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The reconstruction of the exchange–correlation potential from accurate ab initio electron densities
can provide insights into the limitations of the currently available approximate functionals and pro-
vide guidance for devising improved approximations for density-functional theory (DFT). For open-
shell systems, the spin density is introduced as an additional fundamental variable in spin-DFT. Here,
we consider the reconstruction of the corresponding unrestricted Kohn–Sham (KS) potentials from
accurate ab initio spin densities. In particular, we investigate whether it is possible to reconstruct the
spin exchange–correlation potential, which determines the spin density in unrestricted KS-DFT, de-
spite the numerical difficulties inherent to the optimization of potentials with finite orbital basis sets.
We find that the recently developed scheme for unambiguously singling out an optimal optimized
potential [Ch. R. Jacob, J. Chem. Phys. 135, 244102 (2011)] can provide such spin potentials accu-
rately. This is demonstrated for two test cases, the lithium atom and the dioxygen molecule, and target
(spin) densities from full configuration interaction and complete active space self-consistent field cal-
culations, respectively. © 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4788913]

I. INTRODUCTION

Density-functional theory (DFT) within the Kohn–Sham
(KS) framework1, 2 represents one of the most frequently ap-
plied quantum-chemical methods for electronic structure cal-
culations and for the determination of molecular properties.
Its success relies on the accuracy of existing approximations
to the exchange–correlation (xc) energy functional Exc[ρ] and
to the xc potential vxc[ρ] = δExc[ρ]/δρ, i.e., the functional
derivative of Exc[ρ] with respect to the electron density ρ(r).3

However, for open-shell systems, in particular for transition
metal complexes, the existing approximations have a number
of severe shortcomings,4–6 for instance, for the prediction of
the energy differences between different spin states7–11 and of
spin-density distributions.12–15

While the universal functionals Exc[ρ] and vxc[ρ] are un-
known, there exists a numerical recipe for obtaining the exact
xc potential vxc[ρ0] corresponding to the ground-state elec-
tron density ρ0 of arbitrary atomic and molecular systems.
First, this ground-state electron density ρ0 can be calculated
accurately—and in principle exactly—using wave-function
based ab initio calculations. Second, the Kohn–Sham poten-
tial vs[ρ0] that yields the density ρ0 in a noninteracting sys-
tem can be reconstructed. Finally, by subtracting the known
nuclear and Coulomb potentials from this reconstructed po-
tential, the xc potential vxc[ρ0] can be obtained. Such recon-
structed ground-state xc potentials can provide guidance for
the construction of approximate xc potentials16–19 and energy
functionals.20–22

The key step in the above recipe is the reconstruction
of the potential vs[ρ0] from the target density ρ0. This step
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corresponds to an inverse problem in quantum chemistry,23

i.e., the potential is sought which generates a given tar-
get density in a noninteracting reference system. This po-
tential reconstruction is also essential for quantum-chemical
subsystem and embedding methods (for a review, see
Ref. 24), in which it can be used to avoid the need for ap-
proximating the nonadditive kinetic-energy,25–30, 32 or for de-
veloping better approximations for this part of the embedding
potential.31–33

The inverse problem of reconstructing the noninteract-
ing local potential yielding a given target density is equiv-
alent to evaluating the functional derivative of the noninter-
acting kinetic-energy functional Ts[ρ],34, 35 which is an im-
plicit functional of the electron density. For evaluating such
functional derivatives of implicit functionals, the optimized
effective potential (OEP) method can be employed, which
tackles the inverse problem by minimizing the implicit func-
tional with respect to the local potential,36–38 possibly sub-
jected to additional constraints.39 Thus, the reconstruction of
local potentials is a special case of the more general prob-
lem of evaluating the functional derivative of implicit density
functionals.

While OEP implementations employing fully numeri-
cal calculations on real-space grids are available (see, e.g.,
Refs. 40 and 41), their applicability is currently limited to
benchmark calculations for atoms and diatomic molecules.
Thus, for applying OEP methods to many-electron systems
and large molecules, the orbitals have to be expanded in finite
basis sets. The introduction of a finite orbital basis set, how-
ever, turns the OEP method into an ill-posed problem and the
solution becomes non-unique.42 This ill-posed nature is com-
mon to many inverse problems and makes the inverse map-
ping from an electron density to a local potential unstable
and sensitive to optimization parameters. Furthermore, these

0021-9606/2013/138(4)/044111/16/$30.00 © 2013 American Institute of Physics138, 044111-1

Downloaded 29 Jan 2013 to 129.13.72.198. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.4788913
http://dx.doi.org/10.1063/1.4788913
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4788913&domain=pdf&date_stamp=2013-01-29


044111-2 Boguslawski, Jacob, and Reiher J. Chem. Phys. 138, 044111 (2013)

drawbacks result in unphysical potentials, which can con-
tain large oscillations affecting orbital energies and derived
properties.42, 43

To allow for a routine application of the OEP method
in quantum chemistry approaches to regularize the OEP so-
lutions have been proposed. One approach developed by
Heßelmann et al.44 is based on explicitly constructing an or-
bital basis set that is balanced with respect to the basis set
employed for expanding the potential, whereas the orbital ba-
sis set is balanced implicitly in the approach of Kollmar and
Filatov.45, 46 However, these methods require very large orbital
basis sets, which hampers their application to larger molec-
ular systems. A different approach was developed by Yang
and co-workers,43, 47 who introduced a regularization param-
eter in the energy functional to make the resulting optimized
potentials as smooth as possible. Recently, an approach which
yields unambiguous potentials for any combination of orbital
and potential basis sets and that provides high-quality poten-
tials already with small orbital basis sets was suggested by
one of us.48 It is based on the condition that the optimal re-
constructed potential should yield the target density when ex-
tending the orbital basis set.

So far, OEP methods for reconstructing the xc poten-
tial from accurate ab initio densities have mainly been ap-
plied to closed-shell systems, i.e., to the total electron den-
sity as target only (for exceptions, see Refs. 32 and 49). For
open-shell systems, one commonly employs an unrestricted
KS-DFT formalism,1, 50, 51 in which the spin polarization den-
sity Q(r) = ρα(r) − ρβ(r) is used as an additional funda-
mental variable. This leads to separate KS equations for α-
and β-electrons containing different xc potentials vα

xc[ρ,Q]
= δExc[ρ,Q]/δρα and v

β
xc[ρ,Q] = δExc[ρ,Q]/δρβ , i.e., the

α- and β-electron densities ρα(r) and ρβ(r), respectively, are
determined separately. In the following, we will refer to Q(r)
as spin density, to distinguish it from the spin polarization
ζ (r) = Q(r)/ρ(r) often used in the DFT literature.1 To de-
note Q(r) as spin density is also common in the discussion
of electron spin resonance experiments52 and in texts on spin
in quantum chemistry53, 54 as well as in density-functional
theory51 and related approaches.55 We note that sometimes
the term spin density is also used for the individual ρα(r) and
ρβ (r).4 To avoid confusion, we will use α-electron density
and β-electron density for ρα(r) and ρβ(r), respectively, in
the following.

In such an unrestricted KS-DFT formalism, the ex-
act spin-resolved xc functional would yield—in addition
to the exact total electron density—also the exact spin
density.51, 56, 57 While the total electron density is determined
by the total xc potential

vtot
xc [ρ,Q] = δExc[ρ,Q]

δρ(r)
= 1

2

(
vα

xc[ρ,Q] + vβ
xc[ρ,Q]

)
, (1)

the spin density in unrestricted KS-DFT is determined by the
spin xc potential51

vspin
xc [ρ,Q] = δExc[ρ,Q]

δQ(r)
= 1

2

(
vα

xc[ρ,Q] − vβ
xc[ρ,Q]

)
.

(2)

The former appears in the minimization of the total energy
with respect to ρ(r), whereas the latter appears in the mini-
mization with respect to Q(r).51 Thus, for improving the spin-
density dependance of approximate xc potentials, it would
be desirable to be able to reconstruct this spin xc potential
v

spin
xc [ρ0,Q0] from accurate ab initio total and spin densities.

We note that for a given spin state [i.e., an eigenstate of Ŝ2

with eigenvalue S(S + 1)], the spin density depends on the
chosen value of MS = −S, . . . , +S (i.e., the eigenvalue of
Ŝz)51 and is given by QMS (r) = (MS/S)QMS=S(r). Here, we
will focus on the case MS = S, as it is commonly considered
in KS-DFT, and because it is the only one that is described
adequately by the currently available xc functionals.58, 59 For
other values of MS, the total and spin xc potentials differ, be-
cause in unrestricted KS-DFT the xc energy depends on MS.51

A reconstruction of the spin xc potential v
spin
xc [ρ0,Q0]

from accurate ab initio (spin) densities has not been attempted
previously. When using finite orbital basis sets, such a recon-
struction of v

spin
xc [ρ0,Q0] is particularly challenging, as it will

be more sensitive to numerical errors than a reconstruction of
the total or the individual α- and β-electron potentials. Here,
we extend the unambiguous potential reconstruction devel-
oped in Ref. 48 to the spin-unrestricted case. This requires nu-
merical enhancements of our implementation prompted by the
use of Gaussian-type orbitals (GTOs) for expanding the or-
bitals in such wave-function based calculations. Even though
the reconstruction algorithm of Ref. 48 can be applied to the
spin-unrestricted case without significant modifications, for
employing it for the reconstruction of spin potentials its accu-
racy needs to be assessed carefully, if possible by comparison
to reference potentials reconstructed in fully numerical calcu-
lations. Thus, the reconstruction of spin potentials can serve
as an additional verification of the quality of the potentials
reconstructed with the algorithm of Ref. 48.

This work is organized as follows. Section II briefly re-
views the potential reconstruction algorithm and outlines its
extension to the spin-unrestricted case. In Sec. III, the com-
putational methodology and extensions of our implementa-
tion are described. Subsequently, we study the reconstructed
xc potentials for two test cases, the lithium atom and the
O2 molecule, in Sec. IV. Here, target densities from both
KS-DFT calculations and from accurate wave-function based
ab initio calculations (full configuration interaction (Full-CI)
and complete active space self-consistent field (CASSCF))
are employed. Finally, our conclusions are summarized in
Sec. V.

II. THEORETICAL BACKGROUND

A. Determining optimized unrestricted Kohn–Sham
potentials

Within spin-unrestricted KS-DFT, the wavefunction of
the KS reference system is given by a (spin-unrestricted) N-
electron Slater determinant, which is constructed from
N = Nα + Nβ orthonormal one-particle functions
{φσ

i (r)σ (s), σ = α,β}. The corresponding spatial or-
bitals φσ

i (r) can then be determined by solving two separate
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sets of one-electron equations51

[
−1

2
( + vα

s [ρ,Q](r)
]

φα
i (r) = εα

i φα
i (r) and

[
−1

2
( + vβ

s [ρ,Q](r)
]

φ
β
i (r) = ε

β
i φ

β
i (r), (3)

where the α- and β-electron KS potentials are given by

vσ
s [ρ,Q](r) = vnuc(r) + vCoul[ρ](r) + vσ

xc[ρ,Q](r), (4)

with the nuclear potential vnuc(r), the Coulomb poten-
tial vCoul[ρ](r) =

∫
ρ(r′)/|r − r′| d3r ′, and the xc potential

vσ
xc[ρ,Q](r) = δExc[ρ,Q]/δρσ (r). The α- and β-electron

densities are then obtained from the KS orbitals {φσ
i } as

ρα(r) =
Nα∑

i

|φα
i (r)|2 and ρβ (r) =

Nβ∑

i

|φβ
i (r)|2. (5)

Here, we consider the inverse problem of determining the
spin-resolved KS potential [i.e., the local potentials vα

s (r) and
v

β
s (r)] from given α- and β-electron target densities, ρα

0 (r)
and ρ

β
0 (r), that is, we require

ρα(r) = ρα
0 (r) and ρβ(r) = ρ

β
0 (r). (6)

An alternative way of expressing this problem is to con-
sider the total and spin densities,51

ρ(r) = ρα(r) + ρβ(r) and Q(r) = ρα(r) − ρβ (r) (7)

as target, and to regard the total and spin potentials,51

vtot
s (r) = 1

2

(
vα

s (r) + vβ
s (r)

)
and

vspin
s (r) = 1

2

(
vα

s (r) − vβ
s (r)

)
(8)

as the quantities that are sought. Here, the total KS potential

vtot
s [ρ,Q](r) = vnuc(r) + vCoul[ρ](r) + vtot

xc [ρ,Q](r) (9)

is the component determining the total electron density,
whereas the spin KS potential

vspin
s [ρ,Q](r) = vspin

xc [ρ,Q](r) = δExc[ρ,Q]
δQ(r)

(10)

determines the spin density. Therefore, this representation
will be particularly useful for understanding the dependence
of the xc potential on the spin density Q(r) and to identify
the reason for the failure of approximate xc functionals to de-
scribe the spin density correctly in some cases.15

In principle, any method applicable for reconstructing the
KS-potential in closed-shell systems could be adapted to the
spin-unrestricted case by applying it separately to the α- and
β-electron densities. However, already the closed-shell cases
poses many numerical difficulties, and achieving uniform ac-
curacy for the α- and β-spin potentials, as it is required for ob-
taining v

spin
s (r) accurately, turns out to be a challenging task.

The conceptually simplest approach for determining the
local potential yielding a given target density is to repre-
sent the potential numerically on a grid and to determine it
iteratively. Several methods working along these lines have

been developed over the past decades.16, 60–63 Generally, these
methods calculate the density from some trial potential and
then update the potential by comparing the density to the tar-
get density. If the density is too large at a grid point, the po-
tential is made more repulsive at this point. Conversely, if
the density is too small, the potential is made more attrac-
tive. This process is repeated iteratively until the target den-
sity is obtained. Different numerical potential reconstruction
methods differ in the way in which the potential is updated
in each iteration.16, 62, 63 The only exception is the method of
Zhao–Morrison–Parr,61 which uses a conceptually different
approach.

However, such numerical methods also require that the
KS equations [Eq. (3)] are solved numerically on the same
grid. Therefore, their application has mainly been limited to
(closed-shell) atoms and, in some cases, (closed-shell) di-
atomic molecules.64, 65 Here, we will employ such a fully nu-
merical scheme to obtain accurate reference potentials for
atoms. For determining optimized KS potentials in general
molecular systems, both the orbitals and the potential are usu-
ally expanded in a basis set.37, 39 However, as will be discussed
below, with finite orbital basis sets the potential reconstruc-
tion turns into an ill-posed problem, in which the resulting
potential is not unique.42, 43, 66

To overcome the resulting numerical difficulties, we
will apply the recently developed unambiguous optimization
method48 and generalize it to unrestricted KS potentials. This
scheme is based on a two-step procedure, in which one first
determines a non-unique potential using a direct optimization
in a finite basis set. Subsequently, an unambiguous optimized
potential is singled out by means of a suitable criterion.

B. Direct optimization of unrestricted Kohn–Sham
potentials

In the first step, two non-unique local potentials vα
s (r) and

v
β
s (r) yielding the target α- and β-electron densities ρα

0 (r) and
ρ

β
0 (r), respectively, in a given finite basis set have to be deter-

mined. To this end, we apply the direct optimization method
by Wu and Yang (WY)39 and extend it to the spin-unrestricted
case.

The KS kinetic energy for any pair of α- and β-electron
densities ρα

0 , ρ
β
0 is defined as1, 67

Ts

[
ρα

0 , ρ
β
0

]
= min

*s→ρα
0 ,ρ

β
0

〈*s |T̂ |*s〉 = 1
2
Ts[2ρα

0 ] + 1
2
Ts

[
2ρ

β
0

]
,

(11)

where T̂ = −(/2 is the kinetic-energy operator and where
the minimization includes all wavefunctions *s correspond-
ing to a spin-unrestricted N-electron Slater determinant
with α- and β-electron densities ρα(r) and ρβ(r). Hence,
Ts[ρα

0 , ρ
β
0 ] corresponds to the minimum kinetic energy of an

unrestricted KS wave function *s under the constraint that its
α- and β-electron densities equal the target densities.68, 69

The constraint minimization problem of Eq. (11) can
be reduced to two separate problems for 2ρα and 2ρβ ,
respectively, which results in two Lagrangian functionals,
W α[ρα(r)] and W β[ρβ(r)], subject to the constraints of
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Eq. (6) with two corresponding Lagrangian multiplier func-
tions, vα

s (r) and v
β
s (r),

W σ [vσ
s ] =

Nσ∑

i

〈φσ
i |T̂ |φσ

i 〉 +
∫

vσ
s (r)

(
ρσ (r)

−ρσ
0 (r)

)
d3r for σ = α,β. (12)

Following Ref. 39, the local potentials which yield the target
α- and β-electron densities can now be determined by the un-
constrained maximization of W σ [ρσ (r)] with respect to the
local potential vσ

s (r) for each electron spin σ .
To perform this maximization, the local potential is ex-

panded in a finite basis set as38, 39

vσ
s (r) = vext(r) + vCoul[ρ0](r) + v0(r) +

∑

t

bσ
t gt (r), (13)

where vnuc(r) is the nuclear potential, vCoul(r) is the Coulomb
potential of the target density ρ0 = ρα

0 + ρ
β
0 , and v0(r) repre-

sents an initial guess for the xc potential, while the remainder
is expressed as a linear combination of a finite set of basis
functions {gt (r)} with coefficients {bσ

t }. For fixed vext(r) and
v0(r), the unconstrained maximization of W σ [vσ ] turns into
an extremum problem with respect to the expansion coeffi-
cients {bσ

t } for each electron spin. The first and second deriva-
tives of W σ [ρσ (r)] with respect to {bσ

t } can be calculated an-
alytically and one obtains39 the following expression for the
gradient:

∂W σ

∂bσ
t

=
∫

gt (r)
(
ρσ (r) − ρσ

0 (r)
)

d3r (14)

and the Hessian,

Hst = ∂2W σ

∂bσ
s ∂bσ

t

= 2
occσ∑

i

unoccσ∑

a

〈
φσ

i

∣∣gs

∣∣φσ
a

〉〈
φσ

a

∣∣gt

∣∣φσ
i

〉

εσ
i − εσ

a

, (15)

for each electron spin σ . Note that Eqs. (14) and (15) are sim-
plified for the case of real-valued orbitals here. With the gradi-
ent and Hessian available, the maximization can be performed
using a standard Newton–Raphson optimization.

If a finite basis sets is employed for representing the KS
orbitals, the potential reconstruction turns into an ill-posed
problem and the optimized potentials resulting from the WY
direct optimization as described here are not unique.42, 43, 66

This can be seen48 by considering a change in the local α- or
β-electron potential (vσ

s (r) = vσ
s (r) − vσ

s,0(r), where vσ
s,0(r)

is the potential obtained from the direct optimization, gener-
ating the orbitals {φσ

i } and {φσ
a }. To first order, this change

(vσ
s (r) induces a response in the density

(ρσ (r) = 2
occσ∑

i

unoccσ∑

a

〈
φσ

a

∣∣(vσ
s

∣∣φσ
i

〉

εσ
i − εσ

a

φσ
i (r)φσ

a (r), (16)

with (vσ (r) =
∑

t (bσ
t gt (r) and (bσ

t = bσ
t − bσ

t,0. Here, one
notices that any change in the potential (vσ

s (r) will leave the
electron density unchanged if 〈φσ

a |(vσ
s (r)|φσ

i 〉 = 0. Hence, if
the orbital basis is not flexible enough, the α- and β-electron
densities are not affected by certain changes, e.g., oscillations,
in the respective potentials. Linear combinations of basis
functions gt (r) for which the condition 〈φσ

a |(vσ
s (r)|φσ

i 〉 = 0
holds are obtained by inserting the basis set expansion for

the potential and performing a singular value decomposi-
tion (SVD) of the matrix Bσ

ai,t = 〈φσ
a φσ

i |gt 〉/(εσ
i − εσ

a ), which
leads to

(ρσ (r) = 2
∑

r

sσ
r (b̃σ

r -̃σ
r (r), (17)

where {sσ
r } are the singular values of Bσ and where (b̃σ

r

=
∑

t V
σ
t,r(bσ

t and -̃σ
r (r) =

∑
ia Uσ

ia,rφ
σ
i (r)φσ

a (r) are the ex-
pansion coefficients of the change in the potential and the
occupied–virtual orbital products transformed with the left
and right singular vectors, (V σ

t,r ) and (Uσ
ia,r ), respectively.

Here, the transformed expansion coefficients b̃σ
r refer to the

transformed potential basis functions g̃σ
r (r) =

∑
t V

σ
t,rgt (r).

Thus, we notice that if one of these transformed potential ba-
sis functions g̃σ

r (r) corresponds to a singular value sr that is
zero or very small, the corresponding expansion coefficient
b̃σ

r (r) can be changed (almost) freely without affecting the
density. Therefore, an additional criterion is necessary for sin-
gling out the optimal optimized potential among those yield-
ing the same density within the finite basis set.

C. Choosing the optimal optimized potential

One possibility for unambiguously singling out an opti-
mized potential was suggested in Ref. 48. This scheme starts
from the requirement that the optimized potential obtained
with a finite orbital basis set should be as close as possible
to the one obtained in the basis set limit. Specifically, the den-
sity calculated from the optimal optimized potential should
still agree with the target density ρα

0 (r) or ρ
β
0 (r). Thus, we

introduce a complete set of virtual orbitals (see Ref. 48 for
details),

φ̃σ
r (r′) = δ(r − r′) −

occσ∑

j

φσ
j (r′)φσ

j (r), (18)

with the Dirac delta function δ(r − r′) and where the second
term ensures the orthogonality of φ̃σ

r (r′) and the occupied or-
bitals φσ

i (r). With this complete representation of the virtual
orbital space, the change in the electron density due to a vari-
ation in the potential [Eq. (16)] can be approximated as

(ρσ (r) ≈
occσ∑

i

φσ
i (r)〈φ̃σ

r |T̂ + vσ
s |φσ

i 〉. (19)

For singling out the optimal potential, we search for the
potential for which the electron density does not change con-
siderably when the orbital basis is enlarged, and minimize

∫
(ρ(r)2

ρ(r)
d3r ≈

∫
1

ρσ (r)

[ occσ∑

i

φσ
i (r)〈φσ

r |T̂ + vσ
s |φσ

i 〉
]2

× d3r → min . (20)

Here, the inverse density has been introduced as a weighting
function (i.e., the relative change in the density is minimized)
to obtain a uniformly accurate potential. As is discussed in
Ref. 48, this choice can also be justified using theoretical ar-
guments. The minimization then leads to the linear systems of
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equations Aσ(bσ = −zσ with48

Astσ =
occσ∑

ij

∫
φσ

i (r)φσ
j (r)

ρσ (r)

〈
φ̃σ

r

∣∣g̃σ
s

∣∣φσ
i

〉〈
φ̃σ

r

∣∣g̃σ
t

∣∣φσ
j

〉
d3r (21)

and

zσ
t =

occσ∑

ij

∫
φσ

i (r)φσ
j (r)

ρσ (r)

〈
φ̃σ

r

∣∣ĥσ
0

∣∣φσ
i

〉〈
φ̃σ

r

∣∣g̃σ
t

∣∣φσ
j

〉
d3r, (22)

where ĥσ
0 = −(/2 + vσ

s (r). This problem can be solved di-
rectly, without explicitly solving the KS equations using an
extended orbital basis set. Results obtained using this scheme
will be referred to as “optimal (full)” in the following.

For comparison, we will also employ two additional
schemes for singling out one optimized potential. The first
one, called “balanced” in the following, is based on the idea
that a unique potential is also obtained if the potential basis
set is chosen such that it is balanced with respect to the or-
bital basis set.44 This can be achieved by only retaining those
transformed potential basis functions g̃σ

r (r) corresponding to
singular values sr that are not too small, i.e., above a chosen
threshold sthr. This is closely related to the OEP scheme of
Kollmar and Filatov.45 Note that in the spin-unrestricted case
considered here, such a scheme effectively employs different
potential basis sets for the α- and β-spin potentials.

In addition, we also use a criterion for singling out the
optimized potentials that are as smooth as possible (labelled
“smooth” in the following). To this end, we minimize the
norm of the gradient of the potential,

∫ ∣∣∇vσ
s (r)

∣∣2d3r =
∫ [∑

t

bσ
t ∇gσ

t (r)
]2

d3r → min, (23)

under the constraint that the change in the density [Eq. (17)]
is below a chosen threshold ethr. This results in a quadratic
programming problem that can be solved using standard
approaches.48 This criterion is in close analogy to the method
of Yang and co-workers,43, 47, 70 who introduced a similar con-
straint by employing a penalty function during the direct opti-
mization. Note that a common feature of all three approaches
presented here is that they are applied a posteriori, and hence
a direct optimization of the potentials must be performed first.
This first step then provides a non-unique potential and corre-
sponding orbitals, which are required for the following second
step.

III. COMPUTATIONAL METHODOLOGY

All finite basis set calculations were performed with a
local version of the Amsterdam Density Functional (ADF)
program package71 together with the PYADF scripting
framework.72 To allow for the treatment of spin-unrestricted
target densities, we extended our recent implementation31 of
the WY direct optimization algorithm and of the subsequent
step for singling out an unambiguous optimized potential.48

The TZ2P and QZ4P Slater-type orbital (STO) basis sets
of ADF were used as orbital basis. The potential was ex-
panded in a finite basis set [Eq. (13)], using ADFs den-
sity fitting basis sets corresponding to the TZ2P or QZ4P

orbital basis sets. In all calculations, these basis sets were
augmented with additional 1s functions in an even-tempered
fashion (see supplementary material73 for details). As ini-
tial guess for the potential, we used a scaled version of the
Fermi–Amaldi potential48, 61 of the fixed target electron den-
sity ρ0(r) = ρα

0 (r) + ρ
β
0 (r), namely,

v0(r) = vFA[ρ0](r) = − ξ

N

∫
ρ0(r′)
|r − r′|

d3r ′, (24)

where ξ represents the most diffuse exponent in the STO or-
bital basis set. This scaled Fermi–Amaldi potential ensures
that the optimized local potentials have the correct long-range
behavior. In the case of target densities obtained from wave-
function based ab initio calculations, which employed GTO
basis sets, the Coulomb potential vCoul[ρ̃0] and Fermi–Amaldi
potential vFA[ρ̃0] in Eq. (13) are evaluated for an approxi-
mate reference density ρ̃0(r) obtained from a DFT calcula-
tion in ADF in which the orbitals are expanded in STO basis
functions.

If large basis sets are employed for the potential, the
Hessian matrix of Eq. (15) contains many small eigenvalues
which decay gradually to zero. This causes convergence prob-
lems during the Newton–Raphson optimization, which we
previously addressed by ignoring eigenvalues below a certain
threshold. However, for ab initio target densities expanded in
GTOs, this scheme still caused poor convergence behavior.
Therefore, we followed the work of Wu and Yang74 and per-
formed a SVD of the Hessian H. Then the inverse Hessian can
be expressed as

H−1 = U diag(1/σr ) VT , (25)

where the columns of U and V are the left and right singular
vectors, respectively, for the corresponding singular values sr.
To this inverse Hessian, a Tikhonov regularization75, 76 is ap-
plied by replacing it by

H−1 = U diag(fr/σr ) VT , (26)

where fr is a filter factor, which is chosen as

fr = σ 2
r

σ 2
r + λ2

. (27)

We found that appropriate values for the parameter λ turn out
to be 10−4 ≤ λ ≤ 0.01. If σ r * λ, the filter factor fr is approx-
imately one, while in the case of σ r + λ, fr approaches zero.
Thus, instead of abruptly discarding small singular values, the
Tikhonov regularization cuts them off gradually.

As convergence criterion for the WY direct optimization,
we used the absolute error in the α- and β-electron densities
(abs compared to the target α- and β-electron densities, de-
fined as

(σ
abs =

∫ ∣∣ρσ (r) − ρσ
0 (r)

∣∣ d3r. (28)

The minimal absolute error that can be achieved depends on
the considered system, as will be discussed below.

When singling out the optimal potential according to the
scheme of Ref. 48, regions in which the electron density is
very small turn out to be problematic. This is because for
densities expanded in finite GTO or STO basis sets, the exact
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potential in these regions shows artifacts caused by unphys-
ical nodes in the density.77, 78 To avoid these artifacts, grid
points at which the reconstructed α- or β-electron densities
are smaller than a threshold are ignored when constructing the
right-hand side zσ according to Eq. (22). This corresponds to
assuming that the optimized potentials are already well ap-
proximated by the initial guess if the difference between the
target and reconstructed density is smaller than the thresh-
old. For the lithium atom, this threshold was chosen as 10−4,
whereas for the dioxygen molecule it was set to 10−8.

For target densities expanded in STOs, the xc potential is
obtained by adding the Fermi–Amaldi potential to the part of
the potential expanded in basis functions [cf. Eq. (13)]. In the
case of target densities obtained in GTOs, the final xc poten-
tials for α- and β-electrons are obtained as

vσ
xc(r) =

(
vCoul[ρ̃0](r) − vCoul[ρWY](r)

)
+ vFA[ρ̃0](r)

+
∑

t

bσ
t gt (r). (29)

Here, the first term accounts for the difference between the
Coulomb potential used as initial guess (evaluated for the den-
sity ρ̃0) and the Coulomb potential corresponding to the target
density ρ0. The latter is approximated by the density ρWY ob-
tained in a STO expansion from the WY optimization before
singling out an unambiguous potential, as this density rep-
resents to the best available STO representation of the GTO
target density.

To obtain numerical reference potential for atoms, we
employed a modified van Leeuwen–Baerends algorithm16 in
combination with a numerical solution of the KS equations on
a logarithmic radial grid,79, 80 as described in Ref. 48. Here,

we used the same initial guess for the potential, and updated
the potential iteratively until the absolute errors (σ

abs com-
pared to the target α- and β-electron densities were each be-
low 10−4 e bohr−3.

All CASSCF calculations for obtaining accurate ab ini-
tio target densities were performed with the MOLPRO pro-
gram package81 using Dunning’s cc-pVTZ basis set for all
atoms.82, 83 For the lithium atom, all electrons are correlated
in all orbitals [corresponding to a Full-CI treatment], while
for the oxygen molecule the electron (spin) density from a
CAS(12,12)SCF calculation was employed. Here, we verified
that the resulting densities are converged with respect to the
dimension of the active space.

IV. OPTIMIZED POTENTIALS FROM SPIN DENSITIES

A. The lithium atom

1. BP86 target (spin) density expanded in STOs

As a simple test case, we consider the lithium atom. In
its doublet ground-state, there are two α- and one β-electron.
First, we use the α- and β-electron densities from a unre-
stricted KS-DFT calculation employing the QZ4P orbital ba-
sis set and the BP86 xc functional as target. Here, it should
be possible to reproduce the target densities accurately if the
same orbital basis set is used. The target total and spin densi-
ties are shown in Fig. 1. For the lithium atom, there are only
minimal between the α- and β-electron orbitals, and the spin
density is thus determined by the unpaired electron in the 2s
orbital (see also Fig. 1 in the supplementary material73).

FIG. 1. Target radial (a) total densities and (b) spin densities for the lithium atom obtained from BP86/QZ4P and Full-CI/cc-pVTZ calculations. The difference
between these two target densities is shown in the lower part. The insets present the difference between the target total and spin densities and the corresponding
density obtained in the finite orbital basis set from the WY optimized potentials (upper insets) and from the optimal optimized potentials (lower insets). For the
Full-CI/cc-pVTZ results obtained with both the TZ2P and QZ4P orbital basis sets in the potential reconstruction are included. The corresponding plots of the
α- and β-electron densities are given in Fig. 1 in the supplementary material.73
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FIG. 2. Reconstructed potentials determined for the Li atom and a BP86/QZ4P target (spin) density. The upper part shows the xc potentials for (a) α electrons
vα

xc and (b) β electrons v
β
xc, while the lower part shows (c) the total xc potential vtot

xc and (d) the spin xc potential v
spin
xc . For the potential reconstruction with the

finite QZ4P orbital basis set, the potentials obtained with the different schemes for singling out an unambiguous potential (see text for details) are shown. The
accurate potentials obtained with a numerical solution of the KS equations (“numerical (STO)”) as well as the BP86 xc potential calculated from the reference
density (“BP86 xc potential”) are shown for comparison. The latter is shifted such that it agrees with the numerical reference at r = 5 bohrs.

For assessing the quality of the optimized potentials ob-
tained with finite orbital basis sets, we determined the xc
potentials for α- and β-electrons numerically as described
above. These fully numerical potentials are the ones that a
finite-basis potential reconstruction should reproduce. They
are presented in Fig. 2 as black lines. In addition, the figure
includes the BP86 xc potentials evaluated for the target α-
and β-electron densities (blue dashed line), i.e., the potentials
that were used in the finite-basis set KS-DFT calculation for
determining the target α- and β-electron densities. We note
that, even though it is close to it, these BP86 potentials do
not agree with the numerical references. As was pointed out
before, they should only be equal in the basis set limit.48, 78

The reconstructed α- and β-electron xc potentials vα
xc(r)

and v
β
xc(r) obtained with the finite QZ4P orbital basis set are

shown in Figs. 2(a) and 2(b). In both cases, the potentials ob-
tained from the WY optimization in the first step show large
oscillations and are, therefore, not shown in the figures. These

oscillations are removed if a potential is singled out in the
second step. Irrespective of which of the schemes described
in Sec. II C is applied, the potentials closely agree with the
numerical reference for r > 0.5 bohr. However, differences
are found closer to the nucleus. When using an implicitly bal-
anced potential basis set (dashed red line), the potential is too
large close to the nucleus and still shows slight oscillations.
Singling out the potential that is as smooth as possible (solid
magenta line) does not introduce oscillations, but also results
in a potential with the wrong behavior for small r. On the
other hand, the optimal potential determined using the crite-
rion of Eq. (20) closely matches the numerical reference po-
tential everywhere.

For a more quantitative comparison of the different ap-
proaches, Table I lists the absolute errors (σ,num

abs [cf. Eq. (28)]
in the α- and β-electron densities obtained from the differ-
ent potentials in a numerical solution of the KS equations.
Naturally, this absolute error is the smallest for the numerical
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TABLE I. Absolute errors (σ
abs in the α- and β-electron densities with re-

spect to the target α- and β-electron densities (in e bohr−3) obtained with
different reconstructed potentials for the Li atom with BP86/QZ4P target
densities. The QZ4P orbital basis set is used in the finite-basis set poten-
tial reconstruction. (σ,finite

abs refers to the error in the density obtained from
the respective potentials in the finite orbital basis set, whereas (σ,num

abs is the
error for the density obtained from a numerical solution of the KS equations.

(α,num
abs (α,finite

abs (
β,num
abs (

β,finite
abs

Numerical (STO) <10−4 0.0007 <10−4 0.0001
Wu–Yang 0.0098 0.0008 0.0036 <10−4

Balanced (sthr = 10−2) 0.0090 0.0024 0.0016 0.0006
Smooth (ethr = 10−2) 0.0087 0.0086 0.0082 0.0082
Optimal (full) 0.0009 0.0014 <10−4 <10−4

reference potential. For the potential obtained from the WY
optimization, the error is approximately two orders of mag-
nitude larger. This error is only slightly reduced by using an
implicitly balanced basis set or by singling out a smooth po-
tential. In contrast, for the optimal potential, the absolute error
in the numerical density is reduced by another order of mag-
nitude. Thus, these results confirm the previous finding that
high-quality potentials can be obtained by applying the crite-
rion of Eq. (20) for unambiguously singling out the optimal
potential.48

In addition to the errors in the numerical densities, Ta-
ble I also includes the absolute errors (σ,finite

abs in the densi-
ties obtained with the different potentials in the finite orbitals
basis set. In this case, the smallest error is obtained for the
potentials obtained directly from the WY optimization, and
these absolute errors correspond to the convergence criterion
used in this step. After singling out one potential in the sec-
ond step the error increases, but the smallest one is obtained
for the optimal potential. Note that for both the optimal and
the numerical reference potential the absolute density errors
are larger in the finite orbital basis set than for the numerical
solution of the KS equations. This discrepancy was discussed
previously48 and arises because it is in general not possible
to simultaneously reproduce the target density both in a given
finite basis set and in a fully numerical calculation. However,
these differences decrease when increasing the size of the or-
bital basis set.

After assessing the quality of the reconstructed α- and β-
electron xc potentials, we turn to Figs. 2(c) and 2(d), where
the same results are shown as total and spin xc potentials, re-
spectively. While for the total potential, the overall results are
similar to those discussed for the individual spin components,
it is apparent that reconstructing the spin potential accurately
is significantly more difficult. For the lithium atom considered
here, the difference between the α- and β-electron orbitals is
very small. Therefore, the spin xc potential is very small as
well. In particular, it is almost constant in the range probed by
the 1s orbital and, therefore, does not introduce a significant
difference between the α- and β-electron 1s orbitals. Hence,
the spin potential is mostly due to the different asymptotic de-
cay of the α- and β-electron densities. Since the BP86 xc po-
tentials evaluated from the target α- and β-electron densities
do not show the correct asymptotic decay, the corresponding
spin potential almost vanishes. In contrast, the optimal spin

potential reproduces the numerical reference almost perfectly.
Note again that the numerical potential—and not the BP86 xc
potential—is the one that the finite-basis potential reconstruc-
tion should reproduce. The smooth and the balanced potential
deviate from the numerical reference not only close to the nu-
clei (where these differences were also recognizable for the
α- and β-spin potentials), but also further away from the nu-
clei. Thus, in order to reconstruct the spin potential v

spin
xc (r)

reliably, it is essential to single out the optimal potential ac-
cording to the criterion of Eq. (20).

2. Full-CI target (spin) density expanded in GTOs

Next, we use the accurate α- and β-electron densities
from a Full-CI calculation for the lithium atom as our tar-
get. In this case, the target α- and β-electron densities have
to be expanded in a GTO orbital basis set, which might result
in additional difficulties when performing the potential recon-
struction with our implementation using a STO orbital basis
set. The Full-CI total and spin densities are included in Fig. 1
and are on the scale of the plots almost indistinguishable from
the BP86 ones considered above.

Figure 3 shows the reconstructed total and spin xc po-
tentials. We used two different STO orbital basis sets (TZ2P
and QZ4P), but only include the QZ4P results in the figure,
while the TZ2P potentials are presented in Fig. 2 in the sup-
plementary material.73 The reference potentials obtained from
the Full-CI density with a numerical solution of the KS equa-
tions are included as black dashed lines in Fig. 3. These nu-
merical potentials features considerable oscillations which are
most pronounced near the nucleus. Such an oscillatory behav-
ior is commonly found when the target density is expanded in
GTOs84 and can be attributed to their deficiency to represent
the correct form of the electron density close to the nucleus.
However, these oscillations can be reduced when the GTO
orbital basis set used for determining the target density is en-
larged (see Fig. 3 in the supplementary material73).

As a first step of the potential reconstruction, we deter-
mine a (non-unique) potential using the WY direct optimiza-
tion algorithm. For the GTO target densities, looser conver-
gence criteria than for the BP86 target density expanded in
STOs have to be used (see Table II). The corresponding dif-
ference densities are shown in the upper insets in Fig. 1. Thus,
a sufficiently large STO orbital basis set is required to be able
to accurately reproduce the target density from an ab initio
calculation using GTOs. Nevertheless, with the QZ4P basis
set it is possible to achieve an agreement close to the one
obtained for the target density expanded in STOs. We note
that the methodological improvements discussed in Sec. III,
in particular, the use of the Tikhonov regularization, are es-
sential here to make this convergence possible.

Since the numerical potential reconstructed from the
GTO densities show oscillations due to the insufficiencies of
the GTO basis set close to the nucleus, we also performed a
numerical potential reconstruction from the α- and β-electron
densities from the WY optimization, which is the closest
available approximation of the target densities in STOs. These
are included in Fig. 3 as solid black line. They do not show
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FIG. 3. Reconstructed (a) total xc potentials vtot
xc and (b) spin xc potentials v

spin
xc determined for the Li atom and a Full-CI/cc-pVTZ target (spin) density with

a QZ4P orbital basis set in the potential reconstruction. The accurate potentials obtained with a numerical solution of the KS equations (“numerical (GTO)”)
from the GTO target density as well as from the WY reconstructed density (“numerical (STO)”) are shown for comparison. These reference potentials have
been shifted such that they agree with the optimal potential at r = 2.7 bohrs. The corresponding plots of the α- and β-electron potentials are given in Fig. 3 in
the supplementary material,73 and the potentials reconstructed with the TZ2P orbital basis set are shown in Fig. 2 in the supplementary material.73

oscillations near the nucleus anymore, but otherwise closely
match the numerical potentials reconstructed from the GTO
densities. Note, however, that for the TZ2P orbital basis set
the total and spin potentials reconstructed from the STO den-
sities show an artifact caused by spurious nodes appearing in
the β-electron density in the region where it is very small77, 78

(see Fig. 2 in the supplementary material73). In the following,
we will consider the numerical potentials reconstructed from
the WY densities expanded in the QZ4P STO orbital basis set
as reference for the finite-basis set potential reconstruction.

The optimized potentials obtained using the different
schemes for singling out one unambiguous potential after the
WY optimization are included in Fig. 3. First, we consider the
total xc potentials in Figs. 3(a). The total xc potentials from
all three schemes closely agree with the numerical reference.
Differences only occur for the smooth and balanced poten-
tials close to the nucleus, while the optimal potential matches
the reference also in this region. For a more quantitative com-
parison, the absolute errors (σ,num

abs in the α- and β-electron
densities obtained from the different potentials in a numer-
ical solution of the KS equations compared to the target α-

and β-electron densities are listed in Table II. In all cases, the
smallest error is achieved for the optimal potential. Moreover,
the absolute errors in the numerical densities decrease for all
three schemes when going from the TZ2P to the QZ4P orbital
basis set.

In addition, Table II includes the absolute errors (σ,finite
abs

in the α- and β-electron densities obtained with the differ-
ent potential in the finite orbital basis set. In general, these
errors increase compared to the potentials obtained from the
WY procedure when applying the schemes for singling out
one optimized potential. Again, this is because the error in
the finite-basis set density and in the numerical density can-
not be minimized at the same time.48 When going from the
TZ2P to the larger QZ4P orbital basis set, the errors decrease
significantly, both for the optimal and for the numerical ref-
erence potentials. This can also be seen in the corresponding
difference densities shown in the lower insets in Fig. 3.

Finally, we turn to the reconstructed spin xc potentials
shown in Figs. 3(b) and 3(d). Again, reproducing the numeri-
cal reference potential is much more difficult in this case be-
cause the spin potential is calculated as the difference of the

TABLE II. Absolute errors (σ
abs in the α- and β-electron densities with respect to the target α- and β-electron densities (in e bohr−3) obtained with different

reconstructed potentials for the Li atom and Full-CI/cc-pVTZ target densities. Results obtained both with the TZ2P and with the QZ4P orbital basis set in the
potential reconstruction are shown. (σ,finite

abs refers to the error in the density obtained from the respective potentials in the finite orbital basis set, whereas (σ,num
abs

is the error for the density obtained from a numerical solution of the KS equations.

TZ2P QZ4P

Full-CI/cc-pVTZ (α,num
abs (α,finite

abs (
β,num
abs (

β,finite
abs (α,num

abs (α,finite
abs (

β,num
abs (

β,finite
abs

Numerical (GTO) <10−4 0.0258 <10−4 0.0086 <10−4 0.0065 <10−4 0.0010
Numerical (STO) 0.0051 0.0158 0.0020 0.0014 0.0025 0.0051 0.0005 0.0005
Wu–Yang 0.0782 0.0051 0.0301 0.0020 0.0165 0.0025 0.0021 0.0004
Balanced (sthr = 10−2) 0.0336 0.0079 0.0310 0.0020 0.0092 0.0074 0.0030 0.0004
Smooth (ethr = 10−2) 0.0416 0.0105 0.0039 0.0041 0.0120 0.0071 0.0062 0.0061
Optimal (full) 0.0220 0.0284 0.0021 0.0016 0.0061 0.0067 0.0005 0.0006
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α- and β-electron potentials. Therefore, even though with the
balanced potential agrees with the reference for the total and
the individual α- and β-electron potentials at r < 2 bohrs, the
corresponding spin potential deviates significantly and fea-
tures unphysical oscillations. The smooth spin potential quali-
tatively reproduces all features of the numerical reference, but
the best agreement is again achieved for the optimal potential.

The optimal potentials obtained with the smaller TZ2P
orbital basis (see Fig. 2 in the supplementary material73) al-
ready agree very well with the numerical reference potential
determined from the WY density. However, this WY density
differs from the target density expanded in GTOs so that devi-
ations to the numerical potential determined from that target
density occur. Thus, the QZ4P orbital basis set is required in
order to obtain an accurate spin potential not because of the
basis set requirements of the scheme for singling out the opti-
mal potential, but because of the need to reproduce the GTO
target density with STOs in the WY optimization step. How-
ever, the use of a STO representation of the density in the WY
step has the advantage of avoiding the spurious oscillations in
the reconstructed potential arising for a GTO expansion of the
target density close to the nucleus.

Finally, we note that the optimal potentials presented here
are converged with respect to the size of the potential basis
set. Adding additional tight or diffuse functions does not al-

ter the resulting optimal potentials significantly anymore. The
dependence of the optimal potentials on the potential basis set
is illustrated in Figs. 5 and 6 and Tables I and II in the supple-
mentary material.73

B. An open-shell molecule: Dioxygen

1. BP86 target (spin) density expanded in STOs

We now investigate a diatomic molecule with an open-
shell ground state, namely, dioxygen O2 with an O–O bond
distance of 1.21 Å in its equilibrium structure. Here, the two
antibonding π*-orbitals are singly occupied. First, we con-
sider a target density from an unrestricted KS-DFT calcula-
tion using the BP86 xc functional and the Slater-type QZ4P
orbital basis set. This target spin density is shown along
the bonding axis (x axis) and perpendicular to it (y axis) in
Figs. 4(a) and 4(b), respectively, and is plotted in the xy-plane
in Fig. 4(c). Along the y axis, the spin density is determined
by the singly occupied orbitals which have a cylindrical shape
around the bond axis. On the other hand, the singly occupied
orbitals vanish on the bond axis and, therefore, the spin den-
sity along the x axis is solely due to the difference between
the doubly occupied α- and β-electron orbitals. In particular,
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(d) CASSCF/cc−pVTZ(c) BP86/QZ4P

FIG. 4. Target spin densities for the dioxygen molecule obtained from BP86/QZ4P and CAS(12,12)SCF/cc-pVTZ calculations. Both spin densities are com-
pared (a) along the bond axis (x axis), (b) perpendicular to the bond axis (y axis). Furthermore, (c) and (d) show the BP86/QZ4P and CAS(12,12)SCF/cc-pVTZ
spin densities, respectively, in the xy-plane. The corresponding plots of the total and the individual α- and β-electron densities are given in Fig. 7 in the
supplementary material.73
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FIG. 5. Reconstructed potentials determined for the dioxygen molecule and a BP86/QZ4P target (spin) density. The upper part shows the total xc potential vtot
xc

(a) along the bond axis (x axis) and (b) perpendicular to the bond axis along the y axis. The lower part shows the spin xc potential v
spin
xc along the (c) x axis and

(d) y axis. In the potential reconstruction, the finite QZ4P orbital basis set was employed. For comparison, the BP86 xc potential calculated from the reference
density (“BP86 xc potential”) is also included. This BP86 potential is shifted such that it agrees with the optimal potential at x = −2 bohrs or at y = +2 bohrs,
respectively. The corresponding plots of the individual α- and β-electron potentials are shown in Fig. 8 in the supplementary material.73

there is a region where the spin density becomes negative (see
the yellow regions in Fig. 4(c)).

The total xc potentials reconstructed for the dioxygen
molecule from the BP86/QZ4P target density are shown in
Figs. 5(a) and 5(b). For comparison, the figures include the
BP86 xc potentials calculated from the target densities. Note,
however,that these BP86 potentials are not equal to the exact
potentials corresponding to the target densities.33, 48 There-
fore, the BP86 potentials should not be reproduced exactly
by the potentials reconstructed using a finite orbital basis
set.

The different reconstructed total xc potentials all agree
rather accurately with the BP86 potential on the scale of
the plots. Recognizable differences are only observed along
the bond axis in the region between the oxygen atoms. The
BP86 potential shows a plateau in this bond region, which
is also reproduced by the smooth potential. On the other
hand, the balanced as well as the optimal potential do not
exhibit such a plateau, but have a maximum at the midbond
point. Similar observations can be made for the individual

α- and β-electron potentials (see Fig. 8 in the supplementary
material73).

The absolute errors (σ,finite
abs in the α- and β-electron

densities obtained from the different reconstructed potentials
within the finite orbital basis set are listed in Table III. Since
the QZ4P orbital basis set used for representing the target den-
sity is also employed in the potential reconstruction, the WY
optimization can be converged such that the error in the α- and
β-electron densities is below 2.0 × 10−4 e bohr−3. This error
increases by one order of magnitude for the balanced potential
and further increases when determining the optimized poten-
tial that is as smooth as possible. Note that these errors depend
on the choice of the threshold for discarding small singular
values sthr and for the change in the density ethr, respectively.
For the optimal potential, the finite-basis set absolute density
error increases further to about 2 × 10−2 e bohr−3. The differ-
ences between the reconstructed total and the spin densities
and the respective target (spin) density is illustrated in Fig. 15
in the supplementary material.73 This comparison shows that
except for the region close to the nuclei, all reconstructed
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TABLE III. Absolute errors (σ,finite
abs in the α- and β-electron densities in the finite orbital basis set with respect to the target α- and β-electron densities (in

e bohr−3) obtained with different reconstructed potentials for the dioxygen molecule. Results are shown for both the target densities from BP86 and from a
CAS(12,12)SCF calculation and in the latter case using both the TZ2P and with the QZ4P orbital basis set in the potential reconstruction.

BP86/QZ4P CASSCF/TZ2P CASSCF/QZ4P

(α,finite
abs (

β,finite
abs (α,finite

abs (
β,finite
abs (α,finite

abs (
β,finite
abs

Wu–Yang 0.0002 0.0002 0.0419 0.0439 0.0412 0.0268
Balanced (sthr = 10−2) 0.0019 0.0010 0.0521 0.0537 0.0414 0.0278
Smooth (ethr = 10−2) 0.0077 0.0078 0.0426 0.0462 0.0416 0.0277
Optimal (full) 0.0284 0.0230 0.0976 0.0830 0.0640 0.0509

potentials reproduce all qualitative features of the target spin
density.

However, to judge the quality of the different potentials,
it would be necessary to determine the absolute errors in the
α- and β-electron densities obtained from these potentials in a
numerical solution of the KS equations. Unfortunately, this is
not easily possible for the molecular system considered here.
Nevertheless, for the lithium atom considered above and the
atomic systems investigated in Ref. 48, it was demonstrated
that this error is the smallest for the optimal potential. Thus,
we expect that also for the dioxygen molecule, the optimal
potential should be closest to the exact potential.

Finally, we turn to the reconstructed spin xc potentials,
which are presented in Figs. 5(c) and 5(d). In the plots along
the bond axis (see Fig. 5(c)), both the smooth and the bal-
anced spin potentials deviate significantly from the BP86 spin
potential. In particular, the latter shows rather pronounced os-
cillations. These oscillations were not visible in the plots of
the individual α- and β-electron potentials, but they are am-
plified when considering the spin potential. The optimal spin
potential plotted along the bond axis shows a more regular
form and no oscillations that would appear unphysical, but it
also differs from the BP86 spin potential. Nevertheless, except
for the spikes at the nuclei themselves, it has a similar overall
shape near the nuclei, i.e., a symmetric well in which the po-
tential is smaller at the nucleus than ca. 0.5 bohr away from
it. This shape of the spin potential corresponds to the posi-
tive spin density close to the nuclei. However, in the midbond
region, the shape of the optimal spin potential qualitatively
differs from the BP86 spin potential and the optimal spin po-
tential shows a maximum at the midbond point, whereas the
BP86 spin potential has a minimum. Here, the maximum of
the optimal spin potential is actually in line with the nega-

tive spin density at the midbond point. Despite the observed
differences, it appears that of the different reconstructed spin
potentials, the optimal potential is closest to the BP86 spin
potential. Here, it is important to recall that the singly occu-
pied orbitals have a node at the bond axis, i.e., the spin po-
tential here is only responsible for the rather small difference
between the doubly occupied α- and β-electron orbitals (see
Fig. 4(a)) and, therefore, it should be relatively small itself.

When inspecting the reconstructed spin potentials per-
pendicular to the bond axis (see Fig. 5(d)), all reconstructed
spin potentials qualitatively agree with the BP86 spin poten-
tial. Here, the spin potential is significantly larger than along
the bond axis, as it now covers the region to which the singly
occupied orbitals extend (cf. Fig. 4(b)). While the differences
are small, the optimal spin potential is closest to the BP86
spin potential and only differs at the nucleus, whereas both
the smooth and the balanced spin potentials show some os-
cillatory behavior. The overall shape of the optimal and the
BP86 spin potentials in the xy-plane is compared in Fig. 6. Ex-
cept for the differences along the bond axis already discussed
above, we observe a good overall agreement. With the results
obtained for the lithium atom in mind, we attribute these dif-
ferences to the fact that the BP86 potential does not agree
with the exact spin potential, and expect that the optimal spin
potential is actually a closer approximation to the exact spin
potential.

2. CASSCF (spin) density expanded in GTOs

After considering the reconstruction of the spin xc poten-
tial for the dioxygen molecule for a BP86/QZ4P target (spin)
density, we now turn to an accurate target (spin) density ob-
tained from a CAS(12,12)SCF/cc-pVTZ calculation. This ab
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FIG. 6. (a) Reconstructed spin xc potential v
spin
xc determined for the dioxygen molecule and a BP86/QZ4P target (spin) density in the xy-plane. Here, only the

optimal potential reconstructed within a QZ4P orbital basis set is included. For comparison, (b) shows the BP86 xc potential calculated from the target density.
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FIG. 7. Reconstructed potentials determined for the dioxygen molecule and a CAS(12,12)SCF/cc-pVTZ target (spin) density. The upper part shows the total xc
potential vtot

xc (a) along the bond axis (x axis) and (b) perpendicular to the bond axis along the y axis. The lower part shows the spin xc potential v
spin
xc along the (c)

x axis and (d) y axis. In the potential reconstruction, the finite QZ4P orbital basis set was employed. The corresponding plots of the individual α- and β-electron
potentials as well as the results obtained with the TZ2P orbital basis set are shown in Figs. 9, 11, and 12 in the supplementary material,73 respectively.

initio spin density is compared to the BP86 spin density in
Fig. 4. Perpendicular to the bond axis (see Fig. 4(b)), where
the spin density is dominated by the unpaired π*-electrons, it
qualitatively agrees with the one obtained with BP86. Larger
differences are found along the bond axis (see Fig. 4(a)),
where the spin density is solely due to the difference between
the doubly occupied α- and β-electron orbitals. The CASSCF
spin density is significantly larger close to the nuclei, whereas
the negative spin density at the ends of the molecule is re-
duced (see also Fig. 4(d)).

While for the BP86/QZ4P target density the BP86 (spin)
potential calculated from the target density could be used
for comparison—even though it is not identical to the exact
(spin) potential—we now have no reference potential avail-
able. Nevertheless, we can still use the results obtained above
to judge whether the reconstructed potentials are physically
reasonable. The reconstructed total and spin xc potentials ob-
tained using a QZ4P orbital basis set are presented in Fig. 7.

For the reconstructed total xc potential, the optimal po-
tential has a similar shape as the BP86 potential discussed

above. Along the bond axis (see Fig. 7(a)), it has a maximum
at the midbond point and exhibits some shell structure at ca.
0.5 bohr from the two nuclei. A similar shape as in the outer
region along the bond axis is found perpendicular to the bond
axis for the optimal potential (see Fig. 7). Both the smooth
and the balanced total potentials have a similar shape, but the
shell structure is more pronounced. For the balanced total po-
tential, larger oscillations appear close to the nuclei. Never-
theless, the different reconstructed potentials are qualitatively
rather similar. Note that with the smaller TZ2P orbital basis
set, larger oscillations appear for the smooth and balanced po-
tentials, whereas the optimal potential is on the scale of the
figures in good agreement with the one reconstructed using
the larger QZ4P orbital basis set (see Fig. 12 in the supple-
mentary material73).

The absolute errors in the reconstructed α- and β-
electron densities in the finite TZ2P and QZ4P orbital basis
sets are listed in Table III. Because we are now trying to repro-
duce target densities expanded in a GTO basis set with STOs,
these errors are approximately two orders of magnitude larger
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FIG. 8. Reconstructed spin xc potential potentials determined for the dioxygen molecule and a CAS(12,12)SCF/cc-pVTZ target (spin) density. For the potential
reconstruction with the finite QZ4P orbital basis set (a) the optimal spin potential and (b) the spin potential determined by requiring that the optimized potential
is smooth are shown. The spin potential obtained by implicitly balancing the orbital and potential basis sets as well as the results obtained with the TZ2P orbital
basis set are shown in Fig. 10 and Figs 13 and 14 in the supplementary material,73 respectively.

than for the STO target densities. The largest finite-basis den-
sity errors are found for the optimal potentials. However, we
stress again that for judging the quality of the different po-
tentials, it would be necessary to calculate the errors in the
densities obtained with a numerical solution of the Kohn–
Sham equations on the respective potentials. For the optimal
potentials, these numerical density errors, which differ from
the finite basis set density errors, should be minimized. With
increasing size of the orbital basis set used in the potential
reconstruction, the difference between the finite basis set and
the numerical density errors should become smaller. Thus, the
decrease of the finite basis set density errors when going from
TZ2P to QZ4P supports our assumption that the optimal po-
tentials should be closest to the exact potentials (see also Fig.
16 in the supplementary material73 for a comparison of the
difference densities). Furthermore, we note that for both the
TZ2P and QZ4P orbital basis sets, the reconstructed poten-
tials are converged with respect to the size of the potential
basis set, as is demonstrated in Figs. 17–20 in the supplemen-
tary material.73

Finally, we now consider the spin xc potential. Perpen-
dicular to the bond axis (see Fig. 7(d)), the optimal spin poten-
tial has a similar shape as the one obtained for the BP86/QZ4P
target density with a minimum at ca. 0.5 bohr from the oxygen
nuclei, i.e., where the spin density is the largest. In contrast,
rather pronounced oscillations are observed for the smooth
and balanced spin potentials. These are also present in the plot
along the bond axis (see Fig. 7(c)), whereas the optimal po-
tential is mostly well behaved. Qualitatively, it also resembles
the optimal spin potential reconstructed from the BP86/QZ4P
target density. Around the nuclei, it has negative wells, which
are deeper for the CASSCF than for the BP86/QZ4P target
density. This is in line with the larger spin density in this re-
gion obtained in the CASSCF calculations. In the bond region
between the atoms, the optimal spin potential reconstructed
from the CASSCF spin density is flatter than in the case of
the BP86/QZ4P target density, which agrees with the smaller
spin polarization in this region. Very close to the nuclei the
reconstructed spin potential has some large oscillations. Most
likely, these can be attributed to the deficiencies of the GTO
target density, which can cause such oscillations in the exact
potentials.84

To compare the overall performance of the different po-
tential reconstruction schemes, Fig. 8 compares the optimal
and the smooth spin potentials in the xy-plane. A similar com-
parison for the balanced spin potential is shown in Fig. 10
in the supplementary material.73 While pronounced wiggling
features around the position of the nuclei are found in the
smooth spin potential, it is obvious that these can be elim-
inated in the whole xy-plane for the optimal spin potential.
Thus, even though there is no exact reference spin potential
available for comparison, we find that the optimal spin poten-
tial is the only one that seems to be free of artifacts of the
potential reconstruction. Moreover, the comparison with the
spin potential reconstructed from the BP86/QZ4P target den-
sity shows that the optimal potential is physically reasonable.
Therefore, we are confident that it is the reconstructed poten-
tial that is closest to the exact spin potential.

Further support for this conclusion can be drawn from
a comparison with the reconstructed potentials obtained for
the same CASSCF target density with the smaller TZ2P or-
bital basis set, which are shown in Figs. 11, 13, and 14 in
the supplementary material.73 Here, even larger oscillations
are found for the smooth and balanced spin potentials, even
though the same thresholds are applied. On the other hand,
the optimal potentials are qualitatively similar to the QZ4P
results. This is particularly obvious for the spin potential per-
pendicular to the bond axis, which is in good agreement with
the one reconstructed with the QZ4P orbital basis set. Also
along the bond axis the shapes of the optimal spin potentials
are similar for the two orbital basis sets, even though the neg-
ative well near the oxygen nuclei is less pronounced. Thus,
only for the optimal potential a consistent convergence with
increasing size of the orbital basis set is observed.

V. CONCLUSIONS

In this work, we have extended the unambiguous re-
construction of the local potential yielding a given target
density48 to open-shell systems treated with an unrestricted
KS-DFT formalism. Moreover, we have combined this re-
construction with the use of accurate target (spin) densities
obtained from accurate wave-function based ab initio calcu-
lations, i.e., from Full-CI or CASSCF wave functions. This
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provides a route to accurate reference data for the spin xc
potential v

spin
xc , which determines the spin density distribution

Q(r) in unrestricted KS-DFT.
Reconstructing this spin xc potential is a particularly

challenging task, because it is given by the difference be-
tween the reconstructed α- and β-electron potentials. Thus,
one has to overcome the numerical inaccuracies caused by
the ill-posed nature of the potential reconstruction problem in
finite orbital basis sets, as these could otherwise be amplified
when calculating the spin potential. As test cases, we chose
the lithium atom and the oxygen molecule in its triplet state.
For both systems, we considered target (spin) densities from
unrestricted KS-DFT calculations as well as from Full-CI (for
the lithium atom) and CASSCF (for the dioxygen molecule)
calculations. These test cases made it possible to systemati-
cally assess the quality of the reconstructed spin xc potentials.

For the lithium atom, it is possible to compare the recon-
structed potentials to the exact ones, which can be obtained
from a fully numerical potential reconstruction. The compar-
ison shows that the optimal spin potentials, determined using
the scheme of Ref. 48, can reproduce the fully numerical spin
potential, while the spin potentials obtained by singling out
the α- and β-electron potentials that are as smooth as possible
or with an implicitly balanced potential basis set show sig-
nificantly larger deviations from the reference spin potential.
In general, the quality of these smooth and balanced spin po-
tentials strongly depends on the choice of the corresponding
threshold values and can result in highly oscillating poten-
tials if these are chosen too small. On the other hand, if these
thresholds are too large, the resulting potentials lack all fea-
tures present in the exact one. Moreover, different thresholds
might be required for reconstructing the α- and β-electron
potentials in order to obtain these with similar quality, as is
required for the reconstruction of the spin potential. Thus,
we conclude that the unambiguous potential reconstruction
method of Ref. 48 should be used if accurate spin potentials
are sought.

For target densities obtained with GTO orbital basis sets,
which are commonly used in wave-function based ab initio
calculations, we found it advantageous to reconstruct the po-
tential using a STO orbital basis set. In this case, the density
obtained from the WY optimization, which is the first step in
all potential reconstruction schemes tested here, has the cor-
rect shape close to the nuclei and in the asymptotic region.
Consequently, oscillations close to the nucleus found in the
fully numerical reference potential because of the wrong form
the GTO target density84 are largely suppressed in the optimal
reconstructed potentials. When using a GTO orbital basis sets
in combination with the scheme of Ref. 48, these oscillations
might result in artifacts in the reconstructed potentials. On the
other hand, the use of a STO orbital basis set requires the use
of a basis set that is large enough to reproduce the ab initio
target (spin) density. Here, we found that the a QZ4P orbital
basis set is sufficient to obtain a good agreement with the tar-
get density. Moreover, we note that technical improvements to
our implementation, in particular, the use of a Tikhonov reg-
ularization in the WY optimization74 and the use of a cut-off
value for discarding small density regions in the criterion of
Eq. (20), were necessary to treat GTO target densities.

For the dioxygen molecule, a direct comparison to a fully
numerical reference spin potential is not possible. Neverthe-
less, for the target density obtained from an unrestricted KS-
DFT calculation the xc potential used for determining the tar-
get potential can provide some guidance, even though it dif-
fers from the exact potential because of the use of a finite
orbital basis set. This comparison shows that the optimal re-
constructed spin potential (i.e., the one obtained using the
scheme of Ref. 48) shows the best overall agreement. Also for
the CASSCF target density, this scheme is the only one that
provides a physically reasonable spin xc potential, while the
smooth and the balanced potentials are plagued by unphysi-
cal oscillations. The optimal potential shows such oscillations
only very close to the nuclei, where they are probably due to
deficiencies of the GTO expansion used for the target density.

In summary, we believe that the potential reconstruction
scheme proposed in Ref. 48 and extended here to open-shell
systems provides the first reliable approach for reconstruct-
ing the spin xc potential from accurate ab initio (spin) densi-
ties. The availability of such accurate reference spin potentials
can facilitate the development of improved spin-dependent xc
density functionals which apart from yielding accurate total
electron densities also provide reliable spin densities. Thus,
this work represents a prerequisite for the design of approx-
imate xc functional with an improved spin-density depen-
dance.

ACKNOWLEDGMENTS

M.R. and K.B. gratefully acknowledge financial sup-
port by a grant from the Swiss National Science Foundation
(SNF). K.B. thanks the Fonds der Chemischen Industrie for a
Chemiefonds scholarship. C.R.J. acknowledges funding from
the DFG-Center for Functional Nanostructures (CFN) at KIT.

1R. G. Parr and W. Yang, Density-Functional Theory of Atoms and
Molecules (Oxford University Press, 1989).

2E. Engel and R. M. Dreizler, Density Functional Theory: An Advanced
Course, 1st ed. (Springer, Berlin, 2011).

3W. Koch and M. Holthausen, A Chemist’s Guide to Density Functional
Theory (Wiley, 2001).

4C. J. Cramer and D. G. Truhlar, Phys. Chem. Chem. Phys. 11, 10757
(2009).

5M. Reiher, Faraday Discuss. 135, 97 (2007).
6M. Reiher, Chimia 63, 140 (2009).
7M. Reiher, O. Salomon, and B. A. Hess, Theor. Chem. Acc. 107, 48 (2001).
8M. Reiher, Inorg. Chem. 41, 6928 (2002).
9J. N. Harvey, Struct. Bonding 112, 151 (2004).

10S. Ye and F. Neese, Inorg. Chem. 49, 772 (2010).
11M. Swart, Int. J. Quantum Chem. 113, 2–7 (2013).
12A. Ghosh, J. Biol. Inorg. Chem. 11, 712 (2006).
13J. Conradie and A. Ghosh, J. Phys. Chem. B 111, 12621 (2007).
14M. Radon and K. Pierloot, J. Phys. Chem. A 112, 11824 (2008).
15K. Boguslawski, Ch. R. Jacob, and M. Reiher, J. Chem. Theory Comput.

7, 2740 (2011).
16R. van Leeuwen and E. J. Baerends, Phys. Rev. A 49, 2421 (1994).
17O. Gritsenko, P. Schipper, and E. Baerends, Chem. Phys. Lett. 302, 199

(1999).
18T. W. Keal and D. J. Tozer, J. Chem. Phys. 119, 3015 (2003).
19T. W. Keal and D. J. Tozer, J. Chem. Phys. 121, 5654 (2004).
20M. J. G. Peach, A. M. Teale, and D. J. Tozer, J. Chem. Phys. 126, 244104

(2007).
21A. M. Teale, S. Coriani, and T. Helgaker, J. Chem. Phys. 132, 164115

(2010).
22P. D. Elkind and V. N. Staroverov, J. Chem. Phys. 136, 124115 (2012).

Downloaded 29 Jan 2013 to 129.13.72.198. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1039/b907148b
http://dx.doi.org/10.1039/b605229k
http://dx.doi.org/10.2533/chimia.2009.140
http://dx.doi.org/10.1007/s00214-001-0300-3
http://dx.doi.org/10.1021/ic025891l
http://dx.doi.org/10.1007/b97939
http://dx.doi.org/10.1021/ic902365a
http://dx.doi.org/10.1002/qua.24255
http://dx.doi.org/10.1007/s00775-006-0135-4
http://dx.doi.org/10.1021/jp074480t
http://dx.doi.org/10.1021/jp806075b
http://dx.doi.org/10.1021/ct1006218
http://dx.doi.org/10.1103/PhysRevA.49.2421
http://dx.doi.org/10.1016/S0009-2614(99)00128-1
http://dx.doi.org/10.1063/1.1590634
http://dx.doi.org/10.1063/1.1784777
http://dx.doi.org/10.1063/1.2747248
http://dx.doi.org/10.1063/1.3380834
http://dx.doi.org/10.1063/1.3695372


044111-16 Boguslawski, Jacob, and Reiher J. Chem. Phys. 138, 044111 (2013)

23J. Karwowski, Int. J. Quantum Chem. 109, 2456 (2009).
24A. S. P. Gomes and Ch. R. Jacob, Annu. Rep. Prog. Chem., Sect. C: Phys.

Chem. 108, 222 (2012).
25O. Roncero, M. P. de Lara-Castells, P. Villarreal, F. Flores, J. Ortega, M.

Paniagua, and A. Aguado, J. Chem. Phys. 129, 184104 (2008).
26O. Roncero, A. Zanchet, P. Villarreal, and A. Aguado, J. Chem. Phys. 131,

234110 (2009).
27J. Nafziger, Q. Wu, and A. Wasserman, J. Chem. Phys. 135, 234101 (2011).
28J. D. Goodpaster, T. A. Barnes, and T. F. Miller III, J. Chem. Phys. 134,

164108 (2011).
29C. Huang, M. Pavone, and E. A. Carter, J. Chem. Phys. 134, 154110 (2011).
30J. D. Goodpaster, T. A. Barnes, F. R. Manby, and T. F. Miller, J. Chem.

Phys. 137, 224113 (2012).
31S. Fux, Ch. R. Jacob, J. Neugebauer, L. Visscher, and M. Reiher, J. Chem.

Phys. 132, 164101 (2010).
32J. D. Goodpaster, N. Ananth, F. R. Manby, and T. F. Miller III, J. Chem.

Phys. 133, 084103 (2010).
33P. de Silva and T. A. Wesolowski, J. Chem. Phys. 137, 094110 (2012).
34S. Liu and P. W. Ayers, Phys. Rev. A 70, 022501 (2004).
35Ch. R. Jacob, S. M. Beyhan, and L. Visscher, J. Chem. Phys. 126, 234116

(2007).
36J. D. Talman and W. F. Shadwick, Phys. Rev. A 14, 36 (1976).
37A. Görling, Phys. Rev. A 46, 3753 (1992).
38W. Yang and Q. Wu, Phys. Rev. Lett. 89, 143002 (2002).
39Q. Wu and W. Yang, J. Chem. Phys. 118, 2498 (2003).
40E. Engel and R. M. Dreizler, J. Comput. Chem. 20, 31 (1999).
41A. Makmal, S. Kümmel, and L. Kronik, J. Chem. Theory Comput. 5, 1731

(2009).
42V. N. Staroverov, G. E. Scuseria, and E. R. Davidson, J. Chem. Phys. 124,

141103 (2006).
43T. Heaton-Burgess, F. Bulat, and W. Yang, Phys. Rev. Lett. 98, 256401

(2007).
44A. Heßelmann, A. W. Götz, F. Della Sala, and A. Görling, J. Chem. Phys.

127, 054102 (2007).
45C. Kollmar and M. Filatov, J. Chem. Phys. 127, 114104 (2007).
46J. Fernandez, C. Kollmar, and M. Filatov, Phys. Rev. A 82, 022508 (2010).
47F. Bulat, T. Heaton-Burgess, A. J. Cohen, and W. Yang, J. Chem. Phys. 127,

174101 (2007).
48Ch. R. Jacob, J. Chem. Phys. 135, 244102 (2011).
49O. V. Gritsenko and E. J. Baerends, J. Chem. Phys. 120, 8364 (2004).
50U. von Barth and L. Hedin, J. Phys. C 5, 1629 (1972).
51Ch. R. Jacob and M. Reiher, Int. J. Quantum Chem. 112, 3661 (2012).
52M. Kaupp, M. Bühl, and V. G. Malkin, Calculation of NMR and EPR Pa-

rameters. Theory and Applications (Wiley-VCH, Weinheim, 2004).
53R. McWeeny and B. T. Sutcliffe, Methods of Molecular Quantum Mechan-

ics (Academic, New York, 1969).
54R. McWeeny, Spin in Chemistry (Dover, New York, 2004).

55E. R. Davidson, Reduced Density Matrices in Quantum Chemistry (Aca-
demic, New York, 1976).

56J. A. Pople, P. M. W. Gill, and N. C. Handy, Int. J. Quantum Chem. 56, 303
(1995).

57J. P. Perdew, A. Ruzsinszky, L. A. Constantin, J. Sun, and G. I. Csonka, J.
Chem. Theory Comput. 5, 902 (2009).

58A. J. Cohen, P. Mori-Sanchez, and W. Yang, J. Chem. Phys. 129, 121104
(2008).

59A. J. Cohen, P. Mori-Sánchez, and W. Yang, Chem. Rev. 112, 289 (2012).
60Y. Wang and R. G. Parr, Phys. Rev. A 47, R1591 (1993).
61Q. Zhao, R. C. Morrison, and R. G. Parr, Phys. Rev. A 50, 2138 (1994).
62F. Colonna and A. Savin, J. Chem. Phys. 110, 2828 (1999).
63E. S. Kadantsev and M. J. Stott, Phys. Rev. A 69, 012502 (2004).
64O. V. Gritsenko, R. van Leeuwen, and E. J. Baerends, Phys. Rev. A 52,

1870 (1995).
65P. R. T. Schipper, O. V. Gritsenko, and E. J. Baerends, Theor. Chem. Acc.

99, 329 (1998).
66S. Hirata, S. Ivanov, I. Grabowski, R. J. Bartlett, K. Burke, and J. D. Tal-

man, J. Chem. Phys. 115, 1635 (2001).
67G. L. Oliver and J. P. Perdew, Phys. Rev. A 20, 397 (1979).
68M. Levy, Proc. Natl. Acad. Sci. U.S.A. 76, 6062 (1979).
69M. Levy, Phys. Rev. A 26, 1200 (1982).
70T. Heaton-Burgess and W. Yang, J. Chem. Phys. 129, 194102 (2008).
71G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A.

van Gisbergen, J. G. Snijders, and T. Ziegler, J. Comput. Chem. 22, 931
(2001).

72Ch. R. Jacob, S. M. Beyhan, R. E. Bulo, A. S. P. Gomes, A. W. Götz, K.
Kiewisch, J. Sikkema, and L. Visscher, J. Comput. Chem. 32, 2328 (2011).

73See supplementary material at http://dx.doi.org/10.1063/1.4788913 for fur-
ther numerical studies on the reconstruction procedure.

74Q. Wu and W. Yang, J. Theor. Comput. Chem. 2, 627 (2003).
75A. N. Tihonov, Dokl. Akad. Nauk SSSR 151, 501 (1963).
76W. H. Press, A. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numeri-

cal Recepies: The Art of Scientific Computing, 3rd ed. (Cambridge Univer-
sity Press, 2007).

77M. J. G. Peach, D. G. J. Griffiths, and D. J. Tozer, J. Chem. Phys. 136,
144101 (2012).

78P. de Silva and T. A. Wesolowski, Phys. Rev. A 85, 032518 (2012).
79D. Andrae and J. Hinze, Int. J. Quantum Chem. 63, 65 (1997).
80G. Eickerling and M. Reiher, J. Chem. Theory Comput. 4, 286 (2008).
81H.-J. Werner, P. J. Knowles, R. Lindh, F. R. Manby, M. Schütz et al.,

MOLPRO, version 2009.1, a package of ab initio programs, 2009, see
http://www.molpro.net.

82T. H. Dunning, Jr., J. Chem. Phys. 90, 1007 (1989).
83N. B. Balabanov and K. A. Peterson, J. Chem. Phys. 123, 064107 (2005).
84P. R. T. Schipper, O. V. Gritsenko, and E. J. Baerends, Theor. Chem. Acc.

98, 16 (1997).

Downloaded 29 Jan 2013 to 129.13.72.198. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1002/qua.22048
http://dx.doi.org/10.1039/c2pc90007f
http://dx.doi.org/10.1039/c2pc90007f
http://dx.doi.org/10.1063/1.3007987
http://dx.doi.org/10.1063/1.3274823
http://dx.doi.org/10.1063/1.3667198
http://dx.doi.org/10.1063/1.3582913
http://dx.doi.org/10.1063/1.3577516
http://dx.doi.org/10.1063/1.4770226
http://dx.doi.org/10.1063/1.4770226
http://dx.doi.org/10.1063/1.3376251
http://dx.doi.org/10.1063/1.3376251
http://dx.doi.org/10.1063/1.3474575
http://dx.doi.org/10.1063/1.3474575
http://dx.doi.org/10.1063/1.4749573
http://dx.doi.org/10.1103/PhysRevA.70.022501
http://dx.doi.org/10.1063/1.2743013
http://dx.doi.org/10.1103/PhysRevA.14.36
http://dx.doi.org/10.1103/PhysRevA.46.3753
http://dx.doi.org/10.1103/PhysRevLett.89.143002
http://dx.doi.org/10.1063/1.1535422
http://dx.doi.org/10.1021/ct800485v
http://dx.doi.org/10.1063/1.2194546
http://dx.doi.org/10.1103/PhysRevLett.98.256401
http://dx.doi.org/10.1063/1.2751159
http://dx.doi.org/10.1063/1.2777144
http://dx.doi.org/10.1103/PhysRevA.82.022508
http://dx.doi.org/10.1063/1.2800021
http://dx.doi.org/10.1063/1.3670414
http://dx.doi.org/10.1063/1.1698561
http://dx.doi.org/10.1088/0022-3719/5/13/012
http://dx.doi.org/10.1002/qua.24309
http://dx.doi.org/10.1002/qua.560560414
http://dx.doi.org/10.1021/ct800531s
http://dx.doi.org/10.1021/ct800531s
http://dx.doi.org/10.1063/1.2987202
http://dx.doi.org/10.1021/cr200107z
http://dx.doi.org/10.1103/PhysRevA.47.R1591
http://dx.doi.org/10.1103/PhysRevA.50.2138
http://dx.doi.org/10.1063/1.478234
http://dx.doi.org/10.1103/PhysRevA.69.012502
http://dx.doi.org/10.1103/PhysRevA.52.1870
http://dx.doi.org/10.1007/s002140050343
http://dx.doi.org/10.1063/1.1381013
http://dx.doi.org/10.1103/PhysRevA.20.397
http://dx.doi.org/10.1073/pnas.76.12.6062
http://dx.doi.org/10.1103/PhysRevA.26.1200
http://dx.doi.org/10.1063/1.2982799
http://dx.doi.org/10.1002/jcc.1056
http://dx.doi.org/10.1002/jcc.21810
http://dx.doi.org/10.1063/1.4788913
http://dx.doi.org/10.1142/S0219633603000690
http://dx.doi.org/10.1063/1.3700436
http://dx.doi.org/10.1103/PhysRevA.85.032518
http://dx.doi.org/10.1021/ct7002447
http://www.molpro.net
http://dx.doi.org/10.1063/1.456153
http://dx.doi.org/10.1063/1.1998907
http://dx.doi.org/10.1007/s002140050273

