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With our recent paper,1 we contribute to the development
of improved approximations to the functional derivative of the
nonadditive kinetic energy,

vT [ρ1, ρ2](r) = δT nadd
s [ρ1, ρ2]
δρ1(r)

= δTs[ρtot]
δρtot(r)

− δTs[ρ1]
δρ1(r)

,

(1)

which is of central importance in subsystem density-
functional theory and in the closely related frozen-density
embedding (FDE) scheme. This potential vT [ρ1, ρ2](r) is a
bifunctional of the densities ρ1(r) and ρ2(r) of the active
and of the frozen subsystem, respectively. Different strategies
are possible for approximating vT [ρ1, ρ2] in practical calcula-
tions, e.g., by approximating either the noninteracting kinetic
energy Ts[ρ] in Eq. (1) or the bifunctional T nadd

s [ρ1, ρ2] as a
whole.

For many applications of the FDE scheme T nadd
s [ρ1, ρ2]

itself is actually not needed. The electron density as well as
all molecular properties that directly depend on it are deter-
mined by vT [ρ1, ρ2]. As Wesolowski points out in his com-
ment, previous work has shown that the accuracy of a given
approximation T̃ nadd

s [ρ1, ρ2] (where the tilde is used to de-
note the approximate bifunctional) does not, in general, cor-
relate with the accuracy of its functional derivative ṽT [ρ1, ρ2].
Consequently, we focus on developing approximations for
vT [ρ1, ρ2] and not for T nadd

s [ρ1, ρ2]. We consider this strategy,
which is also well-known for exchange–correlation potentials
(see, e.g., Ref. 5), to be most promising.

To study the bifunctional vT [ρ1, ρ2], we implemented
a numerical inversion procedure to accurately calculate
vT [ρ0

1 , ρ
0
2 ](r) for a given pair of densities ρ0

1 (r) and ρ0
2 (r). In

Ref. 1, we applied this procedure to obtain accurate reference
potentials vT [ρ0

1 , ρ
0
2 ](r) for particular choices of ρ0

1 (r) and
ρ0

2 (r) in a representative set of model systems. These accurate
reference potentials are then compared to those obtained from
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popular approximations for the bifunctional ṽT [ρ0
1 , ρ

0
2 ](r) in

order to identify the reason for their shortcomings, in particu-
lar the dramatic failure for subsystems connected by covalent
bonds.2–4 Of course, such a strategy will only provide lim-
ited information on the bifunctional vT [ρ1, ρ2]. However, our
paper clearly demonstrates that already this limited informa-
tion provides valuable insights, which can serve as guidance
for constructing improved approximations to the bifunctional
vT [ρ1, ρ2] in future work.

Since points (iii) and (iv) of Wesolowski’s comment are
not concerned with Ref. 1, we will start by discussing points
(i), (ii), and (v). Concerning points (i) and (ii), we would like
to emphasize that—as the title of Ref. 1 clearly indicates—our
goal was to provide accurate reference potentials that could
serve as a first step towards improved approximations for
vT [ρ1, ρ2]. This represents a valid and actually very impor-
tant goal in itself. Therefore, the criticism that practical cal-
culations would also require the knowledge of T nadd

s [ρ1, ρ2]
misses the point of our paper.

In point (v), which is the only part of his comment that is
directly related to the results of our paper, Wesolowski ques-
tions the soundness of our numerical inversion procedure. We
vigorously stress that this severe accusation is not corrob-
orated by any data. In fact, the numerical accuracy of our
inversion procedure, as well as its limitations are discussed in
great detail in Sec. III of our paper. Therefore, Wesolowski’s
statement that our target densities are not likely to possess
nodes is puzzling to us, considering that Figures 1 to 4 (in-
sets c and e) in our paper clearly show their nodal structure,
whereas the reconstructed densities (shown in the same fig-
ures) do not possess nodes.

Wesolowski suggests that the accurate nonadditive ki-
netic energies, calculated as described in his point (ii), could
be used for an additional verification. Two tests are proposed
in his point (ii.2). First, Wesolowski claims that the total ki-
netic energy obtained with our accurate T nadd

s [ρ1, ρ2] should
be compared to the one from the supermolecular calculation.
Such a comparison is, however, pointless, since the latter is
used to define our accurate T nadd

s [ρ1, ρ2]. Therefore, the two
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TABLE I. Accurate nonadditive kinetic energies (in eV) for the model sys-
tems considered in Ref. 1.

(H2O)2 FHF− BH3NH3 C2H6

T nadd
s [ρ1, ρ2] 1.283 7.253 8.190 21.276

will always be equal. Second, he insists that we should verify
that our accurate T nadd

s [ρ1, ρ2] are larger than zero. As can be
seen from Table I, this is obviously the case.

The remaining points (iii) and (iv) of Wesolowski’s com-
ment are actually not concerned with Ref. 1 at all, but discuss
earlier work by two of us6 and by himself and co-workers.7

Nonetheless, we would like to take the opportunity to clarify
these issues.

In the former paper,6 the exact behavior of the kinetic-
energy component vT [ρ1, ρ2] of the embedding potential was
investigated in the limit of a large separation between the sub-
systems (“long-distance limit”), and exact expressions at the
active and at the frozen subsystem were derived. We then
showed that at the frozen subsystem, this exact limit is not
described correctly by any of the existing approximations for
vT [ρ1, ρ2] and proposed a correction that enforces the correct
form.

In the latter paper,7 Wesolowski and co-workers followed
up on our work and investigated a closely related limit, the
embedding potential at the nuclear cusps. Using ideas sim-
ilar to those of Ref. 6, they proposed an approximation for
vT [ρ1, ρ2] that enforces the correct behavior at the nuclei by
employing the von Weizsäcker expression. Wesolowski and
co-workers approximate T nadd

s [ρ1, ρ2] as an explicit density
functional, whereas in Ref. 6 the potential vT [ρ1, ρ2] is ap-
proximated as an implicit density functional (see below for
details). Even though the former might be preferable from a
theoretical point of view, the performance of the two approx-
imations, in practice, will have to be assessed. We intend to
present such a comparison elsewhere.

In his comment, Wesolowski objects to our statement that
the approximation for vT [ρ1, ρ2] proposed in Ref. 6,

ṽRef. 6
T [ρ1, ρ2](r) = δT̃ nadd

s [ρ1, ρ2]
δρ1(r)

+ vcorr
T [ρ1, ρ2](r),

(2)

where T̃ nadd
s [ρ1, ρ2] is an existing approximation to the non-

additive kinetic energy and vcorr
T [ρ1, ρ2](r) is a correction that

enforces the correct long-distance limit,

vcorr
T [ρ1, ρ2](r) = − exp

[

−
(

ρ1(r)
α ρ2(r)

)2
]

×
(

vnuc
2 (r) +

∫
ρ2(r ′)

|r − r ′|
d r ′

+ δEnadd
xc [ρ1, ρ2]
δρ1(r)

+ δT̃ nadd
s [ρ1, ρ2]
δρ1(r)

)
,

(3)

is an (implicit) bifunctional of the densities ρ1 and ρ2.
Note that, in contrast to what is claimed in Wesolowski’s
comment, vcorr

T [ρ1, ρ2] does not correct for errors in
the exchange–correlation functional (for details, see
Ref. 6).

Obviously, the right-hand side of Eq. (3) depends on the
density functions ρ1(r) and ρ2(r). Therefore, we consider
Wesolowski’s notation to drop this dependence on ρ1 and
ρ2 on the left-hand side and to refer to this correction as
the “function vcorr

T (r)” confusing and highly misleading.
However, the correction of Ref. 6 depends, in addition to
the densities ρ1 and ρ2, on the nuclear potential vnuc

2 (r). As
given in Eq. (3), our correction is thus obviously a functional
of ρ1 and ρ2 that in addition contains the nuclear potential
vnuc

2 (r). Therefore, it is not a function as suggested by
Wesolowski, but could be better described as a tri-functional
vcorr

T [ρ1, ρ2, vnuc
2 ](r), even though its functional dependence

on the potential may have a trivial form. Once the nuclear
potential is chosen appropriately, Eq. (3) reduces to a
bifunctional.

Clearly, we are considering a system-dependent correc-
tion if we insert the nuclear Coulomb potential for vnuc

2 (r).
But as is actually pointed out in Wesolowski’s comment,
also vnuc

2 (r) can be interpreted as a true density functional
be means of the first Hohenberg–Kohn theorem. In the lim-
iting case of two infinitely separated subsystems considered
in Ref. 6 it could, for instance, be directly obtained by in-
specting the cusps of ρ2(r) (“Bright-Wilson argument”). Of
course, such a procedure is not of any interest for practical cal-
culations, since the nuclear charges and positions are known
beforehand. Nevertheless, this argument shows that Eq. (3)
can be understood as a system-independent bifunctional of
the densities ρ1 and ρ2.

Finally, we want to stress that the rather subtle question
whether or not the correction proposed in Ref. 6 is an implicit
bifunctional is completely unrelated to the contents of Ref. 1.
It further bears no relevance for the usefulness or the accuracy
of this correction in practical calculations, which was demon-
strated in Refs. 2 and 6.
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