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Quantum chemistry has become an invaluable tool for studying the electronic
excitation phenomena underlying many important chemical, biological, and
technological processes. Here, we review quantum-chemical approaches for
modeling such phenomena. In particular, embedding methods can be particularly
useful for treating localized excitations in complex chemical systems. These
split the total system into a number of interacting subsystems. The electronic
excitations processes occurring in the subsystem of interest are then treated
with high accuracy, while its environment is taken into account in a more
approximate way. In this review, we use a formulation based on the formally
exact frozen-density embedding theory as our starting point. This provides a
common framework for discussing the different embedding approaches that
are currently available. Moreover, it also forms the basis of emerging
methods that allow for a seamless coupling of density-functional theory
and wavefunction based approaches, both for ground and excited states.
These provide new possibilities for studying electronic excitations in large
systems with predictive quantum-chemical methods.

1 Introduction

Processes involving excited electronic states are crucial for many functions of

biological or chemical systems. Examples include light absorption and energy

transfer in photosynthetic proteins1 or photovoltatic devices2,3 as well as light

emission from luminescent proteins4 or from organic materials.5 Over the past

years, quantum chemistry has made significant progress in unraveling the underlying

electronic processes (see, e.g., ref. 4, 6). This includes the emergence of accurate and

efficient computational methods for the treatment of excited states as well as the

development of embedding and subsystem approaches that make an application of
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these quantum-chemical methods to complex systems possible (for reviews, see, e.g.,

ref. 7–9). In particular, subsystem and embedding methods that allow for a seamless

coupling of different quantum chemical methods have recently become available.10–12

These open the way to a theoretical design of functional materials and chemical

systems in the future.

A quantum-chemical description of electronic excitations requires methods that

are capable of describing both ground and excited states with similar accuracy. Such

methods have been developed extensively over the past decades (for reviews, see, e.g.,

ref. 13–15). While time-dependent density-functional theory (TDDFT) offers a good

cost–accuracy ratio and is applicable to rather large molecular systems with up to a

few hundreds of atoms, it is also prone to unsystematic errors. On the other hand,

wavefunction theory (WFT) based methods for excited states offer the potential for a

systematic improvement, but their applicability is usually limited to rather small

molecules. Thus, for isolated small molecules (e.g., in gas-phase experiments), they

can often provide very accurate predictions. Nevertheless, in difficult cases already

for medium-sized molecules with only 10–20 atoms it can be impossible to obtain

sufficiently accurate predictions (for an example, see ref. 16, and for a review

highlighting some of the current challenges of quantum-chemical methods for

excited states, see ref. 15).

It is therefore not surprising that the treatment of electronic excitations in even

larger and more complex chemical systems presents a significant challenge for

computational chemistry. Examples of such large systems are molecules in the

condensed phase (i.e., solvated molecules or molecular materials), biomolecules or

biomolecular assemblies, molecular nanostructures (e.g., metal organic frameworks

or assemblies of molecular clusters), or complex solid-state system such as impurities

in materials as well as molecules adsorbed on surfaces.

Such large systems present several challenges: First, the need to control the

computational cost of quantum-chemical calculations, since these increase with

the size of the system at a much faster rate than that of the availability of computer

resources. This is partially addressed by the development of efficient (linear-scaling)

algorithms and their implementation in modern program packages. These efforts

are, however, offset by the need to account for dynamical effects, as is often

mandatory for large systems. In particular for molecules in solution and for

biological systems, it will be necessary to account for the structural flexibility by

considering many different molecular structures. Second, even if calculations on

rather large systems are possible, the choice of quantum-chemical methods is

severely restricted. Often, approximate DFT calculations are the only available

option and it is not possible to improve the description by applying more accurate

wavefunction based methods. Finally, quantum-chemical calculations on large

systems are also difficult to interpret. Usually, a very delocalized picture is obtained

that makes it difficult to identify the important aspects.17,18 In particular when local

electronic excitation are of interest, these can be difficult to isolate among the many

excited states of a large system. On the other hand, even delocalized excitation

phenomena are best understood within a local picture.8

Already due to the increased computational cost, a full treatment of the complete

system is in most cases out of reach for the calculation of excitation energies.

However, many electronic excitations are local, i.e., the change in the electronic

structure upon excitation is mainly restricted to a comparably small part of the full

system—for instance, a particular molecule in a complex environment, a particular

chromophore in a bimolecular system, or an impurity in a solid. Under these
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circumstances, it is possible to apply additional simplifications and drastically reduce

the total computational cost while retaining accuracy for the subsystem of interest.

This is the goal of embedding methods, which restrict the explicit treatment to a

small subsystem of interest while approximating that of its environment, effectively

extending the applicability of accurate quantum chemical methods from small

isolated molecules to complex chemical systems. At the same time, such a treatment

simplifies the interpretation of the computational results considerably.

Our aim here is to highlight some of the currently available quantum chemical

embedding approaches, with a particular focus on their application for describing

local electronic excitations. The review is organized as follows: First, we give an

overview of quantum-chemical methods for the treatment of excited states in section 2.

Subsequently, embedding methods in quantum chemistry will be introduced. To this

end, we outline an exact theoretical framework for quantum-chemical embedding

methods, the frozen-density embedding (FDE) theory in section 3, before presenting

an attempt of a classification and an overview of a variety of approximate embedding

methods in section 4. Finally, we discuss two case studies for comparing some of these

approaches in section 5.

2 Quantum chemistry for excited states

For predicting excitation energies, quantum-chemical methods that can treat both

the ground-state and excited states are necessary. Here, we will provide an overview

of the most important theoretical approaches. These can be divided into two groups

that tackle the problem from two formally equivalent, but conceptually very

different directions.

First, time-independent approaches take the stationary Schrödinger equation,

Ĥ|Cki = Ek|Cki, (1)

where Ĥ is the molecular Hamiltonian and |Cki is the many-electron wavefunction,
as their starting point. The energy eigenvalues Ek and their corresponding eigen-
functions |Cki are the energies and wavefunctions of the different electronic states.
Thus, in a time-independent picture excitation energies can be calculated by solving
the stationary Schrödinger equation (eqn (1)) for the ground state and the excited
states of interest. This requires an explicit construction of the excited-state wave-
functions |Cki.
On the other hand, time-dependent approaches start from a stationary ground-

state wavefunction |C0i and consider the time evolution of this initial state after

switching on a time-dependent external perturbation. Here, we will only consider an

oscillating electric dipole perturbation with frequency o, i.e.,

V̂oðtÞ ¼ ðeiot þ e�iotÞ
X
b

ebðoÞm̂b; ð2Þ

where m̂b is the b-component (b = x,y,z) of the time-independent electric dipole

operator and eb(o) denotes the associated perturbation strength. The time evolution

of the wavefunction could be obtained by solving the time-dependent Schrödinger

equation

i�h
@

@t
jCðtÞi ¼ ½Ĥ þ V̂oðtÞ�jCðtÞi: ð3Þ

With the time-dependent wavefunction |C(t)i, one can obtain molecular

properties by investigating the time evolution of the expectation value of,
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for instance, a component of the dipole moment m̂a, expressed as a series

expansion,

hm̂aiðtÞ ¼ hm̂ai þ ðeiot þ e�iotÞ
X
b

ebðoÞhhm̂a; m̂biio þ . . . ð4Þ

Here, hm̂ai is the time-independent expectation value and hhm̂a;m̂biio is the linear

electric dipole–electric dipole response function describing the oscillations of the

a-component of the dipole moment in response to an oscillating electric dipole field

in b-direction. To first order, only oscillations with frequency o appear in this

expansion. Terms involving higher-order response functions have been omitted here,

and we refer the reader to the thorough derivations of higher-order response theory

available in the literature.19

Within an exact treatment based on time-dependent perturbation theory (see, e.g.,

ref. 20) the linear response function is given by the sum-over-states expression

hhm̂a; m̂biio ¼
X
n 6¼0

h0jm̂ajnihnjm̂bj0i
o� on

þ
h0jm̂bjnihnjm̂aj0i

on � o

� �
ð5Þ

where on = En � E0 represents the excitation energy from the ground state to n-th

excited state. It then becomes evident that the excitation energies occur at frequen-

cies that correspond to the poles of the linear response function. Furthermore, the

transition moments for these excitations can be obtained as the corresponding

residues of the linear response function.

The sum-over-states expression for the linear response function would require the

solution of the time-independent Schrödinger equation for all excited states.

However, when combined with approximate parametrizations of the many-electron

wave-function it becomes possible to determine the linear response function directly

by solving a linear system of equations, thus avoiding the explicit calculation of

excited state wavefunctions.19,21 Such a response theory can, for instance, be

obtained by using the quasienergy formalism, which will be outlined in section

2.2. Subsequently, excitation energies can be determined by identifying the poles of

the linear response function.

While for an exact treatment, time-independent approaches (which construct a

wavefunction for each excited state explicitly) and time-dependent approaches based

on response theory (which avoid the calculation of excited state wavefunctions) are

equivalent, this is usually not the case anymore for approximate quantum-chemical

methods. Both time-independent and time-dependent approaches are widely used

for the quantum chemical calculation of excitation energies, and some of the most

important methods will be highlighted in the following.

2.1 Time-independent approaches

2.1.1 Density-functional theory (DFT). Instead of solving the stationary

Schrödinger equation to determine a many-electron wavefunction |Cki, DFT aims

at calculating the corresponding electron density rk(r) directly. For the ground-state,
the formal justification for replacing the wavefunction |C0i by the ground-state

electron density r0(r) is given by the Hohenberg–Kohn theorem,22 which establishes

the existence of a density functional E[r] for calculating the total electronic energy,

E½r� ¼ FHK½r� þ
Z

rðrÞvnucðrÞd3r; ð6Þ
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where FHK[r] is a system-independent functional (the so-called universal Hohenberg–

Kohn functional) and where vnucðrÞ ¼
P

A
QA
jr�RAj is the Coulomb potential of the nuclei

at positions RA and with the chargesQA. Furthermore, the Hohenberg–Kohn theorem

provides a variational principle for calculating the ground-state energy E0 and the

corresponding ground-state electron density r0 by minimizing this energy functional,

i.e., E0=minr E[r].
In Kohn–Sham (KS) DFT,23 the energy functional is decomposed as,

E½r� ¼ Ts½r� þ J½r� þ Exc½r� þ
Z

rðrÞvnucðrÞd3r; ð7Þ

where Ts[r] is the kinetic-energy of a reference system of noninteracting electrons

with density r, J½r� ¼ 1
2

RR rðrÞrðr0Þ
jr�r0 j d

3rd3r0 is the classical Coulomb interaction of the

electron density with itself, and the exchange–correlation functional Exc[r] collects
all the remaining energy terms. This energy functional is then minimized by

introducing a wavefunction for the reference system of noninteracting electrons,

which is given by a single Slater determinant |Fsi built from the orbitals {fi}. These

Kohn–Sham orbitals can then be determined by solving the KS equations,

�D
2
þ vnucðrÞ þ vCoul½r�ðrÞ þ vxc½r�ðrÞ

� �
fiðrÞ ¼ eifiðrÞ; ð8Þ

where vCoul½r�ðrÞ ¼
R rðr0Þ
jr�r0 jd

3r0 is the classical Coulomb potential of the electrons and

vxc½r�ðrÞ ¼ dExc ½r�
drðrÞ is the exchange–correlation potential. Since these potentials both

depend on the electron density, the KS equations have to be solved in self-consistent

field (SCF) iterations. Even though KS-DFT provides a formally exact theory for

calculating the ground-state density, the exact exchange–correlation functional is not

know and approximate functionals have to be introduced. For overviews of the

currently available approximate functionals, see, e.g., ref. 24–26, and for a discussion

of their limitations, see, e.g., ref. 27 and 28.

Even though the Hohenberg–Kohn theorem was initially formulated only for the

ground state, it can easily be extended to the lowest state in each spin or spacial

symmetry.29,30 However, in this case the Hohenberg–Kohn functional FHK[r] is no
longer universal, but becomes symmetry-specific. In practice, this symmetry-specific

functional is unknown, and one usually resorts to impose the symmetry constraints

on the noninteracting reference system, i.e., the Slater determinant formed from the

KS orbitals. Note, however, that in the exact theory neither the spin nor the spatial

symmetry of the wavefunction of this reference system correspond to the one of the

true wavefunction.31

Despite the lack of a formal justification,32 excited states have been targeted in

variational KS-DFT calculations by employing excited-state wavefunctions for the

noninteracting reference system. In the simplest case, this corresponds to replacing

an occupied KS orbital by an unoccupied one (i.e., a non-Aufbau solution), but it

might also be necessary to form linear combinations of different Slater determinants

for specific states.33 In particular, this DDFT approach has been applied to study

multiplet energies in transition metal complexes with DFT.34 This approach can be

extended to a DSCF-DFT scheme, in which the orbitals of the excited Slater

determinants constructed for the noninteracting reference system are re-optimized.35

In this case, it has to be ensured that the SCF procedure does not collapse to the

ground-state.36

For the calculation of excitation energies with DFT, the application of such

DSCF-DFT calculations has been rather limited. Usually, time-dependent DFT
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(discussed in section 2.2.1) provides more accurate results and avoids the rather

cumbersome optimization of the KS orbitals of excited Slater determinants. There is

a revived interest in the use DSCF-DFT and related methods for overcoming some of

the limitations of TDDFT, such as for the description of Rydberg states37 or of large

conjugated organic molecules.38 An interesting related approach is the constricted

variational DFT method by Ziegler and coworkers,39,40 that is based on the

determination of stationary points of the energy functional, subject to the condition

that the density difference corresponds to an electronic excitation. Both DSCF-DFT

and TDDFT emerge from this formulation.

2.1.2 Configuration Interaction-based methods. The starting point for most

wavefunction based quantum chemical methods is theHartree–Fock (HF) approximation,

in which a single Slater determinant |FHFi is used as ansatz for the ground-state

wavefunction. Minimization of the energy expectation value then leads to the HF

equations

�D
2
þ vnucðrÞ þ vCoul½r�ðrÞ þ K̂

� �
fiðrÞ ¼ eifiðrÞ; ð9Þ

for determining the orbitals in this determinant. These equations are very similar to the KS

equations introduced above, but instead of the exchange–correlation potential the nonlocal

exchange operator K̂ ¼
P

j k̂½fj � with

k̂½fj �fiðrÞ ¼
Z f�j ðr0Þfiðr0Þ

jr� r0j d3r0fjðrÞ ð10Þ

appears. One way of expressing the HF determinant, that will be particularly convenient

later on, is an exponential parametrization,41

jFHFi ¼ expðk̂ÞjFi; k̂ ¼
X
p4q

½kpqâypâq � k�pqâ
y
qâp�; ð11Þ

where |Fi is a trial state (usually a single Slater determinant), and âyp and âq are the

operators creating or annihilating an electron in orbital p or q, respectively. The advantage

of this parametrization is that it introduces only non-redundant parameters by ensuring the

orthogonality of the HF orbitals. Therefore, the parameters kpq can be determined from an

unconstrained optimization of the HF energy.

Electron correlation can then be included by employing a more general ansatz for

the wavefunction that also includes excited Slater determinants, i.e., determinants in

which one or more of the occupied HF orbitals are replaced by virtual ones. In

configuration interaction (CI) methods,42 the many-electron wavefunction |Cki for a
given electron state k is expanded in a basis of Slater determinants as

jCki ¼ ð1þ ĈkÞjF0i; jF0i � jFHFi ð12Þ

where the reference state |F0i is usually chosen as the HF determinant. The operator

Ĉk is in turn expressed as

Ĉk ¼ Ĉ
ðkÞ
1 þ Ĉ

ðkÞ
2 þ . . . ¼

X
m1

CðkÞm1
t̂m1 þ

X
m2

CðkÞm2
t̂m2 þ . . . ; ð13Þ

that is, in terms of the product between coefficients C(k)
m and excitations operators t̂m

of different ranks. Here, m1 and m2 represent single and double excitations from

occupied to virtual orbitals, and the corresponding excitation operators are
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t̂m1 ¼ âyaâi and t̂m2 ¼ âyaâiâ
y
bâj , where indices i,j,k,. . . refer to occupied orbitals

whereas indices a,b,c,. . . label virtual orbitals. Note that the coefficients C(k)
m are

different for each electronic state k.

The coefficients Cm can then be determined using the variational principle, i.e., by

minimizing the energy with respect to these coefficients. This leads to the Hamiltonian

matrix in the basis of the HF and excited determinants,

Hij = hCi|Ĥ|Cji (14)

from which the coefficients and energies for the ground and excited states can be
obtained as eigenvectors and eigenvalues, respectively. When considering expansions
up to the highest possible excitation rank one arrives at the full CI solution, which is
exact within a given basis set. However, the size of the corresponding Hamiltonian
matrix makes its use impractical for all but the smallest molecular systems. Therefore,
one is often constraint to include not more than single and double excitations (CISD).
A further truncation already after single excitations results in the CIS method. While it
is far from accurate because it lacks a proper inclusion of electron correlation,
it nevertheless remains one of the few wavefunction methods that can be used
to investigate the spectra of relatively large systems.43–45 This accuracy can be
improved46,47 by introducing double excitations in a perturbative fashion, resulting
in the CIS(D) model.48

While in single-reference CI methods the HF determinant is used as reference state

|F0i, this is a poor choice in situations where there are other close-lying excited

states. This is often the case in open-shell systems such as transition metal complexes.

One is then better served by multi-reference configuration interaction (MR-CI)

methods, which use a reference based on a multi-configurational (MC) wavefunction,

jF0i � jFMCðfC0gÞi ¼
X
n
ð1þ Ĉ

0
nÞjFHFi; ð15Þ

which is a small CI expansion where excitations are allowed only from within a set of

orbitals, the so-called active space. This is comprised of a relatively small number of

occupied and virtual orbitals, which is indicated above by the use of use of Ĉ
0
n instead

of Ĉn. There are different approaches for generating the determinants in eqn (15), the

most widely used is the complete active space (CAS), where a full CI is performed

within the active space.

A further improvement consists in taking the orbital coefficients kpq as additional
variational parameters,

jF0i � jFCASSCFðfC; kgÞi ¼
X
n
ð1þ Ĉ

0
nÞjFnðknÞi; ð16Þ

giving rise to the CASSCF49 wavefunction. However, the number of configurations

and thus the computational effort increases factorially with the size of the active

space.41 Thus, systems that would require large active spaces present a challenge in

this respect. This is particularly the case for systems with severe quasi-degeneracies,

such as (polynuclear) transition metal complexes or for early actinide compounds.50

For alternative approaches that scale polynomically with the size of the active space

and thus allow for the use of significantly larger active spaces, see ref. 51 and 52.

Irrespective of the construction of the reference wavefunction and even when the

(MR)-CI expansion is truncated at the SD level, calculations on all but relatively small

molecules remain computationally infeasible. This has motivated the development of

specialized approximations where the size of the CI expansions is reduced by removing

of certain classes of excitation on the basis of physical arguments. One such approach
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is the difference-dedicated CI (DDCI), where configurations that contribute in

approximately the same way to both the ground and excited states (e.g., determinants

that are doubly excited with respect to inactive orbitals) are disregarded. This way,

energy differences between the states can still be determined accurately, whereas total

energies are in general rather inaccurate. In its different flavors,53–55 DDCI has been

extensively used for determining the different spin states in relatively large molecules

containing one or more magnetic centers,56–58 as well as the electronic spectra of

transition metal complexes.59,60

Finally, it is also worth mentioning that—unlike full CI—all truncated CI methods

(with the exception of CIS) are not size-extensive. Thus, upon extending the size of the

system a spurious decrease in the correlation energy occurs. As a result, excitation

energies are not size-intensive, i.e., they can spuriously change as the size of the system is

increased (e.g., when studying the effect of the solvation shell on the spectrum of a solute

molecule), which may even change the results qualitatively. This can be approximately

corrected by using suitable correction schemes,61 but a more rigorous way for achieving

size-extensivity of the correlation energy and size-intensivity of excitation energies is

provided by coupled-cluster methods, that will be discussed in the following section.

2.1.3 Single-reference coupled cluster methods. In the coupled cluster approach,41,62

the ground-state many-electron wavefunction is obtained by the so-called exponential

parametrization, acting upon the HF determinant

|C0i = exp(T̂)|FHFi (17)

where the operator T̂ is of the same form as the excitation operator Ĉk in CI
methods, but different labels are now used for the expansion coefficients to
distinguish these different methods,

T̂ ¼ T̂1 þ T̂2 þ . . . ¼
X
m1

tm1 t̂m1 þ
X
m2

tm2 t̂m2 þ . . . : ð18Þ

As with CI methods, this expansion is usually truncated, for instance after double
excitations (resulting in the CCSD approximation). However, the exponential para-
metrization now generates higher excitation levels even when T̂ is truncated, because
terms such as T̂2

1, T̂1T̂2, and T̂2
2 now occur, which correspond to certain double, triple,

and quadruple excitations, respectively. By construction, the exponential parametriza-
tion of the wavefunction ensures that the resulting energies will be size-extensive.

Since a variational determination of the coupled cluster amplitudes tm is not

feasible, projection techniques are used instead. To this end, the Schrödinger

equation is left-multiplied by hmi|exp(�T̂), resulting in the ground-state energy

E0 = hFHF|Ĥexp(T̂)|FHFi (19)

and the amplitudes equations

Omi = hmi|exp(�T̂)Ĥexp(T̂)|FHFi = 0 (20)

where hmij ¼ hFHFjt̂ymi with mi running over all possible excited determinants of
excitation rank i. The amplitudes will have the general form

tm1 ¼
hm1jÂjFHFi

Dem1
¼ h

a
i jÂjFHFi
ei � ea

ð21Þ

tm2 ¼
hm2jB̂jFHFi

Dem2
¼

habij jB̂jFHFi
ei þ ej � ea � eb

ð22Þ
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where Â and B̂ are operators involving the product of Ĥ and T̂ operators. As the
expressions for the former depend on the truncation level, we refer to the literature
for concrete examples.41,62

Because of the projective nature of the coupled cluster method, it is not possible to

invoke a variational principle in order to obtain excited states. Therefore, to

construct excited state wavefunctions one would need to employ different reference

states. This could, for instance, be an open-shell determinant corresponding to a

single excitation with respect to |FHFi. This approach has several disadvantages.

First, the above coupled cluster equations would have to be solved for each excited

state, which can become computationally rather demanding. Second, different

electronic states will no longer be orthogonal, which complicates the calculation

of transition moments. Finally, excited states that are not dominated by a single

determinant cannot be easily described, as they would require a multi-reference

coupled cluster method.

An alternative that remedies part of these difficulties is the equation-of-motion

coupled cluster method for excitation energies (EOM-EE), where one introduces the

parametrization

|Cki = Ĉk exp(T̂)|FHFi (23)

h �Cl j ¼ hFHFjð1þ �̂Cl expð�T̂ÞÞ: ð24Þ

Thus, instead of the HF determinant the coupled cluster wavefunction is used as
reference state of a CI-like expansion. In this EOM-EE parametrization, the bra and
ket states |Cki and h �Cl| are neither Hermitian conjugate nor orthogonal among
themselves, but rather biorthogonal, i.e., h �Cl|Cki= dkl. This parametrization allows
for a Hamiltonian matrix

Hij ¼ h �CijĤjCji ¼ �C
T

i HCj ð25Þ

to be formed, which can then be diagonalized to obtain the excitation energies. From
the definitions of |Cki and h �Cl| the matrix H is obtained as

H ¼ E0 gT

0 Aþ E0I

� �
; ð26Þ

where E0 is the ground-state coupled cluster energy, Zn is the vector

Zn = hFHF|[Ĥ,t̂n]exp(T̂)|FHFi, (27)

and A is the so-called coupled cluster Jacobian with the elements

Amn = hm|exp(�T̂)[Ĥ,t̂n]exp(T̂)|FHFi. (28)

By rewriting the above equations in terms of the energy difference with respect to the
coupled-cluster ground-state energy,41,62 one can identify the eigenvalues of the
matrix A in eqn (26) with the excitation energies for the system.

These excitation energies are size-intensive,63 thus presenting a significant advantage

over CI approaches. The CI-like parametrization for the excited-states makes the

calculation of transition moments and other expectation values rather simple, even

though both left and right eigenvectors need to be calculated because A is not

Hermitian. However, these transition moments are not size-intensive64 and therefore

in general not reliable for large systems.

2.1.4 Multi-reference coupled cluster methods. The coupled cluster-based methods

discussed above present a significant improvements over CI-based methods, in
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particular because excitation energies are size-intensive. However, they are based on a

single determinant reference for the ground state. As such, they might not be applicable in

more complicated cases where already the ground state requires a multi-reference

treatment. This limitation can be remedied by employing multi-reference coupled-cluster

approaches65 such as the Hilbert-space (HSCC) and Fock-space (FSCC) coupled cluster

or other, more approximate multi-reference methods.66 In the following we shall focus on

the Fock-space approach, because it provides a direct route to excited states and has been

applied in a number of applications in actinide and heavy-element chemistry.67–74

All multi-reference methods define a reference (or model) space P, consisting of a

set of determinants {|jii}. Usually, this is achieved by defining an active space, and

all determinants contributing to a full CI expansion within this active space are

considered. In MRCI methods this is usually the active space obtained from a

CASSCF calculation, whereas in multi-reference coupled-cluster methods the HF

orbitals are used directly without reoptimization. Of course, it is important that this

model space contains all relevant configurations for the states that are of interest.62

All other possible contributions to the exact wavefunctions that are not contained in

the model space P are within its orthogonal complement Q.

This model space then serves as the starting point for obtaining a set {|Cki} of

exact solutions of the Schrödinger equation with the same dimension as P. The

correspondence between wavefunctions in the model space {|jki} and the exact

wavefunctions {|Cki} is then established through a projection operator P̂ ¼P
i jjiihjij so that

|jki = P̂|Cki. (29)

In addition, one defines the wave operator Ô that establishes the reverse mapping
and generate the exact wavefunction from one belonging to the model space,

|Cki = Ô|jki. (30)

Using these definitions, one can now change from the problem of solving the exact
Schrödinger equation, Ĥ|Cmi= Em|Cmi, to that of solving a Schrödinger equation
for the model space

Ĥeff|jmi = O�1ĤÔ|jmi = Em|jmi, (31)

where the exact Hamiltonian Ĥ is now replaced by an effective Hamiltonian Ĥeff

which has the same eigenvalues. The wave operator Ô and, consequently, the
effective Hamiltonian Ĥeff can be defined via the solution of the so-called Bloch
equation. For details, we refer to ref. 75.

Once Ô is obtained, Ĥeff in eqn (31) can be constructed and its matrix representa-

tion can be diagonalized to obtain the energies {Em}. In multi-reference coupled

cluster, an exponential parametrization is used as ansatz for the wave operator Ô,

Ô = exp(Ŝ) (32)

where the operator Ŝ contains operators exciting electrons from the P to the Q
spaces, multiplied with the corresponding amplitudes. The form of Ŝ will depend on
the details of the approach. In the case of FSCC, it is constructed by considering
operators defined for different sectors of Fock-space, where each sector comprises a
model space which differs from the reference situation by the addition or removal of
electrons, starting from a the original closed-shell determinant |F0i. Each of these
sector is identified by the tuple (n,m), where n represents the number of holes and m
the number of electrons created on |F0i. Thus, Ŝ is expressed as

Ŝ = Ŝ(0,0) + Ŝ(1,0) + Ŝ(0,1) + Ŝ(1,1) + . . . (33)
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and similar decompositions are used for the projection operators P̂ and Q̂. Using this
decomposition, the amplitudes can be determined in a hierarchical fashion for the
different sectors. For instance, in order to obtain the contributions from the (a,b)
sector to Ŝ, one must first solve all (m,n) sectors for which m o a, n o b.75,76 For a
given sector, one obtains amplitude equations of the form

hw(m,n)
j |ĤÔ � ÔĤ(m,n)

eff |j(m,n)
i i = 0 (34)

where {wj
(m,n)} are the determinants belonging to the complement space for the (m,n)

sector. For the (0,0) sector this is equivalent to the single-reference amplitude
equations in eqn (20).

However, in their original formulation FSCC methods are plagued by the so-called

intruder state problem.77 This occurs during the iterative solution of eqn (34). When

certain low-lying states belonging to Q(m,n) turn out to have energies close to (or even

lower than) the higher-lying states from P(m,n) in some amplitudes equations (which are

similar to those in eqn (21) and (22)) might have very small energy denominators and

prevent the solution of the linear system. The larger the P(m,n) space, the more serious this

problem becomes, as accidental degeneracies withQ states become increasingly likely. To

alleviate this difficulty, approaches based on an intermediate Hamiltonian formulation

(IHFSCC) have been introduced.78–82 These divide the P space as P = Pm + Pi and Pm

now serves as the basis for projecting the lower exact solutions, whereas for Pi this

requirement is relaxed. This provides enough flexibility so that when Q states interact

strongly with the higher-lying Pi states, the corresponding amplitude equations can be

approximated to assure convergence. The IHFSCC approach has become the de facto

standard for treating (small) molecules containing heavy elements.67,68,71,74,83,84

For situations where the reference is a closed-shell determinant it is instructive to

compare the EOM-EE and Fock-space approaches. Starting from the definitions in

eqn (32), we can write the wavefunction for state k as

|C(FS)
k i = ÔFS|F0i = exp(Ŝ)|F0i = exp(Ŝ � T̂)exp(T̂)|F0i. (35)

Comparing eqn (35) and (24), one sees that unlike EOM-EE, Fock-space coupled
cluster departs from the linear parametrization for the excited states. The exponential
parametrization ensures that only connected terms are taken into account, making the
excited state energies different in both cases. The differences in electronic spectra
calculated with FSCC for the (1,1) sector and by EOM-EE have recently been
shown71,85–87 to be non-negligible for absolute excitation energies, with the latter being
in general higher. However, relative excited state energies are in general very similar.

2.1.5 Multireference perturbation theory-based methods. Given that coupled

cluster methods can be computationally expensive, in particular for higher excitation

levels such as CCSDT, other approaches have been devised that attempt to combine

a reasonable accuracy in the description of electron correlation and flexibility to

obtain excited states even when the reference wavefunction present a significant

multi-configurational character. The perhaps most popular of such approaches is the

CASPT2 method of Roos and coworkers88,89 where one combines a CASSCF

wavefunction with second-order perturbation theory.

Being based on perturbation theory, one now starts from a partitioning of the

Hamiltonian into a zeroth-order contribution Ĥ0 and a perturbing part V̂,

Ĥ = Ĥ0 + V̂ (36)

where Ĥ0 is a Fock-like operator that has the CASSCF wavefunctions |jmi as
eigenvectors, i.e.,
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Ĥ0|jmi = E0,m|jmi. (37)

As in the multi-reference coupled cluster methods above, in the multistate CASPT2
method89 one partitions Hilbert space into different subspaces. First, the model
space P0 contains a subset {|jii} of the CASSCF wavefunctions as reference states.
Second, the subspace P0 orthogonal to P0 contains the remaining {|jji} CASSCF
wavefunctions. Finally, the orthogonal complement Q is made up of all other
determinants not contained within the CASSCF active space. Furthermore, one
defines a wave operator ÔPT2 that provide the mapping between the model space and
the exact solutions. Instead of the exponential parametrization in coupled cluster
methods, ÔPT2 is now expressed as a linear expansion in the orders of perturbation,
and only the terms up to first order are retained,

ÔPT2 = 1 + Ô(1) (38)

In multistate CASPT2,90 ÔPT2 can be expressed as a linear combination of state-
specific90,91 wave operators,

Ô
ð1Þ ¼

X
i

Ô
ð1Þ
i jjiihjij; ð39Þ

where the index runs over all the functions in the model space P0.

Using such a formalism, one arrives at the equations for the individual states

Ô
ð1Þjjii ¼ R̂iV̂ jjii ¼

X
k

jkihkjV̂jjii
ðEi

0 � FkÞ ; ð40Þ

where k runs over the states belonging to the Q subspace and where the actual form

of the denominator involves orbital energy differences, whereas Fk is a generalized

Fock operator.

The main weakness of CASPT2 is its susceptibility to intruder states, that is, states

that belong to Q and are thus outside of active spaces, but that have energies close to

Ei
0. These will makes the expression for R̂i go to infinity, causing the perturbation

expansion to diverge. Instead of adopting the intermediate Hamiltonian technique as

done in the coupled cluster case, Roos and coworkers92–94 as well as others95 devised

practical solutions based on the modification of such denominators by the applica-

tion of a global level shift parameter that modifies the Hamiltonian in such a way

that any effects due to the quasidegeneracy of Ei
0 and Fk can be avoided. This

approach has been found to work very well in practice for the so-called ‘‘weak’’

intruder states that do not interact too strongly with the reference. For more strongly

interacting states other solutions must be sought (e.g., including them into the active

space), otherwise one should employ alternative formulations such as the NEVPT2

approach96 that avoid intruder states by construction.

The performance of CASPT2 relative to methods such as MRCI, EOM-EE or

IHFSCC has been evaluated for a number of cases, for instance in heavy-element

chemistry.71,73,74,84,97,98 In general, CASPT2 yields excitation energies rather close to

those obtained with methods that are formally more accurate at a fraction of the

computational cost. However, their relative position and the corresponding

symmetry classification are often less reliable, which can be attributed to the

relatively low accuracy in which dynamical correlation is taken into account. In

spite of that, CASPT2 remains one of the few methods (along with MRCI

approaches discussed earlier) that can accurately describe both static and dynamic

correlation effects for large molecular complexes containing centers with a number

of half-filled d or f shells such as those containing (bi)metallic centers.57,99,100 It is
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also routinely employed to study the spectra and photochemistry of other complexes

of transition metals and heavy elements.72,101–105

2.2 Time-dependent approaches based on response theory

Instead of explicitly calculating the wavefunctions of the different excited states,

approaches based on response theory set out to calculated the linear response

function hhm̂a;m̂biio (see eqn (5)). A common theoretical framework for achieving this

with different methods of quantum chemistry is provided by the quasienergy

formalism pioneered by Christiansen and coworkers.19,106 It defines a quasienergy

as the time-dependent generalization of the energy,

QðtÞ ¼ ~C0ðtÞ Ĥ þ V̂oðtÞ � i
d

dt

����
���� ~C0ðtÞ

� �
ð41Þ

with

j ~C0ðtÞi ¼ e�iE0tjC0ðtÞi; ð42Þ

as well as its time average over one period of the perturbation T = 2p/o

fQðtÞgT ¼
1

T

Z T=2

�T=2
QðtÞdt: ð43Þ

With these definitions, the (time-dependent) wavefunction | ~C0(t)i can be determined

by making the time-averaged quasienergy stationary with respect to variations in the

wavefunction,

d{Q(t)}T = 0. (44)

Response functions can then be determined as derivatives of the time-averaged
quasi-energy with respect to the perturbation strengths. In particular, the electric
dipole–electric dipole linear response function is given by

hhm̂a; m̂biio ¼
d2fQðtÞgT

deaðoÞdebðoÞ
: ð45Þ

Note that this is analogous to the time-independent case, where the wavefunction is
determined by making the expectation value of the energy stationary, and where the
corresponding static properties (e.g., the polarizability) can be determined as
derivatives of the energy. The quasienergy formalism allows one to employ the
same techniques also for frequency-dependent problems.

In any quantum chemical method, a parametrization of the wavefunction is

introduced, i.e., the wavefunction depends on a set of parameters k. In so-called

variational methods these parameters are in the time-independent case determined

by minimizing the energy expectation value. In the time-dependent case, the

corresponding parameters can be determined by minimizing the time-averaged

quasienergy {Q(t,k)}T. However, a number of important quantum-chemical methods,

such as coupled cluster theory, are not variational, i.e., the wavefunction parameters k
are determined from other conditions. In this case, one can replace Q(t,k) by the

Lagrangian

L(t,k,�k) = Q(t,k) + �kg(k). (46)

The new set of parameters �k are the Lagrange multipliers and g(k) = 0 is a set of
auxiliary time-dependent equations. Both the parameters k and the Lagrange
multipliers �k can then be treated as variational parameters.
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The parameters and possibly also the multipliers can then be determined using

variational perturbation theory by expanding the quasienergy Lagrangian in orders

of the perturbation strengths and taking the time average,

fLðt; k; �kÞgT ¼ Lð0Þ þ
X
a

eaðoÞLð1Þa ðoÞ

þ
X
ab

eaðoÞebðoÞLð2Þab ðoÞ þ . . . ;
ð47Þ

where the linear response function can be identified as

hhm̂a; m̂biio ¼
d2fLðt; k; �kÞgT
deaðoÞdebðoÞ

¼ L
ð2Þ
ab ðoÞ: ð48Þ

Similarly, the wavefunction parameters k and multipliers �k can be expanded as

kðtÞ ¼ kð0Þ þ ðeiot þ e�iotÞ
X
a

eaðoÞkð1Þa ðoÞ þ . . . ð49Þ

�kðtÞ ¼ �k
ð0Þ þ ðeiot þ e�iotÞ

X
a

eaðoÞ�k
ð1Þ
a ðoÞ þ . . .; ð50Þ

where we will use k(1)(o) and �k(1)(o) to refer to the first order terms in these

expansions. These can then be determined from the variational conditions

dfLðt; k; �kÞgT
dk

¼ dfLðt; k; �kÞgT
d�k

¼ 0 ð51Þ

at each perturbation order.

Taking the second derivative of {L(t,k,�k)}T with respect to the perturbation

strengths ea(o) and eb(o) while taking the implicit dependence of k and �k on the

perturbation strengths into account via the chain rule leads to19

hhm̂a; m̂biio ¼ L
ð2Þ
ab ðoÞ

¼ ka
�ka

� �T
F A

AT J

� �
kb
�kb

� �
þ ga

na

� �T kb
�kb

� �
þ ka

�ka

� �T
gb
nb

� �
ð52Þ

where we introduced ka/b = ka/b
(1) and �ka/b = �ka/b

(1) to simplify the notation and

define the abbreviations for the partial derivatives with respect to the parameters and

multipliers

F ¼ @2fLð2ÞgT
@kð1ÞðoÞ@kð1ÞðoÞ

A ¼ @2fLð2ÞgT
@kð1ÞðoÞ@�k

ð1ÞðoÞ
J ¼ @2fLð2ÞgT

@�k
ð1ÞðoÞ@�k

ð1ÞðoÞ
ð53Þ

and for the mixed partial derivatives with respect to parameters or multipliers and

perturbation strength

ga=b ¼
@fLð2ÞgT

@kð1ÞðoÞ@ea=bðoÞ
na=b ¼

@fLð2ÞgT
@�k
ð1ÞðoÞ@ea=bðoÞ

: ð54Þ

Note that all these partial derivatives depend on the perturbation frequency o.
The first-order parameters ka/b and multipliers �ka,b can be determined from the

variational conditions of eqn (51). They only appear in the second-order term



236 Annu. Rep. Prog. Chem., Sect. C: Phys. Chem., 2012, 108, 222–277

This journal is © The Royal Society of Chemistry 2012

Lab
(2)(o) and setting the derivative of eqn (52) with respect to ka and �ka to zero leads

to the linear equations

kb
�kb

� �
¼ � F A

AT J

� ��1
gb
nb

� �
: ð55Þ

Substituting this back into eqn (52) yields the linear response function

hhm̂a; m̂biio ¼ �
ga
na

� �T
F A

AT J

� ��1
gb
nb

� �
; ð56Þ

which has poles for frequencies that lead to zero eigenvalues of the matrix whose

inverse appears in the above equation. This provides a route to the calculation of

excitation energies within response theory, whereas the corresponding oscillator

strengths can be calculated as the residues corresponding to these poles of the linear

response function.

2.2.1 Time-dependent DFT (TDDFT). The theoretical foundation for the time-

dependent generalization of DFT was introduced by Runge and Gross,107 and the

subsequently introduced TDDFT response theory108 forms the basis for its applica-

tion for the calculation of excited states. In TDDFT, the time-dependent density is

obtained from the KS wavefunction of a reference system of noninteracting

electrons, i.e., a single Slater determinant |~Fs(t)i, where the KS orbitals ~fi(r,t)

now become time-dependent. This gives rise to the time-dependent density

rðr; tÞ ¼
P

i j~fiðr; tÞj
2. Within the adiabatic approximation any explicit time or

history dependence of the exchange-correlation contribution is neglected, and one

arrives at the time-averaged quasienergy functional109,110

fQ½r�ðtÞgT ¼ fE½r�ðtÞgT þ fh~FsjV̂oðtÞj~FsigT

� h~Fsji
@

@t
j~Fsi

	 

T

;
ð57Þ

where E[r] is the energy functional of eqn (7) evaluated for the time-dependent

density r(r,t), the second term accounts for the time-dependent perturbation

(eqn (2)), and the last term arises from the time derivative in the definition of the

quasienergy (eqn (41)).

In order to obtain expressions for the response equations and the linear response

function one introduces a parametrization of the time-dependent KS determinant

|~Fsi. This can be achieved by using an exponential parametrization acting upon the

ground-state Kohn-Sham determinant |Fsi (cf. eqn (11))

j~Fsi ¼ expðk̂ðtÞÞjFsi; k̂ðtÞ ¼
X
p4q

½kpqðtÞâypâq � k�pqðtÞâyqâp�; ð58Þ

i.e., the time dependence is contained in the operator k̂(t). This parametrization

automatically ensures the orthogonality of the time-dependent KS orbitals without

introducing additional Lagrange multipliers. Using this parametrization, the linear

response function can be determined by differentiating the time-averaged quasienergy

with respect to the parameters kpq(t).
Because these parameters can be determined variationally, no additional Lagrange

multipliers are needed and the linear response function is given by

hhm̂a;m̂biio = � gaF(o)
�1gb (59)
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where for the F matrix one obtains

FðoÞ ¼ @
2fQð2ÞgT
@jð1Þ@jð1Þ

¼ E½2� � oS½2� ð60Þ

where S[2] is a diagonal matrix arising from the last term in eqn (57) and E
[2], is the

electronic Hessian which has the form

E½2� ¼ A B

B� A�

� �
: ð61Þ

The subblocks of this matrix are given by

Aia,jb = dijdab(ea � ei) + 2(ia|bj) + (ia|fxc|bj), (62)

Bia,jb = 2(ia|jb) + (ia|fxc|jb), (63)

where ep are the KS orbital energies, (pq|rs) are two-electron integrals in the
Mulliken (charge cloud) notation and

ðiajfxcjjbÞ ¼
ZZ

fiðrÞfaðrÞ
d2Exc½r�

drðrÞdrðr0Þ

� �
fjðr0Þfbðr0Þd3rd3r0 ð64Þ

are the integrals over the exchange-correlation kernel. Thus, excitation energies can
be calculated by determining the eigenvalues of E[2]. Since the size of this matrix is
generally rather large, iterative diagonalization procedures which only require the
calculation of matrix–vector products are usually employed (see e.g. the discussion
in ref. 111).

TDDFT has been widely used for studying excited states in medium to large

molecules.112–114 Its main advantage is its excellent cost–accuracy ratio. For a broad

range of chemical applications, TDDFT is capable of providing results which are

qualitatively correct, and often come close to the accuracy of more sophisticated

wavefunction-based methods such as CASPT2. This has been demonstrated in a

number of recent benchmarking studies on light115–121 and heavy-element contain-

ing73 molecules. However, the accuracy often depends on the proper choice of the

exchange–correlation functional and kernel, and choosing these appropriately for a

particular application is based on experience and often requires careful comparison

with more accurate wavefunction based calculations.

However, with the currently available approximations, TDDFT also has some

severe shortcomings.122 First, with standard non-hybrid exchange–correlation func-

tionals, it does not provide a correct description of Rydberg states. This is caused by

the wrong asymptotic form of the exchange–correlation potential.123 This problem

can be addressed by constructing approximations for the exchange–correlation

potential that enforce the correct asymptotic behavior, for instance by using

orbital-dependent model potentials.124 Alternatively, range-separated hybrid func-

tionals can be used that also result in asymptotically correct exchange–correlation

potentials.28 Second, charge-transfer excitations are not described correctly. For

detailed discussions of this problem and possible solutions, we refer to ref. 125–127.

Finally, within the adiabatic approximation TDDFT does not include double

excitations. This could in principle be addressed by using a frequency-dependent

exchange–correlation kernel,128,129 but such approximations are not suitable for

general applications yet.

2.2.2 Linear-response coupled cluster. While conventional coupled-cluster theory

does not provide a direct route to excited states, it can still be used as starting point



238 Annu. Rep. Prog. Chem., Sect. C: Phys. Chem., 2012, 108, 222–277

This journal is © The Royal Society of Chemistry 2012

for a response theory. Starting from the exponential parametrization of the

(time-dependent) wavefunction,

|Ĉi = exp(T̂(t))|FHFi, (65)

and performing a projection of the time-dependent Schrödinger onto the ground-
state reference hF0| as well as onto the set of excited determinants hmi| one arrives at
the time-dependent analogs of eqn (19) and (20)

Q(t;t) = hFHF|(Ĥ + V̂o(t))exp(T̂(t))|FHFi (66)

0 ¼ Omi ðt; tÞ ¼ mi expð�T̂ðtÞÞ Ĥ þ V̂oðtÞ � i
@

@t

� �
expðT̂ðtÞÞ

����
����FHF

� �
ð67Þ

for the coupled cluster quasienergy and time-dependent amplitude equations,
respectively.

As in the time-independent case, the coupled-cluster wavefunction is not determined

variationally. Therefore, the coupled-cluster Lagrangian19,106

LCCðt;�t; tÞ ¼ Qðt; tÞ þ
X
m

�tmOmðt; tÞ; ð68Þ

is used as starting point for a response theory, where the multipliers �t have been

introduced and the amplitude equations Om(t;t) serve as constraints. The linear

response function can then be determined by taking the derivative of the time-

averaged Lagrangian {LCC(t,�t;t)}T, yielding the linear response function (cf. eqn (56))

hhm̂a; m̂biio ¼ �
ga
na

� �T
F A

AT 0

� ��1
gb
nb

� �
; ð69Þ

where the matrix J is zero because the multipliers �k only appear linearly in the

Lagrangian. This response function can be rewritten as

hhm̂a; m̂biio ¼ �
ga
na

� �T
0 �ðAT Þ�1
�A�1 A�1FðAT Þ�1

� �
gb
nb

� �
; ð70Þ

which reveals that the poles of the response function correspond to zero eigenvalues of

the matrix A, which is given by

@2fLð2ÞCCðt;�tÞgT
@t
ð1Þ
n @�tð1Þm

¼ Amn � odmn ð71Þ

where Amn are the elements of the Jacobian introduced in eqn (28). Therefore,

excitation energies can be obtained as eigenvalues of this matrix. For details and

for the form of the matrix elements for the other quantities (F, nY,. . .), appearing in

coupled-cluster response theory we refer to the original literature.19,106 The approach

outlined above is applicable to the different levels of the coupled cluster hierarchy,130

starting with CCS (equivalent to CIS for excitation energies) and proceeding to

CCSD, CCSDT and so on.

While feasible for small molecules, the relatively large computational cost of

calculating and diagonalizing the CCSD Jacobian have motivated the development

of more approximate coupled cluster methods based on perturbative approaches

that yield energies correct to second order or higher. The first of these is the CC2

method,131 where the main idea is to retain the singles equation Om1 as in CCSD but

to approximate the doubles equation Om2. This results in a Jacobian in which the

doubles–doubles block is diagonal, thus resulting in significant computational gains.
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To make these linear response coupled-cluster methods, in particular CC2, applic-

able to truly large molecular systems, there has been significant work in recent years

to combine it with efficient computational techniques.132,133

3 Embedding methods: basic ideas and exact theory

All quantum-chemical methods for excited states discussed in the previous section

show a rather steep increase of the computational effort with the size of the system.

This is particularly the case for wavefunction based methods where there are well-

defined hierarchies that allow for a systematic improvement of the calculation. Thus,

their applicability is limited to comparably small molecules and a treatment of

electronic excitations in complex chemical systems remains a challenge. However, if

only local excitations are of interest, additional simplifications can be introduced.

The simplest possibility for exploiting this locality is the truncation of the full

system to a smaller model. Such a model contains only the part of the system where

the local excitations of interest take place and of its environment. For the case of a

chromophore molecule in solution the definition of such cluster models is rather

straightforward: In the simplest case, one starts from an isolated chromophore,

which is then progressively surrounded by solvent molecules up to some limit e.g. to

include a complete solvation shell. Similar constructions can be used for chromo-

phores in protein environments by only including specific amino acid residues that

are close to the chromophore. Also for treating impurities in solids truncated cluster

models can be set up by including only atoms within a certain distance from the

impurity. Even though such a truncation of the full system may be a rather crude

approximation, the results obtained with such cluster models will eventually

converge towards a full calculation if the size of the model system is systematically

enlarged. However, this convergence can be rather slow and, therefore, cluster

models that provide sufficiently accurate results will often be rather large and

contain hundreds or thousands of atoms. Thus, a full quantum-chemical treatment

of sufficiently large truncated models is rarely possible with accurate quantum-

chemical methods.

Embedding methods follow an intermediate strategy between a full quantum-

chemical treatment and the use of small truncated model systems: They still restrict

the accurate treatment to a small subsystem of interest, but instead of neglecting the

environment of this model system, it is included in a more approximate manner. As

with truncated model systems, the results obtained with such embedding schemes

will eventually converge towards those of a full treatment when enlarging the size of

the explicitly treated subsystem. However, since the environment is always included,

this convergence should be much faster, which makes it possible to restrict the size of

the active subsystem considerably if only local excitations or other local spectro-

scopic properties are of interest.

Formally, such embedding approaches can be formulated as an exact theory as

outlined in the following subsection. From this exact embedding theory one always

obtains the same results as with a full quantum-chemical treatment, independent of

the chosen size of the active subsystem. However, such a treatment is not suitable for

practical applications since its computational cost would be comparable to (or even

larger than) the one of a full quantum-chemical treatment. Therefore, approximations

have to be applied for the description of the environment. The quality of these

approximations determines how fast the results of embedding calculations converge

with the size of the explicitly treated subsystem.More accurate embeddingmethodologies
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will allow for the use of a smaller active subsystem, which in turn makes it possible to

apply more sophisticated and more accurate quantum-chemical methods for the

description of the local excitations of interest. It should also be noted that

embedding approaches also simplify the interpretation of the computational results

significantly, since information from the parts of the system not treated explicitly

will, in effect, be filtered away by construction.

3.1 Frozen-density embedding theory

Embedding approaches start from a partitioning of the total system into a subsystem

of interest (subsystem I in the following) and its environment (subsystem II). The

frozen-density embedding (FDE) theory formulated by Wesolowski and

Warshel134—following earlier work of Senatore and Subbaswamy135,136 and of

Cortona137—provides a formally exact theoretical framework for introducing such

a partitioning. It is based on the formally exact DFT (i.e., considering exact density

functionals) and uses the electron density of the total system rtot(r) as its starting

point. This total density is partitioned into the electron densities of the active

subsystem, rI(r), and of the environment, rII(r), i.e.,

rtot(r) = rI(r) + rII(r). (72)

These subsystem densities are allowed to overlap. In the following, we will always
assume that the subsystem densities rI(r) and rII(r) integrate to an integer number of
electrons. However, the theory can be generalized to subsystems with fractional
electron numbers.138 In addition to the electron density, the nuclear charges are also
partitioned. These divisions of the density and the nuclei define the two subsystems
I and II. The environment density rII could be further partitioned into an arbitrary
number of subsystems137,139,140 as

rIIðrÞ ¼
X
n

rðnÞII ð73Þ

This is particularly useful for formulating subsystem approaches, in which a large
system is partitioned into many smaller subsystems, that are then treated on an equal
footing. For a recent review of such fragment-based methods in quantum chemistry,
see ref. 141. As our focus here will be on methods that single out a specific subsystem
of interest, the discussion in the following will be restricted to two subsystems, i.e.,
the densities of all but one subsystem will be collected into a single environment
density rII.

3.1.1 Interaction energy. Using this partitioning into subsystems, the DFT total

energy can be expressed as a functional of the two subsystem densities rI and rII,

Etot ¼ E½rI; rII� ¼ ENN þ
Z
ðrIðrÞ þ rIIðrÞÞðvnucI ðrÞ þ vnucII ðrÞÞd3r

þ 1

2

Z ðrIðrÞ þ rIIðrÞÞðrIðr0Þ þ rIIðr0ÞÞ
jr� r0j d3rd3r0

þ Exc½rI� þ Exc½rII� þ Enadd
xc ½rI; rII�

þ Ts½rI� þ Ts½rII� þ Tnadd
s ½rI; rII�;

ð74Þ

where ENN is the nuclear repulsion energy, vI
nuc and vII

nuc are the electrostatic

potentials of the nuclei in subsystems I and II, respectively, Exc[r] is the exchange–

correlation energy functional, and Ts[r] is the kinetic energy of a reference system of
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noninteracting electrons with density r. The nonadditive exchange–correlation and

kinetic energies are defined as

Enadd
xc [rI,rII]=Exc[rI+rII] � Exc[rI] � Exc[rII] (75)

and

Tnadd
s [rI,rII]=Ts[rI+rII] � Ts[rI] � Ts[rII], (76)

respectively.

The total energy given in eqn (74) can be partitioned as,

Etot = EI + EII + Eint, (77)

into the energies of the two individual subsystems (n = I,II)

En ¼ E½rn� ¼ E
ðnÞ
NN þ

Z
rnðrÞvðnÞnucðrÞd3r

þ 1

2

Z
rnðrÞrnðr0Þ
jr� r0j d3rd3r0 þ Exc½rn� þ Ts½rn�;

ð78Þ

and the interaction energy

Eint ¼ Eint½rI; rII� ¼ E
ðintÞ
NN þ

Z
rIðrÞvIInucðrÞd3r

þ
Z

rIIðrÞvInucðrÞd3rþ
Z

rIðrÞrIIðr0Þ
jr� r0j d3rd3r0

þ Enadd
xc ½rI; rII� þ Tnadd

s ½rI; rII�;

ð79Þ

where the nuclear repulsion energy is partitioned into the repulsion among nuclei in
the same subsystem E(n)

NN and between those in different subsystems E(int)
NN .

Eqn (79) provides an exact expression for the interaction energy between two

subsystems with fixed electron densities rI and rII. The first four terms add up to the

classical electrostatic interaction energy between the nuclei and electron densities of

the two subsystems. In addition, the nonadditive exchange–correlation energy

Enadd
xc [rI,rII] and the nonadditive kinetic energy Tnadd

s [rI,rII] account for the non-classical
contributions to the interaction energy. While the classical terms can be calculated

directly for any two subsystems once the nuclear charges and positions as well as the

subsystem electron densities are known, the evaluation of the non-classical contributions

requires the knowledge of the exchange–correlation and kinetic-energy functionals,Exc[r]
and Ts[r]. Even though these are not know, eqn (79) provides a useful starting point for

the development of embedding methods. We note that its applicability is not limited to

DFT calculations since an electron density can always be defined within any theoretical

framework and then used to evaluate an interaction energy within FDE theory.

3.1.2 Embedding potential. So far, the electron densities of the two subsystems

were kept fixed. However, the total electron density of two interacting subsystems will

not be equal to the sum of the densities of the isolated subsystems. Therefore, the

subsystem electron densities change when the two subsystems interact and the presence

of an environment, rII(r), modifies the electron density of the active subsystem, rI(r). To
account for this, the environment has to be included in the quantum-chemical

description of the active subsystem. This is possible both for a description of the active

subsystem with KS-DFT and for a wavefunction based treatment.

For the case of a KS-DFT description, the density of the active subsystem I can be

obtained from the KS orbitals {fI
i} as rIðrÞ ¼

P
i jf

I
i ðrÞj

2. Note that in this case the
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noninteracting kinetic energy Ts[rI] can also be calculated directly from the KS

orbitals. For a given frozen electron density rII(r) in subsystem II, the KS orbitals

(and the electron density) of the active subsystem I can then be determined by

minimizing the total energy given in eqn (74) with respect to rI, while keeping rII
frozen. Performing this minimization under the constraint that the number of

electrons NI in subsystem I is conserved leads to a set of equations for the KS

orbitals of subsystem I,

�r
2

2
þ vKS½rI�ðrÞ þ vIemb½rI; rII�ðrÞ

� �
fI
i ðrÞ ¼ eIif

I
i ðrÞ; ð80Þ

where vKS[rI](r) is the KS effective potential of the isolated subsystem I containing

the usual terms of the nuclear potential, the Coulomb potential of the electrons, and

the exchange–correlation potential,

vKS½rI�ðrÞ ¼
dE½rI�
drIðrÞ

¼ vInucðrÞ þ
Z

rIðr0Þ
jr� r0j d

3r0 þ dExc½rI�
drIðrÞ

; ð81Þ

and the effective embedding potential vIemb[rI,rII](r) describes the interaction of

subsystem I with the frozen density and nuclei of subsystem II,

vIemb½rI; rII�ðrÞ ¼
dEint½rI; rII�

drIðrÞ
¼ vIInucðrÞ þ

Z
rIIðr0Þ
jr� r0j d

3r0

þ dExc½r�
drðrÞ

����
rtot

� dExc½r�
drðrÞ

����
rI

þ dTs½r�
drðrÞ

����
rtot

� dTs½r�
drðrÞ

����
rI

:

ð82Þ

This embedding potential accounts for the presence of the frozen environment when

determining the electron density of the active subsystem with KS-DFT. Note that

the embedding potential is a local potential that depends only on the electron

densities of the two subsystems.

The first two terms of the embedding potential of eqn (82) describe the classical

electrostatic potential of the nuclei and of the electrons in the frozen environment. In

addition, the embedding potential also contains an exchange–correlation component

and a kinetic-energy component. These account for the non-classical contributions,

such as the Pauli (exchange) repulsion of the electrons in the frozen subsystem and

chemical bonding (i.e., orbital interactions) between the subsystems. While the

electrostatic part of the embedding potential can be evaluated directly for given

subsystem densities, this is not possible for the exchange–correlation and kinetic

energy parts, as these require the knowledge of the corresponding exact functionals.

The same embedding potential can also be derived for the case that a wavefunc-

tion based description is used for the active subsystem.142,143 In this case a

wavefunction CI(r1, s1, r2, s2,. . .) is used to represent the electron density rI(r) of
subsystem I. By using that

EI = E[rI] = E(I)
NN + hCI|T̂ + V̂I

nuc + V̂ee|CIi, (83)

where T̂, V̂I
nuc, and V̂ee are the operators of the kinetic energy, the electron–nuclear

attraction energy, and of the electron–electron interaction, respectively, the total
energy of eqn (74) and (77) can be rewritten as

Etot = E[CI,rII] = E(I)
NN + hCI|T̂ + V̂I

nuc + V̂ee|CIi + Eint[rI,rII] + EII, (84)
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where Eint[rI,rII] and EII=E[rII] are the interaction energy and the energy of
subsystem II as defined in eqn (78) and (79), respectively.

The wavefunction describing subsystem I in the presence of the frozen density

rII(r) can then be obtained by minimizing this total energy functional with respect to

CI while keeping the electron density rII of the environment frozen, under the

constraint that the number of electron NI in subsystem I is conserved. This leads to

the condition,

0 ¼ ðT̂ þ V̂
I

nuc þ V̂eeÞCI þ
Z

dEint½rI; rII�
drIðr0Þ

drIðr0Þ
dCI

d3r0 � lCI

¼ ½T̂ þ V̂
I

nuc þ V̂ee þ V̂
I

emb½rI; rII��CI � lCI;

ð85Þ

with the embedding operator

V̂
I

emb½rI; rII� ¼
X
i

vIemb½rI; rII�ðriÞ; ð86Þ

that is, the wavefunction of subsystem I in the presence of the frozen density rII(r)
can be determined by solving an eigenvalue equation, in which the embedding

potential of eqn (82) enters as an additional one-electron operator. However, the

eigenvalue l in this embedded Schrödinger equation does not correspond to an

energy. Instead, the energy has to be evaluated using eqn (84) once the embedded

wavefunction CI has been determined.

For solving this embedded Schrödinger equation, the common approximations of

wavefunction based quantum chemistry can be applied. Note that the derivation

given here differs from the one in ref. 143, where an approximate wavefunction of

subsystem I was introduced before performing the energy minimization. In this case,

the embedding potential contains an additional term correcting for the difference

between the approximate and the exact wavefunctions. However, it can be argued

that a correction for deficiencies of an employed wavefunction approximation

should not be contained in the embedding potential.70,144 Therefore, the derivation

given here avoids this correction by introducing an approximate wavefunction only

at a later stage.

3.1.3 Polarization of the environment. In an exact embedding calculation using a

frozen environment density rII the electron density rI of the active subsystem should

be determined such that the total electron density rtot = rI + rII is identical to the

one obtained from a calculation of the full system. This can be achieved by

minimizing the total energy with respect to the density (or wavefunction) of the

active subsystem, and leads to the local embedding potential derived above.

However, such an agreement with the results of a full calculation is only possible if

the frozen density fulfills certain conditions.145,146 In particular, the frozen density

rII has to be smaller than or equal to the correct total density rtot at every point in

space, i.e., rII(r) r rtot(r). Otherwise, the complementary density of the active

system would have to be negative, which is not possible. In addition, this comple-

mentary density rtot � rII has to be noninteracting vs-representable in the case of a

KS-DFT description for the active system or interacting v-representable in the case

of a wavefunction based treatment.

In particular the first condition is usually not fulfilled for most approximate frozen

densities. Usually, these will be too small in some regions and too large in others.

Consequently, the application of the embedding potential of eqn (82) does not lead
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to the exact total density with such choices for rII. This problem can be alleviated by

switching from an embedding method to a subsystem approach in which both the

densities of subsystem I and II are determined. That is, the densities of both

subsystems are determined separately, but in each case the (frozen) density of the

other subsystem is taken into account. When using KS-DFT, this can be formulated

as a set of coupled equations for the KS orbitals of the two subsystems,

�r
2

2
þ vKS½rI�ðrÞ þ vIemb½rI; rII�ðrÞ

� �
fI
i ðrÞ ¼ eIif

I
i ðrÞ ð87Þ

�r
2

2
þ vKS½rII�ðrÞ þ vIIemb½rI; rII�ðrÞ

� �
fII
i ðrÞ ¼ eIIi f

II
i ðrÞ ð88Þ

Note that because of the different roles of the active and frozen densities in eqn (82),

the embedding potentials in these two equations differ.

The simplest strategy for solving these coupled equations for the two subsystems is

through so-called freeze-and-thaw iterations.147 First the density of subsystem I is

determined in the presence of an approximate frozen density for subsystem II.

Subsequently, the roles of the two subsystems are interchanged and the density

calculated for subsystem I in the previous step is now frozen, whereas an updated

density is determined for subsystem II. This is repeated iteratively until convergence

is reached. Alternatively, the two sets of equations (eqn (87) and (88)) can be solved

simultaneously.139 Note that the resulting partitioning into subsystems is not unique,

because density can be moved between the two subsystems without changing the

total electron density. However, a unique partitioning can be obtained when

requiring that both subsystems share the same embedding potential, i.e., that vIemb

[rI,rII] = vIIemb[rI,rII].
11,138

When focussing on one subsystem of interest, such an iterative subsystem scheme

can be considered as an embedding scheme that not only accounts for the effect of

the environment on the active subsystem but also includes the polarization of the

environment caused by the active subsystem. Thus, such a polarizable embedding goes

beyond a scheme in which a fixed frozen density is employed for the environment.

Consequently, it will always converge to the same density as a full treatment,

irrespective of the initial choice of rII if no further approximations are introduced.

3.1.4 Excitation energies and response properties. When treating excited states

within FDE theory, one has to distinguish between the two available theoretical

approaches: time-independent (state-specific) methods and response theory. The

conceptually simpler theory is obtained in the case of time-independent methods in

which a wavefunction is calculated explicitly for each excited state of interest. In this

case, the embedding theory outlined above can be applied directly, with the only

difference that the wavefunction and electron density of the active subsystem are

different for each excited state. Thus, the embedding potential is different for each

excited state, and for each excited state the environment density has to be determined

iteratively (e.g., in freeze-and-thaw iterations). The theoretical justification for such a

state-specific treatment of excited states is given in ref. 148.

In a formalism based on response theory,149–152 the (time-dependent) electron

densities rI(r,t) and rII(r,t) of the two subsystems are in a KS-DFT framework represented

by two separate Slater determinants |~FIi and |~FIIi, respectively. Consequently, the total

time-averaged quasi-energy can be expressed as
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{Q(t)}T = {Q[rI](t)}T + {Q[rII](t)}T + {Eint[rI,rII](t)}T, (89)

where the first two terms are the time-averaged quasi-energies of the two subsystems
according to eqn (57), and the third term is the time-average of the interaction energy
given in eqn (79). Subsequently, an exponential parametrization with the parameters
jI and jII can be introduced for both subsystems (cf. eqn (58)), i.e., the total time-
dependent density is expressed as

r(r,t) = rI(r,jI) + rII(r,jII). (90)

With this parametrization, the matrix F, which determines the poles of the

response function, assumes a block structure,

F ¼ @
2fQð2ÞgT
@jð1Þ@jð1Þ

¼ FI;I FII;I

FI;II FII;II

� �
with Fn;m ¼

@2fQð2ÞgT
@j
ð1Þ
n @j

ð1Þ
m

: ð91Þ

By separating the contributions arising from the different terms in eqn (89), this

matrix can be decomposed into

F ¼ FI;I FII;I

FI;II FII;II

� �
¼ FI 0

0 FII

� �
þ FI

int FII;I
int

FI;II
int FII

int

 !
; ð92Þ

where FI and FII arise from the differentiation of the quasi-energies of the isolated

subsystems (as in eqn (60)) while the second contribution originates from the

differentiation of the interaction energy. This interaction contribution contains

blocks FI
int and FII

int, which modify the diagonal of F and can therefore be regarded

as modifying the isolated subsystem FI and FII matrices,

F
ðnÞ
int ¼

@2fEð2Þint ½rI; rII�gT
@j
ð1Þ
n @j

ð1Þ
n

¼
ZZ

wnn
embðr; r0Þ

@rð1Þn ðrÞ
@j
ð1Þ
n

@rð1Þn ðr0Þ
@j
ð1Þ
n

d3rd3r0 þ
Z

vnembðrÞ
@2rð2Þn ðrÞ
@j
ð1Þ
n @j

ð1Þ
n

d3r

ð93Þ

with the embedding kernel

wnn
embðr; r0Þ ¼

d2Eint½rI; rII�
drnðrÞdrnðr0Þ

¼ d2Exc½r�
drðrÞdrðr0Þ

����
rtot

� d2Exc½r�
drðrÞdrðr0Þ

����
rn

þ d2Ts½r�
drðrÞdrðr0Þ

����
rtot

� d2Ts½r�
drðrÞdrðr0Þ

����
rn

:

ð94Þ

These lead to additional embedding contributions to the subsystem A and Bmatrices

(cf. eqn (62)–(63))

Ann
ia,jb = dijdab(e

n
a � eni ) + 2(ia|bj) + (ia|fxc|bj) + (ia|wnn

emb|bj), (95)

Bnn
ia,jb = 2(ia|jb) + (ia|fxc|jb)+(ia|wnn

emb|jb), (96)

where all orbital indices refer to the considered subsystem and the contributions
arising from the second term in eqn (93) have been included in the orbital energies
(i.e., it is assumed that the orbitals are obtained from eqn (80)).

Second, the off-diagonal blocks introduce a coupling between the subsystems,

which is given by

FI;II
int ¼

@2fEð2Þint ½rI; rII�gT
@j
ð1Þ
I @j

ð1Þ
II

¼
ZZ

wI;II
embðr; r

0Þ @r
ð1Þ
I ðrÞ
@j
ð1Þ
I

@rð1ÞII ðr0Þ
@j
ð1Þ
II

d3rd3r0 ð97Þ
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with the embedding kernel

wI;II
embðr; r

0Þ ¼ d2Exc½r�
drðrÞdrðr0Þ

����
rtot

þ d2Ts½r�
drðrÞdrðr0Þ

����
rtot

þ 1

jr� r0j : ð98Þ

These give rise to A and B matrices corresponding to coupling between subsystems,

with elements

AI;II
iIaI;jIIbII

¼ ðiIaIjwI;II
embjbIIjIIÞ; ð99Þ

BI;II
iIaI ;jIIbII

¼ ðiIaIjwI;II
embjjIIbIIÞ; ð100Þ

where the subscripts indicate that orbital indices refer to the different subsystems.

In should be noted that the subsystem response theory discussed above in the

framework of TDDFT can also be generalized to a wavefunction based description

of the active subsystem. In this case, the DFT quasi-energy of subsystem I in eqn (89)

is replaced by the quasi-energy Lagrangian of a wavefunction based method, i.e.,

{L(t)}T = {L[rI](t)}T + {Q[rII](t)}T + {Eint[rI,rII](t)}T, (101)

and an appropriate parametrization of the wavefunction of subsystem I is intro-
duced. This translates to a parametrization of the total time-dependent density

r(r,t) = rI(r,kI,�kI) + rII(r,jII) (102)

in which the density of subsystem I depends on the parameters kI and possibly the
multipliers �kI. Embedding contributions to the isolated subsystem matrices FI, AI,
and JI as appearing in the response function (eqn (56)) can then be derived by
differentiating the interaction energy with respect to the parameters and multipliers.
As in the TDDFT case, these will introduce both embedding contributions entering
into the subsystem response and embedding contributions that couple the two
subsystems. In general, linear-response function in eqn (56) will now involve the
matrix152

FI;I AI;I AII;I

AT
I;I J I;I FII;I

FI;II AI;II FII;II

0
@

1
A ¼ FI AI 0

AT
I J I 0
0 0 FII

0
@

1
Aþ FI

int FI
int FII;I

int

ðAI
intÞ

T J I
int AII;I

int

FI;II
int AI;II

int FII
int

0
B@

1
CA; ð103Þ

due to the presence of additional coupling blocks. Note that because of the non-
linear dependence of the interaction energy on the multipliers (via the density rI) the
matrix JI,I will in general not be zero anymore, even if the isolated subsystem
contribution JI is. For further discussion and explicit equations, we refer to ref. 152.

4 Approximate embedding methods

While the FDE theory presented in the previous section provides an exact theoretical

framework for embedding methods in quantum chemistry, it is not directly suitable

for numerical applications. In particular, it requires the knowledge of the exact

nonadditive kinetic-energy functional, which is not easily available in practice.

Therefore, numerous approximate embedding schemes have been developed instead.

For discussing these in the following section, it is useful to establish a classification

scheme for such methods.

One scheme for classifying approximate embedding methods has been proposed

by Bakowies and Thiel (BT)153 and follows the steps taken above for presenting the

FDE theory.
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�Mechanical coupling: The simplest way to setup an embedding scheme is to treat

each subsystem individually and introduce the coupling only through the total

energy. To this end, an interaction energy between the subsystems is calculated

according to eqn (79) or some approximation to it. With such a simple scheme only

the geometrical structure of the active subsystem is altered. All electronic properties,

in particular the electron density, are identical to those obtained when treating the

subsystem of interest in isolation.

� Electronic coupling: Embedding schemes that include the effect of the environ-

ment in the quantum-chemical treatment of the active subsystem in some way form

the next category. This can be achieved by including the embedding potential of

eqn (82) both in a KS-DFT or in a wavefunction based treatment of the subsystem of

interest. In practice, this embedding potential is usually approximated. With such a

coupling through an embedding potential, the electronic properties of the subsystem

of interest can be affected by its environment.

� Polarizable embedding: In the simplest case of embedding schemes with electro-

nic coupling, the (approximate) embedding potential is determined solely by the

geometric structure of the environment. For instance, the frozen electron density

calculated for the isolated environment (i.e., in the absence of the subsystem of

interest) can be used in eqn (82). More advanced schemes can be set up by including

the polarization of the environment due to the presence of the active subsystem. This

leads to schemes where the embedding potential has to be determined iteratively.

� Embedding including environment response: When treating electronic excitation

energies or other response properties, a fourth category—not contained in the

original BT classification—can be introduced. In this case one can distinguish

whether or not the response of the environment to the electronic excitation is

included. With state-specific methods, this can be achieved by iteratively updating

the environment density for each excited state instead of employing one common

frozen environment density for all excited states. Within response theory, the

response of the environment can be included through the additional subsystem

and coupling contributions to the response matrices discussed in the previous

section. Several different strategies can be introduced to approximate these con-

tributions. First, the coupling contributions can be neglected and only those

modifying the subsystem response are retained. Second, the coupling contributions

can be included in an approximate fashion. Finally, it is also possible to fold the

contributions of the environment as well as the coupling in an approximate fashion

into the response matrices of the active subsystem. While this will not account for

coupling between individual excitation energies, it does allow for an efficient

inclusion of the polarization of the environment density.

Among those groups, different methods can be classified according to the

approximations that are introduced for calculating the interaction energy and the

embedding potential. First, in continuum solvation models the discrete molecular

structure of the environment is neglected and replaced by a dielectric continuum.

Next, a large variety of embedding methods uses a discrete description for the

environment and models the electrostatic part of the environment using point

charges or localized multipole moments. Such a purely electrostatic description

can be augmented with additional terms accounting for non-classical interactions.

As a further step, there are embedding methods that retain a full electron density for

the environment using the embedding potential of eqn (82), but employing an

approximate electron density for the environment and introduce approximations for

the nonadditive kinetic-energy functional. Finally, embedding methods that do not
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introduce such approximations have also been proposed for embedding accurate

wavefunction theory calculations into an environment treated with DFT.

In the following, we will discuss these different approximations. We note,

however, that a classification in terms of sophistication does not imply an equiva-

lence in terms of accuracy. Often, seemingly simple schemes have been parametrized

so that they provide rather accurate results. At all levels of approximations,

embedding methods can operate in the different categories in the BT classification

scheme. This is sketched in the two-dimensional overview in Fig. 1. In all cases

further distinctions can be made according to the methods used for describing the

active subsystems. However, in most cases this does not affect the embedding

methodology significantly, so we will only make this distinction in a few cases.

4.1 Continuum models

The simplest possible way to account for environment effects in quantum-chemical

calculations are continuum models. These neglect the specific molecular structure of

the environment and replace it by a continuum characterized by its dielectric

constant e(env). The subsystem of interest is then placed in a cavity inside this

dielectric continuum. The nuclear charges and the electron density of the active

subsystem induce charges on the surface of this cavity (apparent surface charges),

and the electrostatic potential of these surface charges is included in the quantum-

chemical treatment of the active subsystem as an embedding potential.

Commonly, the cavity surface is discretized, and a distribution of point charges qs
at positions rs on the cavity surface is used to approximate the apparent surface

charges. The resulting embedding potential is then given by

~v
ðcontinuumÞ
emb ½rI�ðrÞ ¼

X
s

qs½eðenvÞ; rI�
jr� rsj

: ð104Þ

Here and in the following, a tilde is used to denote approximate quantities.

Numerous variants of such continuum models have been developed that differ in

Fig. 1 Overview of some of the available approximate embedding scheme. On the horizontal

axis are the categories of the extended Bakowies–Thiel classification, while the vertical axis

sorts different approaches according to the models employed for the environment.



Annu. Rep. Prog. Chem., Sect. C: Phys. Chem., 2012, 108, 222–277 249

This journal is © The Royal Society of Chemistry 2012

the definition of the cavity and in the equation used for calculating the apparent

surface charges. For details, we refer to the dedicated reviews on this subject.154–160

Of widespread use are the polarizable continuum model (PCM),156 which also exists

in several variants, and the conductor-like screening model (COSMO).161

Continuum models are particularly suited for modeling solvent effects. They

model not the effect of a specific molecular structure of the solvent environment but

rather an implicit average over the different solvent configurations. Therefore, they

provide an efficient way of including the dynamics of the solvent without considering

many different molecular structures explicitly. Instead of providing an interaction

energy according to eqn (79) for a specific structure, they try to approximate the free

energy of the solvated molecule and the free solvation energy.

While for the dielectric constant e(env) one commonly uses the experimentally

determined one for a specific solvent, the size and shape of the cavity are

parametrized to reproduce free energies. Usually, this requires a solvent-specific

parametrization. Thus, the embedding potential used in continuum models is not

just an approximation to the electrostatic part of eqn (82), but implicitly also includes

non-electrostatic contributions as well as the aforementioned dynamical averaging.

Since by construction the embedding potential depends on the density of the active

subsystem, continuum models can be categorized as polarizable embedding methods

in the BT classification.

Continuum models can be easily combined with a variety of quantum-chemical

methods, given the simplicity of the embedding potential in eqn (104). However, for

determining the surface apparent charges qs the electron density of the active

subsystem is required. While this is directly available in HF and DFT calculations,

its calculation can be more involved with wavefunction based correlation methods

and a fully self-consistent determination of the surface charges can become compu-

tationally rather demanding. Therefore, approximate schemes for the combination

of continuum models with, e.g., perturbation theory162 or coupled cluster theory163

have been devised.

For the calculation of excitation energies, continuum models allow for a rather

straightforward inclusion of the response of the environment (for a review, see

ref. 164). With state-specific methods, this is achieved by determining a different set

of surface charges for each excited state of interest, i.e., the difference in the electron

density of the active subsystem induce a change Dqs in the surface charges. Such a

fully self-consistent state-specific treatment is, for instance, possible for including

solvent effects in CASSCF calculations.165,166 Similarly, when employing response

theory for the calculation of excitation energies, the response of the environment can

be included by accounting for the response of the surface charges by an embedding

kernel, which in the case of TDDFT has the form

ðiaj~wðcontinuumÞemb jjbÞ ¼
X
s

Dqs½fjfb�
Z

fiðrÞfaðrÞ
jr� rsj

d3r: ð105Þ

It describes the interaction of the surface charge Dqs[fjfb] induced by the charge

distrubution fjfb with the charge distribution fifa. Similar response contributions

can be derived in the case of wavefunction based response theory, in particular for

linear response coupled cluster methods.167–170 Note that in all these approaches, the

off-diagonal environment contributions to the response matrices, corresponding to

the coupling terms in eqn (92) or (103), are folded into with the environment

contributions to the response matrices of the active subsystem. When combined with
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linear-response coupled-cluster methods, one further commonly invokes the

approximation167,171 of disregarding JI,I (i.e., the coupling between amplitudes

and multipliers).

A detail that is worth discussing is the meaning of the response of the surface

charges Dqs when treating excited states. Because the continuum model implicitly

accounts for the dynamics of the solvent environment, the environment response not

only accounts for the response of the electron density of the environment, but also

includes the structural relaxation of the solvent after the electronic excitation. This is

usually referred to as equilibrium solvation. However, it is possible to decompose the

environment response into a fast contribution Dq(fast)s (corresponding to the response

of the solvent electrons) and a slow contribution Dq(slow)s (corresponding to the

response of the nuclei in the environment). By separating these two contributions

and including only the fast one in the quantum-chemical calculation it is possible to

access vertical excitation energies (for details, see, e.g. ref. 164).

The simplicity of continuum models has made them the method of choice for

obtaining a first estimate of solvent effects on excitation energies.159,164 However, the

neglect of the explicit structure of the environment is at the same time the biggest

disadvantage of continuum models, in particular if specific solvent–solute inter-

actions such as hydrogen bonding are present. In this case, usually several solvent

molecules have to be included explicitly in the active subsystem.172–174 For the same

reason, continuum models are less successful for describing the effect of structured

environments, such as in proteins or solid-state systems, even though they are often

still used to model the bulk contribution of the outer shells of the such environments.

4.2 Discrete approximations: electrostatic embedding

A next step beyond continuum models are discrete approximations, in which

molecular structures are considered and determine the interaction energy and the

embedding potential. In contrast to continuum models, these discrete models will

make an explicit treatment of the dynamics of the environment necessary. In

particular for describing solvent effects or biomolecular environments, this usually

requires calculations for a large number of different molecular structures of the

environment in combination with a suitable averaging.

The simplest discrete approximation to the interaction energy and the embedding

potential can be obtained by using a classical molecular mechanics (MM) model.

The combination of the quantum mechanical (QM) treatment of the subsystem of

interest with a MM description of the environment and its interaction with the active

subsystem leads to so-called QM/MMmethods. Such QM/MMmodels are common

both for describing solvent effects and biomolecular structures as well as for the

treatment of solid state systems and surfaces. These were first pioneered by Warshel

and Levitt,175 and have been further developed by numerous researchers in the past

decades. Several excellent recent reviews are available on QM/MM methods, mostly

with a focus on their use for biological systems.176–180 Therefore, we will only

highlight the most important ideas in the following and put a special focus on the

application of QM/MM methods for studying excited states.

4.2.1 Interaction energy in QM/MM. Instead of using a quantum mechanical

description, MM methods approximate the total energy through a classical force

field. Commonly, such a force field energy expression has the form
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~EMM ¼
X
bonds

kdðd � d0Þ þ
X
angles

kyðy� y0Þ þ
X

dihedrals

kfð1þ cosðnfþ dÞÞ

þ
X
AB

0 qAqB

RAB
þ
X
AB

0
eAB

sAB
RAB

� �12

� sAB
RAB

� �6
" #

:

ð106Þ

where the three terms on the first line describe the bonding interactions in terms of

bond lengths d, angles y, and dihedral angles f between specific atoms. Those on the

second line are nonbonding electrostatic and van der Waals interactions between all

pairs of atoms (where the primed sum indicates that pairs of atoms directly

connected by bonds are usually excluded). The distance between atoms A and B is

denoted as RAB=|RA � RB|, and qA denote partial charges assigned to each atom,

whereas eAB and sAB denote Lennard–Jones parameters for the atom pair A,B.

QM/MM methods replace the energy of the environment EII and the interaction

energy Eint in eqn (77) by the corresponding energy from a classical force field, while

a full quantum-chemical description is only retained for the energy of the active

subsystem EI. This is possible because the total MM energy of eqn (106) can usually

be partitioned according to eqn (77) in a straightforward way. If there are no

covalent bonds between the active subsystem and its environment, this leads to an

interaction energy of the form

~E
ðQM=MMÞ
int ¼

Xsubs:I
A

Xsubs:II
B

qAqB

rAB
þ eAB

sAB
RAB

� �12

� sAB
RAB

� �6
" #

; ð107Þ

where each sum only runs over atoms in one of the subsystems. This interaction

energy contains an electrostatic part Ẽ(QM/MM)
int,elstat as well as a van-der-Waals contribu-

tion. If covalent bonds connecting the active subsystem and the environment are

present, the partitioning is slightly more involved and requires the introduction of

linking atoms into the active subsystem. Several strategies are available and are

discussed in detail in, e.g., ref. 180. In general, the interaction energy will then also

contain certain bonding terms as well as a correction for the additional linking atoms

in the active subsystem to avoid double counting.

Instead of evaluating the electrostatic part of the interaction energy completely at

the molecular mechanics level, the true charge density of the active subsystem can

also be used instead of molecular mechanics charges for this subsystem, i.e.,

~E
ðQM=MMÞ
int;elstat ¼

Xsubs:I
A

Xsubs:II
B

QAqB

RAB
þ
Xsubs:II
B

Z
rIðrÞqB
jr� RBj

d3r; ð108Þ

where QA are the charges of the nuclei in the active subsystem. This provides a more

accurate description and offers the additional advantage that no MM charges are

needed for the active subsystem. The van der Waals and (if applicable) bonding

contributions to the interaction energy are, however, always evaluated using

appropriate MM parameters.

4.2.2 Electrostatic embedding in QM/MM. QM/MM schemes including only an

interaction energy while treating the active subsystem in a QM calculation without

an additional embedding potential correspond to the mechanical coupling category

in the BT classification. Except for a change in the ground-state geometry, the

electron density of the active subsystem and molecular properties are not affected by

the presence of an environment. Therefore, it is common to introduce an electronic
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coupling by including an embedding potential in the QM calculation of the active

subsystem, that in the simplest case only consists of an electrostatic part,

~v
ðQM=MMÞ
emb ðrÞ ¼

Xsubs:II
B

qB

jr� RBj
ð109Þ

i.e., the electrostatic potential of the atomic charges qB is included as an additional

potential in the QM calculation. This additional embedding potential will modify the

electron density as well as molecular properties of the active subsystem. Usually, the

molecular mechanics partial charges from a standard force field are used for

constructing the electrostatic embedding potential. However, it should be noted

that these charges have usually not been optimized to give a faithful representation

of the electrostatic potential, but emerge from other criteria during the parametriza-

tion of classical force fields. Nevertheless their use is widespread, mainly because

they are easily available.180 On the other hand, it is important to point out that these

partial charges are often parametrized in such a way that they implicitly include

some of the non-classical contributions to the interaction energy and the embedding

potential.

QM/MM calculations employing an electrostatic embedding potential are in

many cases the method of choice for describing local excitations in protein

environments. Two widely studied examples are rhodopsins, where the protein

environment plays an important role in tuning the absorption energy of the retinal

chromophore,181–185 and green fluorescent protein.186–189 For these photoactive

proteins, a large variety of quantum-chemical methods, ranging from TDDFT to

CI and quantum Monte–Carlo calculations, have been employed in combination

with an electrostatic embedding potential. While some of these studies have

employed only a single static structure for the protein environment, others have

included an explicit averaging over different protein conformations by sampling a

number of snapshots from molecular dynamics simulations.

Note that the electrostatic embedding potential in such QM/MM calculations is

independent of the electron density of the active subsystem. Therefore, no additional

response contributions appear in the calculation of excitation energies, i.e., the

response of the environment is not included, and the presence of the environment

only enters via a shift of the orbital energies. However, for the treatment of

excitations in photoactive proteins an adequate quantum-chemical description of

the isolated chromophore is already challenging.16,181 Moreover, it has been pointed

out that already the environment effect obtained with a fixed electrostatic embedding

potential sensitively depends on the correct description of the transition dipole

moments, which again is often difficult to achieve.181 Thus, polarizable embedding

approaches (discussed in section 4.2) have so far not been extended to photoactive

proteins.

4.2.3 Point-charge embedding for solid-state systems. An analogous embedding

potential is also commonly used for modeling local properties in ionic crystals, for

instance for describing the adsorption of molecules on surfaces or for studying

locally excited states in impurities. In such studies, one considers a cluster model of

the subsystem of interest, and its embedding into the environment is described by

point charges at the positions of the surrounding ions. For reviews of such

approaches, see, e.g. ref. 178, 190 and 191. In particular, we want to highlight

ref. 192, in which a systematic classification of the different possible strategies is
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provided. Here, we only want to highlight some important approaches and point out

the main differences to QM/MM embedding methods employed for solvent effects or

protein environments.

The most obvious difference is that the environment has a periodic structure and

an infinite summation over the environment charges is in principle required, i.e., the

point-charge embedding potential now has the form

~v
ðQM=MMÞ
emb ðrÞ ¼

X
k6¼0

Xunit cell
B

qB

jr� ðRB þ kÞj; ð110Þ

where k is the lattice vector and the second sum only runs over the ions in one unit

cell. Different possibilities exist for taking this infinite sum into account. The

simplest would be to truncate this series, but in the form given above its convergence

is rather slow.193 More severely, the infinite series is not absolutely convergent, i.e.,

the sum depends on the order in which the summation is performed. This problem

can be alleviated by explicitly removing dipole and quadrupole moments, either with

Evjen’s original method194 or with its extensions.195,196

A different approach to the infinite series in eqn (110) is Ewald summation,197

where the series is split into a short-range part that is summed in real space and a

long-range part for which the summation is performed in reciprocal space, both of

which converge quickly. The resulting potential can then be fitted to a finite array

of point charges, from which the embedding potential is constructed.193,198–200

Alternatively, an approach that uses the potential resulting from the Ewald

summation directly in a quantum-chemical calculation has been developed by

Burow et al. based on the periodic fast multipole method.201

Such periodic point-charge environments have been combined with a variety of

quantum-chemical methods for studying local excitations in solid-state systems.

Examples include the description of color centers in bulk ZnO with CASSCF

calculations,202 of local excitations at the Cr2O3(0001) surface with CASSCF and

CI-based methods,203 and of surface and bulk excitations in KBr with TDDFT

and with EOM-CC methods.204 These studies always employ a fixed embedding

potential, i.e., the response of the environment is not included.

In all applications of point-charge embedded cluster models, several options exist

for defining these charges. The simplest is to use the formal charges corresponding to

the oxidation states of the respective ions, another possibility is the use of partial

charges, which could be derived from full quantum-chemical calculations using

different schemes. For an overview and a discussion, we refer to ref. 192. If

homogenous periodic systems (i.e., bulk structures) are considered, the environment

charges can be updated iteratively to correspond to those obtained for the embedded

cluster. This is done, for instance, in the embedded ion methods and its extensions192,205

and a similar scheme can be employed in QM/MM embedding calculations for

molecular crystals.206,207 Such schemes implicitly account for ground-state polarization

of the environment by the embedded cluster.

For studying impurities in ionic crystals, this polarization is more difficult to

include and has to be modeled explicitly. The use of atomic polarizabilities at the site

of the ions in the environment (see below) is less common in studies of solid-state

systems. Instead, shell models208 are often employed,209–211 in which one augments

the ionic charges with a shell of the opposite charge connected to the ion by a

harmonic spring. This shell can then ‘‘move’’ in response to the electric fields
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generated by the embedded cluster to account for the polarization of the

environment.

4.2.4 Polarizable embedding in QM/MM. In the QM/MM methods discussed so

far, the partial charges assigned to the atoms in the environment are fixed, and the

resulting embedding potential is thus independent of the electron density of the

active subsystem. A logical next step is to go from such a fixed embedding potential

to a polarizable embedding scheme in the BT classification. In QM/MM this can be

achieved by using polarizable models for describing the environment. This was

proposed already in the early paper of Warshel and Levitt that first introduced

QM/MM approaches.175

One possibility of setting up such a polarizable QM/MM scheme is the discrete

reaction field (DRF) model,212 in which an embedding potential of the form

~v
ðDRFÞ
emb ½rI�ðrÞ ¼

Xsubs:II
B

qB

jr� RBj
þ
Xsubs:II
B

lind
B ½rI� � ðr� RBÞ
jr� RBj3

ð111Þ

is used, i.e., the electrostatic potential generated by induced dipoles lind
B at the

positions RB of the nuclei in the environment is added to the standard electrostatic

QM/MM embedding potential of eqn (109). These induced dipoles are calculated as

lind
B ½rI� ¼ aB F½rI�ðRBÞ þ

Xsubs:II
C 6¼B

T
ð2Þ
BC � lind

C

 !
; ð112Þ

where T
ð2Þ
BC ¼ d2

dRBdRC

1
jRB�RCj is the dipole interaction tensor and F is the electric field

generated by the charge density of the active subsystem and all atomic partial

charges of the environment,

F½rI�ðRBÞ ¼
Xsubs:I
A

QA
RB � RA

jRB � RAj3
þ
Z

rIðrÞ
RB � r

jRB � rj3
d3r

þ
Xsubs:II
C 6¼B

qC
RB � RC

jRB � RCj3

ð113Þ

Thus, via this electric field, that in turn determines the induced dipoles, the

embedding potential becomes dependent on rI. In addition, the induced dipoles

depend on all other induced dipoles via eqn (112) and, therefore, have to be

determined self-consistently. To avoid artifacts at small distances resulting in an

over polarization, the dipole–dipole interaction is commonly smeared out,213 i.e., a

damped version of the interaction tensor T(2) is used.214

For the calculation of excitation energies, such a polarizable embedding potential

can be applied within response theory. In this case, the dependence of the embedding

potential on the density of the active subsystem leads to additional embedding

contributions to the response matrices. In the case of TDDFT, this results in the

embedding kernel215

ðiaj~wðDRFÞ
emb jjbÞ ¼

Xsubs:II
B

dlind
B ½fjfb�

Z
fiðrÞfaðrÞ

r� RB

jr� RBj3
d3r; ð114Þ

where dlind
B [fjfb] is the linear response of the induced dipole lB to the density change

fjfb. Note that as for continuum models, the off-diagonal environment
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contributions to the response matrices in eqn (92) or (103) are not included explicitly,

but are instead folded into the response matrices of the active subsystem.

Such polarizable QM/MM embedding potentials have been combined with

(TD-)DFT214–216 as well as with linear-response coupled cluster methods171,217,218—where,

as for the continuum models, the approximation of neglecting JI,I is used. The latter have

been applied in numerous studies of solvent effects on excitation energies.219–221 Note that

QM/MM approaches for the description of solvent effects always require an explicit

averaging over a large number of snapshots from molecular dynamics simulations.

A slightly improved formalism and implementation, both for TDDFT and for

coupled cluster, have been presented recently by Kongsted and coworkers.222–224

The main difference of this polarizable embedding scheme is the use of not only

partial charges, but also of dipole, quadrupole, and possibly higher multipole

moments in the static part of the electrostatic embedding potential, whereas the

polarizable part is still modeled with induced dipole moments. However, both for the

static and for the polarizable part solvent models have been parametrized that in

addition to those at the positions of nuclei include partial charges, dipoles, etc. also

at additional locations. Such polarizable QM/MM schemes can be further combined

with continuum models to account for outer solvation shells.225

4.3 Discrete approximations: beyond purely electrostatic embedding

The approximate embedding potentials discussed above only contain an electrostatic

component. Depending on their parametrization, these can implicitly also account for

some of the non-electrostatic contributions in the exact local embedding potential

(eqn (82)). However, the absence of these explicit non-electrostatic contributions can

pose a severe problem. This becomes particularly obvious in point-charge embedding

methods modeling an ionic crystal environment, as discussed in section 4.2. If the basis

set employed for the active subsystem is sufficiently flexible, positive charges in the

environment can act as artificial nuclei and orbitals spuriously localize at these

centers.226 This problem is particularly severe if formal charges are employed.

A simple way of fixing such problems is the introduction of pseudopotentials

modeling the core electrons at these centers.227–229 Such effective core pseudopoten-

tials are widely used in quantum chemistry and are readily available for most atoms.

Note that these pseudopotentials contain nonlocal projection operators and do

therefore not emerge in the FDE theory outlined above, but are derived within a

different theoretical framework. However, their use for describing environment

effects can only be considered a pragmatic solution, as such effective core pseudo-

potentials are derived in a very different context. For a discussion of the pseudo-

potential approximation in quantum chemistry, see ref. 230. A more rigorous way of

deriving nonlocal embedding potentials is provided by the ab initio model potential

(AIMP) method, which will be discussed below.

4.3.1 Effective fragment potential method. Another approach that also includes

non-classical contributions to the interaction energy and to the embedding potentials

is the effective fragment potential (EFP) scheme of Gordon and coworkers. It can be

considered as an extension of the polarizable QM/MM models described in section

4.2. In its original form (EFP-1)231,232 it was developed as a specific model for

describing water and employs the interaction energy,

Ẽ(EFP-1)
int = ECoul + Epol + Erep, (115)
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and the embedding potential

ṽ(EFP-1)emb [rI](r) = vCoul(r) + vpol[rI](r) + vrep(r), (116)

The Coulomb contributions are modeled by partial charges and multipole moments
(up to octupoles) located at the nuclei and bond midpoints, whereas the polarization
is included via induced dipoles, as discussed earlier. The required parameters are
extracted from quantum-chemical calculations using a well-defined scheme. The
additional terms describe the non-classical repulsion contributions. For the potential,
it is modeled by Gaussian functions centered at the nuclei and the center of mass,

vrepðrÞ ¼
Xsubs:1
B

X2
i¼1

bi;Be
�ai;Bðr�RBÞ2 ; ð117Þ

where the parameters bi,B and ai,B are fitted to HF calculations of dimers. The EFP-1
model has been applied to describe the effect of water solvation on excitation energies,
both using CI-based methods233 and within TDDFT.234 In the former case, only the
ground-state polarization of the environment is included, whereas for TDDFT the
response of the environment can be included as described above.

Subsequently, the EFP scheme has been refined and extended to arbitrary

solvents.232,235,236 In this EFP-2 method, the interaction energy is modeled as

Ẽ(EFP-2)
int = ECoul + Epol + Eexrep + Edisp + Ect, (118)

while the same EFP-1 form is kept for the embedding potential. The Coulomb and
polarization contributions are described with distributed multipoles and induced
dipoles as in the EFP-1 scheme, but an additional damping is introduced to avoid
inaccuracies at short distances. For details on the calculation of the additional
energy terms accounting for exchange-repulsion, dispersion, and charge-transfer
terms, we refer to the original literature232,236 as well as the reviews of Gordon and
coworkers.141,235 Commonly, the repulsion terms are neglected in the EFP-2
embedding potential, but they can be obtained in a similar fashion as for the
energy.237 A very appealing feature of the EFP-2 scheme is that it provides a clear
prescription for extracting the interaction energy as well as the embedding potential
from quantum-chemical calculations. Therefore, no empirical parameters and no
dedicated fitting procedures have to be employed, thus providing an ‘‘ab initio route’’
to polarizable QM/MM embedding calculations.

4.4 Beyond a discrete representation of the environment

4.4.1 ONIOM family of methods. While the embedding methods discussed so far

use a discrete approximation to the environment, usually in terms of partial charges

and possibly additional potentials centered at the nuclei, the ONIOM method aims

at retaining a full quantum chemical description of the environment.238–240 It

employs the interaction energy

Ẽ(ONIOM)
int = Elow

tot � (Elow
I + Elow

II ), (119)

which leads to the total energy expression

Ẽ(ONIOM)
tot = Ehigh

I + Elow
tot � Elow

I , (120)

where the superscript ‘‘high’’ denotes energies calculated with an accurate

quantum-chemical method, whereas the superscript ‘‘low’’ indicates energies

calculated with a more approximate method. This could, for instance, be an accurate

wavefunction based method combined with DFT as more approximate method.

Thus, the ONIOM scheme allows for the combination of different quantum chemical
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methods. However, in its original formulation, the energies Ehigh
I and Elow

tot are

calculated for the isolated active subsystem, i.e., only mechanical coupling is

included.

This has been extended to include an electrostatic embedding potential as in

eqn (109), where the partial charges are extracted from the quantum-chemical

calculation performed for the environment with a more approximate quantum-

chemical method.241,242 Recently, a ONIOM electrostatic embedding scheme has

been devised that uses the full electrostatic embedding potential,243 i.e.,

~v
ðelstatÞ
emb ½rII�ðrÞ ¼

X
B

QB

jr� RBj
þ
Z

rIIðr0Þ
jr� r0j d

3r ð121Þ

Such an embedding potential is also commonly used in the fragment molecular

orbital (FMO) method244 and in the related electrostatically embedded many-body

method.245 However, it has been pointed out that such a purely electrostatic

embedding potential can lead to spurious results. In particular if large basis sets

are used, an artificial localization of electron density of the active subsystem at nuclei

of the environment can occur.246–248 Thus, the nonclassical repulsive parts of the full

FDE embedding potential should also be included, at least in an approximate

fashion.

4.4.2 Ab initio model potentials. One possibility to account for these non-classical

contributions to the embedding potential is provided by the ab initio model potential

(AIMP) method.249–251 Instead of using a local embedding potential as the FDE

theory outlined above, it uses a non-local embedding potential which is derived by

partitioning the HF wavefunction into an anti-symmetrized product of Slater

determinants.252 Thus, the environment is explicitly represented by orbitals {fj
II},

and one arrives at a non-local embedding potential of the form

v̂
ðAIMPÞ
emb ½ffII

j g� ¼ ~v
ðelstatÞ
emb ½rII�ðrÞ þ

X
j

k̂½fII
j � þ

X
j

Bj jfII
j ihfII

j j; ð122Þ

where ṽ(elstat)emb [rII](r) is the full electrostatic embedding potential, the second term

accounts for the exchange interaction with the environment orbitals, and the last

terms is a projection operator that ensures the orthogonality of the orbitals of the

active subsystem to those of the environment. The constants Bj are usually chosen as

Bj = � 2eIIj , but other choices are also possible.251

The AIMP method has been used extensively in studies of electronic excitations in

solid-state systems using a variety of wavefunction based quantum chemical

methods, for instance for studying transition metal253 or lanthanide and actinide

centers254–256 in ionic crystals. In this case, the environment can be described by an

array at atomic ions. Thus, the environment orbitals can be pre-calculated and the

resulting embedding potentials can be stored and reused. It must be noted that for

ionic solids, an AIMP description of the first shells of the environment usually has to

be combined with a further point-charge embedding to account for the long-range

electrostatic interactions.257 To account for the polarization of the environment, the

AIMP method can be combined with shell-models,249,258 where the electrostatic part

of the embedding potential is modified.

4.4.3 Orbital space partitioning. At this point it is also worth mentioning that a

number of embedding methods for combining wavefunction based correlation
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methods with a HF or DFT description of the environment exist that are based on a

partitioning of the orbital space.259–262 These start with a full HF or DFT calculation

an a periodic solid or a rather large cluster and then perform a transformation to

localized orbitals. A number of these orbitals are then selected to describe the active

subsystem, and are used as starting point for a wavefunction based treatment. Such

an approach forms, for instance, the basis of the incremental method for calculating

electron correlation in extended systems with wavefunction based methods (for a

review, see, e.g., ref. 263).

4.5 Frozen-density embedding with approximate kinetic-energy functionals

The frozen-density embedding (FDE) scheme aims at providing a full description of

environment effects by approximating the exact embedding potential of eqn (82).

However, for the exchange–correlation functional Exc[r] and for the nonadditive

kinetic-energy functional Tnadd
s [rI,rII] (eqn (76)) and its functional derivative

vT ½rI; rII�ðrÞ ¼
dTnadd

s ½rI; rII�
drIðrÞ

¼ dTs½r�
drðrÞ

����
rtot

�dTs½r�
drðrÞ

����
rI

ð123Þ

one now has to introduce approximations. Thus, in the interaction energy given in

eqn (79) and in the embedding potential the contributions of the kinetic energy and

of the exchange–correlation energy are approximated. The idea to use an approx-

imate kinetic-energy functional to evaluate the interaction energy between two fixed

electron densities dates back to the work of Kim and Gordon.264,265 Later, it was

extended to electron densities determined using the above embedding potential, both

in subsystem approaches135–137 and in embedding schemes.134

If both the active subsystem and its environment are described with DFT using an

approximate exchange–correlation functional that depends only locally on the

electron density (i.e., LDA or GGA functionals), the exchange–correlation

contribution can be treated consistently. With hybrid functionals or with orbital-

dependent exchange–correlation potentials, a local functional has to be used for the

nonadditive exchange–correlation contributions, which constitutes an additional

approximation.266,267

4.5.1 Approximation to T nadd
s [qI,qII] and vT[qI,qII]. With a local exchange–

correlation functional, differences between a full DFT calculation and an embedding

treatment in which the densities of both subsystems are optimized are due to the

approximations applied for the kinetic energy, provided that the full supermolecular

basis set expansion is used for both subsystems.147,268 Thus, comparing the electron

densities from such calculations offers a way for assessing the quality of approxima-

tions for vT[rI,rII], whereas a comparison of the total energies also probes the quality

of Tnadd
s [rI,rII]. These strategies have been used to develop and tests approximations

both for the kinetic-energy component of the embedding potentials and to the

nonadditive kinetic energy. Here, we will only give a brief overview of the

most widely used approximations and highlight some more recent developments.

Dedicated reviews on kinetic-energy functionals in general269,270 and in the context

of the FDE scheme145 are available in the literature (for more recent overviews, see,

e.g., the introductions of ref. 146, 271–273).

The simplest class of approximations applies an approximate kinetic energy

functional in eqn (76) as well as for the functional derivative in eqn (123). These are

referred to as decomposable approximations. Early studies employed the well-known
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Thomas–Fermi functional, but following a series of tests for hydrogen-bonded

systems,274,275 Wesolowski proposed the use of generalized-gradient approximation

(GGA) kinetic-energy functionals within the FDE scheme. In particular, he recom-

mended275 the use of the PW91k functional of Lembarki and Chermette,276 which has

been used almost exclusively in applications of the FDE scheme in the past decades.

More recently, new GGA kinetic-energy functionals have also been proposed for the

use in decomposable approximations to the kinetic-energy component of the FDE

interaction energy and embedding potential.273

Several studies have assessed the quality of the available decomposable approxima-

tions. Generally, these provide a good accuracy of the electron densities and molecular

properties as long as the interaction between the subsystems in dominated by weak,

non-covalent interactions such as hydrogen bonding. This has, for instance, been

demonstrated by comparing the electron densities obtained in FDE calculations to

those of a full treatment.277,278 For interaction energies, the PW91k approximation

provides a typical accuracy of ca. 1–2 kcal/mol in hydrogen bonded complexes.272

Even though successful for weak interactions between the subsystems, several short-

comings of the available decomposable approximations based on GGA functionals

have been pointed out. In the limit of infinitely separated subsystems the potential shows

a wrong form at the frozen subsystem, which affect the resulting orbital energies and can

lead to spuriously low excitation energies.279 This shortcoming can partly be addressed

with so-called non-decomposable approximations,271,279 in which the non-additive kinetic

energy or the potential vT[rI,rII] are approximated directly. Even more severe is the

failure of all presently available approximations for subsystems connected by covalent

bonds,278 even if these covalent bonds are very weak.280 These problems have so far not

been addressed satisfactorily, but recent work provides some possible directions for

future improvements.146 Alternatively, the insufficiencies of the currently available

approximations can be circumvented by using a more general partitioning that

introduces capping groups.281

4.5.2 DFT-in-DFT embedding. Initial applications of the FDE embedding potential

in combination with approximate kinetic-energy functionals focussed on ionic crys-

tals.136,137 This early work aimed at a subsystem formulation of DFT, and treats all

subsystems—in this case the individual ions—on the same footing, i.e., the density of all

subsystems are optimized iteratively in freeze-and-thaw iterations. In the scheme of

Cortona, only spherical ions are considered and the embedding potential is spherically

averaged.282–284 Mehl and coworkers extended this scheme to general, non-spherical

fragments.285–287 Wesolowski and Warshel pioneered the use of the approximate FDE

embedding potential in applications that focus on a specific subsystem of interest, while

its environment is kept frozen.134 Their initial applications concerned the solvation of

lithium ions in water as well as the solvation free energies of water and methane. In these

applications, an additional approximations was introduced: Instead of obtaining the

electron density rII of the environment from a full DFT calculation (or from a fully self-

consistent subsystem DFT calculation), it was approximated as the sum of the densities

of isolated solvent molecules. Such approximate ways of constructing the environment

density are key to efficient DFT-in-DFT FDE calculations.

The applications discussed so far focussed on ground-state properties. Excited

states can be treated in such DFT-in-DFT embedding calculations either with a

state-specific approach or within response theory. A state-specific approach is

realized if excited states of the active subsystem are described using a DDFT or
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DSCF-DFT approach (see section 2.1.1). This was applied by Wesolowski and

coworkers to study crystal field splittings for impurities in ionic crystals,288–290 using

the ground-state embedding potential also for the excited states.

As outlined in section 3.1.4, the FDE theory can also be extended to a description

of excited states within response theory, in particular with TDDFT. In applications

of such an approach, one usually—in addition to the use of approximations to the

kinetic-energy contribution to the embedding kernel—introduces approximations

for the treatment of the embedding contributions to the response equations

(eqn (92)). The simplest approximation is to neglect the off-diagonal coupling blocks

FI,II
int and FII,I

int arising from the embedding contribution.291 This leads to a decoupling

of the response equations of the two subsystems, and the energies of local excitations

of the active subsystem can be determined by considering only the matrix FI,I =

FI + FI,I
int, where the additional embedding contribution is determined by the

embedding kernel given in eqn (94). This approximation corresponds to a neglect

of the response of the environment.

Such a scheme can be employed for the calculation of solvent effects on local

excitation energies by combining it with approximate construction of the solvent

electron density.292 Because the TDDFT response calculation is limited to the active

subsystem describing the solute molecule this results in an efficient treatment and

allows for the inclusion of large frozen solvent shells as well as an averaging over a

sufficient number of solvent structures. The simplest approximation for the solvent

density is to use the sum of the densities of isolated water molecules. Such a

description can be further refined by updating the density of a few solvent molecules

close to the active subsystem in freeze-and-thaw iterations.140,293 Similar schemes

can be used to treat local excitations in protein environments.294,295

With a fixed frozen density, such FDE calculations correspond to electronic

embedding in the BT classification. Accounting for the ground-state polarization of

the environment leads to a polarizable embedding scheme, but within the approx-

imation discussed so far the polarized response of the environment density is not

included. A discussion of these different contributions and a comparison to a

polarizable QM/MM description can be found in ref. 296.

A computational strategy for an efficient treatment of the full embedding

contributions to the response matrices has been devised by Neugebauer.150,151 In

his subsystem TDDFT scheme, off-diagonal coupling contributions to the response

matrices are not neglected. Instead, the excitation energies of the individual

subsystems are determined first, and in a second step the coupling contributions

are included only for those excitations that are of interest. This allows for an efficient

treatment of both the polarization of the environment151,297 and of couplings

between local excitations.150 Neugebauer and coworkers have employed their

scheme in several studies of photosynthetic systems, in particular light harvesting

complexes.294,298 Recent reviews on the calculation of excitation energies with

subsystem TDDFT and on the related applications are available.6,8,9

4.5.3 WFT-in-DFT embedding. The application of the FDE embedding potential

in combination with approximations for the kinetic-energy functional for embedding

a wavefunction based description of the active subsystem in an environment

described by DFT (WFT-in-DFT embedding) was pioneered by Carter and

coworkers.142,299 Their work focussed on the description of molecules absorbed on

metallic surfaces. Their pilot application concerned the description of ground-state
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properties of CO on a Cu(111) surface and used a scheme in which the density of the

active subsystem is obtained with CI or CASSCF and is updated iteratively, while

the total density is obtained from a periodic DFT calculation and is kept fixed.

Subsequently, this scheme was extended to the treatment of excited states within

these state-specific methods for the active subsystem to describe the local excitations

of CO on a Pt(111) surface.300,301

The limitations of these scheme where addressed in later work, in which the

constraint that the total density is kept fixed was relaxed.302,303 Instead, the environ-

ment density is chosen as rII = rtot � rbareI , where the total density is obtained from a

periodic DFT calculation and rbareI is the density of the isolated subsystem I. This

environment density is then kept frozen, i.e., the polarization of the environment is

only included through the periodic DFT description, but not updated according to the

wavefunction based calculation. This scheme has been applied in a number of studies

of ground state properties304–307 and of local excited states.229 For a review of these

WFT-in-DFT embedding approaches and their applications, see ref. 7.

For the calculation of excitation energies, wavefunction based methods are often

required because of the well-known limitations of TDDFT, but nevertheless a DFT

calculation provides an adequate ground-state density. Therefore, a simplified WFT-

in-DFT embedding scheme, in which the embedding potential is obtained from a

DFT-in-DFT embedding calculation (either using a fixed approximate environment

density or an environment density polarized in freeze-and-thaw iterations) has been

proposed.70 This simplified scheme has been applied to study electronic excitations

of NpO2+
2 impurities embedded in ionic crystals using IHFSCC methods.

In applications of in WFT-in-DFT embedding, the response of the environment has

not yet been accounted for. With the state-specific wavefunction based methods that

were mainly employed (i.e., CASSCF, CI, and IHFSCC), this would be possible by

using state-specific embedding potentials.148 However, this approach has not been

attempted in practice so far, and would introduce additional problems in the calculation

of transition moments since the different electronic states of the active subsystem will no

longer be orthogonal. Therefore, an inclusion of the environment response should be

easier within response theory, and the corresponding theory as well as working

equations for linear-response coupled-cluster methods have been derived recently.152

4.6 Frozen-density embedding with optimized effective potentials

For calculating local excitations and other local molecular properties, FDE calcula-

tions employing approximate kinetic-energy functional can provide an accurate

description of environment effects in certain cases. In particular, the available

approximations are applicable if the interaction between the subsystem of interest

and its environment is weak or dominated by electrostatic interactions. However,

even in these cases the available approximations to the kinetic-energy component

vT[rI,rII] of the embedding potential have deficiencies. These inevitably introduce

small, but sometimes not negligible errors into the calculated excitation energies.

These can be reduced by increasing the size of the active subsystem, but especially in

WFT-in-DFT embedding calculations this is not desirable and often not feasible. On

the other hand, a description of covalent bonds between subsystems is not possible

with the currently available approximations.

Therefore, variants of the FDE scheme that avoid such approximations for the

kinetic-energy functional or its functional derivative have been developed in recent

years by several groups. The evaluation of the kinetic-energy component vT[rI,rII] of
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the embedding potential requires the evaluation of the functional derivative of the

noninteracting kinetic-energy functional Ts[r] for two different densities, the total

density rtot = rI + rII and the density of the active subsystem rI. By using the

Euler–Lagrange equation for the KS system of noninteracting electron with a given,

fixed density r(r) this functional derivative can be related to the local potential

vs[r](r) that has this density r(r) as its ground state,308

dTs½r�
drðrÞ ¼ �vs½r�ðrÞ þ m; ð124Þ

where m is a constant shift that is related to the chemical potential. Thus, the kinetic-

energy component of the embedding potential can be evaluated from279

vT[rI,rII](r) = vs[rI](r) � vs[rtot](r) + Dm (125)

as the difference between the local potentials yielding the density of the active system
and the total density, respectively. These local potentials yielding a certain density
can be evaluated numerically. Different algorithms for such a potential reconstruc-
tion (often also referred to as optimization of effective potentials or OEP methods)
have been developed. In the context of embedding calculations, the algorithms of
van Leeuwen and Baerends 123 and of Zhao, Morrison, and Parr (ZMP)309 as well as
schemes based on the direct optimization algorithm of Wu and Yang (WY)310 have
been employed. While the van Leeuwen–Baerends and the ZMP schemes employ a
numerical representation of the potential on a grid, the algorithm of Wu and Yang
expands the potential in a suitable basis set. Even though the details differ, all
embedding schemes avoiding approximations for vT[rI,rII] are based on such an
optimization of an effective potential.

Within DFT-in-DFT embedding schemes, approaches calculating an approximate

embedding potential are usually computationally not advantageous. For determin-

ing the embedding potential, one or more calculations on the full system are

required, which embedding schemes usually aim to avoid. Nevertheless, such

calculations can be employed to demonstrate that schemes based on the embedding

potential of eqn (82) do indeed reproduce the electron density of a full calculation.

Moreover, the reconstruction of accurate embedding potentials can further guide the

development of new approximations to the kinetic-energy component of the

embedding potential vT[rI,rII]. The latter was the aim of a recent study of Fux

et al.,146 and a similar study was performed by Goodpaster et al.311 However, such

schemes are not suitable for practical calculations. Therefore, Goodpaster et al.

extended their scheme312 by introducing a pairwise approximation that relies on a

further partitioning of the frozen environment density (see eqn (73). Instead of

calculating the kinetic-energy component of the embedding potential as in eqn (125),

it is approximated as

~v
ðpairÞ
T ½rI; r

ðnÞ
II � �

X
n

vs½rI� � vs½rI þ rðnÞII � ð126Þ

This approximation turns out to be very accurate for small water clusters, and might

provide a way to the efficient simulation of condensed-phase systems.

Within WFT-in-DFT embedding schemes, a DFT calculation on the full system is

often feasible, while the correlated WFT calculation on the small subsystem of

interest becomes the bottleneck. Thus, the use of accurate embedding potentials

becomes feasible in this case. This was realized by Roncero et al., who were the first

to propose the use of OEP methods in the context of WFT-in-DFT embedding.10

Their scheme starts with a DFT or HF calculation on the full system, from which the
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total electron density rtot(r) is obtained. This density is then partitioned into an

active subsystem and its environment, and an accurate embedding potential for the

active subsystem is determined with the ZMP algorithm by requiring that the chosen

density of the active subsystem is reproduced in a DFT or HF calculation. This

potential is then included in the wavefunction based treatment of the active

subsystem. Note that, even though no approximate kinetic-energy functional is

used, such a scheme still introduces several approximations: First, the total electron

density is calculated with approximate DFT or HF. Second, neither the total density

nor the embedding potential are refined to account for the difference between the

DFT or HF electron density and the one obtained from a correlated wavefunction

based treatment (i.e., an accurate DFT-in-DFT embedding potential is used as

approximation to the WFT-in-DFT embedding potential). Finally, when construct-

ing a suitable partitioning of the total density, it is difficult to ensure that the

subsystem densities are vs-representable. In particular when localized orbitals are

employed, these densities usually contain nodes, which makes them difficult to

reproduce with a local potential expanded in a finite basis set (see also the discussion

in ref. 146, 313, 314). To address the latter problem, Roncero et al. extended their

scheme to allow for an iterative refinement of the density partitioning.315

However, as for the DFT-in-DFT studies in ref. 146 and 311 discussed above, the

resulting density partitioning—and thus also the embedding potential—are not

unique. This shortcoming was addressed by Carter and co-workers, who defined a

unique partitioning by using the idea of partition density-functional theory (P-DFT)

of Wasserman and co-workers138,316 to require that the active subsystems and its

environment share a common embedding potential.11 Subsequently, they presented a

reformulation of the embedding theory in terms of an optimization of the embedding

potential, that allows for a conceptually simple implementation of WFT-in-DFT

embedding schemes that do not rely on approximate kinetic-energy functionals.12

Even though results were only presented for DFT-in-DFT embedding calculations,

this scheme can be easily extended to obtain accurate WFT-in-DFT embedding

potentials, provided a correlated WFT method that allows for an efficient calcula-

tion of the electron density is used.

In such a complete WFT-in-DFT scheme (i.e., one in which the density calculated

with WFT is used to construct an accurate embedding potential), the only remaining

approximations are those inherent to the (approximate) WFT treatment of the

subsystem of interest and the (approximate) DFT treatment of the environment as

well as the use of an approximate functional for the exchange–correlation compo-

nent of the embedding potential. However, all these approximations are justified and

controllable. The largest remaining obstacle for such complete WFT-in-DFT

schemes is the need for OEP methods. In combination with a finite orbital basis

set the reconstruction of the local potential corresponding to a given density is an ill-

posed problem.317,318 Therefore, the embedding potentials obtained with finite-basis

set OEP methods are in general not unique. This will affect the energy and density

from a correlated WFT calculation on the active subsystem as well as molecular

properties. Thus, numerically stable OEP methods that provide unambiguous

embedding potentials are required319–321 and a new approach addressing these issues

has been developed recently.322

The existing completeWFT-in-DFTmethods using accurate embedding potentials11,12

can also be applied directly to a state-specific WFT approaches for calculating excited

states. This can either be done in an approximate fashion using a common frozen

environment density or in a full treatment that determines a state-specific embedding
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potential. However, the extension to response theory is still an open issue, because this

will also require the calculation of an accurate kinetic-energy contribution to the

embedding kernel.

5 Case studies

5.1 Excited states of acetone in aqueous solution

The determination of solvatochromic shifts of acetone in water is one of the de facto

standards for evaluating the performance of theoretical approaches for describing

solvent effects on excitation energies. Numerous studies have employed a range of

electronic structure methods and embedding approaches (see ref. 221 for a non-

exaustive summary up to 2005). In Table 1, some of these results are summarized.

The simplest approach are supermolecular calculations, where acetone and a

number of water molecules are considered explicitly. However, such a treatment is

computationally costly and often only a small number of solvent molecules can be

considered. For instance, Serrano-Andrés et al.323 performed CASPT2 calculations

in which the effect of the solvent was modeled by only two additional water

molecules. For these small clusters, static structures with an optimized geometry

were used. While this resulted in a good agreement with experiment, it cannot be

expected that these results are converged with respect to the size of the solvent shell.

Moreover, dynamical effects resulting from the many different possible solvent

structures and the associated temperature effects such as peak broadening are not

included.

Alternatively, a treatment with periodic boundary conditions avoids errors

introduced by a truncation of the system, and in combination with molecular

dynamics allows for an inclusion of temperature effects by averaging over a number

of snapshots. Such a treatment was employed by Bernasconi et al.324 using

Car-Parrinello molecular dynamics (CPMD) in combination with TDDFT. How-

ever, with non-hybrid functionals spurious charge-transfer excitations can obscure

the picture, which can be alleviated with hybrid functionals.325

Another possibility is the use of continuum solvation models for including the

effect of the environment. As discussed above, such an approach implicitly accounts

for the dynamics of the solvent, but cannot describe specific interactions, in

particular hydrogen bonding. Therefore, the agreement with experiment can be

rather poor.224 The popular solution for this shortcoming is the inclusion of a few

solvent molecules to the active subsystem.323,326 However, it should be noted that

this again requires a suitable averaging over different solvent configurations.

A QM/MM description can significantly improve results with respect to con-

tinuum methods, while being significantly cheaper than the full quantum-mechanical

treatment including solvent dynamics. Nevertheless, an averaging over a large

number of solvent configurations is still required. The relative importance of

different parameters characterizing the force fields used to represent the environment

have been investigated in the recent benchmark studies of Sneskov et al.330 and of

Schwabe et al.,224 using DFT and LR-CCSD cluster for the active subsystem. In the

M2P0 model, static partial charges, dipoles, and quadrupoles are used to represent

the solvent, but the polarization of the environment is not included. As shown in

Table 1, such models underestimate the solvent shift.

Including the polarization of the environment through induced dipoles in the

M2P2 model improves the solvatochromic shifts significantly. Furthermore, the

analysis of Sneskov et al.330 shows that for acetone, the main effect of the solvent
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polarization is captured already in the description of the ground-state, with only

minor contributions to excited state. A curious finding is that for the better force

field models (M2P2), the excitation energies are slightly overestimated for both DFT

and coupled cluster. Furthermore, including two water molecules explicitly in the

active subsystem results in an improvement of the excitation energies, while the shift

remains accurate with respect to experiment. As the change in the shift is much less

than for the excitation energies, this could indicate that there are electronic effects

that are not captured by the QM/MM description. Moreover, the differences to the

results obtained with effective fragment potentials234 indicates that these results are

still quite sensitive to the parametrization of the MM model.

In QM/MM calculations, another important question is the size of the MM

environment. The studies discussed so far always employed rather large solvent

Table 1 Excitation energies and solvatochromic shifts (in eV) for the n - p* transition of
acetone in aqueous solution. The different electronic structure methods and models represent-
ing the solvent are indicated. For the solvent model, ‘‘S(n)’’ indicates that n solvent molecules
have been explicitly included in the active subsystem. Additional details are given in the text
and in the original references

Method Basis Solvent E Shift

Supermolecular calculations

CASPT2323 ANO S(2) 4.54 0.18

TDDFT/BLYP324 plane wave S(periodic) 4.37 0.19

TDDFT/PBE0325 plane wave S(periodic) 4.51 0.20

Continuum solvation models

TDDFT/CAM-B3LYP224 aug-cc-pVDZ PCM 4.59 0.08

CASSCF326 6–31G* S(1) + PCM 4.49 0.21

CASPT2323 ANO S(2) + DC 4.50 0.14

QM/MM with non-polarizable force fields

TDDFT/CAM-B3LYP224 aug-cc-pVDZ M2P0 4.63 0.12

CCSD224 aug-cc-pVDZ M2P0 4.69 0.11

QM/MM with polarizable force fields

TDDFT/CAM-B3LYP224 aug-cc-pVDZ M2P2 4.75 0.24

S(1) + M2P2 4.70 0.19

S(2) + M2P2 4.68 0.17

CCSD224 aug-cc-pVDZ M2P2 4.80 0.22

TDDFT/B3LYP234 Dunning-Hay EFP-1 4.59 0.21

TDDFT/B3LYP225 aug-cc-pVTZ MM-5 4.53 0.12

MM-5 + PCM 4.57 0.16

Frozen Density Embedding (PW91k approximation)

TDDFT/SAOP292 TZP LDA/DZ 4.67 0.20

TDDFT/SAOP70 TZ2P LDA/DZP 4.63 0.16

CC270 aug-cc-pVDZ LDA/DZP 4.55 0.20

Exp.327–329 4.68–4.69 0.19–0.21
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shells because the electrostatic effects are of long range. As a large MM part will

necessarily mean more expensive molecular dynamics calculations, Steindal et al.225

have devised a three-level approach, where specific interactions are included with a

polarizable QM/MM model (in the Table, MM-5 indicates that waters within a

radius of 5 Å are treated explicitly), whereas the bulk contribution is treated with a

continuum model. This leads to a faster convergence of the excitation energy with

respect to the size of the explicit solvent environment.

The application of approaches based on FDE with approximations for the kinetic

energy part of the embedding potential to study solvatochromic shifts has been

pioneered by Neugebauer et al.292 They employed snapshots from CPMD simula-

tions of both the gas phase and the solution to obtain geometries of acetone

surrounded by 88 water molecules. For those TDDFT calculations were carried

out, in which the solvent environment was included via the FDE embedding

potential. One important finding of ref. 292 was that nearly identical solvent shifts

are obtained when the FDE embedding potential is constructed from an approx-

imate density. Thus, they suggested to use a superposition of densities obtained for

isolated water molecules. This approach was subsequently also used70 in combina-

tion with CC2 calculations for the active subsystem. Both with TDDFT and with

CC2 a very good agreement with experiment is found for the solvatochromic shifts.

However, with CC2 the absolute excitation energies are systematically underesti-

mated both in the gas-phase and for solvated acetone, which could be attributed to

the approximate treatment of correlation in CC2 and possibly also the use of BLYP-

generated structures that do not yield proper C=O distances.

It should be noted that the FDE calculations of Neugebauer et al.292 use a fixed

embedding potential which does not include the polarization of the environment,

neither for the ground nor for the excited state. In ref. 70, only the ground-state

polarization was included via freeze-and-thaw iterations. Both studies include only

the uncoupled embedding contributions in the response part, i.e., the response of the

environment is not included. Thus, polarizable QM/MM approaches guard an

advantage over uncoupled FDE in this respect.296 However, the recent developments

for including this polarization at the response level also for FDE should make the

two methods comparable for general response properties. On the other hand, FDE

keeps the advantage of retaining a full electron density for the solvent and should,

therefore, provide a more accurate embedding potential, in particular at shorter

distances.296

5.2 Electronic spectra in solid oxides: MgO in bulk and in the presence of defects

Unlike the case of a molecule in solution, there is no single model system for

evaluating new methodologies in solid-state applications. Here, we have chosen to

discuss MgO because it is a relatively simple ionic material and well-characterized

experimentally. Therefore, it has been the subject of several theoretical studies of

electronic states arising from excitations in the bulk, surfaces, or of so-called F+or

F-centers, which are due to vacant oxygen sites. The results of some of these studies

are summarized in Table 2.

Excitations in the bulk have been studied by plane-wave DFT/PBE229 as well as

embedded clusters44,229 and correlated solid-state approaches.331–333 Unsurprisingly,

one sees that the latter yield the best agreement with experiment, whereas DFT

calculations severely underestimate the excitation energies. On the other hand,

embedded cluster calculations employing wavefunction based methods perform
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rather well. Already CIS is significantly closer to experiment than the DFT/PBE

calculations. The CISD calculation of Shluger et al.44 using a polarizable force field

to describe the environment yields results in excellent agreement with experiment.

However, one cannot rule out a such a good agreement is not due to fortuitous error

cancellation.

On the other hand, the results of Carter and coworkers229 employing a better

correlation method (CASPT2) in combination with a static point charge description

of the environment are about 1 eV below experiment. Moreover, the change in

excitation energies with increased cluster size in these calculations229 does not show a

clear convergence trend and the results are sensitive to the choice of the point

charges for the environment. This could be due to an insufficient inclusion of Pauli

repulsion via effective core pseudopotentials at of Mg2+atoms close to the embedded

clusters.

Table 2 Singlet (doublet) excitation energies (in eV) for bulk MgO and F (F+) vacancy defects
on oxygen centers calculated for different cluster models and representations of the environ-
ment. Here ‘‘Madelung’’ denote a point-charge embedding potential, ‘‘AIMP’’ is used to
indicate the use of ab initio model potentials for the environment surrounded by point charges,
and ‘‘FDE’’ is used if FDE-derived potentials. Further details can be found in the text and the
original references

Method Cluster Environment E

Bulk MgO

DDFT/PBE229 Periodic 4.48

GW/BSE331–333 Periodic 7.2–7.7

CIS44 Mg4O4 (MgO)108 Force fielda 8.9

CISD44 7.5

CASPT2229 Mg4O4 (MgO)252 Madelungb 6.62

Madelungc 6.87

MRCISD229 Mg4O4 (MgO)252 FDE 5.63

Exp.334,335 7.5–7.8

F center (neutral O vacancy defect, 2 electrons trapped)

DSCF-HF336 Mg14O12 (MgO)1674 Madelung 2.62

(MgO)168 AIMP 7.45

MRCI337 Mg14O12 Mg2+24 AIMP 6.00

CASPT2338 5.59

CASSCF339 Mg14O12 Mg2+157 O
2�
159 AIMP 6.45

CASPT2339 5.47 (5.01d)

Exp.340 5.03

F+ center (O� vacancy defect, one electron trapped)

MRCI337 Mg14O12 Mg2+24 AIMP 5.75

CASPT2338 5.95

CASSCF339 Mg14O12 Mg2+157 O
2�
159 AIMP 6.73

CASPT2339 5.96 (5.22d)

Exp.340 4.96

a Polarizable force field using a semiempirical shell-model for the ion polarizabilities. b Formal

point charges (	2) on the site positions on the atoms in the environment, with effective core

potentials at positions of Mg atoms close to the cluster. c Fractional point charges from a

periodic calculation. d Calculated on a reoptimized geometry in the presence of the vacancy.
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It is also interesting to see that an FDE description of the environment in

combination with a MR-CISD treatment of the active subsystem also underesti-

mates the excitation energies rather strongly. This is apparently in contrast to the

good performance of FDE for other local excitations for impurities in ionic

solids.70,288–290 This could be due to an insufficient account of Pauli repulsion by

the kinetic energy functionals in use, even though the authors argue from an analysis

of the embedding potential that this is not the cause of the problem.229 Nevertheless,

it might merit further investigation, for instance with the recently developed FDE

scheme employing accurate optimized embedding potentials.11,12 In addition, it

should be pointed out that the FDE calculations do not account for the response of

the environment, since the fixed embedding potential obtained for the ground-state

is also employed for the excited states.

Finally, we turn to local excitations of defect sites, which represent a situation also

encountered when describing materials with impurities or doping agents. Comparing

the results of Miyoski et al.336 with point-charge embedding and AIMPs clearly

shows the importance of the inclusion of non-classical, repulsive parts of the

embedding potential. With a purely electrostatic embedding potential, a spurious

delocalization of the embedded cluster wavefunction over the environment occurs.

The use of AIMPs prevents this,257,336 even though the DSCF-HF calculation

overestimates the experimental excitation energy significantly. This can be improved

if electron correlation is included in an appropriate fashion.338,339 Moreover,

comparing the two CASPT2 results shows that a sufficiently large environment

and a more flexible description of the buffer region are still important.

For the defects another important aspect is the proper description of the

geometry. Relaxation effects due to the creation of the vacancies need to be included.

In the examples discussed here, these were found to be as important as electron

correlation, as they lower the excitation energies of the F and F+ centers by about

0.5 and 0.8 eV, respectively. If these are included, the CASPT2 results are in very

good agreement with the experimental values. It should be noted here that the same

accuracy is not achieved for both defects. This is due to the more delocalized nature

of the excited states for the F+ centers, which would likely require larger clusters for

the active subsystem as well as extended basis sets.

6 Concluding remarks

In this review we have presented the ingredients needed for a quantum-chemical

description of electronic excitations in complex chemical systems. This includes

electronic structure methods capable of treating excited states as well as embedding

methods for extending their applicability from relatively small molecules to larger

systems. In this respect, we have attempted to outline the strengths and weaknesses

of the different approaches in practical applications, with a particular focus on the

treatment of local electronic excitations. From these it becomes evident that both a

proper inclusion of electron correlation in the electronic structure calculation and an

appropriate inclusion of non-classical contributions to the embedding potential at

short range as well as of long-range electrostatic effects are all decisive. However, no

single method or combination of methods can claim to be accurate, computationally

affordable, and generally applicable at the same time.

Thus, when considering quantum-chemical embedding schemes it is more relevant to

think of them as a framework in which different approximations can be made in

practice, in order to arrive at a good balance between accuracy and computational cost.
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We believe that the FDE theory can provide such a framework. First, for the ground-

state it allows the seamless combination of density-functional and wavefunction

theory-based electronic structure methods through their interaction via a formally

exact DFT-based embedding potential. Second, in combination with response theory,

the same can be achieved for electronically excited states. Going beyond local excited

states, FDE-based approaches offer the additional advantage that they are able to

describe the coupling of electronic excitations of different subsystems, since a quantum-

mechanical description is retained for all parts.

Nevertheless, there are still several challenges FDE-based approaches should

address in the future. The first one is the development of approximations to the

kinetic-energy component of the embedding potential that are both computationally

efficient and sufficiently accurate to describe, for instance, situations where the active

subsystem and its environment are linked by strong interactions such as covalent

bonds. Methods based on the use of accurate optimized embedding potentials might

prove to be a valuable tool in this respect, but these will probably only be feasible

within WFT-in-DFT embedding schemes. Second, with the recent emergence of

WFT-in-DFT approaches for calculating excited states and other molecular proper-

ties with response theory, the proper inclusion of couplings between the subsystem

remains a challenge and will require additional methodological developments as well

as flexible computer implementations and applications of such schemes.
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