
Software News and Updates
PyADF — A Scripting Framework for Multiscale

Quantum Chemistry

CHRISTOPH R. JACOB,1 S. MAYA BEYHAN,2 ROSA E. BULO,2 ANDRÉ SEVERO PEREIRA GOMES,3 ANDREAS W. GÖTZ,4

KARIN KIEWISCH,2 JETZE SIKKEMA,2 LUCAS VISSCHER2

1Center for Functional Nanostructures, Karlsruhe Institute of Technology (KIT),
Wolfgang-Gaede-Str. 1a, 76131 Karlsruhe, Germany

2Amsterdam Center for Multiscale Modeling (ACMM), VU University Amsterdam,
De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands

3Laboratoire PhLAM, Université de Lille 1, CNRS UMR 8523, Bat P5,
F-59655 Villeneuve d’Ascq Cedex, France

4San Diego Supercomputer Center, University of California San Diego,
9500 Gilman Drive MC0505, La Jolla, California 92093-0505

Received 18 January 2011; Revised 7 March 2011; Accepted 20 March 2011
DOI 10.1002/jcc.21810

Published online 3 May 2011 in Wiley Online Library (wileyonlinelibrary.com).

Abstract: Applications of quantum chemistry have evolved from single or a few calculations to more complicated
workflows, in which a series of interrelated computational tasks is performed. In particular multiscale simulations, which
combine different levels of accuracy, typically require a large number of individual calculations that depend on each
other. Consequently, there is a need to automate such workflows. For this purpose we have developed PyAdf, a scripting
framework for quantum chemistry. PyAdf handles all steps necessary in a typical workflow in quantum chemistry and is
easily extensible due to its object-oriented implementation in the Python programming language. We give an overview
of the capabilities of PyAdf and illustrate its usefulness in quantum-chemical multiscale simulations with a number of
examples taken from recent applications.

© 2011 Wiley Periodicals, Inc. J Comput Chem 32: 2328–2338, 2011

Key words: multiscale; scripting; workflow; embedding

Introduction

In modern applications of quantum-chemical program packages,
one usually needs to perform series of calculations. For instance,
for the same molecule a single calculation is in general not suffi-
cient, but calculations using different theoretical methods, different
basis sets, different technical settings, and in many cases also using
different program packages are necessary. Furthermore, such series
of calculations are mostly needed not only for a single molecular
structure, but for many different ones.1, 2

In addition, these calculations are commonly part of a collec-
tion of tasks that are interrelated, i.e., the results of one calculation
serve as input for a subsequent one.3, 4 A basic example of such a
workflow would be performing geometry optimizations for a series
of molecules using density-functional theory (DFT) with a smaller
basis set, followed by single-point energy calculations using a more
accurate wave-function theory (WFT) method and/or a calculation
of molecular properties. Finally, the appropriate results have to be
extracted from the output files and have to be processed to obtain
the sought-after quantities (e.g., total energy differences).

Clearly, there is a need to automate these workflows. Many
computational chemists have developed their own solutions for this
purpose, mostly shell scripts or small programs (see, e.g., ref. 5).
However, these usually address only certain steps, such as generating
input files or extracting results from output files. Some quantum-
chemical program packages take a further step by providing a
scripting interface. For instance, NWChem6 offers a Python inter-
face7 for executing simple workflows, Molpro8 provides scripting
facilities in its input files and produces XML output for an eas-
ier post-processing of results, Adf9, 10 comes with tools for the
automatic generation of input files and for easily extracting the

Correspondence to: Ch. R. Jacob; e-mail: christoph.jacob@kit.edu

Contract/grant sponsor: Deutsche Forschungsgemeinschaft (DFG) (Center
for Functional Nanostructures), The Netherlands Organization for Scientific
Research (NWO) (Veni and Vici grant), Ministère chargé de la Recherche,
Région Nord-Pas de Calais, Fond Européen de Développement Economique
des Régions (FEDER), German Academic Exchange Service (DAAD)
(Postdoc-Programme)

© 2011 Wiley Periodicals, Inc.



PyADF — A Scripting Framework for Multiscale Quantum Chemistry 2329

results of calculations,11 and the MoleControl12 add-on to Tur-
bomole13, 14 allows for the execution of series of calculations and
simple workflows.

However, as workflows become more and more involved, ad hoc
shell-scripting solutions reach their limitations. Furthermore, the
existing scripting interfaces are usually specific to one quantum-
chemical program package and can often only handle parts of the
required workflows. Therefore, more flexible and general solutions
will be useful.

In the area of chemo- and bio-informatics, where very large
datasets are generated and processed, general-purpose workflow
engines that allow the user to organize and schedule different tasks
(usually using a graphical user interface) are very common.15, 16

Such workflow engines have also been adapted to handle com-
putational chemistry problems, in particular in the context of grid
computing.17–20 However, these solutions are mostly either tailored
to executing a single program package (see, e.g., ref. 21), or very
general and thereby present significant obstacles for their initial use
and for the extension to tasks from quantum chemistry.

In the past years, work in our groups has focussed on “quantum-
chemical multiscale simulations,” which combine different levels
of quantum-chemical descriptions. These are based on the frozen-
density embedding (FDE) scheme initially proposed by Wesolowski
and Warshel22 (following earlier work by Senatore and Sub-
baswamy23 and by Cortona24) and its extension to WFT-in-DFT
embedding, first proposed by Carter and coworkers.25–28

Particularly for such quantum-chemical multiscale simulations
one encounters very complex workflows that are beyond the capabil-
ities of standard tools. Typically, they involve hundreds of individual
calculations, and the results of a subset of these calculations are
needed as input for following steps. For instance, applications of
the FDE scheme to calculate solvent effects on molecular proper-
ties29–31 require the construction of an approximate solvent electron
density, followed by an FDE calculation of the molecular property
of interest for the embedded solute molecule. This needs to be done
for a large number of snapshots taken from a molecular dynam-
ics simulation. Similarly, a subsystem-DFT treatment of proteins32

requires calculations for all subsystems (e.g., the individual amino
acids), each embedded in an environment constructed from all other
subsystems. For WFT-in-DFT embedding calculations (see, e.g.,
ref. 33), it is necessary to combine different quantum-chemical pro-
gram packages and to pass the embedding potential and/or the frozen
environment electron density between these programs.

To automate these rather complicated workflows, we have devel-
oped PyAdf, a scripting framework for quantum chemistry. It
handles all the steps required in typical workflows of quantum
chemistry: generation of input files, execution of the different pro-
grams, error handling, as well as extraction and post-processing of
the results and offers a very flexible and extensible framework for
combining these different steps. PyAdf is written in the Python
programming language34 (for an introduction to Python from the
perspective of computational sciences, see, e.g., refs. 35 and 36).

Even though the functionality available in PyAdf currently
focusses on quantum-chemical multiscale simulations, it is in no
way limited to this type of calculations. Instead, it provides a general
framework for processing workflows in quantum chemistry, which
can easily be extended to additional computational tasks. Despite
its name — which indicates its historical origin as an extension to

the Adf package — PyAdf is not specific to a single program, but
works with a number of different quantum chemistry codes. In this
article, we give an overview of the PyAdf scripting framework, and
illustrate its usefulness by discussing a number of examples.

This work is organized as follows. First, we outline the design
of PyAdf and give an overview of its most important features.
This is followed by a demonstration of the capabilities of PyAdf
for automating workflows commonly encountered in quantum
chemistry and an overview of various applications of PyAdf in
quantum-chemical multiscale simulations. Finally, we summarize
and give an outlook on planned and ongoing developments.

PyAdf — Design and Overview

The driving idea behind PyAdf is the definition of a framework
that will provide mechanisms for both controlling the execution of
different computational tasks and for managing the communication
between these tasks. This should be achieved in such a way that users
are provided simple, yet powerful ways to define their computational
workflows.

To this end, PyAdf makes use of object-oriented programming
techniques in the high-level programming language Python. The
central paradigm of object-oriented programming is the definition of
classes, i.e., objects that contain both data (also know as “attributes”)
and actions (the so-called “methods”). The definition of different
classes allows us to group together the different aspects involved
in one step of the workflow into a single entity. This way, as many
details as possible are hidden from the user, who only needs to
know how to use these classes on a higher level. Such an object-
oriented design has further advantages. It is possible to establish
a hierarchical relation between classes (known as “inheritance”),
so that one can utilize existing classes to construct new ones. The
classes provided by PyAdf can then easily be extended by the user.
This makes it, for instance, rather straightforward to incorporate
scientific codes from third parties.

The input files to PyAdf are, in effect, simply Python scripts,
so the full power of the language and its numerous extensions is
immediately available to the user. To illustrate how we utilize the
classes provided by PyAdf to arrive at a very simple, high-level
definition of a basic workflow, a sample input file is given in Figure 1.

This input defines an elementary workflow: The molecular coor-
dinates are read from a file, a single point calculation is performed
with Adf, and finally the magnitude of the dipole moment is
extracted from the resulting output and printed.

In the first line, a molecule object (i.e., an instance of the
molecule class) is created. In the simplest form, which is used
here, it is initialized by reading the molecular coordinates from

Figure 1. A minimal PyAdf input file.

Journal of Computational Chemistry DOI 10.1002/jcc



2330 Jacob et al. • Vol. 32, No. 10 • Journal of Computational Chemistry

an xyz-file. Internally, PyAdf uses the Openbabel library37–39

for storing the molecular coordinates so that any file format sup-
ported by Openbabel can be understood. The molecule class
of PyAdf has a number of methods for manipulating molecular
coordinates (e.g., joining different molecules, splitting a large sys-
tem into its molecular fragments, adding hydrogen atoms to protein
structures, and aligning molecules). Most of these methods also rely
on functionality provided by Openbabel.

In the second line, a job object is initialized. PyAdf provides a
number of different job classes for different types of calculations.
Here, the class adfsinglepointjob, which represents a single
point DFT calculation with theAdf program, is used. There are other
job classes for other types of calculations (e.g.,adfgeometryjob
for geometry optimizations, adfnmrjob for the calculation of
NMR chemical shifts, and adfcpljob for calculating spin–spin
coupling constants with Adf, or daltonsinglepointjob and
diracsinglepointjob for single point calculations with the
Dalton40 and Dirac41 programs, respectively). These job classes
are part of a class hierarchy, i.e., they are related by inheritance.
A complete list of the types of calculations currently available in
PyAdf can be found in the PyAdf documentation (available at
http://www.pyadf.org).

Creating a job object only defines the type of calculation and
allows one to specify the technical settings (such as basis set and
exchange–correlation functional) that should be used in this calcu-
lation. It does not execute the calculation itself. This is achieved by
calling the job’s runmethod, as shown in the third line of the script
considered here. This method will generate the necessary input files,
call the appropriate executable(s), and save the output file(s) pro-
duced by the program (both standard output and binary restart files,
depending on the program).

The job’srunmethod returns a results object. This results object
is an instance of a results class corresponding to the type of the job.
Using it, the results of the calculation can be accessed. For instance,
on the fourth line of the considered input file, the magnitude of the
dipole moment is extracted with the get_dipole_magnitude
method. There is a hierarchy of such results classes that is analo-
gous to the job class hierarchy. Each of them provides methods for
accessing the different quantities that have been calculated. Which
quantities are available obviously depends on the type of the cal-
culation. A full list of predefined computational tasks and of the
associated classes can be found in the PyAdf documentation.

Internally, PyAdf implements a file manager, which stores the
files produced by each of the calculations. The results objects then
use this file manager to access these files. If a certain quantity is
requested, the corresponding method of the results object knows
how to extract the quantity from these files — either by using a
regular expression to extract it from the output file or by reading it
from binary restart files. For the convenience of the user, the output
of PyADF clearly identifies the related files for each job, so that
these files can easily be inspected in case of a problem.

PyAdf also provides extensive restart facilities. Because Python
is an interpreted language, errors in the PyAdf input file will be
detected only at runtime. Furthermore, it is of course possible that
one of the programs called by PyAdf encounters an error condi-
tion during its execution. As a consequence, it can happen that a
PyAdf run is aborted after a large number of calculations have been

performed. In this case, PyAdf generates an archive of its results that
can be imported when re-running with a corrected input file. In such
a restarted run, the calculations that have already been completed
earlier will not be executed again. This is achieved by generating
a checksum of the input file(s) for each calculation. Before a cal-
culation is actually executed, PyAdf checks whether a calculation
with the same checksum has already been performed. If so, a results
object for this previous calculation is returned, using the files from
the previous run.

Automating Common Workflows in Quantum
Chemistry with PyAdf

A Simple Example: Calculation of NMR Shieldings

To demonstrate how the building blocks of PyAdf described in the
previous section (i.e., the molecule class as well as job and result
classes) can be used to construct quantum-chemical workflows, we
first consider a simple example: a geometry optimization followed
by a calculation of NMR shieldings. A flowchart of this workflow
is shown in Figure 2a, which also indicates which information has
to be exchanged between the different tasks.

First, the molecular coordinates are read from a file. Starting
from this initial structure, a geometry optimization is then performed
using a small basis set. This is followed by a single point calculation
for the optimized geometry, employing a larger basis set. Subse-
quently, a calculation of the NMR shieldings is performed. This
NMR calculation requires the results (most importantly, the MO
coefficients) of the previous single point calculation. Finally, the
calculated NMR shieldings are printed.

The input file in Figure 2b shows how such a workflow can
be realized with PyAdf. First, a molecule object is initialized
by reading the molecular coordinates from an xyz-file and a list
with the numbers of the nuclei for which the NMR shieldings
should be calculated is created (lines 1–5). After that, the settings
for the subsequent Adf calculations are initialized, specifying the
exchange–correlation functional and the numerical integration accu-
racy (lines 7–10). Then, an adfgeometryjob instance is created
and the job is run (lines 12–14). The run method returns a results
object, from which the optimized molecular coordinates (in form of
another molecule object) are obtained with the get_molecule
method (line 17). This new molecule object is then used to initialize
and run an adfsinglepointjob, for which a higher integra-
tion accuracy and a larger basis set are used (lines 19–22). The new
results object is then used to initialize and run anadfnmrjob (lines
24–26). Finally, theget_all_shieldingsmethod of the NMR
job’s results object is used to extract the calculated shieldings, which
can then be printed (lines 28–31).

Since all the features of the Python language are available in
PyAdf input files, it is easy to extend the simple workflow outlined
above. Among the many possibilities is the application of this work-
flow to a large number of molecules. This can be achieved by a loop
over all xyz-files in a given directory, allowing the calculations to
be performed for each of these molecules. If needed, the numbers of
the nuclei for which the NMR shieldings have to be calculated could
be determined for each of these molecules individually. To this end,
one can, for instance, use the functionality provided by Openba-
bel to identify the nuclei of interest using a SMARTS pattern.42

Journal of Computational Chemistry DOI 10.1002/jcc



PyADF — A Scripting Framework for Multiscale Quantum Chemistry 2331

Figure 2. (a) Flowchart of a simple quantum-chemical workflow. The steps in gray boxes stand for the
calculations performed with an external program. The large arrows indicate results that are passed between
the different tasks. (b) A PyAdf input file for realizing this workflow.

Furthermore, a calculation of the NMR shieldings for a reference
compound could be added, so that the calculated shieldings can be
converted to chemical shifts inside PyAdf before they are printed.

Running Calculations for Large Test Sets of Molecules

In recent years, work in our groups has focussed on quantum-
chemical multiscale simulations, and in particular on the frozen-
density embedding (FDE) scheme.22 In this DFT-based scheme,
the total electron density ρtot(r) is divided into the densities of N
subsystems ρ(n)(r) (n = 1, . . . , N), with

ρtot(r) =
N∑

n=1

ρ(n)(r). (1)

Given an (approximate) density for all other subsystems, the density
in one active subsystem can be determined from a set of KS-like
equations, in which the effect of the frozen environment density
enters through an effective embedding potential (see, e.g., refs. 22,43
and 44 for details). By iteratively updating each of the subsys-
tem densities in so-called freeze-and-thaw cycles,45 one obtains a
subsystem-DFT scheme24 that can be used as an efficient alternative
to conventional Kohn–Sham (KS) DFT calculations.

However, even though the frozen-density embedding potential
is in principle exact (in the sense that it should lead to the same total
electron density as a KS-DFT calculation on the full system), addi-
tional approximations are required for the kinetic-energy component
of the embedding potentials. Likewise, when calculating energies,
approximations have to be introduced for the nonadditive kinetic
energy, i.e., an approximate kinetic-energy density functional has
to be used. This naturally raises the question how accurate these

approximations are. To assess the quality of the available approxima-
tions (for an overview, see, e.g., ref. 46) one possibility is to compare
the interaction energies between two fragments obtained from a
subsystem-DFT calculation to those obtained from a supermolecular
KS-DFT calculation.

Using this strategy, three of us have recently presented a com-
parison of various kinetic-energy density functionals within such
subsystem-DFT calculations for a large test set of intermolecu-
lar complexes and transition metal coordination compounds.47 The
workflow applied in this study is illustrated in Figure 3. It consists
of a loop over all systems in the test set. For each of these (usu-
ally bimolecular) systems, the coordinates of the two subsystems
are read and calculations for the supermolecule as well as for the
isolated fragments are performed. This is followed by a subsystem-
DFT calculation (i.e., the densities of both subsystems are updated
iteratively), which uses the densities of the isolated fragments as
initial guess. Finally, the reference value for the interaction energy
is calculated as E(ref)

int = Esupermol −E1 −E2 and the subsystem-DFT

interaction energy is calculated as E(FDE)

int = EFDE − E1 − E2 (with
corrections for the basis set superposition error where appropriate).
After the loop over the test set is complete, a statistical analysis of the
errors in the interaction energies can be performed (e.g., calculation
of the root-mean square deviation).

Such a workflow can be easily realized in PyAdf: Using the
functionality of the Python language, a loop over the test set can
be performed. For each complex, single point calculations for both
the supermolecule and the individual fragments can be executed
with the help of the adfsinglepointjob class. Frozen-density
embedding and subsystem-DFT jobs are handled by the class
adffragmentsjob. Such jobs require a list of fragments (i.e.,
molecule objects and possibly the results objects of previous cal-
culations) and for each of these fragments, it can then be chosen

Journal of Computational Chemistry DOI 10.1002/jcc



2332 Jacob et al. • Vol. 32, No. 10 • Journal of Computational Chemistry

Figure 3. Workflow encountered for testing the accuracy of kinetic-
energy functionals within subsystem DFT. The steps in gray boxes
stand for the calculations performed with an external program. The
large arrows indicate results that are passed between the different tasks.

whether it is active, frozen, or a frozen fragment that is iteratively
updated in freeze-and-thaw cycles (see also the description of the
flexible FDE implementation in theAdf package44). In the case con-
sidered here, two fragments (one active and one that is updated in
freeze-and-thaw cycles) are used. Ultimately, the required energies
can be extracted from the corresponding results objects, and their
further processing can be done using the functionality of Python.

Since workflows similar to the one described here are quite
common (another example would be the assessment of different
exchange–correlation functionals for test sets of molecules), PyAdf
provides a convenience class datasetjob for such applications.

Postprocessing of Results and Plotting

Besides comparing energies, the quality of any quantum-chemical
calculation can also be assessed by comparing the computed elec-
tron density with that of a reference calculation. PyAdf provides
the general functionalities for such a comparison. As an exam-
ple, we will again consider subsystem-DFT calculations. With
the exact kinetic-energy functional, a subsystem-DFT calculation
would yield the same electron density as a supermolecular KS-
DFT calculation on the full system.43, 45 Therefore, the difference
between the density from the supermolecular KS-DFT calcula-
tion and the subsystem-DFT density obtained with an approximate

kinetic-energy functional can be used to judge the quality of these
approximations.

Performing the subsystem-DFT calculation for a test set of inter-
molecular complexes can be performed using PyAdf as described
in the previous section. However, in contrast to an assessment of
the energy (a single real number), comparisons of the electron den-
sity (a function of three variables) require additional functionality
for the postprocessing of the results. It is necessary to obtain the
values of the different densities on a grid and compare them to
each other, either by plotting the difference density or by quantify-
ing the deviation by integrating the absolute value of the difference
density.48

An excerpt from an input file showing how these postprocess-
ing steps can be performed using PyAdf is depicted in Figure 4.
The results objects of both the supermolecular KS-DFT calcula-
tion and the subsystem-DFT calculation have a get_density
method, which returns a “density object” (lines 6 and 9, respec-
tively). This density can, for instance, be written in a cube file with
the get_cubfile method (lines 7 and 10), which can in turn be
used to prepare an isosurface plot. Example isosurface plots of the
densities from a supermolecular KS-DFT calculation and from a
subsystem-DFT calculation are shown in Figure 4 for the example
of the coordination complex formed from BH3 and NH3. Despite
the fact that this is a case for which the available GGA-type kinetic-
energy functionals50 have been shown to fail,51, 52 the two isosurface
plots can hardly be distinguished. Therefore, it is more instructive
to look at the difference density. In PyAdf, the difference density
can be obtained by simply subtracting the two density objects (line
12), resulting in a new density object that again can be written in a
cube file (line 13).

Theget_densitymethod allows one to choose on which grid
the density is needed. For plotting, one typically needs an evenly
spaced grid, as it is selected on line 4. Such a grid is, however, not
suitable for performing an accurate numerical integration. For this
purpose, the more precise numerical integration grid employed by
Adf can also be chosen (line 17), to calculate the difference density
on this grid in a completely analogous way (lines 19–22). In this
representation, it is then possible to calculate the numerical integral
over the absolute value of the difference density accurately (line 24).

In a similar way, molecular orbitals, localized orbitals, as well
as the Kohn–Sham potential and its individual components can be
handled. For instance, the recent work on accurate frozen-density
embedding potentials presented in ref. 52 used PyAdf extensively
for manipulating and plotting the different components of the
potentials.

Multiscale Simulations with PyAdf

Solvent Effects on Molecular Properties

An important multiscale application of the FDE scheme is the
calculation of solvent effects on molecular properties (e.g., elec-
tronic excitation energies,29, 30 ESR hyperfine coupling constants,53

or NMR shieldings31). Such calculations employ the sequential
molecular dynamics followed by quantum-mechanics calculations
(S-MD/QM) strategy.54 This strategy is illustrated for the calcu-
lation of the NMR shielding of acetonitrile in water in Figure 5,
together with a simplifed version of the PyAdf input file used for
such calculations in ref. 31.

Journal of Computational Chemistry DOI 10.1002/jcc



PyADF — A Scripting Framework for Multiscale Quantum Chemistry 2333

Figure 4. A PyAdf input file for analyzing the densities from FDE calculations along with isosurface plots
of the (difference) densities for BH3NH3. Isosurface plots have been prepared with Vmd.49

Figure 5. (a) Flowchart of the workflow used for calculating the solvent effect on the NMR shieldings
using FDE. The steps in gray boxes stand for the calculations performed with an external program. (b) A
PyAdf input file for realizing this workflow.

Journal of Computational Chemistry DOI 10.1002/jcc



2334 Jacob et al. • Vol. 32, No. 10 • Journal of Computational Chemistry

First, using periodic boundary conditions, a classical molecu-
lar dynamics simulation of an acetonitrile molecule in water is
performed. From this simulation, a sufficiently large number of
snapshots are extracted. For each of these snapshots, a calculation
of the NMR shielding is then performed for the solute molecule
surrounded by the 500 nearest solvent molecules. Since a super-
molecular calculation of molecular properties would not be feasible
for such large systems, the FDE scheme is used in this step. The cal-
culation is performed for the solute molecule as the active subsystem
embedded in a frozen environment. For this solvent environment,
an approximate electron density obtained by adding the densities
calculated for isolated water molecules is used. Finally, the NMR
shieldings calculated for each snapshot are averaged.

In the loop over all snapshots, all xyz-files from the current direc-
tory are used (line 5–7, see Fig. 5b). These xyz-files of the snapshots
have to be generated using the molecular dynamics program. For
each snapshot, the separate method of the molecule class is
used to divide the snapshot into individual molecules, which are
returned as a list mols (line 13). In this example, the first molecule
in the list is the acetonitrile molecule (line 16), but if this is not
the case it would be easy to add code for identifying it in this list.
The remaining water molecules are then sorted by their distance
to the acetonitrile molecule (line 19) and the 500 closest ones are
chosen (line 20). In lines 25–27, the list of fragments for the FDE
calculation is set up: The acetonitrile is the active fragment, and
the list of the 500 water solvent molecules is used to create frozen
fragments, each with the density of an isolated water molecule. In
the present case, the classical molecular dynamics simulation used
a water model with a fixed geometry. Therefore, a single frozen
density calculated for one isolated water molecule (line 23) can be
used for all 500 solvent molecules. If the geometries of the water
molecules differ, it is possible to introduce a loop over all frozen
solvent molecules, in which a specific frozen density is calculated
for each of them. Similarly, it would also be possible to update the
densities of some of the solvent molecules in freeze-and-thaw itera-
tions by choosing the appropriate options for these fragments. In the
remainder of the input, the FDE calculation and the NMR shielding
calculation are performed, and after the loop over all snapshots is
finished the calculated shieldings are averaged.

Subsystem-DFT for Proteins

The currently available kinetic-energy functionals are not suitable
to apply the FDE scheme to subsystems connected by covalent
bonds.51, 52 However, this problem can be circumvented by using a
more general partitioning, as it was initially proposed in the molec-
ular fractionation with conjugate caps (MFCC) method.55–57 This
partitioning is shown in Figure 6a. Instead of partitioning a covalent
bond directly, caps are introduced to terminate the dangling bonds
between the fragments. The auxiliary molecule obtained by join-
ing the caps is then subtracted again. Recently, two of us showed
how such a partitioning can be applied within the FDE scheme and
demonstrated that this 3-partition FDE (3-FDE) scheme presents an
efficient method for a subsystem treatment of proteins.32

In ref. 32 the 3-FDE scheme was applied to the protein ubiq-
uitin, containing 76 amino acids, which was chosen because it is
small enough for a supermolecular calculation on the full protein
to be possible for comparison. However, already for such a small

protein a scripting framework such as PyAdf is invaluable. First,
PyAdf’s molecule class provides methods for partitioning the pro-
tein, introducing the caps, and generating the corresponding cap
fragments. For ubiquitin, the protein is partitioned into its 76 amino
acids, each terminated by caps, resulting in the creation of 75 cap
fragments (see Fig. 6). This partitioning can be performed automat-
ically by PyAdf. Besides cutting the protein at the peptide bonds, as
was required for ubiquitin, an extension that allows for partitioning
by cutting through disulfide bridges58 is also available. In addition,
more general partitionings using larger fragments (e.g., around an
active center) are being developed.59

Once a partitioning is established, calculations on each of the
isolated fragments have to be performed to obtain an initial density.
This corresponds to the MFCC scheme and is handled in PyAdf
by the class adfmfccjob. The initial guess is then improved by
3-FDE calculations on each of the subsystems. These calculations
are repeated iteratively until the freeze-and-thaw cycles are con-
verged. All these individual calculations are automatically executed
by PyAdf’s adf3fdejob. Finally, PyAdf is indispensable for
post-processing of the final results, e.g., for adding (and subtracting)
the densities of all the individual subsystems.

WFT-in-DFT Embedding

The multiscale simulations discussed so far are solely based on DFT
(DFT-in-DFT embedding). However, in many cases DFT with the
currently available exchange–correlation functionals is not accurate
enough. One prominent example is the failure of (adiabatic) time-
dependent (TD) DFT for charge-transfer excitations.60–64 Therefore,
there is considerable interest in schemes for embedding a wave-
function based ab initio description in an environment treated with
DFT (WFT-in-DFT embedding). This allows one to systematically
improve the accuracy by employing a hierarchy of accurate WFT
treatments for the subsystem of interest.

The FDE scheme can be extended to WFT-in-DFT embedding
by using the FDE embedding potential (which has been derived in
a DFT context) as an additional local one-electron potential in the
WFT calculation.25–28 It can be shown that using such an embedding
potentials is formally exact (i.e., it is exact if the exact exchange–
correlation and kinetic-energy functionals are used and the limit of
an exact WFT description is reached).65, 66

In ref. 33, three of us proposed a simplified scheme for the cal-
culation of local excitation energies with WFT-in-DFT embedding.
In many cases in which TD-DFT fails (such as in the case of charge-
transfer excitations), the density obtained for the ground-state is still
rather accurate. Therefore, it is reasonable to determine the embed-
ding potential in a DFT-in-DFT embedding calculation — possibly
using freeze-and-thaw cycles for (parts of) the environment — and to
import the resulting DFT-in-DFT embedding potential in the WFT
calculations. Such a scheme was applied in ref. 33 to investigate
local excitations of a neptunyl ion (NpO2+

2 ) embedded as a defect
in a Cs2UO2Cl4 crystal.

The workflow corresponding to this simplified scheme is shown
in Figure 7a. After an initial frozen density is determined (typi-
cally requiring several calculations on the fragments constituting the
environment), a DFT-in-DFT embedding calculation is performed.
The environment density (or part of it) is then updated iteratively in

Journal of Computational Chemistry DOI 10.1002/jcc



PyADF — A Scripting Framework for Multiscale Quantum Chemistry 2335

Figure 6. (a) Partitioning employed in subsystem-DFT calculations for proteins illustrated for dialanine.
(b) For the calculations on ubiquitin in ref. 32, the protein is partitioned into its 76 amino acids and 75 cap
fragments.

freeze-and-thaw cycles. After these freeze-and-thaw cycles are con-
verged, the values of the embedding potential at the points of the
numerical integration grid are read from Adf’s binary results files
and exported to a text file. This embedding potential as well as the
coordinates and weights of the numerical integration grid itself are
then imported in the WFT code. As soon as a WFT job is requested
and is passed the results object of a DFT-in-DFT embedding calcu-
lation, PyAdf internally takes care of creating the necessary files
(input files, imported potential, etc.) and of passing them to the
WFT code. Currently, Dirac10 as well as locally modified versions
of Dalton and NWChem support such an import of an embedding
potential.

The drawback of the simplified scheme of ref. 33 is that the DFT
ground-state density is used to determine the embedding potential,
not the possibly more accurate ground-state density from the WFT
calculation. In those cases where DFT fails to provide an acceptable
ground-state density, a more complete WFT-in-DFT embedding
scheme is needed. The workflow of such a scheme is presented
in Figure 7b.

After a first DFT-in-DFT embedding calculation on the sub-
system of interest is performed, the embedding potential is again
exported and used in the WFT calculation. The values of the density,

its gradient and Laplacian, and of the Coulomb potential generated
by the density are then exported on the numerical integration grid.
Such an export is currently supported by a development version of
Dirac for HF, DFT, and MP2 calculations. PyAdf then takes care of
converting the XML files written by Dirac to the binary format that
can be imported by Adf. Then, the environment density is updated
inAdf, using the WFT density for the active subsystem and with this
new environment density, a new embedding potential is exported.
This is repeated iteratively, until these freeze-and-thaw iterations are
converged. For such WFT-in-DFT calculations, PyAdf provides the
class wftindftjob, that implements all the steps in the workflow
of Figure 7b.

Conclusions and Outlook

PyAdf is a scripting framework for quantum chemistry that can be
used for automating quantum-chemical workflows. This is achieved
by providing job classes, which can be used to set up and execute
different types of quantum-chemical calculations, and results classes
that are returned when running a job and which can be used to extract
the results of the calculations. In addition, PyAdf offers powerful

Journal of Computational Chemistry DOI 10.1002/jcc



2336 Jacob et al. • Vol. 32, No. 10 • Journal of Computational Chemistry

Figure 7. The workflow in WFT-in-DFT embedding calculations. The steps in gray boxes stand for the
calculations performed with an external program. The large arrows indicate results that are passed between
the different tasks. (a) The simplified scheme of ref. 33, in which the embedding potential from a DFT-
in-DFT embedding calculation is imported in the WFT calculation. (b) A freeze-and-thaw WFT-in-DFT
embedding setup, in which the embedding potential is updated iteratively, using the density from the WFT
calculation.

features for reading and manipulating molecular coordinates and
for the post-processing of the results (e.g., for handling orbitals,
densities, and potentials available on a numerical grid). Since the
full power of the Python language is available in PyAdf input files,
these building blocks can be combined into complicated workflows.

These features are particularly useful in multiscale simulations.
We have illustrated this using examples of applications of PyAdf
from the recent research in our groups, such as the assessment of
kinetic-energy functionals in the FDE scheme, the explicit treat-
ment of solvent effects on molecular properties, subsystem-DFT
calculations for proteins, and WFT-in-DFT embedding calculations.
Other recent and ongoing work in our groups also relies on PyAdf.
For instance, the code for performing adaptive QM/MM molecular
dynamics simulations developed by Bulo et al.67, 68 uses PyAdf for
executing the QM calculations.

PyAdf is under active development. Currently, it supports Adf,
Dalton, Dirac, and NWChem calculations, even though the types
of calculations available for each program package differ. We are
working on extending these existing interfaces to support addi-
tional types of calculations. In this context, we also plan to add
a unified interface to similar types of calculations performed with
different program packages by providing an additional layer of
job classes (e.g., singlepointjob, which will then execute
either adfsinglepointjob, daltonsinglepointjob, or
diracsinglepointjob). Furthermore, interfaces to additional
programs, most importantly Turbomole (using the MoleControl
environment), are being developed.

Another important topic we are considering is parallelization.
Currently, PyAdf executes all external tasks sequentially, even

though each task can use multiple processors if the program pack-
ages support parallelization. A parallel version of PyAdf to allow
for coarse-grain parallelization of potentially concurrent tasks in
a workflow is currently being developed. To achieve this, exter-
nal tasks will not be executed immediately when a job’s run
method is called, but instead be gathered into a “job queue.” Only
when the results of one job are requested, the accumulated tasks
will be executed in parallel. This way, an “automatic paralleliza-
tion” can be achieved, in which PyAdf input files are still written
in a sequential way, and the problem of determining the depen-
dencies between the different jobs and of executing the external
tasks in parallel is handled behind the scenes by the scripting
framework.

PyAdf version 1.0 is available free of charge at http://www.
pyadf.org under the GNU General Public License (GPL). On
the website, one can also find an extensive documentation and
examples of input files, including those for the examples discussed
here.

Acknowledgments

The authors thank Drew A. McCormack (Amsterdam) for many
inspiring discussions.

References

1. Cramer, Ch. J. Essentials of Computational Chemistry, Wiley:
New York, 2002.

Journal of Computational Chemistry DOI 10.1002/jcc



PyADF — A Scripting Framework for Multiscale Quantum Chemistry 2337

2. Heine, T.; Joswig, J.-O.; Gelessus, A. Computational Chemistry Work-
book: Learning Through Examples; Wiley-VCH: Weinheim, 2009.

3. Boese, A. D.; Oren, M.; Atasoylu, O.; Martin, J. M. L.; Kállay, M.;
Gauss, J. J Chem Phys 2004, 120, 4129.

4. Curtiss, L. A.; Redfern, P. C.; Raghavachari, K. J Chem Phys 2007, 126,
084108.

5. van Zeist, W.-J.; Fonseca Guerra, C.; Bickelhaupt, F. M. J Comput Chem
2008, 29, 312.

6. Valiev, M.; Bylaska, E. J.; Govind, N.; Kowalski, K.; Straatsma, T. P.;
Van Dam, H. J. J.; Wang, D.; Nieplocha, J.; Apra, E.; Windus, T. L.;
de Jong, W. A. Comput Phys Commun 2010, 181, 1477.

7. Environmental Molecular Sciences Laboratory (EMSL) at Pacific
Northwest National Laboratory (PNNL), NWChem 6.0 Python inter-
face, 2010. Available at http://www.nwchem-sw.org/index.php/Python,
Accessed on 6 March 2010.

8. Werner, H.-J.; Knowles, P. J.; Manby, F. R.; Schütz, M.; Celani, P.;
Knizia, G.; Korona, T.; Lindh, R.; Mitrushenkov, A.; Rauhut, G.; Adler,
T. B.; Amos, R. D.; Bernhardsson, A.; Berning, A.; Cooper, D. L.;
Deegan, M. J. O.; Dobbyn, A. J.; Eckert, F.; Goll, E.; Hampel, C.; Hes-
selmann, A.; Hetzer, G.; Hrenar, T.; Jansen, G.; Köppl, C.; Liu, Y.;
Lloyd, A. W.; Mata, R. A.; May, A. J.; McNicholas, S. J.; Meyer, W.;
Mura, M. E.; Nicklaß, A.; Palmieri, P.; Pflüger, K.; Pitzer, R.; Reiher,
M.; Shiozaki, T.; Stoll, H.; Stone, A. J.; Tarroni, R.; Thorsteinsson, T.;
Wang, M.; Wolf, A. MOLPRO, version 2010.1, a package of ab initio
programs. Available at: http://www.molpro.net, 2010.

9. Baerends, E. J.; Ziegler, T.; Autschbach, J.; Bashford, D.; Bérces, A.;
Bickelhaupt, F. M.; Bo, C.; Boerrigter, P. M.; Cavallo, L.; Chong, D. P.;
Deng, L.; Dickson, R. M.; Ellis, D. E.; van Faassen, M.; Fan, L.; Fischer,
T. H.; Fonseca Guerra, C.; Ghysels, A.; Giammona, A.; van Gisbergen,
S. J. A.; Götz, A. W.; Groeneveld, J. A.; Gritsenko, O. V.; Grüning, M.;
Gusarov, S.; Harris, F. E.; van den Hoek, P.; Jacob, C. R.; Jacobsen, H.;
Jensen, L.; Kaminski, J. W.; van Kessel, G.; Kootstra, F.; Kovalenko,
A.; Krykunov, M. V.; van Lenthe, E.; McCormack, D. A.; Michalak,
A.; Mitoraj, M.; Neugebauer, J.; Nicu, V. P.; Noodleman, L.; Osinga, V.
P.; Patchkovskii, S.; Philipsen, P. H. T.; Post, D.; Pye, C. C.; Ravenek,
W.; Rodríguez, J. I.; Ros, P.; Schipper, P. R. T.; Schreckenbach, G.;
Seldenthuis, J. S.; Seth, M.; Snijders, J. G.; Solà, M.; Swart, M.; Swer-
hone, D.; te Velde, G.; Vernooijs, P.; Versluis, L.; Visscher, L.; Visser,
O.; Wang, F.; Wesolowski, T. A.; van Wezenbeek, E. M.; Wiesenekker,
G.; Wolff, S. K.; Woo, T. K.; Yakovlev, A. L. Adf, Amsterdam density
functional program, 2010. Available at: http://www.scm.com, Accessed
on 6 March 2010.

10. te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra, C.;
van Gisbergen, S. J. A.; Snijders, J. G.; Ziegler, T. J Comput Chem 2001,
22, 931.

11. Scientific Computing and Modelling, adfprep and adfreport, 2008.
Available at: http://www.scm.com/Doc/ Doc2010.01/ ADF/Utilities,
Accessed on 6 March 2010.

12. Doll, C.; Schäfer, A.; Sittel, F., MoleControl, Available at: www.
turbomole.com, Accessed on 6 March 2010, 2010.

13. Ahlrichs, R.; et al. Turbomole. Available at: http://www.
turbomole.com, Accessed on 6 March 2010.

14. Ahlrichs, R.; Bär, M.; Häser, M.; Horn, H.; Kölmel, Ch. Chem Phys
Lett 1989, 162, 165.

15. Kuhn, T.; Willighagen, E.; Zielesny, A.; Steinbeck, Ch. BMC Bioinf
2010, 11, 159.

16. Tiwari, A.; Sekhar, A. K. T. Comput Biol Chem 2007, 31, 305.
17. Gomes, A.; Merzky, A.; Visscher, L. In Proceedings of the Computa-

tional Science – ICCS 2006, Pt. 3, Lecture Notes in Computer Science;
Springer: Berlin, 2006; pp. 97–104.

18. Sudholt, W.; Altintas, I.; Baldridge, K. In Proceedings of the Computa-
tional Science – ICCS 2006, Pt. 3, Alexandrov, V. N.; VanAlbada, G. D.;
Sloot, P. M. A.; Dongarra, J., Eds.; Lecture Notes in Computer Science;
Springer-Verlag: Berlin, 2006; pp. 69–76.

19. Koehler, M.; Ruckenbauer, M.; Janciak, I.; Benkner, S.; Lischka, H.;
Gansterer, W. N. In Proceedings of the Computational Science and its
Applicatiosn - ICCSA 2010, pt. 4, Taniar, D.; Gervasi, O.; Murgante, B.;
Pardede, E.; Apduhan, B. O., Eds.; Lecture Notes in Computer Science;
Springer-Verlag: Berlin, 2010; pp. 13–28.

20. Wang, J.; Korambath, P.; Kim, S.; Johnson, S.; Jin, K.; Crawl, D.; Altin-
tas, I.; Smallen, S.; Labate, B.; Houk, K. N. In Proceedings of the ICCS
2010 - International Confercence on Computational Science, Procedia
Computer Science; Elsevier: Amsterdam, 2010; pp. 1169–1178.

21. Sanna, N.; Castrignano, T.; De Meo, P. D.; Carrabino, D.; Grandi,
A.; Morelli, G.; Caruso, P.; Barone, V. Theor Chem Acc 2007,
117, 1145.

22. Wesolowski, T. A.; Warshel, A. J Phys Chem 1993, 97, 8050.
23. Senatore, G.; Subbaswamy, K. R. Phys Rev B 1986, 34, 5754.
24. Cortona, P. Phys Rev B 1992, 46, 2008.
25. Govind, N.; Wang, Y. A.; da Silva, A. J. R.; Carter, E. A. Chem Phys

Lett 1998, 295, 129.
26. Govind, N.; Wang, Y. A.; Carter, E. A. J Chem Phys 1999, 110, 7677.
27. Klüner, T.; Govind, N.; Wang, Y. A.; Carter, E. A. Phys Rev Lett 2001,

86, 5954.
28. Klüner, T.; Govind, N.; Wang, Y. A.; Carter, E. A. J Chem Phys 2002,

116, 42.
29. Neugebauer, J.; Louwerse, M. J.; Baerends, E. J.; Wesolowski, T. A.

J Chem Phys 2005, 122, 094115.
30. Neugebauer, J.; Jacob, Ch. R.; Wesolowski, T. A.; Baerends, E. J. J Phys

Chem A 2005, 109, 7805.
31. Bulo, R. E.; Jacob, Ch. R.; Visscher, L. J Phys Chem A 2008, 112, 2640.
32. Jacob, Ch. R.; Visscher, L. J Chem Phys 2008, 128, 155102.
33. Gomes, A. S. P.; Jacob, Ch. R.; Visscher, L. Phys Chem Chem Phys

2008, 10, 5353.
34. van Rossum, G.; et al., Python. Available at: http://www.python.org,

Accessed on 6 March 2010.
35. McCormack, D. A. Scientific Scripting with Python, 1st ed., lulu.com,

Raleigh, NC, USA, 2009. Accessed on 6 March 2010.
36. Langtangen, H. P. Python Scripting for Computational Science, 3rd ed.;

Springer, Berlin, 2008.
37. The Open Babel package. Available at: http://openbabel.

sourceforge.net/ Accessed on 6 March 2010.
38. Guha, R.; Howard, M. T.; Hutchison, G. R.; Murray-Rust, P.; Rzepa, H.;

Steinbeck, Ch.; Wegner, J.; Willighagen, E. L. J Chem Inf Model 2006,
46, 991.

39. O’Boyle, N.; Morley, C.; Hutchison, G. Chem Cent J 2008, 2, 5.
40. Dalton, a molecular electronic structure program, Release 2.0.

Available at: http://www.kjemi.uio.no/software/dalton/dalton.html,
Accessed on 6 March 2010, 2005.

41. Saue, T.; Visscher, L.; Jensen, H. J. Aa. Dirac, a relativistic ab
initio electronic structure program, Release Dirac10. Available at:
http://dirac.chem.vu.nl, Accessed on 6 March 2010, 2010.

42. SMARTS — A Language for Describing Molecular Patterns. Available
at: http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html,
Accessed on 6 March 2010.

43. Wesolowski, T. A. In Computational Chemistry: Reviews of Current
Trends, vol. 10; Leszczynski, J., Ed.; World Scientific: Singapore, 2006;
pp. 1–82.

44. Jacob, Ch. R.; Neugebauer, J.; Visscher, L. J Comput Chem 2008, 29,
1011.

45. Wesolowski, T. A.; Weber, J. Chem Phys Lett 1996, 248, 71.
46. Wang, Y. A.; Carter, E. A. In Theoretical Methods in Condensed

Phase Chemistry, Schwartz, S. D., Ed.; Kluwer: Dordrecht, 2000;
pp. 117–184.

47. Götz, A. W.; Beyhan, S. M.; Visscher, L. J Chem Theory Comput 2009,
5, 3161.

48. Beyhan, S. M.; Götz, A. W.; Jacob, Ch. R.; Visscher, L. J Chem Phys
2010, 132, 044114.

Journal of Computational Chemistry DOI 10.1002/jcc



2338 Jacob et al. • Vol. 32, No. 10 • Journal of Computational Chemistry

49. Humphrey, W.; Dalke, A.; Schulten, K. J Mol Graphics 1996, 14, 33.
50. Lembarki, A.; Chermette, H. Phys Rev A 1994, 50, 5328.
51. Fux, S.; Kiewisch, K.; Jacob, Ch. R.; Neugebauer, J.; Reiher, M. Chem

Phys Lett 2008, 461, 353.
52. Fux, S.; Jacob, Ch. R.; Neugebauer, J.; Visscher, L.; Reiher, M. J Chem

Phys 2010, 132, 164101.
53. Neugebauer, J.; Louwerse, M. J.; Belanzoni, P.; Wesolowski, T. A.;

Baerends, E. J. J Chem Phys 2005, 123, 114101.
54. Malaspina, T.; Coutinho, K.; Canuto, S. J Chem Phys 2002, 117, 1692.
55. Zhang, D. W.; Zhang, J. Z. H. J Chem Phys 2003, 119, 3599.
56. Gao, A. M.; Zhang, D. W.; Zhang, J. Z. H.; Zhang, Y. Chem Phys Lett

2004, 394, 293.
57. Mei, Y.; Zhang, D. W.; Zhang, J. Z. H. J Phys Chem A 2005, 109, 2.
58. Chen, X. H.; Zhang, D. W.; Zhang, J. Z. H. J Chem Phys 2004, 120,

839.

59. Kiewisch, K.; Jacob, Ch. R.; Visscher, L. to be published, 2011.
60. Tozer, D. J. J Chem Phys 2003, 119, 12697.
61. Dreuw, A.; Weisman, J. L.; Head-Gordon, M. J Chem Phys 2003, 119,

2943.
62. Gritsenko, O.; Baerends, E. J. J Chem Phys 2004, 121, 655.
63. Neugebauer, J.; Gritsenko, O.; Baerends, E. J. J Chem Phys 2006, 124,

214102.
64. Hieringer, W.; Görling, A. Chem Phys Lett 2006, 419, 557.
65. Wesolowski, T. A. Phys Rev A 2008, 77, 012504.
66. Khait, Y. G.; Hoffmann, M. R. J Chem Phys 2010, 133, 044107.
67. Bulo, R. E.; Ensing, B.; Sikkema, J.; Visscher, L. J Chem Theory Comput

2009, 5, 2212.
68. Nielsen, S. O.; Bulo, R. E.; Moore, P. B.; Ensing, B. Phys Chem Chem

Phys 2010, 12, 12401.

Journal of Computational Chemistry DOI 10.1002/jcc


