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André Severo Pereira Gomes,*a Christoph R. Jacob*ab and Lucas Visscher*a

Received 4th April 2008, Accepted 21st May 2008

First published as an Advance Article on the web 4th July 2008

DOI: 10.1039/b805739g

We present a simple and efficient embedding scheme for the wave-function based calculation of

the energies of local excitations in large systems. By introducing an embedding potential obtained

from density-functional theory (DFT) it is possible to describe the effect of an environment on

local excitations of an embedded system in wave-function theory (WFT) calculations of the

excitation energies. We outline the implementation of such a WFT-in-DFT embedding procedure

employing the ADF, Dalton and DIRAC codes, where the embedded subsystem is treated with

coupled cluster methods. We then evaluate this procedure in the calculation of the solvatochromic

shift of acetone in water and of the f–f spectrum of NpO2
2+ embedded in a Cs2UO2Cl4 crystal

and find that our scheme does effectively incorporate the environment effect in both cases. A

particularly interesting finding is that with our embedding scheme we can model the equatorial

Cl� ligands in NpO2Cl4
2� quite accurately, compared to a fully wavefunction-based calculation,

and this opens up the possibility of modeling the interaction of different ligands to actinyl species

with relatively high accuracy but at a much reduced computational cost.

I. Introduction

Electronic excitations play an important role in several biolo-

gical processes, such as photosynthesis and vision, as well as in

technological applications like lighting materials. The infor-

mation that computational chemistry is able to provide on

such phenomena is helpful in the interpretation of complex

experimental data (for reviews see, e.g., ref. 1 and 2) and can

be used in the development of new materials (see, e.g., ref. 3).

To be of practical use, calculations should yield an accurate,

preferably quantitatively correct, picture, but also be compu-

tationally efficient so that real-life systems can be tackled.

Given its good balance between accuracy and computational

efficiency, time-dependent density-functional theory

(TDDFT)1,4,5 has become the standard ab initio approach

for treating excited states of large-scale systems. Even though

there are efforts towards having efficient wave-function based

methods to calculate excitation energies,6–8 these remain com-

putationally very expensive compared to TDDFT.

Full TDDFT calculations are, however, also limited to

systems with up to a few hundred atoms, bringing calculations

for still larger systems out of reach for routine application.

This leaves the domain of large (biological) systems to sub-

system methods that assume localization of the electronic

excitations. The most employed approaches are hybrid quan-

tum mechanics/molecular mechanics (QM/MM) methods,9–11

that treat a central part in which the excitations of interest take

place using a quantum mechanical method such as TDDFT,

while its environment is described using molecular mechanics

(for examples see, e.g., ref. 12–16). However, in order to obtain

accurate results, the force field used in the MM part has to be

parametrized carefully, which is particularly difficult for heavy

elements that display a variety of bonding interactions due to

the many chemically accessible valence orbitals.

This weakness of the MM description can be overcome by

considering a subsystem method with a QM description of the

environment, the so-called QM/QM embedding schemes.17–20

Among these schemes, the ONIOM methods by Morokuma

and co-workers17,18 are very popular. However, for the calcu-

lation of molecular properties these do not include the effect of

the environment on the electronic structure of the embedded

system, and are, therefore, only applicable as long as the

property of interest can be adequately described by the lower-

level method. Another example of such QM/QM schemes, that

is particularly suited for studying localized excitations in solids

is the ab initio model potential (AIMP) method.21–23 In this

method, the effect of atoms or ions (or in a recent extension

also larger fragments24) in the environment of a subsystem of

interest is included in the calculation of this active subsystem

by means of nonlocal model potential obtained from Har-

tree–Fock theory. These model potentials contain, in addition

to the electrostatic potential of the environment, projection

operators to ensure the orthogonality between the wave func-

tions of the active subsystem and the fragments in the environ-

ment.

A different QM/QM approach is taken in the frozen-density

embedding (FDE) scheme by Wesolowski and Warshel,25 in

which both the system of interest and its environment are

described using DFT (DFT-in-DFT). By basing the
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formulation on DFT, it is possible to define a local embedding

potential that only depends on the electron densities in the

active subsystem and in the environment and does not contain

any nonlocal projection operators. The FDE scheme has been

shown to be both accurate and efficient for the calculation of

solvent effects on electronic excitation energies26–28 as well as

for the description of induced circular dichroism in guest–host

complexes29 and the electronic spectra of transition metal- and

lanthanide-containing solids.30,31 Recently, it has been gener-

alized to include the description of couplings between excita-

tions in different subsystems,32 and it has been shown that this

can be used to calculate excitation energy transfer couplings in

natural light-harvesting systems.33

Notwithstanding the success of the applications mentioned,

the use of TDDFT in a pure DFT-in-DFT embedding scheme

will encounter the limitations of TDDFT itself. Most impor-

tant is the well-known problem in describing charge-transfer

(CT) excitations,34–38 that are of particular importance in

many biological systems and other systems exhibiting inter-

esting photophysical properties.39–43 The DFT-in-DFT frozen

density embedding scheme is able to remove spurious sol-

vent–solute CT excitations but cannot solve the problem in

cases where an intramolecular charge-transfer occurs. A sec-

ond problem of a general nature is that, within the adiabatic

approximation, TDDFT can only describe single excita-

tions.44,45 Another problematic area for the application of

TDDFT concerns excitations for heavy open-shell systems

where inclusion of spin–orbit (SO) coupling is necessary

already for a qualitative description of the system. Given the

increasing interest in the organometallic and inorganic chem-

istry of molecules containing lanthanides, actinides and heavy

transition elements,46,47 it is desirable to have alternative

methods available that can handle such difficult cases.

An attractive way forward would be to combine the flexi-

bility and accuracy of wave function theory (WFT) based

methods with the efficiency of DFT. With subsystem methods

one could then tackle the problems mentioned above, pro-

vided that the subsystem of interest can be chosen small

enough to employ an accurate (relativistic) WFT approach.

In this case, the FDE scheme offers a very distinct advantage

over other schemes, since it employs the electron density, an

observable quantity, and thereby avoids complicated problems

like the definition of projection operators in calculations where

the environment is to be treated by one-component DFT while

the active system is described by a 4-component relativistic

WFT method. Such a WFT-in-DFT embedding scheme based

on the DFT-in-DFT frozen-density embedding scheme has

first been proposed by Carter and coworkers,48–50 where DFT

and variational methods such as Hartree–Fock, CASSCF or

(multireference)-CI were combined. This approach was mainly

used to describe localized properties in solids or surfaces, e.g.

for the calculation of excitation energies of CO adsorbed on a

platinum surface.51,52

In this paper, we aim to introduce a simplified and compu-

tationally less involved version of this WFT-in-DFT embed-

ding scheme for the calculation of local excitations in large

systems. In particular, we apply coupled cluster methods for

the treatment of an embedded system and describe the envir-

onment by DFT. We test this approach for two different

systems. First, as a benchmark application, we revisit the

calculation of the solvatochromic shift of acetone in water

that was previously performed by Neugebauer et al.26 Second,

as an example for a system where the WFT-in-DFT treatment

of the excitations is essential, we investigate the f–f spectrum of

neptunyl (NpO2
2+) embedded in the Cs2UO2Cl4 crystal,

following our previous study of the isolated neptunyl ion with

relativistic coupled cluster methods.53

The outline of the paper is as follows. In section II we

present the essential theoretical aspects of WFT-in-DFT em-

bedding methods and outline the proposed scheme. In section

III, we then describe our implementation, as well as other

computational details. This is followed by the two sample

applications of the proposed scheme. In section IVA, the

results obtained for acetone solvated in water are presented,

and in section IVB, the spectrum of neptunyl embedded in a

Cs2UO2Cl4 crystal is discussed. Finally, concluding remarks

are given in section V.

II. Theory

In the formulation of the WFT-in-DFT frozen density embed-

ding scheme proposed by Carter and coworkers,48–51 the total

system is partitioned into an embedded subsystem I and its

environment, so that the total energy for the system can be

expressed as

E[CWFT
I , rDFT

II ] = EI[C
WFT
I ] + EII[r

DFT
II ]

+ Eint[r
WFT
I , rDFT

II ], (2.1)

where EI is the energy of the embedded subsystem I, described

using a wavefunction-based method and characterized by its

wave function CWFT
I , while EII is the energy of the environ-

ment (subsystem II), described using DFT and characterized

by its electron density rDFT
II . The interaction energy Eint is

defined within DFT as

Eint½rI; rII� ¼ ENN þ
Z

rIðrÞvnucII ðrÞdrþ
Z

rIIðrÞvnucI ðrÞ dr

þ 1

2

Z
rIðrÞrIIðr0Þ
jr� r0j drdr0

þ Enadd
xc ½rI; rII� þ Tnadd

s ½rI; rII�
ð2:2Þ

where the density of subsystem I (rI � rWFT
I ) is the density

obtained from the wave function treatment, while the envir-

onment density (rII � rDFT
II ) is to be obtained from a DFT

calculation. In this expression for the interaction energy, ENN

is the nuclear–nuclear repulsion energy, vnucI and vnucII are the

electrostatic potentials of the nuclei in subsystems I and II,

respectively, Enadd
xc [rI, rII] = Exc[rI + rII] � Exc[rI] � Exc[rII]

is the nonadditive part of the exchange–correlation energy,

and Tnadd
s [rI, rII] = Ts[rI + rII] � Ts[rI] � Ts[rII] is the

nonadditive kinetic energy, where Ts is the kinetic energy of

the Kohn–Sham noninteracting reference system.

To include the effect of the environment in the WFT

calculation of subsystem I, Carter and coworkers proposed48

to include an embedding potential given, in analogy to the

DFT-in-DFT frozen-density embedding scheme of
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Wesolowski and Warshel,25 by the functional derivative of

EDFT
int with respect to rI,

vemb
eff ½rI; rII�ðrÞ ¼ vnucII ðrÞ þ

Z
rIIðrÞ
jr� r0j dr

0

þ dEnadd
xc ½rI; rII�

drI
þ dTnadd

s ½rI; rII�
drI

:

ð2:3Þ

This embedding potential includes the electrostatic potentials

of the nuclei and the electron density in the environment, as

well as contributions arising from the nonadditive part of the

exchange–correlation energy and from the nonadditive kinetic

energy. Since this embedding potential depends on the density

of subsystem I it has to be updated iteratively during the WFT

calculation.

While the theoretical justification of the use of such an

embedding potential derived fromDFT in wave function based

calculations was previously debated,54,55 Wesolowski recently

showed56 that for exact density functionals and a full CI

expansion of the wave function, the above approach will

indeed lead to the exact total electron density rI + rII. If a
truncated expansion of the wave function is employed, an

additional term that corrects for the deficiency of the WFT

description, could be included in the embedding potential to

keep the theory formally exact. Since such a term will be the

less important the closer the WFT description is to full CI and,

moreover, since it is neither possible nor desirable to correct the

error introduced by a poorWFT description by means of DFT,

we consider it well justified to neglect this term and simply

employ the uncorrected embedding potential given above.

In the practical application of the WFT-in-DFT embedding

scheme described above, several additional approximations

will be introduced. First, neither the DFT treatment nor the

WFT treatment can be exact. In the DFT case, this is due to the

well-known deficiencies in the currently available exchange–

correlation functionals, in the WFT case due to the infeasibility

to employ a full CI expansion in a large basis for anything but

the smallest model systems. Second, the nonadditive kinetic

energy component of the embedding potential is evaluated

using an approximate kinetic energy functional. Several appli-

cations of the DFT-in-DFT frozen-density embedding scheme

show that the available kinetic energy functionals provide a

reliable description, in the case of weakly bonded com-

plexes57–59 and solute–solvent interactions26–28,60,61 or in simple

solid-state systems.30,31,62–66 For strongly bound covalent sys-

tems one needs to resort to other solutions, e.g., employ a 3-

partitioning scheme introducing capping groups with a con-

strained electron density that has recently been developed by

two of us.67

For efficiency reasons it is furthermore common to employ

approximations in the construction of the electron density of

the environment rII. In the simplest case, the electron density

is obtained as a sum of fragment densities that is kept

completely frozen in the following calculations. This choice

is still in principle exact as long as the density of the environ-

ment is everywhere smaller than the exact total density of the

full system. In case of strong polarization, the simple sum-

of-fragments approximation for the environment density may

easily violate the latter condition. In such cases it is necessary

to consider the relaxation of the environment under the

influence of the embedded subsystem. As for DFT-in-DFT

embedding, this is possible by employing so-called freeze-and-

thaw cycles,68 i.e., by interchanging the roles of the two

subsystems and updating the density of the environment in a

DFT calculation that includes the effect of subsystem I via the

embedding potential vemb
eff [rII, rI]. This can be repeated itera-

tively until convergence is reached.

For the application of WFT-in-DFT embedding to atoms

and molecules absorbed on surfaces, Carter and coworkers

proposed different simplified schemes for performing the

freeze-and-thaw cycles and obtaining a self-consistent embed-

ding potential. In their initial work,49,51,52 the total density rtot
= rI + rII was obtained from a DFT calculation with

periodic boundary conditions. This total density was then

kept fixed, while rI and rII were updated subsequently, based

on the density rWFT
I of the WFT calculation of the absorbed

molecule. In later work,50 they modified this scheme such that

the density rII = rtot � rbareI is kept frozen, where rtot is again
obtained from a DFT calculation, while rbareI is taken from a

WFT calculation on the isolated subsystem I.

However, for the calculation of excitation energies using

WFT-in-DFT embedding, it may be that a simpler approach

can be employed. In many cases where TDDFT is known to

fail, such as for charge-transfer excitations or for open-shell

systems with close-lying excited states, it is still possible to

obtain an accurate description of the ground-state density

from a DFT treatment. When the ground state is well de-

scribed by DFT, it should be possible to first calculate an

approximation of both rI and rII using DFT-in-DFT embed-

ding (possibly employing freeze-and-thaw cycles) and to sub-

sequently use the embedding potential constructed using these

densities in the WFT calculation of the excitation energies of

the embedded system. This is quite different from the cases

studied by Carter and coworkers, who investigated excitation

energies of molecules absorbed on surfaces,51,52 where already

the description of the ground-state in DFT is problematic.49

This means that in eqn (2.3), instead of the density

rWFT
I obtained from the WFT calculation, the DFT density

for subsystem I, rDFT
I , obtained from a DFT-in-DFT embed-

ding calculation, is used. If such a simplified treatment is

justified, it offers several advantages over the self-consistent

WFT-in-DFT schemes described above. First, only one com-

putationally expensive WFT calculation is required, compared

to the multiple calculations required to converge a freeze-and-

thaw procedure. Second, it is not necessary to generate the

density rWFT
I , thereby avoiding a non-trivial and computa-

tionally expensive step in non-variational WFT approaches

that employ intermediate normalization. Finally, also the

embedding potential has to be calculated only once, instead

of updating it during the iterative solution of the Hartree–

Fock and CC equations. This latter simplification is similar to

the linearization of the embedding potential recently proposed

in DFT-in-DFT frozen-density embedding.69

The calculation of excitation energies in particular (or of

response properties in general) can be carried out with a

generalization of the theory outlined above. We again make

the assumption that the WFT method will be able to yield a

This journal is �c the Owner Societies 2008 Phys. Chem. Chem. Phys., 2008, 10, 5353–5362 | 5355



close enough approximation to the exact density response of

the subsystems. While in the case of static embedding theory

this is in principle true for a full CI calculation in a saturated

basis, we now have the additional limitation that we can only

account for the response of the active system.

This limitation is usually also present in implementations of

DFT-in-DFT, although Neugebauer32 has recently presented

a sophistication of the theory by Casida and Wesolowski70

that makes it possible to treat also the case of coupled

excitations in extended systems. For our initial application

we consider the latter scheme and even make a further

approximation in neglecting any variations on the embedding

potential due to the response of the active subsystem to the

external perturbations, which for TDDFT excitation energies

are incorporated by including the derivative of the embedding

potential in the kernel.70 This means that in effect we always

consider a fixed embedding potential based on the ground-

state density.

This additional approximation is valid as long as the non-

additive kinetic and exchange–correlation potentials of the

initial and final states are not too different, which will be

the case if the excitation is truly localized in the interior of

the embedded subsystem, as is known to be the case in the

applications considered in this work.

III. Implementation and computational details

In our implementation, we use a combination of different

quantum chemical program packages. In the first step,

ADF
71,72 and the implementation of the DFT-in-DFT frozen-

density embedding scheme in this package27,73 are employed

for obtaining an approximation to the density of subsystem I,

rDFT
I , and to calculate the embedding potential vemb

eff [rDFT
I , rII].

The values of this embedding potential on the points of the

integration grid generated by ADF are stored in a file for later

use in the WFT calculation.

In the present work, we will always start by approximating

the density of the environment as a sum of the densities of

molecular or atomic fragments that were calculated for the

isolated fragments. As fragments we either used the distinct

water molecules in the solvent environment of acetone in

water, or the UO2Cl4
2�, Cs+, and Cl� units that constitute

the Cs2UO2Cl4 crystal environment. Details on the construc-

tion of the environment density will be given below. In the case

of acetone solvated in water, the simplest approximation of the

solvent environment as a sum of fragments was previously

shown to be a sufficiently accurate description.26 For the

crystal environment, a detailed study of the different possibi-

lities for constructing the environment density is outside the

scope of this work, and will be addressed in another publica-

tion that deals with excitations in the pure Cs2UO2Cl4 crys-

tal.74 We first consider the sum of fragments approach

described above and improve on this simple approximation,

by employing the freeze-and-thaw procedure only for the

nearest-neighbor Cl� ions.

In the calculation of the fragments used for the construction

of the frozen density, we used for the solvent water environ-

ment the local-density approximation (LDA)75 for the

exchange–correlation potential and a DZP basis set from the

ADF basis set library.71,76 For the fragments used to model the

Cs2UO2Cl4 crystal environment, we used the statistical aver-

aging of model orbital potentials (SAOP),77 in combination

with a TZ2P basis set. In this case, scalar relativistic effects

were included via the zeroth-order regular approximation

(ZORA).78 In all cases, we employed a spin-restricted closed-

shell description of the frozen environment density.

To model the density of the active system in the DFT-in-

DFT frozen-density embedding calculations for acetone and

neptunyl we employed the SAOP functional and the TZ2P

basis set. The nonadditive kinetic-energy component of the

embedding potential was modeled by the PW91k functional,79

while the exchange–correlation component was treated using

the Becke–Perdew–Wang (BPW91) exchange–correlation

functional.80,81 For the neptunyl calculations, spin-unrest-

ricted DFT calculations were performed, and scalar relativistic

effects were included via the zeroth-order regular approxima-

tion (ZORA).78

After generating the embedding potential, we used a locally

modified version of DALTON
82 for nonrelativistic WFT calcu-

lations and a development version of DIRAC
83 for relativistic

WFT calculations. In the nonrelativistic case, matrix elements

of vemb
eff (r) are constructed as

vij ¼ hfijvemb
eff jfji �

X
k

wkv
emb
eff ðrkÞjiðrkÞjjðrkÞ; ð3:4Þ

where ji(rk) is the value of orbital ji evaluated at grid point rk
and wk is the integration weight associated with this grid point.

It should be noted that we employ the accurate numerical

integration grid used by ADF, which is also able to integrate

the electrostatic terms appearing in the embedding potential

accurately.27,84 In a relativistic framework the embedding

potential, being a scalar potential, enters the one-electron

Hamiltonian as a diagonal operator expressed (in 2-compo-

nent form) as

vemb
eff ðrÞ ¼

vemb
eff ðrÞ 0

0 vemb
eff ðrÞ

� �
: ð3:5Þ

Therefore, the matrix elements of the embedding potential

with respect to spinors fi(r) and fj(r) are given by

vij ¼ hfijvemb
eff jfji

�
X
k

wkv
emb
eff ðrkÞ½jL

i ðrkÞjL
j ðrkÞ þ jS

i ðrkÞjS
j ðrkÞ� ð3:6Þ

where jL
i,j(k) and jS

i,j(k) are scalar functions for the large and

small components, respectively. Once the embedding potential

matrix is set up, it is added to the one-electron Fock matrix in

the WFT calculation, like any other one-electron operator.

For the calculation of the excitation energies of acetone

solvated in water, we employed the CC2 method85–87 as

implemented in DALTON.82 The aug-cc-pVDZ basis set was

used for acetone,88 as it has previously been shown89 that

CCSD excitation energies are essentially converged with this

basis sets, and the same behavior is expected for CC2. In the

CC2 calculations the 1s orbitals of all atoms are kept frozen.

The calculations of the excitation spectrum of neptunyl were

performed with DIRAC
83 using the exact two-component

(X2C) approach recently outlined by Iliaš and Saue,90 with

spin–orbit coupling being included in the latter via mean-field
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integrals, calculated with the AMFI code.91,92 A valence

double zeta basis by Dyall93 was used for Np whereas the

aug-cc-pVTZ basis88 was used for O (and for Cl where

applicable). In the correlated calculations the intermediate

Hamiltonian Fock-space coupled-cluster (IHFSCC)

method94–96 was used. In the IHFSCC calculations we start

from a closed shell (NpO2
3+ or NpO2Cl4

�) species and obtain

the excitation spectrum of the target system (NpO2
2+ or

NpO2Cl4
2�) from the (0h,1p) sector. We have used a slightly

smaller active space than employed previously for NpO2
2+,53

consisting of about the same number of virtual spinors (75 and

76, respectively) for both species in the correlated calculations.

Of these, 6 are kept in the Pm space and 19 in the PI space. The

number of occupied spinors included for NpO2
2+ and

NpO2Cl4
2� are 12 and 28, respectively. We note that due to

the presence of the frozen environment, the symmetry in the

wavefunction calculations is reduced to C1, and the IHFSCC

calculations are, therefore, significantly more expensive than

the original NpO2
2+ calculations that could exploit the DNh

symmetry.

In order to automate both the initial DFT-in-DFT calcula-

tions and the interoperation of the different quantum chemical

packages, we made use of the recently developed PYADF

scripting framework.97

IV. Results and discussion

A Solvatochromic shifts of acetone in water

The determination of solvatochromic shifts of acetone in water

is an ideal benchmark for our method because it has been

extensively studied with a range of WFT methodologies,

taking into account solvent effects in different ways (see ref. 89

and references therein). Furthermore, Neugebauer et al. have

previously performed a systematic study26 on this system using

DFT-in-DFT frozen-density embedding.

We have employed the set of geometries obtained in ref. 26

from Car–Parrinello molecular dynamics (CP-MD) simula-

tions of both the gas-phase and the solution. From these

simulations, 300 and 220 snapshots were retained for the

calculations in the gas-phase and in solution, respectively

(Fig. 1). The excitation energies of the n - p transition are

then calculated as a weighted average over these snapshots,

using the oscillator strengths as weight factors.

We note that our reference DFT-in-DFT calculations differ

slightly from the values obtained by Neugebauer and co-

workers as we could apply a larger basis set than was feasible

with the previous implementation of DFT-in-DFT that was

used in ref. 26. Irrespective of these small differences, one of

the findings of Neugebauer et al. that is very relevant for this

work has to do with the construction of the density for the

frozen subsystem: they observed nearly identical solvent shifts

(differences of about 0.01 eV or less) when the embedding

potential was constructed from an approximate density, made

up by the superposition of densities obtained for isolated water

molecules, compared to when densities from calculations

including all waters at once were used to obtain the embedding

potential. For this system, different functionals used to

produce the density of these unperturbed solvent molecules

were proven to yield similar results, which is why we chose the

simple LDA functional for this purpose.

The calculated excitation energies are summarized in

Table 1. Inspecting first the CC2 results, one observes a very

good agreement with experiment for the solvent shift. This

indicates that the embedding potential generated in the under-

lying DFT-in-DFT calculations does indeed provide a realistic

representation for the solute–solvent interaction. Moreover, it

also indirectly validates our initial assumptions, that is, that

the ground state density of the active subsystem calculated

with DFT is nearly identical to the corresponding wavefunc-

tion-based density and that the direct contribution of the

environment to the response is negligible. To verify the latter

assumption we also carried out additional DFT-in-DFT cal-

culations in which the embedding contributions to the kernel

were switched off.28 These calculations indicate that this

contribution amounts to 1 meV for the lowest n - p excita-

tion energy that we consider in this work. Other excitations

show somewhat larger shifts, but these are generally at least

one order of magnitude smaller than the corresponding solva-

tochromic shift. The state for which the neglect of the response

contribution has the largest effect (about 0.03 eV) is the fifth

singlet excited state, located at about 8 eV.

The quality of the TDDFT results with the DZP/TZ2P

combination appears to be not as good as for the CC2

calculations with as most significant difference an underesti-

mation of the solvent shift. Furthermore, one sees significant

basis set effects on the TDDFT results if a crude description

for the solvent (DZ) is used, as done previously,26 with a

fortuitous cancellation of errors in the shift for the DZ

calculation. One should thereby note, however, that for CC2

both the gas-phase and solution excitation energies are under-

estimated in comparison to the corresponding experimental

values, putting the TDDFT results closer to experiment. Since

roughly identical discrepancies are found for results in the

Fig. 1 CP-MD snapshot for the simulation of acetone in water.
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gas-phase and solution, this cannot be attributed to inaccura-

cies in the embedding procedure.

A possible explanation for the underestimated CC2 excita-

tion energies is the sensitivity to the chosen structures of the

acetone molecule. The results of Aidas and coworkers89 show

a significant dependence of the excitation energies on the

CQO bond distance, where larger distances lower the excita-

tion energies. To test this, we performed a series of test

calculations at the equilibrium structures that were obtained

using DFT-BLYP (the functional that was used in the CP-MD

simulations), DFT-B3LYP, and CCSD. The equilibrium

structures and corresponding CC2 excitation energies are

summarized in Table 2. The results show that DFT-BLYP

overestimates the CQO bond distance, which leads to an

underestimation of the CC2 excitation energy. Since the CP-

MD structures that we used were based on a simulation

performed with the BLYP functional this explains part of

the error in the comparison to the experimental data. Since the

error is due to a bond length that is found consistently too

long in both the gas-phase and in solution structures, only the

absolute values but not the solvatochromic shift are affected.

B f–f spectrum of Cs2U(Np)O2Cl4

As a second, more challenging application, we apply WFT-in-

DFT embedding to the calculation of the f–f spectrum of the

neptunyl cation (NpO2
2+). The spectrum of the isolated

neptunyl cation was investigated previously in our group.53

The available experimental neptunyl spectra were taken from

impurities in host crystals such as Cs2UO2Cl4 or CsUO2

(NO3)3.
98,99 To be able to compare directly to these data one

thus needs to model the host crystal as well. There has been

one such attempt before by Matsika and Pitzer,100 who

performed a calculation on Cs2U(Np)O2Cl4 using a cluster

model. In their treatment, a central NpO2Cl4
2� unit is treated

using SO-CI, with the six nearest-neighbor caesium atoms

described by all-electron model potentials and all other species

up to 25 Å away from the central actinyl unit as point charges.

To include the effect of the crystal environment in our

relativistic IHFSCC calculations,53 we employ a similar partition-

ing as used in recent applications of DFT-in-DFT frozen-density

embedding for transition metal- and lanthanide-containing

solids.30,31 In our case we devise a cluster model, where the active

subsystem is treated with relativistic IHFSCC theory and DFT is

used to model the nearby ions that may overlap with the impurity

(Fig. 2). The Madelung potential arising from the rest of the

crystal was evaluated using formal charges placed at the positions

given by the X-ray structure of the pure crystal.101 We thereby

utilized102 the program ENV
103,104 to determine the extent of the

intermediate region encapsulating the central active subsystem as

well as an array of surrounding point charges that describe the

Madelung potential for the crystal. This intermediate region

always comprises 20 UO2Cl4
2� and 90 Cs+ ions. In the central

unit we have replaced the uranium by neptunium, and adjusted

the Np–O and Np–Cl bond lengths to those from the X-ray

structure for NpO2Cl4
2�.105 We explored two different possibi-

lities for the central unit: (a) one where it was split into NpO2
2+

and Cl4
4�, and only NpO2

2+ was treated using IHFSCC, while

the ligands were taken into account with different degrees of

sophistication (from simple point charges to densities fully

relaxed in freeze-and-thaw cycles); and (b) one where the entire

NpO2Cl4
2� is calculated with IHFSCC.

Our results are summarized in Table 3, which displays the

symmetry classification and excitation energies for the differ-

ent f–f states following the ordering found in the experimental

Table 1 TD-DFT and CC2 n - p excitation energies (hoii, in eV) for acetone in gas-phase and solution, calculated as oscillator strength-
weighted averages over the CP-MD snapshots, together with the corresponding solvatochromic shifts. For comparison, the CCSD results of Aidas
and coworkers89 as well as experimental results are also shown

Basis sets hoii

Method Acetone Water Gas phase Solution Shift

TD-DFT TZP DZ 4.464 4.667 0.203
TZ2P DZP 4.471 4.636 0.165

CC2 TZ2P/aug-cc-pVDZ DZP 4.350 4.546 0.196
CCSD (ref. 89) 4.491 4.686 0.195
Exp. (ref. 106–108) 4.48–4.49 4.68–4.69 0.19–0.21

Table 2 CC2 n - p excitation energies (on-p, in eV) for acetone in
the gas-phase at equilibrium geometries obtained with different meth-
ods. All calculations have been performed using the aug-cc-pVDZ
basis set

Geometry rCO/Å on-p/eV

BLYP 1.2302 4.442
B3LYP 1.2175 4.535
CCSD 1.2217 4.505

Fig. 2 Steps in the WFT-in-DFT embedding calculation on the f–f

spectrum of Cs2U(Np)O2Cl4. From left to right, (a) the initial NpO2
2+

ion (b) is surrounded by four chlorides (top: chlorides considered

explicitly in theWFT calculations; bottom: ligand group Cl4
4� is taken

as part of the environment and included via the embedding potential)

to make up the central unit in the cluster model; and (c) this unit is

embedded into a larger environment. The larger model is then

embedded in an array of point charges (not shown).
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assignment of these transitions. Considering first the case

where only the bare NpO2
2+ (with the Np–O bond length

from the X-ray geometry105) unit is chosen as central unit, we

see that these gas-phase results tend to strongly overestimate

the excitation energies in comparison to experiment (about

3000 cm�1 for states I and II and about 12 000 cm�1 for states

IV and V) with the exception of state III, for which gas-phase

results underestimate the excitation energy by only 650 cm�1.

Compared to the energies at the optimized equilibrium geo-

metry for the gas-phase (where rNp–O = 1.675 Å), the values at

the X-ray geometry are about 1000 cm�1 higher for I and II,

and lower for IV and V by roughly the same amount. The

excitation energy for state III is, however, almost not affected

by the change in distance. This is easily explained by the fact

that this is the pure F7/2u state, that is fully localized on the Np

atom and forms the higher spin–orbit component of the F5/2u

ground state. The other states have some covalent character

that makes them more susceptible to changes in the distance to

the oxo-groups.

Before considering the full cluster model, we first consider

the equatorial ligands that will have the strongest effect on the

excitation energies. The ligand field breaks the linear symme-

try of the actinyl and induces mixing between the lowest

spin–orbit components of the D and F states, while charge-

transfer from the formally negative chloride ions to the

neptunium center of the dication weakens the axial bonds

of the neptunyl. In order to assess the relative importance

of these effects, we present in Table 3 calculations with

varying degrees of sophistication in the treatment of this

ligand group.

In the simplest case the NpO2
2+ species is surrounded by

four point charges at the position of the chlorides, each with a

negative unit charge. This has a very strong effect on four of the

levels, with downward shifts of 2204 cm�1 for state I, 1629 cm�1

for II, 5695 cm�1 for IV and 8626 cm�1 for V, respectively.

State III is shifted upwards by 599 cm�1 by the presence of the

point charges. From the composition of these states in the

FSCC wave function, we see that there is a considerable mixing

between the D3/2u and F5/2u states in the ground and first excited

states, while the others remain pure states. Compared to the

experimental results, all excitation energies are improved sig-

nificantly by this simple electrostatic model. We see that apart

from III the calculated excitation energies are too high by about

1000 cm�1 for I and II and about 5000 cm�1 for IV and V. State

III is very close to the experimental value, being only 62 cm�1

lower.

More sophisticated models for the ligands where these are

represented by an embedding potential, are considered next.

The first approach is to have a frozen density constructed as a

superposition of atomic densities for the chloride ions. From

our results it can be seen that this simplest FDE model hardly

changes the point charge picture—in fact, there is even a

slightly worse agreement with experiment for all states but

IV, by about 100–150 cm�1. The problem comes from the fact

that the charge density for the Cl� ligands is by construction

spherical so that the significant deformation and charge

transfer towards the actinyl ion should be accounted for in

the calculation of the active system. This is not possible as one

can in FDE describe only the flow of charge towards the

frozen system and not that from the frozen system. To remedy

this problem we have performed 10 freeze-and-thaw cycles to

allow for such relaxation. After this procedure a completely

different picture emerges. Excitation energies for states with D
and/or F character agree within 100–450 cm�1 with the

experimental data, whereas the error for the P states is

reduced to about 3200 cm�1. This leads to a much better

overall agreement with experiment, with now a correct order-

ing of the states II and III. The only exception is the III state

that is moved to somewhat higher energies by the relaxation of

the density.

Table 3 f–f excited state energies (in cm�1) for NpO2
2+and NpO2Cl4

2�, obtained with and without the inclusion of environment effects viaWFT-
in-DFT embedding. All calculations were performed using the X-ray structure reported in ref. 101 (where rNpO = 1.775 and rNpCl = 2.653 Å,
respectively) unless otherwise noted. For comparison, the results of Matsika and Pitzer100 for the their embedded cluster calculations are shown,
together with the experimental values due to Denning and coworkers98

Central unit Surrounding

Excited electronic states

I II III IV V

NpO2
2+ — D3/2u D5/2u F7/2u P1/2u P3/2u

IHFSCCa — 3221 8565 7225 30 877 34 947
IHFSCC — 4297 9661 7229 29 021 32 379
NpO2

2+ L4
�4 D3/2u + F5/2u D5/2u F7/2u P1/2u P3/2u

IHFSCC point charges — 2093 8032 7828 23 326 26 321
IHFSCC DFT (frozen)b — 2243 8150 7677 23 323 26 433
IHFSCC DFT (relaxed)c — 1034 7307 8029 20 390 23 303
NpO2Cl4

2� D3/2u + F5/2u D5/2u F7/2u P1/2u P3/2u

IHFSCC — 886 7679 9262 20 018 22 445
IHFSCC DFTd 1156 7738 9137 20 857 26 305
NpO2Cl4

2� (ref. 100) F + D D + F F P P
SO-CI AIMPe 1663 5775 8463 18 367 20 575
Exp. (ref. 98) D3/2u + F5/2u D5/2u F7/2u P1/2u P3/2u

900–1050 6880 7890 17 241 20 081

a Using the gas-phase geometry with rNpO = 1.675 Å (from the calculations of ref. 53). b Frozen density for the ligand group (L4
�4) constructed as

superposition of the densities of four Cl� ions. c Frozen density for the ligand group (L4
�4) obtained for Cl4

�4 after 10 freeze-and-thaw

cycles. d [Cs90(UO2Cl4)20]
+50 in the presence of point charges that counterbalance its and the active subsystem’s charge. e Model potential

obtained for the six-nearest caesium atoms plus a point charge array.
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To make a precise assessment of the quality of the embed-

ding it is, however, better to not compare it directly to the

experimental data but compare the subsystem treatment of the

ligands in the IHFSCC calculation to a supermolecular calcu-

lation of NpO2Cl4
2�. This case can be seen as an exact

reference for the above embedding calculations, since in both

cases no outer environment was included. Moving from the

embedding calculation where the Cl� densities are relaxed, to a

supermolecular calculation has the overall result of a slight

increase of the excitation energies of all states: state I is shifted

by about 150 cm�1, while shifts of about 370 cm�1 are seen for

II and IV. For III and V the shifts lie in the 860–1200 cm�1

range. This indicates that in this case, where the actinide–

chloride bond is known to have significant ionic character, the

WFT-in-DFT embedding scheme reproduces the main fea-

tures of the fully wavefunction-based description.

With the results of the calculations including the ligands, we

can summarize the general aspects of modeling the actinyl–

ligand interaction: adding point charges on the equatorial

plane introduces mixing of the F5/2u and D3/2u states, but

underestimates the relative destabilization of the ff orbitals

relative to the fd or fp ones. Placing spherical finite volume Cl�

ions in place of the point charges does not change this picture.

Allowing the charge density of the ligands to polarize gives the

correct picture with the FDE freeze-and-thaw description

underestimating slightly the relative destabilization of the ff

orbitals. This is probably due to incomplete description of the

orbital interactions between the chloride ligands and the metal

orbitals in the density-only embedding description.

The inclusion of the rest of the crystal environment as an

embedding potential to the calculation on NpO2Cl4
2�, brings

only modest changes to the excitation energies, usually by no

more than 100–200 cm�1 for the states with D and F character,

a strong evidence that the bulk of the environment effects

come from the equatorial ligands rather than from electro-

static interaction with the structural units further away. It is

interesting to note that the environment seems to stabilize the

states with dominant F character and destabilize states with

dominant D character. This may be the effect of the 12 Cs+

ions adjacent to the central unit that will polarize the equator-

ial ligands, thereby drawing charge away from the ff orbitals.

The P states experience differential environmental effects

(about 800 cm�1 for IV but about 4000 cm�1 for V).

We conclude this section by noting that the calculated

vertical excitation energies in this proof-of-principle applica-

tion should of course not be blindly compared to the adiabatic

excitation energies that are measured in experiment. The

deviation between the two will be largest for states that are

structurally different from the ground-state, in particular theP
states, where the excitation moves the electron from a non-

bonding to a partially antibonding orbital. In these cases

(states IV and V) the adiabatic excitation energies are likely

to be significantly lower. In comparison to the results of

Matsika and Pitzer, who did consider adiabatic effects in their

calculations, our embedded cluster calculations are able to

better approach the experimental results for the lowest excited

states (I and II) but agree less well from III onwards as should

be expected. Finally, another possible source of errors relative

to the experimental data comes from the coupled cluster

treatment for which the active space was chosen to be some-

what smaller than previously used in our benchmark gas phase

calculations. The latter calculations indicate that the effect of

increasing electron correlation in the calculations, could also

improve the agreement between the WFT-in-DFT embedding

calculations and the experimental results as correlation appears

to decrease the excitation energies for most states.

V. Conclusions

We have presented here a simple scheme to incorporate the

effect of a frozen environment treated using DFT in the

wavefunction-based calculation of excitation energies. In con-

trast to previously described WFT-in-DFT schemes,50,52 we do

not use the electron density of the active subsystem to update

the embedding potential. Instead, we assume that the ground

state density obtained with DFT is identical to the density that

will arise from a correlated ab initio treatment. In cases were

TDDFT cannot be applied, such as charge-transfer excitations

or open-shell systems with close-lying excited states, this

assumption is often justified.

We have applied this WFT-in-DFT embedding scheme in

two proof-of-concept applications, the calculation of the

solvatochromic shift of acetone in water and the spectrum of

NpO2
2+ embedded in a Cs2UO2Cl4 crystal. For acetone in

water, we show that the embedding potential is able to

correctly describe the effect of the environment on the n -

p excitation energies both in TDDFT and in CC2 calculations.

The efficiency of the WFT-in-DFT embedding scheme makes

it possible to perform CC2 calculations for acetone sur-

rounded by a solvent shell of water for 220 different snapshots

obtained from an MD simulation, thus making it possible to

accurately include the effects of the dynamics on the solvato-

chromic shift.

For NpO2
2+ embedded in a Cs2UO2Cl4 crystal, we find that

our WFT-in-DFT embedding scheme is able to incorporate

the effect of the crystal environment in IHFSCC calculations

of the electronically excited states. In particular, the embed-

ding scheme is able to closely reproduce the spectrum of

NpO2Cl4
2� calculated within a fully wavefunction-based treat-

ment, provided we allow the density of the chloride ligands to

be polarized. While such an agreement depends on the loca-

lized nature of the transitions under consideration, it intro-

duces an economical yet highly accurate way to compute the

f–f spectra of actinyl ions in complex environments because

they can be treated in a 3-atom wave function model.

In both applications, which consider two very different

environments, we see that the WFT-in-DFT FDE method is

capable of accurately representing the environment. The re-

maining discrepancies mainly originate from intrinsic errors in

the description of the subsystems (such as incomplete basis

sets, the degree of electron correlation recovered by the

wavefunction-based methods) while deficiencies of the embed-

ding procedure itself are small. This indicates that our initial

assumption that the ground-state density of the embedded

system is described accurately by DFT is indeed valid for the

investigated systems. This makes the WFT-in-DFT approach

an interesting and cost-effective solution for applications

where DFT is known to yield accurate densities but TDDFT
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fails (such as charge-transfer excitations or open-shell

systems).

Further work is necessary in situations where DFT is not

able to accurately describe the ground state density of the

active part, or in cases in which the excitation studied does

significantly change the density overlap between the embedded

system and its surrounding environment. We are currently

working on a generalization of the implementation that allows

proper treatment of such cases as well.

Note added in proof

Very recently, an inconsistency in the ADF implementation of

the PW91k functional for the spin-restricted case was reported

in ref. 109. Although the effect on our results turned out to be

insignificant, all data in this paper were corrected accordingly.
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