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ABSTRACT: The classification of electronic excitations in
molecules and molecular nanostructures plays an important
role when tailoring materials with desired properties. One
example of such a class of excitations are plasmons. Plasmons
appear in solid-state physics, where they are characterized as
density oscillations in an electron gas that are driven by the
restoring forces associated with the electromagnetic field
induced by the density oscillations themselves. Here, we
investigate how this concept can be transferred to molecular
systems by performing a step-by-step analysis, starting from three-dimensional bulk systems and ending with molecules. On the
basis of this analysis, we propose to scale the electron−electron interaction in quantum-chemical response calculations in order to
identify plasmons in molecules. This approach is illustrated for molecular chains and clusters. Our results show that the concept
of plasmons is still applicable for extended molecular systems and demonstrate that the proposed scaling approach provides an
easy way of characterizing electronic excitations.

1. INTRODUCTION

The optical properties of nanostructured materials and
nanoclusters are determined by their electronically excited
states. Tailoring these optical properties for applications
ranging from chemical and biological sensing1−3 over solar
energy conversion4,5 to the fabrication of metamaterials6−9 is
the goal of “plasmonics”, which has emerged as an important
research field at the interface of physics, chemistry, and material
science in the past decades.
The quantum-chemical description of the electronic

excitations underlying such applications can be instructive
both for the interpretation of experiments and for designing
new materials.10 However, the accurate treatment of electronic
excitations relevant in plasmonics presents a challenge. First, for
excited states it is usually more difficult than for the ground
state to calculate their properties with the accuracy required for
a meaningful comparison with experiment.11−13 Second, the
size of the nanoclusters of interest poses an additional
difficulty.14 Not only does the computational demand increase
with the size of the system, but also a larger number of excited
states appear in the relevant energy range. Without a suitable
classification of these electronic excitations this hampers the
interpretation of the computational results and makes it difficult
to identify the important excitations (for a discussion of this
problem in the context of vibrational spectroscopy, see refs
15−17).
Of course, a classification of different types of electronic

excitations is useful both for the interpretation of quantum-
chemical calculations and for selectively targeting excitations

that are of interest for predicting optical or other spectroscopic
properties. Typically, the classification of electronic excitations
within quantum chemistry is based on a rather technical
approach,11 and driven by the need to decide which quantum-
chemical methods are appropriate for describing the excitations
of interest.12 For instance, one distinguishes valence and
Rydberg excitations for determining whether asymptotically
corrected exchange−correlation potentials are needed when
using time-dependent density-functional theory (TDDFT)18,19

and distinguishes charge-transfer and local excitations for
deciding whether TDDFT with standard nonhybrid ex-
change−correlation functionals can be employed.20,21

An alternative route is chosen in solid-state physics where the
electronic excitations in metallic systems are classified as single-
particle excitations and plasmons.22−24 The distinction of
plasmons and single-particle excitations can be motivated from
the homogeneous electron gas model.23,25 Here, plasmons are
collective charge density oscillations with a strong induced
electromagnetic field, which provides a restoring force. These
plasmonic excitations often determine the optical properties of
metals, whereas the single-particle excitations play a role, e.g., in
damping processes. Plasmons in extended systems are usually
well-described by classical electrodynamics.24,26

These classical models can also be applied to nanosystems,
such as metal clusters. For larger metal clusters, they usually
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provide a rather accurate description of the optical
spectrum27−29 whereas extended models including quantum-
mechanical corrections accounting for the presence of discrete
energy levels can be used for more complicated cases.30,31 For
smaller clusters consisting of only tens to hundreds of atoms,
classical models are no longer applicable and a full quantum-
chemical treatment is usually necessary. In this case, the optical
spectrum does not show a single strong plasmon peak anymore,
but instead a spectrum with distinct peaks due to transitions
between discrete energy levels is obtained, which is typical of
molecular systems. When increasing the size of the clusters, the
optical spectrum obtained from full quantum-chemical
calculations approaches the one predicted by classical
models.32,33

In such calculations a large number of electronic excitations
contribute to the plasmon peak, and the distinction between
plasmons and single-particle excitations present for the
homogeneous electron gas is not immediately apparent
anymore in standard quantum-chemical calculations. Therefore,
it is not straightforward to connect such calculations to the
classical models of plasmons and to identify the important
plasmonic excitations. Alternatively, the emergence of plasmons
in molecular chains and clusters has been studied by using
explicitly time-dependent methods.34−37 However, in this case
the optical spectrum is obtained, but individual electronic
excitations cannot be identified anymore. Thus, despite the
wide use of the term “plasmons” in such molecular systems, it
often remains unclear how plasmonic excitations differ from
other types of electronic excitations. In fact, all excitations with
large oscillator strengths calculated in metal clusters are often
referred to as plasmons (see, e.g., refs 32, 33, and 38). Here, we
close this gap. We present a detailed analysis showing how the
concept of a plasmon can be transferred to molecular systems
and propose an approach for identifying plasmonic excitations
in quantum-chemical calculations for molecules.
This work is organized as follows. In Section 2 the plasmonic

resonances of the three-dimensional homogeneous electron gas
are introduced both in a classical picture and in the framework
of (quantum-mechanical) linear response theory. In addition,
the distinction of plasmons and single-particle resonances is
discussed. Subsequently, the downscaling from a three-
dimensional system to a molecular wire is carefully analyzed.
This is followed by an analysis of the electronic excitations in a
linear sodium chain in Section 3. On the basis of our analysis,
we then propose an approach for distinguishing plasmons and
single-particle excitations in Section 4. This is applied to
molecular chains and clusters in Section 5 and Section 6,
respectively. Finally, a summary and concluding remarks are
given in Section 7.

2. PLASMONS: FROM PERIODIC TO MOLECULAR
SYSTEMS
2.1. Phenomenological Description. In solid-state

physics, plasmons are typically discussed in the context of
metals as long wavelength charge-density oscillations induced
by an external perturbation.22,24 For a classical description, we
consider a homogeneous electron gas with a homogeneous
positively charged background in a three-dimensional (3D)
cube of volume V. If an external electric field ℰext is applied, the
electron gas exhibits a density response, which is given by a
displacement of the electronic density against the background
by a shift Δx. This induced density in return gives rise to an
induced electric field acting as a restoring force F,

π ρ= − ΔF e x4 2
0 (1)

where e is the electron charge and ρ0 is the electron (particle)
density. Here and in the following, we are using Gaussian units.
Classically, the movement of the electrons can be described by
Newton’s equation,

π ρ∂ Δ
∂

+ Δ = −m
x

t
e x e4

2

2
2

0 ext (2)

where m is the (effective) electron mass. Thus, one finds that
the system behaves like a driven harmonic oscillator. Such a
driven harmonic oscillator has a resonance frequency at

ω
π ρ

=
e

m

42
2

0
(3)

This resonance corresponds to a collective electronic
excitation of the classical electron gas, in which all electrons
move as one entity. Comparing with eq 1, we notice that this
resonance frequency is determined by the restoring force
caused by the induced electric field.

2.2. Quantum-Mechanical Description. As starting point
for a microscopic treatment, one considers the induced density
δρ(r,ω) as a response to an external scalar potential Φext(r,ω)
oscillating with angular frequency ω,

∫ω χ ω ωδρ = ′ Φ ′ ′rr r r r( , ) ( , , ) ( , ) dext ext
3

(4)

where the external density response function χext(r,r′,ω) has
been introduced. This external response function depends on
the angular frequency ω of the perturbation and its poles
correspond to electronic excitation energies. The induced
density gives rise to an induced Hartree potential,

∫ω ωΦ = − ′ δρ ′ ′f rr r r r( , ) ( ) ( , ) dind Coul
3

(5)

where f Coul is the Coulomb kernel,

− ′ =
| − ′|

f
e

r r
r r

( )Coul (6)

The induced Hartree potential adds to the external potential,
yielding the total potential

ω ω ωΦ = Φ + Φr r r( , ) ( , ) ( , )tot ext ind (7)

The response equation, eq 4, can then be recast in the form

∫
∫

ω χ ω ω

χ ω ω

δρ = ′ Φ ′ ′

= ′ Φ ′ ′

r

r

r r r r

r r r

( , ) ( , , ) ( , ) d

( , , ) ( , ) d

ext ext
3

irr tot
3

(8)

where we have introduced the irreducible response function
χirr(r,r′,ω) describing the response of the electron density to
the change in the total potential. After substituting eqs 7 and 5
into the right-hand side of the above expression and
rearranging, we obtain an integral equation,

∫ ε ω χ ω χ ω′′ ′′ ′ ′′ = ′rr r r r r r( , , ) ( , , ) d ( , , )ext
3

irr (9)

where we introduced the dielectric function,

∫
ε ω δ

χ ω

′′ = − ′′

− ′′′ ′′′ − ′′ ′′′f r

r r r r

r r r r

( , , ) ( )

( , , ) ( ) dirr Coul
3

(10)
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Defining the inverse dielectric function ε−1 via

∫ ε ω ε ω δ′′ ′′ ′ ′′ = − ′− rr r r r r r( , , ) ( , , ) d ( )1 3
(11)

one can solve for χext and obtains

∫χ ω ε ω χ ω′ = ′′ ′′ ′ ′′− rr r r r r r( , , ) ( , , ) ( , , ) dext
1

irr
3

(12)

To find the electronic excitations of the system, we have to
determine the poles of the external response function χext.
Considering eq 12, one can naively identify two different ways
in which poles can arise.22,39 First, poles of χext should appear
for frequencies that correspond to poles of χirr. Second, poles of
χext could also arise if the dielectric function ε has a zero mode
(i.e., an eigenvalue equal to zero) for a certain frequency, i.e., if

∫ ε ω π ω′ ′ ′ =r rr r( , , ) ( , ) d 0plas plas
3

(13)

for a nonzero π(r′,ωplas) at the frequency ωplas.
This distinction allows for an attempt to classify electronic

excitations: The first type (i.e., those originating from poles of
χirr) will be called single-particle excitations, whereas the second
type (i.e., those originating from zero modes of ε) will be
labeled plasmons. Note that the dielectric function ε contains
the bare Coulomb kernel f Coul whereas the irreducible response
function χirr can be expressed via a perturbation expansion in
the screened Coulomb interaction and is independent of f Coul
in zeroth order. Thus, single-particle excitations and plasmons
are distinguished by their different dependence on the
Coulomb kernel.
Two remarks should be made here: First, we notice that

because ε−1 depends on χirr, the frequencies of poles of χirr will
not be exactly equal to those of poles of χext, but the presence of
f Coul leads to a (usually small) shift. This can be seen by
multiplying eq 9 by (ω − ω0) where ω0 is a resonance
frequency and solving for χext in the same manner as in eq 12.
Second, if a frequency for which ε has a zero-mode (i.e., a
plasmonic excitation) is close to a pole of χirr (i.e., a single-
particle excitation), these two types of excitations will mix if
they do not have different symmetries. Thus, in this case the
separation of the electronic excitations (i.e., the poles of χext)
into plasmons and single-particle excitations may break down.
2.3. Random-Phase Approximation. The linear-response

formalism presented in the previous section can be employed
for the (quantum-mechanical) calculation of the excitation
energies. The simplest ansatz for the ground-state electronic
wave function is a Slater determinant with single-particle
orbitals {ϕp}. The corresponding orbital energies are denoted
as εp. The electrons occupy the lowest states according to the
aufbau principle. Using the common quantum-chemical
notation, we label the occupied orbitals with an index i and
the unoccupied ones with an index a.
From time-dependent perturbation theory for a system of

noninteracting electrons, one can calculate the linear response
function,40,41

∑χ ω ϕ ϕ ϕ ϕ

ε ε
ε ε ω

′ = − * ′ * ′

×
−

− − ℏ

rer r r r r( , , ) 2 ( ) ( ) ( ) ( )

2( )
( )

ia
i a i a

a i

a i

(0)

2 2 2
(14)

This response function contains no interaction effects of the
electrons (except for the interaction effects that are included

within the orbitals, e.g., within the Hartree or Kohn−Sham
approximation) and can serve as an approximation for χirr. This
approximation of using the response function of a non-
interacting reference system for χirr is called Random-Phase
Approximation (RPA). It is closely related to time-dependent
density-functional theory (TDDFT),42−45 where χ(0) is also
used for the irreducible response function, but where an
exchange−correlation kernel f xc enters in addition to the
Coulomb kernel in eq 5. The poles of χ(0) describe excitations
from occupied to unoccupied states and correspond to orbital
energy differences, i.e., ω = (εa − εi)/ℏ.

2.4. Three-Dimensional Electron Gas. We consider a
noninteracting homogeneous electron gas with volume V. The
single-particle states are given by plane waves,

φ = ·r k r
V

( )
1

exp(i )k (15)

which can be classified by their wavevector k due to the
translational invariance. Consequently, the single-particle
(orbital) energies become a function of the wavevector, the
so-called dispersion,

ε = ℏ k
m

k( )
2

2 2

(16)

where k = |k|. The energy of the highest occupied state is the
Fermi energy EF, with the corresponding absolute value of the
wavevector kF.
The separation of the electronic excitations into single-

particle excitations and plasmons introduced above is applicable
here. Therefore, we treat single-particle excitations and
plasmons separately by determining the poles of the irreducible
response function χirr, approximated by χ(0) within the RPA,
and the zeros of the dielectric function ε, respectively.
Subsequently, we clarify why this separate treatment is indeed
appropriate and when it breaks down.
The possible single-particle excitation energies (i.e., the poles

of χ(0)) are obtained by subtracting the energy of the state with
wavevectors k below the Fermi energy from a state with
wavevector k + q above the Fermi level, where the wavevector
of the single-particle excitation is q. Thus, the single-particle
excitation energy is

ε ε εΔ = + − = ℏ · + ℏ
m m

qk q k q k k q( , ) ( ) ( )
2sp

2 2
2

(17)

In macroscopic systems (i.e., in the limit that the volume V
goes to infinity), the wavevectors can be treated as continuous,
and from the boundary conditions |k| ≤ kF and |k + q| ≥ kF one
finds for the single-particle continuum Δεsp,

25

εΔ ≤ ℏ + ℏ
q v q

m
q( )

2sp F

2
2

(18)

εΔ ≥ −ℏ + ℏ >q v q
m

q q k( )
2

, if 2sp F

2
2

F (19)

where we introduced the Fermi velocity vF = ℏkF/m.
To determine the energies of the plasmonic excitations, we

calculate the density response function within the RPA by
taking the Fourier transform of eq 14,
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∫χ ω
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3

F
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This integral can be evaluated analytically, and is given by the
Lindhard function.23 Here, it will be more convenient to
perform a Taylor expansion for qvF ≪ ω up to forth order in q,
which leads to

∫χ ω
π ω ω

ω

= +
ℏ ·

+
ℏ ·

+ ···

| |<

⎛
⎝⎜

⎞
⎠⎟

e q
m

q
m

q
m

k

q
k q

k q

( , )
2

(2 )
2 ( )

3 ( )
d

kk

(0)
3

2

2

2

2 3

2 2 2

3 4
3

F

(21)

and the integration in spherical coordinates then yields

χ ω
ρ
ω ω

= + + ···
⎛
⎝⎜

⎞
⎠⎟q

e q

m
v q

( , ) 1
3
5

(0) 0
2

2
F
2 2

2
(22)

where the electron density is given by ρ0 = kF
3/3π2.

The dielectric function from eq 10 within the RPA has a very
simple form after Fourier transformation,

ε ω χ ω= −q f q( , ) 1 (q, ) ( )(0)
Coul (23)

where the Fourier transform of the Coulomb kernel reads

π=f q
e

q
( )

4
Coul 2

(24)

Finally, by calculating the zeros of the dielectric function, and
performing a Taylor expansion of the appearing square root in
qvF/ωplas, we can express the plasmon frequency as a function
of the wavevector, which is the so-called plasmon dispersion,

ω
ρ

π ρ

= +
ℏ

= +

⎛
⎝⎜

⎞
⎠⎟q

e

m
q f q

k
m

q

e

m
v q

( ) ( )
3
5

4 3
5

plas
2 0 2

Coul
F

2

2
0

F
2 2

(25)

The first term in eq 25 is exactly the same as the one found
when calculating the plasmon frequency on purely classical
grounds [cf. Section 2.1]. The second term can be interpreted
as a “quantum kinetic-energy correction”.
Both the single-particle continuum [eqs 18 and 19] and the

plasmon dispersion [eq 25] are shown in Figure 1a for ρ0 =
(1/6π2)a0

−3, where a0 = ℏ2/me2 is the Bohr radius. For small
wavevectors, the plasmonic and single-particle excitations are
well-separated. That is, at a given energy, plasmons and single-
particle excitations have different wavevectors and because the
wavevector characterizes the translational symmetry they
cannot mix. Choosing a different value for ρ0 will leave the
single-particle continuum unchanged and only shift the
plasmon dispersion. However, the qualitative picture will
remain unchanged. Above a certain wavevector the plasmon
dispersion penetrates the single-particle continuum. In this
regime, the plasmonic excitations will mix single-particle
excitations and the separate treatment breaks down if the
mixing of plasmons and single-particle excitations is too strong.

In this case, classifying the electronic excitations as plasmons
and single-particle excitations is not possible anymore.

2.5. One-Dimensional Electron Gas. For a one-dimen-
sional (1D) homogeneous electron gas in a wire with length L,
the single-particle states are plane waves,

φ =x
L

kx( )
1

exp(i )k (26)

and the dispersion is again given by

Figure 1. Plasmon dispersion and particle-hole continuum for (a) a
three-dimensional electron gas with periodic boundary conditions for
ρ0 = (1/8π2)a0

−3, (b) a one-dimensional wire with periodic boundary
conditions for ρ0 = (1/π)a0

−1 and = 20a0, and (c) a one-dimensional
wire with finite size L = 20πa0. The excitation vector is shown in units
of the Fermi wave vector kF, whereas the excitation energy is given in
units of the Fermi energy EF. See text for details.
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ε = ℏ
k

k
m

( )
2

2 2

(27)

Again, we consider the limit of an infinite wire (i.e., L → ∞)
and treat the wavevector as continuous. The single-particle
excitations can be determined in the same manner as for the 3D
electron gas

εΔ ≤ ℏ +
ℏ

q v q
q
m

( )
2sp F

2 2

(28)

εΔ ≥ ℏ −
ℏ

≤q v q
q
m

q k( )
2

, ifsp F

2 2

F (29)

εΔ ≥
ℏ

≥q
q
m

q k( )
2

, ifsp

2 2

F (30)

Compared to the 3D electron gas considered in the previous
section, the upper boundary is unchanged, but the lower
boundary is modified.
For finding the plasmonic excitations, we again employ the

RPA and start from χ(0) [eq 14] and obtain after a 1D Fourier
transformation,

∫χ ω
π

ω

= −
ℏω − − −

−
ℏ − + −

− ℏ

ℏ

⎛

⎝
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⎞

⎠
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k k q
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2
2

1

( [ ] )

1

([ ] )
d

k

k

m

m

(0)

2
2 2

2
2 2

F

F

2

2

(31)

As in the 3D case, we perform a Taylor expansion for vFq ≪
ω up to fourth order in q and after integration arrive at,

χ ω
ρ
ω ω

= + + ···
⎛
⎝⎜

⎞
⎠⎟q

e q

m
v q

( , ) 1(0) 0
2

2
F
2 2

2
(32)

where ρ0 = 2kF/π is the one-dimensional electron density. The
1D Fourier transform of the 3D Coulomb kernel diverges,
making it necessary to introduce a length parameter modeling
the width of the wire,46

=
+

f x
e

x
( )Coul 2 2 (33)

The Fourier transform then reads

κ=f q e q( ) 2 ( )Coul 0 (34)

where κ0 is the zeroth modified Bessel function of second
kind.47 Finally, the plasmon dispersion is determined by finding
the zeros of the dielectric function ε [eq 23]. Again, a Taylor
expansion in vFq/ωplas is used in order to simplify the appearing
square root to arrive at

ω
ρ

κ= +q
e

m
q q v q( )

2
( )plas

2
2

0
0

2
F
2 2

(35)

Compared to the 3D electron gas, the first term, which arises
from the classical restoring forces, now depends on the
wavevector. This dependency reflects the fact that the electric
field of a point charge drops with the square of the reciprocal
distance, whereas in three dimensions the restoring force is
independent of the distance.
In Figure 1b, the single-particle continuum and the plasmon

dispersion in 1D are shown. For the plasmon dispersion, we

chose ρ0 = (1/π)a0
−1 (which implies kF = (1/2)a0

−1) and =
2a0. The plasmon dispersion now has a different behavior than
in the 3D case, but for small wavevectors the plasmonic
excitations are still well separated from the single-particle
continuum. Thus, the separate treatment of plasmons and
single-particle excitations is justified in this regime. This
observation is independent of the specific choice of ρ0 and .
However, for larger wavevectors the plasmon dispersion
penetrates the single-particle continuum and the classification
of excitations as plasmons or single-particle excitations will not
be possible anymore if the mixing is strong.

2.6. Electron Gas in a Finite-Length Wire. In the
previous subsections we have been concerned with the
continuum limit, i.e., a continuous spectrum of single-particle
energy levels. As a next step toward molecules, we now
consider the situation where all wavevectors become quantized
due to the boundary conditions that the electronic wave
function has to vanish at the ends of the finite wire. We
implement this by the selection rules

π= =k
L

n nwith 1, 2, 3, ...n (36)

In addition, we assume that there is an upper bound for the
wavevector, i.e., kn ≤ kmax, which corresponds to a wire modeled
by a discrete set of space points.
The single-particle wave functions that obey the boundary

conditions are

φ =x
L

k x( )
2

sin( )n n (37)

and the single particle energies do not form a continuous
spectrum anymore, but are discrete,

ε π=
ℏ

= ℏk
m mL

n
2 2n

n
2 2 2 2

2
2

(38)

For the possible single-particle excitations, the upper bound
for the wavevector results in an additional boundary,

εΔ ≤ ℏ −
ℏ

> −q
m

k q
q
m

q k k( )
2

, ifsp

2

max

2 2

max F (39)

Moreover, the quantization of the single-particle energies
leads to a discrete set of possible single-particle excitations
replacing the continuum, where

π= =q
L

n nwith 1, 2, 3, ...n (40)

This is shown in Figure 1c, where due to the selection rules
the single-particle continuum in the infinite 1D wire is replaced
by a discrete set of single-particle excitation energies. In this
figure, we used kF = 10(π/L) = (1/2)a0

−1 and kmax = 20(π/L),
which corresponds to a model with 20 electrons and 20 atomic
sites in a wire of length L = 20πa0. This chosen value of L is
such that the same kF as for the infinite 1D wire is obtained.
For calculating the plasmon dispersion, one proceeds as

above and calculates the Fourier transformation of the RPA
irreducible response function χ(0). However, for a finite-length
wire the translational symmetry is broken and the Fourier
transform is not diagonal in k-space anymore. We ignore the
off-diagonal elements and employ the additional approximation
of using the χ(0)(q,ω) of the infinite 1D electron gas model [eq
32] instead. This corresponds to neglecting the additional
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oscillations in the induced density occurring due to the
boundary conditions.
Within this approximation, plasmons are affected by the

boundary conditions only because of the quantization of
excitation wavevector q according to eq 40. The resulting
plasmonic excitations are included in Figure 1c. We observe
that also for the finite length 1D wire the distinction of
plasmons and single-particle resonances is meaningful for small
wavevectors. Note, however, that because the translational
invariance is lost, the wavevector does not distinguish
excitations of different symmetry anymore and plasmons and
single-particle excitations that are close in energy could exhibit
some mixing even if their wavevector differs. Therefore, we will
verify the model considered here by comparing to full
molecular calculations in the following.

3. PLASMONS IN MOLECULES

We are now in the position to consider plasmons in molecular
systems. As a first simple example, we use a sodium chain
consisting of 20 atoms in a linear arrangement. Such linear
sodium chains are a typical example of a molecular system in
which the intense electronic excitations are commonly
discussed as plasmons and for which classical models are
often appropriate.48 First, we performed a ground-state density-
functional theory (DFT) calculation in order to determine the
single-particle energies and orbitals. Subsequently, the elec-
tronic excitations were computed with TDDFT.
To analyze the resulting excitations in the same fashion as in

the previous section, we have to classify the excitations by a
wavevector qn. To this end, we assigned a wave vector kn =
(π/L)n to each molecular orbital by visual inspection, i.e., by
setting n to the number of nodes of the ground-state orbitals.
Armed with this knowledge, we can assign a wavevector to each
orbital transition by subtracting the wavevectors of the involved
orbitals. The electronic excitations as described within TDDFT
are superpositions of orbital transitions and, therefore, can be
assigned a wavevector qn = (π/L)n by using the dominant
contribution of orbital transitions. For the linear sodium chain,
such an assignment is possible because each excitation is either
dominated by a single orbital transition or the different
contributing orbital transitions correspond to the same
wavevector.

In Figure 2, the excitation energies (blue circles) are plotted
against the assigned wavevector divided by the Fermi
wavevector, kn/kF = n/10, to obtain a plot similar to those
discussed in the previous section. For each wavevector, we
observe that one excitation is well separated from the others.
Thus, by analogy with the results obtained earlier for the
electron gas models, these excitations can be identified as
plasmons, while the remaining excitations correspond to single-
particle excitations.
To make the analogy more obvious, we employ the electron

gas model for the 1D wire presented in the previous section in
order to calculate the boundaries of the single-particle
excitation continuum and the plasmonic excitation energies.
For this purpose, we determined vF (or equivalently L) by
fitting the Kohn−Sham dispersion relation extracted from the
ground-state DFT calculations to eq 38. With this value, the
boundaries of the single-particle continuum of the 1D electron
gas with an upper bound for the wavevector [eqs 28−30 and
39] are calculated and included in Figure 2 (red line). We find
that the excitations obtained with TDDFT and identified as
single-particle excitations fall nicely within the boundaries of
the single-particle continuum obtained for the 1D electron gas.
In addition, the plasmonic excitation energies obtained for

the finite 1D wire (cf. Section 2.6) are also shown in Figure 2
(green circles). One observes that the TDDFT excitations
identified as plasmons are very close in energy to the values of
the electron gas model. The deviations can be attributed to the
limitations of this simple model and the ad hoc determination
of the Fermi velocity vF (or of the length L). This confirms the
classification of the excitations obtained from TDDFT as either
single-particle or plasmons. Note that this classification is still
possible, even though the wavevector assigned here is only an
approximate symmetry classification. In addition, the good
agreement with the full TDDFT results also shows the validity
of the electron gas model for the considered sodium chain.
Finally, we inspect the transition densities of the four lowest-

energy plasmonic and single-particle excitations. These are
shown in Figure 2 as isosurface plots. The transition densities
of the plasmons have an envelope with a number of nodes
increasing from one to four, i.e., equal to n in the assigned
wavevector qn = (π/L)n. This is in line with the classical
interpretation of plasmons as collective electronic excitations
that have the form of standing density waves. The additional

Figure 2. (a) Plasmon dispersion and particle-hole continuum of an Na20 chain calculated with (TD)DFT compared to the (finite) one-dimensional
electron gas model. For TDDFT, only the 50 lowest excitations are calculated, which is indicated by the black dashed line. The excitation vector is
shown in units of the Fermi wave vector kF, whereas the excitation energy is given relative to the HOMO−LUMO gap Δ. See text for details. (b)
Isosurface plots of the TDDFT transition densities of the four lowest plasmonic (P1−P4) and single-particle (E1−E4) excitations.
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oscillations observed in the transition densities result from the
finite size. On the other hand, the transition densities of the
single-particle excitations show no envelope with a low
wavevector. Looking, e.g., at the third single-particle excitation
(labeled E3 in the figure), it is not immediately obvious why
this excitation is classified by the same wavevector as the
second plasmon (labeled P2 in the figure). Here, the dominant
contributions of the orbital transitions can also be classified by
the same wavevector. However, the mixing of the contributing
orbital transitions leads to destructive interference for the long-
wavelength components and results in a transition density
where the wavevector is not apparent anymore.

4. IDENTIFYING PLASMONIC EXCITATIONS

4.1. Scaling Approach for Time-Dependent DFT. So
far, the identification of plasmons has been based on the
assignment of wavevectors to the individual excitations. For
general molecules, however, such an assignment is not possible
anymore. Because there is no translational symmetry, neither
the electronic states nor the electronic excitations can be

classified by a wavevector. Consequently, pictures such as in
Figure 2 can only be obtained for special cases such as simple
linear chains. One might wonder whether inspecting the
transition densities could allow for the distinction of plasmons
and single-particle excitations, but this becomes cumbersome
and requires prior knowledge of the expected plasmonic
transition densities. Alternatively, one might expect that the
oscillator strengths could provide a possibility for identifying
plasmonic resonances. However, this is also not a reliable
procedure. For instance, the electric dipole oscillator strengths
of the plasmons of a linear chain with an even number of nodes
vanish, even though these have a large induced density.
For developing a simple way of identifying plasmonic

excitations, we recall that in Section 2.2 we noticed that poles
of the irreducible response function (i.e., single-particle
excitations) and zero modes of the dielectric function (i.e.,
plasmons) exhibit a different dependence on the electron−
electron interaction contained in f Coul when it is gradually
“switched on”. In order to monitor the dependence of the
excitation energies on f Coul, we decided to scale the electron−

Figure 3. Change of the squared excitation energies of a sodium chain consisting of 20 atoms upon scaling the electronic interaction (left) and
isosurface plots of the identified plasmons (right). Excitation energies are plotted in units of the HOMO−LUMO gap (Δ = 0.17 eV) and the
coloring scheme described in the text is used to follow the plasmonic excitations, using the excitations highlighted by a black circle at λ = 0.1 as
reference points. For dipole-allowed excitations, the linear absorption spectrum is also included.
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electron interaction term in the response equations. As an
example we will discuss such a scaling approach for TDDFT.
Within the framework of TDDFT, the interacting system is

mapped onto a noninteracting (Kohn−Sham) reference
system.43,45 This results in an integral equation for the external
response function that closely resembles eq 9

∫ ε ω χ ω χ ω′′ ′′ ′ ′′ = ′rr r r r r r( , , ) ( , , ) d ( , , )TDDFT
ext

3 (0)

(41)

where χ(0) is the density response function of the non-
interacting Kohn−Sham reference system introduced earlier
and the dielectric function,

∫
ε ω δ

χ ω
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3
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now contains the frequency-dependent exchange−correlation
kernel f xc(r,r′,ω) in addition to the Coulomb kernel. The
density response function of the Kohn−Sham system is given
by eq 14 where the Kohn−Sham orbitals and their orbital
energies are used, i.e., it is equivalent to the RPA response
function. The excitation energies of the Kohn−Sham reference
system are given by orbital-energy differences, whereas the true
excitation energies are obtained by analyzing the poles of χext.
To make a smooth transition between the noninteracting and

the interacting system, we introduce a dimensionless scaling
factor λ taking values between zero and one in eq 42,

∫
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The excitation energies then become a function of the scaling
parameter λ. Here, we have chosen to scale both the Coulomb
kernel and the exchange−correlation kernel simultaneously,
because both emerge from the electron−electron interaction.
In practical TDDFT calculations one employs the adiabatic

approximation and neglects the frequency dependence of the
exchange−correlation kernel. The induced density is typically
expanded in the products of occupied and virtual Kohn−Sham
molecular orbitals,

∑ ϕ ϕ ϕ ϕδρ = * + *r X Yr r r r( ) ( ) ( ) ( ) ( )
i a

ia i a ia i a
, (44)

and eq 41 leads to the TDDFT eigenvalue equations42,44
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− −
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where the matrices A and B are given by

ε ε δ δ λ= − + | +A ia jb f( ) [2( ) 2 ]ia jb a i ij ab iajb,
xc

(46)

λ= | +B ia jb f[2( ) 2 ]ia jb iajb,
xc

(47)

with the matrix elements of the Coulomb and exchange−
correlation kernels, respectively,

∬ ϕ ϕ ϕ ϕ| = − ′ ′ ′ ′ia jb e f r rr r r r r r( ) ( ) ( ) ( ) ( ) ( ) d di a j bCoul
3 3

(48)

∬ω ϕ ϕ ϕ ϕ= ′ ′ ′ ′f e f r rr r r r r r( ) ( ) ( ) ( , ) ( ) ( ) d diajb i a j b
xc

xc
3 3

(49)

Thus, compared to a standard TDDFT calculation, the
matrix elements of the Coulomb and exchange−correlation
kernels are multiplied by the scaling parameter λ. Note that
scaling the electron−electron interaction does not require the
calculation of new integrals, making it trivial to implement in
quantum chemistry codes.

4.2. Scaling Approach Applied to Na20 Chain. To test
the scaling approach for identifying plasmons, we revisit the
sodium chain consisting of 20 atoms considered earlier in
Section 3. We calculated the electronic excitation energies using
TDDFT with increasing values of λ and depicted the results in
Figure 3, where the symmetries Σu

+ and Σg
+ are considered

separately.
By studying the change of the calculated excitation energies

as a function of the scaling parameter λ one can clearly
distinguish different types of excitations: Most excitation
energies only change slightly when increasing the scaling
parameter λ, i.e., they are close to an orbital energy difference of
the Kohn−Sham reference system for all values of λ. These
excitations can be classified as single-particle excitations and are
exactly those excitations that lie within the single-particle
continuum as depicted in Figure 2.
For a few excitations, the excitation energy shows a strong

dependence on the scaling parameter λ. These excitations will
be denoted as plasmonic excitations, as the transition from the
reference system to the fully interacting system is mainly
determined by the electric restoring forces encoded in f Coul. For
λ = 0 these modes lie in the single-particle continuum of Figure
2, but they move outside upon increasing λ and coincide with
the plasmonic resonances in Figure 2 for λ = 1. These
plasmonic excitations are identical with those identified already
in Section 3 and their transition densities have the form of
standing waves with an increasing number of nodes. For the
excitations with Σu

+ symmetry the absorption spectrum is also
included in Figure 3. Here, we find that the identified plasmons
with one and with three nodes correspond to the only
excitations that have a significant oscillator strength.
To identify the expected behavior of plasmonic excitations,

we revisit the 1D electron gas and introduce a scaling of the
Coulomb kernel by replacing f Coul(q) by λf Coul(q). The 1D
plasmons in this model are then given by [cf. eq 35]

ω
ρ

λ= +q
e

m
f q q v q( ) ( )plas

2 0
Coul

2
F
2 2

(50)

that is, the squared plasmonic excitation energies ℏ2ωplas
2

increase linearly with λ. The same dependence on the Coulomb
kernel is also found for the 3D electron gas [cf. eq 25].
Therefore, we have plotted the squared excitation energies in
Figure 3. In addition, we have divided the squared excitation
energies by the squared energy difference between the highest
occupied and the lowest unoccupied molecular orbitals
(HOMO−LUMO gap) Δ, i.e., plot ℏ2ω2/Δ2 as a function of
λ. For λ = 0, the first term disappears and for systems with a
similar electronic structure the second term will then only
depend on the number of nodes of the plasmon, i.e., the
plasmonic excitation energies should start at the same point for
λ = 0.
To follow the plasmonic excitations when increasing the

scaling parameter λ, we have employed a coloring scheme in
our plots: First, we select candidates for plasmonic excitations
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by visual inspection for a certain value of λ at which a linear
increase is clearly visible. In Figure 3, we chose λ = 0.1 as
reference point. For these reference excitations, their similarity
to all other excitations at different values of λ is determined by
calculating the scalar product of the corresponding eigenvectors
of the TDDFT eigenvalue problem.49 All points in the plot are
then colored by using the additive RGB color model where the
amount of added color red, green, and blue is given by the
scalar product with the first, second, and third reference
excitation, respectively. In addition, the size of the points is
increased with the absolute value of the sum of these scalar
products. For the sodium chain considered here, we observe
that the composition of the TDDFT eigenvectors of the
plasmonic excitations is identical for all values of λ.
Furthermore, one notices that the plasmonic excitations do
not mix with single-particle excitations even if these come close
in energy. Thus, for the sodium chain the wavevector assigned
in Section 3 still serves as an (approximate) symmetry
classification that prevents this mixing.
Finally, we note that a third type of excitations could possibly

also be identified in the plots of the excitation energies as a
function of the scaling parameter λ: If the excitation energy
decreases when increasing λ, the Coulomb attraction of the

electron and the hole, which should be accounted for by the
exchange−correlation kernel f xc, is the decisive contribution to
the excitation energy. Such excitations are usually classified as
charge-transfer excitations or excitons. However, as these
excitations are not treated properly by TDDFT with standard
nonhybrid functionals,50,51 these cannot be found here and will,
therefore, not be discussed further.

5. IDENTIFYING PLASMONS IN MOLECULAR CHAINS

5.1. C30H32 Chain. As a slightly more complicated example,
we consider an all-trans-alkene chain with 30 carbon atoms.
This alkene chain is an organic molecule with a HOMO−
LUMO gap that is significantly larger than in the sodium chain
(i.e., 0.84 eV compared to 0.17 eV). Moreover, it is not linear,
but has C2h symmetry. First, we calculated the ground-state
Kohn−Sham orbitals and orbital energies of the π-system and
verified by visual inspection that each π-orbital could still be
assigned a wavevector. This suggests that one should be able to
clearly distinguish plasmonic excitations with specific wave-
vectors from the single-particle excitations.
Subsequently, we determined the excitation energies via

TDDFT calculations and changed the values of the scaling

Figure 4. Change of the squared excitation energies of C30H32 alkene chain upon scaling the electronic interaction (left) and isosurface plots of the
identified plasmons (right). Excitation energies are plotted in units of the HOMO−LUMO gap (Δ = 0.84 eV) and the coloring scheme described in
the text is used to follow the plasmonic excitations, using the excitations highlighted by a black circle at λ = 0.1 as reference points. For dipole-
allowed excitations, the linear absorption spectrum is also included.
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parameter from λ = 0 to λ = 1. As before, the dependence of the
squared excitation energies is shown in Figure 4 for excitations
with Bu and Ag symmetry. As for the sodium chain, we can
clearly distinguish single-particle excitations, for which the
excitation energy is largely independent of the scaling
parameter, and plasmons, for which the squared excitation
energy increases linearly with λ.
However, in contrast to the sodium chain we now observe

“avoided crossings” if these plasmons come close to single-
particle excitations. In this case, plasmons and single-particle
excitations mix, since they no longer belong to different
symmetries. In some cases, such as the lowest-energy plasmon
in symmetry Ag, this mixing of plasmons and single-particle
excitations also occurs for λ = 1, i.e., the distinction partly
breaks down. Nevertheless, the corresponding transition
densities, which are also shown in Figure 4, still show a
standing wave pattern with an envelope that has an increasing
number of nodes for those excitations that have the largest
plasmonic contribution according to our coloring scheme (i.e.,
those with the largest similarity with the reference plasmonic
excitation identified at λ = 0.1).

For the excitations with Bu symmetry, the linear absorption
spectrum also included in Figure 4 again shows that the
identified plasmonic excitations are the ones with the largest
oscillator strengths. However, there are also single-particle
excitations with a significant intensity, such as the second and
third excitation. In addition, some single-particle excitations
gain oscillator strength due to mixing with plasmons, such as
the excitation below the second plasmon in this symmetry.

5.2. Au20 Chain. As a more complicated example of a
molecular chain, we consider a chain of 20 gold atoms.
Compared to the sodium chain, the electronic structure now
becomes more complicated because in addition to the s-
orbitals, the occupied Au d-orbitals are now also in the relevant
energy range.48,52

Plots of the squared excitation energies as functions of the
scaling of the electron−electron interaction are shown in Figure
5 separately for the Σu

+ and Σg
+ symmetries. These plots appear

more complicated than for the sodium chain, but it is
nevertheless still possible to identify plasmonic excitations for
which the squared excitation energy increases strongly with λ.
The lowest-energy plasmon has Σu

+ symmetry and shows a
behavior that is similar to the one found for the lowest-energy

Figure 5. Change of the squared excitation energies of a gold chain consisting of 20 atoms upon scaling the electronic interaction (left) and
isosurface plots of the identified plasmons (right). Excitation energies are plotted in units of the HOMO−LUMO gap (Δ = 0.18 eV) and the
coloring scheme described in the text is used to follow the plasmonic excitations, using the excitations highlighted by a black circle as reference
points. For dipole-allowed excitations, the linear absorption spectrum is also included.
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plasmon in the sodium chain. Because there are more single-
particle excitations at low energies, avoided crossings appear,
but overall the composition of this first plasmonic excitation is
preserved when going from λ = 0 to λ = 1. This lowest-energy
plasmon has a large dipole oscillator strength and can be
identified with the first strong peak in the calculated optical
spectrum of a Au20 chain at ca. 0.6 eV,36,52 which can also be
seen in the linear absorption spectrum included in Figure 5. Its
transition density, which is also included in Figure 5, has one
node and is similar to the one of the first plasmon in the Na20
chain. Thus, the lowest-energy plasmon in the Au20 chain can
be assigned to a transition from occupied to unoccupied s-
orbitals, even though mixing of the occupied s-orbitals with d-
orbitals leads to deviations from the pure s-orbital transitions
observed for the sodium chain.
Finding the second plasmon in the Σu

+ symmetry is more
difficult. For λ = 0.25 it is possible to identify one excitation for
which a linear increase of the square excitation energy with λ is
apparent. Following this excitation by calculating the overlap of
the reference excitation with the other excitations at higher
values of λ shows that this plasmon strongly mixes with single-
particle excitations. For λ = 1, the plasmonic excitation
contributes to a number of different excitations. All these
excitations gain dipole oscillator strength by this mechanism,
which results in a broad band with distinct peaks in the region
between ca. 1.2 eV and ca. 1.7 eV of the calculated optical
spectrum.52 For the excitation with the largest plasmonic
contribution, the transition density is included in the figure and
shows contributions from both s- and d-orbitals. A third
plasmon is found at slightly higher energies, which also mixes
with single-particle excitations. The transition densities of both
the second and the third identified plasmon with Σu

+ symmetry
can be characterized by an envelope with three nodes.
This strong mixing can be understood by realizing that for

gold chains, both intraband transitions between occupied and
unoccupied s-orbitals and interband transitions between
occupied d-orbitals and unoccupied s-orbitals are possible.
The plasmons are due to s−s intraband transitions. For the
lowest wavevector, i.e., the first plasmon with only one node,
the s−d interband single-particle excitations with the same
wavevector are higher in energy. However, for the plasmon
with three nodes, the plasmonic s−s excitations move inside the
energy range of the s−d interband single-particle excitations
with the same wavevector as λ is increased. Since the plasmon
and the single-particle excitations have the same wavevector,
they mix and the resulting excitations have contributions both
from the intraband plasmonic excitations and from interband
single-particle excitations. Hence, the clear distinction of
plasmons and single-particle excitations breaks down here.
At even higher energies, an additional plasmon with Σu

+

symmetry with five nodes is found. Here, we observe a clear
linear increase of the squared excitation energy with λ.
Moreover, this plasmonic excitation does not mix with any
other excitations and its composition is identical for different
values of λ. Thus, the plasmonic excitation energy is not close
to interband single-particle excitation with the same wavevector
anymore. Finally, for the Σg

+ symmetry, we can identify
plasmons with two and four nodes, respectively. In both
cases, these plasmons mix with single-particle excitations. For
the plasmon with two nodes, this is apparent from the
decreased slope found for larger values of λ, whereas for the
plasmon with four nodes the plasmonic excitation strongly
mixes with different single-particle excitations for λ > 0.6.

6. IDENTIFYING PLASMONS IN MOLECULAR
CLUSTERS

6.1. Na20 Cluster. After discussing the identification of
plasmons in molecular chains, we now turn to small molecular
clusters. First, we consider a tetrahedral Na20 cluster. Compared
to the previously discussed sodium chains, the electronic
excitations cannot be easily classified by a wavevector anymore.
Instead, one has to use the irreducible representations of the
point group Td to distinguish excitations of different
symmetries.
The dependence of the squared excitation energies on the

scaling parameter λ for the electron−electron interaction is
shown in Figure 6. We performed the response calculations for
all possible symmetries of the excitation, but show only the
results for the symmetries A1, E, and T2 where low-lying
plasmons could be identified. Again, we employed the coloring
scheme introduced above to follow the plasmonic excitations in
these plots, using a point at which the linear increase of the
plasmonic excitation energy is obvious as reference. These
reference points are highlighted with a black circle in the plots.
The lowest-energy plasmon is found in the T2-symmetry and

can be identified easily in the plots, as it corresponds to the
only excitation for which a linear increase of the squared
excitation energy with λ is observed. For some values of λ, the
energy of this plasmonic excitation is close to single-particle
excitations and avoided crossings appear. Nevertheless, the
composition of the plasmonic excitation only changes slightly
when increasing λ, and a single excitation can be identified as
plasmon at λ = 1. The corresponding transition density is
included in Figure 6 and shows that the plasmon corresponds
to a density oscillation occurring along the tetrahedral S4-axes
with one nodal plane. This excitation corresponds to the
intense plasmon peak in the linear absorption spectrum. Note
that, as all excitations with T2-symmetry, this lowest plasmon is
3-fold degenerate.
In a similar fashion, plasmons can be identified for the A1 and

E symmetries. The plasmonic excitation appearing in the totally
symmetric A1 irreducible representation looks like a “breathing
mode”, in which the induced charge density at the corners of
the tetrahedron has the opposite sign than at the core. Here,
the mixing with single-particle excitations does not only cause
avoided crossings, but also results in a deviation from the linear
increase. Finally, we could identify two (doubly degenerate)
plasmons with E-symmetry, for which the transition densities
each exhibit two nodal planes. Note that even though there is a
large induced density, the dipole oscillator strengths of the
plasmons with A1 and E symmetry vanish.

6.2. Ag20 Cluster. As a second example of a metal cluster,
we studied the electronic excitations in a tetrahedral Ag20
cluster. This cluster is often studied as a model for silver
nanoclusters, for instance for investigating surface-enhanced
Raman spectroscopy of molecules on metal clusters.53 The
plasmonic resonances of this and other silver clusters have been
analyzed previously by using TDDFT.32,33,54,55 For λ = 1, our
results are identical with those presented in ref 32 for the same
computational methodology.
Plots of the squared excitation energies as a function of the

scaling parameter λ are shown in Figure 7 for the T2, A1, and E
symmetries. Overall, the results are qualitatively similar to those
obtained for the Na20 cluster. The lowest-energy plasmon is
found in the T2 symmetry and its transition density
corresponds to a displacement of the density along the S4
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symmetry axis. The identified plasmonic excitation is mainly
responsible for the strong peak in the optical spectrum of Ag20
calculated at 3.3 eV with BP86/TZP32 (see also the linear
absorption spectrum included in the figure). However, the
coloring according to the overlap with the reference excitation
at λ = 0.1 shows that the plasmonic excitation also mixes with
two single-particle excitations at lower energies. Therefore,

these single-particle excitations also gain dipole oscillation
strengths and also contribute to the strong peak in the optical
spectrum.
Additional plasmons can also be identified for the A1 and E

symmetries. These show induced densities similar to those

Figure 6. Change of the squared excitation energies of a tetrahedral
Na20 cluster upon scaling the electronic interaction (left) and
isosurface plots of the identified plasmons (right). Excitation energies
are plotted in units of the HOMO−LUMO gap (Δ = 0.92 eV) and the
coloring scheme described in the text is used to follow the plasmonic
excitations, using the excitations highlighted by a black circle as
reference points. For dipole-allowed excitations, the linear absorption
spectrum is also included.

Figure 7. Change of the squared excitation energies of a tetrahedral
Ag20 cluster upon scaling the electronic interaction (left) and
isosurface plots of the identified plasmons (right). Excitation energies
are plotted in units of the HOMO−LUMO gap (Δ = 1.49 eV) and the
coloring scheme described in the text is used to follow the plasmonic
excitations, using the excitations highlighted by a black circle as
reference points. For dipole-allowed excitations, the linear absorption
spectrum is also included.
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already identified in Na20 that correspond to a breathing mode
and to a displacement of the density along the C3 axis with two
nodal planes. Even though these plasmons have a large induced
density, their dipole oscillator strengths vanish because of their
symmetry, and the lowest nonzero contributions to the
oscillator strengths are due to the induced octupole and
quadrupole moments, respectively.
6.3. Fullerene C60. Finally, we investigate C60 as an example

of a molecule-like cluster. The first analysis of the plasmons of
C60 was performed in ref 56. These calculations predicted
strong peaks in the optical spectrum at ca. 6 eV and at ca. 20
eV, which were assigned to “π-plasmons” and “σ-plasmons”,
respectively. However, this early study did not distinguish
plasmons and single-particle excitations. Subsequently, plas-
mons in fullerenes were investigated theoretically in more detail
by Ju et al. using model calculations assuming a spherically
symmetric system.57 In this case, the plasmonic excitations may
be labeled according to their angular momentum by quantum
numbers (J,mJ). Only the plasmons corresponding to J = 1 have
large dipole oscillator strengths and can be assigned to strong
peaks in the optical spectrum of fullerenes.
The point group of C60 is Ih and the excitations with J = 1 in

a spherically symmetric model belong to the irreducible
representation T1u, whereas those with J = 2 belong to the
Hg representation. As icosahedral symmetry is not supported in
our quantum-chemical calculations, all calculations have been
performed for the D5d point group. The previously discussed
excitations then do not transform like single irreducible
representations anymore, but the three degenerate excitations
corresponding to J = 1 belong to A2u and E1u, whereas the five
degenerate excitations corresponding to J = 2 belong to A1g, E1g,
and E2g. For simplicity, only the excitations transforming like
the one-dimensional irreducible representations A2u and A1g are
analyzed in the following.
The dependence of the squared excitation energies as

calculated with TDDFT on the scaling parameter λ is depicted
in Figure 8. For the excitations with A2u symmetry, two
plasmons with one nodal plane can be identified. These
correspond to J = 1 and can be identified with the excitations
assigned previously to the intense peaks at 5.9 eV and at 6.4 eV
in the optical spectrum58 (see also the linear absorption
spectrum included in the figure). Even though these plasmonic
excitations, in particular the second one, are close to single-
particle excitations, virtually no mixing is observed here. In
addition, a plasmon with three nodal planes (i.e., corresponding
to J = 3) can be identified at higher excitation energy. Note,
however, that also two of the lower-lying single-particle
excitations have significant oscillator strengths and transition
densities similar to those of the identified plasmons with J = 1.
However, as their excitations energies do not increase with λ
above ca. 0.5, we did not classify these excitations as plasmons.
For the excitations with A1g symmetry, three plasmonic

excitations can be found. These each have two nodal planes and
correspond to J = 2. The lowest-energy plasmon starts to mix
with single-particle excitations for higher values of λ, as can be
seen from the change in the slope. Finally, we note that all
plasmons identified here are due to transitions between π
orbitals and can, therefore, be labeled π-plasmons, whereas
transitions between σ-orbitals appear at excitation energies that
are higher than those considered here.

7. CONCLUSIONS
In this work, we have investigated how plasmonic excitations
can be identified in quantum-chemical calculations for
molecular systems. To this end, we revisited the three-
dimensional electron gas model, where a distinction of single-
particle excitations, which correspond to poles of the
irreducible response function χirr, and plasmons, which are
due to zeros of the dielectric function ε, emerges naturally. By a
step-by-step analysis going from the 3D electron gas over a 1D
electron gas to an electron gas in a finite wire, we demonstrated
that this separation is preserved for excitations with small
wavevectors q. As a final step, we could show that for a
molecular sodium chain, the results of a quantum-chemical
calculation can be mapped onto the electron gas model. This
demonstrates that in molecular systems a classification of
electronic excitations as plasmons or single-particle excitations
can still be possible.

Figure 8. Change of the squared excitation energies of a fullerene C60
cluster upon scaling the electronic interaction (left) and isosurface
plots of the identified plasmons (right). Excitation energies are plotted
in units of the HOMO−LUMO gap (Δ = 1.66 eV) and the coloring
scheme described in the text is used to follow the plasmonic
excitations, using the excitations highlighted by a black circle as
reference points. For dipole-allowed excitations, the linear absorption
spectrum is also included.
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To identify plasmons in general molecules, we propose to
analyze the excitations by scaling the electron−electron
interaction in the response calculation. While single-particle
excitations are only slightly affected by this scaling, plasmonic
excitations are sensitive to variations in the scaling parameter λ.
More specifically, their squared excitation energies should
increase linearly with the scaling parameter λ. This approach
has been implemented for TDDFT and was applied for
molecular chains and clusters. It can be easily incorporated into
any quantum-chemical program package.
Depending on the system, a number of different cases can be

observed. First, in many cases plasmons and single-particle
excitations can be clearly distinguished with our analysis. While
for some excitations, identified as plasmons, the squared
excitation energy increases linearly with the scaling parameter λ,
the energies of most excitations, identified as single-particle
excitations, are largely independent of λ. Moreover, the
composition of the plasmonic excitations is independent of λ
and plasmonic and single-particle excitations do not mix even if
they become close in energy. Such a behavior is found for the
Na20 chain, but also for some of the plasmonic excitations in
other systems.
Second, for some molecular systems, such as the considered

alkene chain, the identified plasmonic excitations mix with
certain single-particle excitations if they become close in energy
for a certain value of λ. This shows up in our plots as avoided
crossings. In these cases, the coloring scheme applied here turns
out to be useful for following the plasmonic excitations. Finally,
in some cases a strong mixing of plasmonic excitations and
single-particle excitations is observed. This is the case for the
plasmon with three nodes in the considered Au20 chain. Here,
the s−s plasmonic excitation mixes with d−s interband single-
particle excitations with the same (approximate) wavevector.
Thus, the distinction of plasmons and single-particle excitations
breaks down in this case.
With the analysis tool developed here for identifying

plasmonic excitations, it becomes possible to investigate the
dependence of plasmons in molecular clusters as a function of
the cluster size. In particular, it will be interesting to study the
minimal size of a molecular system that is required to clearly
distinguish plasmons from single-particle excitations and to
investigate the transition to the regime in which classical
models of plasmons become appropriate.29 The possibility of
identifying specific excitations as plasmons opens the way to
directly connecting quantum-chemical calculations to such
classical models. We plan to explore these questions in our
future work.
The scaling approach introduced here for identifying

plasmons is not limited to TDDFT, but can also be applied
in combination with wave function based quantum-chemical
response methods,14 such as linear-response coupled cluster
theory59,60 or the algebraic diagrammatic construction (ADC)
scheme.61−63 By doing so, one can overcome the shortcomings
of common TDDFT exchange−correlation kernels in the
description of charge-transfer excitations.50,51 If such charge-
transfer excitations, referred to as excitons in solid-state physics,
are described correctly, our scaling analysis should reveal these
as an additional, third class of excitations for which the
excitation energy decreases with the scaling parameter λ.
Already in combination with TDDFT, the possibility to

identify plasmons will allow for dedicated quantum-chemical
studies for applications in plasmonics. One example is the
design of molecular metamaterials64−66 guided by quantum

chemistry. Another important area is the coupling of molecules
to small nanoclusters, both in optical67,68 and in Raman
spectroscopy.53,69,70 Here, indentifying the relevant plasmonic
excitations is a prerequisite for a quantum-chemical treatment
with subsystem approaches.14,71−73 Moreover, with a method
for identifying plasmonic excitations available, it will also
become possible to calculate these excitations selectively.74−76

Finally, the present development will also allow for the
parametrization of empirical models for treating plasmons in
nanoclusters against full quantum-chemical calculations.77,78

8. COMPUTATIONAL DETAILS
All calculations in this work were performed with a locally
modified version the ADF program package,79,80 using the
BP86 exchange−correlation functional81,82 and a triple-ζ basis
set with one set of polarization functions (TZP). All molecular
structures were optimized with the same computational
methodology. For the calculations on the gold chain, scalar-
relativistic corrections were included via the zeroth-order
regular approximation (ZORA).83−86 For the preparation of
the figures using our coloring scheme, we employed the
scripting framework PYADF

87 in combination with the
MATPLOTLIB package.88 The linear absorption spectra included
in the figures are plotted by using a Lorentzian line shape for
each excitation, with an area proportional to the calculated
dipole oscillator strength and a full width at half-maximum of
0.2ℏω/Δ.
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