3 and 0.99 × 10−3 e·bohr−3 going from MFCC to 3-
FDE(0) and 3-FDE(1), respectively, which is larger than for
neutral dipeptides, but still smaller than for the H+−His−Ala
and H+−Ala−Ala test systems mentioned earlier. These larger
errors are mainly due to the constraint of a fixed number of
electrons in the fragmentation which prohibits charge transfer
between the fragments. An indication of the amount of this
polarization is given by the Voronoi partial charges61 in the
reference calculation, which show that the Ala and Arg residues
should carry charges of +0.05 and +0.95, respectively.
A more significant improvement than for the densities can be

achieved in the error of the dipole moment, which is a factor of
2 smaller for the 3-FDE(1) calculation compared to the MFCC
calculation. The angular deviation is small for MFCC as well as

the 3-FDE calculations. The Δrms error is 30−50% larger than
for the neutral dipeptides and fairly constant for MFCC and 3-
FDE(n) calculations.
In the MFCC density of the capped Ala−Asp− dipeptide,

differences with respect to the reference density occur mainly
on the noncharged capped Ala fragment. The polarization via
the peptide bond in the supermolecule is reflected in Voronoi
partial charges of −0.15 and −0.85 on the Ala and Asp residues,
respectively. The shape of the 3-FDE(n) difference density
isosurfaces bear similarity to the Ala−Arg− dipeptide in the cap
region, but with reversed signs of the difference densities. Thus,
Δabs and Δrms are of the same order of magnitude for the Ala−
Asp− as for the Ala−Arg+ dipeptide. Likewise, the most
significant improvement is found for the error in the dipole
moment, from 0.68 (MFCC) to 0.12 D (FDE(1)), with the
MFCC+3-FDE dipole moments well aligned with the
reference, while the Δabs error decreases by ca. 30% and the
Δrms error is even larger for the 3-FDE(1) than for the MFCC
calculation.
The capped Arg+−Asp− dipeptide presents a more

challenging case for the evaluation of the performance of the
3-FDE method, since the comparison to a supermolecular
reference calculation is not clear-cut. The supermolecular
reference calculation is a gas phase calculation for a zwitterionic
structure. Usually, the neutral structure is stable in the gas
phase, while the zwitterionic structure is more stable when
solvation effects are included. This is reflected in the fact that a
level shift of 0.03 hartree had to be applied in order to converge
the gas phase calculation. Thus, the reference calculation also
represents a somewhat artificial situation. Charge transfer of a
larger extent can be expected because of the opposite charges
on the residues. In the supermolecular calculation, the Voronoi
partial charges show a transfer of 0.35 e with respect to
fragments with a formal charge of ±1. Apart from the peptide
bond, the Asp−Arg dipeptide features a hydrogen bond
between the carboxylic and an amino group. The charge
transfer at a hydrogen bond from a charged system can be as
large as 0.2 e per hydrogen bond,62 so that the differences in
the density due to neglecting the polarization via the hydrogen
bond and the peptide bond can be the same order of
magnitude. The restriction of integer number of electrons in
the fragment calculations therefore leads to considerable
differences in the density with respect to the supermolecular

Figure 5. Isosurface plots of the difference densities between the MFCC and FDE(n) calculations and the conventional supermolecular DFT
calculation for (a) cystine (contour value of 0.0005 e/bohr−3) and the (b) Ala−Arg+, (c) Ala−Asp−, and (d) Asp−−Arg+ dipeptides with caps
(contour value of 0.001 e/bohr−3). Graphics created with VMD.58
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calculation. This kind of restriction which constitutes a
drawback for reproducing the supermolecular density with
delocalized charges is on the other hand very well suited for
other purposes, e.g., to study charge-transfer reactions63 or
electron transfer.64−66 For example, with the constrained DFT
method,67,68 a fixed number of electrons in a certain volume
can be achieved by constructing an additional potential
analogously to the cap potential.
The consequences can also be observed in the MFCC

difference density, where it can be seen from the negative sign
(in Figure 5 blue) that the density in the supermolecule is
larger at the guanidinium group and at large parts of the cap
which forms a hydrogen bond with the carboxylate group of
Asp. Moreover, in the MFCC difference density, there are
regions where the polarization through the other fragment is
not described. This is reflected in Δrms and Δabs errors about a
factor of 3 larger than for the singly charged dipeptides and a
large difference in the dipole moment of 6.73 D. Although the
restriction to an integer number of electrons remains, the
polarization through the other fragment in the FDE(n)
calculations significantly decreases the Δrms and Δabs errors
and improves on the dipole moment error (still 3.87 D for
FDE(1), which is on the order of 10% of the total dipole
moment). The angular deviation ϕμ of the dipole moment
decreases from 4.5° to under below 2°. Also the isosurface plots
of the difference densities show smaller regions for the same
difference density value.
As a summary of this part, we conclude that peptide bonds

dividing a charged from a neutral residue, result in larger
density differences than found for neutral dipeptides due to the
lack of polarization of the peptide bond and the constraint of
integer number of electrons in the fragments. However,
reasonable densities and dipole moments are obtained.

6. THE BUBBLE PROTEIN AS CHALLENGING TEST
CASE FOR 3-FDE

Ubiquitin is a nearly ideal model system because of its very
moderate size, its high resolution X-ray structure, and its
structural features. However, it does not contain any disulfide
bonds. In order to validate the 3-FDE(n) scheme also for
proteins containing disulfide bonds, another small exemplary
protein was chosen: the bubble protein (pdb 1uoy69). The
bubble protein is described as a defensin70 with an interesting
charge distribution consisting of an acidic and a basic pole.69 It
contains four disulfide bonds and a salt bridge and has a small
enough size (64 amino acids, 452 non-hydrogen atoms) to
allow for supermolecular reference calculations. An X-ray
structure is available with a resolution of 1.5 Å and shows
some β-sheet structures, but no α-helix. The bubble protein can
serve as an example for disulfide bonds as well as the treatment
of charged side groups.
As a first step, the density of the bubble protein with neutral

residues was calculated using a partitioning into fragments of
the size of one amino acid. The calculated errors are given in
Table 4, and isosurface plots of the difference densities for the
MFCC and 3-FDE(n) calculations are depicted in Figure 6.
The errors in the density are only slightly larger than for the
analogous calculation on ubiquitin while the error in the dipole
moment of the MFCC calculations is much smaller than for the
ubiquitin. This can be attributed to the absence of an α-helix.
6.1. Describing Localized Charges with 3-FDE. In order

to obtain densities suitable for the calculation of interactions
between a protein and other molecules, it is essential to be able

to use the correct protonation state of the protein.71 Handling
both positively and negatively charged sites on one molecule is,
however, problematic in supermolecular DFT calculations
because this gives rise to a small gap between the highest
occupied and lowest unoccupied molecular orbitals. This makes
it difficult to converge the calculation to the desired physical
charge state, requiring additional measures such as level shifts,
restarts of the calculation from nonaufbau occupations, and
adjustment of the direct inversion in the iterative subspace
(DIIS) parameters. These problems were already observed for
the zwitterionic capped dipeptide formed from Arg+ and Asp−.
For such a small molecule one can analyze the convergence in
detail and arrive at a proper procedure, but this quantum-
chemical trial-and-error approach is not suitable for a full
protein. Instead, one wants a robust protocol to yield a
physically reasonable density with the correct protonation
states.
Such a protocol is provided by the 3-FDE approach because

the localization of the charge is a priori defined with an integer
number of electrons assigned to each fragment, preventing the
charge from delocalizing over different fragments and thereby
avoiding convergence problems. A drawback is that the
localization may be too strong, eliminating also physically
reasonable charge transfer to neighboring fragments. In order
to test for such effects we aim to assess the quality of a density
by comparison with a supermolecular reference density. To this
end, we need to determine a converged supermolecular density
that corresponds to a minimum in the electronic structure
degrees of freedom.72 For a gas-phase model, this is difficult to
achieve, because the application of convergence aids for

Table 4. Integrated Absolute Error Δabs in the Electron
Density (e·bohr−3), Root Mean Square Error Δrms in the
Electron Density (e·bohr−3), and Error in the Magnitude and
Direction of the Dipole Moment, |Δμ| (D) and ϕμ, in the
MFCC and 3-FDE(n) Calculations of the Neutral Bubble
Proteina

Δabs × 103 Δrms × 103 |Δμ| (D) ϕμ(°)

MFCC 4.54 0.045 7.30 5.0
3-FDE(0) 3.90 0.032 4.90 3.6
3-FDE(1) 2.74 0.028 4.54 5.3
3-FDE(2) 4.21 0.034 0.77 1.1
3-FDE(3) 3.04 0.030 5.47 6.4

aThe dipole moment in the supermolecular reference calculation is μ
= (−22.49, −11.03, 31.08 D), |μ| = 39.92 D.

Figure 6. Isosurface plots (contour value of 0.002 e/bohr−3) of the
difference densities between the MFCC and FDE(1) calculations and
the conventional supermolecular DFT calculation for the neutral
bubble protein. Graphics created with VMD.58
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enforcing the correct charge state may steer the calculation to a
saddle point. An alternative is to employ a more physical model
and allow for charge stabilization by the environment. If
solvation by a polar solvent is taken into account, e.g., by a
continuum solvation model such as the conductor-like
screening model (COSMO),73 the charges at the protein
surface are stabilized by countercharges and supermolecular
calculations can be converged to the correct charge state.
Therefore, we compare the MFCC and 3-FDE calculations to
the only available reference density, i.e., the one obtained from
a supermolecular calculation including solvation described by
the COSMO model. Note, however, that at this stage solvation
is not included in the MFCC and 3-FDE calculations. The
resulting difference densities are depicted in Figure 7, and the
integrated difference density measures are given in Table 5.

While for the MFCC results, the Δabs and Δrms differences
are only about one-third larger than for the neutral protein, for
the 3-FDE(n) results, they are about a factor of 2 larger. More
striking are the huge differences in the dipole moment, e.g.,
more than 80 D for the FDE(0) results. The comparison of the
fragment calculations to the supermolecular reference obviously
deserves closer attention. In the fragment calculations, each
residue constitutes one fragment, where the Asp and Glu
residues carry a negative and Arg and Lys residues a positive
charge, summing up to a total charge of the bubble protein in
our calculation of +1. When superposing isolated charged

fragments in the MFCC results, the individual dipole moments
add up to a relatively large dipole moment. If one allows these
densities to relax in the FDE(0) calculation, the electron
densities shift within the flexibility given by the basis functions
of this fragment and charge separation decreases, resulting in
lower dipole moments. In the supermolecular calculation
without solvation, electrons can be delocalized over several
fragments, so that an even lower dipole moment would be
expected if the calculation could be converged. However, in the
supermolecular calculation with solvation, charges at the surface
of the protein are stabilized, resulting in a larger dipole moment
than for MFCC. This large dipole moment with COSMO
solvation is in line with observations by Pichierri74 and explains
the larger dipole moment differences for FDE(n) results
relative to the MFCC results. Thus, these larger deviations in
the FDE(n) calculations compared to MFCC are not a
shortcoming of the 3-FDE scheme but appear because we are
comparing a 3-FDE not including solvation to a supermolecular
calculation that does include solvation.
Locally the density of the 3-FDE calculation resembles the

supermolecular reference density, but these small differences
add up to a large difference in dipole moment, particularly
along the x-axis. This suggests that electron density is shifted
along the basic funnel and acidic poles,69 which extend in
direction of the x-axis. In order to obtain a Δμ of 80 D along
one axis, 0.5 electrons need to be displaced by about 33.4 Å
(for comparison: the extension along the x-direction of this
molecule is 27.5 Å). Ordering the residues along the x-axis and
summing the difference densities of the FDE(0) results for both
the first and second 32 residues yields about 0.5 electrons
difference, confirming this shift of electrons in the x direction.
Through the stabilization by the COSMO countercharges at
the surface of the cavity, the density of negatively charged
groups is drawn toward the surface of the molecule, with the
largest difference close to the surface. Inside the protein the
density is just shifted without causing large local changes. This
is observable in the big difference density lobes located at the
surface of the molecule displayed in Figure 7.
A more straightforward comparison would be to apply the

continuum solvation model also in the 3-FDE(n) calculation. In
the 3-FDE fragment calculation, this would mean that the
fragment “feels” the embedding potential of all other fragments
and additionally the field by the solvation method. For efficient
applications of 3-FDE, this requires a smart implementation to
prevent an “iterative overload” in the determination of the
capping potential when both the solvation surface charges and
the SCF density change during the same iterative process. As a
simple first approximation to such a combination of 3-FDE
with COSMO, we ran 3-FDE calculations where for the
construction of the surface charges only the active density was
taken into account within the cavity for the full protein, but the
effect of the frozen densities was neglected. With this treatment,
the difference density close to the surface becomes smaller and
also the overall difference measures Δabs and Δrms as well as the
dipole moment error are reduced. One should keep in mind,
however that even with a consistent solvation treatment with
the same surface charges, a charge shift through the molecule is
by construction not possible with 3-FDE. Still, even for such a
challenging example, the 3-FDE method reproduces the
densities quite well locally. Besides integrating the COSMO
treatment in 3-FDE, further improvement is possible by
microsolvation, e.g., adding a number of explicit water

Figure 7. Isosurface plots (contour value of 0.002 e/bohr−3) of the
difference densities between the FDE(1) calculations and the
conventional supermolecular DFT calculation (with COSMO) for
the bubble protein with charged residues. Graphics created with
VMD.58

Table 5. Integrated Absolute Error Δabs in the Electron
Density (e·bohr−3), Root Mean Square Error Δrms in the
Electron Density (e·bohr−3), and Error in the Magnitude and
Direction of the Dipole Moment, |Δμ| (D) and ϕμ, in the
MFCC and 3-FDE(n) Calculations of the Bubble Protein
with Charged Residues

Δabs × 103 Δrms × 103
|Δμ|
(D)

ϕμ
(deg)

MFCC 7.05 0.063 22.67 2.2
w/o solvation 3-FDE(0) 7.58 0.060 80.16 1.8

3-FDE(1) 6.39 0.054 64.48 2.6
3-FDE(2) 7.22 0.057 65.03 1.6
3-FDE(3) 6.70 0.056 71.28 2.7

COSMO 3-FDE(0) 6.70 0.052 72.66 2.1
3-FDE(1) 5.69 0.047 57.95 2.7
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molecules. The FDE method has earlier been demonstrated to
work well for this kind of solvation treatment.31,33

6.2. Focusing on the Funnel and Salt-Bridge in the
Bubble Protein. Though the precise function of the bubble
protein is yet unknown, within the structure of the bubble
protein, a potential recognition site was described as including
the residues Arg12, Phe27, and Trp43 lying in a funnel;69 see
Figure 8a. We define this site by spheres of 5 Å around the

geometrical centers of these residues and performed MFCC+3-
FDE(n) calculations as an example for a focused density
calculation.
For a one-amino-acid-per-fragment partitioning (A−F), the

15 residues within the overlapping spheres (cf. Table S5 of the
Supporting Information) were updated in the FDE(0) and
FDE(1) calculations, while the 6 neighboring residues to
Arg12, Phe27, and Trp43, which do not lie within the spheres,
are included only in the FDE(0) updates.
To avoid the above-mentioned convergence problems related

to zwitterions or fragments with high charges, automatic
partitioning is restricted to result in only one charged residue
per fragment. The simplest choice for such a partitioning is to
use single residue fragments, but because results should
improve for larger fragments we decided to perform additional
test calculations to explore whether other partitionings could
also be worthwhile. We thus performed calculations for a
partitioning, where Arg12, Phe27, and Trp43 were treated
together in two 3- and one 2-residue fragment with their
neighboring fragments (E−F, cf. Table S5 of the Supporting
Information). In the last case, the 3-residue fragment including
Lys42 lead to SCF convergence problems, which is why Lys42
was left out. The two next neighbors on each side of the three
larger fragments were updated in the 3-FDE(0) calculation,
while the larger fragments were updated in FDE(0) as well as
FDE(1) calculations.
The 3-FDE calculations were compared to the super-

molecular calculation including solvation, the resulting error
measures are given in Table 6, and the difference density for the
FDE(1) calculation with full updates is shown in Figure 8a.
Compared to the density errors for the full protein, the Δabs

errors are comparable while Δrms errors are larger for the funnel
region. This was also the case for the ubiquitin face, although
slightly less pronounced. For the funnel region, an improve-
ment of the Δabs error over the MFCC results can only be
achieved with the second FDE cycle, FDE(1). For partitioning
A−F, with MFCC+3-FDE(0) practically the same results are
achieved within the spheres with 21 instead of 64 fragment
calculations (A). Adding another 15 fragment calculations for
MFCC+3-FDE(1) further improves the results, does not reach
the level of 3-FDE(1) with full updates (64 fragment

calculations), and does not even perform better than MFCC.
In order to improve with respect to the MFCC results, more
neighboring fragments therefore have to be updated. This is
probably due to thecompared to the neutral fragments
higher charges close by, which require a larger range in which
fragments are updated.
Employing larger fragments, as done in partitioning E−F

indeed decreases the density errors. Performing the 15
fragment calculations for MFCC+FDE(0) reaches nearly the
full 59 update level. With another additional three fragment
calculations for MFCC+FDE(1), the errors decrease further
but do not reach the agreement of the MFCC+3-FDE(1)
calculation of partitioning A.
In Table 6, results for the integration over another region of

the bubble protein, i.e., overlapping spheres around the salt
bridge between Asp1 and Arg32 (see Figure 8b), are given.
These two oppositely charged residues are connected via two
hydrogen bonds and represent a potentially difficult case for
FDE. The Δabs and Δrms values indicate that such a situation
does not lead to more difficulties than e.g., the funnel region,
but to the contrary, already the first FDE cycle yields an
improvement over the MFCC results. Note again that the
MFCC and 3-FDE calculations do not include solvation.
Therefore, the larger errors can in part be attributed to the
stabilization of charges at the protein surface due to the
inclusion of a COSMO solvent environment in the super-
molecular calculation.

7. TOWARD QUANTUM-CHEMICAL DOCKING
SIMULATIONS

So far, we have focused on the quality of the electron density as
this is a fundamental quantity from which many molecular
properties can be derived. In this final section, we will provide
an assessment of the expected accuracy of the resulting
electrostatic potential and the efficiency of the procedure

Figure 8. (a) Possible recognition site within the bubble protein
molecule: Arg12, Phe27, and Trp43 and (b) salt-bridge between
Asp10 and Arg32. Graphics created with VMD.58

Table 6. Integrated Absolute Error Δabs in the Electron
Density (e·bohr−3) and Root Mean Square Error Δrms in the
Electron Density (e·bohr−3) in the MFCC and 3-FDE(n)
Calculations of the Bubble Protein with Charged Residues
for Arg12, Phe27, Trp43 in the Funnel and the Salt-Bridge
between Asp10 and Arg32a

no. frag calc Δabs × 103 Δrms × 103

funnel
A 64 MFCC 6.01 0.141

64 3-FDE(0) 7.94 0.160
64 3-FDE(1) 5.46 0.115

A−F 21 MFCC+3-FDE(0) 7.93 0.161
15 MFCC+3-FDE(1) 6.59 0.134

E 59 MFCC 6.00 0.144
59 3-FDE(0) 7.39 0.148
59 3-FDE(1) 5.06 0.103

E−F 15 MFCC+3-FDE(0) 7.37 0.152
3 MFCC+3-FDE(1) 6.71 0.138

salt-bridge
A 64 MFCC 7.08 0.194

64 3-FDE(0) 5.73 0.136
64 3-FDE(1) 4.85 0.121

aFor comparison, the number of fragment calculations (no. frag calc)
is also given. All MFCC and 3-FDE calculations are performed without
solvation, while the supermolecular reference calculation includes
COSMO solvation.
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relative to conventional calculations. Both aspects are important
for the applicability of the 3-FDE scheme in future applications
in quantum-chemical docking simulations, which we plan to
explore in more detail in future work.
One property that is of direct relevance to chemical reactivity

and molecular recognition is the electrostatic potential V(r) =
Vnuc(r) + ∫ [ρ(r)/|r − r′|] d3r′ at possible interaction sites. This
is the most important ingredient for estimating the interaction
energy of a protein with some probe molecule in docking
simulations. In order to assess errors in this quantity, we will
look at the electrostatic potential (calculated from the fitted
electron density) on a grid surrounding the protein for selected
MFCC, 3-FDE, and supermolecular reference calculations. As a
convenient grid we employed the coordinates of the COSMO
surface segments generated with the default parameters for
water. For each point ri in this grid we can calculate the
absolute error ΔV(ri) = |VKS(ri) − VFDE(ri)| of the electrostatic
potential obtained from the MFCC or 3-FDE calculation
relative to one from the supermolecular KS reference
calculation. For a local analysis, only the grid points
(COSMO segments) belonging to the amino acids of the
interaction site are employed.
For a probe charge q, the error ΔV(ri) in the electrostatic

potential causes an error ΔE(ri) = qΔV(ri) in the interaction
energy. Thus, an average error in the interaction energy with a
probe charge can be calculated as

Δ =
∑ |Δ |

∑
=

∑ |Δ |
∑

E
S E

S

q S V

S

r r( ) ( )i i i

i i

i i i i

i i

probe

(9)

where we weight each grid point with the area Si of the
corresponding COSMO surface element. For the probe charge,
we chose an (arbitrary) value of q = 0.1 e, which is the order of
magnitude of the atomic partial charges in typical probe
molecules. In addition, we can calculate a relative error in the
interaction energy as

Δ =
∑ |Δ |
∑ | |

V
S V

S V

r

r

( )

( )
i i i

i i i

rel
KS

(10)

which corresponds to a relative error in the electrostatic
potential because the value of the probe charge q drops out.
The measures have to be considered as an upper bound for

the errors in the electrostatic interaction energy with a probe
molecule. Typically, we can expect that the errors are similar for
neighboring grid points. Therefore, for a neutral probe
molecule, the errors in the electrostatic potential will cause
errors of similar magnitude and opposite sign for positive and
negative partial charges that largely cancel. In addition, in
docking simulations the position of the probe molecule will
adjust to the changed electrostatic potential, possibly decreasing
the error in the interaction energy further. Finally, one can
expect further error cancellation if only the difference between
the interaction energies of different probe molecules are of
interest.
In Table 7, the results for ΔEprobe and for ΔVrel are given,

with the Δabs error in the electron density added for
comparison. Results are shown for the interacting face of
ubiquitin (see section 3.2) and for the funnel of the bubble
protein (see section 6.2), using the partitioning into single
amino acid fragments. In all cases, we can observe a clear
correlation between the error in the density and the error in the
electrostatic potential, which is in turn related to the error in

the interaction energy with a probe charge. If the error in the
electron density becomes smaller, also the error in the
electrostatic potential around the molecule decreases. For the
interacting face of ubiquitin, ΔEprobe decreases from 13.0 kJ/
mol with MFCC to 10.4 kJ/mol with FDE(1), which
corresponds to relative errors of 36.6% and 29.2%, respectively.
For the funnel of the bubble protein, the decrease is even more
pronounced with 22.8 kJ/mol for MFCC and 10.9 for FDE(0),
i.e., the error in the electrostatic potential and in the interaction
energy is halved. For both proteins, a similar error as for the full
FDE(0) or FDE(1) calculations is already achieved in the
MFCC+FDE(0) or MFCC+FDE(1) calculations, in which
only the amino acids at the interacting site are updated.
Comparing the density and potential errors for FDE(1) and

MFCC+FDE(1), one notices that while the error in the density
is larger for MFCC+FDE(1), the errors in the electrostatic
potential are very similar. This is understandable, as the density
errors in MFCC+FDE(1) compared to FDE(1) will be larger at
the interface between the MFCC and the 3-FDE regions. This
is further away from the grid points at which the electrostatic
potential is probed, so it affects the error in the electrostatic
potential only slightly. The order of magnitude of the errors in
the interaction energy with a small probe charge of more than
10−20 kJ/mol and of relative errors of approximately 15−35%
seems rather large at first glance. However, as discussed above,
these have to be considered as an upper bound for errors in the
interaction energy with real probe molecules. Here, the
definition of ΔEprobe and for ΔVrel in terms of absolute values
does not allow for any kind of error cancellation. Moreover, the
errors in the interaction energies will further decrease if a
partitioning into larger fragments is considered. We also note
that errors of ca. 20 kJ/mol were also observed in the MFCC
study in ref 24 for a partitioning into single amino acid
fragments. A better assessment of the error by docking probe
molecules using the obtained electrostatic potentials is planned
for a follow-up study but falls outside the scope of the current
work. We expect that the decrease in the error measures
considered here will correspond to a significant decrease in
error in relative energies when comparing different probe
molecules.

Table 7. Integrated Absolute Error Δabs in the Electron
Density (e·bohr−3), Average Error ΔEprobe in the Interaction
Energy with a Probe Charge of q = 0.1 e (kJ/mol), and
Average Relative Error in the Electrostatic Potential, ΔVrel

for MFCC and 3-FDE(n) calculationsa

Δabs × 103 ΔEprobe ΔVrel

ubiquitin (interaction site)
A MFCC 4.67 13.0 36.6%

3-FDE(0) 4.12 12.9 36.3%
3-FDE(1) 2.82 10.4 29.2%

A−F MFCC+3-FDE(0) 4.26 11.2 31.5%
MFCC+3-FDE(1) 3.44 10.9 30.8%

bubble protein (funnel)
A MFCC 6.01 22.8 26.2%

3-FDE(0) 7.94 10.9 11.5%
3-FDE(1) 5.46 12.6 14.1%

A-F MFCC+3-FDE(0) 7.93 16.7 14.5%
MFCC+3-FDE(1) 6.59 19.9 17.3%

aAll errors for ubiquitin refer to the interacting face, while all errors for
the bubble protein refer to the funnel site.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct3008759 | J. Chem. Theory Comput. 2013, 9, 2425−24402437



Finally, the efficiency of the quantum-chemical calculation is
the main bottleneck for their routine application in docking
simulations. Even though efficiency of the implementation has
not been our main focus so far, we will provide some timings
comparing fragment and supermolecular calculations (cf. Table
8) to indicate the performance. All calculations mentioned were

performed on a compute cluster with 2.26 GHz Intel 8-core
nodes, each equipped with 24 GB memory and connected via
Infiniband. For the supermolecular calculations, 16 cores
distributed over 4 nodes were used because of the memory
requirements per process, while for the 3-FDE calculations, 2
nodes with 8 cores each could be employed. As we only use a
small number of nodes, the scaling of ADF with the number of
cores is almost linear. For our examples, the supermolecular
reference calculation is still significantly faster (6 times for the
bubble protein and 4 times for the larger ubiquitin) than
FDE(1) with full updates. This is due to the slow convergence
of the cap generation procedure, which requires many iterations
to converge. The cost per iteration for the 3-FDE calculations
is, however, significantly smaller than a supermolecular
calculation as is visible in the individual timings for the
MFCC calculation for which the cap potential is not required.
We also note that the 3-FDE(1) update is slightly faster than
the 3-FDE(0) calculations as fewer iterations are needed to
converge.
Already for these two examples we can see that the ratio

between the supermolecular and 3-FDE timings gets more
favorable when the size of the protein is increased, as expected.
Before the point of equal computational times would be
reached, however, the supermolecular calculation would
probably not be feasible anymore, as the required memory
grows quadratically with system size, while the memory
requirements for 3-FDE remain constant. This was already
evident for our relatively small test systems. However, even
with the current implementation 3-FDE becomes advantageous
if only a smaller part of the protein is of interest. For ubiquitin,
the required computer time is similar for MFCC+FDE(1) as
for the supermolecular calculation, while the MFCC+FDE(0)

calculation is significantly faster while providing results of
similar accuracy. Note that, as the iterations for the caps are the
bottleneck in the current implementation, the computational
effort decreases for the partitionings with larger fragments.
Thus, the timings presented here can be considered as a worst-
case scenario. For future applications, further improvements in
the determination of the cap potential are possible, for instance
by expanding the cap potential in a basis set.41 We will address
such performance enhancements in future work.

8. CONCLUSIONS

We have extended the 3-FDE scheme such that it is applicable
to a wide range of proteins, including proteins containing
disulfide bonds and proteins with charged side groups. Further
we have introduced more flexibility into the setup to allow the
user to define partitioning schemes using chemical insight. With
partial updates in the iterative 3-FDE scheme, focusing on
selected parts of the protein becomes possible. This will be
essential for the fully quantum-chemical description of
protein−protein and protein−ligand interactions.
For proteins with neutral side groups, the electron density

and the dipole moment can be reproduced with good accuracy
with two 3-FDE cycles, one 3-FDE cycle already yields decent
densities and dipole moments and an improvement over the
MFCC densities. Small artifacts can be observed in the density
of the cap regions, so that the MFCC results yield a better
description for the backbone, but for the side groups 3-FDE
takes the influence of the environment into account. Larger
fragment sizes decrease the errors in the density, which is
especially important for secondary structure elements. For a
hotspot in a protein, choosing larger fragment sizes in
combination with including a few neighboring fragments
leads to accurate results at reduced costs.
Proteins with charged side groups pose a challenge for DFT

calculations in general because of the charges localized on
different parts of the molecule. In the standard KS-DFT
calculation solvation is a way to stabilize these charges. With 3-
FDE, localization of charges is achieved by assigning them to
fragments, so that a solvation treatment is not necessary to
achieve convergence. It precludes a flow of electrons via peptide
and hydrogen bonds, but this might turn out to be an advantage
for cases where the charge needs to be localized.
The current implementation of the cap potential con-

struction is the major computer-time-consuming part which
leaves room for large improvements. For small proteins, there is
therefore currently no reduction of computer time with respect
to the conventional supermolecular DFT calculation. Large
systems on the other hand, which are not feasible for
conventional DFT calculations due to memory requirements
and increased difficulties in the treatment of localized charges,
are still possible with 3-FDE. However, one is usually not
interested in electron densities of full proteins, but rather in an
accurate description of some interacting site. For describing
protein−protein and protein−ligand interactions, this will be an
interacting face or a binding pocket, respectively. Here, we have
demonstrated that in such scenarios, 3-FDE can provide
accurate electron densities of selected parts of a protein at a
significantly reduced computational cost. This can pave the way
to accurate quantum-chemical docking simulations.

Table 8. Exemplary Timings for Selected Supermolecular,
MFCC, and 3-FDE Calculations Run on 16 Coresa

ubiquitin KS 6:24

A MFCC 0:46
3-FDE(0) 14:56

A, parallel FT 3-FDE(1) 11:00
total 26:42

A MFCC 0:46
A−F MFCC+3-FDE(0) 3:14

MFCC+3-FDE(1) 2:15
total 6:15

bubble protein KS 4:37

w/o solvation A MFCC 0:40
3-FDE(0) 12:12
3-FDE(1) 11:43
total 24:35

A MFCC 0:40
w/o solvation A−F MFCC+3-FDE(0) 5:10

MFCC+3-FDE(1) 3:15
total 9:05

aTimes are given separately for each step as well as the total time
(h:min).
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