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The accurate description of open-shell molecules, in

particular of transition metal complexes and clusters, is still

an important challenge for quantum chemistry. Although

density-functional theory (DFT) is widely applied in this area,

the sometimes severe limitations of its currently available

approximate realizations often preclude its application as a

predictive theory. Here, we review the foundations of DFT

applied to open-shell systems, both within the nonrelativistic

and the relativistic framework. In particular, we provide an

in-depth discussion of the exact theory, with a focus on the

role of the spin density and possibilities for targeting

specific spin states. It turns out that different options exist

for setting up Kohn–Sham DFT schemes for open-shell

systems, which imply different definitions of the exchange–

correlation energy functional and lead to different exact

conditions on this functional. Finally, we suggest possible

directions for future developments. VC 2012 Wiley Periodicals,

Inc.

DOI: 10.1002/qua.24309

Introduction

Open-shell molecules such as, for example, radicals or transition

metal complexes and clusters, feature a measurable magnetic

moment that originates from their electronic structure. In fact,

the electronic spin gives rise to a magnetic moment that makes

such molecular systems functional for various purposes. For

instance, organic radicals can be used as spin probes in biomole-

cules[1] and are of interest as building blocks for molecular spin-

tronics devices,[2,3] single-molecule magnets have the potential

to act as molecular qubits for quantum information processing,[4]

and open-shell transition metal compounds serve as catalytic

centers in (bio-)inorganic chemistry,[5–8] where a change in the

spin state can be an essential step in the catalytic cycle.[9]

Consequently, a first-principles theory that is useful for de-

scriptive and analytic purposes and that has the potential to

be a predictive tool in theoretical studies on such chemical

systems must consider the spin properties of the electronic

structure. Although for closed-shell systems, quantum chemical

methods—both wavefunction theory for accurate calculations

on small molecules[10] and density-functional theory (DFT) for

studies on complex chemical systems[11]—offer such predictive

tools, the situation is less satisfactory for open-shell systems,

in particular for transition metal complexes and clusters.[12]

With wavefunction-based methods, a multireference treat-

ment is in general mandatory for open-shell systems. In partic-

ular, the complete active space self-consistent field method,

usually in combination with second-order perturbation theory

(CASPT2), has been employed to study transition metal com-

plexes (for examples, see Refs. [13–18]). However, the factorial

scaling with the size of the active space puts rather severe lim-

its on the size of the active space, which prevents most appli-

cations to polynuclear transition metal complexes and clusters.

Novel approaches, such as the density matrix renormalization

group algorithm[19,20] and its generalizations[21] might make it

possible to overcome this limitation, although the molecular

sizes that can be studied are clearly much smaller compared

to those accessible to DFT methods.

Therefore, DFT is usually the method of choice in theoretical

studies of transition-metal catalysis as well as molecular and

spectroscopic properties of open-shell molecular systems.[22–25]

Despite much success, it has also become clear that for open-

shell systems, DFT with the currently available approximate

functionals shows a number of shortcomings. In addition to

inaccuracies in predicting energies, geometries, and molecular

properties (for a case study, see, e.g., Ref. [26] and for overviews,

see, e.g., Refs. [11,27,28]), a severe limitation are unsystematic

errors in the prediction of the relative energies of different spin

states.[29–36] Moreover, the spin density—which serves as an

additional fundamental quantity in the spin-DFT formalism com-

monly employed for open-shell systems—is qualitatively incor-

rect in some cases.[15,37–39] To make things even worse, the

treatment of low-spin states usually requires the use of a bro-

ken-symmetry description,[40–43] which provides an unphysical

spin density by construction (see, e.g., Refs. [24,44] for a discus-

sion). This precludes the simple prediction of spectroscopic

properties depending on the spin density (for schemes to

address this difficulty, see e.g., Refs. [45–48]).

Consequently, the development of better approximate DFT

methods for open-shell systems is currently still one of the

most important and challenging topics in theoretical chemis-

try.[12,28,49] To make progress is this area, it is important to

understand the exact theory underlying DFT for open-shell

systems. Although for the closed-shell case, exhaustive
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presentations of this theory exists in several textbooks,[50–53]

this is not the case for open-shell systems, which are often

only mentioned in passing in these accounts. Here, we

attempt to close this gap by reviewing the foundations of DFT

for open-shell systems. In our presentation, we will pay partic-

ular attention to the role of the spin-density in DFT and to

possibilities for targeting different spin states within the exact

theory.

Even though we will not discuss the currently available approx-

imations in detail, we believe that for the future development of

better approximations, it is crucial to know which exact theory is

to be approximated. This is also a prerequisite for deriving exact

conditions on the approximate functionals, for setting up model

systems that can be treated exactly, and for obtaining benchmark

results from accurate wave-function theory calculations.

This work is organized as follows. First, we introduce spin in

the context of nonrelativistic quantum chemistry. This is fol-

lowed by a discussion of Hohenberg–Kohn (HK) DFT, highlight-

ing the role of the spin density and of spin states for open-shell

systems. Next, the treatment of spin in the Kohn–Sham (KS)

framework of DFT is reviewed. It turns out that different options

exist for deriving KS-DFT for open-shell systems, which are dis-

cussed and compared in detail. For completeness, we then dis-

cuss DFT within the relativistic framework where spin is no lon-

ger a good quantum number. Finally, some possible future

directions for DFT applied to open-shell systems are outlined.

Spin in Nonrelativistic Quantum Chemistry

Spin structure of the one-electron wavefunction

The nonrelativistic quantum-mechanical equation of motion

for a single electron in an external electrostatic potential

vextðrÞ is provided by the time-dependent Schr€odinger equa-

tion (SE), which in Gaussian units reads,

ĥwðr; tÞ ¼
�
T̂ þ qe vextðrÞ

�
wðr; tÞ ¼ i�h

@

@t
wðr; tÞ; (1)

with the kinetic energy operator T̂ ¼ p̂2

2me
¼ � �h2

2me
D, where

p̂ ¼ �i�hr is the momentum operator and me and qe are the

mass and the charge of the electron, respectively. Stationary

states can then be obtained from the time-independent

Schr€odinger equation,

ĥwðrÞ ¼
�
T̂ þ qe vextðrÞ

�
wðrÞ ¼ E wðrÞ: (2)

In a nonrelativistic framework, spin is introduced in an ad

hoc fashion by using a two-component representation for the

wavefunction,[54,55] i.e.,

wðrÞ ¼ waðrÞ
wbðrÞ

� �
: (3)

For a rigorous introduction of spin in quantum chemistry, it

is necessary to start from relativistic quantum mechanics,

where spin is naturally included in the Dirac equation. This will

be discussed later on in ‘‘Spin in Relativistic DFT’’.

In the nonrelativistic two-component picture, spin-inde-

pendent operators—such as the one-electron Hamiltonian ĥ in

Eqs. (1) and (2)—act on both of these components, that is,

they are proportional to the 2� 2 unit matrix 12. The two-

component structure of the wavefunction is only probed by

operators expressed in terms of the Pauli matrices,

rx ¼
0 1
1 0

� �
; ry ¼

0 �i
i 0

� �
; rz ¼

1 0
0 �1

� �
: (4)
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In particular, the operator corresponding to the electron

spin is

ŝ ¼ �h

2
r ¼ �h

2

�
rx ;ry ;rz

�T
(5)

The three components of this spin operator fulfill the same

commutation relations as those of the angular momentum op-

erator l̂, i.e.,

½ŝx ; ŝy � ¼ i�h ŝz; ½ŝy ; ŝz� ¼ i�h ŝx ; ½ŝx; ŝz� ¼ i�h ŝy ; (6)

which is the basis for considering spin as an intrinsic angular

momentum vector ŝ. For the squared magnitude of the elec-

tron spin, one obtains the diagonal operator

ŝ2 ¼ ŝ2x þ ŝ2y þ ŝ2z ¼
3

4
�h2 12 (7)

and as for the angular momentum, this operator commutes

with each component of the spin (i.e., ½ŝ2; ŝa� ¼ 0 for

a ¼ x; y; z).

In nonrelativistic quantum mechanics, one postulates that

the spin operator ŝ is related to an intrinsic magnetic moment

of the electron.[54–57] This spin magnetic moment is described

by the operator

l̂s ¼ � 2lB
�h

ŝ ¼ �lB r; (8)

where lB ¼ jqej�h
2mec

is the Bohr magneton, c is the speed of light

in vacuum, and the factor two is the electron g-factor when

neglecting quantum electrodynamical effects.

Instead of explicitly writing two-component wavefunctions

and 2� 2 matrix operators, in quantum chemistry it is com-

mon to use a different notation, which will turn out to be

particularly convenient for handling many-electron systems.

Namely, as a shorthand notation, one introduces the ortho-

normal spin functions aðsÞ and bðsÞ, which depend on a spin

variable s.[54,56,58] This spin variable can only assume the val-

ues þ 1
2 and � 1

2, and the spin functions are defined such

that

aðþ1

2
Þ ¼ 1 and að�1

2
Þ ¼ 0; (9)

b þ1

2

� �
¼ 0 and b �1

2

� �
¼ 1: (10)

Then, the wavefunction of Eq. (3) can be expressed as

wðr; sÞ ¼ waðrÞaðsÞ þ wbðrÞbðsÞ; (11)

with the first component given by wðr;þ 1
2Þ ¼ waðrÞ and the

second component given by wðr;� 1
2Þ ¼ wbðrÞ. It is important

to realize that the spin functions a and b are merely a way of

expressing two-component wavefunctions, in which the spin

variable s has the role of labeling the different components.

Spin-independent operators are then given by a one-compo-

nent operator acting only on the parts of the wavefunction

that depend on the spatial coordinate r, while the spin opera-

tors ŝx , ŝy , ŝz , and ŝ2 act only on the parts depending on the

spin variable s.

The nonrelativistic one-electron Hamiltonian ĥ is spin-inde-

pendent and hence commutes with all spin operators, in par-

ticular ½ĥ; ŝz� ¼ ½ĥ; ŝ2� ¼ 0. Therefore, its eigenfunctions can be

chosen as eigenfunctions of ŝ2 and of ŝz. The eigenfunctions

of ŝz are given by aðsÞ and bðsÞ and the wavefunctions of an

electron which are also eigenfunctions of ŝz are thus of the

form

wðr; sÞ ¼ wðrÞaðsÞ or wðr; sÞ ¼ wðrÞbðsÞ: (12)

For any spatial part of the wavefunction, these two different

total wavefunctions are possible, that is, each eigenvalue of

the nonrelativistic one-electron Hamiltonian is twofold degen-

erate. The first is identified with an a- or ‘‘spin-up’’ electron

(sz ¼ þ�h=2), whereas the second one corresponds to a b- or

‘‘spin-down’’ electron (sz ¼ ��h=2). Of course, also linear combi-

nations of these two degenerate eigenfunctions are solutions

of the Schr€odinger equation. Nevertheless, for a single electron

any eigenfunction can be expressed as a product of a spatial

part and a spin part.

Spin structure of the many-electron wavefunction

Within the two-component picture introduced in the previous

section, the one-electron Hilbert space 1H is spanned by all

admissible one-electron wavefunctions (which have two com-

ponents related to the spin of the electron). For an N-electron

system, the wavefunction is an element of the corresponding

N-electron Hilbert space NH, which is the tensor product space

of the Hilbert spaces of each electron, i.e.,

NH ¼ 1Hð1Þ � 1Hð2Þ �…� 1HðNÞ; (13)

where the number given in parentheses designates the corre-

sponding electron. As the one-particle wavefunctions have

two components, the N-electron wavefunctions have 2N-com-

ponents and operators have the dimension 2N � 2N. For a

more detailed discussion of the tensor structure of the many-

electron wavefunction, see for example, Refs. [19–21] and

chapter 8.4 in Ref. [57].

As an alternative to explicitly handling many-component

wavefunctions, it is again convenient to introduce spin coordi-

nates si that can be used to distinguish the different compo-

nents.[56,59,60] Then, the N-electron wavefunction depends on

N spin coordinates in addition to the N spatial coordinates,

W ¼ Wðr1; s1; r2; s2;…; rN; sNÞ ¼ Wðx1; x2;…; xNÞ; (14)

where xi ¼ (ri, si) denotes the combination of spatial and spin

coordinates. Each spin coordinate can assume the values �1/2

and þ1/2. Each possible combination of values for these spin

variables corresponds to one component of the many-electron

wavefunction. In total, 2N different combinations of values are

possible, that are thus used to label the 2N components of the

many-electron wavefunction.
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The nonrelativistic Hamiltonian describing N electrons in an

external electrostatic potential vext(r) is (in Gaussian units) given by,

Ĥ ¼
XN
i¼1

� �h2

2me
Di þ qe vextðriÞ

� �
þ
XN
i¼1

XN
j¼iþ1

q2e
rij
; (15)

where the Laplace operator Di acts on the coordinate of the

ith electron and rij ¼ |ri � rj| is the distance between electrons

i and j. This Hamiltonian does not contain any spin-dependent

terms and only acts on the spatial coordinates.

The operator of the total spin Ŝ of a many-electron system

is obtained[58,56] by summing the spins of the individual elec-

trons Ŝ ¼
PN

1¼1 ŝðsiÞ. In particular, one has for the z-compo-

nent of the total spin operator,

Ŝz ¼
XN
i¼1

ŝzðsiÞ; (16)

and for the square of the total spin

Ŝ2 ¼
XN
i¼1

XN
j¼1

ŝðsiÞ � ŝðsjÞ ¼
3

4
N�h2 þ 2

XN
i¼1

XN
j¼iþ1

ŝðsiÞ � ŝðsjÞ; (17)

where the first term emerges because any many-electron

wavefunction is an eigenfunction of ŝ2(si) with eigenvalue

ð3=4Þ�h2 (i.e., electrons are spin-1/2 particles). Note that Ŝ2 cou-

ples different electrons, that is, it is a two-electron operator.[61]

Both Ŝ2 and Ŝz commute with the Hamiltonian of Eq. (15)

and with each other, i.e.,

½Ĥ; Ŝ2� ¼ ½Ĥ; Ŝz� ¼ ½Ŝ2; Ŝz� ¼ 0: (18)

Therefore, the eigenfunctions W of the Hamiltonian can

always be chosen as eigenfunctions of Ŝz and Ŝ2 with,

Ŝ2W ¼ SðSþ 1Þ�h2 W (19)

ŜzW ¼ MS�hW with MS ¼ �S;…;þS: (20)

In general, eigenfunctions of the Hamiltonian belonging to

different eigenvalues of Ŝ2 have different energies, while for

each energy eigenvalue there are always 2S þ 1 degenerate

eigenfunctions differing in MS. As all three components of Ŝ

commute with the Hamiltonian, any choice of the quantization

axis is possible and will lead to identical results.

Finally, the spin structure of the many-electron wavefunc-

tion[59] is also determined by the Pauli principle.[62,63] It

requires that the wavefunction is antisymmetric (i.e., it has to

change sign upon exchange of two electrons). This can be

expressed with the permutation operator,

P̂ ijWð…; ri; si;…; rj; sj;…Þ ¼ Wð…; rj; sj;…; ri; si;…Þ; (21)

as P̂ ijW ¼ �W. Here, P̂ ij exchanges both the spatial and the

spin coordinates of electrons i and j. To express this require-

ment in a different form, one can introduce the antisymmetr-

izer Â defined as

Â ¼ 1ffiffiffiffiffi
N!

p
XN!
p¼1

ð�1Þp P̂p; (22)

where the permutation operators P̂p are ordered such that

even numbers p are assigned to those that are generated by an

even number of pair permutations, and odd numbers denote

those generated by an odd number of pair permutations. Then,

the requirement that the wavefunction is antisymmetric with

respect to any pair permutation is equivalent to requiring

ÂW ¼
ffiffiffiffiffi
N!

p
W that is, W has to be an eigenfunction of Â.

As this Hamiltonian does not contain terms that couple the

spatial and the spin coordinates, one could naively expect

that—as in the one-electron case—the many-electron wave-

function can always be written as a product of a part

depending on the spatial coordinates and of a part depend-

ing on the spin coordinates. However, for systems with more

than two electrons this is in general not the case. The anti-

symmetrizer Â then contains a sum of permutation operators

each acting on both spatial and spin coordinates. Hence, it

couples spin and spatial coordinates so that its eigenfunc-

tions cannot be expressed as a product of a spatial and a

spin part. Thus, the structure of the many-electron wavefunc-

tion with respect to the exchange of spatial coordinates is

dependent on the spin structure.[64–66] This is the most im-

portant consequence of the presence of spin in a nonrelativ-

istic theory.

Spin structure of the electron density and spin density

The (total) electron density q(r) describes the probability den-

sity for finding any electron of a many-electron system at posi-

tion r. It can be calculated from the wavefunction as

qðrÞ ¼ N

Z
jWðr; s1; x2;…; xNÞj2 ds1dx2 � � �dxN; (23)

that is, by integrating the squared absolute value of the wave-

function over all but one spatial coordinate. By writing out the

integration over the corresponding spin variable explicitly,

qðrÞ ¼ N

Z
jW r;þ1

2
; r2; s2;…; rN; sN

� �
j2 d3r2ds2…d3rNdsN (24)

þ N

Z
jW r;�1

2
; r2; s2;…; rN; sN

� �
j2 d3r2ds2…d3rNdsN (25)

¼ qaðrÞ þ qbðrÞ; (26)

one notices that it is a sum of components qa(r) and qb(r) that
can be interpreted as the probability densities of finding an a-
or a b-spin electron.[60,56] Their integrals,

Na ¼
Z

qaðrÞd3r and Nb ¼
Z

qbðrÞd3r; (27)

give the number of a- and b-electrons.
It is then natural to define the spin density, which gives the

excess of a-electrons at a given point, as
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QðrÞ ¼ N

Z
W�ðr; s1; x2;…; xNÞ rzðs1ÞWðr; s1; x2;…; xNÞ

� ds1dx2 � � �dxN ¼ qaðrÞ � qbðrÞ: ð28Þ

Here, the Pauli matrix rz(s1) operates on the first spin coor-

dinate only. Just as the electron density, which is probed by X-

ray diffraction experiments, the spin density is an observable.

The spin density Q(RI) at the position of a nucleus I is accessi-

ble from electron paramagnetic resonance experiments, where

it determines the nuclear hyperfine coupling constants.[56,67,68]

Similarly, the spin density at a nucleus can give rise to shifts in

paramagnetic nuclear magnetic resonance.[68–71] Full spatially

resolved spin densities can be determined in neutron scatter-

ing experiments.[72–77]

The expectation value of a multiplicative one-electron oper-

ator such as V̂ ¼
PN

i¼1 vðriÞ can be calculated directly from the

electron density,

hV̂i ¼ hWjV̂jWi ¼
Z

qðrÞvðrÞ d3r; (29)

that is, the full wavefunction is not needed. Similarly, expecta-

tion values of spin-dependent operators expressed only in

terms of rz can be obtained from the spin density. In particu-

lar, the expectation value of Ŝz is given by

hŜzi ¼
�h

2

Z
QðrÞd3r; (30)

and for eigenfunctions of Ŝz, one has

MS ¼
1

2

Z
QðrÞd3r ¼ 1

2
ðNa � NbÞ: (31)

The contribution of the electron spin magnetic moments to

the interaction of a molecule with an inhomogeneous external

magnetic field Bext(r), the so-called spin Zeeman interaction, is

determined by the operator[56]

ĤZ ¼
XN
i¼1

BextðriÞ � l̂sðsiÞ ¼ �lB
XN
i¼1

BextðriÞ � rðsiÞ: (32)

Hence, for an inhomogeneous magnetic field in z-direction,

that is, Bext(r) ¼ (0, 0, Bz(r)), the expectation value of the spin

Zeeman interaction can be evaluated directly from the spin

density as

hĤZi ¼ �lB

Z
QðrÞBzðrÞ d3r: (33)

If one considers an eigenfunction of Ŝ2 with eigenvalue

SðSþ 1Þ�h2, this eigenvalue is (2S þ 1)-fold degenerate and one

can construct a set of 2S þ 1 eigenstates of Ŝz with eigenval-

ues MS�h, where MS ¼ �S;…;þS. The total electron densities

qMS and the spin densities QMSðrÞ of these Ŝz eigenstates are

related to each other[60,78,79]: All 2S þ 1 states share the same

total electron density,

qMSðrÞ ¼ qMS¼SðrÞ (34)

and the spin densities are given by

QMSðrÞ ¼ MS

S

� �
QMS¼SðrÞ (35)

where qMS¼SðrÞ and QMS¼SðrÞ are the total electron density and

spin density of the state with highest MS, respectively. Hence,

the spin densities have the same functional form and are con-

nected by a simple scaling. It immediately follows that

QMSðrÞ ¼ �Q�MSðrÞ and that the spin density vanishes for

states with MS ¼ 0.

Spin in Hohenberg–Kohn DFT

Traditionally, quantum chemistry sets out to calculate approxi-

mations to the many-electron wavefunction W of a molecule

in its ground state by minimizing the energy expectation value

with respect to W, under the constraint that W represents a

normalized and antisymmetric N-electron wavefunction, i.e.,

E0 ¼ min
WN

hWNjĤjWNi with hWNjWNi ¼ 1

and ÂWN ¼
ffiffiffiffiffi
N!

p
WN; ð38Þ

where the nonrelativistic Hamiltonian Ĥ within the Born–

Oppenheimer approximation was given in Eq. (15). In molecu-

lar systems, the external potential vext(r) is given by the

Coulomb potential of the nuclei, that is, vextðrÞ ¼
vnucðrÞ ¼ �qe

P
I ZI=jr � RIj, where the sum runs over all nuclei

with charges ZI at positions RI. Thus, the nonrelativistic molec-

ular Hamiltonian assumes the form,

Ĥ ¼
XN
i¼1

� �h2

2me
Di þ

XN
i¼1

XN
j¼iþ1

q2e
rij

þ
XN
i¼1

qe vnucðriÞ

¼ T̂ þ V̂ee þ V̂nuc (37)

According to this structure of the Hamiltonian, the energy ex-

pectation value in the above minimization is usually split up as

hWjĤjWi ¼ hWjT̂ jWi þ hWjV̂eejWi þ hWjV̂nucjWi: (38)

However, the wavefunction itself is not directly needed for

calculating these expectation values. The evaluation of the first

term, corresponding to the kinetic energy, only requires the

one-electron reduced density matrix (1-RDM), whereas the sec-

ond term describing the electron–electron interaction can be

calculated from the diagonal two-electron reduced density ma-

trix (2-RDM). Finally, the electron–nuclear attraction energy can

be evaluated directly from the multiplicative operator of the

electron–nuclei Coulomb interaction and from the electron

density only as,

hWjV̂nucjWi ¼ qe

Z
qðrÞvnucðrÞ d3r: (39)

This can be exploited by performing the minimization with

respect to the 2-RDM directly,[80] but difficulties arise in enforc-

ing that the 2-RDM corresponds to an actual antisymmetric N-

electron wavefunction.
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DFT[50–53] provides the theoretical framework for calculating

the energy expectation value directly from the electron density

q(r) only. The foundations of this exact theory will be outlined

in the following, focussing on its application to open-shell

systems.

Hohenberg–Kohn theorems

The first HK theorem[81] states that for each electron density

q(r) that can be obtained from a ground-state wavefunction

(such densities are called v-representable densities), the exter-

nal potential vext(r) that yields this electron density as the

ground state when employed in the Hamiltonian of Eq. (15) is

unique up to a constant. Therefore, this potential is a func-

tional of the electron density and since it completely deter-

mines the Hamiltonian, also the ground-state wavefunction—

which can in turn be determined by solving the corresponding

Schr€odinger equation—is a functional of the electron density.

Furthermore, all observables of the system, in particular the

total energy in a given nuclear potential vnuc(r), can be

obtained from this wavefunction. This connection between the

electron density and the total energy is illustrated in Figure 1a.

Therefore, there exists an energy functional E[q] that relates

the electron density to the total energy.

According to the second HK theorem,[81] the ground state

energy E0 of a system of electrons in a given nuclear potential

vnuc(r) can be determined by minimizing the total energy

functional

E0 ¼ min
q

E½q�; (40)

with

E½q� ¼ qe

Z
qðrÞ vnucðrÞd3r þ FHK½q�; (41)

under the constraint that q(r) integrates to N electrons. The

electron density for which this minimum is achieved is the

ground-state electron density q0(r). In this equation, the total

energy functional has been split into a system-specific part

(the first term), depending on the nuclear potential, and a sys-

tem-independent part (the second term), which is called the

‘‘universal HK functional’’ FHK[q].
Following the Levy constrained-search formulation of

DFT,[82,83] this universal HK functional is given by

FHK½q� ¼ min
W!q

W T̂ þ V̂ee


 

W� �

; (42)

where T̂ and V̂ee are the operators of the kinetic energy and

of the electron–electron repulsion energy, respectively. The

minimization runs over all wavefunctions W that yield the tar-

get electron density q. From these wavefunctions, the one

with the lowest expectation value of T̂ þ V̂ee is chosen. The

minimization of E[q] will lead to the exact ground-state elec-

tron density q0, and the exact ground-state wavefunction W0

is the one for which the minimum in Eq. (42) is obtained. This

(nonrelativistic) ground-state wavefunction W0 has to be an

eigenfunction of Ŝ2. Therefore, it is sufficient to restrict the

constrained search to wavefunctions that are eigenfunctions of

Ŝ2.

Using the Levy-constrained search for defining the HK func-

tional also extends the domain in which the above functionals

are defined from v-representable densities (i.e., densities that

are obtained from a ground state wavefunction) to N-repre-

sentable densities (i.e., densities that are obtained from any

wavefunction, not necessarily a ground state). The resulting

generalization of the first HK theorem is illustrated in Figure

1b. More details on the foundations of HK-DFT and on the

more general definition of the universal HK functional intro-

duced by Lieb[84] can be found in dedicated reviews on these

topics.[51,85,86]

Initially, Hohenberg and Kohn explicitly excluded degenera-

cies in their derivation of the HK theorems.[81] However, a state

with S [ 0 will be (2S þ 1)-fold degenerate, with the different

degenerate wavefunctions WMS corresponding to MS ¼
�S;…; S. The necessary generalization of the HK theorems is

possible in a straightforward way.[87] The degenerate wave-

functions WMS and all their linear combinations share the same

electron density. For a given q, the minimum in Eq. (42) is

achieved for all degenerate wavefunctions spanned by the Ŝz-

eigenfunctions WMS . This is illustrated in Figure 1c. Therefore,

the minimization of the total energy functional E[q] will still

lead to a unique ground-state density q0. If it is necessary to

obtain a unique minimizing wavefunction, the constrained

search can be restricted to wavefunctions corresponding to a

specific value of MS. In this case, the wavefunction is again

uniquely determined by the electron density.

Spin density in Hohenberg–Kohn DFT

According to the HK theorem only the total electron density is

required for obtaining the exact ground-state energy and elec-

tron density.[81,88] Therefore, irrespective of the spin state, the

Figure 1. Connection between the electron density qðrÞ and the total

energy as stated by the first HK theorem.
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spin density Q(r) or the individual a- and b-electron densities

qa(r) and qb(r) are not required during the minimization of the

total energy functional, and the ground-state spin density

Q0(r) is not directly available. However, if a suitable value of

MS is chosen, the wavefunction WMS is uniquely determined by

the total density q(r), that is, WMS ¼ WMS ½q�. From this wave-

function, the ground-state a- and b-electron densities,

qMS
a ½q�ðrÞ ¼ N

Z
WMS ½q� r;þ 1

2
; r2; s2;…

� �









2

d3r2ds2 � � � d3rNdsN

(43)

qMS

b ½q�ðrÞ ¼ N

Z
WMS ½q� r;� 1

2
; r2; s2;…

� �









2

d3r2ds2 � � �d3rNdsN;

(44)

as well as the corresponding spin density

QMS ½q�ðrÞ ¼ qMS
a ½q�ðrÞ � qMS

b ½q�ðrÞ (45)

can be calculated. In these expressions, the superscript MS

indicates that a specific value of MS has to be selected if one

is interested in individual a- and b-densities or in the spin

density. The chosen value of MS fixes the number of a- and b-
electrons by MS ¼ 1

2 ðNa � NbÞ.
To generalize HK-DFT to use the individual a- and b-den-

sities instead of the total density only, the minimization of the

total energy can be rewritten as,[50,89]

E0 ¼ min
q

E½q� ¼ min
q

qe

Z
qðrÞvnucðrÞ d3r þmin

W!q
W T̂ þ V̂ee


 

W� � �

¼ min
q

qe

Z
qðrÞvnucðrÞ d3r þ min

qa;qb!q
min

W!qa;qb
W T̂ þ V̂ee


 

W� �� � �

;

(46)

and by removing the outer minimization with respect to q,
one obtains

E0 ¼ min
qa ;qb

qe

Z �
qaðrÞ þ qbðrÞ

�
vnucðrÞ d3r þ min

W!qa ;qb
W T̂ þ V̂ee


 

W� � �

:

(47)

This defines a universal HK functional in terms of the a- and
b-electron densities,

FHK½qa;qb� ¼ min
W!qa;qb

W T̂ þ V̂ee


 

W� �

: (48)

In contrast to the HK functional of Eq. (42), the constrained

search in this spin-resolved HK functional now runs over all

wavefunctions corresponding to a given pair of qa and qb. By
minimizing the generalized total energy functional [cf. Eq. (47)],

E½qa;qb� ¼ qe

Z �
qaðrÞ þ qbðrÞ

�
vnucðrÞ d3r þ FHK½qa; qb�; (49)

under the constraint that qa and qb integrate to Na and Nb

electrons, respectively, it is then possible to obtain the

ground-state a- and b-electron densities qa0 and qb0. Again, in
this minimization a specific value of MS ¼ 1

2 ðNa � NbÞ has to

be selected.

Instead of using qa and qb, it is also possible to use the total

electron density q ¼ qa þ qb and the spin-density Q ¼ qa �
qb as variables of the spin-resolved HK functional. This gives

FHK½q;Q� ¼ min
W!q;Q

W T̂ þ V̂ee


 

W� �

: (50)

Although usually—in particular in practical applications of

spin-DFT—it is more common to employ the a- and b-densities
as basic variables, in the following such a formulation in terms

of q and Q will often turn out to be useful, because it allows

for an easier comparison to the spin-independent functionals

defined only in terms of the density q. We will switch between

these two representations whenever suitable.

With the spin-resolved HK functional FHK[q, Q], it is now

also possible to give a simpler prescription for obtaining the

spin-density corresponding to a given total density: QMS ½q� is
the spin density for which FHK[q, Q] is minimized, under the

constraint that QMS integrates to twice the chosen value of

MS, i.e.,

QMS ½q� ¼ argmin
QMS

FHK½q;QMS � with
1

2

Z
QMSðrÞ d3r ¼ MS:

(51)

Therefore, the spin-independent HK functional F[q] can be

obtained from the spin-dependent HK functional FHK[q, Q] as

FHK½q� ¼ FHK½q;Q½q�� ¼ min
Q

FHK½q;Q�; (52)

where Q[q] is any of the spin densities that minimize FHK[q, Q]
for the given total density q. Of course, as long as no specific

MS is chosen, Q[q] is not unique, but any admissible choice

must lead to the same energy.

Finally, we have to consider whether there exist extensions

of the HK theorems that justify the use of q and Q (or of qa

and qb) as basic variables. For a generalization of this kind, it is

not sufficient to consider wavefunctions generated by an

external potential vext(r), but also wavefunctions obtained in

the presence of an additional external magnetic field Bz(r)

have to be taken into account. Such an extension of the HK

theorems was first given by von Barth and Hedin,[90] and was

only recently put on more firm ground by extensions of Lieb’s

formulation of DFT.[91,92] Similar to the external potential,

which is only known up to a constant, it is also possible to

add a constant shift to the external magnetic field Bz(r) with-

out changing the wavefunction or the (spin-)density.[93,94] This

leads to a number of peculiarities related to the differentiabil-

ity of the spin-dependent energy functional.[95,96] However,

most of these issues do not appear if the treatment is re-

stricted to eigenfunctions of Sz (the case of interest here)[97] or

can be addressed by constraining MS to a fixed value (as we

are always requiring here).[98,99]

Fractional spin conditions on the HK functional

For states that are not a singlet (i.e., for S [ 0), there are dif-

ferent degenerate wavefunctions WMS ½q�. These wavefunctions
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all share the same electron density, but correspond to different

spin densities QMS ½q�. These different spin-densities are related

by [cf. Eq. (35)]

QMS ½q�ðrÞ ¼ MS

S

� �
QMS¼S½q�ðrÞ; (53)

and it follows that QMSðrÞ ¼ �Q�MSðrÞ and that one obtains

QMS¼0ðrÞ ¼ 0 for even values of S. For all these degenerate

spin-densities, the exact total energy functional E[q, Q] must

yield the same value.

This statement can be generalized to linear combinations of

these spin-densities. Within an ensemble formulation of spin-

DFT, it can be shown[100] that for any properly normalized lin-

ear combination of the spin-densities QMS ½q�, the same energy

should be obtained. Therefore, one finds that

E
�
q; aQMS¼S½q�

�
¼ const: for � 1 � a � þ1; (54)

which implies for the spin-dependent HK functional

FHK
�
q; aQMS¼S½q�

�
¼ const: for � 1 � a � þ1: (55)

Such ensemble spin densities correspond to a situation with

a non-integer number of a- and b-electrons (‘‘fractional spins‘‘).

As has been pointed out by Yang and coworkers, the above

constancy conditions for fractional spins, which is a property

of the exact energy functional is violated by all contemporary

approximations. Therefore, it was suggested that many prob-

lems appearing in practical DFT calculations with such approxi-

mations might be connected to this violation.[49,101,102]

The use of fractional spins makes it possible to further simplify

the relation between the spin-dependent and spin-independent

HK functionals given in Eq. (52), because one realizes that

FHK½q� ¼ FHK½q;Q ¼ 0�: (56)

This equation holds both for systems with an even number of

electrons (where one can always choose MS ¼ 0, corresponding

to Q(r) ¼ 0) and for systems with an odd number of electrons

(where Q(r) ¼ 0 is only possible if one allows for fractional spins).

Spin states in Hohenberg–Kohn DFT

In their initial formulation,[81] the HK theorems were applicable

only to the ground state. In particular, minimizing the total

energy functional E[q] only yields the ground-state energy and

electron density (and if the spin-dependent energy functional

is employed, also the spin density). However, as was first

shown by Gunnarsson and Lundqvist,[103] HK-DFT can be gen-

eralized to the lowest-energy states of a given symmetry. Of

particular importance is the calculation of the lowest state of a

particular spin symmetry, that is, of the lowest state with a

particular eigenvalue of Ŝ2. Such a generalization is most easily

presented within the constrained-search formulation of DFT.

To obtain the energy and electron density of the lowest

state corresponding to a given value of S, one has to define

the spin-state specific energy functional,

ES½q� ¼ qe

Z
qðrÞ vnucðrÞ d3r þ FSHK½q�; (57)

with the spin-state specific HK functional,

FSHK½q� ¼ min
WS!q

WS T̂ þ V̂ee


 

WS

� �
with Ŝ2WS ¼ SðSþ 1Þ�h2WS;

(58)

where the constrained search now only includes wavefunc-

tions WS which are eigenfunctions of Ŝ2 with the proper eigen-

value. Therefore, one obtains a different HK functional and

thus a different total energy functional for each value of S.

Within spin-DFT, the simplest way of obtaining a functional

that at least partly allows one to select certain spin states is

by choosing an appropriate value for MS. This way, only states

with S � MS are accessible because for spin states correspond-

ing to a smaller values of S, the chosen value of MS is not

admissible. By minimizing the energy functional Ev[q, Q] under
the constraint that Q(r) integrates to 2MS, the lowest-energy

state with S � MS is obtained, i.e.,

ES�MS ½q� ¼ E
�
q;QMS ½q�

�
: (59)

Equivalently, one can, of course, also minimize Ev[q
a, qb]

under appropriate constraints for Na and Nb. However, fixing

MS to target a specific spin-state is not completely general

since the minimization is only restricted to states with S � MS,

not to states with a specific S. Although it is, for instance, pos-

sible to calculate the lowest triplet (S ¼ 1) state if the ground-

state is a singlet (S ¼ 0), it is not possible to target the lowest

singlet state if the ground-state is a triplet. Therefore, to be

able to calculate the lowest state of a given S, it would in gen-

eral be necessary to use the true spin-state specific energy

functional of Eq. (57).

Spin in Kohn–Sham DFT

Although the HK formulation of DFT is exact, it is very difficult

to set up computationally feasible, but nevertheless accurate

approximate realizations of it. This is mainly rooted in the diffi-

culty of approximating the kinetic-energy contribution to the

HK functional as a functional of the electron density

only.[104,105]

A possible way out of this dilemma, that forms the basis of

almost every present-day application of (approximate) DFT cal-

culations, was suggested by Kohn and Sham.[106] Instead of con-

sidering the kinetic energy of the true system of interacting

electrons, they proposed to calculate the kinetic energy of a ref-

erence system of noninteracting electrons with the same elec-

tron density instead. This then already accounts for the largest

part of the kinetic energy, and only a small remainder has to be

approximated. The KS approach still allows for the formulation

of an exact theory, which will be outlined in this section.

In KS-DFT, one considers two different quantum-mechanical

systems at the same time: The true molecular system of inter-

acting electrons and a reference system of noninteracting elec-

trons. The link between these two systems is established by

TUTORIAL REVIEW WWW.Q-CHEM.ORG

3668 International Journal of Quantum Chemistry 2012, 112, 3661–3684 WWW.CHEMISTRYVIEWS.ORG

http://q-chem.org/
http://chemistryviews.com/
http://chemistryviews.com/
http://chemistryviews.com/


requiring that their electron densities q(r) and qs(r) are equal

(see Fig. 2). Their wavefunctions, however, will in general be

different. For open-shell molecules, different options exist for

introducing such a reference system: the first option is to

require only that the electron densities of the interacting and

noninteracting systems agree. This leads to a spin-restricted KS-

DFT formulation. The second option is to require that in addition

to the total electron densities, also the spin densities of the two

systems agree. This results in a spin-unrestricted formulation of

KS-DFT. Of course, these two options are equivalent for closed-

shell systems (i.e., for singlet states with S ¼ 0).

Note that any version of KS-DFT relies on the assumption

that such a noninteracting reference system with the same

electron density (and possibly also the same spin density) as

the interacting system exists. In practice, it is always assumed

that this so-called vs-representability condition is fulfilled, even

though this is not guaranteed and several counter-examples

are known.[84,107–111] For a detailed discussion of these subtle

issues, see, for example, Refs. [85].

Spin-Restricted Kohn–Sham DFT

Noninteracting Reference System. First, we consider a system

of N noninteracting electrons in an external potential vs(r).

Such a system is described by the Hamiltonian

Ĥs ¼ T̂ þ V̂s ¼
XN
i¼1

� �h2

2me
Di þ

XN
i¼1

qe vsðriÞ; (60)

where the subscript s (for ‘‘single-particle’’) is introduced to indi-

cate that the quantities refer to a system of noninteracting elec-

trons. Because this Hamiltonian does not contain terms that

couple different electrons, an exact wavefunction is given by an

antisymmetrized product of one-electron functions (i.e., by a

single Slater determinant), for which the short-hand notation

Usðx1;…; xNÞ ¼



u1a;u1b;u2a;u2b;…




 (61)

can be used. The spatial parts of the one-electron functions

(orbitals) can be obtained as the solutions of the one-electron

equation

� �h2

2me
Dþ qe vsðrÞ

� �
uiðrÞ ¼ �iuiðrÞ; (62)

which trivially emerge from the energy eigenvalue equation

ĤsUs ¼ EsUs with Es ¼
P

i �i . As this one-electron Hamiltonian

does not depend on the spin of the electron, each energy

eigenvalue is twofold degenerate (i.e., each spatial orbital can

be combined with an a- or a b-spin function). In particular, the

spatial orbitals are identical for a- and for b-electrons, and the

resulting Slater determinant is therefore spin-restricted.

In such a spin-restricted Slater determinant, each spatial or-

bital ui can either be doubly occupied (i.e., it appears both in

combination with an a- and with a b-spin function) or it can

be singly occupied with either an a- or a b -electron. For the

ground state, such singly occupied orbitals can only occur for

the highest occupied molecular orbital (HOMO), and more

than one singly occupied orbital can only be present if the

HOMO is degenerate (for a detailed discussion, see e.g., Ref.

[109] and chapters 3.3 and 3.4 in Ref. [53]).

For a single, spin-restricted Slater determinant, the electron

density is given by

qðrÞ ¼
Xocc:
i

fi juiðrÞj2; (63)

where the occupation numbers fi are either 1 or 2. The spin

density is determined only by the singly occupied orbitals, and

can be calculated as

QsðrÞ ¼
Xsingly occ:

i

sijuiðrÞj2; (64)

where the sum only runs over the singly occupied orbitals and

where si ¼ þ1 for a-spin and si ¼ �1 for b-spin orbitals, as all

doubly occupied orbital contributions drop out because of the

identical spatial distribution of these a, b-pairings. Finally, the kinetic

energy of a spin-restricted Slater determinant can be calculated as

Ts ¼
Xocc:
i

fi
�
ui



T̂

ui

�
¼ � �h2

2me

Xocc:
i

fi

Z
uiðrÞDuiðrÞd3r: (65)

Figure 2. Relationship between wave function, total electron density, and spin density of the system of fully interacting electrons and of the spin-re-

stricted and spin-unrestricted KS reference systems of noninteracting electrons.
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Thus, it turns out that spin-restricted Slater determinants in

which the occupation numbers fi are identical share the same

electron density and have the same kinetic energy. Such deter-

minants—which can only differ in the spin of the singly occu-

pied orbitals—are degenerate with respect to the noninteract-

ing Hamiltonian of Eq. (60).

The noninteracting Hamiltonian Ĥs commutes with both Ŝz
and with Ŝ2. Therefore, it is always possible to combine

degenerate eigenfunctions such that they are also eigenfunc-

tions of Ŝz and Ŝ2. A restricted Slater determinant is always an

eigenfunction of Ŝz with eigenvalue MS�h ¼ ðNa � NbÞ�h=2.[60,58]
If all singly occupied orbitals are either a- or b-spin orbitals,

then it is also an eigenfunction of Ŝ2 with S ¼ |MS|. In all

other cases, an eigenfunction of Ŝ2 can be constructed as a

linear combination of (degenerate) determinants in which the

same orbitals are singly occupied and which correspond to

the same value of MS. Such linear combinations are known as

configuration state functions (CSF).[10] It is important to

understand that for any eigenfunction of the noninteracting

Hamiltonian that is an eigenfunction of Ŝ2 with eigenvalue

SmaxðSmax þ 1Þ�h2, degenerate eigenfunctions with S ¼
0; 1;…; Smax (for an even number of electrons) or with

S ¼ 1
2
; 3
2
;…; Smax (for an odd number of electrons) can also be

constructed. Thus, for each energy eigenvalue, there is one

CSF corresponding to S ¼ 0 (i.e., a singlet state) or S ¼ 1
2 (i.e.,

a doublet state) for an even or odd number of electrons,

respectively.

The HK theorems still hold for a system of noninteracting

electrons. Thus, the ground-state density of Ĥs can be deter-

mined by minimizing the noninteracting energy functional,

Es½q� ¼ Ts½q� þ qe

Z
qðrÞvsðrÞd3r; (66)

where the noninteracting kinetic-energy functional Ts[q] can

be defined in the Levy constrained-search formalism as

Ts½q� ¼ min
Ws!q

hWsjT̂ jWsi: (67)

In this definition, the constrained search includes all wave-

functions Ws that correspond to a system of noninteracting

electrons with density q. As discussed above, this could be

further restricted to singlet or doublet wavefunctions. In this

definition, Ts[q] is independent of the spin density.

The ground-state electron density q0 is obtained from mini-

mizing Es[q] under the constraint that the number of electrons

is preserved, and the corresponding ground-state wavefunc-

tion Ws,0 is the one for which the minimum in Eq. (67) is

achieved. Again, this wavefunction could always be chosen as

a singlet or a doublet for an even or odd number of electrons,

respectively.

Interacting Energy Functional and Exchange–Correlation

Energy. The (spin-resolved) HK functional of the true system of

interacting electrons [Eq. (50)] can now be decomposed as

FHK½q;Q� ¼ Ts½q� þ J½q� þ Exc½q;Q�; (68)

where Ts[q] is the noninteracting kinetic energy introduced in

the previous section, J[q] is the classical Coulomb interaction

of the electron density with itself,

J½q� ¼ q2e
2

Z
qðrÞqðr0Þ
jr � r0j d3rd3r0; (69)

and the exchange–correlation energy Exc[q, Q] is defined to

account for the remaining energy contributions

Exc½q;Q� ¼ FHK½q;Q� � Ts½q� � J½q�: (70)

This exchange–correlation functional could also be

expressed in terms of the a- and b-electron densities. The non-

interacting kinetic energy Ts[q] is different from the true kinetic

energy of the fully interacting system T[q]. Therefore, the

exchange–correlation energy also contains the difference Tc[q]
¼ T[q] � Ts[q] between the kinetic energy of the interacting

system and the kinetic energy of the noninteracting reference

system.

With these definitions, the total energy functional of the

interacting system can be expressed as

E½q;Q� ¼ Ts½q� þ J½q� þ Exc½q;Q� þ qe

Z
qðrÞvnucðrÞd3r: (71)

The spin-independent analogs of the exchange–correlation

and the total energy functional, Exc[q] and E[q], are recovered

from these definitions when setting Q(r) ¼ 0 [cf. Eq. (56)].

The ground-state density of the true interacting system can

be determined by minimizing the total energy functional E[q]
with respect to q, under the constraint that it integrates to

the correct number of electrons. With the exact functionals,

this will lead to the exact ground-state electron density q0(r).
The corresponding exact wavefunction W0 is the one for which

the minimum in the constraint search in Eq. (50) is obtained.

This ground-state wavefunction has to be an eigenfunction of

Ŝ2 and Ŝz, and the corresponding value of S determines the

spin multiplicity of the ground-state, whereas the different MS-

states are degenerate. In contrast to the noninteracting case,

the ground-state wavefunction is not necessarily a singlet or

doublet wavefunction, but could have a higher spin

multiplicity.

Kohn–Sham Potential. Minimization of the noninteracting

energy functional [Eq. (66)] with respect to the total density q,
under the constraint that q integrates to N electrons, yields

the following Euler–Lagrange equation,[50]

0 ¼ dEs½q�
dqðrÞ � l ¼ dTs½q�

dqðrÞ þ qevsðrÞ � l: (72)

Conversely, the total energy functional of the interacting

system is given by Eq. (71), which upon minimization leads to

the condition

0 ¼ dE½q�
dqðrÞ � l ¼ dTs½q�

dqðrÞ þ qe
�
vnucðrÞ þ vCoul½q�ðrÞ þ vxc½q�ðrÞ

�
� l;

(73)
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where vCoul½q�ðrÞ ¼ qe
R
qðr0Þ=jr � r0jd3r0 is the classical Coulomb

potential of the electrons and vxc½q�ðrÞ ¼ ð1=qeÞ dExc½q�=dqðrÞ is

the exchange–correlation potential.

As the definition of the noninteracting kinetic energy Ts[q] is
the same in both minimizations, and because we require that

the total densities obtained for the interacting and noninter-

acting system agree, we obtain for the KS potential

vs½q�ðrÞ ¼ vextðrÞ þ vCoul½q�ðrÞ þ vxc½q�ðrÞ: (74)

The ground-state electron density of the fully interacting

system can thus be determined by solving the Schr€odinger

equation of a noninteracting system [i.e., with the Hamiltonian

of Eq. (60) including the external potential vs[q] given by Eq.

(74)], and the orbitals of this noninteracting system can be

obtained from the KS equations

� �h2

2me
Dþ qe

�
vnucðrÞ þ vCoul½q�ðrÞ þ vxc½q�ðrÞ

�� �
uiðrÞ ¼ �iuiðrÞ:

(75)

Thus, the ground-state electron density of the true interact-

ing system is obtained from the wavefunction Ws,0 of the non-

interacting reference system. However, this ground-state wave-

function Ws,0 of the noninteracting reference system does not

agree with the ground-state wavefunction W0 of the interact-

ing system. Moreover, Ws,0 can always be chosen as a singlet

or doublet state (i.e., S ¼ 0 or S ¼ 1
2
), whereas W0 can corre-

spond to any value of S. Therefore, the spin multiplicities of

the ground-states of the noninteracting and of the interacting

system can be different.

Spin Density. For S [ 0, the ground state of the true inter-

acting system is degenerate and there is a set of eigenfunc-

tions of Ŝz with different eigenvalues MS. These wavefunc-

tions WMS
0 have different spin densities QMS

0 ðrÞ that are

related by Eq. (35). By construction, the ground-state wave-

function Ws,0 of the noninteracting reference system and the

ground-state wavefunction W0 of the fully interacting sys-

tem only share the same electron density. However, the cor-

responding spin densities Q(r) and Qs(r) are in general not

equal and the true ground-state spin density cannot be cal-

culated from Ws,0.

From Eq. (64) it is obvious that Q(r) and Qs(r) have to be dif-

ferent: for the spin-restricted noninteracting reference system,

the spin density is determined only by the singly occupied

orbitals and will thus have the same sign at every point in

space (i.e., Qs(r) [ 0 for MS [ 0). However, it is known both

from accurate calculations and from experiment, that for the

interacting system the spin density has different signs in differ-

ent regions in space.[112–114]

To obtain the spin density in a restricted KS-DFT formula-

tion, one has to minimize the spin-resolved HK functional

FHK[q0, Q] defined in Eq. (50) with respect to Q(r), under the

constraint that the spin density integrates to 2Ms. As the

exchange–correlation energy is the only part of this functional

that depends on the spin density, the minimization with

respect to Q(r) leads to the condition

dFHK½q0;Q�
dQðrÞ � k ¼ dExc½q0;Q�

dQðrÞ ¼ 0; (76)

where the Lagrange multiplier k is zero because of Eq. (35). This

suggests a two-step procedure for determining the spin density

in restricted KS-DFT. First, the total ground-state density q0(r) is
determined by solving the KS equations. Subsequently, the corre-

sponding ground-state spin density Q0(r) can be calculated from

the above minimization condition for a chosen value of MS.

Spin-Unrestricted Kohn–Sham DFT

Noninteracting Reference System. The choice of a reference

system of noninteracting electrons with the same total elec-

tron density as the interacting system is not the only option.

Alternatively, it is also possible to envisage a reference system

of noninteracting electrons that has the same a- and b-elec-
tron densities as the interacting system.[90,103,112] In this case, a

reference system with the Hamiltonian

ĤðuÞ
s ¼ T̂s þ V̂tot

s þ V̂spin
s ¼

XN
i¼1

�h2

2me
Di þ qe

XN
i¼1

h
vtots ðriÞ þ vspins ðriÞrzðsiÞ

i

¼ T̂s þ V̂a
s þ V̂b

s ¼
XN
i¼1

�h2

2me
Di þ qe

XN
i¼1

h
vas ðriÞaðsiÞ � vbs ðriÞbðsiÞ

i

(77)

is used. To distinguish them from those introduced earlier for

a spin-restricted reference system, the superscript ‘‘(u)’’ will be

used for quantities referring to this spin-unrestricted reference

system. Different potentials vas (r) ¼ vtots (r) þ vspins (r) and vbs (r) ¼
vtots (r) � vspins (r) for the a- and b-electrons, respectively, are

now needed to allow the reference system of noninteracting

electrons to have the same spin density as the interacting one.

This corresponds to introducing an inhomogeneous external

magnetic field in z-direction BzðrÞ ¼ � qe
lB
vspins ðrÞ that only

interacts with the electronic spins (i.e., the interaction due to

orbital angular momentum is ignored) [cf. Eq. (32)].

An exact solution to the corresponding Schr€odinger equa-

tion has the form of a single Slater determinant, but in con-

trast to the spin-restricted case the spatial orbitals now differ

for a- and b-electrons, i.e.,

UðuÞ
s ðx1;…; xNÞ ¼




ua
1a;u

b
1b;u

a
2a;u

b
2b;…




 (78)

The spatial parts of the orbitals can be obtained from two

separate sets of one-electron equations

� �h2

2me
Dþ qe v

a
s ðrÞ

� �
ua
i ðrÞ ¼ �ai u

a
i ðrÞ and

� �h2

2me
Dþ qe v

b
s ðrÞ

� �
ub
i ðrÞ ¼ �bi u

b
i ðrÞ:

(79)

Both the resulting a- and b-orbitals form an orthonormal

set, hua
i jua

j i ¼ dij and hub
i ju

b
j i ¼ dij, but a- and b-orbitals are in

general not orthogonal to each other, that is, hua
i ju

b
j i 6¼ 0.

The noninteracting Hamiltonian H
ðuÞ
s still commutes with Ŝz,

and any spin-unrestricted Slater determinant is an eigenfunction
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of Ŝz, with the eigenvalue MS being determined by the number

of a- and b-electrons. However, in contrast to the spin-restricted

case, the different Ŝz eigenstates are not degenerate anymore.

For constructing the ground-state wavefunction, the N orbitals

with the lowest orbital energies have to be occupied, which

automatically fixes MS. By occupying other (a- or b-electron) orbi-
tals, excited state wavefunctions for the noninteracting reference

system corresponding to different values of MS can be obtained.

However, H
ðuÞ
s in general does not commute with Ŝ2, and

the ground-state wavefunction is thus not an eigenfunction of

Ŝ2 anymore. Instead, the expectation value of Ŝ2 can be calcu-

lated as (assuming Na � Nb)
[61,115]

hŜ2i ¼ MSðMS þ 1Þ�h2 þ �h2Nb � �h2
XNa

i¼1

XNb

i¼1

Z
ua
i ðrÞu

b
j ðrÞ d

3r











2

:

(80)

In the spin-restricted case, where the a- and b-orbitals are

equal and therefore mutually orthogonal, the last term equals

the number of doubly occupied orbitals, and one obtains

hŜ2i ¼ MSðMS þ 1Þ�h2. In the unrestricted case, this cancellation

is only partial and a larger expectation value is obtained. This

is often referred to as ‘‘spin contamination.’’

For an unrestricted Slater determinant, the total electron

density is given by,

qðrÞ ¼
XNa

i¼1

jua
i ðrÞj

2 þ
XNb

i¼1

jub
i ðrÞj

2; (81)

and the spin density can be calculated as

QðrÞ ¼
XNa

i¼1

jua
i ðrÞj

2 �
XNb

i¼1

jub
i ðrÞj

2: (82)

In contrast to the spin-restricted case, the spin density can

now have different signs at different points in space. The ki-

netic energy of the unrestricted Slater determinant UðuÞ
s is

T ðuÞs ¼ hWsjT̂ jWsi ¼ � �h2

2me

XNa

i¼1

Z
ua
i ðrÞDua

i ðrÞ d3r

� �h2

2me

XNb

i¼1

Z
ub
i ðrÞDu

b
i ðrÞd

3r; ð83Þ

and a noninteracting kinetic-energy functional can now be

defined as

T ðuÞs ½qa;qb� ¼ min
WðuÞ

s !qa ;qb

�
WðuÞ

s



T̂

WðuÞ
s

�
(84)

or as

T ðuÞs ½q;Q� ¼ min
WðuÞ

s !q;Q

�
WðuÞ

s



T̂

WðuÞ
s

�
: (85)

In contrast to the spin-restricted case, this functional depends

not only on the total electron density q(r) ¼ qa(r) þ qb(r), but

also on the spin density Q(r) ¼ qa(r) � qb(r). Usually, T
ðuÞ
s [q, Q]

yields different kinetic energies for systems that share the same

total electron density, but have different spin densities.

In terms of a- and b-electron densities, the total energy

functional of the noninteracting system is given by

EðuÞs ½qa;qb� ¼ T ðuÞs ½qa; qb� þ qe

Z
qaðrÞvas ðrÞ d3r

þ qe

Z
qbðrÞvbs ðrÞ d

3r: (86)

The ground-state a- and b-densities qa0(r) and qb0(r) of the

noninteracting system can then be determined by minimizing

this energy functional with respect to qa and qb, under the

constraint that these integrate to the correct number of a-
and b-electrons.

Exchange–Correlation Energy Functional. The spin-resolved HK

functional [cf. Eq. (48)] of the true system of interacting elec-

trons can now be decomposed as

FHK½qa;qb� ¼ T ðuÞs ½qa; qb� þ J½q� þ EðuÞxc ½qa; qb�; (87)

where the spin-resolved exchange–correlation energy is

defined as

EðuÞxc ½qa;qb� ¼ FHK½qa; qb� � T ðuÞs ½qa; qb� � J½q�: (88)

As this functional E
ðuÞ
xc [qa, qb] has been defined via the spin-

unrestricted reference system, it is in general different from

the functional E
ðuÞ
xc [qa, qb] defined in the previous section. This

difference arises because different definitions of the noninter-

acting kinetic energy are used in the two cases.

With this definition of the exchange–correlation energy, the

total energy functional of the true system of interacting elec-

trons is given by

E½qa;qb� ¼ T ðuÞs ½qa; qb� þ J½q� þ EðuÞxc ½qa; qb�

þ qe

Z
qðrÞvnucðrÞ d3r: (89)

This total energy functional is identical to the spin-resolved

version of the total energy functional derived in the spin-

restricted case [cf., Eq. (71)], even though it is decomposed in

a different fashion.

The ground-state a- and b-electron densities qa0(r) and qb0(r)
can then be determined by minimizing this total energy func-

tional with respect to qa and qb, under the constraint that

these integrate to Na and Nb electrons, respectively. Note that

by choosing Na and Nb, a specific value of MS is selected. As

long as this MS can be realized for the exact ground state, the

resulting total ground-state density q0(r) ¼ qa0(r) þ qb0(r) will

be independent of the choice of MS. In addition, the minimiza-

tion will then yield the exact ground-state spin density

QMS
0 ðrÞ ¼ qa0ðrÞ � qb0ðrÞ.

KS Potential. The minimization of the total energy functional

E
ðuÞ
s [qa, qb] of the spin-unrestricted noninteracting reference

system leads to these Euler–Lagrange equations
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dEðuÞs ½qa; qb�
dqaðrÞ

� la ¼
dT ðuÞs ½qa;qb�

dqaðrÞ
þ qe v

a
s ðrÞ � la ¼ 0 (90)

dEðuÞs ½qa; qb�
dqbðrÞ

� lb ¼
dT ðuÞ

s ½qa;qb�
dqbðrÞ

þ qe v
b
s ðrÞ � lb ¼ 0: (91)

For the interacting system, the minimization of E[qa, qb]
with respect to the a- and b-electron densities yields

dE½qa;qb�
dqaðrÞ

� la ¼
dT ðuÞs ½qa; qb�

dqaðrÞ
þ qe

�
vnucðrÞ

þ vCoul½q�ðrÞ þ vaxc½qa;qb�ðrÞ
�
� la ¼ 0; (92)

dE½qa;qb�
dqbðrÞ

� lb ¼
dT ðuÞs ½qa; qb�

dqbðrÞ
þ qe

�
vnucðrÞ þ vCoul½q�ðrÞ

þ vbxc½qa;qb�ðrÞ
�
� lb ¼ 0: (93Þ

with the spin components of the exchange–correlation

potential

vaxc½qa;qb�ðrÞ ¼
1

qe

dEðuÞxc ½qa;qb�
dqaðrÞ

and

vbxc½qa;qb�ðrÞ ¼
1

qe

dEðuÞxc ½qa;qb�
dqbðrÞ

:

(94)

If we require that qa(r) and qb(r)—and thus both the total

and the spin density of the ground state—are the same for

the noninteracting reference system and the true interacting

system, we find that the spin components of the KS potential

are given by

vas ½qa;qb�ðrÞ ¼ vextðrÞ þ vCoul½q�ðrÞ þ vaxc½qa; qb�ðrÞ (95)

vbs ½qa; qb�ðrÞ ¼ vextðrÞ þ vCoul½q�ðrÞ þ vbxc½qa;qb�ðrÞ: (96)

Therefore, the exact ground-state a- and b-electron densities

of the true interacting system can be calculated by solving the

Schr€odinger equation of an auxilliary system of noninteracting

electrons with the Hamiltonian of Eq. (77). The ground-state

wavefunction WðuÞ
s;0 of this KS reference system is given by an

unrestricted Slater determinant, constructed from the orbitals

obtained from the KS equations,

� �h2

2me
Dþqe

�
vnucðrÞþ vCoul½q�ðrÞþvaxc½qa;qb�ðrÞ

�� �
ua
i ðrÞ¼�ai u

a
i ðrÞ

� �h2

2me
Dþqe

�
vnucðrÞþvCoul½q�ðrÞþvbxc½qa; qb�ðrÞ

�� �
ub
i ðrÞ¼�bi u

b
i ðrÞ:

(97)

Here, the equations for the a- and b-orbitals are coupled

through the Coulomb and exchange–correlation potentials.

Equivalently, the KS potential can be expressed as a compo-

nent that acts on the total electron density,

vtots ½q;Q�ðrÞ ¼ 1

2

�
vas ðrÞ þ vbs ðrÞ

�
¼ vextðrÞ þ vCoul½q�ðrÞ þ vtotxc ½q;Q�ðrÞ; (98)

and one that acts on the spin density,

vspins ½q;Q�ðrÞ ¼ 1

2

�
vas ðrÞ � vbs ðrÞ

�
¼ vspinxc ½q;Q�ðrÞ; (99)

where the total and spin exchange–correlation potential are

given by

vtotxc ½q;Q�ðrÞ ¼
1

qe

dEðuÞxc ½q;Q�
dqðrÞ and vspinxc ½q;Q�ðrÞ ¼ 1

qe

dEðuÞxc ½q;Q�
dQðrÞ :

(100)

These expressions will be used in the following section for

comparing with the spin-restricted theory.

Even though the electron density and spin density calcu-

lated from this WðuÞ
s;0 are equal to those of the fully interacting

system, it is important to realize that WðuÞ
s;0 does not agree with

the ground-state wavefunction W0 of the true interacting sys-

tem. In particular, W0 can always be chosen as an eigenfunc-

tion of Ŝ2, whereas by construction, WðuÞ
s;0 is not an eigenfunc-

tion of Ŝ2 for S [ 0. Thus, within an exact formulation of

unrestricted KS-DFT, the wavefunction of the KS reference sys-

tem is always spin contaminated for S[ 0.

Comparison of restricted and unrestricted formulation

The restricted and the unrestricted formulation of KS-DFT are

based on different definitions of the noninteracting reference

system for open-shell systems. In the spin-restricted case, the ref-

erence system is chosen such that its total electron density qs(r)
agrees with the one of the fully interacting system, while its

spin density Qs(r) usually differs from the one of the interacting

system. Conversely in the spin-unrestricted case, the reference

system is defined such that both its total electron density and

its spin density agree with those of the fully interacting system.

These different definitions of the noninteracting reference system

have implications for the treatment of spin in KS-DFT. In the spin-

restricted case, the wavefunction Ws of the noninteracting reference

system can always be chosen as an eigenfunction of Ŝ2. Neverthe-

less, the corresponding eigenvalue hŜ2i ¼ SðSþ 1Þ�h2 does not

necessarily agree with the one obtained for the true interacting sys-

tem. However, it is possible to require this equality with an addi-

tional constraint on the noninteracting reference system. In the

spin-unrestricted case, the wavefunction WðuÞ
s of the reference sys-

tem is not an eigenfunction of Ŝ2, that is, it is spin-contaminated.

This is a direct consequence of the requirement that the correct

spin density is obtained. Thus, the expectation value of Ŝ2 becomes

a complicated functional of the electron density.[115,116] Of course,

the exact ground state density will still correspond to an interacting

wavefunction that is an eigenfunction of Ŝ2.

In both the restricted and unrestricted case, the wavefunc-

tion of the noninteracting reference system is an eigenfunc-

tion of Ŝz. Only in the spin-unrestricted case, it is guaranteed

that the corresponding eigenvalue MS is the same as for the

fully interacting system, but also in the spin-restricted case it

can be chosen accordingly. These differences between the

restricted and unrestricted formulation are summarized in

Table 1. One important observation is that it is impossible to
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set up a KS-DFT formalism such that for the noninteracting ref-

erence system one obtains both the correct spin density and a

wavefunction that is an eigenfunction of Ŝ2 (see also the dis-

cussion of this issue in Refs. [88,112]).

The different definitions of the noninteracting reference sys-

tem in the restricted and unrestricted formulations of KS-DFT

also imply different definitions of the noninteracting kinetic

energy, exchange–correlation energy, and exchange–correlation

potential. These definitions are collected in Table 2. First of all,

the use of different reference systems leads to different defini-

tions of the noninteracting kinetic energy. In the spin-restricted

case, Ts[q] is defined as the kinetic energy of a system of nonin-

teracting electrons with the total electron density q(r) and is in-

dependent of the spin density Q(r). In contrast, in the spin-unre-

stricted case T
ðuÞ
s [q, Q] is defined as the kinetic energy of a

system of noninteracting electrons with the total electron den-

sity q(r) and the spin density Q(r). These differ by the ‘‘unre-

stricted’’ contribution to the noninteracting kinetic energy,

Tu½q;Q� ¼ Ts½q� � T ðuÞs ½q;Q�: (101)

Only if the spin density vanishes, the restricted and unre-

stricted definitions of the noninteracting kinetic energy are

identical, that is, Tu[q, Q ¼ 0] ¼ 0.

Because of these different definitions of the noninteracting

kinetic energy, a different decomposition of the HK functional

is introduced in the restricted and unrestricted formalisms,

respectively, which in turn leads to different definitions of the

exchange–correlation energy. These are related by

EðuÞxc ½q;Q� ¼ Exc½q;Q� þ Tu½q;Q�: (102)

One important difference between the two formalisms is

that in spin-restricted KS-DFT, the exchange–correlation energy

Exc[q, Q] is the only contribution to the HK functional that

depends on the spin density, whereas in the spin-unrestricted

theory both the exchange–correlation energy E
ðuÞ
xc [q, Q] and

the noninteracting kinetic energy T
ðuÞ
s [q, Q] depend on the

spin density. Therefore, the fractional spin condition of Eq.

(55), formulated for the HK functional earlier, leads to different

exact conditions for the exchange–correlation functional. In

the spin-restricted case, the fractional spin condition applies

directly to the exchange–correlation energy,

Exc
�
q; aQMS¼S½q�

�
¼ const: for � 1 � a � þ1; (103)

whereas in the spin-unrestricted case, it applies to the sum of

the exchange–correlation energy and the noninteracting ki-

netic energy,

T ðuÞs

�
q; aQMS¼S½q�

�
þ EðuÞxc

�
q; aQMS¼S½q�

�
¼ const:

for � 1 � a � þ1: ð104Þ

Finally, the exchange–correlation potential (and thus also

the resulting KS potential) differs in the two formalisms. In

spin-restricted KS-DFT, the exchange–correlation potential

vxc[q] depends only on the total electron density and acts on

electrons of both spin. Conversely, in spin-unrestricted KS-DFT

the exchange–correlation potential is different for a- and b-
electrons, that is, it has two distinct components. The compo-

nent of the exchange–correlation potential acting on the total

electron density is given by,

vtotxc ½q;Q�ðrÞ ¼
1

qe

dEðuÞxc ½q;Q�
dqðrÞ ¼ 1

qe

�
dExc½q;Q�
dqðrÞ þ dTu½q;Q�

dqðrÞ

�

¼ vxc½q;Q�ðrÞ þ vu½q;Q�ðrÞ:
(105)

Here, the first term is the exchange–correlation potential in

the spin-restricted formalism, while the second term

vu½q;Q�ðrÞ ¼ ð1=qeÞ dTu½q;Q�=dqðrÞ is given by the functional

derivative of Tu[q, Q]. It appears because of the different defini-

tions of the exchange–correlation energy in the restricted and

unrestricted theories. The component of the exchange–correla-

tion potential acting on the spin density is given by

Table 1. Comparison of the spin-restricted and spin-unrestricted

formulations of KS-DFT. "Correct" indicates that the quantity calculated

for the noninteracting reference system agrees with the corresponding

one of the fully interacting system.

Spin-restricted

KS-DFT

Spin-unrestricted

KS-DFT

Correct qsðrÞ? Yes Yes

Correct QsðrÞ? No Yes

Ws is eigenfunction of Ŝ2? Yes No

Correct hŜ2i? Maybe No

Ws is eigenfunction of Ŝz? Yes Yes

Correct hŜzi? Maybe Yes

Table 2. Definition of the noninteracting kinetic energy, exchange–correlation energy, and exchange–correlation potential in the spin-restricted and

spin-unrestricted formulations of KS-DFT.

Spin-restricted KS-DFT Spin-unrestricted KS-DFT

Noninteracting kinetic energy Ts½q� ¼ min
Ws!q

hWsjT̂ jWsi T
ðuÞ
s ½q;Q� ¼ min

WðuÞ
s !q;Q

�
WðuÞ

s



T̂

WðuÞ
s

�

Decomposition of HK functional FHK ½q;Q� ¼ Ts½q� þ J½q� þ Exc½q;Q� FHK½q;Q� ¼ T
ðuÞ
s ½q;Q� þ J½q� þ E

ðuÞ
xc ½q;Q�

Exchange–correlation energy Exc½q;Q� ¼ FHK½q;Q� � Ts½q� � J½q� E
ðuÞ
xc ½q;Q� ¼ FHK½q;Q� � T

ðuÞ
s ½q;Q� � J½q�

Exchange–correlation potential vxc½q� ¼
1

qe

dExc½q;Q�
dqðrÞ vtotxc ½q;Q� ¼

1

qe

dEðuÞxc ½q;Q�
dqðrÞ

vspinxc ½q;Q� ¼ 1

qe

dEðuÞxc ½q;Q�
dQðrÞ
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vspinxc ½q;Q�ðrÞ ¼ 1

qe

dEðuÞxc ½q;Q�
dQðrÞ ¼ 1

qe

�
dExc½q;Q�
dQðrÞ þ dTu½q;Q�

dQðrÞ

�
:

(106)

For the ground-state electron and spin densities, the first

term vanishes according to Eq. (76), and the above expression

for vspinxc [q, Q](r) reduces to the Euler–Lagrange equation for

the spin density [cf. Eqs. (92) and (93)].

In summary, the KS potential in the spin-unrestricted case

differs from the spin-restricted KS potential vxc[q, Q](r) by (a)

an additional component vspinxc [q, Q](r)sz acting on the spin

density, and (b) a correction to the spin-independent poten-

tial vu[q, Q](r). Thus, starting from a spin-restricted reference

system with the total electron density q(r) and with a spin

density that differs from the spin density Qs(r) of the interact-

ing system, the KS potential is modified such that its spin

density becomes equal to the one of the fully interacting sys-

tem Q(r). To achieve this, the spin potential vspinxc [q, Q](r)rz
has to be introduced. However, with the total potential kept

fixed, this would lead to a change of the total electron den-

sity, and to keep q(r) unchanged, the correction vu[q, Q](r) is
needed.

Spin states in KS-DFT

So far, we have only considered a spin-state independent

theory, that is, with the exact exchange–correlation functionals,

the spin-restricted and spin-unrestricted KS-DFT formalism

discussed above will lead to the ground-state, irrespective of

its spin symmetry. As discussed earlier, targeting the lowest

state of a given spin symmetry (i.e., with a specific eigenvalue

S(S þ 1) of Ŝ2) requires a spin-state specific HK functional

FSHK[q] as defined in Eq. (58).

In the spin-restricted case, this is formally possible by using

the spin-state independent definition of the noninteracting ki-

netic energy, which results in a spin-state specific exchange–

correlation functional. In practice, a different strategy is fol-

lowed: The noninteracting reference system is defined such

that it is described by a single Slater determinant with MS ¼ S.

This can be achieved by defining the spin-state specific nonin-

teracting kinetic energy as

TSs ½q� ¼ min
UMS¼S!q

�
UMS¼SjT̂ jUMS¼Si; (107)

where UMS¼S is a Slater determinant with MS ¼ S. Such a Slater

determinant is always an eigenfunction of Ŝ2 with eigenvalue

S(S þ 1). Thus, it is ensured that the wavefunction of the non-

interacting reference system has the same spin symmetry as

the wavefunction of the true interacting system. However, as

always in spin-restricted KS-DFT, for S [ 0 the spin density

UMS¼S of the noninteracting reference system will differ from

the one of the fully interacting system.

With this definition of a spin-state specific noninteracting

kinetic energy, the spin-state specific exchange–correlation

energy is given by

ESxc½q� ¼ FSHK½q� � TSs ½q� � J½q�: (108)

One protocol for constructing this spin-state dependent

exchange–correlation functional then proceeds using the spin

density UMS¼S of the noninteracting reference system to distin-

guish the different spin states. To this end, ESxc[q] is expressed as

ESxc½q� ¼ EðssÞxc

�
q;QMS¼S

s ½q�
�
: (109)

Here, E
ðssÞ
xc [q, Q] is not equal to the spin-resolved exchange–

correlation functional Exc[q, Q] defined in Eq. (70). Its depend-

ence on Q does not describe the spin-density dependence

of the exchange–correlation energy, but instead introduces the

spin-state dependence. This is indicated by the superscript

‘‘(ss).’’ The multiplet-DFT scheme of Daul[117,118] and the

restricted open-shell KS (ROKS) scheme[119–124] as well as related

approaches[125,126] proceed along these lines, but usually include

additional ideas originating from Hartree–Fock theory.[127,128]

It appears that if applied in a spin-restricted formalism, all

available approximate exchange–correlation functionals have

to be understood as approximations to E
ðssÞ
xc [q, Q] and not as

approximations to Exc[q, Q]. This has important consequences

for the construction of such approximate exchange–correlation

functional. In particular, one has to realize that E
ðssÞ
xc [q, Q] does

not fulfill the fractional spin condition and thus this condition

should not be included when constructing approximations to

it.

In addition, in spin-restricted KS-DFT the ground-state spin

density is not directly available and has to be determined after

calculating the ground-state electron density by minimizing

Exc[q, Q] with respect to Q [cf. Eq. (76)]. In this step, one has to

use Exc[q, Q]—which includes the correct spin-density depend-

ence—instead of E
ðssÞ
xc [q, Q]. Thus, the construction of a differ-

ent class of approximate exchange–correlation functionals that

include the spin-density dependence by approximating Exc[q,
Q] (or its spin-state specific analog ESxc[q, Q]) instead of E

ðssÞ
xc [q,

Q] would be required. Of course, the fractional spin condition

applies to Exc[q, Q] and ESxc[q, Q], and should also be incorpo-

rated when constructing such approximations.

In spin-unrestricted KS-DFT, it is not possible to require that

the noninteracting reference system is an eigenfunction of

Ŝ2.[88,112] Thus, it is not possible to define a spin-state specific

analog of T
ðuÞ
s [q, Q]. Consequently, the spin-state dependence

only enters the exchange–correlation functional, which becomes

EðuÞ;Sxc ½q;Q� ¼ FSHK½q;Q� � T ðuÞs ½q;Q� � J½q�: (110)

For constructing approximations to this spin-state specific

exchange–correlation functional, usually a strategy similar to

the one in spin-restricted KS-DFT is applied. To this end, the

description is restricted to the case of MS ¼ S, that is, only the

maximal eigenvalue of Ŝz is allowed. Then, the spin-state spe-

cific exchange–correlation functional can be expressed as

EðuÞ;Sxc ½q;Q� ¼ Eðu;ssÞxc

�
q;QMS¼S

�
: (111)

Here, different spin states can be distinguished based on

the integral of the spin density. However, the functional

E
ðuÞ;ss
xc [q, Q] does not describe the correct spin-density
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dependence of E
ðuÞ
xc [q, Q] anymore. Neither does E

ðuÞ;S
xc [q, Q],

which is limited to spin densities corresponding to MS ¼ S.

However, the spin densities QMS corresponding to other eigen-

values of Ŝz can be obtained from the scaling relation of Eq.

(35). Again, it is important to realize that the fractional spin

condition does not apply to E
ðuÞ;ss
xc [q, Q].

The idea of using the spin density as a means to distinguish

different spin states in a spin-unrestricted KS-DFT formalism is

taken even further in broken-symmetry DFT,[24,40,44] where the

requirement that the spin density of the noninteracting refer-

ence system matches the correct spin density of the fully

interacting system is sacrificed in favor of obtaining accurate

energetics for low-spin states. Consequently, it has been sug-

gested that in this case, the spin density in fact serves to

describe the (spin-state specific) on-top pair density.[129] If bro-

ken-symmetry DFT calculations are interpreted in this way, one

would need to determine the spin density in a separate step

from the minimization of Exc[q, Q] (or its spin-state specific

analog ESxc[q, Q]), as discussed above for spin-restricted KS-DFT.

Spin in Relativistic DFT

Spin and current in relativistic quantum mechanics

So far, the discussion has focused on spin in nonrelativistic

DFT. For the sake of completeness, we now consider the gen-

eralization to the more fundamental relativistic regime. The rel-

ativistic theory relies on Dirac’s semiclassical theory of the

electron (see Ref. [57] for a detailed account). This quantum

theory describes the relativistic motion of the electron in a

classical external electromagnetic field, represented by the sca-

lar and vector potentials /ext(r) and Aext(r). The equation of

motion reads in this case (in Gaussian units),

ĥDwðr; tÞ ¼
�
ca � p̂þ bmec

2 þ qe

�
/extðrÞ � a � AextðrÞ

��
wðr; tÞ

¼ i�h
@

@t
wðr; tÞ; ð112Þ

which yields an energy eigenvalue equation for determining

the stationary states when the right hand side is replaced by

Ew(r,t). The Dirac Hamiltonian ĥD consists of the kinetic energy

operator ca � p̂, the rest energy term bmec
2, and the interac-

tion operator qe
�
/extðrÞ � a � AextðrÞ

�
, where c is the speed of

light and p̂ ¼ �i�hr is the momentum operator as before. The

Dirac matrices are contained in the parameters a ¼ (ax, ay, az)
and b, which are in the standard representation,

ai ¼
0 ri
ri 0

� �
and b ¼ 12 0

0 �12

� �
; (113)

where ri are the the Pauli spin matrices rx, ry, and rz defined
in Eq. (4). A consequence of these four-dimensional operators

is that the Dirac Hamiltonian ĥD is a 4�4 matrix operator with

a four-component eigenvector w(r,t), the so-called 4-spinor.

Such a four-component description naturally includes spin,

which had to be introduced in an ad hoc fashion in the nonre-

lativistic theory.

In analogy to the nonrelativistic case, one can define the rel-

ativistic spin operator as

ŝ ¼ �h

2
rð4Þ ¼ �h

2
ðrð4Þx ;rð4Þy ;rð4Þz ÞT with r

ð4Þ
i ¼ ri 0

0 ri

� �
:

(114)

This operators still obey the commutation relations of an

angular momentum. However, in the relativistic case ŝ2 and ŝz
do not commute with the Hamiltonian. Therefore, eigenstates

of ĥD cannot be chosen as eigenfunctions of ŝ2 and ŝz any-

more and spin is thus not a good quantum number in relativ-

istic theory. In spherically symmetric systems such as atoms,

one can consider the total angular momentum instead. This

also has the consequence that, in contrast to the nonrelativis-

tic case, the expectation value of ŝz will depend on the choice

of the quantization axis.

In the case of many electrons, the relativistic wavefunction

again assumes a tensor structure, that is, for N electrons, the

wavefunction formally has 4N components. It has to fulfill the

Pauli principle by being antisymmetric with respect to the

exchange of any two electron. The relativistic many-electron

Hamiltonian is then given by (neglecting projectors on posi-

tive-energy solutions for the sake of brevity),

ĤD ¼
XN
i¼1

ĥDðiÞ þ
XN
i¼1

XN
j¼iþ1

ĝði; jÞ; (115)

where ĥDðiÞ is the one-electron Hamiltonian of Eq. (112) acting

on electron i and ĝði; jÞ is the operator describing the inter-

action between electrons i and j. The form of the exact elec-

tron–electron interaction operator can be derived from quan-

tum electrodynamics, but usually only approximate forms are

employed in practice. The simplest approximation is to employ

the nonrelativistic Coulomb operator. However, the resulting

Dirac–Coulomb Hamiltonian is not Lorentz invariant. This

approximation is improved by the Dirac–Coulomb–Gaunt Hamil-

tonian, which also includes the unretarded magnetic interaction

between electrons, whereas the Dirac–Coulomb–Breit Hamilto-

nian approximately describes the retarded electromagnetic

interaction (for a detailed discussion, see chapter 8 in Ref. [57]).

As in nonrelativistic theory, an electron density and a cur-

rent density can be defined in the relativistic many-electron

theory such that they fulfill a continuity equation. This results

in the definition of the electron density as[57,130]

qðrÞ ¼ N

Z
Wyðr; r2;…; rNÞWðr; r2;…; rNÞd3r2…d3rN (116)

and of the current density as

jðrÞ ¼ c N

Z
Wyðr; r2;…; rNÞ a1 Wðr; r2;…; rNÞ d3r2…d3rN (117)

where a1 indicates that the Dirac matrices act on the first elec-

tron and the dagger denotes the transposed and complex

conjugate spinor. This definition of the current density still

holds in the presence of external magnetic fields.
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Relativistic current-DFT

A central aspect of relativistic theories is that all fundamental

physical equations must preserve their form under Lorentz

transformations from one inertial frame of reference to

another one. This requires that the equations are castable in

tensorial form. Hence, all quantities are joined to 4-vectors,

which are basic physical quantities in any relativistic theory.

For instance, the electromagnetic potentials are joined to yield

the 4-potential Al ¼ (/, A). This is the reason why a relativistic

theory has to include both the scalar and vector potentials

simultaneously. The density q(r) is also part of a 4-vector,

namely of the 4-current jl(r). The other three components are

given by the current density j(r) such that jl ¼ (cq, j).
Now, a similar decomposition of the energy expectation

value as in the nonrelativistic case can be performed,

E ¼ hWjĤDjWi ¼ hWjT̂DjWi þ hWjV̂extjWi þ hWjV̂eejWi; (118)

where T̂D is the relativistic ‘‘kinetic energy’’ operator, collecting

all terms of the one-electron Hamiltonian ĥD containing the

Dirac matrices a and b (i.e., the kinetic energy and the rest

energy terms), V̂ext consists of the remaining one-electron terms

and describes the interaction with the external electromagnetic

potentials, and V̂ee is the electron–electron interaction operator.

The second term can be calculated directly from the 4-current,

without the need to know the full wavefunction, as

hWjV̂extjWi ¼ qe
c

Z
jlðrÞAl

extðrÞd3r

¼ qe

Z
qðrÞ/extðrÞd3r þ qe

c

Z
jðrÞ � AextðrÞd3r ¼ Vext½jl�;

(119)

where Einstein’s convention of implicit summation over

repeated lower and upper indices has been used. The first term

is the same as in the nonrelativistic case and describes the elec-

trostatic interaction of the electron density with the external

potential, whereas the second term accounts for the interaction

of the current density with the external magnetic field.

A 4-current may be understood as the source of a 4-poten-

tial which can be calculated from the relativistic generalization

of the Poisson equation of electrostatics,

(AlðrÞ ¼ 4p
c
jlðrÞ; (120)

with the D’Alembertian operator being the Minkowski

space generalization of the three-dimensional Laplacian, that

is, it is defined as ( ¼ 1
c2

@2

@t2
� D. From the solution of this

equation, one obtains for the 4-potential generated by the

electronic 4-current jl,

Al½jl� ¼ qe
c

Z
jlðr0Þ
jr � r0j d

3r0: (121)

The classical interaction energy J[jl] of the 4-current jl with

itself (i.e., the relativistic analog of the classical Coulomb inter-

action in nonrelativistic theory) is then given by

J½jl� ¼ q2e
2c2

Z
jlðrÞjlðr0Þ
jr � r0j d3rd3r0

¼ q2e
2

Z
qðrÞqðr0Þ
jr � r0j d3rd3r0 þ q2e

2c2

Z
jðrÞ � jðr0Þ
jr � r0j d3rd3r0:

(122)

Here, the first term is the classical electrostatic (Coulomb)

interaction J[q], whereas the second term accounts for the

magnetic interaction of the electrons. Note that this second

term should only be present if the Gaunt or Breit interaction

has been included in the Hamiltonian.

The analogy between Vext[j
l] and J[jl] [Eqs. (119) and (122)]

and their nonrelativistic counterparts Vext[q] and J[q] suggests
that the fundamental quantity for a relativistic formulation of

DFT is actually the 4-current, that is, the combination of the

electronic density q(r) and the current density j(r). For this rea-

son, the relativistic generalization of standard DFT has been

known as current-DFT (CDFT).[131–134]

It can be shown that in relativistic theory, an analog of the

HK theorem exists: the 4-current jl(r) uniquely determines the

external 4-potential Al(r) up to a gauge transformation.[131]

Therefore, it is possible to consider the energy E[jl] as a func-

tional of the 4-current jl(r). As in the nonrelativistic case, one

then proceeds by introducing a reference system of noninter-

acting electrons with the relativistic Hamiltonian

ĤD
s ¼

XN
i¼1

caðiÞ � p̂i þ bðiÞmec
2þqe

�
/sðriÞ � aðiÞ � AsðriÞ

�
: (123)

The eigenfunctions of this noninteracting Hamiltonian are

given by Slater determinants Ws ¼ ju1;u2;…;uNj constructed
from 4-spinors uiðrÞ, which solve the relativistic one-electron

KS equations

�
ca � p̂þ bmec

2 þ qe

�
/sðrÞ � a � AsðrÞ

��
uiðrÞ ¼ �iuiðrÞ: (124)

For the resulting single Slater determinant, the electron den-

sity is given by

qðrÞ ¼
Xocc
i

uy
i ðrÞuiðrÞ; (125)

an the relativistic current density reads

jðrÞ ¼ c
Xocc
i

uy
i ðrÞ auiðrÞ: (126)

The noninteracting kinetic energy Ts½jl� can then be defined

as the kinetic energy Ts ¼ hWsjT̂DjWsi of such a noninteracting

system with the 4-current jl, which allows for a similar decom-

position of the total energy functional as in nonrelativistic DFT,

i.e.,

E½jl� ¼ Ts½jl� þ Vext½jl� þ J½jl� þ Exc½jl�: (127)

Here, the exchange–correlation energy functional is defined

as containing all the energy contributions not accounted for
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by the first three terms. In analogy to nonrelativistic KS-DFT, it

can then be shown that the 4-current jlðrÞ of the true inter-

acting system can be determined from the self-consistent solu-

tion of the relativistic KS equations for a noninteracting sys-

tem,[131,135] with the 4-potential

Al
s ðrÞ ¼ Al

extðrÞ þ Al½jl�ðrÞ þ 1

qe

dExc½jl�
djlðrÞ : (128)

The functional derivatives of the exchange–correlation func-

tional with respect to the components of the 4-current defines

the exchange–correlation potential vlxc½jl�ðrÞ, which now

assumes a four-component form.

Electron density and spin density in relativistic DFT

In view of the previous discussions concerning nonrelativistic

KS-DFT, we now face the following question: (i) Is it still possi-

ble to formulate a relativistic DFT in terms of the electron den-

sity only, (ii) how is the fundamental 4-current related to the

density and spin density considered as fundamental quantities

in nonrelativistic DFT, and (iii) how do the nonrelativistic re-

stricted and unrestricted formulations of KS-DFT emerge from

the relativistic framework?

Regarding the first question, under some additional

assumptions it is indeed possible to prove a relativistic HK

theorem for the electron density only[135–137]: In the case

considered throughout this article, the external potential is

the electrostatic potential of all atomic nuclei in a molecule

that are at rest (Born–Oppenheimer approximation). As the

nuclei are not moving, they do not create magnetic fields. In

addition, we neglect any magnetic fields that stem from nu-

clear spins and assume that there are no additional external

electromagnetic fields. As a consequence, the external elec-

tromagnetic 4-potential Al only contains the time-independ-

ent scalar potential of the atomic nuclei, that is,

/extðrÞ ¼ vnucðrÞ and AðrÞ ¼ 0. This assumption is also com-

mon practice in almost every relativistic quantum chemical

calculation. Then, it can be shown that the external scalar

potential /extðrÞ within this specific reference frame is (up to

a constant) uniquely determined by the electron density qðrÞ
only.[135–137] Within such a framework, the relativistic total

energy functional becomes

E½q� ¼ Ts½jl½q�� þ Vext½q� þ J½jl½q�� þ Exc½jl½q��: (129)

Here, the current density jðrÞ is still required, but it is now

uniquely determined by the electron density (i.e., j ¼ j½q�), in
the same way in which the spin density is determined by the

electron density in nonrelativistic DFT. If a magnetic interaction

between the electron is not included (i.e., the Dirac–Coulomb

Hamiltonian is employed), also the analog of the Coulomb

interaction reduces to a functional J½q� of the density only.[135]

Moreover, it now becomes possible to set up theories in which

not only the full 4-current is used as fundamental variable but

also the parts of it that are related to the total electron den-

sity and the spin density. This will be discussed further in the

following subsection.

To understand the relation of the 4-current to the spin den-

sity, it is important to realize that the definition of the current

density (naturally) involves a velocity operator, which is in close

analogy to classical mechanics (correspondence principle).[57]

The velocity operator in Dirac’s theory of the electron follows

from the Heisenberg equation of motion applied to the position

operator and turns out to be ca. Hence, as the Dirac a matrices

contain the Pauli spin matrices r, we see immediately that the

current density j carries the spin information.[130]

The relation to the spin density can be made more explicit by

invoking a Gordon composition of the current density which

separates it into a charge- and a spin-related current.[53,131] For

the one-electron case, one can carry out this decomposition by

rewriting the Dirac eigenvalue equation as,

wðrÞ ¼ 1

mec2

�
� cb a �

�
p̂� qe

c
AextðrÞ

�
þ b

�
E � qe/ðrÞ

��
wðrÞ

(130)

and by splitting up the definition of the current in a some-

what artificial way as

jðrÞ ¼ cwyðrÞ awðrÞ ¼ c

2
wyðrÞ awðrÞ þ c

2
wyðrÞ awðrÞ: (131)

Equation (130) can now be used to replace w in the first

term and wy in the last term. As is shown in the Appendix, by

exploiting the commutation relations of the Dirac matrices

fak;bg ¼ 0 and akal ¼ 1
2
½ak; al� þ 1

2
fak; alg ¼ ieklnr

ð4Þ
n þ dkl, one

arrives at[53,131] (see also pages 552–558 in Ref. [138])

jðrÞ ¼ 1

2me

�
wyðrÞb

�
p̂� qe

c
AextðrÞ

�
wðrÞ þ

�
p̂� � qe

c
AextðrÞ

�
wyðrÞbwðrÞ

�

þ �h

2me
r� wyðrÞðbrð4ÞÞwðrÞ;

(132)

where the 3-vector rð4Þ ¼ ðrð4Þx ;rð4Þy ;rð4Þz ÞT contains the 4� 4

Pauli matrices rð4Þi introduced in Eq. (114). In a many-electron

system described by the Dirac–Coulomb Hamiltonian, a similar

decomposition of the current density can be performed (even

though the derivation becomes slightly more complicated, see

Appendix), and one obtains,

jðr1Þ ¼ N
1

2me

Z �
Wyb1

�
p̂1 �

qe
c
Aextðr1Þ

�
W

þ
�
p̂�1 �

qe
c
Aextðr1Þ

�
Wyb1W

�
d3r2…d3rN

þ N
�h

2me
r1

Z
Wy b1r

ð4Þ
1 Wd3r2…d3rN: ð133Þ

The first line of this expression resembles the definition of

the current density in nonrelativistic quantum mechanics,

whereas the second term can be identified as arising from the

electron spin. This can be made more apparent by defining

the magnetization (density),
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mðr1Þ ¼ N

Z
Wy b1r

ð4Þ
1 W d3r2…d3rN: (134)

Then, the contribution of the second term of Eq. (133) to

the interaction energy with the external electromagnetic

potentials [cf. Eq. (119)] becomes

Vspin
ext ½jl� ¼

qe�h

2mec

Z �
r�mðrÞ

�
� AextðrÞd3r

¼ �lB

Z
mðrÞ � BextðrÞ d3r (135)

where Bext ¼ r� Aext is the external magnetic field. The minus

sign originates from the negative charge of the electron. This

closely resembles the form of the spin Zeeman interaction in

the nonrelativistic case [cf. Eq. (32)]. If an inhomogeneous mag-

netic field in z-direction is considered, Eq. (135) reduces to

Vspin
ext ½jl� ¼ �lB

Z
mzðrÞBzðrÞ d3r; (136)

and by comparison with Eq. (33), we notice that mzðrÞ can be

identified with the spin density Q(r) in nonrelativistic theory.

However, while in the nonrelativistic case, the spin density is

(in the absence of external magnetic fields) independent of

the choice of the quantization axis, this is not the case in the

relativistic theory, where r̂z does not commute with the Hamil-

tonian because of the presence of spin–orbit interactions.

Relativistic spin-DFT

In the relativistic CDFT formalism discussed above, the nonin-

teracting reference system is chosen such that it has the same

4-current jlðrÞ [i.e., the same electron density q(r) and the

same current density j(r)] as the true interacting system. This

results in a noninteracting kinetic-energy functional Ts[r, j] that

can be defined as

Ts½q; j� ¼ min
Ws!q;j

hWsjT̂DjWsi; (137)

where the constrained search has to be restricted to positive-

energy wavefunctions Ws to avoid a variational collaps. In such

a formalism, the KS equations then contain a four-component

exchange–correlation potential.

However, we also pointed out that in the case of molecular

systems in the absence of external magnetic fields, a description

relying on the electron density q(r) only as fundamental variable

is sufficient. Therefore, it is formally also possible to develop a

relativistic ‘‘density-only’’ KS-DFT that resembles the nonrelativis-

tic restricted KS-DFT formalism. This can be achieved by only

requiring from the noninteracting reference system that it has

the same electron density as the interacting system, and conse-

quently defining the noninteracting kinetic energy as,

T ðdÞs ½q� ¼ min
WðdÞ

s !q

�
WðdÞ

s



T̂

WðdÞ
s

�
; (138)

again restricting Ws to positive energy solutions. Then, the

total energy functional can be decomposed as,

E½q� ¼ T ðdÞ
s ½q� þ Vext½q� þ J½q� þ EðdÞxc ½q�; (139)

where we have neglected the magnetic interactions in J½q�.
Note that such a decomposition implies a different definition

of the exchange–correlation energy. The resulting KS equations

then feature a one-component exchange–correlation potential

v
ðdÞ
xc ½q� ¼ ð1=qeÞ dEðdÞxc ½q�=dqðrÞ. However, in such a formalism

the current density jsðrÞ and magnetization msðrÞ of the non-

interacting reference system do not agree with the

true interacting system. Instead, these are again a functional

of the density only, just as the spin density is in nonrelativistic

restricted KS-DFT.

In between full CDFT and relativistic density-only KS-DFT, dif-

ferent intermediate formulations of relativistic KS-DFT are now

also possible. For a relativistic system of noninteracting elec-

trons, the magnetization is given by

mðrÞ ¼
Xocc
i

uy
i ðrÞ brð4Þ uiðrÞ: (140)

The noninteracting reference system can then be set up

such that, in addition to the electron density, some parts of

the magnetization agree with those of the interacting system.

For instance, we can require that the z-components of the

magnetization mzðrÞ match, or we can demand that the

lengths of the magnetization vector jmðrÞj at each point in

space agree. The choice of what quantity is to be reproduced

by a relativistic KS-DFT formalism in addition to the density is

our freedom of choice. If we choose to reproduce the z-com-

ponent of the magnetization density, this approach is called

the collinear [‘‘(cl)’’] approach because an artificial external

global quantization axis is introduced for the spin. If we

require to reproduce the length of magnetization instead, this

is a noncollinear [‘‘(nc)’’] approach because the magnetization

is a vector field representing a magnetic dipole moment

whose direction changes with position.[135,137,139,140,141]

Note that these different choices for the noninteracting refer-

ence system each implies a different definition of the noninter-

acting kinetic energy functional, T
ðclÞ
s ½q;mz� and T

ðncÞ
s ½q; jmj�,

and thus also of the exchange–correlation energy, E
ðclÞ
xc ½q;mz�

and E
ðncÞ
xc ½q; jmj�, respectively. For the choices mentioned here,

where in addition to the electron density one additional quan-

tity is reproduced by the KS system, the resulting exchange–

correlation potential has two components. This is in close anal-

ogy to the case of nonrelativistic unrestricted KS-DFT. Therefore,

approximate exchange–correlation functionals developed in the

nonrelativistic domain are usually used in practical applications

of such relativistic spin-DFT schemes. However, the exchange–

correlation potential is defined differently in nonrelativistic unre-

stricted KS-DFT and in the relativistic collinear and noncollinear

cases. Consequently, also different exact conditions apply to the

exchange–correlation functional. The different possible choices

for setting up relativistic KS-DFT are summarized in Figure 3.

Finally, we discuss how the nonrelativistic unrestricted

KS-DFT formalism emerges from relativistic spin-DFT. This is

most easily seen for the collinear approach, although the non-

collinear one reduces to the same nonrelativistic limit as well.
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The z-component of the magnetization density of the KS refer-

ence system is given by

mzðrÞ ¼
Xocc
i

uy
i ðrÞbrð4Þz uiðrÞ: (141)

If spin–orbit coupling is neglected, the Hamiltonian commutes

with the spin operators and the KS spinors can each be expressed

as (two-component) spin orbitals ui;a ¼ ua
i a or ui;b ¼ ub

i b, where
ur
i are 2-spinors consisting of an upper and a lower component.

Then, the spin–orbit coupling free (SOfree) z-component of the

magnetization resembles the nonrelativistic spin density,

mSOfree
z ðrÞ ¼

Xocc
i;r

uy
i;rðrÞ brð4Þz ui;rðrÞ

¼
Xa
i

ua;y
i ðrÞ rz ua

i ðrÞ �
Xb
i

ub;y
i ðrÞrz ub

i ðrÞ

¼
Xa
i

h
jua;U

i ðrÞj2 � jua;L
i ðrÞj2

i

�
Xb
i

h
jub;U

i ðrÞj2 � jub;L
i ðrÞj2

i

¼ QðrÞ;

(142)

where the superscript ‘‘U‘‘ and ‘‘L‘‘ denote the upper and lower

components, respectively. The neglect of spin–orbit coupling is, of

course, an approximation that yields a scalar-relativistic Hamilto-

nian (which considers kinematic relativistic effects only) or even a

nonrelativistic Hamiltonian if the speed of light is taken to be

infinity.

The two 2-spinors ua
i and ub

i considered here can be

reduced to one-component spin-orbitals if a unitary transfor-

mation[142] is performed to decouple the upper and lower

components. This then also requires a unitary transformation

of the operators involved in the calculation of mz.
[143] Still, tak-

ing the limit c ! 1 yields the nonrelativistic theory and rela-

tivistic spin-DFT reduces to nonrelativistic unrestricted KS-DFT.

Future Directions for Spin-DFT

As we have seen, different options exist for setting up KS-DFT

for open-shell systems. In the nonrelativistic case, one has to

choose between a spin-restricted and a spin-unrestricted for-

mulation of KS-DFT. In the former case, the wavefunction of

the noninteracting reference system can always be chosen as

an eigenfunction of Ŝ2, but its spin density differs from the

correct one. Alternatively, in spin-unrestricted KS-DFT the non-

interacting reference system has the correct spin density, but

cannot be an eigenfunction of Ŝ2. In relativistic DFT even more

options in between density-only KS-DFT (with a one-compo-

nent exchange–correlation potential) and full CDFT (with a

four-component exchange–correlation potential) are possible.

In particular, one can choose to reproduce either a single com-

ponent or the magnitude of the magnetization vector in col-

linear and noncollinear relativistic KS-DFT (which both use a

two-component exchange–correlation potential), respectively.

Which choices we make may be determined by our ability to

set up a proper approximation to the corresponding exchange–

correlation energy functional. However, it is important to under-

stand that these different choices imply different definitions of

the noninteracting kinetic energy and the exchange–correlation

functional. Thus, different exact conditions apply to these func-

tionals, which must be considered when developing such

approximations. This is most obvious for the fractional spin con-

dition in the nonrelativistic case. While in spin-restricted KS-DFT,

the constancy condition directly applies to the exchange–corre-

lation functional, in the spin-unrestricted case it does not hold

for the exchange–correlation functional alone, but to the sum

of noninteracting kinetic and exchange–correlation energy. It

Figure 3. Relationship between wave function, total electron density, and the magnetization of the system of fully interacting electrons and of the KS ref-

erence systems of noninteracting electrons in different version of relativistic KS-DFT.
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can be expected that in the latter case, devising approximate

exchange–correlation functionals that include this condition will

be significantly more difficult.

Although exact DFT should always lead to the correct ground-

state—irrespective of its spin state—in practice it appears more

useful to rely on a theory that is able to target different spin states

separately. This should also simplify the development of approxi-

mate functionals because it becomes possible to account for the

different exact conditions applying to the exchange–correlation

hole for different spin states.[129,144] Note that such a spin-state

specific DFT always has to operate within a spin–orbit coupling

free framework, because in the fully relativistic theory Ŝ2 does not

commute with the Hamiltonian and different spin states do not

correspond to the lowest state of a specific symmetry anymore.

Thus, besides finding approximations that accurately

account for the spin-density dependence of the (nonrelativis-

tic) exchange–correlation functionals Exc½q;Q� or EðuÞxc ½q;Q�, find-
ing ways of including the spin-state dependence into these

functionals is another important problem for open-shell sys-

tems. In common approximations, it appears that the spin-

density dependence is actually used to model this spin-state

dependence (i.e., the integral of the spin density is used to dis-

tinguish spin states). Spin-state and spin-density dependence

of the exchange–correlation functional are intermingled in all

available approximate functionals, which manifests itself in

their violation of the fractional spin condition.[101,102] To make

progress in the development of reliable density-functional

approximations, we believe it will be essential to consider the

spin-state and the spin-density dependence of the exchange–

correlation functional separately.

Appendix: Gordon Decomposition of the
Current Density

In the one-electron case, the current density is given by

jðrÞ ¼ cwðrÞyawðrÞ: (A1)

For the k-component, we can rewrite this definition in a some-

what artificial way as

jk ¼ cwyakw ¼ c

2
wyakwþ c

2
wyakw; (A2)

where we dropped the dependence of w on the spatial coor-

dinate to simplify the notation. The eigenvalue equation of

the one-electron Dirac Hamiltonian equation can be rewritten

to obtain an expression for w,

w ¼ 1

mec2

�
� cb a �

�
p̂� qe

c
A
�
þ b

�
E � qe/

��
w; (A3)

and by taking the transpose and complex conjugate also an

expression for wy (exploiting ayk ¼ ak)

wy ¼ 1mec
2

�
� c

�
p̂� � qe

c
A
�
wy � abþ

�
E � qe/

�
wyb

�
: (A4)

These expressions can now be used to replace w in the first

term and wy in the second term of Eq. (A2) to obtain,

jk ¼ 1

2mec
wyak

�
� cb a �

�
p̂� qe

c
A
�
þ b

�
E � qe/

��
w

þ 1

2mec

�
� c

�
p̂� � qe

c
A
�
wy � abþ

�
E � qe/

�
wyb

�
akw;

(A5)

and by reordering the different terms we get

jk ¼ 1

2me

�
� wyakb a �

�
p̂� qe

c
A
�
w�

�
p̂� � qe

c
A
�
wy � a b akw

�

þ 1

2mec

�
E � qe/

��
wyakbwþ wybakw

�
:

(A6)

The last term is zero because of fak; bg ¼ 0. For the first term,

we use

akal ¼ 1

2
½ak; al� þ 1

2
fak; alg ¼ ieklnr

ð4Þ
n þ dkl (A7)

to arrive at (using the convention of implicit summation over

repeated indices)

jk ¼ 1

2me

�
wybakal

�
p̂l �

qe
c
Al

�
wþ

�
p̂�l �

qe
c
Al

�
wybalakw

�

¼ 1

2me

�
wybðieklnrð4Þn þ dklÞ

�
p̂l �

qe
c
Al

�
wþ

�
p̂�l �

qe
c
Al

�

� wybðielknrð4Þn þ dklÞw
�
: ðA8Þ

After regrouping the different terms, we obtain

jk ¼ 1

2me

�
wybdkl

�
p̂l �

qe
c
Al

�
wþ

�
p̂�l �

qe
c
Al

�
wybdklw

�

þ 1

2me

�
wybieklnr

ð4Þ
n p̂l wþ p̂�l w

ybielknr
ð4Þ
n w

�

þ 1

2me

�
wybieklnr

ð4Þ
n

�
� qe

c
Al

�
wþ

�
� qe

c
Al

�
wybielknr

ð4Þ
n w

�
;

(A9)

where the last term is zero because ekln ¼ �elkn. Hence, we
find

jk ¼ 1

2me

�
wyb

�
p̂k �

qe
c
Ak

�
wþ

�
p̂�k �

qe
c
Ak

�
wybw

�

þ 1

2me

�
wybieklnr

ð4Þ
n

�
� i�h

@

@rl

�
wþ

�
i�h

@

@rl

�
wybielknr

ð4Þ
n w

�

¼ 1

2me

�
wyb

�
p̂k �

qe
c
Ak

�
wþ

�
p̂�k �

qe
c
Ak

�
wybw

�

þ �h

2me
ekln

@

@rl

�
wyðbrð4Þn Þw

�
ðA10Þ

and combining the different components of j again gives
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j ¼ 1

2me

�
wyb

�
p̂� qe

c
A
�
wþ

�
p̂� � qe

c
A
�
wybw

�

þ �h

2me
r� wyðbrð4ÞÞw: (A13)

For an N-electron system, we start from the definition of the

many-electron current density,[130]

jðr1Þ ¼ c N

Z
Wðr1; r2;…; rNÞy a1 Wðr1; r2;…; rNÞd3r2…d3rN;

(A12)

and the wavefunction is an eigenfunction of the many-elec-

tron Dirac–Coulomb Hamiltonian

ĤD ¼ ĥDð1Þ þ
XN
i¼2

hDðiÞ þ V̂ee; (A13)

projected onto the electronic (positive-energy) states.

We can now rewrite the corresponding eigenvalue equation in

a similar fashion as in the one-electron case to obtain for the

wavefunction

W ¼ 1

mec2

�
� cb1 a1 �

�
p̂1 �

qe
c
Aðr1Þ

�
þ b1

�
E � qe/ðr1Þ

�

� b1
XN
i¼2

hDðiÞ � b1V̂ee

�
W ðA14Þ

and for its transpose and complex conjugate

Wy ¼ 1

mec2

�
� c

�
p̂�1 �

qe
c
Aðr1Þ

�
Wya1b1 þ

�
E � qe/ðr1Þ

�
Wyb1

�
XN
i¼2

�
hDðiÞW

�y
b1 � ðV̂eeWÞyb1

�
: ðA15Þ

Now, we can rewrite the k-component of integrand in Eq. (A12)

as

cWyak1W ¼ c

2
Wyak1Wþ c

2
Wyak1W: (A16)

After substituting Eq. (A14) for W in the first term and Eq.

(A15) for Wy in the second term, we obtain, in addition to the

term already present in the one-electron case [cf. Eq. (A11)],

cWyak1W ¼ ðA11Þ � 1

2mec
Wyak1

h
b1

XN
i¼2

�
hDðiÞW

�y þ b1V̂eeW
i

� 1

2mec

hXN
i¼2

�
hDðiÞW

�y
b1 þ ðV̂eeWÞyb1

i
ak1W

¼ ðA11Þ � 1

2mec

h
Wyak1b1

XN
i¼2

�
hDðiÞW

�

þ
XN
i¼2

�
hDðiÞW

�y
b1a

k
1W

i

� 1

2mec

h
Wyak1b1V̂eeWþ ðV̂eeWÞyb1ak1W

i
:

With a multiplicative operator acting equally on all compo-

nents of the wavefunction for V̂ee, the last term is zero

because of fak;bg ¼ 0. However, if the Gaunt or Breit interac-

tion is included, the corresponding term is not zero and gives

an additional contribution to the current that is not present in

the one-electron case. This term contains the spin–spin

interactions.

For the remaining terms, we now consider one of the terms

separately, for instance hDð2Þ, and note that

� 1

2mec

h
Wyak1b1

�
hDð2ÞW

�
þ
�
hDð2ÞW

�y
b1a

k
1W

i

¼ � 1

2mec

h
Wyak1b1

�
hDð2ÞW

�
�
�
hDð2ÞW

�y
ak1b1W

i
; ðA17Þ

because of fak1;b1g ¼ 0. Integrating the expression in square

brackets over r2 we now find

Z
Wyak1b1

�
hDð2ÞW

�
d3r2 �

Z �
hDð2ÞW

�y
ak1b1W d3r2

¼
Z

Wyak1b1
�
hDð2ÞW

�
d3r2 �

Z
Wyak1b1

�
hDð2ÞW

�
d3r2 ¼ 0

(A18)

where for the second term, we exploited that hDð2Þ is hermi-

tian and commutes with ak1 and b1 because these act on dif-

ferent electrons. Combining all of these results, we find that

(with the Dirac–Coulomb Hamiltonian),

jðr1Þ ¼ c N

Z
Wðr1; r2;…; rNÞy a1 Wðr1; r2;…; rNÞd3r2…d3rN

¼ 1

2me
N

Z �
Wyb1

�
p̂1 �

qe
c
Aðr1Þ

�
Wþ

�
p̂�
1 �

qe
c
Aðr1Þ

�
Wyb1W

�

� d3r2…d3rN þ �h

2me
N

Z
r� ðWy b1r

ð4Þ
1 WÞd3r2…d3rN

(A19)
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Phys. Chem. B 2005, 109, 2723.

[77] O. Zaharko, P. J. Brown, M. Mys’kiv, Phys. Rev. B 2010, 81, 172405.

[78] R. McWeeny, Y. Mizuno, Proc. Roy. Soc. Ser. A 1961, 259, 554.

[79] E. R. Davidson, Reduced Density Matrices in Quantum Chemistry;

Academic Press: New York, 1976.

[80] D. A. Mazziotti, Chem. Rev. 2011, 112, 244.

[81] P. Hohenberg, W. Kohn, Phys. Rev. 1964, 136, B864.

[82] M. Levy, Proc. Natl. Acad. Sci. USA 1979, 76, 6062.

[83] J. P. Perdew, R. G. Parr, M. Levy, J. L. Balduz, Jr., Phys. Rev. Lett. 1982,

49, 1691.

[84] E. H. Lieb, Int. J. Quantum Chem. 1983, 24, 243.

[85] R. van Leeuwen, Adv. Quantum Chem. 2003, 43, 25.

[86] H. Eschrig, The Fundamentals of Density Functional Theory, 2nd ed.;

Eagle, Ed. am Gutenbergplatz: Leipzig, 2003.

[87] W. Kohn, In Highlights of Condensed-Matter Theory, F. Bassani, F.

Fumi, M. P. Tosi, Eds.; Elsevier: Amsterdam, 1985, pp. 1–15.

[88] J. P. Perdew, A. Ruzsinszky, L. A. Constantin, J. Sun, G. I. Csonka, J.

Chem. Theory Comput. 2009, 5, 902.

[89] J. P. Perdew, A. Zunger, Phys. Rev. B 1981, 23, 5048.

[90] U. von Barth, L. Hedin, J. Phys. C: Solid State Phys. 1972, 5, 1629.

[91] P. W. Ayers, W. Yang, J. Chem. Phys. 2006, 124, 224108.

[92] A. Holas, R. Balawender, J. Chem. Phys. 2006, 125, 247101.

[93] H. Eschrig, W. E. Pickett, Solid State Commun. 2001, 118, 123.

[94] K. Capelle, G. Vignale, Phys. Rev. Lett. 2001, 86, 5546.

[95] T. G�al, P. Geerlings, Phys. Rev. A 2010, 81, 032512.

[96] T. G�al, P. Geerlings, J. Chem. Phys. 2010, 133, 144105.

[97] N. I. Gidopoulos, Phys. Rev. B 2007, 75, 134408.

[98] T. G�al, Phys. Rev. B 2007, 75, 235119.

[99] T. G�al, P. W. Ayers, F. De Proft, P. Geerlings, J. Chem. Phys. 2009, 131,

154114.

[100] W. Yang, Y. Zhang, P. W. Ayers, Phys. Rev. Lett. 2000, 84, 5172.

[101] A. J. Cohen, P. Mori-Sanchez, W. Yang, Science 2008, 321, 792.

[102] A. J. Cohen, P. Mori-Sanchez, W. Yang, J. Chem. Phys. 2008, 129,

121104.

[103] O. Gunnarsson, B. I. Lundqvist, Phys. Rev. B 1976, 13, 4274.

[104] Y. A. Wang, E. A. Carter, In Theoretical Methods in Condensed Phase

Chemistry; S. D. Schwartz, Ed.; Kluwer: Dordrecht, 2000, pp. 117–184.

[105] J. Xia, C. Huang, I. Shin, E. A. Carter, J. Chem. Phys. 2012, 136,

084102.

[106] W. Kohn, L. J. Sham, Phys. Rev. 1965, 140, A1133.

[107] M. Levy, Phys. Rev. A 1982, 26, 1200.

TUTORIAL REVIEWWWW.Q-CHEM.ORG

International Journal of Quantum Chemistry 2012, 112, 3661–3684 3683

http://q-chem.org/
http://onlinelibrary.wiley.com/


[108] H. Englisch, R. Englisch, Phys. Stat. Sol. B 1984, 124, 373.

[109] P. R. T. Schipper, O. V. Gritsenko, E. J. Baerends, Theor. Chem. Acc.

1998, 99, 329.

[110] R. C. Morrison, J. Chem. Phys. 2002, 117, 10506.

[111] J. Katriel, S. Roy, M. Springborg, J. Chem. Phys. 2004, 121, 12179.

[112] J. A. Pople, P. M. W. Gill, N. C. Handy, Int. J. Quantum Chem. 1995, 56,

303.

[113] D. M. Chipman, J. Chem. Phys. 1983, 78, 3112.

[114] D. M. Chipman, Theor. Chem. Acc. 1992, 82, 93.

[115] J. Wang, A. D. Becke, V. H. Smith, Jr., J. Chem. Phys. 1995, 102, 3477.

[116] A. J. Cohen, D. J. Tozer, N. C. Handy, J. Chem. Phys. 2007, 126,

214104.

[117] C. Daul, Int. J. Quantum Chem. 1994, 52, 867.

[118] C. A. Daul, K. G. Doclo, A. C. Stückl, In Recent Advances in Density

Functional Methods, Part 2; D. P. Chong, Ed.; World Scientific: Singa-

pore, 1995, pp. 61–113.

[119] M. Filatov, S. Shaik, Chem. Phys. Lett. 1998, 288, 689.

[120] M. Filatov, S. Shaik, Chem. Phys. Lett. 1999, 304, 429.

[121] F. Illas, I. Moreira, J. Bofill, M. Filatov, Theor. Chem. Acc. 2006, 116,

587.

[122] I. Frank, J. Hutter, D. Marx, M. Parrinello, J. Chem. Phys. 1998, 108,

4060.

[123] S. Grimm, C. Nonnenberg, I. Frank, J. Chem. Phys. 2003, 119, 11574.

[124] C. Nonnenberg, S. Grimm, I. Frank, J. Chem. Phys. 2003, 119, 11585.

[125] F. Della Sala, A. G€orling, J. Chem. Phys. 2003, 118, 10439.

[126] V. Vitale, F. Della Sala, A. G€orling, J. Chem. Phys. 2005, 122, 244102.

[127] P. S. Bagus, B. I. Bennett, Int. J. Quantum Chem. 1975, 9, 143.

[128] T. Ziegler, A. Rauk, E. J. Baerends, Theor. Chim. Acta 1977, 43, 261.

[129] J. P. Perdew, A. Savin, K. Burke, Phys. Rev. A 1995, 51, 4531.

[130] S. Fux, M. Reiher, Struct. Bond. 2012, 147, 99.

[131] A. K. Rajagopal, J. Callaway, Phys. Rev. B 1973, 7, 1912.

[132] A. H. MacDonald, S. H. Vosko, J. Phys. C: Solid State Phys. 1979, 12,

2977.

[133] E. Engel, In Relativistic Electronic Structure Theory Part 1: Fundamen-

tals, P. Schwerdtfeger, Ed.; Elsevier: Amsterdam, 2002, pp. 523–621.

[134] E. Engel, R. M. Dreizler, S. Varga, B. Fricke, In Relativistic Effects in

Heavy-Element Chemistry and Physics, B. A. Hess, Ed.; Wiley: Chiches-

ter, 2003, pp. 123–161.

[135] T. Saue, T. Helgaker, J. Comput. Chem. 2002, 23, 814.

[136] E. Engel, R. Dreizler, Top. Curr. Chem. 1996, 181, 1.
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[139] C. Van Wüllen, J. Comput. Chem. 1999, 20, 51.
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