THE JOURNAL OF CHEMICAL PHYSICS 132, 044114 (2010)

The weak covalent bond in NgAuF (Ng=Ar, Kr, Xe): A challenge
for subsystem density functional theory

S. Maya Beyhan,"® Andreas W. Gétz,"® Christoph R. Jacob,?® and Lucas Visscher'?
YTheoretical Chemistry, Amsterdam Center for Multiscale Modeling, Vrije Universiteit Amsterdam,

De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands

Laboratorium fiir Physikalische Chemie, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland

(Received 5 November 2009; accepted 24 December 2009; published online 28 January 2010)

We have assessed the accuracy of a representative set of currently available approximate
Kinetic-energy functionals used within the frozen-density embedding scheme for the NgAuF (Ng
=Ar, Kr, Xe) molecules, which we partitioned into a Ng and a AuF subsystem. Although it is weak,
there is a covalent interaction between these subsystems which represents a challenge for this
subsystem density functional theory approach. We analyzed the effective-embedding potentials and
resulting electron density distributions and provide a quantitative analysis of the latter from dipole
moment differences and root-mean-square errors in the density with respect to the supermolecular
Kohn—Sham density functional theory reference calculation. Our results lead to the conclusion that
none of the tested approximate kinetic-energy functionals performs well enough to describe the
bond between the noble gas and gold adequately. This observation contributes to the growing
evidence that the current procedure to obtain approximate kinetic-energy functionals by
reparametrizing functionals obtained via the “conjointness” hypothesis of Lee, Lee, and Parr
[Phys. Rev. A 44, 768 (1991)] is insufficient to treat metal-ligand interactions with covalent

character. © 2010 American Institute of Physics. [doi:10.1063/1.3297886]

I. INTRODUCTION

The increasing interest in application of quantum chemi-
cal methods in the study of biological systems has led to
widespread use of subsystem methods that focus the atten-
tion on a particular region of interest, treating the environ-
ment at a lower level of theory.l_5 Many developments were
pioneered by Warshel and co-workers™’ who introduced the
quantum mechanics/molecular mechanics (QM/MM) method
and later introduced an approach in which a local pseudopo-
tential representing the environment is used to embed an
active solvent molecule. In the latter scheme the pseudopo-
tential needs to be parametrized for the solvent-solute inter-
action, a requirement that is not necessary in a related sub-
system approach, the so-called frozen-density embedding
(FDE) method within density functional theory (DFT), as
proposed by Wesolowski and Warshel® in 1993. In this
method the electron density of the environment is included in
the calculation by means of an effective embedding potential
that describes the difference between the full and the active
system. This method can be used to calculate molecular
properties of solvated systemsg*11 and, in its generalization to
time-dependent DFT,IZ’13 to describe local
electronic excitations and couplings between such
excitations."*™'” The method can also be used to compute
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well as strong interaction energies as in ligand-metal bonds®!
or to optimize structures of such complexes,22 and has also
been explored in molecular dynamics simulations.”** The
FDE method as well as other relevant methods to describe
biological systems are recently reviewed by Kamerlin et al. »

The foundation of FDE is a subsystem formulation of
DFT.” In most cases the density is partitioned into two sub-
densities that each corresponds to an integer number of elec-
trons, but a three-partitioning scheme that uses capping at-
oms to enable fractionation of strongly interacting
subsystems has also been developed.27 In FDE, the density
p(l)(r) of an active fragment is determined in the presence of
an effective embedding potential due to the frozen electron
density p@(r) of the environment. Provided that an initial
guess for the environment density p®(r) is available, Kohn—
Sham (KS)-like one-electron equations can be obtained for
the determination of this active density p'(r) from the mini-
mization of the energy functional E=E[p",p®] with re-
spect to p(r), while keeping p@(r) frozen.>*® To stress the
difference with regular KS approaches these one-electron
equations can be called the KS equations with constrained
electron density (KSCED). For doubly occupied orbitals
¢f.1)(r) of subsystem (1) they read

VZ
= 0N | 470) = 6 ),
()
N
i=1,...,—/—.
2

The effective potential in these equations is given by
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vt LM, p@(r) = TP V() + v L™, o (),
(2)
KS

where vX3[pV](r) is the KS effective potential of the iso-
lated subsystem 1 containing the usual terms of the nuclear
potential, the Coulomb potential of the electrons, and the
exchange-correlation (XC) potential,
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p(r')
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The effect of subsystem 2 is represented by the effective-
embedding potential v<°[p"), p?](r) that reads
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where vﬁ)c(r) denotes the external potential due to the nuclei
of system 2, p"(r)=pD(r) + p@(r) is the electron density of
the whole system, T,[p] is the functional for the kinetic en-
ergy (KE) of the noninteracting reference system defined in
the KS theory, and Exc[p] is the functional for the XC en-
ergy.

The formalism assumes that for a given p@(r), the ac-
tive density pV(r)=p®(r)-p?(r) is non-negative every-
where in space and noninteracting vs—representable.zg’29 In
that case the supermolecular KS-DFT results for a given ap-
proximate functional for Exc[p] should be reproduced by the
subsystem calculation, provided that the exact KE functional
T[p] is used. In practice the first condition is difficult to
fulfill exactly with a simple trial density, making it necessary
to introduce the so-called “freeze-and-thaw” (FT)
procedure30 in which both densities are adjusted in an itera-
tive fashion. More importantly, the exact T,[p] is unknown
and one has to resort to an approximant for the nonadditive
KE and the KE component of the embedding potential. We-
solowski and co-workers'*?*?'* examined such approxi-
mate KE functionals in the FDE scheme and showed that
with generalized-gradient approximation (GGA) functionals,
accurate results are obtained for a variety of weakly interact-
ing systems.lg’33’34 A similar conclusion was reached by
Kiewisch et al.** who studied also the strongly hydrogen-
bonded system F-H-F % Recently, however, Fux et al.
analyzed the electron density distributions from FDE calcu-
lations on subsystems connected by coordination bonds.
They show that FDE, with a GGA approximation to the KE
component of the embedding potential, fails for compounds
with strong covalent bonding contributions.

In an earlier study,36 an exact form for the nonadditive
KE component of the effective embedding potential
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v, p@](r) at the long-distance limit has been derived
and a position-dependent correction has been proposed
which ensures the correct behavior for this KE component in
this limit. This correction has been shown to lead to an im-
proved description of covalent bonds in transition metal
complexes, even though the resulting density is still not very
accurate.” More recently, an approximation for the nonaddi-
tive KE component has been constructed which enforces the
exact limit near nuclei in the environment.”’

Our goal is to analyze the behavior of the currently
available GGAs that underlie both the older and the newer
generations of the nonadditive KE functionals. These func-
tionals are constructed following successful exchange func-
tional forms, in line with the conjointness hypothesis of Lee,
Lee, and Parr (LLP).3 % In our analysis, we also include the
PBEn KE functionals developed by Karasiev et al.® that
have only recently been tested in the context of FDE.”!

The present study was designed to assess the NgAuF
(Ng=Ar, Kr, Xe) molecules in which the bond between the
noble gas and AuF has a considerably covalent character***!
and for which we may tune the interaction strength by
changing the coordinating noble gas atom. Another advan-
tage of this type of molecules is their linearity, making it
easy to visualize the embedding potentials and deformation
densities along the bond axis.

In Sec. II, we briefly discuss the available approximate
KE functionals and the conjointness conjecture. Section III
contains details on the computational methods applied in this
work. Section IV is devoted to discussion of the results. In
Sec. IV A, we examine the differences between the embed-
ding potentials calculated using different approximations for
the nonadditive KE functional. In Sec. IV B, we consider the
induced dipole moments of the Ng (Ng=Ar, Kr, Xe) atoms
that are obtained without relaxing the density of the AuF
unit. In Sec. IV C, we allow for this relaxation using the FT
procedure, and in Sec. IV D we quantify the differences of
the obtained total density with respect to the supermolecular
reference density. Finally, concluding remarks are given in
Sec. V.

Il. APPROXIMATE KINETIC-ENERGY FUNCTIONALS

The simplest approach to describe the KE in terms of a
density functional is the Thomas—Fermi (TF) model.*** The
TF model has well-known defects in the description of the
total KE of molecules™™*® but yields a reasonable approxi-
mation to the repulsive part of the embedding potential to be
of use as a starting point for the FDE approach. The TF KE
functional is given by

3
Trdpl= CTFJ p*(r)dr, Crp= 5(3772)2/3 ~2.871,

(5)

where Crr is the TF constant. This local density approxima-
tion of the KE is exact for the uniform-electron gas.

Another simple model was developed by von
Weizsicker (vW) (Ref. 49) based on another exact limit: the
KE density functional for two-electron systems. This func-
tional is defined by the equation
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The vW functional should be applicable in the outer regions
of a molecule and close to the nuclei, where the density can
be considered to be due to a single orbital. Since it gives zero
KE in the uniform-electron gas limit it can be included as a
correction to the TF KE. This gives the Thomas—Fermi—von
Weizsicker model (TFW),

Trrwlp]l = Trelp] + NTyw[p], (7)

where N\ is a parameter with 0=N=1. The standard value
A=1/9 follows from a second-order gradient expansion of
the KE. The TFW model has been shown to be able to im-
prove the overall accuracy relative to the individual function-
als, but the errors in the total KE are still too large to be used
in quantitative calculations.

Further sophistications can be introduced to model de-
viations from the uniform-electron gas limit by including the
gradients of the density in GGA functionals. Modern devel-
opments thereby usually follow the idea of LLP who conjec-
tured the concept of “conjointness”38 of the scale invariant
part of the kinetic and exchange energy expressions. This
idea has been widely adopted with examples given in
Refs. 50-54. According to the LLP conjointness concept, KE
functionals are written in the form of a GGA,55

79 p] = Crr J P (r)F(s())dr, (8)

where the dimensionless function F(s) is called the “en-
hancement factor” and the reduced density gradient is de-
noted by s=|Vp|/(2pks) with kp=(37°p)'3. For the en-
hancement factor one then uses the same functional form as
for approximate exchange functionals, i.e.,

F(s(r)) = Fx(s(r)). )

In practical orbital-free DFT (and FDE) calculations the pa-
rameters in the enhancement factor are often refitted to yield
an improved description of the (nonadditive) KE and its
functional derivative, the kinetic contribution to the (embed-
ding) potential. In this work we will compare the behavior of
five different GGA functionals based on this conjointness
concept.

The PW91K GGA KE functional** has the same func-
tional form for the enhancement factor F(s) as the exchange
functional of Perdew and Wang (PW91),% and was param-
etrized for the KE by Lembarki and Chermette™ as

1 +A,s sinh™'(As) + (A, —A36_A4‘Y2)s2
1 +A1S Sinh_l(AS) + B]s4

FFWQIK(S) — , (] 0)

with A;=0.093 907, A,=0.26608, A;=0.0809615, A,
=100.00, A=76.320, and B,;=0.577 67 X 107,

This functional form of the KE is useful for embedding
purposes because F’ fWQlK(s) smoothly approaches zero as s
becomes large.28 This makes the KE contribution to the em-
bedding potential positive in regions of low density of the
active subsystem since the last term of Eq. (4) remains small.
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FIG. 1. Enhancement factors used in KE functionals plotted in the domain
0.0<s<1.5. To guide the eye we also display the constant value of 1 that
corresponds to the original TF ansatz.

The PW91 enhancement factor is, however, rather com-
plicated. For XC functionals it is often replaced by the
simple function introduced for E, by Becke and used by

Perdew, Burke, and Ernzerhof (PBE) in their XC
functional.’’ This enhancement function,
C.s?
FPBE(s) = 1 4+ — 12— (11)
l+a;s

has also been reparametrized for use in KE functionals. Tran
and Wesolowski™* fitted the parameters to reproduce the ex-
act KE of the He and Xe atoms and developed the Tran—
Wesolowski (TW02) functional that has C;=0.2319 and «,
=0.2748. Karasiev er al.”’ chose to reproduce the KS forces
of a training set of silicon oxide molecules, irrespective of
the resulting total energy. Since the total KE is not of interest
in FDE calculations (as the bulk of the energy is given by the
KS expression), and because the functional derivative ap-
pearing in the force expression also appears in the expression
for the embedding potential, this ansatz may also be interest-
ing in the present context. The resulting parameters (C,;
=8.7575 and a,=1.0706) are substantially larger than the
TWO02 parametrization making this PBE2 functional deviate
considerably from the TF starting point. It is thus interesting
to see what such a larger departure from the TF starting point
may give, although we should keep in mind that the training
set (silicon oxide bonds) used by Karasiev and co-workers is
quite different from the weak covalent bonding that we are
aiming to treat.

The same authors® also developed three- and four-
parameter enhancement factors F(s) (dubbed PBE3 and
PBEA4, respectively, by them) based on the expressions intro-
duced by Adamo and Barone,”®

n—1 2 i

s

FPP(s) =1+ 2 CE”{ o) 2} ’ (2
-1 I +a”s

with C'=-3.7425, a{"=4.1355 and C{’=50.258, and C\"
=-7.2333, aW=1.7107, c=61.645, and C"=-93.683.

In contrast to the functions discussed earlier, the PBE3
and PBE4 enhancement factors may attain values smaller
than 1 for small values of s, thus reducing the TF KE density
rather than enhancing it. This difference between the en-
hancement factors is displayed in Fig. 1. Apart from the
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small s behavior of PBE3 and PBE4 one may also note the
similarity between the PW91K and TWO02 enhancement
functions.

lll. COMPUTATIONAL DETAILS

All calculations were performed using the FDE (Ref. 8)
implementationls’59 in the Amsterdam density functional
(ADF) package.®®' The PBE XC functional,” the zeroth or-
der regular approximation,ﬁz’63 and the TZ2P basis set from
the ADF basis set library61 were employed throughout this
work. FDE calculations were performed using both the de-
fault basis set expansion [denoted as FDE(m)], in which only
the basis functions of the active subsystem are used, and the
supermolecular basis set expansion [denoted as FDE(s)],”" in
which the basis functions of both subsystems are used. If not
stated otherwise, electron densities of both subsystems were
relaxed and converged in six FT cycles.30 The approximate
KE functionals for the nonadditive KE used in this work are
the TF ’functional,“f44 the TF plus 1/9 von Weizsicker
(TFOW) functional,” the PW91K functional,’>>® the TW02
functional,54 and the Karasiev—Trickey—Harris PBE2, PBE3,
PBE4 functionals.”” These PBEn KE functionals were imple-
mented in ADF for this work. For the purpose of analysis we
also employed a purely electrostatic embedding (EE) in
which the embedding potential contained only the Coulomb
interaction with the frozen system, that is, omitting the non-
additive KE and XC energy contributions.

The electron density and the quantities derived from it
were obtained on the integration grid used by ADF from a
locally modified version of the DENSF-utility program of the
ADF package. For visualization, the electron deformation
density, the enhancement factor, and the effective embedding
potential were obtained on an evenly spaced grid by the
same locally modified version of DENSF. The electron defor-
mation density pg.s(r) is defined as

Paei(r) = psce(r) = pae(r) = pi(r), (13)
where p(i) (r) (i=1,2) is the electron density of an isolated

frag
fragment and pgcp(r) the final converged self-consistent field

(SCF) electron density. In the case of FDE, we have

_ tot) _ 2 .
pSCF(r)_pFDE(6)(r)_pFDE(6)(r)+pFDE(6)(r)' In order to quanti-
tatively visualize the deformation density along the bond
axis (z-axis), we adopted a scheme inspired by the one em-
ployed by Belpassi et al.*' We numerically integrated on the
evenly spaced grid used by DENSF (integration accuracy of
107 a.u. for the electron deformation density) over the x-
and y-coordinates for every corresponding point on the
z-axis,

ﬁ(z) = J J pdef(x’y9z)dXdy' (14)

This condenses the information contained in these three-
dimensional functions to one-dimensional functions that are
easier to plot. Since results of the calculations with the su-
permolecular basis set expansion were very similar, all the
figures throughout this work display the data obtained with
the default monomolecular basis set expansion.
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FIG. 2. ArAuF: the KS potential and contributions of the embedding poten-
tial due to electrostatic (nuclear and Coulomb), nonadditive XC and KE for
the TF KE functional along the bond axis. The Au atom is situated at
z=0.0 A, Fatz=192 A, and Ar at z=-2.39 A.

For each Ng—AuF (Ng=Ar, Kr, Xe) molecule, the calcu-
lations were done at a single geometry, with bond lengths
taken from the analysis of experimental microwave data.
The Ng-Au distances are d(Ar—Au)=2.391,"* d(Kr—Au)
=2.461," and d(Xe-Au)=2.543 A,* while the AuF dis-
tance was fixed at 1.918 A.*!

IV. RESULTS AND DISCUSSION

The Ng—Au bonds in NgAuF complexes are weakly co-
valent, with the interaction strength increasing from 49 to 94
kJ/mol upon moving from Ar to Xe.*' In Sec. IV A we con-
sider only the ArAuF molecule, but quantitative differences
among NgAuF molecules are discussed in Secs. IV B and
IV D. Since the Ng—Au bond is much weaker than the Au-F
bond (computed as 296 kJ/mol for the free molecule*!), this
naturally calls for a partitioning into Ng and AuF fragments
in FDE with the Ng atom taken as the active subsystem and
AuF taken as the frozen subsystem. When we consider the
Ng—Au bond formation in this framework, electron density
should move from the Ng atom into the bonding region (for
details, see Ref. 41). This process can in principle be de-
scribed by the FDE approach, possibly with the aid of the FT
update procedure to allow for some adjustment of the AuF
density.

A. Embedding potentials

For fixed densities and XC functional, any difference in
the embedding potential v<°[p"), pP®](r) is due only to dif-
ferences in the approximate KE functional that is used. We
begin our analysis by taking the density of the isolated frag-
ments to calculate the embedding potential v<f;> as well as its
components [see Eq. (4)]. This corresponds to the embedding
potential as it is used in the first iteration of a self-consistent
solution of the KSCED equation (1).

Figure 2 shows a plot of the components of v<f(r) for
the Ar atom along the bond axis for the TF KE density func-
tional. Figures 3 and 4 show the plots of the full embedding
potential for the KE functionals investigated in this work.

At large distances from the frozen AuF unit (for
7z<-2.0 A) all embedding potentials are dominated by
the attractive electrostatic contribution. The employed
(semi)local nonadditive KE and the nonadditive XC poten-
tials approach zero because the derivatives in Eq. (4) are
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FIG. 3. ArAuF: the KS and embedding potentials generated using the TF,
PWOI1K, TWO02, and PBE2 functionals along the bond axis. The Au atom is
situated at z=0.0 A, F at z=1.92 A, and Ar at z=-2.39 A.

evaluated at the same value of p when p®(r) is negligibly
small. The other extreme is found in the vicinity of the fro-
zen nuclei where we find an oscillatory potential resulting
from competition between the large positive KE contribution
and the strongly negative Coulomb potential. This highly
oscillatory potential resulting from relatively smooth indi-
vidual components (cf. Fig. 2 for the components and the
blue line in Fig. 3 for the resulting TF embedding potential)
is consistent with the assumption made in the FDE ansatz in
which the active density should complement the frozen den-
sity to yield the exact total density. In the case of a heavy
atom with a pronounced shell structure, such oscillatory po-
tentials should represent the Pauli repulsion that arises due to
the frozen core orbitals. This core region is overall repulsive
with the shallow negative regions outweighed by regions in
which the total potential is strongly positive.

The region of interest is the area between z=-2.0 A and
z=-0.5 A in which the charge transfer from the noble gas to
the AuF is known to take place and where subtle differences
between the KE contributions yield an important contribu-
tion to the relatively shallow potential. To put this contribu-
tion in perspective we have also included the KS potential of
the isolated Ar atom to which this embedding potential will
be added in the plots. The TF curve climbs almost monotoni-
cally with the repulsive wall starting at about —1.0 A. The
PWOI1K and TWO02 functionals deepen the well somewhat
and introduce some substructure. This is amplified by the
PBEn functionals of which we showed only the PBE2 func-
tional together with the other GGA functionals to not clutter

potential [a.u.]

-2 -1 0
Z [Angstrom]

FIG. 4. ArAuF: the KS potential and embedding potentials generated using
the TF, PBE3, and PBE4 functionals along the bond axis. The Au atom is
situated at z=0.0 A, Fat z=1.92 A, and Ar at z=-2.39 A.
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FIG. 5. ArAuF: enhancement factor for the total (sum of fragments) density,
ie., pA'+pAF, for different approximations along the bond axis. The Au
atom is situated at z=0.0 A, F at z=1.92 A, and Ar at z=-2.39 A.

Fig. 3. This functional gives rise to a significant deepening of
the well near the gold atom and also renders the potential in
the region between the gold and the fluoride attractive. The
use of higher-order terms in PBE3 and PBE4 is depicted in
Fig. 4 in which we observe oscillations also in the bonding
region of the complex.

To show the cause of these differences in embedding
potentials more clearly, Fig. 5 shows the enhancement factor
F,(s) for the total (sum of fragments) density of the complex,
i.e., pA'(r)+ p™“(r), for different approximations of the non-
additive KE functionals.

It is the derivative of the enhancement factor with re-
spect to the density which determines the potential. The
trends observed in the embedding potential are indeed visible
in the enhancement factor plots, with the PW91K and TW02
curves varying smoothly compared with the PBE2 functional
that differs only in parametrization but not in functional form
from TWO2. Interesting is the great similarity between the
PWOI1K and TWO2 curve that deviate only in the uninterest-
ing high s regime that starts at the low density tail of the
fluoride and argon (not visible in this plot). We do not show
the enhancement factor of PBE3 and PBE4 because these
exhibit strong oscillations and would clutter the figure. Al-
ready from the potential, it is clear, however, that we may
expect a stronger charge transfer for the PBEn functionals
than for the other functionals.

B. Induced dipole moments

As a simple direct measure of the changes in the electron
density, we take the dipole moment changes that occur upon
the formation of the Ng-AuF (Ng=Ar, Kr, Xe) molecules.
This property is ideally suited to assess the accuracy of the
electron density that results from FDE calculations, both in
comparison to the reference KS method as well as in relation
to simple electrostatic models. For the latter we consider a
simple model that neglects charge transfer and takes the elec-
tric field strength at the position of the Ng atom to compute
an induced dipole moment u™=E« using the relation be-
tween this electric field strength E and the dipole polarizabil-
ity a of the atom. The experimental values for the polariz-
ability of the noble gas atoms were used, as obtained from
Ref. 66, while the electric field was obtained by numerically
differentiating the electrostatic potential due to the AuF sub-
system at the position of the nucleus of the noble gas atom.
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TABLE I. Magnitude of the induced dipole moments in debye of Ar, Kr, and Xe due to the interaction with the
AuF molecule with different approximations. The KS induced dipole moment is obtained by subtracting the
permanent dipole moment of AuF from the dipole moment of the Ng—AuF complex.

Ar Kr Xe Ar Kr Xe
KS 1.80 2.15 2.67
PP 0.10 0.14 0.20

FDE(m) FDE(s)

EE* 1.43 5.81 8.41
TF 0.27 0.36 0.33 0.26 0.30 0.31
TFOW 0.37 0.54 0.61 0.39 0.49 0.58
PWIIK 0.36 0.52 0.57 0.39 0.49 0.56
TWO02 0.36 0.53 0.58 0.41 0.50 0.58
PBE2 1.09 1.99 2.61 1.78 2.26 2.88
PBE3* 1.15 2.29 3.13
PBE4" 1.72 3.99 5.46

“FDE(s): SCF convergence could not be reached.

This simple point polarizability model will be denoted (PP)
and can also be compared with the EE model in which the
nonadditive KE and XC contributions are completely ne-
glected in the KSCED iterations. Table I compares the in-
duced dipole moments of Ng (Ng=Ar, Kr, Xe) molecules
calculated using these models with the ones calculated with
the reference KS and approximate FDE schemes.

As expected, the induced dipole moment increases from
Ar to Xe due to the larger polarizability that overcomes the
greater bond distance. For a system which exhibits a consid-
erable covalent character like Xe—AuF, the PP model clearly
predicts a too small effect. Missing in the PP model is the
charge transfer from the Ng atom to the AuF unit, as ex-
plained in detail by Belpassi et al.*' Since FDE allows for
such charge transfer, we may check how much FDE does
improve upon the classical model. This cannot lead to a per-
fect agreement as there is a small region close to the gold
nucleus in which the AuF frozen density exceeds that of the
NgAuF complex (the integrated negative densities are
—0.051, —0.064, and —0.084 for Ng=Ar, Kr, and Xe, re-
spectively). Adjustment of the AuF density by FT cycles to
allow for this effect will be considered in Sec. IV C, but for
the present qualitative purpose it is reasonable to assume that
these small regions of negative density do not influence the
result too much. This is also consistent with the experimental
evidence that the Ng-Au bonding hardly influences the
strong AuF bond much.**%*% As can be seen from Table 1,
the TF, TFOW, PWO1K, and TWO02 functionals underestimate
the dipole moment change for all noble gases in the series,
Ar, Kr, and Xe, but do improve upon the PP model. The
underestimation is not due to basis set deficiencies as calcu-
lation with the FDE(s) approach (in which the supermolecu-
lar basis is used) yields values close to the FDE(m) values.
This indicates that the embedding potential generated with
these functionals is too shallow, overestimating the Pauli re-
pulsion that arises from the AuF unit.

The deeper well generated by PBE2 and PBE3 leads to
dipole moment changes that approach the results of super-
molecular KS calculations. The PBE2 functional gives val-
ues close to the reference result if the FDE(s) expansion, in

which the basis set is equal to the one used in the reference
KS calculation, is used. On the other hand one may observe
that the more complicated embedding potential generated
with the PBE4 functional is too attractive, leading to dipole
moment changes that are well above those obtained by the
KS method. Removing the repulsive nonadditive KE and XC
terms by considering only EE results in a large overestima-
tion of the charge transfer. These values provide an indica-
tion of the upper limit of charge transfer that is possible
within the monomolecular expansion used in the FDE(m)
approach. For the EE model, as well as for the PBE3 and
PBE4 functionals, it was not possible to reach convergence
in the FDE(s) expansion that allows full charge transfer to
the AuF unit.

C. Deformation densities

We now allow for adjustment of the AuF density as well
and define deformation densities as explained in Sec. IIL
After six FT cycles, the electron densities hardly change, and
the quantities discussed here are converged within the re-
ported accuracy. In order to assess the performance of these
FDE deformation densities we compared them with the KS
deformation density defined as p*S(r)— pg;g(r)—pgzg(r),
where p*S(r) designates the density of the supermolecule
obtained with the conventional KS method. These deforma-
tion densities for Ar—AuF, radially integrated and plotted
along the bond axis (see Sec. II for details), are presented in
Fig. 6. Because of its complicated structure, the deformation
density obtained for the PBE4 functional is omitted. It devi-
ates significantly from the KS deformation density.

In the KS deformation density, there is a sharp increase
at the very center of the noble gas delimited on both sides by
a decrease. The increase in density at the noble gas nucleus is
due to the empty 4s orbital of Ar that participates in the
molecular orbitals of the complex, resulting in a larger
s-orbital occupation on the noble gas. The decrease on both
sides is caused by donation from the occupied 3p orbital that
participates in the weak sigma bond to the gold center. To-
gether, this corresponds to an overall charge transfer from Ar
to AuF and decrease in the density near the Ar nucleus. The
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FIG. 6. Radially integrated deformation densities for different approxima-
tions of the nonadditive KE functional for the ArAuF molecule. KS denotes
the difference between the KS supermolecular density and the one of sum of
fragments. FDE deformation densities are calculated by taking the differ-
ence between the KSCED and sum of fragments density. The Au atom is
situated at z=0.0 A, F at z=1.92 A, and Ar at z=-2.39 A.

TF, TFOW, PWI1K, and TWO02 functionals all capture this
trend but underestimate its magnitude with a maximum of
charge buildup in the bonding region at z=—1.8 A, rather
than at z=—1.1 A as in the KS reference. The PBE2, PBE3,
and PBE4 functionals overestimate the magnitude of charge
transfer. Among all functionals, PBE2 comes closest to the
KS results if we look only at the density changes near Ar and
in the bonding region. The picture changes when considering
also the density changes near the Au center. TF, TFOW,
PWOIIK, and TWO02 now resemble the KS picture, although
again underestimating the magnitude of the density distor-
tion. The PBE2, PBE3, and PBE4 (not shown in the picture)
functionals show a too complicated density deformation. Fi-
nally, in the vicinity of the fluorine nucleus, all the function-
als tested here, except for PBE2, capture qualitatively the
trends. Again the first family of functionals (TF, TFOW,
PWOIIK, and TWO02) underestimates the density changes,
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while the PBE3 functional has a very good agreement with
the KS result and the PBE4 functional (not shown in the
picture) overestimates it.

D. Quantitative analysis

To quantify the performance of the approximate nonad-
ditive KE functionals under consideration, we used three
measures of accuracy (see Refs. 27 and 67), again using the
supermolecular KS method as a reference and considering
the density after six FT cycles. The measures are the dipole
moment differences for the total system,

A= f (P5(r) = (pDe(e) (1) + PiDeis) (P))rdr: - (15)
the integrated absolute difference density,
1
A = ﬁf |(sz(r) - (pi:lD)E(é)(r) + P%:%E(6)(r)))|dr; (16)

and the root-mean-square error in the density,

A™ = ]%] \/ f (P*5(r) = (PtBie (1) + PEDE() (1)) dr
(17)

Here, pXS(r) is the density of the supermolecule obtained
with the conventional KS method, p;lDE(@(r) and p%E<6)(r)
are the densities obtained with the FDE scheme, and N is the
total number of electrons of the systems under investigation.
These data are presented in Table II for the molecules
Ar-AuF, Kr-AuF, and Xe-AuF, respectively. The “sum of
fragments” designates the superposition of the densities ob-
tained by KS calculations on the isolated fragments (Ng and
AuF). This is the starting density on which the FDE scheme
is expected to improve upon. The dipole moments of AuF,
Ar—AuF, Kr—AuF, and Xe—AuF are 3.61, 5.47, 5.76, and 6.28
D, respectively. It can be seen that the relative accuracy
drops when one moves from Ar to Xe for all functionals,
except for PBE2 and PBE3 when going from Ar to Kr. This
overall loss in accuracy is expected given the increase in
covalent character of the bond between the Ng and AuF upon
moving from Ar to Xe. This drop in accuracy is hardly vis-
ible for A™* because, compared with A this measure puts

TABLE II. The dipole moment difference Au in debye, the integrated absolute difference density A®*, and root-mean-square error in the density A™® for
Ar—AuF, Kr—AuF, and Xe-AuF. All the data refer to the comparison to KS-DFT. All FDE calculations are done in the monomolecular expansion FDE(m).

Ar—AuF Kr—AuF XeAuF
Ap A 103 A™ X 103 Ap A < 103 A™S X 103 Ap A 103 A™ X 107
Sum of fragments 1.80 4.04 0.41 2.15 4.29 0.39 2.67 4.61 0.41
TF 1.04 3.87 0.44 1.24 4.07 0.43 1.86 4.67 0.45
TFOW 1.07 3.48 0.40 1.11 3.59 0.39 1.59 4.23 0.42
PWIIK 1.10 3.52 0.39 1.19 3.63 0.39 1.75 4.30 0.41
TWO02 1.12 3.49 0.39 1.22 3.59 0.38 1.79 4.22 0.41
PBE2 1.74 4.94 0.47 0.97 4.25 0.41 1.25 4.83 0.44
PBE3 2.36 9.48 1.00 2.45 9.43 0.97 7.16 14.98 1.32
PBE4 7.46 26.12 2.83 8.13 24.49 2.09 12.33 2591 2.25
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more weight on the nuclear regions of gold where the density
and error do not change so much through the series.

As expected, TF, TFOW, PW91K, and TWO02 functionals
all improve the sum of fragments starting density, although
the magnitude of this improvement is small. Considering
only the dipole moment difference, the TFOW model appears
to yield the best results. Regarding the other two measures of
accuracy, the TWO2 functional performs best. In general the
differences in results between these functionals are rather
small, especially compared with the absolute size of the er-
rors that amount to more than 1 D in the dipole moment. The
popular PW91K functional gives in this case less accurate
results than TFOW and TWO02.

It is noteworthy that for PBEn functionals, results with
six FT cycles shown in Table II are worse than one would
expect from the results without FT cycles shown in Table 1.
This is due to significant changes in the AuF density during
FT cycles. Among others, the dipole moment of the AuF unit
changes significantly (1.02, 0.91, and 1.00 D for ArAuF,
KrAuF, and XeAuF, respectively) when employing these
functionals contrary to what is to be expected on basis of the
weak intermolecular interaction and the strong intramolecu-
lar interaction. After FT cycles the PBE2 and PBE3 function-
als now yield worse results than the other conjointness func-
tionals, with PBE2 only slightly improving over the sum of
fragments. The larger departure from the TF reference used
in the PBEn functionals does thus lead to artifacts when the
frozen density is allowed to relax. This is also the cause of
the convergence problems observed in the FDE(s) calcula-
tions in which the full AuF basis is available in the noble gas
subsystem calculation. A similar behavior has been observed
in our earlier work for other functionals.,zh36 among which
also the PW9IK functional. This can be remedied to some
extent by either cutting off the core regions of the potential
using a switching function®® or by allowing for a KE func-
tional that is no longer decomposable into two separate con-
tributions from the total and active densities.”” As both ap-
proaches are only valid in the limit of nonoverlapping
densities we will not consider them here in detail. Explor-
atory calculations with the switching function used in
reference®® do not show improvement of results obtained
with PBE2 after FT, increasing the underestimation of the
dipole moment from 1.74 to 1.87 D. This was expected since
the switching function is constructed to test for a small over-
lap situation and will not fully activate the correction in the
current case.

The PBE3 and PBE4 functionals are not suitable for use
in a full optimization scheme that includes FT relaxation
cycles. For these functionals all measures of accuracy dete-
riorate as compared with the sum of fragments starting den-
sity. Also for PBE2, while still yielding an acceptable final
result, the use of FT cycles will lead to deterioration rather
than an improvement of the promising results (cf. Table I)
that are obtained without this relaxation.

V. CONCLUSIONS

The effective-embedding potentials produced by the cur-
rently available KE density functionals for use in the FDE
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method appear to be too repulsive to properly describe the
coordination bonding found in the noble gas atom bound to
the gold fluoride molecule. The use of increasing orders of
the reduced density gradient s in the expression of GGA KE
functionals does not necessarily yield improved functionals,
as can be seen from the bad performance of the PBE4 func-
tional. This could, however, be an effect of the chosen pa-
rametrization that was developed for a quite different pur-
pose and bonding situation. The performance of a given
GGA functional varies significantly depending on the loca-
tion on the bond axis. For example, the density obtained with
the PBE3 functional follows the KS trend closely near the Ar
and F atoms, whereas in the bonding region and near the Au
atom it fails.

The general conclusion is that for systems like NgAuF
(Ng=Ar, Kr, Xe), none of the enhancement functions used in
the approximate KE functionals is yet able to describe the
weak covalent bond adequately. The PBE2 functional comes
closest to the KS result, but can only be used with a frozen
AuF unit as updating the AuF density worsens the result. But
also functionals with a proven accuracy in other bonding
situations, like PW91K, fail for this more challenging bond-
ing situation. It is important to note that GGA functionals,
such as PWOI1k, are able to accurately describe much stron-
ger bonds, such as the hydrogen bond in F —~H-F* There-
fore, the bond strength alone is not a sufficient criterion to
judge whether GGA functionals can be expected to yield an
adequate description, one also needs some a priori knowl-
edge of the bonding characteristics.

The failure of GGA KE functionals even for weak cova-
lent bonds raises the question as to whether the conjointness
approach as applied in previous work is suitable to derive
functionals that can describe the stronger interactions, which
are of interest in many applications of subsystem methods.%
It could be interesting to approximate the KE component of
the embedding potential directly in a nondecomposable
also in regions in which the frozen and active
densities show a significant overlap. An alternative is to in-
troduce approximations that not only locally depend on the
electron densities of the subsystems, but that also depend on
the KS orbitals of the subsystems. This would make the
method similar to a pseudopotential approach in which the
orbital information is also used to model the effect of the
frozen density.
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