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The extended amide III region in vibrational spectra of polypeptides and proteins is particularly sensitive to
changes in secondary structure. To investigate this structural sensitivity, we have performed density-functional
calculations on the small model compound N-acetyl-L-alanine-N-methylamide, which are analyzed using the
recently developed analysis in terms of localized modes [J. Chem. Phys. 2009, 130, 084106]. We find that
the local modes obtained for different backbone conformations are actually rather similar. To probe the
secondary structure sensitivity, we investigate the dependence of the local-mode frequencies and coupling
constants on the torsional angles ¢ and 1. This enables us to set up a local-mode model of the extended
amide III region for better understanding its structural sensitivity.

1. Introduction

Vibrational spectroscopy is a powerful tool for studying the
structure of biomolecules in their natural environment, that is,
in aqueous solution. It is applicable in many cases where other
techniques, such as nuclear magnetic resonance (NMR) spec-
troscopy or X-ray crystallography cannot be employed. Infrared
(IR) and Raman spectroscopy have in fact extensively been used
to gain information about the secondary structure of polypeptides
and proteins (for reviews, see, e.g., refs 1—4). However, for
large molecules these traditional vibrational spectroscopic
techniques often suffer from congested line shapes so that it
becomes difficult to extract specific structural information from
the spectra. Therefore, specialized vibrational spectroscopic
techniques have been developed over the past decades that filter
certain information. For instance, ultraviolet (UV) resonance
Raman spectroscopy selectively enhances vibrational modes of
the peptide backbone,> whereas vibrational circular dichroism
(VCD)” and Raman optical activity (ROA) spectroscopy® are
sensitive to local and global chirality.’ In addition, two-
dimensional (2D) IR spectroscopy spreads out spectral informa-
tion over two dimensions and measures anharmonic couplings
between vibrations, which also gives access to specific structural
information.!? Since in vibrational spectroscopy the relationship
between the observed spectra and the structure is only indirect,
quantum chemical calculations are invaluable for interpreting
vibrational spectra.!' This is particularly true for the specialized
techniques mentioned above, for which reliable rules of thumb
are in general lacking (see, e.g., refs 12—14 for recent theoretical
studies of ROA spectroscopy of polypeptides and proteins as
well as synthetic polymers).

Because of its large sensitivity to changes in secondary
structure the extended amide III region, which comprises the
spectral range between about 1200 and 1400 cm™!, is of
particular interest. In this region one finds the so-called
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“classical” amide III vibration (mainly an in-phase combination
of the N—H in-plane bending and the C—N stretching vibration,
where the ratio between these two could vary) as well as two
C®—H bending vibrations (one of which is approximately along
the direction of the NC® bond whereas the other one is
perpendicular to it). As was first shown by Diem and co-workers
by means of isotopic substitution,'>'® these modes couple
strongly with each other, leading to normal modes which are
combinations of the classical amide III vibration and the C*—H
bending vibrations. It is generally believed that the pronounced
structural sensitivity of the extended amide III region originates
from this coupling. Furthermore, in larger polypeptides the
modes on different amino acid residues are coupled and the
resulting delocalized normal modes further enhance the struc-
tural sensitivity of the extended amide III region.

Because of this complexity of the underlying vibrational
modes, unraveling the relationship between secondary structure
and the extended amide III region of vibrational spectra is
significantly more challenging than, for instance, for the rather
well-understood amide I band.* Over the past decades, both
experimental and quantum chemical studies have tried to address
this issue. In a classic paper,!” Lord proposed that the frequency
of the classical amide III vibration depends mainly on the
backbone dihedral angle 1. On the basis of experimental UV
resonance Raman data for small model compounds such as
N-methyl acetamide (NMA), N-acetyl-L-alanine-N-methylamide,
or also a 21 residue polyalanine as well as density-functional
theory (DFT) calculations, Asher and co-workers proposed a
sinusoidal dependence of the amide III frequency on i over
the full range of possible angles and an almost negligible linear
dependence on ¢ in the range between —95° and —75°.!%19 A
similar dependence was found by Schweitzer-Stenner et al. in
an experimental study on a series of dipeptides.”® Asher and
co-workers subsequently refined their model to include effects
due to hydrogen bonding and temperature and eventually came
up with a semiempirical model relating the frequency of the
classical amide IIT band to the torsional angle .2!

Such models are, however, to a great extent based on the
assumption that the dependence on ¢ is negligible, which is
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only true over the rather small range between —95° and
—75°,1819 whereas values of ¢ outside of this range also occur
in the allowed regions of the Ramachandran plot, which mainly
cover all negative values of ¢ for o-helices and f-sheets and
also include positive values of ¢ if turns or disordered structures
are considered. Therefore, for a complete understanding of the
extended amide III region, a model based on data obtained for
the whole range of both backbone dihedral angles ¢ and ' is
required. However, a DFT study?? trying to relate the frequencies
of the classical amide III normal mode of N-acetyl-L-alanine-
N-methylamide to the corresponding values of the backbone
dihedral angles based on data gained over their whole range
provided not much insight into the structural dependence of the
amide III frequencies and only confirmed that the relation
between secondary structure and amide III frequencies is
difficult to describe. Thus, the current understanding of the
structural sensitivity of the extended amide III region remains
unsatisfactory.

This is undoubtedly due to the fact that a number of different
effects contribute to the structural sensitivity, such as the
dependence of the bond strengths on the backbone dihedral
angles, the role of the coupling between the classical amide IIT
and C*—H bending vibrations, and the effect of intra- and
intermolecular hydrogen bonding. These are difficult to separate
when considering only the frequencies of selected normal
modes. Even though it is well-known'>!¢2* that the coupling
of the C*—H bending vibrations with the classical amide III
vibration is of crucial importance for understanding the structural
sensitivity of the extended amide III region, most previous
studies!’"2%22 have focused on the amide III frequencies only
and largely ignored the C*—H bending modes.

Moreover, models which solely predict the frequencies of
certain vibrational modes provide no information on the normal
modes themselves or on their intensities, even though this
information is necessary for a complete theoretical description
of vibrational spectra. Such empirical models become even more
problematic when considering larger polypeptides, where the
bands observed in the experimental spectra are due to a larger
number of contributing normal modes. In this case, empirical
models based on data obtained for small dipeptides might not
allow for a reliable extrapolation to larger systems. Instead,
models which are able to predict all of the relevant modes in
larger polypeptides are required.

A viable alternative is offered by “local models” (local-mode
Hamiltonians or vibrational exciton models),?* 2 which are
based on modeling local vibrational modes as well as the
couplings between them. Such models have, for instance, been
very successful for explaining the amide I band shape in
B-sheets®?” and in polypeptides in general®®?® as well as for
deducing the size and shape of aerosol particles from their IR
spectra,®®3! and local models have further been explored for
predicting amide T ROA spectra in polypeptides.>? Moreover,
by including anharmonicities, local-mode models form the basis
of interpreting 2D-IR experiments.*~33 Such local models allow
for a separation of different effects. For instance, one can expect
that intra- and intermolecular hydrogen bonds affect the local
modes but not the couplings between them. For the extended
amide III region, the dependence of these coupling constants
on the backbone dihedral angles can be expected to be rather
simple.*® In particular, the couplings between the classical amide
IIT and the C*—H modes on the same residue in a polypeptide
can be expected to depend mainly on ¢, while the corresponding
coupling for groups on adjacent residues is expected to depend
on 7. In addition, such local models provide access not only to
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Figure 1. (a) Structure of N-acetyl-L-alanine-N-methylamide. The two
dihedral backbone angles ¢ and 1 are indicated by arrows. (b)
Definitions of groups of atoms as used in Table 1.

vibrational frequencies, but also to (models of) the normal modes
themselves, and thus allow for a description of intensities.
Moreover, local-mode parameters and coupling constants can
easily be transferred to larger polypeptides, where they make a
full description of all normal modes contributing to the
experimentally observed bands possible.

The local-mode parameters and the coupling constants
required for such models have so far mainly been obtained from
empirical considerations. For the special case of the amide I
band, the Hessian matrix reconstruction method by Ham et al.
can be employed to extract these parameters from quantum
chemical calculations.?” Recently, we developed a methodology
for localizing normal modes,*® which determines a unitary
transformation that converts a set of normal modes to a set of
maximally localized modes. This allows one to extract local-
mode parameters and coupling constants from quantum chemical
calculations. For the extended amide III region, each resulting
localized mode is dominated by the vibration of one single
group, and in these localized modes the classical amide III
vibration is separated from the C*—H bending vibrations.* Thus,
the localization of normal modes offers a way to extract a local
model of the extended amide III region. In this work, we
construct such a model using DFT calculations on N-acetyl-L-
alanine-N-methylamide, shown in Figure la. In particular, we
investigate how the local mode frequencies and the coupling
constants depend on the backbone dihedral angles ¢ and 1 and
how hydrogen bonding affects these parameters.

This work is organized as follows. In Section 2 the theoretical
methodology is briefly introduced. The vibrational modes in
the extended amide III region are discussed in Section 3. The
structural dependence of the vibrational frequencies of the local
modes and of the coupling constants between them is analyzed
in Sections 4 and 5, respectively. These results are then used in
Section 6 to construct a local-mode model of the extended amide
III region. Finally, conclusions and an outlook are presented in
Section 7.

2. Computational Methodology

Within the harmonic approximation, the normal modes and
the vibrational frequencies of any molecule can be obtained by
diagonalizing the mass-weighted Hessian matrix H™!3%40
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TABLE 1: Overview of Mean Values and Standard
Deviations of the Contributions of Different Groups of
Atoms in N-Acetyl-L-alanine-N-methylamide to the Extended
Amide IIT Normal Modes and Localized Modes”

Me Am(1) Cce—H Am(2)
mode 1 96+34 8.7+ 4.8 77.8 £6.4 38+44
mode 2 11.9+35 96+73 69.6 + 12.0 8.9+9.6
mode 3 143+22 488+224 148+9.8 22.1 £21.4
mode 4 13.8+£27 23.6+£213 119+62 50.7 £21.9
loc. mode C*—H(1) 72431 79 +47 83.6 - 4.4 1.44+09

loc. mode C*—H(2) 14.7+24 3.1+£28 795£28 27+1.1
loc. mode Am III(1) 15.0+ 1.8 78.9 2.7 57+£28 04 +£04
loc. mode Am III(2) 12.74+3.1 0.8+£0.6 54+35 81.0£5.6

“The individual groups are defined as shown in Figure 1b. For
the localized modes, “mode-defining” contributions are set in bold.
All values are given in percent.

which contains the second derivatives of the total electronic
energy E with respect to the nuclear coordinates,

1 ’E
Higly = —_(—) (M
o \/mimj aRiaaRjﬂ 0

where m; is the mass of nucleus i, R, is the o = x, y, z
component of the position vector of nucleus Z, and the subscript
“0” indicates that the derivatives are evaluated at the equilibrium
position. The diagonalization of the Hessian matrix is achieved
by the unitary matrix Q, that is,

H? = Q"H"Q @)

where H9 is a diagonal matrix of which the diagonal elements
are equal to the squares of the normal mode angular frequencies
w,* = 47*v,%, with v, being the vibrational frequency of the
p-th normal mode. The columns Q, of the matrix Q (i.e., the
eigenvectors of the Hessian) are the normal modes in terms of
mass-weighted Cartesian coordinates.

For the localization,?® a subset of normal modes is considered,
in our case those contributing to the extended amide III region,
that is, the four normal modes appearing between 1150 and 1350
cm™!. These are collected in a matrix Q“"® and subjected to a
unitary transformation U,

Q(sub) — Q(sub)U (3)

to obtain a matrix Q®*® which contains the localized modes.
The unitary transformation U is determined such that the
resulting modes are maximally localized with respect to a
suitably defined localization criterion, for which in this work
we employ the atomic-contribution criterion introduced in ref
38. The Hessian matrix given with respect to the localized
modes,

ﬁ(sub) — UTH(q,sub)U (4)

where the diagonal matrix H**® contains the squared angular
frequencies of the selected normal modes, is no longer a
diagonal matrix. Instead, one can interpret the diagonal elements
of H® as fictitious vibrational frequencies of the localized
modes, whereas the off-diagonal elements of H®"® represent
the couplings between these local modes. It is useful to define
the coupling matrix?®
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Q) = [TQE7 = ﬁ(ﬁ(sub))lﬂ )

where Q6™ is a diagonal matrix containing the vibrational
frequencies of the selected normal modes. The diagonal elements
of the coupling matrix Q¢ correspond to vibrational frequen-
cies of the localized modes, and the off-diagonal elements
correspond to coupling constants given in frequency units.*

All quantum chemical calculations have been performed using
DFT with the Turbomole 5.10 program package.*!' The BP86
exchange-correlation functional*** and Ahlrichs’ valence tri-
ple-& basis with one set of polarization functions at all atoms
(TZVP)* with the corresponding auxiliary basis set**% were
employed. In all calculations, the resolution of the identity (RI)
technique**#” was used. The program SNF* was employed for
the seminumerical calculation of the molecular Hessian, using
Turbomole to calculate the analytic energy gradients. For the
vibrational analysis and the localization of normal modes, an
add-on package to SNF written in the Python programming
language was used.’®

Pictures of molecular structures and of normal and localized
modes were generated with ChemDraw*® and with Jmol,*
respectively. The computer algebra system Mathematica 6.0
was employed for the data analysis, least-squares nonlinear
regressions, and for plotting wavenumbers and coupling constants.

3. Extended Amide III Vibrational Modes

As the simplest possible model system for studying the
extended amide III region, we choose N-acetyl-L-alanine-N-
methylamide (see Figure 1a). It features two amide units, which
are connected by the alanine C* atom. The orientation of the
two planar amide units and the C*—H group with respect to
each other is determined by the backbone dihedral angles ¢ (the
C—N—C%—C torsional angle, see Figure la) and 3 (the
N—C*—C~—N torsional angle, see Figure la). To investigate
the dependence of the extended amide III vibrations on ¢ and
1, a grid with a step size of 40° was set up, that is, a total of
81 structures with ¢, 1 € {—160°, —120°, —80°, —40°, 0°, 40°,
80°, 120°, 160°} were considered. For each of these structures,
a geometry optimization, in which ¢ and ¥ were constrained,
has been performed. However, two of these structures, namely,
¢ =0°% v = 0°and ¢ = —40° v = 40° do not represent
sensible conformations due to sterical clashes and were therefore
omitted. For each structure, a calculation of the normal modes
and their frequencies was performed. Even though the harmonic
approximation can in principle only be applied for structures
which are stationary points on the potential energy surface, such
a procedure is justified if the gradient with respect to the
considered normal modes is sufficiently small.>' For the normal
modes considered here, the gradient with respect to the extended
amide III normal modes is in all cases smaller than 2.5+1073
atomic units.

In Figure 2, the calculated IR spectrum of N-acetyl-L-alanine-
N-methylamide is shown for the minimum energy conformation.
The extended amide III region, which will be analyzed in the
following, is highlighted in this spectrum. Four normal modes
are contributing to this region, and we start by studying these
extended amide III normal modes. As an example, Figure 3a
shows the four relevant normal modes for ¢ = 1 = 160° (this
geometry has been chosen because for this extended conforma-
tion the important atomic displacements are particularly easy
to recognize). These modes are ordered according to decreasing
wavenumber, starting with the one with the highest wavenum-
ber. The first two normal modes at approximately 1330 and
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Figure 2. Calculated IR spectrum for the minimum structure (¢ = —82.6° and ¥ = 72.2°) of N-acetyl-L-alanine-N-methylamide, with the extended
1

amide III region highlighted in gray. The spectrum has been plotted using a Lorentzian line width of 15 cm™

included as a line spectrum scaled by 0.04.
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Figure 3. (a) Visualization of the extended amide III normal modes and (b) of the corresponding localized modes for N-acetyl-L-alanine-N-

methylamide in the conformation with ¢ = v = 160°.

1280 cm™!, respectively, are dominated by the two C*—H
bending vibrations, with the higher-wavenumber mode being
mainly a C*—H bending vibration along the direction of the
N—C*®bond, while the lower-wavenumber one features a C*—H
bending vibration perpendicular to it. The third and fourth
normal modes (appearing at approximately 1220 and 1190 cm™',
respectively) are dominated by the classical amide III vibrations
(i.e., an in-phase combination of the N—H bending and C—N
stretching vibrations) of the two amide units. Both modes
contain contributions from both amide units, and it is further
obvious that for both modes there are significant contributions
from C*—H bending vibrations. For all normal modes, there
are some additional contributions from bending vibrations of
the terminal as well as the side-chain methyl groups.

There are quite large differences between the normal modes
of different conformations because the degree of mixing between
these different vibrations varies. In Table 1 the contributions
of groups of atoms (as defined in Figure 1b) to the individual
normal modes are reported. The contribution C;, of atom i to
normal mode p is calculated as the fraction of the kinetic (or

potential) energy of this atom in the normal mode vibration,
which is given by®

Cip = Z (Qia,p)2 (6)

=X,y

Note that, because the normal modes are normalized, these
atomic contributions will automatically sum to unity. The mean
values of the group contributions listed in Table 1 show that in
general one vibration dominates the individual normal modes.
However, from the rather large standard deviations also included
in Table 1, one notices that there are significant differences
between normal modes of different conformations. This is
particularly obvious for the third and fourth normal modes, for
which the contributions of the two amide units vary strongly.
In many cases it is not possible to assign the normal modes to
a single vibration, and we therefore refrain from classifying the
normal modes as amide III(1), amide III(2), C*—H(1), or
C®—H(2) vibrations but only label them according to decreasing
wavenumbers.
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To extract a local-mode model from our calculations, for each
structure considered we transformed those four extended amide
IIT normal modes to a set of localized modes (following the
terminology introduced in ref 36, these can be referred to as
region-localized modes). For the example structure considered
above, these localized modes are shown in Figure 3b. In contrast
to the normal modes, each of these localized modes essentially
features one single vibration. There are two localized C*—H
bending modes (the first one approximately along the N—C*
bond axis, the second one perpendicular to it) as well as two
classical amide III vibrations (the first one of the N-terminal
amide unit and the second one of the C-terminal amide unit).
Except for some admixture of bending vibrations of the methyl
groups, these are the only contributions to these localized modes.
Nevertheless, it is important to note that the localized modes
are not just well-chosen internal coordinates but instead are
optimal in the sense that they are as simple as possible and still
allow for an exact description of the extended amide III normal
modes.

Furthermore, the different local modes are similar for all
conformations. This can also be seen when inspecting the group
contributions collected in Table 1. For all four localized modes,
the contribution of the “mode-defining” vibration is about 80%,
and in contrast to the normal modes the standard deviations
are relatively small. This is further supported by the overlap
between the localized modes obtained for the different confor-
mations (see Supporting Information). For each of the two
localized amide III modes, the overlap with the reference mode
shown in Figure 3b is in general larger than 0.8, indicating that
the amide III localized modes are indeed very similar to each
other. For the C*—H bending localized modes, the overlap is
rather large (>0.7) in most cases, but there are quite a number
of cases where significantly smaller overlaps (sometimes as
small as 0.2) are found. This is primarily caused by differences
in the direction of the C*—H bending vibration. Since the
localization algorithm minimizes the number of atoms contribut-
ing to one mode, the direction of the C*—H bending vibration
is to some degree arbitrary and can be varied by a rotation
among the two localized modes.

4. Structural Dependence of the Mode Frequencies

After having discussed normal modes and localized modes,
we now turn to their vibrational frequencies. In Figure 4 the
structural dependence of the wavenumbers of each of the four
normal modes is shown. For each mode, the plot on the left-
hand side shows for fixed values of ¢ the dependence of the
wavenumber on 3, while on the right-hand side the dependence
on ¢ is depicted for fixed values of 1. For the first and second
normal mode (both dominated by C*—H bending vibrations),
we note a distinct and rather narrow clustering of the wave-
numbers around about 1320 and about 1280 cm ™!, respectively.
In the case of the third and fourth mode (dominated by the
classical amide III vibrations) the dependence on the torsional
angles is stronger, and the wavenumbers span a range of almost
90 cm™!. For all modes, one notices that the wavenumbers
depend on both dihedral angles and that the form of this
dependence is rather difficult. It should be noted that the
dependence of wavenumbers of the amide III normal modes
on the backbone dihedral angles found in our calculations is
qualitatively similar to the one reported in the vibrational
frequency map of Mirkin and Krimm,?? even though these earlier
calculations used a significantly smaller basis set.

For the structural dependence of the wavenumbers of the
localized modes (depicted in Figure 5) one recognizes a similar

J. Phys. Chem. B, Vol. 114, No. 32, 2010 10653

situation as in the case of the normal modes. The wavenumbers
of the C*—H localized modes span a rather narrow range of
about 60 cm™!, while the amide III modes span a wider range
of approximately 90 cm™!. One also notices that the wavenum-
bers of the two amide III localized modes both mainly cover
the same range between approximately 1200 and 1240 cm™..

However, there is a group of 11 structures (marked by black
squares in Figure 5) which have considerably higher wavenum-
bers for the amide III localized modes. One encounters a similar
situation in Figure 4 for the third and fourth normal modes. A
closer inspection of these 11 structures reveals that they engage
in intramolecular hydrogen bonding. Figure 6 plots the wave-
numbers of the two amide III localized modes as a function of
the distance between the oxygen atom of the first amide unit
and the hydrogen atom of the second amide unit. In this figure
one can recognize the 11 structures with higher wavenumbers
as those for which the O—H distance is smaller than 210 pm.
Furthermore, one notices that, for these structures, the wave-
numbers of both amide III localized modes are to a good
approximation a linear function of this O—H distance. On the
other hand, the wavenumbers of the C*—H bending localized
modes are not affected by the intramolecular hydrogen bonding.
It should be noted that for none of the considered structures
the other possible hydrogen bond (i.e., between the hydrogen
atom of first amide unit and the oxygen atom of second amide
unit) is formed (the corresponding O—H distance being never
shorter than 210 pm) and does thus not significantly affect the
wavenumbers of the amide IIT localized modes.

To summarize, we observe that, although the localized modes
are much more similar to each other than the normal modes,
for their vibrational frequencies this is not the case. For the
extended amide III region, similar spreads in wavenumbers are
observed for the localized modes and for the corresponding
normal modes. For both the normal modes and the localized
modes, there appears to be no simple relationship between the
backbone angles ¢ and 1 and the vibrational wavenumbers.
Nevertheless, we find that, in the cases where intramolecular
hydrogen bonds are formed, this leads to an increase of the
wavenumber of the amide III localized mode. This increase
depends linearly on the O—H distance in this hydrogen bond.

5. Structural Dependence of the Coupling Constants

In a local-mode model, not only the wavenumbers of the local
modes enter, but also the couplings between them. The structural
dependence of these coupling constants are presented in Figures
7 and 8. For the four local modes considered here, there are six
different coupling constants that will be discussed in the
following.

We start with the coupling of the classical amide III vibration
of the first amide unit (amide III(1) local mode) with the C*—H
bending vibrations. The orientation between the first amide and
the C*—H units depends only on the torsional angle ¢ (see
Figure 1a), so that it can be expected that the corresponding
coupling constants are largely independent of 1.%° This is
confirmed for both the amide ITI(1)/C*—H(1) coupling constant
and for the amide ITI(1)/C*—H(2) coupling constant (see Figure
7). When varying v for constant values of ¢ (plots on the left-
hand side of Figure 7), the coupling constants turn out to be
almost constant, whereas in the plots on the right-hand side of
Figure 7 the lines corresponding to constant values of 3 lie
very close to each other. For the amide III(1)/C*—H(1) coupling
constant, the dependence on ¢ is also not very strong (varying
between approximately 0 and 20 cm™'), whereas the amide
III(1)/C*—H(2) coupling constant varies between —30 and 20
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bending vibrations, one expects the opposite behavior. Now,
the orientation between the groups in question depends solely
on 1, and the corresponding coupling constants should be
independent of ¢. Indeed, for the amide III(2)/C*—H(1) and
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Figure 5. Dependence of the calculated wavenumbers of the localized modes on the dihedral backbone angles ¢ and 1. For the amide III modes,
the black squares mark those structures in which an intramolecular hydrogen bond with an O—H distance smaller than 210 pm is formed.

the amide III(2)/C*—H(2) coupling constants, the plots on the
left-hand side in Figure 7 show that the lines corresponding to

constant values of ¢ are very close together. For the amide III(2)/
C*—H(1) coupling constant, which varies between —10 cm™!
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and approximately 40 cm ™!, one finds a minimum at ¢ ~ —80°

and a maximum at ¥ & £ 180°. Similarly, for the amide III(2)/
C*—H(2) coupling constant, varying between —50 cm™! and
approximately 10 cm™!, one finds a maximum at 1 ~ —80°
and a maximum at ¥ ~ 120°. However, there are some
deviations from an “ideal” behavior, in particular for large values
of 1. Therefore, in the plots on the right-hand side in Figure 7,
for a fixed value of 1 the coupling constants as a function of ¢
is not always constant.

The amide III(1)/amide ITI(2) coupling constant should in
principle depend on both dihedral angles, since ¢ as well as
changes the relative orientation of the two amide units with
respect to each other. However, Figure 8 reveals that this
coupling constant seems to depend not so much on 1, whereas
the dependence on ¢ shows a minimum for ¢ = 0° and a
maximum at ¢ = £ 180°. Finally, the C*—H(1)/C*—H(2)
coupling constant should depend on neither of the two angles,
since in this case both local modes are vibrations of the same
set of atoms. While the individual values of this coupling

constant mainly cluster around a value of 0 cm™', one can

observe some rather large variations between —30 and 30 cm™".
It should be noted that this coupling constant determines the
mixing between the two C*—H bending vibrations, that is, the
rotation of the direction of these vibrations, which is not fixed
by the localization procedure, and thus is to some degree
arbitrary.

In contrast to the localized-mode wavenumbers, we find in
most cases for the coupling constants a rather regular depen-
dence on the backbone angles ¢ and 1. In the cases where the
orientation between two coupled local modes depends only on
one of these angles, this is reflected in the structural dependence
of the corresponding coupling constant, which only depends
either on ¢ or . This simple form of the dependence of the
coupling constants on ¢ and 1 can easily be parametrized, which
will be done in the following section. It should be noted that,
in contrast to the wavenumbers of the localized amide IIT modes,
the coupling constants involving these amide III modes are not
sensitive to intramolecular hydrogen bonding.

6. Local Mode Model of the Extended Amide III Region

On the basis of the analysis in terms of localized modes and
the structural dependence of the local modes and coupling

constants discussed in the previous sections, we now set up a
local model of the extended amide III region. For such a model,
we aim at simple functions to express both the wavenumbers
of the local modes and the coupling constants as functions of ¢
and . Using such a model, it is then possible to set up a
coupling matrix € for any backbone conformation (determined
by ¢ and ), and the wavenumbers of the normal modes as
well as their composition in terms of local modes can be
determined by diagonalizing this matrix.

For the wavenumbers of the localized modes we found no
simple dependence on the backbone conformation. Therefore,
in our model we simply assume local modes that have a constant
vibrational frequency. However, for all four localized modes
the wavenumbers span quite a broad frequency range. Therefore,
treating the wavenumbers as being constant is a rather crude
approximation and can be expected to account for quite a large
error in the final model. On the basis of a least-squares fit, we
use for the local C*—H(1) mode Q,, = 1309 cm™!, for the local
C“—H(2) mode Q, = 1277 cm™!, for the local amide III(1)
mode Qi3 = 1227 cm™', and for the local amide I1I(2) mode
Q.. = 1215 cm™L. For the local amide III modes, we have seen
in Section 4 that, when an intramolecular hydrogen bond is
formed, the wavenumber linearly depends on the O—H distance
of this hydrogen bond. Therefore, if this distance is shorter than
233 or 238 pm, respectively, we apply a correction depending
on this O—H distance d(O—H),

Q,, =1227cm™' + 0.61 cm™'+(233 pm — d(O—H))/pm
@)

Q,, = 1215 cm '+ 0.78 cmfl-(238 pm — d(O—H))/pm
3)

For this linear correction, the slope and the intercept were in
both cases determined by a least-squares fit for those structures
in which the O—H distance of the intramolecular hydrogen bond
is shorter than 210 pm. Note that for the local amide III modes
these structures were excluded from the fit determining the
average wavenumbers.
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Figure 7. Dependence of the coupling constants of the local modes on the dihedral backbone angles ¢ and .

As discussed in the previous section, the coupling constants
in general depend on only one of the backbone angles ¢ and .
Therefore, we use a sinusoidal function of the general form €

= a sin(b + 0) + ¢, where 6 is either ¢ or , to describe the
dependence of the coupling constants on the backbone confor-
mation. A function of this form is the simplest way to
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parametrize the coupling constants such that the correct
periodicity with respect to the backbone angles is enforced. The
parameters a, b, and ¢ are determined by a nonlinear least-
squares fit to the calculated coupling constants. The amide ITI(1)/
C*—H(1) coupling constant Qs and the amide III(1)/C*—H(2)
coupling constant Q3, are parametrized to depend only on ¢ as

Q. =45cm 'sin(—159° + ¢) + 12.8cm™  (9)

Q32 =18.1cm ! sin(107° + ¢) — 1.5 em”! (10)

whereas the amide II1(2)/C*—H(1) coupling constant Q. and
the amide III(2)/C*—H(2) coupling constant €, are param-
etrized to depend only on 1 according to

Q, = 11.8cm 'sin(—55° + ) + 7.9cm™ ' (11)

Q, =—262cm 'sin(—16° + y) — 13.6cm”'
(12)

The amide ITI(1)/amide III(2) coupling constant Q,,, for which
we found that it mainly depends on ¢, is parametrized as

Amide Ill(1) — Amide 111(2) Coupling Constant
60— ‘ . ‘ . : : : :

n
o o
T
L

wavenumber / cm™!

|
n
o

-40

_6071 L 1 L 1 L 1
-160 -120 -80 -40 O 40 80

¥

L 1
120 160

C*-H(1) — C*~H(2) Coupling Constant

60—

T

wavenumber / cm™"

-160 -120 -80 -40 0 40
v

-60

80 120 160

-1

-1

Weymuth et al.

Q., =9.8cm 'sin(—87° + ) —4.0cm”'  (13)

and the C*—H(2)/C*—H(2) coupling constant Q,,, for which
no simple structure dependence could be identified, is assumed
to be constant with Q, = 5.7 cm ™.

To assess the quality of this model, we calculate the normal
mode wavenumbers it predicts for the structures we used for
its parametrization and compare them to the calculated ones.
We find that the local-mode model reproduces the normal mode
wavenumbers with an overall root-mean-square error (RMSE)
of 10.9 cm™!. As indicated above, this error mainly originates
from the crude approximations made for the local-mode
wavenumbers.

One can, of course, ask whether a similar accuracy could
have been obtained by fitting the normal mode wavenumbers
directly. If we simply fit the normal mode wavenumbers using
a constant value for each of them (as we did for the localized
modes), this results in an RMSE of 14.6 cm ™, and if we further
apply a correction for the formation of intramolecular hydrogen
bonds for the third and fourth normal modes, this RMSE is
reduced to 11.6 cm™'. Even though these errors are slightly
larger than those of our local-mode model, this indicates that
for the wavenumbers of the normal modes such a direct fitting
leads to similar results. However, our local model offers the
advantage to give access to the composition of the normal modes

Amide lll(1) — Amide 11I(2) Coupling Constant
60— . : : ‘ ‘ . ‘ ‘

40+ i

¥ =-160°
¥ =-120°
¥ = -80°
¥ =-40°
¥ =0°
¥ = 40°
¥ =80°
¥ =120°
¥ =160°

wavenumber / cm

—60 - L L L L L L
-160 -120 -80 -40 0 40 80
4

120 160

C*-H(1) — C*~H(2) Coupling Constant

60—

= ¥=-160°
- W=-120°
¥ = -80°

¥ = —40°

¥ =0°

¥ = 40°

¥ = 80°

¥ = 120°

¥ = 160°

wavenumber / cm

—
.
—40f ] -
.
—

60 1 1 1 1 1
-160-120 -80 -40 0 40 80 120 160
¢

Figure 8. Dependence of the coupling constants of the local modes on the dihedral backbone angles ¢ and .
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in terms of local modes and therefore is also suitable for
predicting vibrational intensities. Furthermore, it allows for a
straightforward extension to larger systems, which is not possible
if the normal modes of a model system are fitted directly.

7. Conclusions and Outlook

The extended amide III vibrations in polypeptides and
proteins are particularly sensitive to changes in secondary
structure. To shed light on this structural dependence, we have
performed an analysis of the calculated vibrational spectra of
the minimal model system N-acetyl-L-alanine-N-methylamide
in terms of localized modes. On the basis of this analysis, we
have parametrized a local-mode model for the extended amide
IIT region. For the considered model system, there are four
normal modes in the extended amide III region. These four
modes originate both from the “classical” amide III vibrations
of the two amide units and from C*—H bending vibrations.
These vibrations mix with each other, leading to rather complex
normal modes, which furthermore change significantly when
varying the backbone dihedral angles ¢ and . In contrast to
this, the localized modes obtained for the extended amide III
region are almost pure amide III vibrations of a single amide
unit and C*—H bending vibrations, respectively. Furthermore,
the localized modes obtained for different backbone conforma-
tions are rather similar to each other. Only for the localized
C*—H bending modes in some cases the direction of the
vibration differs because no direction is favored in the localiza-
tion procedure. Nevertheless, the similarity of the localized
modes of different conformations makes it possible to construct
a local-mode model in which it is assumed that the local modes
are independent of the backbone conformation.

Even though the local modes obtained for different conforma-
tions are very similar, this does not hold for their vibrational
frequencies. For all four local modes, the wavenumbers vary
significantly when the backbone conformation changes. Since
this dependence of the local mode wavenumbers on ¢ and
does not have a simple form, we simply assume the vibrational
frequencies of the localized modes to be constant in our local-
mode model and employ an average value for each of them.
However, for those structures where intramolecular hydrogen
bonds are formed, we find that the wavenumbers of the localized
amide III modes are shifted to higher values, with the shift being
linearly dependent on the O—H distance of the intramolecular
hydrogen bond. A correction term for this shift is included in
our local-mode model. It is important to note that the effects of
both intra- and intermolecular hydrogen bonds are of utmost
importance for modeling the vibrational spectra of polypeptides
and proteins, since hydrogen bonds are responsible for stabiliz-
ing their secondary structure. From the results obtained here
for a model system, it appears that a simple incremental scheme
based on hydrogen-bond distances might be sufficient to capture
such effects on the localized amide III modes. However,
systematic calculations on microsolvated model systems will
be necessary to verify this assumption and parametrize such
more advanced models.

Besides the local modes and their vibrational frequencies,
the couplings between the local modes are an important
ingredient of any local-mode model. For these coupling
constants we find a much simpler dependence on the backbone
conformation. In general, the coupling constants only depend
on the dihedral angle that determines the relative orientation of
the local modes. In particular, we could confirm that the cou-
plings between the C*—H and the amide III modes on the same
residue in a polypeptide depend only on ¢, while the corre-
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sponding coupling for groups on adjacent residues depends only
on . It is further noteworthy that the coupling constants are
not sensitive to the formation of hydrogen bonds; that is, for
those structures where a significant shift of the wavenumber of
the localized amide III mode was found no irregularities are
observed for the coupling constants. Only for the coupling
between the two localized C*—H bending vibrations, no simple
dependence on the backbone conformation is found. This
coupling constant is related to a rotation of the direction of these
bending vibrations, and is somehow arbitrary since no prefer-
ential direction is enforced in the localization procedure.

By suitably parametrizing the coupling constants, we are able
to set up a local-mode model of the extended amide III region.
For the model system considered here, this local-mode model
is able to reproduce the vibrational frequencies within an RMSE
of 10.9 cm™!. This error is similar to what can be achieved by
fitting the vibrational frequencies directly. Nevertheless, a local-
mode model offers several advantages compared to a direct fit
of the normal-mode frequencies of a small model system. First,
a local-mode model is not limited to a specific model system,
but it can be expected that the local mode parameters and
coupling constants are similar also in larger polypeptides and
proteins. Therefore, a local-mode model allows for a straight-
forward extension to larger systems. Second, with a local-mode
model it is not only possible to describe the vibrational
frequencies, but it also gives access to (models of) the normal
modes themselves, which in turn makes it possible to predict
vibrational intensities. Particularly for specialized spectroscopic
techniques, such as ROA spectroscopy, where reliable rules of
thumb are lacking, such simplified models might be of great
value for understanding and interpreting experimental spectra.'?
The same applies to 2D-IR experiments, which are commonly
interpreted on the basis of local-mode models. However, since
such models are usually constructed on the basis of empirical
considerations, so far they are restricted to the amide I and amide
II bands. The localization procedure applied here makes it
possible to construct local-mode models also for more compli-
cated cases, such as for the extended amide III region
investigated here, which is a prerequisite for extending 2D-IR
spectroscopy to this spectral region.

Of course, the transferability of the model parametrized here
to larger polypeptides and proteins has to be investigated in
future work. It can be expected that the vibrational frequencies
of the local modes will be subject to changes when moving to
larger polypeptides, in particular due to the influence of
hydrogen bonding. Furthermore, for the central residues in larger
polypeptides the local mode frequencies will be very similar,
which is in contrast to the small model system considered here
where the wavenumbers of the two amide III local modes differ
significantly. However, since we found that the coupling
between the local modes is not sensitive to changes in the
vibrational frequencies, it can be expected that the coupling
constants and their parametrization can be applied also to larger
polypeptides and proteins. This is what has already been
observed for local models of the amide I band.?® Note that, for
instance, ROA intensities in the extended amide III region are
mainly determined by the coupling between the local modes.!?
Therefore, the coupling constants are much more important than
the local mode frequencies. For this reason, it should be possible
to develop rules of thumb for the prediction of extended amide
III ROA intensities on the basis of the simplified local-mode
model developed here. Work in these directions is currently in
progress in our group.
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