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Abstract: A new implementation of frozen-density embedding (FDE) in the Amsterdam Density Functional (ADF)
program package is presented. FDE is based on a subsystem formulation of density-functional theory (DFT), in which a
large system is assembled from an arbitrary number of subsystems, which are coupled by an effective embedding potential.
The new implementation allows both an optimization of all subsystems as a linear-scaling alternative to a conventional
DFT treatment, the calculation of one active fragment in the presence of a frozen environment, and intermediate setups, in
which individual subsystems are fully optimized, partially optimized, or completely frozen. It is shown how this flexible
setup can facilitate the application of FDE in multilevel simulations.
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Introduction

Applications of quantum chemical methods for studying biolog-
ical systems often require the use of multilevel methods, i.e.,
methods that treat different parts of the total system using differ-
ent approximations (for recent examples, see, e.g., refs. 1–4). In
particular, QM/QM methods5 [i.e., multilevel methods that apply
different quantum mechanical (QM) methods in different regions],
and QM/MM methods6–8 [i.e., methods that combine a QM treat-
ment with a molecular mechanics (MM) treatment] are widely
used.

Different multilevel methods can be classified according to
the way in which the interaction between the different levels is
described.9 Many methods, in particular QM/QM methods, only
employ what is usually referred to as mechanical coupling, i.e., the
coupling between the different regions is only described at the level
of the total energy.5, 10–12 In these methods, no effect of the other
region is included in the potential, so that only an indirect effect on
molecular properties due to changes in the equilibrium structure can
be described. In contrast, most standard QM/MM methods8, 13, 14

include the electrostatic potential of the MM environment in the
QM calculation (electronic coupling), thus allowing a more ade-
quate description of molecular properties. An even more accurate
description of the coupling can be obtained by also considering the

polarization of the MM environment due to the QM part, as it is
done in some advanced QM/MM schemes that employ polarizable
force fields.15–17

However, QM/MM methods rely on a careful parametrization of
the MM part, and even though there are accurate force fields avail-
able for many classes of compounds, these often cannot be applied
for nonstandard system, such as compounds containing transition
metal atoms. On the other hand, common QM/QM methods do not
suffer from these restrictions, but they are limited to describing the
interaction between the different regions at the level of mechanical
coupling only.

One promising multilevel method is the frozen-density embed-
ding (FDE) scheme within density-functional theory (DFT) first
developed by Wesolowski and Warshel.18, 19 It describes the full
system on a QM basis and at the same time includes the electronic
coupling between different regions. Even though the FDE scheme
relies on the use of an approximate kinetic-energy functional, it
offers a treatment that is in principle exact. It has been successfully
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applied in a number of studies, e.g., of solvent effects on absorp-
tion spectra,20–22 electron spin resonance (ESR) parameters23 and
nuclear magnetic resonance (NMR) chemical shifts.24 It has fur-
ther been employed for describing induced circular dichroism in
host–guest systems25 and for free-energy calculations in protein
environments.4, 26

In the subsystem formulation of DFT,27 which forms the starting
point for FDE, the total system is partitioned into N subsystems,
and the total electron density ρtot(r) is represented as the sum of the
electron densities of these fragments ρi(r) (i = 1, . . . , N). Given
this partitioning of the electron density, the DFT total energy can be
expressed as a functional of the subsystem densities.

E[ρ1, . . . , ρN ] =
∫

ρtot(r)

(
N∑

i=1

vnuc
i (r)

)
dr

+ 1

2

∫
ρtot(r)ρtot(r′)

|r − r′| drdr′

+ Exc[ρtot] +
N∑

i=1

Ts[ρi] + Tnadd
s [ρ1, . . . , ρN ],

(1)

where ρtot = ∑N
i=1 ρi is the total electron density, vnuc

i is the elec-
trostatic potential of the nuclei in subsystem i, Exc is the exchange-
correlation functional, and Tnadd

s [ρ1, . . . , ρi] is the nonadditive
kinetic-energy functional, which is defined as

Tnadd
s [ρ1, . . . , ρN ] = Ts[ρtot] −

N∑
i=1

Ts[ρi]. (2)

In these expressions, Ts[ρ] is the kinetic energy of the non-
interacting reference system, as it is defined within Kohn–Sham
(KS) DFT, which is usually calculated using the KS orbitals. How-
ever, with the given partitioning into subsystems, KS orbitals are
only available for the subsystems and not for the full system, and
Ts[ρtot] can therefore not be calculated directly. For this reason, in
practical applications an approximate kinetic energy functional has
to be used to evaluate Tnadd

s . Most previous applications employ
either the Thomas–Fermi (TF) kinetic energy functional or the
GGA functional PW91k,28 which have been shown to yield accu-
rate results for weakly interacting and hydrogen-bound systems.29, 30

However, the applicability of these functionals is limited to cases
in which the interaction between the subsystems is not too large,
and the description of covalent bonds between subsystems is cur-
rently not possible. The development of improved approximate
kinetic-energy functionals for the application in the FDE scheme
is, therefore, an active area of research.19, 31

The electron densities of the individual subsystem ρi can be
determined by minimizing the above total energy functional with
respect to the density of this subsystem, while keeping the densities
of the other subsystems frozen. This leads to a set of coupled KS-like
equations,

[
−∇2

2
+ vKS

eff [ρi](r) + v(i)
emb[ρ1, . . . , ρN ](r)

]
φ

(i)
k (r) = ε

(i)
k φ

(i)
k (r) (3)

from which the KS orbitals {φ(i)
k } and the associated electron den-

sity ρi of the subsystem can be obtained. In this equation, vKS
eff [ρi]

is the KS effective potential of the isolated subsystem i contain-
ing the usual terms of the nuclear potential, the Coulomb potential
of the electron, and the exchange–correlation potential. The effec-
tive embedding potential v(i)

emb[ρ1, . . . , ρN ] contains the effect of the
other subsystems on subsystem i and is given by

v(i)
emb[ρ1, . . . , ρN ] =

∑
j �=i

vnuc
j (r) +

∑
j �=i

∫
ρj(r′)
|r − r′|dr′

+ δExc[ρ]
δρ

∣∣∣∣
ρ=ρtot(r)

− δExc[ρ]
δρ

∣∣∣∣
ρ=ρi(r)

+ δTnadd
s [ρ1, . . . , ρN ]

δρi(r)
. (4)

It contains the potential of the environment, the Coulomb potential of
the electrons in the environment, a nonadditive exchange-correlation
component, and a kinetic-energy component.

However, since the density of all the other subsystems appears
in the embedding potential for one of the subsystems, the subsys-
tem densities have to be determined iteratively.27 One possibility of
doing this is to employ “freeze-and-thaw” cycles,32 i.e., to determine
the electron density of one active subsystem, which is then frozen
while the density of the next subsystem is determined. This proce-
dure can be repeated multiple times for each subsystem, until the
densities of all subsystems are converged. Alternatively, the orbitals
of all subsystems can be determined simultaneously by constructing
a block-diagonal Fock-matrix (consisting of one block for each sub-
system) in each SCF iteration, i.e., in each SCF iteration the electron
densities of all subsystems are updated.

This fully variational approach, in which the densities of all
subsystems are optimized, can be used as an alternative to con-
ventional KS-DFT calculation for large systems. By construc-
tion, it scales linearly with the number of subsystems. Initially,
it has been applied by Cortona et al. for calculations on sim-
ple ionic crystals (e.g., alkali halides,33 alkali-earth oxides,34 and
alkali-earth sulfides35), by determining the densities of the ions
individually. While in the implementation of Cortona, these den-
sities are constraint to be spherical, an extended scheme has
been implemented by Mehl and coworkers. They allow defor-
mations of the atomic densities, and studied alkali halides36 and
corundum.37

Recently, the fully variational subsystem DFT approach has been
implemented by Iannuzzi et al. in the CP2K (refs. 38 and 39) pro-
gram package.40 With their implementation molecular dynamics
simulations can be performed, in which the individual molecules
are treated as subsystems. In this scheme all subsystems are treated
on the same footing and the implementation is most efficient in
the case of subsystems of the same kind, e.g., the molecules in a
homogeneous liquid phase. Another implementation has been pre-
sented by Shimojo et al.41 who also implemented this subsystem
DFT scheme in combination with a numerical integration scheme
employing hierarchical real-space grids as an efficient alternative
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to standard KS-DFT calculations. They have applied their imple-
mentation to MD simulations of aluminum nanoparticles and of
nanoindentation of ceramics materials.42

The presented subsystem formulation of DFT can also be
employed as a method to model the effect of an environment by
only optimizing the electron density of one active subsystem in the
presence of a frozen environment density and by introducing addi-
tional approximations in the construction of this frozen density.18, 43

This strategy, usually referred to as FDE, has been applied in a num-
ber of studies of solvent effects on different molecular properties,
in which the solvent was constructed as a superposition of the gas
phase densities of the individual solvent molecules.20–23

It is particularly suited for studying molecular properties, which
are often rather local and can be described well in terms of an active
system (of which some property is calculated) and an environment.
The theory presented earlier has been generalized to the calculation
of a number of properties, like the calculation of electronic absorp-
tion spectra using time-dependent DFT (TDDFT)44, 45 and of NMR
shieldings.24 In these cases also the property calculation is sped up
significantly compared with the treatment of the full system, because
it only has to be performed for the much smaller active subsystem
(which has been influenced by the environment).

The FDE scheme was implemented by Wesolowski and cowork-
ers both in deMon and in deMon2k46–48 as well as in the Amsterdam
Density-Functional (ADF) program package.21, 49, 50 Both imple-
mentations are limited to two subsystems, of which one is optimized
while the other subsystem is kept frozen. In ADF, this frozen den-
sity can also be composed from the density of several fragments
to obtain approximate environment densities. In both implemen-
tations, it is also possible to perform fully variational subsystem
DFT calculations by exchanging the role of the frozen and the
nonfrozen subsystem in freeze-and-thaw cycles, but this requires
several runs of the program and is in general limited to two
subsystems.

The implementation in ADF uses an efficient numerical integra-
tion scheme that makes it applicable also in the case of rather large
(up to more than 1000 atoms) environments (see, e.g., ref. 21). Fur-
thermore, ADF supports the generalization of FDE to TDDFT44, 51

and to the calculation of NMR parameters24 and can therefore be
applied for calculating a wide range of molecular properties (see,
e.g., refs. 22, 23, 25).

In this article, we present a new, improved implementation of
FDE in the ADF program package, based on the previous imple-
mentation of Wesolowski and coworkers. This new implementation
is an intermediate between the two approaches described earlier,
i.e., the fully variational subsystem DFT treatment and the FDE
approach using an approximate environment. In our implemen-
tation the total system is composed of an arbitrary number of
fragments that can each be treated using different levels of accu-
racy, while the interaction between the fragments is described
by the embedding potential of eq. (4). On the one hand, the
density of all subsystems can be fully optimized, leading to a
subsystem DFT implementation similar to that of Hutter and
coworkers.40 On the other hand, it is also possible to optimize
only the density of one active subsystem, while all other sub-
systems form a frozen environment, leading to the FDE scheme
previously implemented in ADF. Furthermore, our implementa-
tion also allows all kinds of intermediate setup, e.g., a number of

subsystems are fully optimized, while for other subsystems the gas-
phase density is only polarized in one freeze-and-thaw cycle and
while for the remaining subsystems the frozen density of the iso-
lated molecule is used. In addition, a number of additional options
can be specified for each fragment.

Implementation

Our implementation of FDE in the ADF program package makes
use of the concept of fragments, that is central to many aspects of
the ADF package.50 In ADF, any system is build from fragments,
which are either atoms or larger parts of the system under study. A
lot of quantities calculated, in particular the bonding energy, are then
expressed relative to these fragments, and a number of the analysis
tools of ADF, like the energy decomposition analysis,52 rely on the
decomposition of the total system into the initial fragments.

This fragments setup has been extended by introducing frozen
fragments as a new type of fragments. Similar to the usual nonfrozen
fragments, for each frozen fragment the results of a previous ADF
calculation have to be provided. In the simplest possible setup, only
one frozen fragment is used. In this case, the nonfrozen subsystem
will be build from all nonfrozen fragments, as it is normally done
in ADF. The frozen fragment will be used as frozen density, and
an embedding potential according to eq. (4) will be included in the
calculation of the nonfrozen subsystem. This simple setup with only
one frozen fragment is similar to the FDE implementation that was
previously available in ADF.

In addition, our new implementation also allows the use of more
than one frozen fragment. In this case, the frozen densities of all
these frozen fragments are added when the embedding potential is
constructed. This allows the use of frozen densities that are given
by the sum of the densities of isolated molecules, as they are used
in studies of solvent effects,20, 21 in a very simple way. If the frozen
environment is composed of identical molecules and if the same
geometry is used for these molecules, the density of the isolated
molecules only has to be calculated once, and this density will
be automatically rotated and translated so that it can be used for
multiple frozen fragments.

For each fragment, a number of additional options can be spec-
ified. It is possible to choose whether the exact density (calculated
using the molecular orbital coefficients) or the fitted density, which
can be calculated more efficiently, should be used for the construc-
tion of the frozen density. Furthermore, it can be specified whether
the basis functions of a frozen fragment are included in the calcu-
lation of the nonfrozen subsystem. This way it is easily possible to
perform calculations using the so-called supermolecular basis set
expansion, which is useful for benchmarking calculations.30, 32

Our new implementation allows the efficient treatment of very
large environments. In particular, it employs the numerical integra-
tion scheme described in ref. 21, which uses an integration grid that
is centered on the nonfrozen subsystem and which does not increase
in size for sufficiently large environments. Therefore, the computa-
tional effort for most parts of the calculation, like the self-consistent
field (SCF) iterations or property calculations does not increase if
the size of the environment is increased. Only the computational
effort for the construction of the electrostatic part of the embedding
potential and of the frozen electron density, which are both only
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Figure 1. Schematic overview of the fragment-based implementation. The implementation support non-
frozen fragments, normal frozen fragments, and frozen fragments for which the density is relaxed in
freeze-and-thaw cycles. In addition, a number of options are available for each fragment.

done once at the beginning of the calculation, scales linearly with
the size of the environment. Furthermore, the implementation is effi-
ciently parallelized by applying ADF’s parallelization techniques,
in particular by distributing the grid points used for the numerical
integration among the available nodes.

One of the major new features of our implementation is the ability
to relax the electron density of individual frozen subsystems. For
each frozen fragment, it is possible to specify whether its density
should be relaxed. In this case, the electron density of this fragment
will be calculated in a “freeze-and-thaw” cycle, i.e., the fragment is
thawed, while all other fragments are frozen. This will be repeated
for all frozen fragments for which the density should be relaxed.
These relaxation steps are performed several times, until all densities
are converged, or until a user-specified maximum number of freeze-
and-thaw cycles has been reached. The computational efficiency of
the implementation in the case of freeze-and-thaw cycles is ensured
by constructing different numerical integration grids as described
in ref. 21 for each of the fragments that are relaxed.

By relaxing the density of all frozen subsystems, fully varia-
tional subsystem DFT calculations can be performed. However, the
main advantage of our flexible setup is the possibility to relax the
density only for certain frozen subsystems. This allows the com-
bination of the subsystem DFT approach as an efficient alternative
to conventional KS-DFT calculations with the approximate frozen
density treatment of large environments.

In Figure 1, an schematic overview of the different types of frag-
ments that are possible and of the options that can be specified
for each fragment is given. The implementation contains a number
of approximate kinetic-energy functionals for the use in the FDE
embedding potential, including the Thomas–Fermi functional and
the widely used PW91k functional. The code for the evaluation of
these functionals has been retained from the previous implementa-
tion of Wesolowski, as it was already suitable for the new setup.

For its flexible setup, our implementation makes use of mod-
ern object-oriented programming techniques. The code is written in
Fortran90, and introduces abstract data types (ADTs) to represent

Figure 2. Structures of the acetonitrile–water clusters used in the test calculations. (a) acetonitrile sur-
rounded by 15 water molecules, (b) acetonitrile surrounded by 25 water molecules, (c) acetonitrile
surrounded by 40 water molecules. Graphics: VMD (Ref. 56).
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fragments and their properties (like geometry, symmetry informa-
tion, basis and fit function sets, molecular orbital coefficients, and
fit coefficients). The use of these ADTs is not restricted to the FDE
code, but they are now used throughout large parts of ADF. This
restructured setup also facilitates the implementation of several
extensions of the FDE formalism, such as the recently developed
scheme for general subsystem TDDFT calculations on an arbitrary
number of subsystems45 that is based on the TDDFT generalization
of FDE.44

Example of Application

To illustrate the capabilities of our new implementation, we present
some test calculations from an ongoing project [Bulo et al., to be
submitted], the description of the solvent effect on the nitrogen NMR
chemical shift for acetonitrile in water. We have performed calcula-
tions on small clusters consisting of acetonitrile and 15, 25, and 40
water molecules, respectively. The structures have been taken from
an arbitrary snapshot of a classical MD simulation. This simulation
was performed with the NAMD high performance parallel molec-
ular dynamics package53 using a box of 30 Å in diameter, and the
system was described using the CHARMM force field,54 with stan-
dard TIP3P water molecules.55 The water molecules included in the
cluster are those nearest to the nitrogen atom of the acetonitrile. The
studied clusters are shown in Figure 2.

In the calculations presented in the following, the NMR shield-
ings have been calculated using the extension of FDE to the
calculation of magnetic properties,24 and on the basis of the tests
performed in ref. 24 the contributions of the induced current in the
environment have been neglected. In all calculations, the TZ2P basis
set from the ADF basis set library49 has been used for acetonitrile
as well as for water, and the exchange-correlation functional BP86,
consisting of the exchange functional by Becke57 and the correla-
tion functional by Perdew,58 has been employed throughout. The
kinetic-energy functional PW91k28 has been used to approximate
the nonadditive kinetic-energy component of the FDE embedding
potential.

In the FDE embedding calculations, the nonfrozen subsys-
tem is formed by the acetonitrile molecule and the two closest
water molecules. These are included in the nonfrozen subsystem
to describe the hydrogen bonds to the nitrogen atom of acetoni-
trile accurately. The remaining water molecules are included in the
calculation as frozen fragments, for which the density of the iso-
lated molecule is used as initial frozen density. Since all solvent
water molecules share the same geometry, this initial density only
has to be calculated once and can then be used for all frozen water
molecules.

The solvent shifts of the nitrogen NMR shielding calculated for
the different clusters are given in Table 1. In all cases, the solvent
shifts, i.e., the shift relative to the isolated acetonitrile molecule, are
given.

For the cluster of acetonitrile and 15 water molecules, already the
FDE calculation using the simplest sum-of-fragments (SumFrag)
approximation for the frozen density, in which the frozen densities
of the isolated molecules are used for all frozen fragments, leads
to a solvent shift of 12.6 ppm. This is rather accurate compared to
14.0 ppm calculated in the conventional, supermolecular KS-DFT
calculation. To improve this first approximation of the frozen den-
sity, our new implementation makes it possible to relax the electron
densities of selected frozen fragments. In Table 1, the effect of relax-
ing the densities of some of the solvent water molecules is shown.
In all cases, the densities were only relaxed in one freeze-in-thaw
cycle, since we found that additional freeze-and-thaw cycles only
have a minor effect on the calculated NMR shielding.

For the closest three water molecules, relaxing the density leads
to an increase in the solvent shift of in total 1.2 ppm. For the water
molecules that are further away, this effect is smaller. Relaxing the
densities of five additional water molecules leads to an increase of
only 0.9 ppm, and of the next five water molecules of only 0.7 ppm,
i.e., the effect of relaxation decreases for water molecules that are
further away from the nitrogen atom. However, as can be seen from
Figure 2 also some of the water molecules at a larger distance from
the nitrogen atom can be rather close to other parts of the acetonitrile
molecule, so that it is not surprising that the relaxation of their
density has an effect on the solvent shift that is rather large.

Table 1. Solvent Shifts �σ of the Nitrogen NMR Shielding in Acetonitrile–Water Clusters with 15,
25, and 40 Water Molecules, Respectively.

15 H2O 25 H2O 40 H2O
�σ (ppm) �σ (ppm) �σ (ppm)

Isolated 0.0 0.0 0.0
SumFrag 12.6 11.9 11.8
1 H2O relaxed 12.9 +0.3 12.3 +0.4 11.9 +0.1
2 H2O relaxed 13.3 +0.4 12.7 +0.4 12.4 +0.5
3 H2O relaxed 13.7 +0.4 13.3 +0.6 13.1 +0.7
8 H2O relaxed 14.6 +0.9 13.9 +0.6 14.0 +0.9
13 H2O relaxed 15.3 +0.7 14.7 +0.8 14.7 +0.7
23 H2O relaxed 15.2 +0.5 14.6 −0.1
38 H2O relaxed 14.6 0.0
Supermolecule 14.0 13.1 12.5

In the FDE calculations, the closest two water molecules have been included in the nonfrozen subsystem,
for the remaining frozen fragments different approximations have been employed. For comparison, also
the results of a conventional, supermolecular calculation are given. See text for details.
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If the densities of all 13 frozen water molecules are relaxed, a sol-
vent shift of 15.3 ppm is obtained, which is 1.3 ppm higher than the
reference value from the supermolecular calculation. This remaining
difference is due to the approximations introduced by the subsys-
tem DFT treatment, in particular inaccuracies of the approximate
kinetic-energy functional, differences in the basis set expansion,32

and in the case of the calculation of NMR parameters also the
neglect of the current dependence of the nonadditive kinetic energy
and of the induced current in the frozen fragments.24 By including
more water molecules in the nonfrozen subsystem this error can
be reduced, but this will also lead to an increase of the computa-
tional cost. The fact that the solvent shift calculated using the simple
SumFrag approximation is nearly as close to the supermolecular ref-
erence value as in the case where all frozen densities are relaxed is
due to an error cancellation between the error introduced by the
approximate frozen density and the errors of the FDE treatment
mentioned earlier.

When considering the large clusters containing 25 and 40 water
molecules, respectively, the same trends as for the small cluster can
be observed. While relaxing the densities of the water molecules
close to the nitrogen atom has a larger effect, the effect of relaxing
ten additional water molecules is only +0.5 ppm and −0.1 ppm in the
clusters containing 25 and 40 water molecules, respectively. While
for the relaxation of the water molecules closer to the acetonitrile,
the effect of relaxation is roughly the same for all cluster sizes, for
the relaxation of these ten water molecules this is not the case. This
is because in the cluster containing 25 water molecules they are only
polarized by the inner water molecules, while in the large cluster
containing 40 water molecules, another layer of water molecules has
been added that also polarizes the 10 water molecules in question.
The effect of this outer layer is largest for the water molecules closest
to it, i.e., further away from the acetonitrile, while its effect on the
inner water molecules is rather small. In the cluster containing 40
water molecules, the effect of relaxing the densities of the additional
outer layer of 25 water molecules is negligible.

For both clusters, the difference between the supermolecular ref-
erence value and the solvent shift calculated when the densities of
all frozen water molecules are relaxed are approximately 2 ppm. It
should be noted that this error is of similar size as other errors that
appear in the conventional KS-DFT calculation of NMR shieldings,
such as basis set effects and inaccuracies in the exchange-correlation
functional. As mentioned above, in the case that fewer frozen water
molecules are relaxed, the error introduced by the FDE treatment,
in particular the use of an approximate kinetic-energy functional,
are (partly) canceled by the error caused by the use of a more
approximate frozen density.

In Table 2, the wall clock times required for the calculations
discussed above on 8 dual processor nodes of an Intel Xeon 3.4
GHz cluster are given. These timings show for the three clusters a
slight increase in the required computer time when a larger number
of frozen fragments are relaxed. This is due to the additional freeze-
and-thaw cycles needed in this case. Going to a larger cluster, the
required time increases approximately linear with the number of
water molecules included, which is due to the increased size of
the numerical integration grid as well as the additional effort for
constructing the larger frozen density. Because of this linear scaling,
the FDE calculations are significantly more efficient compared to
the supermolecular calculation of the NMR shielding, especially

Table 2. Wall Clock Time (in Minutes) Required for the Calculation of the
Nitrogen NMR Shielding in Acetonitrile–Water Clusters with 15, 25, and
40 Water Molecules, Respectively, on 8 Dual Processor Nodes of an Intel
Xeon 3.4 GHz Cluster, Using Different Approximations for the Frozen
Density (see text for details).

15 H2O 25 H2O 40 H2O

Isolated 0.4 0.4 0.4
SumFrag 1.7 2.1 2.9
1 H2O relaxed 2.6 3.1 4.3
2 H2O relaxed 2.8 3.6 5.0
3 H2O relaxed 3.0 3.8 5.0
8 H2O relaxed 3.6 5.2 6.2
13 H2O relaxed 4.0 5.3 7.2
23 H2O relaxed 7.1 9.4
38 H2O relaxed 12.8
Supermolecule 8.5 29.8 103.5

for larger clusters. A large part of this difference is caused by the
fact that in the FDE case, the calculation of the NMR shielding can
be performed for the much smaller nonfrozen system only, while
including the effect of the frozen environment in the FDE embedding
potential.

The presented test calculations demonstrate how the approxi-
mate frozen density can be improved by relaxing the densities of
frozen fragments. Especially for solvent molecules close to the
nonfrozen subsystem, this will be important to obtain accurate
results.21, 22 However, for solvent molecules that are further away
from the nonfrozen subsystem the effect of relaxation is rather small.
Therefore, it is possible to restrict the number of frozen fragments
that are relaxed and to avoid the increased computational effort
caused by relaxing the densities of all frozen fragments. This will
be particularly useful in practical applications requiring calcula-
tions for hundreds of snapshots and the inclusion of a large number
of solvent molecules. On the basis of our tests, we chose to relax the
densities of 13 solvent water molecules, in addition to the two water
molecules that are included in the nonfrozen subsystem. However,
the accurate description of the nitrogen NMR chemical shift of ace-
tonitrile in water will require calculations on a large number for
snapshots from MD simulations. This requires more thorough tests
than those presented here, and a detailed study will be presented
elsewhere [Bulo et al., to be submitted].

The solvent shifts of the nitrogen NMR shielding calculated in
FDE calculations using this setup (i.e., two water molecules are
nonfrozen, and the densities of 13 additional water molecules are
relaxed) including up to 250 water molecules are shown in Figure 3.
It can be seen that up to approximately 100 water molecules, the
solvent shift shows a rather irregular behavior, while adding fur-
ther water molecules leads to a smooth increase of the solvent
shift. The observation that the water molecules 50–75 lead to a
larger change of the solvent shifts than water molecules 25–50 is
due to the geometries of the investigated clusters. Since the water
molecules are chosen according to their distance from the nitrogen
atom of the acetonitrile molecule, the water molecules 50–75 include
several water molecules close to methyl group of acetonitrile, which
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Figure 3. Solvent shift on the nitrogen NMR shielding of acetonitrile
in water (solid line), calculated including solvent shells of different
size. The results of the FDE calculations (squares/diamonds) and for
small solvent shells of supermolecule calculations (triangles) are given.
In addition, also the wall clock time (dashed line) required on 8 dual
processor nodes of an Intel Xeon 3.4 GHz cluster are shown. See text
for details.

influence its electronic structure significantly. Only after approx-
imately 100 solvent water molecules have been included, the
acetonitrile is completely surrounded by solvent molecules and the
effect of the addition of further solvent molecules becomes more
regular.

As can be seen from Figure 3, approximately 200 solvent water
molecules have to be included to obtain a solvent shift that is con-
verged with respect to the size of the solvent shell. The required
wall clock times that are included in Figure 3 show that this is easily
possible in the FDE calculations. While for solvent shells up to 50
atoms the computer time increases approximately linearly, for larger
solvent shells the time required for the FDE calculation is almost
constant. In contrast, because of their unfavorable scaling, the con-
ventional supermolecular KS-DFT calculations become infeasible
already for rather small solvent shells.

Conclusions

We have presented a new implementation of the FDE scheme, which
allows both a frozen density treatment using an approximate envi-
ronment density as well as a subsystem DFT treatment, in which
the densities of all subsystems are determined. In addition, inter-
mediate treatments are possible, in which only the densities of
a few subsystems are relaxed, in the presence of a larger frozen
environment.

This flexible scheme offers several new possibilities for the mul-
tilevel description of environment effects. The partial relaxation
of the electron density of the environment makes it possible to
include not only the electronic coupling of the environment with
the nonfrozen subsystem, but to include the polarization of the envi-
ronment due to the nonfrozen subsystem as well. This results in a
very accurate description of the coupling between different regions

described at the QM level, in contrast to other popular QM/QM
methods5, 10–12 that only include a mechanical coupling between
the different regions.

As we show for the NMR chemical shift of acetonitrile in water,
this flexible FDE scheme can be employed to improve the FDE
treatment using an approximate environment density. By relaxing
the electron densities of some solvent molecules that are close to
the subsystem of interest, it is possible to adjust the accuracy of the
description of the environment to the degree needed. At the same
time, the total time of the computation only increases moderately. In
particular, the time needed for the calculation of the NMR chemical
shift does not increase, since it can be performed for the nonfrozen
subsystem only.

Because of the numerical integration scheme used, our FDE
implementation is very efficient, in particular for large frozen envi-
ronments. It allows the treatment of environments consisting of
hundreds of atoms, which makes it an attractive method for mod-
eling large systems such as solvent environments or biological
systems.

The FDE implementation described here is included in the 2007
release of the ADF program package. The FDE scheme can be com-
bined with the calculation of several molecular properties that are
available in ADF. Currently, properties that depend directly on the
electron density (such as dipole and quadrupole moments), elec-
tronic excitation energies and polarizabilities can be calculated, as
well as NMR shieldings and ESR hyperfine coupling constants. The
extension to other properties, such as energy gradients, vibrational
frequencies, and NMR spin–spin coupling constants is currently
in progress. The FDE scheme can be combined with additional,
more approximate descriptions of environments that are present
in ADF, like continuum solvation models or different QM/MM
schemes.

Our flexible setup will make several extensions of the imple-
mentation possible. An extension of the implementation to the
calculation of excited states, that uses the recently proposed pro-
tocol for subsystem-TDDFT calculations with an arbitrary number
of subsystems,45 is currently being integrated into the new FDE
implementation and will be included in a future release. First test
applications of this methods have already shown that it will be very
useful for the description of excitonic couplings between different
subsystem.

In addition, we are working on an extension to molecular dynam-
ics and on coupling our implementation to ab initio codes to allow
the treatment of individual subsystems using wave function based
methods, similar to the ab initio-in-DFT embedding scheme by
Carter and co-workers.59–61

Acknowledgments

The authors thank Tomasz Wesolowski (University of Geneva) for
stimulating discussions and for providing the first implementation of
the FDE scheme in ADF. The authors further thank Rosa Bulo (Vrije
Universiteit Amsterdam) for providing the example application
and for helpful comments and discussions. The authors grate-
fully acknowledge computer time provided by the Dutch National
Computing Facilities (NCF).

Journal of Computational Chemistry DOI 10.1002/jcc



1018 Jacob, Neugebauer, and Visscher • Vol. 29, No. 6 • Journal of Computational Chemistry

References

1. Schöneboom, J. C.; Neese, F.; Thiel, W. J Am Chem Soc 2005, 127,
5840.

2. Leenders, E. J. M.; Guidoni, L.; Röthlisberger, U.; Vreede, J.; Bolhuis,
P. G.; Meijer, E. J. J Phys Chem B 2007, 111, 3765.

3. Prabhakar, R.; Vreven, T.; Frisch, M. J.; Morokuma, K.; Musaev, D. G.
J Phys Chem B 2006, 110, 13608.

4. Olsson, M. H. M.; Hong, G.; Warshel, A. J Am Chem Soc 2003, 125,
5025.

5. Humbel, S.; Sieber, S.; Morokuma, K. J Chem Phys 1996, 105, 1959.
6. Warshel, A.; Levitt, M. J Mol Biol 1976, 103, 227.
7. Gao, J. In Reviews in Computational Chemistry, Vol. 7; Lipkowitz, K.

B.; Boyd, D. B., Eds. VCH: New York, 1995; pp. 119–185.
8. Senn, H. M.; Thiel, W. Top Curr Chem 2007, 268, 173.
9. Bakowies, D.; Thiel, W. J Phys Chem 1996, 100, 10580.

10. Svensson, M.; Humbel, S.; Froese, R.; Matsubara, T.; Sieber, S.;
Morokuma, K. J Phys Chem 1996, 100, 19357.

11. Vreven, T.; Morokuma, K. J Comput Chem 2000, 21, 1419.
12. Swart, M.; Bickelhaupt, F. M. J Comput Chem, in press, DOI:

10.1002/jcc.20834.
13. Sherwood, P. In Modern Methods and Algorithms of Quantum Comput-

ing, Vol. 1: NIC series; Grotendorst, J., Ed. John von Neumann Institute
for Computing: Jülich, 2000; pp. 257–277.

14. Laio, A.; VandeVondele, J.; Rothlisberger, U. J Chem Phys 2002, 116,
6941.

15. Kongsted, J.; Osted, A.; Mikkelsen, K. V.; Christiansen, O. J Mol Struct.:
THEOCHEM 2003, 632, 207.

16. Jensen, L.; van Duijnen, P. Th.; Snijders, J. G. J Chem Phys 2003, 118,
514.

17. Jensen, L.; van Duijnen, P. Th.; Snijders, J. G. J Chem Phys 2003, 119,
3800.

18. Wesolowski, T. A.; Warshel, A. J Phys Chem 1993, 97, 8050.
19. Wesolowski, T. A. In Computational Chemistry: Reviews of Current

Trends, Vol. 10; Leszczynski, J., Ed.; World Scientific: Singapore, 2006.
20. Neugebauer, J.; Louwerse, M. J.; Baerends, E. J.; Wesolowski, T. A.

J Chem Phys 2005, 122, 094115.
21. Neugebauer, J.; Jacob, Ch. R.; Wesolowski, T. A.; Baerends, E. J. J Phys

Chem A 2005, 109, 7805.
22. Jacob, Ch. R.; Neugebauer, J.; Jensen, L.; Visscher, L. Phys Chem Chem

Phys 2006, 8, 2349.
23. Neugebauer, J.; Louwerse, M. J.; Belanzoni, P.; Wesolowski, T. A.;

Baerends, E. J. J Chem Phys 2005, 123, 114101.
24. Jacob, Ch. R.; Visscher, L. J Chem Phys 2006, 125, 194104.
25. Neugebauer, J.; Baerends, E. J. J Phys Chem A 2006, 110, 8786.
26. Štrajbl, M.; Hong, G.; Warshel, A. J Phys Chem B 2002, 106, 13333.
27. Cortona, P. Phys Rev B 1991, 44, 8454.
28. Lembarki, A.; Chermette, H. Phys Rev A 1994, 50, 5328.
29. Wesolowski, T. A. J Chem Phys 1997, 106, 8516.
30. Jacob, Ch. R.; Wesolowski, T. A.; Visscher, L. J Chem Phys 2005, 123,

174104.
31. Jacob, Ch. R.; Beyhan, S. M.; Visscher, L. J Chem Phys 2007, 126,

234116.
32. Wesolowski, T. A.; Weber, J. Chem Phys Lett 1996, 248, 71.

33. Cortona, P. Phys Rev B 1992, 46, 2008.
34. Cortona, P.; Villafiorita Monteleone, A. J Phys: Condens Matter 1996,

8, 8983.
35. Cortona, P.; Villafiorita Monteleone, A.; Becker, P. Int J Quantum Chem

1995, 56, 831.
36. Mei, W. N.; Boyer, L. L.; Mehl, M. J.; Ossowski, M. M.; Stokes, H. T.

Phys Rev B 2000, 61, 11425.
37. Ossowski, M. M.; Boyer, L. L.; Mehl, M. J.; Stokes, H. T. Phys Rev B

2002, 66, 224302.
38. “CP2K”, The CP2K developers group, URL: http://cp2k.berlios.de,

2007.
39. VandeVondele, J.; Krack, M.; Mohamed, F.; Parrinello, M.; Chassaing,

T.; Hutter, J. Comput Phys Commun 2005, 167, 103.
40. Iannuzzi, M.; Kirchner, B.; Hutter, J. Chem Phys Lett 2006, 421, 16.
41. Shimojo, F.; Kalia, R. K.; Nakano, A.; Vashishta, P. Comput Phys

Commun 2005, 167, 151.
42. Vashishta, P.; Kalia, R.; Nakano, A. J Phys Chem B 2006, 110, 3727.
43. Wesolowski, T.; Warshel, A. J Phys Chem 1994, 98, 5183.
44. Casida, M. E.; Wesolowski, T. A. Int J Quantum Chem 2004, 96,

577.
45. Neugebauer, J. J Chem Phys 2007, 126, 134116.
46. Köster, A. M.; Calaminici, P.; Casida, M. E.; Flores-Moreno, R.; Geudt-

ner, G.; Goursot, A.; Heine, T.; Ipatov, A.; Janetzko, F.; del Campo, J. M.;
Patchkovskii, S.; Reveles, J. U.; Salahub, D. R.; Vela, A. “deMon2k”,
URL: http://www.demon-software.com, 2006.

47. Dulak, M.; Wesolowski, T. A. Int J Quantum Chem 2004, 101, 543.
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