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We investigate the performance of two discrete solvent models in connection with density
functional theory (DFT) for the calculation of molecular properties. In our comparison we
include the discrete reaction field (DRF) model, a combined quantum mechanics and molecular
mechanics (QM/MM) model using a polarizable force field, and the frozen-density embedding
(FDE) scheme. We employ these solvent models for ground state properties (dipole and

quadrupole moments) and response properties (electronic excitation energies and frequency-
dependent polarizabilities) of a water molecule in the liquid phase. It is found that both solvent
models agree for ground state properties, while there are significant differences in the description
of response properties. The origin of these differences is analyzed in detail and it is found that
they are mainly caused by a different description of the ground state molecular orbitals of the

solute. In addition, for the calculation of the polarizabilities, the inclusion of the response of the
solvent to the polarization of the solute becomes important. This effect is included in the DRF
model, but is missing in the FDE scheme. A way of including it in FDE calculations of the

polarizabilities using finite field calculations is demonstrated.

1. Introduction

Since properties and reactions of molecules are usually studied
in solution, and since the solvent might not be innocent in
experimental studies, there has been a growing interest in
including solvent effects in theoretical investigations (for re-
views, see, e.g., ref. 1 and 2). Many solvent models used in
quantum chemical studies are developed and well-tested for
reproducing solvation energies or reaction energies in solu-
tion.> In some solvent models, only an (interaction) energy
term is added so that effects on molecular properties cannot be
described, apart from changes in the equilibrium structure.
But modeling solvent effects on molecular properties has also
attracted considerable attention during the past years, and
several models for the inclusion of solvent effects on a more
fundamental level have been proposed and tested (see, e.g.,
ref. 6-21).

The models for the description of solvation effects can be
divided into two groups. In continuum solvation models'**
the solvent is described as a continuous medium that is
characterized by its dielectric constant, with the solute mole-
cule residing inside a cavity in this medium. The solute
molecule can then be treated with different quantum mechan-
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ical (QM) methods. Since the atomistic structure of the solvent
is not explicitly included in these continuum models, the
averaging over different solvent configurations is implicitly
included in the continuum description that is parameterized to
include all the degrees of freedom of the solvent. While it is
clear that continuum models are able to correctly describe
non-specific solvation effects, i.e., dielectric medium effects,
their ability to describe specific interactions like hydrogen
bonding is less obvious. Although progress in this direction
has been made, a description of specific interactions within
continuum models apparently requires a very careful para-
meterization of the size and shape of the cavity in which the
solute molecule is placed.’

A physically more appealing approach to the description of
specific solvent effects is given by discrete solvent models in
which the geometrical structure of the solvent is explicitly
included. This offers a more straightforward way to take
specific interactions into account. However, to provide a
complete description of all solvation effects in discrete models
it is necessary to average over the degrees of freedom of the
solvent. This can be achieved by sampling over a large number
of snapshots from classical?® or Car—Parinello molecular
dynamics (CPMD)**?® simulations. For all these solvent
structures, the molecular properties of interest are then calcu-
lated using QM methods, taking the (discrete) solvent into
account in a cluster model.'®'? This can, for instance, be done
using density functional theory (DFT)*® for ground state
properties or time-dependent DFT (TDDFT)*"2® for response
properties. Finally, the calculated property is averaged over
the ensemble of solvent structures. This approach is denoted as
“sequential molecular dynamics followed by quantum me-
chanics calculations” (S-MD/QM) following the terminology
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of Canuto et al.'* It usually requires the inclusion of a large
number of solvent molecules in the solvent structures, which
makes it necessary to use very efficient methods for the
calculation of molecular properties.

The most accurate approach would be the calculation of the
properties of interest from supermolecular calculations by
using a sufficiently large cluster (if no periodic boundary
conditions can be used) in the quantum chemical calculation.
However, this approach is usually very demanding, since a
large number of solvent molecules has to be included, which
quickly becomes infeasible for large solutes. In addition, the
supermolecular approach does not directly yield molecular
properties of the solute. Analysis of the results requires some
partitioning of the wave function that is usually not unique so
the calculated molecular properties will strongly depend on the
partitioning scheme used.”

More efficient, though more approximate approaches are
combined quantum mechanics and molecular mechanics (QM/
MM) models®*3* in which only the solute is treated using QM
methods, while molecular mechanics methods (MM) are used
to describe the solvent as well as the interactions between
solute and solvent. The restriction of the QM treatment to the
solute system makes the calculation of molecular properties
for a large number of structures feasible. However, the force
field used in the MM part has to be parameterized carefully to
describe the solute—solvent interactions accurately. In addi-
tion, QM effects on these interactions, which are important in
the inner solvent shell, can only be modeled indirectly in an
empirical way, even though there are studies that claim that
carefully parameterized QM /MM models can yield results that
are more reliable than DFT calculations.®® For the calculation
of response properties, it has been noted that it is necessary to
use a polarizable MM model in which the solute can respond
to charge redistribution in the solute.>® One example of such a
polarizable QM/MM scheme is the discrete reaction field
(DRF) model,”®%7 which has been implemented within DFT
for ground state® and response properties.” The DRF model
has been previously applied to the calculation of molecular
(hyper-)polarizabilities and of nonlinear optical (NLO) prop-
erties in solution.¥**°

Frozen-density embedding (FDE)***? within DFT can be
regarded as a compromise between explicit QM models based
on supermolecular cluster calculations and solvent treatments
based on effective solvent—solute interaction potentials as used
in DRF. In the FDE scheme, the (frozen) electron density of
the solute is used to construct an embedding potential that
enters in the calculation of the solute properties. The whole
system (solute and solvent) is treated at a QM level, but the
electron density of the solute and the solvent subsystems are
determined separately. The calculation of orbitals for the
supersystem is thus avoided. Even though FDE is in principle
exact, further approximations—in addition to those present in
conventional Kohn—Sham (KS) DFT—have to be introduced.
For modeling solvation effects, FDE is usually combined with
a simplified method for constructing the electron density of the
solvent, e.g., a sum-of-molecular-fragments approach.'® Since
the calculation of molecular (response) properties is done
within a limited orbital space of the solute only, FDE is very
efficient, especially in the case of response properties. It has

been applied successfully to the calculation of solvatochromic
shifts of electronic excitation energies'>** and of electron spin
resonance hyperfine coupling constants in solution.**

Both DRF and FDE are promising approaches for the
calculation of molecular (response) properties in solution,
mainly because their efficiency allows the calculation of mole-
cular properties for a large number of solvent structures. In
addition, both DRF and FDE introduce a “natural partition-
ing” of the supermolecular system into a solute and a solvent
system, which makes it possible to uniquely define molecular
properties in solution.

Even though both methods have been applied to the calcu-
lation of ground state and response properties in solution in a
number of earlier studies, there are several open questions.
The DRF model relies on fitted parameters for atomic charges
and polarizabilities and it is unclear if this parameterization is
generally applicable. In the FDE scheme, an approximate non-
additive kinetic energy functional has to be used.** Further-
more, in the calculation of response properties the response of
the (frozen) solvent is neglected. The approximations that are
made in the two methods are quite different and their im-
portance for the calculation of different molecular properties is
not fully tested.

In this paper we present a detailed comparison of the DRF
model and the FDE scheme for calculating different molecular
properties in solution. For this comparison, we use a simple
test system, a water molecule inside a solvation shell consisting
of 127 water molecules. This system is a well established
benchmark for the assessment of discrete solvent mod-
els.” 374 Since we are only interested in a comparison of
the two different solvent models for the calculation of mole-
cular properties, we did not average over a large number of
snapshots, but only use one solvent structure instead. This
allows us to focus on the differences in the description of the
solvent effects.

This work is organized as follows. In section 2, a brief
introduction into the theoretical background of FDE and
DREF is given. In section 3, we present a detailed comparison
of these two solvent models for a water molecule solvated in
water. First, in section 3.1, the solvent models are compared
for ground state properties, namely the dipole and the quad-
rupole moment. This is followed by a comparison of the
performance of DRF and FDE for response properties. In
section 3.2, they are compared for the calculation of electronic
excitation energies and in section 3.3 for the calculation of
static and frequency-dependent polarizabilities. Concluding
remarks follow in section 4.

2. Methodology

2.1. Frozen-density embedding

In the frozen-density embedding (FDE) formalism®*' the elec-
tron density of the embedded subsystem (p;) in a given
microscopic environment, which is represented by means of
its electron density (py;) and a set of nuclear charges (Z 411) at
the corresponding positions (R 41y), is derived from KS-like
one-electron equations.

The effective potential in these equations can be derived
from the requirement that the total density p.(r) = pi(r) +
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pu(r) of the system is obtained in an optimization process in
which the electron density py(r) of the environment is kept
frozen. On the assumption that the complementary p;(r) is
positive definite and is non-interacting pure-state vg-represen-
table,”® we obtain KS-like equations in which the effect of
pu(r) is represented by an embedding term in the effective
potential for the pi(r) system,”!
_22+ VKS[ emb

) ot (1) (r) + Ve oy pul (r) M

() = ey (1),

In these equations, V&S[p1](r) is the KS effective potential of
the isolated subsystem I and VEE®[py, pul(r) is the embedding
potential which reads

Z 4 pu(r)
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where the exchange—correlation (E,[p]) and kinetic energy
(T{[p]) functionals are defined in the KS formulation of DFT.
The kinetic energy part of the potential is sometimes written as
the functional derivative dT,"*%[p;, pul/dp; of the non-addi-
tive kinetic energy functional,

Tjnadd[pl’ PII] = Ts[pl + p”] - Tx[pl] - Ts[pll] (3)

If the initial assumptions are fulfilled, i.e., if py(r) — pu(r),
is positive definite and non-interacting pure-state v,-represen-
table, the solution of eqn (1) will yield the exact ground
state electron density.** This makes this scheme an exact
approach in the exact functional limit, in contrast to most
other embedding methods commonly used in practical com-
puter simulations.

However, in practical calculations an approximate non-
orbital-dependent functional is used for the non-additive
kinetic energy functional and its functional derivative because
the KS orbitals of the full system are not known. Based on
previous results*® % we selected the PW91k kinetic energy
functional.*’

Since eqn (1) can be solved for any postulated electron
density, pp(r) may also be obtained from simpler considera-
tions.*! For instance, a solvent can be modeled by using just a
sum of electron densities of the individual solvent mole-
cules.>*430 15 this work, we used two different ways of
modeling the electron density of the solvent. First, we used a
simple sum-of-molecular-fragments approach as introduced in
ref. 15. In this approach the solvent density is constructed as a
sum of the electron densities of isolated solvent molecules.
Since the solvent structure used in this work consists of rigid
water molecules, it is even possible to use the same electron
density for each solvent molecule.

This approximated electron density of the environment can
be improved by including the effects of relaxation of the
solvent using “freeze-and-thaw” iterations,”' i.e., by exchan-

ging the role of the frozen and the non-frozen system. In this
work, this is done using the partial relaxation scheme de-
scribed in ref. 43. For the ten solvent molecules closest to the
solute molecule the electron density was updated using two
freeze-and-thaw cycles,>! while for the outer solvent molecules
we still use the sum-of-molecular-fragments density as de-
scribed above. The frozen density of these outer solvent
molecules is taken into account during all freeze-and-thaw
cycles.

A time-dependent linear response generalization of this
embedding scheme was derived in ref. 52. Under the assump-
tion that the response to an external electromagnetic field in
resonance with an electronic transition of the embedded
molecule is localized to the non-frozen system (system I),
i.e., that the response of the frozen environment (system II)
can be neglected, this leads—in addition to the kernel within
the adiabatic local density approximation (ALDA) in conven-
tional TDDFT—to an effective embedding kernel (see the
supplementary material to ref. 53),

52Exc o]

-emb /
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QLTI F——
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which now also contains a contribution of the non-additive
kinetic energy. This contribution is, for consistency with the
ALDA-kernel, approximated by using the (local density)
Thomas—Fermi functional in eqn (4). This means that the
additional term depending on the solvent response function in
the exact formulation in ref. 52 is assumed to be negligible, and
the exchange—correlation kernel in eqn (4) is evaluated for the
density py; of the ground state calculation. An alternative
interpretation is that an assumption is made which assumes
that the whole response can be described in terms of a change
in the density py.

2.2. The discrete reaction field model

The DRF model is a polarizable QM/MM model. The solvent
is represented by atomic charges ¢, and polarizabilities o, that
are placed at positions R;. Although the DRF model can
describe a frequency-dependent atomic polarizability,>*>> we
will assume that the atomic polarizabilities are independent of
the frequency. This is expected to be a reasonable assumption
due to the small dispersion of the polarizability in the fre-
quency range that lies well below any electronic excitation. In
the DRF model the QM/MM operator at a point r is given as
an extra term in the effective potential in the KS equations,’

V2
=T VU0 + V000 a0,
i=1,...,N.
where the DRF potential is given by

VPR [p)(r) = V() + VP[] (r) -
= Z - _‘]sRS‘ + Z pn _|r _7R:|3 . (6)

The first term, V*, describes the Coulomb interaction
between the QM system (the solute) and the permanent charge
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distribution of the solvent molecules. The second term, VP,
describes the many-body polarization of the solvent molecules.
The induced atomic dipole at a site s is given by

eyl o

1,1#s

ind
e = ot

where T is the screened dipole interaction tensor®°®>7 for the
interaction between sites s and ¢. The induced dipole arises
from the field F, ™" at site s that is due to the electronic charge
distribution of the QM part, the field from the QM nuclei, and
the field from the point charges at the solvent molecules as well
as the field from all other induced dipoles. The induced dipole
moments are therefore calculated self-consistently in every
iteration of the KS procedure.

The combination of the DRF model with TDDFT linear
response theory was presented in ref. 9. It introduces an
additional contribution in the TDDFT kernel that describes
the change in the DRF potential of eqn (6) due to a perturba-
tion in the electron density of the QM system, i.e., the response
of the atomic polarizabilities. This additional contribution is
given by

DRF/,, ./ _5VDRF[PK")
V - t s —F
_ZZ‘V _Rl ’ |RS—I’|3. (8)

In this equation By, is the relay matrix that relates the induced
dipole moment at site s to the electric field at site 7 and that is
defined by

md Z B ZFZ (9)

This relay matrix is never calculated explicitly, but the
induced dipole moments due to the first-order change in the
electron density are calculated iteratively by solving eqn (7) in
the linear response calculation. Details can be found in ref. 9.

2.3. Computational details

All density functional calculations were performed using the
Amsterdam Density Functional (ApF) package.’®>° The “sta-
tistical averaging of molecular orbital potentials” (SAOP)
potential®® 2 was used to approximate the exchange—correla-
tion potential, since it is well suited for the calculation of
response properties. To provide a consistent comparison we
also employed the SAOP potential for ground state properties,
even though it has been found that SAOP is less reliable in this
case.®?

All calculations were done using the VDiff basis set from the
ADF basis set library, which is a triple-{-quality Slater basis set
containing additional diffuse functions. Previous studies®’
showed that this basis set is sufficiently large for the accurate
calculation of both the ground state and response properties
investigated here. This was confirmed in the present work by
test calculations using the large even-tempered ET-QZ3P-
3DIFFUSE Slater basis set, in which the results did not
change significantly.

In the FDE calculations, the initial solvent density was
constructed as a sum of the electron densities of molecular

fragment calculated using the local-density approximation
(LDA) and a DZP basis set. In the FDE calculations using
the orbital-dependent SAOP potential, the exchange—correla-
tion component of the effective embedding potential was
approximated using the Becke-Perdew—Wang (BPW91) ex-
change—correlation functional.®*3

The parameters needed for the solvent molecules in the
DRF model, i.e., point charges and atomic polarizabilities,
were adopted from ref. 8. The point charges are gy = 0.3345
a.u. and ¢, = —0.6690 a.u. which generate a molecular dipole
moment of 1.88 Debye. The atomic polarizabilities are ay =
0.0690 a.u. and a, 9.3005 a.u. which reproduced the
molecular polarizability tensor with a mean polarizability of
9.62 a.u. and a polarizability anisotropy of 0.52 a.u. The
screening parameter, ¢ = 2.1304, used in eqn (7), was taken
from ref. 57.

The calculations of excitation energies and polarizabilities
were done using the TDDFT implementation of Apr.®*%” The
finite field calculations of the polarizabilities in section 3.3
were performed using an electric field of 0.001 a.u. To obtain
the static mean polarizability, six separate calculations were
performed in which an electric field was applied in the x, y, and
z direction. The individual components of the polarizability
tensor were then obtained by numerical differentiation of the
dipole moment.

3. Results and discussion

The comparison of the DRF and FDE solvent models is
carried out for the system investigated in ref. 8 and 9, where
a water molecule in the “liquid phase” was studied. It is a fixed
structure of 128 rigid water molecules. The structure was
obtained from a molecular dynamics simulation using a
polarizable force field in an earlier work.*> One of the 128
water molecules is considered as the solute, while the remain-
ing 127 form the solvent shell. The structure of the water
molecule inside the solvent shell is shown in Fig. 1 and the
coordinates are given in the electronic supplementary material
(ESD).

We note that by using only one solvent structure any effects
of the dynamics of the solvent are neglected, i.e., the fluctua-
tions in the geometrical structure of both the solute and the
solvent molecules are not taken into account and replaced by a
static picture. For correctly describing all solvent effects it
would be necessary to include a large number of solvent
structures instead of just one average configuration.'>* It will
therefore be difficult to directly compare the obtained results
to experimental values. However, the error that results from
neglecting the dynamical effects will be made consistently in all
calculations. As the purpose of this study is to provide a
comparison of different solvent models, this consistent error is
not relevant for the conclusions drawn here. Furthermore, the
restriction to only one structure enables us to do a very
detailed analysis of the results and greatly simplifies their
interpretation.

3.1. Dipole and quadrupole moments

First, we compare the performance of DRF and FDE for
dipole and quadrupole moments. These are both ground state
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Fig. 1 Structure of a water molecule inside a solvent shell of 127
water molecules. The “solvated” water molecule is the one that is
highlighted, the other water molecules are considered to belong to the
solvent shell. Coordinates are given in the ESI.}

properties that depend directly on the electron density. They
are a sensitive measure for the distribution of the electron
density obtained within the different solvent models. Table 1
gives the dipole and quadrupole moments that were calculated
for the isolated water molecule and for the water molecule in
the “liquid phase”, i.e., inside the solvation shell of 127 water
molecules.

For the isolated molecule, the calculated dipole moment
overestimates the experimental value®® of 1.854 D. This over-
estimation is a artifact of the use of the SAOP exchange—cor-
relation potential that was primarily developed to yield
accurate response properties. For the water molecule in solu-
tion, DRF predicts a shift in the dipole moment of 0.73 D.
This increase in the dipole moment of water in the liquid
phase relative to the gas phase has been discussed in detail in
ref. 8. The obtained values agree with previous CCSD calcula-
tions** using a solvent model similar to DRF and were also
found to be within suggested limits that can be deduced from
experiment.®

The FDE calculations using a sum-of-molecular-fragments
electron density for the solvent [labeled FDE(SumFrag)] pre-
dict a shift in the dipole moment that is significantly smaller
than that predicted by DRF. The situation changes when
relaxation of the solvent electron density is included in the
FDE calculations [labeled FDE(relaxed)]. In this case, the

Table 1 Dipole moments u, solvation shifts in dipole moments ANy
relative to the isolated molecule, and traceless quadrupole moments Q
for an isolated water molecule in the gas phase and inside a solvation
shell of 127 water molecules modeled using DRF as well as FDE. For
FDE results are given with an unrelaxed sum-of-molecular-fragments
electron density for the solvent (SumFrag) and with a solvent density
in which the density of the ten innermost water molecules is relaxed
with respect to the solute (relaxed)

WD AED  Qufau. Qfan. Q.jau.
Isolated 1.80 1.79 -1.86 0.07
DRF 2.66 +0.86 2.05 -2.15 0.11
FDE (SumFrag) 245 +40.65 2.04 -2.12 0.09
FDE (relaxed) 2.71 4091 2.09 -2.17 0.08

calculated dipole moments are in good agreement with the
dipole moment calculated using DRF. This shows that the
effect of polarization of the solvent density is of great im-
portance for the correct description of the dipole moment in
the system considered here. It was already noticed in earlier
works**>? that the inclusion of relaxation has a strong influ-
ence in systems with direct hydrogen bonds between the
solvated molecule and the solvent. Since relaxation is needed
mainly for the correct description of hydrogen bonds it is
sufficient to relax the solvent molecules that are close to the
solvated molecule whereas relaxation of the outer solvent
shells can safely be neglected.*?

In FDE the effect of relaxation of the solvent density, i.e., of
changes in the solvent electron density due to the solvated
molecule, has to be included explicitly using freeze-and-thaw
cycles. In DRF calculations a discrete model of the same effect
is used, where the polarization of the solvent electron density is
modeled using distributed atomic polarizabilities that can be
obtained from gas phase calculations. While this strategy of
modeling the change of the solvent density is computationally
more efficient than the full treatment in FDE, the FDE
description should be more accurate, especially at short dis-
tances where the discretization of the charge distribution gives
larger errors.

For the quadrupole moments, the shift from the gas to the
liquid phase is smaller than for the dipole moment. The
quadrupole moments calculated using DRF and FDE are in
good agreement. While the effect of relaxation in the FDE
calculations is large for the dipole moment, this is not the case
for the quadrupole moment.

Summarizing these results, we find that for the dipole and
quadrupole moments DRF and FDE give results that are very
similar if relaxation of the innermost solvent molecules is
included in FDE. Since both the dipole and the quadrupole
moment only depend on the calculated electron density, these
results give a good indication that the electron densities
calculated within the different solvent models are not very
different.

3.2. [Excitation energies

After comparing DRF and FDE for ground state properties,
we investigate the performance of the different solvent models
for properties depending on the density response, starting with
the electronic excitation energies. Table 2 gives the excitation
energies of the three lowest excitations of an isolated water
molecule and of the corresponding excitations for the system
described in the previous section, a water molecule inside a
solvation shell consisting of 127 water molecules. Addition-
ally, the solvation shifts of the excitation energies and the
oscillator strengths of the corresponding transitions are re-
ported.

The excitation spectra of water in the gas and condensed
phase are known experimentally® 7! and have been discussed
in detail before (see, e.g., ref. 72). The gas phase spectrum
shows two very diffuse bands with absorption maxima at 7.4
and 9.7 eV, which are assigned to the 1'4;, — 1'B; and to the
1'4, - 2'4, transition, respectively. Qualitatively, both ex-
citations have significant Rydberg character. The 1'4; — 1'4,
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Table 2 Excitation energies E., of the three lowest excitations for an isolated water molecule in the gas phase and of the corresponding excitations
for a water molecule inside a solvation shell of 127 water molecules modeled using DRF and FDE. The solvation shifts of the excitation energies

A°VE,, and the oscillator strength f are also given

1'4, > 1'B, 1'4, > 1'4, 1'4, > 2'4,

E./eV APVE, JeV fla.u. E./eV APVE, eV flau. Eo/JeV AVE, JeV fla.u.
Isolated 7.76 0.05 9.61 0.00 9.72 0.09
DRF 8.41 +0.65 0.08 10.38 +0.77 0.011 10.40 +0.68 0.11
FDE (SumFrag) 8.71 +0.95 0.07 10.43 +0.82 0.0023 10.70 +0.98 0.04
FDE (relaxed) 8.88 +1.12 0.07 10.69 +1.08 0.0011 11.01 +1.29 0.06

transition, which is the second excitation in the calculations, is
dipole forbidden in the gas phase. The excitation spectrum of
liquid water shows two very broad overlapping bands. The
first band has a maximum at 8.2 eV (corresponding to a
solvent shift of approximately 0.8 eV), while the maximum
of the second band is at 9.9 eV (corresponding to a much
smaller solvent shift of 0.2 eV).

The Rydberg character of the excitations requires the use of
a large number of diffuse functions in the basis set and of an
asymptotically correct exchange—correlation potential like
SAOP.”>7* If this is taken care of, the results for the isolated
molecule in the gas phase are in good agreement with the
experimental values. For the water molecule in the “liquid
phase”, DRF predicts solvent shifts of approximately 0.7 eV
for the three lowest transitions. These results have already
been discussed in ref. 9. The predicted solvent shifts are of
similar size for the first and third excitation. For the first
excitation, the calculated solvent shift is in fair agreement with
experiment, but there is a significant overestimation of the
solvent shift for the third excitation.

FDE using a sum-of-molecular-fragments solvent density
predicts significantly larger solvent shifts than DRF. The shifts
increase even further to roughly 1.2 eV if relaxation of the
solvent density is included. In this case, FDE predicts solvent
shifts that are larger than the shifts predicted by DRF by 0.47,
0.31, and 0.61 eV for the first, second, and third transition,
respectively. Like DRF, FDE also predicts similar solvent
shifts for the first and third transition. The shifts predicted by
FDE are larger than those obtained with DRF, but for the
lowest excitation there is still a fair agreement with the
experimentally observed shift. However, FDE does not de-
scribe the lower solvent shift for the third transition correctly.
As mentioned earlier, it is difficult to directly compare the
obtained solvent shifts to experiment, because we only con-
sidered one average solvent structure.

The accuracy of the two different solvent models for the
electronic excitations investigated here can be assessed by a
comparison to the results of a supermolecular DFT calcula-
tion. Such a supermolecular calculation contains all interac-
tions that are modeled in DRF and FDE explicitly, so that it
can provide information about the quality of the approxima-
tions made in the two models. Obtaining the excitation
energies of interest from a supermolecular calculation is
problematic, because the charge transfer excitation problem
in TDDFT leads to a large number of artificially too low
excitations in the energy range of interest.'> In addition, for
the system investigated here, where the solvent is also water,

the lowest excitation energies of the solvent molecules will also
perturb the analysis.

To minimize these problems, the comparison with a super-
molecular calculation is done for a small cluster consisting
only of the water molecule in question and of the two closest
solvent water molecules. The structure is a substructure of the
larger cluster containing 127 solvent molecules and is shown in
Fig. 2. In this structure, the “solvated” water molecule is
involved in two hydrogen bonds.

Even though in this small cluster the solvent shift of the
excitation energies will be much smaller than for the larger
water cluster considered earlier, the main cause of the differ-
ences between DRF and FDE is expected to originate from the
innermost solvent molecules. This small cluster will therefore
already provide useful information.

The excitation energies of the lowest excitation energy of the
“solvated” water molecule calculated using DRF and FDE as
well as a supermolecular calculation are given in Table 3. In
the supermolecular calculation, the DZP basis set was used for
the two solvent molecules for consistency with the FDE
calculation. As in all previous calculations, the VDiff basis
set is used for the solute molecule. The transition correspond-
ing to the lowest excitation of the isolated water molecule is
identified using the transition density overlap criterion intro-
duced in ref. 15. The excitation found to have the largest
overlap with the lowest transition of the isolated water mole-
cule is the seventh excitation in the supermolecular calcula-
tion.

The solvent shift obtained using FDE is in reasonable
agreement with the result of the supermolecular calculation,
with FDE slightly underestimating the supermolecular result
by 0.13 eV. In contrast to this, DRF yields a value that
significantly underestimates the solvent shift by 0.35 eV. This

Fig. 2 Structure of the cluster containing a water molecule and the
two closest solvent water molecules. The ““solvated” water molecule is
the one that is highlighted, the other two water molecules are
considered to belong to the solvent shell.
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Table 3 Excitation energies E., and solvation shifts in excitation
energies A*°VE,, of the lowest excitation of a water molecule in the gas
phase and in a cluster with two solvent water molecules, modeled using
DREF and FDE. In addition, the results of a supermolecular KS-DFT
calculation of the same cluster are given, see text for details

EoJeV AVE, JeV
Isolated 7.76
DRF 8.08 +0.32
FDE (relaxed) 8.30 +0.54
Supermolecule 8.43 +0.67

indicates that for the calculation of excitation energies the
FDE scheme provides an approximation that is closer to the
full description of the solvent effects than the DRF model. In
the following we will analyze the reasons for the differences in
the excitation energies obtained with DRF and FDE and try
to identify the problems and shortcomings of the different
solvent models. For this analysis we will focus on the lowest
excitation only.

For this analysis we split up the calculated excitation
energies into different components,

Eex = Ao + AP Eex + AciV Eex. (10)

In this equation, Ae is the orbital energy difference, i.e., for the
excitation studied here the difference between the orbital
energies of the highest occupied molecular orbital (HOMO)
and the lowest unoccupied molecular orbital (LUMO). The
“vacuum’ response contribution ALy E., is the correction that
TDDEFT applies to the HOMO-LUMO gap if the effects of
the environment are only included in the KS step but not in the
TDDFT part of the calculation. It is calculated by subtracting
the HOMO-LUMO gap, obtained for the solvated water
molecule, from the excitation energy that is calculated from
the embedded orbitals without including any additional
contributions of the solvent model in the exchange—correlation
kernel. It is important to note that for the calculations using
solvent models, both the HOMO-LUMO gap Ae¢ as well as
the “vacuum” contribution AP E,, include the effect of the
solvent model on the ground state orbitals and orbital
energies.

In addition to this effect on the ground state orbitals, both
solvent models employed here introduce an additional term in
the exchange—correlation kernel that gives rise to the environ-
ment contribution ALY E.,. For DRF, this additional contri-
bution is given by eqn (8) and describes the response of the
induced dipoles on the solvent to the change in electronic
density upon excitation. For FDE, the additional contribution
is given by the effective embedding kernel of eqn (4) that arises
from the contribution of the non-additive kinetic energy and
the non-additivity of the exchange—correlation functional and
its derivatives.

The results of the decomposition of the excitation energies
according to eqn (10) for the isolated and solvated water
molecules described using either DRF or FDE are given in
Table 4. The differences in the calculated excitation energies
are mainly explained by the effects that the solvent models
have on the HOMO-LUMO gap, which amounts to 0.70 eV
for DRF and 1.08 eV for FDE. The ‘“vacuum” response

Table 4 Analysis of the excitation energies calculated for an isolated
water molecule and for a water molecule inside a solvent shell of 127
water molecules using DRF and FDE to model the solvent shell. The
HOMO-LUMO gap Ace calculated for the ground state is given as a
first order approximation to the excitation energy. The term AyF Eey
refers to the correction to this gap as calculated using TDDFT without
including any contributions of the environment. The additional con-
tributions of the environment to the excitation energies are given as
AV Eex

AcleV  AGPEL/eV  AGYEc/eV Ee/eV
Isolated 7.59 +0.17 — 7.76
DRF 8.29 +0.15 —0.03 8.41
FDE (relaxed)  8.67 +0.14 +0.07 8.88

correction Ay E., is of similar size for both the isolated
molecule calculation and the calculations in solution (DRF
and FDE). The difference is only approximately —0.03 eV,
which is negligible compared to the large change in the
HOMO-LUMO gap that is induced by the solvation shell.

The additional environment correction AtX E., is also small
compared to the change in the HOMO-LUMO gap caused by
the solvation shell. However, these corrections are responsible
for part of the differences that are observed between DRF and
FDE. In DRF the environment correction is negative, i.e., it
lowers the calculated excitation energy, because the response
of the solvent stabilizes the excited state. In FDE, the envir-
onment contribution is positive and therefore increases the
excitation energy. This is because the effective embedding
kernel in FDE contains the effects of the Pauli repulsion of
the solvent molecules, which will destabilize the excited state.
These environmental contributions in DRF and FDE are
largely complementary, i.e., each of them is describing an
effect that is missing in the other model. In total, the different
description of the solvent effects in TDDFT causes a difference
in the excitation energies of 0.10 eV. This is a small part of the
total difference between DRF and FDE of 0.47 eV.

The differences in the HOMO-LUMO gap are mainly
caused by two effects that are included in FDE but are absent
in the DRF model. First, the effects of hydrogen bonding are
only partly included in the purely electrostatic DRF model.
For the solvated water molecule considered here, the HOMO
is stabilized by hydrogen bonding, while the LUMO is desta-
bilized. Hydrogen bonding thus leads to an increase in the
HOMO-LUMO gap. This chemical bonding part of the
hydrogen bonding should be described correctly by FDE,
while DRF only contains the electrostatic part. As a second
effect, FDE also includes the Pauli repulsion of the solvent.
The unoccupied orbitals partly extend into regions that are
occupied by solvent molecules and experience the Pauli repul-
sion of their electrons. This leads to a further increase in the
orbital energies of the diffuse unoccupied orbitals and there-
fore to an increase in the HOMO-LUMO gap. This is
especially important in the system investigated here, since
the lowest excitation is quite diffuse.

3.3. Polarizabilities

Finally, we compare the performance of DRF and FDE for
modeling solvent effects on polarizabilities, again using the
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same solvent structure. In Table 5, for both the isolated
molecule and the water molecule in the solvent cage the
calculated mean polarizabilities and the polarizability aniso-
tropies y are given. Both the static polarizabilities and the
frequency-dependent polarizabilities at the frequencies o =
0.0428, 0.0570, 0.0856 a.u. (A = 1064, 800, 532 nm, respec-
tively) are given.

The static mean polarizability of 9.40 a.u. calculated for the
isolated molecule is in good agreement with both the results of
previous CCSD(T) calculations” (9.62 a.u.) and with the
experimental value of 9.83 a.u. taken from ref. 76. For the
frequency-dependent polarizabilities our DFT results are in
good agreement with previous CCSD calculations®’” that
obtained mean polarizabilities of 9.52, 9.57, and 9.71 a.u.
calculated at frequencies of 0.0428, 0.0570, and 0.0856 a.u.,
respectively.

For the water molecule inside the solvation shell of 127 water
molecules, DRF predicts a slight increase in the mean polariz-
ability of approximately 0.2 a.u., both for the static and
frequency-dependent polarizabilities. For the polarizability an-
isotropy, DRF predicts a slight decrease, in agreement with the
previous results of ref. 9. With FDE, the mean polarizability
decreases in solution by approximately 0.7 a.u. compared to the
isolated molecule, which is in contrast to the increase in
polarizability that was found with DRF. The polarizability
anisotropies calculated using FDE are in qualitative agreement
with the DRF calculations, but FDE predicts a lowering about
twice as large as predicted by DRF. We further note that for the
calculation of the polarizabilities the relaxation of the solvent
density in the FDE approach is much less important than for
dipole moments and excitation energies.

The most striking finding of this comparison is the qualita-
tive difference between DRF and FDE for the mean polariz-
abilities. With DRF the mean polarizability increases in
solution, whereas it decreases with FDE. To analyze the
qualitative differences between DRF and FDE, we performed
an analysis similar to that in section 3.2 for the excitation
energies. We decomposed the calculated shifts of the mean
polarizability in solution into contributions due to changes in

Table 5 Static and frequency-dependent polarizabilities calculated
for an isolated water molecule in the gas phase and inside a solvation
shell of 127 water molecules modeled using DRF and FDE. The mean
polarizabilities & and the polarizability anisotropy y are given

w/a.u. aja.u. y/a.u.
Isolated 0.0000 9.40 0.91
0.0428 9.47 0.89
0.0570 9.51 0.88
0.0856 9.65 0.82
DRF 0.0000 9.62 0.72
0.0428 9.68 0.71
0.0570 9.73 0.71
0.0856 9.87 0.70
FDE (SumFrag) 0.0000 8.77 0.47
0.0428 8.82 0.47
0.0570 8.86 0.46
0.0856 8.98 0.46
FDE (relaxed) 0.0000 8.67 0.50
0.0428 8.72 0.50
0.0570 8.76 0.50
0.0856 8.87 0.50

Table 6 Analysis of the static mean polarizabilities calculated for an
isolated water molecule and for a water molecule inside a solvent shell
of 127 water molecules using DRF and FDE to model the solvent
shell. The mean polarizability calculated without including any effects
of the environment in the TDDFT calculation is given as &oeny. The
additional contributions of the environment to the polarizabilities are
given as Agyvo. The resulting mean polarizability is given as o

&noenv/a~u- A;?]S\/Po{/a.u' attot/a"u'
Isolated 9.40 — 9.40
DRF 9.22 +0.40 9.62
FDE (relaxed) 8.78 —0.11 8.67

the (ground state) molecular orbitals and solvent contribu-
tions in the linear response calculation. To simplify this
analysis, we focus on the static mean polarizabilities.

The static mean polarizabilities calculated using the differ-
ent solvent models are decomposed according to

= _ = res
Otot = %noenv + Aen\?(xa (1 1)

where %,eny 1S the static mean polarizability calculated from
the embedded orbitals without including the additional envir-
onmental contributions in the linear response calculation. The
results of this analysis are given in Table 6.

The mean polarizabilities &,,eny follow the trend that is
given by the solvent shifts of the excitation energies, since
larger excitation energies should qualitatively correspond to a
smaller mean polarizabilities. In the case of a larger solvent
shift of the excitation energies, the mean polarizability without
the environment contribution decreases. For DRF, the mean
polarizability in solution decreases by 0.18 a.u. compared to
the isolated molecule, which is in agreement with the larger
excitation energies. For FDE, where the solvent shift of the
excitation energies is even larger than in DRF, the mean
polarizability in solution decreases by 0.62 a.u. compared to
the isolated molecule.

The qualitative differences between DRF and FDE are
caused by the environmental corrections to the mean polariz-
abilities Agawo that appear when the contributions of the
environment are also included in the TDDFT part of the
calculation. In the case of the DRF calculation, this correction
contains the effect of the response of the solvent to the
polarization of the solvated molecule. This response stabilizes
the polarized molecule and therefore leads to an increase in the
polarizability. This correction to the mean polarizability of
+0.40 a.u. is larger than the change in the polarizability due to
the changed molecular orbitals in solution of —0.18 a.u. and
leads to an overall increase in the mean polarizability in
solution. For the FDE calculation, where the response of the
solvent is neglected, the environmental correction is much
smaller than the corresponding DRF correction and is of
opposite sign, i.e., the environment destabilizes the polarized
molecule and thus leads to a lower polarizability. Therefore,
the FDE correction does not change the lowering of the mean
polarizability in solution, which could be estimated from the
increase in the excitation energies.

This analysis shows that for the calculation of polarizabil-
ities the inclusion of the solvent response is apparently very
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important. For the system considered here, it changes the sign
of the solvent effect on the static mean polarizability in the
DRF calculation. On the other hand, even though the re-
sponse of the solvent is included, the ground state orbital
energies obtained from DRF are worse than the ones obtained
from FDE, because the effects of hydrogen bonding and Pauli
repulsion are only partly accounted for.

In the FDE calculation, where the response of the solvent is
missing in the current TDDFT extension, it is possible to
include the response of the solvent in the FDE calculations by
calculating the static polarizabilities from the change in the
dipole moment due to a finite electric field. In these calcula-
tions one can allow the solvent density to adapt to the
polarization of the solute water molecule due to an applied
electric field so that the response of the solvent is included. To
estimate the effect of the environmental response in the FDE
case, we calculate the difference between the static mean
polarizabilities obtained from two different series of finite field
calculations. In the first calculations, the solvent density is
relaxed with respect to the non-polarized solute molecule,
whereas it was relaxed with respect to the solute molecule
polarized by the applied electric field in the second series of
calculations to include the response of the solvent.

The first calculations were performed by converging the
electron densities of the solvent and solute in two freeze-and-
thaw FDE iterations. As in all earlier calculations, in these
freeze-and-thaw iterations only the ten solvent molecules that
are closest to the solute are allowed to relax, while for all other
solvent molecules the frozen gas phase density is used. The
relaxed solvent density was then used as the frozen density in
an FDE calculation of the solute water molecule. From the
numerical differentiation of the dipole moment obtained in
this calculation with respect to the applied electric field, the
polarizability tensor was obtained. These calculations yield a
static mean polarizability of 7.79 a.u. In these finite field
calculations the solvent density cannot respond to the polar-
ization of the solute. The corresponding TDDFT calculation,
labeled FDE(relaxed) in Table 5, resulted in a mean polariz-
ability of 8.67 a.u. The difference between these values arise
because in the TDDFT calculations the ALDA approximation
is used for the exchange—correlation kernel in combination
with the SAOP potential. Therefore, the polarizabilities ob-
tained from finite field SAOP calculations do not agree with
the TDDEFT results. However, since the SAOP potential was
designed to be used together with the ALDA kernel, the
TDDFT calculations using ALDA should be more accurate
than the finite field calculation (which corresponds to a
TDDFT calculation using the “true”” SAOP kernel).%

To obtain the polarizability from finite field FDE calcula-
tions that take the response of the solvent into account, the
electron densities of the solute and solvent were calculated
from freeze-and-thaw FDE calculations in which a finite
electric field was applied in the calculation of the solute water
molecule. The finite electric field was not applied in the
calculations of the solvent electron density since we are only
interested in the calculation of the local solute polarizability.
Including the finite electric field in the solvent calculations
would introduce a screening of the macroscopic field at the
solute molecule, leading to the so-called effective polarizabil-

ity.*® By applying the finite electric field in all calculations of
the solute during the freeze-and-thaw cycles, the converged
solvent density is relaxed with respect to the polarized solute
molecule. The polarizabilities obtained from numerical differ-
entiation of the dipole moments thus include the response of
the solvent with respect to the solute polarization. From these
calculations, a static mean polarizability of 8.09 a.u. is ob-
tained. The difference between these two sets of finite field
FDE calculations, which is our estimate for the effect of the
solvent response on the mean polarizability, amounts to 4+0.30
a.u. This is comparable to the solvent response correction of
+0.40 a.u. in the DRF case.

Adding this correction to the static mean polarizability from
the TDDFT calculations using FDE to model the solvent leads
to an estimated total static mean polarizability of 8.97 a.u.,
i.e., even when the (positive) correction due to the response of
the solvent is taken into account, the FDE calculations still
predict a decrease in the static mean polarizability in solution
compared to the isolated molecule. The DRF model predicts
an increase, because the response of the solvent—modeled by
atomic polarizabilities—is the largest solvent effect. In con-
trast to this, the major solvent effect in the FDE calculation
arises from the increased HOMO-LUMO gap and thus leads
to a smaller mean polarizability.

4. Conclusions

In this work we performed a detailed comparison of the two
discrete solvent models DRF and FDE for a number of
molecular properties. For the dipole and quadrupole moment
as ground state properties both solvent models lead to similar
results. To be able to account for the polarization of the
solvent in FDE, it is necessary to relax the solvent density
with respect to the solute in freeze-and-thaw cycles. The same
effect is included in DRF in a computationally more efficient,
though more approximate way by using distributed atomic
polarizabilities.

For response properties, there are significant differences
between the two solvent models. In the case of the excitation
energies of the water system studied here, FDE predicts a
larger solvent shift than the DRF model. Our analysis showed
that this difference mainly originates from a different descrip-
tion of the ground state molecular orbitals of the solute
molecule. The embedded orbitals obtained from the FDE
calculation show a larger HOMO-LUMO gap than those
obtained in the DRF calculation.

We attribute this difference in the HOMO-LUMO gap to a
different description of short-range effects, the most important
effects being direct hydrogen bonding between the solute and
the solvent as well as the additional Pauli repulsion of the
solvent on the diffuse excited states. Since the FDE scheme is
in principle exact, it should be able to describe these effects
more accurately than the DRF model, where both effects can
only be modeled by the parameterization of the atomic point
charges and polarizabilities. This was confirmed by a compar-
ison to a supermolecular calculation on a smaller system that
agreed well with the excitation energy calculated using FDE,
while DRF yields an excitation energy that is too low. The
small contribution of the response of the solvent to the

This journal is © the Owner Societies 2006

Phys. Chem. Chem. Phys., 2006, 8, 2349-2359 | 2357



excitation energies shows that the approximation of a response
localized on the solute in the FDE calculation of excitation
energies is obviously fulfilled.

For the polarizabilities, the effect of the response of the
solvent to the polarization of the solute becomes nearly as
important as the effect of the solvent on the ground state
orbitals, whereas it was negligible for the calculation of
excitation energies. The solvent response is modeled in DRF
by means of distributed atomic polarizabilities, but it is
missing in the TDDFT extension of the FDE scheme. Since
it apparently can not be neglected for the calculation of
molecular polarizabilities in solution, DRF performs better
for this kind of response properties. It can be expected that the
effect of the solvent response will become even more important
when going to hyperpolarizabilities and other nonlinear op-
tical properties.

The inclusion of the environmental response in DRF does
not overcome the problems that are caused by the inaccurate
description of the ground state orbitals of the solute. The finite
field calculations that were done to get an estimate of the
polarizability calculated using FDE including the response of
the environment still yield a static mean polarizability that
significantly differs from the results of the DRF calculation. In
particular, the two models predict a different sign of the
solvent shift in the mean polarizability. It would, therefore,
be interesting to extend the FDE scheme to explicitly include
the response of the solvent, since the finite field approach
employed here can only be applied for static polarizabilities.
This would make the FDE scheme more generally applicable,
e.g., to the calculation of other nonlinear optical properties in
solution.
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