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We investigate the electron density topologies from a subsystem approach to density-functional theory
(DFT) for subsystems connected by coordination bonds in comparison to Kohn–Sham–DFT reference cal-
culations. Reasonable results can be obtained for weak dative bonds as in H3N � � � BH3 or for bonds with a
rather ionic character as in TiCl4. Problems occur for dominant covalent bonding contributions. The sub-
system approach shows serious deficiencies in cases of fragments with opposite charge. We show how
this problem can be overcome by introduction of a long-distance correction to the embedding potential
as recently proposed [C.R. Jacob, S.M. Beyhan, L. Visscher, J. Chem. Phys. 126 (2007) 234116].
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1. Introduction

The electron density can be regarded as a fundamental quantity
for the description of matter according to the Hohenberg–Kohn
theorem. In addition to quantitative calculations within density
functional theory (DFT), recent work also highlights the role of
the density for qualitative analyses of electronic structure and an
understanding of chemical bonding in molecules, see Refs. [1–3].
These theoretical approaches gain increasing importance in transi-
tion metal chemistry; for a review see Ref. [4] as well as the recent
studies in Refs. [5,6] and references therein. One interesting aspect
of these analyses is the attempt to relate properties of a chemical
system to those of certain constituents, e.g., molecules within a
supermolecule or functional groups within molecules [7]. That
such a decomposition is essential for chemical concepts is apparent
in the discussion of coordination compounds in terms of an elec-
tron acceptor (e.g., a central metal ion) and electron donating li-
gands, which becomes manifest in crystal- or ligand-field theory.
The electron density can be employed to study the effect of the li-
gands on the metal center, as has been done in Ref. [8,9] on the ba-
sis of subsystem approaches to DFT.

Such subsystem methods aim at obtaining the exact ground-
state electron density as a superposition of fragment densities. In
the frozen density embedding (FDE) method [10], a partitioning
of the density into two fragments is employed: The optimum den-
sity q1 of an active subsystem is determined in the presence of an
effective embedding potential due to the fixed (frozen) electron
density q2 of the environment. By constructing a guess for the
environment density q2, one can derive Kohn–Sham-like one-elec-
ll rights reserved.
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tron equations for the determination of the optimum density q1

from the minimization of the energy functional E = E[q1 + q2] with
respect to q1, while keeping q2 frozen [10,11]. In these one-elec-
tron equations for the orbitals /ð1Þi of system 1, the effect of system
2 is represented by an effective embedding potential vemb

eff ðrÞ, which
is given by

vemb
eff ½q1;q2�ðrÞ ¼ vnuc

2 ðrÞ þ
Z

q2ðr0Þ
jr0 � rjdr0 þ dExc½q�

dq

����
q¼qtot

� dExc½q�
dq

����
q¼q1

þ dTs½q�
dq

����
q¼qtot

� dTs½q�
dq

����
q¼q1

; ð1Þ

where vnuc
2 ðrÞ denotes the external potential due to the nuclei of sys-

tem 2, qtot the electron density of the whole system, and Exc and Ts

the functionals for the exchange–correlation energy and the kinetic
energy for the non-interacting reference system. For the exact func-
tionals Exc[q] and Ts[q], this approach would be exact, provided that
the exact q1 = qtot � q2 is, for a given q2, non-interacting vs-repre-
sentable, which also implies that the sought-for q1 is non-negative
everywhere in space. Since the vs-representability condition is in
general not fulfilled [11,12], it is usually necessary to optimize both
electron densities in an iterative fashion. This can either be done by
subsequent embedding calculations with exchanged roles of q1 and
q2 [13] or by a simultaneous optimization of all subsystems under
study [14,15]. Similar density embedding schemes can also be used
in connection with wave function methods [16–20].

The FDE formalism relies on the use of an approximate ki-
netic-energy functional to describe the non-additive part of the
kinetic-energy component of the embedding potential. Approxi-
mate kinetic-energy functionals in the FDE scheme have been
investigated extensively in the past [21–23], and it was shown
that with generalized-gradient approximation (GGA) functionals,
accurate results can be obtained for weakly interacting systems
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[24–26]. We have recently started a systematic investigation of
the electron densities and their topologies from subsystem-DFT
in comparison to Kohn–Sham-DFT [12]. To analyze the accuracy
of the electron densities obtained from FDE, we have investi-
gated difference and deformation densities, which provide a
more sensitive measure than the total electron densities. The dif-
ference and deformation densities are defined as qsuper � qfrag

and qsuper � qemb where qsuper denotes the electron density ob-
tained from the supermolecular KS-DFT calculation, qfrag is the
superposition of the electron densities of the isolated fragments,
and qemb is the electron density from the FDE calculation. Fur-
thermore, the distribution of the electron density in the bonding
regions has been analyzed by a topological analysis according to
the theory of atoms in molecules [1] by locating stationary
points of the electron density, in particular the bond critical
points (BCPs), which are second-order saddle points of the
electron density. The location of the BCPs as well as the value
of the electron density q(r) and of the negative Laplacian
L(r) = �r2q(r) at this point allows a characterization of the type
of the bonding interaction and provides a sensitive measure for
the accuracy of the electron density in the bonding region.

We have previously shown that even for very strong hydrogen
bonds, such as that in F–H–F�, accurate electron densities can be
obtained using subsystem DFT [12]. However for subsystems con-
nected by covalent bonds, the available kinetic-energy functionals
are assumed not to be accurate enough, so that a straightforward
application of the FDE scheme would not be possible in these cases.
Extensions of the FDE scheme have been proposed that can handle
such situations, e.g., by the introduction of capping groups, which
has been successfully applied to the description of proteins [27].

The aim of this work is to assess the accuracy of the FDE scheme
with the currently available approximate kinetic-energy function-
als for the case of subsystems connected by coordination bonds.
Even though there are a few examples of application of FDE to such
systems, e.g., for MnF4�

6 [28], lanthanide complexes [8,9], or zinc
complexes [29], subsystems connected by donor–acceptor bonds
represent a big challenge and push the currently available approx-
imations for the non-additive kinetic energy to their limits. As rep-
resentative examples of such cases, we will consider ammonia
borane, with a dative bond between the nitrogen and the boron
atom, and the metal complexes TiCl4 and Cr(CO)6.

2. Computational details

All calculations were performed using the FDE implementation
[15,30] in the Amsterdam Density Functional (ADF) package [30–
32]. The BP86 exchange–correlation functional [33,34] and the
TZP basis set from the ADF basis set library [31] were employed
throughout this work. In all FDE calculations, the supermolecular
basis set expansion [23], in which the basis functions of both sub-
systems are employed to expand the subsystem electron densities,
was used. The electron densities of both subsystems were relaxed
in five freeze-and-thaw [13] cycles. The kinetic-energy component
of the embedding potential was approximated using the PW91k
generalized-gradient approximation (GGA) kinetic-energy func-
tional, which has the same functional form for the enhancement
factor F(s) as the exchange functional of Perdew and Wang [35],
and which was parameterized for the kinetic energy by Lembarki
and Chermette [36].

In the course of the present work, we discovered an inconsis-
tency in the ADF implementation of the PW91k functional for the
spin-restricted case. Instead of using s = jrqj/2qkF with
kF = (3p2q)1/3 as the argument of the enhancement factor F(s), 21/

3s was employed yielding an enhancement factor F(21/3s). This
problem also applies to other GGA-type kinetic-energy functionals
implemented in ADF, which have, however, hardly been applied.
For details on the definition of the PW91k functional and the cor-
responding expressions for the spin-restricted and spin-unre-
stricted case, see Refs. [36,23,37]. This means that the PW91k
functional used in previous application of the FDE implementation
in ADF effectively corresponds to a ‘scaled PW91k’ functional with
the values A = 60.575, A1 = 0.074534, A2 = 0.16762, A3 = 0.0510025
A4 = 62.996, and B1 = 0.22925 � 10�4 for the parameters in the
enhancement factor instead of the original parameters by Lem-
barki and Chermette [36].

Since the magnitude of the gradient correction to the embed-
ding potential is rather small in most cases, the effect of these
scaled parameters in F(s) does not lead to significant changes
in molecular properties calculated in earlier work. The changes
in the electron densities and negative Laplacians reported in
Ref. [12] are �0.01 e Å�3 and <0.1 e Å�5, respectively. A re-evalu-
ation of the excitation energies calculated for 220 snapshots of
acetone in water [37] showed that the average deviation is smal-
ler than 0.01 eV [19]. The changes in the excitation energies re-
ported for the structure in Fig. 4 in Ref. [30] are of the order of
0.001 eV. Similar results were also observed for examples from
the study of pigment molecules in Ref. [38] and the test calcula-
tions presented in Ref. [39]. For the water-in-water system
investigated in Ref. [40], where both the absolute excitation
energies and the solvent shifts are significantly larger, we found
somewhat larger deviations of approximately 0.05–0.07 eV; the
relative errors in the solvent shifts are about 3–5% and thus still
very small. The mean polarizabilities in this system change by
less than 0.1 a.u. For the NMR shieldings of the bimolecular com-
plexes studied in Ref. [41] deviations of the order of 0.5 ppm are
found. Similar deviations are observed for the solvent shifts re-
ported in Ref. [42], but these errors largely cancel when compar-
ing different solvents.

The electron density and the negative Laplacian L(r) were ob-
tained on a grid of points (step-size 0.01 Å) from a locally modified
version of the DENSF-utility program of the ADF package. The search
for stationary points in the electron density was performed with
the program INTEGRITY [43]. The isocontour plots of the difference
densities and L(r) were prepared using a MATHEMATICA script [44,45].

For the supermolecular and the embedding calculations, the
contour lines are drawn at 2, 4, 8 � 10n e Å�3 for n = 3, 2, 1, 0, �1,
�2. For the difference density, the contour lines are drawn at ±2,
4, 8 � 10n e Å�3 for n = �1, �2, �3, �4. Blue dashed lines indicate
negative values, red solid lines indicate positive values and the
black line corresponds to a zero difference.

3. FDE electron densities for coordination bonds

3.1. Ammonia borane

The first molecule that was analyzed in this work is ammonia
borane. For the FDE calculation the molecule was divided into a
BH3 and a NH3 fragment. The bond energy between these two
subsystems is 187.1 kJ/mol when calculated as the energy differ-
ence between the complex and the unrelaxed subsystems with
BP86/TZP (no counterpoise correction), which reduces to
133.7 kJ/mol when the subsystems are relaxed, mainly due to
structural changes in the BH3 fragment. The bond energy is thus
roughly comparable to F–H–F�, which was the most strongly
interacting system discussed in our previous study with a disso-
ciation energy of 185.9 kJ/mol (see Ref. [12] and references
therein for details). In F–H–F�, the two subsystems are con-
nected by a very strong hydrogen bond, whereas in ammonia
borane the interaction takes place between two uncharged frag-
ments that form a dative bond. The optimized structure of
ammonia borane is shown in Fig. 1a. The B–N distance is
1.66 Å (exp.: 1.58 Å [46]).
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Fig. 1. (a) BP86/TZP optimized structure of ammonia borane (BH3NH3). The double labeling of some atoms means that there are two atoms that differ only in their
z-coordinate and are therefore overlaying in the picture. Note that the color change along the N–B bond is arbitrary and thus not related to the partitioning into subsystems.
(b) Supermolecular density, (c) embedding density, (d) difference density qsuper � qfrag, (e) difference density qsuper � qemb. The orientation of the molecule in the density
plots corresponds to the one of the ball-and-stick model.

Table 1
Coordinates rBCP (in units of Å) of the BCPs and values of q(r) in e Å�3 and L(r) in e Å�5

at the bond critical points of ammonia borane

rx,BCP ry,BCP q(r) L(r)

BCP 1 Super 1.93 0.69 2.22 9.59
Emb 1.93 0.70 2.22 10.00
Diff 0.00 �0.01 0.00 �0.41

BCP 2 Super �0.13 �0.54 1.12 2.27
Emb �0.14 �0.54 1.06 1.67
Diff �0.01 0.00 0.06 0.60

BCP 3 Super 0.53 0.00 0.71 �1.77
Emb 0.60 0.00 0.87 1.09
Diff �0.07 0.00 �0.16 �2.86
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Contour plots of the electron density for the supermolecular
and the FDE calculation are shown in Fig. 1b and c. The difference
of the supermolecular density and the superposition of the isolated
fragment densities is shown in Fig. 1d. Significant changes upon
bond formation can be observed: The electron density is increased
in the bonding region and in the BH3 moiety, whereas it is de-
creased around the nitrogen atom. An exception is a ring of in-
creased electron density around the nitrogen atom that is
perpendicular to the bonding axis. The difference of the supermo-
lecular density and the density from the FDE calculation is shown
in Fig. 1e. The differences on the bonding axis are smaller than in
Fig. 1d, which means that FDE works qualitatively correct and
shifts electron density towards the bonding axis, although there
are still some deficiencies. This can also be seen from the dipole
moments obtained in these calculations, which are 5.34 D for the
supermolecular case, 2.08 D for the sum of the dipole moments
of the isolated fragments, and 6.75 D for FDE. The embedding
scheme thus qualitatively reproduces changes in the dipole mo-
ment upon bond formation, but overestimates the value from the
supermolecular calculation.

The values for the electron density and the negative Laplacian at
the BCPs are shown in Table 1. The difference of the supermolecu-
lar density and the superposition of the isolated fragment densities
at BCP3, which is located at the border of the two subsystems, is
0.2753 e Å�3, which means that there are large changes upon the
formation of the bond. By comparing the coordinates of BCP3,
one notices that the x-coordinate of BCP3 is shifted towards the
nitrogen atom by the FDE scheme, whereas the other BCPs are al-
most unchanged. The shift of 0.07 Å for BCP3 is larger than the
shifts that were observed in Ref. [12] in the analysis of hydro-
gen-bonded systems with FDE. Regarding the difference density,
one can observe that the value of the electron density from the
FDE calculation is too low in the region around H3, whereas in
the region around H6, it is too high.

The difference density at BCP3 is an order of magnitude larger
than the difference density at BCP1 and BCP2, which are located
in the center of their corresponding fragments. Compared to the
superposition of the isolated fragment densities at BCP3
(0.4382 e Å�3) we note that FDE works qualitatively correctly but
overcorrects the density in this region. Also the error in the nega-
tive Laplacian at BCP3 differs considerably from the values of BCP1
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and BCP2. Compared to the analysis of hydrogen bonded systems
in Ref. [12], the difference of the electron density in the boundary
region of the two subsystems is not very large, but the discrepan-
cies in the negative Laplacian are more pronounced. The sign of the
negative Laplacian is an indicator for the type of bonding in a mol-
ecule [1]. One would expect a positive sign for a covalent bond, but
not for a coordination bond. The negative Laplacian at BCP3 is po-
sitive for FDE but negative for the supermolecular calculation,
which means that the bonding region is not described entirely cor-
rectly. In summary, ammonia borane represents a more challeng-
ing system for FDE than the previously studied hydrogen bonded
systems although qualitative changes in the electron density upon
bond formation are described correctly.

3.2. TiCl4

Titaniumtetrachloride is a tetrahedral complex with Td symme-
try and even stronger interactions between the central metal atom
and the ligands. The optimized structure is shown in Fig. 2a. The
Ti–Cl distance is 2.19 Å (exp.: 2.18 Å) and the Cl–Ti–Cl angle is
109.47�. The reference data were taken from Ref. [47]. For the
FDE calculation, the complex was divided into a negatively charged
Cl� and a positively charged TiClþ3 fragment. Initial FDE calculations
converged very slowly and the electron density obtained was
unreasonable. If TiClþ3 was treated as the frozen fragment, a spuri-
ous charge transfer from the Cl� fragment to the TiClþ3 fragment
took place. The SCF procedure for the TiClþ3 fragment only con-
verged if one enforced a non-aufbau solution with one unoccupied
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orbital with a lower orbital energy than the highest occupied
molecular orbital (HOMO). These difficulties are due to a well-
known problem of the FDE embedding potential at the frozen sys-
tem [48], in particular close to the nucleus. The problem originates
from the inability of the available GGA kinetic-energy functionals
to compensate the large nuclear attraction sufficiently. In earlier
examples this incorrect behavior caused a wrong orbital ordering
only at a very large distance between the subsystems. The present
example demonstrates that for certain choices of subsystems the
embedding potential fails to produce the correct orbital occupation
even at the equilibrium distance. A practical solution to this prob-
lem was suggested in Ref. [48] by applying a position-dependent
correction that enforces the correct behavior of the embedding po-
tential at the frozen subsystem. This long-distance correction re-
sulted in an aufbau solution with the expected order of orbitals
in our case, i.e., the spuriously low-lying orbital was shifted to
higher energies.

Contour plots of the electron density for the supermolecular
and the FDE calculation are shown in Fig. 2b and c. The difference
of the supermolecular density and the superposition of the densi-
ties of the isolated fragments is shown in Fig. 2d. Due to the com-
plex formation, electron density is transferred from the Cl�

fragment towards the titanium atom. The most important change
occurs in the center of the TiClþ3 fragment. The difference of the
supermolecular density and the density from the FDE calculation
is shown in Fig. 2e. Near the titanium atom the electron density
from the FDE calculation is too low, whereas it is too high at Cl1
perpendicular to the Ti–Cl bond. Also in the center of the Ti–Cl2
1 2 3 4
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i–Cl bond is arbitrary and thus not related to the partitioning into subsystems.
(e) difference density qsuper � qemb. The orientation of the molecule in the density



Table 2
Coordinates rBCP (in units of Å) of the BCPs and values of q(r) in e Å�3 and L(r) in e Å�5

at the bond critical points of titaniumtetrachloride

rx,BCP ry,BCP q(r) L(r)

BCP 1 Super 1.03 0.00 0.65 �1.73
Emb 1.00 0.00 0.59 �2.34
Diff 0.03 0.00 0.06 0.61

BCP 2 Super �0.34 0.97 0.65 �1.73
Emb �0.35 0.97 0.66 �1.68
Diff 0.01 0.00 �0.01 �0.05
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bonding region FDE overestimates the electron density, although
the differences are small.

The values for the electron density and the negative Laplacian
are shown in Table 2. At BCP1 near the border of the two subsys-
tems the difference of the supermolecular density and the electron
density from the FDE calculation and the difference of the negative
Laplacian are rather small (�0.06 e Å�3 and 0.61 e Å�5, respec-
tively); at BCP2 these deviations are even smaller. The negative
Laplacian has the correct sign at both BCPs. The values of the differ-
ence density in titaniumtetrachloride are significantly smaller than
in ammonia borane. Moreover, there is only a slight shift in the x-
coordinate of BCP1.

3.3. Cr(CO)6

The octahedral complex chromium hexacarbonyl is a prototyp-
ical example of a metal complex in which p-backdonation plays an
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Fig. 3. (a) BP86/TZP optimized structure of chromium hexacarbonyl. Note that the color
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important role, and which thus cannot be entirely understood in
terms of simple ligand field theory. The optimized structure is
shown in Fig. 3a. The Cr–C distance is 1.91 Å (exp.: 1.91 Å) and
the C–O distance is 1.16 Å (exp.: 1.14 Å). The reference data were
taken from Ref. [49]. The electronic structure expected for chro-
mium in a strong octahedral ligand field would be [Ar](t2g)6. The
FDE calculation converged to an aufbau solution with the unex-
pected configuration [Ar](a1g)2(eg)4, caused by additional low-lying
orbitals centered on the ligands. Note that the non-additive kinetic
energy part of the potential should actually destabilize such ligand
orbitals in the calculation of the Cr fragment in order to mimic the
Pauli repulsion with the occupied orbitals in the (CO)6 fragment.
Apparently, this destabilizing effect is too weak in the present
example. This is again related to the deficiency of the available
GGA kinetic-energy functionals discussed above. The electron den-
sity for this electronic structure is unreasonable, because it is very
similar to the density of the superposition of the isolated frag-
ments, except in the region around the chromium atom. The same
calculation was performed enforcing the correct occupation, which
resulted in a non-aufbau solution for chromium with the electronic
configuration [Ar](a1g)0(t1u)0(t2g)6.

By applying the long-distance correction suggested in Ref. [48],
the number of unoccupied orbitals that are lower in energy than
the HOMO could be reduced. It was, however, not possible to ob-
tain an aufbau solution with the expected occupation scheme. A
set of three t1u orbitals and one a1g orbital were still found to
be lower in energy than the metal-centered t2g orbital. These
orbitals are shown in Fig. 4a and b for the calculation without
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Fig. 4. (a) Low-lying a1g orbital from the FDE calculation on Cr(CO)6 without long-
distance correction (contour value = 0.045), (b) one of the three low-lying t1u

orbitals from the calculation without the long-distance correction (contour
value = 0.05), (c) the orbital corresponding to the one shown in (a) from the
calculation with the long-distance correction (contour value = 0.045), (d) the orbital
corresponding to the one shown in (b) from the calculation with the long-distance
correction (contour value = 0.05).
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the long-distance correction, and in Fig. 4c and d for the calculation
with the correction. The orbitals are located on the carbon atoms of
the carbonyl ligands. The long-distance correction leads to a con-
traction of these orbitals by raising the potential in the region of
the ligand atoms. The rather sharp boundary in the isosurface plot
can be explained in terms of the distance-dependence of the long-
distance correction.

It should be noted that the destabilizing effect of this correction
could be modified by changing the parameter a in Eq. (34) of Ref.
[48], which controls the threshold to switch on the correction
terms. However, it seems unreasonable to further tune this param-
eter since the correction enforces a limit that is only correct at
large separations of the subsystems.

The supermolecular and the embedding densities are shown in
Fig. 3b and c. The difference density is shown in Fig. 3d. In contrast
to most other examples studied in this work and in Ref. [12], al-
ready the electron densities show significant differences and no
sophisticated topological analysis is needed in this case to reveal
the deficiencies of the subsystem approach.

4. Conclusions

In this work we have investigated the electron density distribu-
tions from FDE calculations on subsystems connected by coordina-
tion bonds. We have considered cases that pose serious challenges
on the embedding approach due to the fact that covalent contribu-
tions to the bonds become important. It was found that the elec-
tron density in the B–N bonding region in ammonia borane can
be reasonably well described, although its Laplacian points to a
wrong type of bonding. For the bonding in TiCl4, we experienced
difficulties with the embedding approach for charged fragments
when used in a naive way, which are due to the known deficiencies
of the embedding potential at the frozen subsystem. We have
shown that these problems, that result in an unphysical charge
transfer from Cl� to TiClþ3 , can be overcome in a pragmatic way
by applying the long-distance correction suggested in Ref. [48].
In that way, a good agreement of the electron density and its neg-
ative Laplacian from FDE at the BCPs with the corresponding refer-
ence values from a Kohn–Sham DFT calculation could be achieved.

The same approach was helpful in the attempt to employ FDE
for systems with stronger interactions for which orbital overlap ef-
fects play an important role, e.g., the p-backdonation in carbonyl
complexes like chromium hexacarbonyl. Also here, the initial re-
sults obtained with current approximations to the kinetic-energy
component of the embedding potential were not reliable, since
the expected orbital order could not be reproduced. Ligand-cen-
tered orbitals appeared at too low energies in the calculation on
the metal subsystem, and the density distribution consequently
showed qualitative errors. This could partly be remedied with
the long-distance correction from Ref. [48], although two sets of
low-lying ligand-centered orbitals still remained. If the correct
occupation of the orbitals for the Cr fragment is enforced, the result
is a non-aufbau solution that still shows large discrepancies in
comparison to the supermolecular Kohn–Sham calculation. A pos-
sible explanation for this remaining deviation is the rather large
covalent contribution to the Cr–C bond due to the p-backdonation
of the carbonyl ligands.

For the applicability of the FDE method we can thus recognize a
clear trend. In Ref. [12] it has been shown that for van der Waals
complexes, the FDE approach is very successful and it also works
well for weak hydrogen bonds. Even for strongly hydrogen-bonded
systems like F–H–F� a good description can be achieved. In this
work we showed that coordination bonds represent borderline
cases. Whereas weak dative bonds or bonds with strongly ionic
character are described reasonably well, FDE fails for coordination
compounds with strong covalent bonding contributions with cur-
rently available approximations for the kinetic-energy component
of the embedding potential.

The conclusions of this work point to some important directions
for the development of improved approximations to the kinetic en-
ergy component of the embedding potential. The examples show
that the accurate description of the embedding potential at the fro-
zen subsystem, in particular near the nuclei, is important to obtain
a description that is at least qualitatively correct, i.e., that gives the
correct orbital order. It was shown that the simple correction pro-
posed in Ref. [48] works into the right direction for the system con-
sidered here. However, it should be noted that this correction
contains terms that are explicitly position-dependent, while
approximations in terms of the density only would be preferable.
The systems studied here will be crucial for the validation of future
developments, like the most recent improved density functional
approximation to the kinetic energy component of the embedding
potential [50], which enforces the exact behavior near the nuclei of
the frozen subsystem.
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