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We investigate the performance of two discrete solvent models in connection with density

functional theory (DFT) for the calculation of molecular properties. In our comparison we

include the discrete reaction field (DRF) model, a combined quantum mechanics and molecular

mechanics (QM/MM) model using a polarizable force field, and the frozen-density embedding

(FDE) scheme. We employ these solvent models for ground state properties (dipole and

quadrupole moments) and response properties (electronic excitation energies and frequency-

dependent polarizabilities) of a water molecule in the liquid phase. It is found that both solvent

models agree for ground state properties, while there are significant differences in the description

of response properties. The origin of these differences is analyzed in detail and it is found that

they are mainly caused by a different description of the ground state molecular orbitals of the

solute. In addition, for the calculation of the polarizabilities, the inclusion of the response of the

solvent to the polarization of the solute becomes important. This effect is included in the DRF

model, but is missing in the FDE scheme. A way of including it in FDE calculations of the

polarizabilities using finite field calculations is demonstrated.

1. Introduction

Since properties and reactions of molecules are usually studied

in solution, and since the solvent might not be innocent in

experimental studies, there has been a growing interest in

including solvent effects in theoretical investigations (for re-

views, see, e.g., ref. 1 and 2). Many solvent models used in

quantum chemical studies are developed and well-tested for

reproducing solvation energies or reaction energies in solu-

tion.3–5 In some solvent models, only an (interaction) energy

term is added so that effects on molecular properties cannot be

described, apart from changes in the equilibrium structure.

But modeling solvent effects on molecular properties has also

attracted considerable attention during the past years, and

several models for the inclusion of solvent effects on a more

fundamental level have been proposed and tested (see, e.g.,

ref. 6–21).

The models for the description of solvation effects can be

divided into two groups. In continuum solvation models1,2,22

the solvent is described as a continuous medium that is

characterized by its dielectric constant, with the solute mole-

cule residing inside a cavity in this medium. The solute

molecule can then be treated with different quantum mechan-

ical (QM) methods. Since the atomistic structure of the solvent

is not explicitly included in these continuum models, the

averaging over different solvent configurations is implicitly

included in the continuum description that is parameterized to

include all the degrees of freedom of the solvent. While it is

clear that continuum models are able to correctly describe

non-specific solvation effects, i.e., dielectric medium effects,

their ability to describe specific interactions like hydrogen

bonding is less obvious. Although progress in this direction

has been made, a description of specific interactions within

continuum models apparently requires a very careful para-

meterization of the size and shape of the cavity in which the

solute molecule is placed.5

A physically more appealing approach to the description of

specific solvent effects is given by discrete solvent models in

which the geometrical structure of the solvent is explicitly

included. This offers a more straightforward way to take

specific interactions into account. However, to provide a

complete description of all solvation effects in discrete models

it is necessary to average over the degrees of freedom of the

solvent. This can be achieved by sampling over a large number

of snapshots from classical23 or Car–Parinello molecular

dynamics (CPMD)24,25 simulations. For all these solvent

structures, the molecular properties of interest are then calcu-

lated using QM methods, taking the (discrete) solvent into

account in a cluster model.10,12 This can, for instance, be done

using density functional theory (DFT)26 for ground state

properties or time-dependent DFT (TDDFT)27,28 for response

properties. Finally, the calculated property is averaged over

the ensemble of solvent structures. This approach is denoted as

‘‘sequential molecular dynamics followed by quantum me-

chanics calculations’’ (S-MD/QM) following the terminology
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of Canuto et al.12 It usually requires the inclusion of a large

number of solvent molecules in the solvent structures, which

makes it necessary to use very efficient methods for the

calculation of molecular properties.

The most accurate approach would be the calculation of the

properties of interest from supermolecular calculations by

using a sufficiently large cluster (if no periodic boundary

conditions can be used) in the quantum chemical calculation.

However, this approach is usually very demanding, since a

large number of solvent molecules has to be included, which

quickly becomes infeasible for large solutes. In addition, the

supermolecular approach does not directly yield molecular

properties of the solute. Analysis of the results requires some

partitioning of the wave function that is usually not unique so

the calculated molecular properties will strongly depend on the

partitioning scheme used.29

More efficient, though more approximate approaches are

combined quantum mechanics and molecular mechanics (QM/

MM) models30–34 in which only the solute is treated using QM

methods, while molecular mechanics methods (MM) are used

to describe the solvent as well as the interactions between

solute and solvent. The restriction of the QM treatment to the

solute system makes the calculation of molecular properties

for a large number of structures feasible. However, the force

field used in the MM part has to be parameterized carefully to

describe the solute–solvent interactions accurately. In addi-

tion, QM effects on these interactions, which are important in

the inner solvent shell, can only be modeled indirectly in an

empirical way, even though there are studies that claim that

carefully parameterized QM/MMmodels can yield results that

are more reliable than DFT calculations.35 For the calculation

of response properties, it has been noted that it is necessary to

use a polarizable MM model in which the solute can respond

to charge redistribution in the solute.36 One example of such a

polarizable QM/MM scheme is the discrete reaction field

(DRF) model,7,8,37 which has been implemented within DFT

for ground state8 and response properties.9 The DRF model

has been previously applied to the calculation of molecular

(hyper-)polarizabilities and of nonlinear optical (NLO) prop-

erties in solution.38–40

Frozen-density embedding (FDE)41,42 within DFT can be

regarded as a compromise between explicit QM models based

on supermolecular cluster calculations and solvent treatments

based on effective solvent–solute interaction potentials as used

in DRF. In the FDE scheme, the (frozen) electron density of

the solute is used to construct an embedding potential that

enters in the calculation of the solute properties. The whole

system (solute and solvent) is treated at a QM level, but the

electron density of the solute and the solvent subsystems are

determined separately. The calculation of orbitals for the

supersystem is thus avoided. Even though FDE is in principle

exact, further approximations—in addition to those present in

conventional Kohn–Sham (KS) DFT—have to be introduced.

For modeling solvation effects, FDE is usually combined with

a simplified method for constructing the electron density of the

solvent, e.g., a sum-of-molecular-fragments approach.15 Since

the calculation of molecular (response) properties is done

within a limited orbital space of the solute only, FDE is very

efficient, especially in the case of response properties. It has

been applied successfully to the calculation of solvatochromic

shifts of electronic excitation energies15,43 and of electron spin

resonance hyperfine coupling constants in solution.44

Both DRF and FDE are promising approaches for the

calculation of molecular (response) properties in solution,

mainly because their efficiency allows the calculation of mole-

cular properties for a large number of solvent structures. In

addition, both DRF and FDE introduce a ‘‘natural partition-

ing’’ of the supermolecular system into a solute and a solvent

system, which makes it possible to uniquely define molecular

properties in solution.

Even though both methods have been applied to the calcu-

lation of ground state and response properties in solution in a

number of earlier studies, there are several open questions.

The DRF model relies on fitted parameters for atomic charges

and polarizabilities and it is unclear if this parameterization is

generally applicable. In the FDE scheme, an approximate non-

additive kinetic energy functional has to be used.42 Further-

more, in the calculation of response properties the response of

the (frozen) solvent is neglected. The approximations that are

made in the two methods are quite different and their im-

portance for the calculation of different molecular properties is

not fully tested.

In this paper we present a detailed comparison of the DRF

model and the FDE scheme for calculating different molecular

properties in solution. For this comparison, we use a simple

test system, a water molecule inside a solvation shell consisting

of 127 water molecules. This system is a well established

benchmark for the assessment of discrete solvent mod-

els.7–9,37,45 Since we are only interested in a comparison of

the two different solvent models for the calculation of mole-

cular properties, we did not average over a large number of

snapshots, but only use one solvent structure instead. This

allows us to focus on the differences in the description of the

solvent effects.

This work is organized as follows. In section 2, a brief

introduction into the theoretical background of FDE and

DRF is given. In section 3, we present a detailed comparison

of these two solvent models for a water molecule solvated in

water. First, in section 3.1, the solvent models are compared

for ground state properties, namely the dipole and the quad-

rupole moment. This is followed by a comparison of the

performance of DRF and FDE for response properties. In

section 3.2, they are compared for the calculation of electronic

excitation energies and in section 3.3 for the calculation of

static and frequency-dependent polarizabilities. Concluding

remarks follow in section 4.

2. Methodology

2.1. Frozen-density embedding

In the frozen-density embedding (FDE) formalism41 the elec-

tron density of the embedded subsystem (rI) in a given

microscopic environment, which is represented by means of

its electron density (rII) and a set of nuclear charges (ZAII) at

the corresponding positions (RAII), is derived from KS-like

one-electron equations.

The effective potential in these equations can be derived

from the requirement that the total density rtot(r) = rI(r) þ
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rII(r) of the system is obtained in an optimization process in

which the electron density rII(r) of the environment is kept

frozen. On the assumption that the complementary rI(r) is

positive definite and is non-interacting pure-state vs-represen-

table,26 we obtain KS-like equations in which the effect of

rII(r) is represented by an embedding term in the effective

potential for the rI(r) system,41

�r
2

2
þ VKS

eff ½rI�ðrÞ þ Vemb
eff ½rI; rII�ðrÞ

� �

fðIÞi ðrÞ ¼ eif
ðIÞ
i ðrÞ; i ¼ 1; . . . ;NI:

ð1Þ

In these equations, VKS
eff [rI](r) is the KS effective potential of

the isolated subsystem I and Vemb
eff [rI, rII](r) is the embedding

potential which reads

Veff
emb½rI; rII�ðrÞ ¼

X
AII

� ZAII

jr� RAII
j þ
Z

rIIðr0Þ
jr0 � rj dr0

þ dExc½r�
dr

����
r¼rtot

� dExc½r�
dr

����
r¼rI

þ dTs½r�
dr

����
r¼rtot

� dTs½r�
dr

����
r¼rI

;

ð2Þ

where the exchange–correlation (Exc[r]) and kinetic energy

(Ts[r]) functionals are defined in the KS formulation of DFT.

The kinetic energy part of the potential is sometimes written as

the functional derivative dTs
nadd[rI, rII]/drI of the non-addi-

tive kinetic energy functional,

Ts
nadd[rI, rII] = Ts[rI þ rII] � Ts[rI] � Ts[rII] (3)

If the initial assumptions are fulfilled, i.e., if rtot(r) � rII(r),
is positive definite and non-interacting pure-state vs-represen-

table, the solution of eqn (1) will yield the exact ground

state electron density.42 This makes this scheme an exact

approach in the exact functional limit, in contrast to most

other embedding methods commonly used in practical com-

puter simulations.

However, in practical calculations an approximate non-

orbital-dependent functional is used for the non-additive

kinetic energy functional and its functional derivative because

the KS orbitals of the full system are not known. Based on

previous results46–48 we selected the PW91k kinetic energy

functional.49

Since eqn (1) can be solved for any postulated electron

density, rII(r) may also be obtained from simpler considera-

tions.41 For instance, a solvent can be modeled by using just a

sum of electron densities of the individual solvent mole-

cules.15,43,46,50 In this work, we used two different ways of

modeling the electron density of the solvent. First, we used a

simple sum-of-molecular-fragments approach as introduced in

ref. 15. In this approach the solvent density is constructed as a

sum of the electron densities of isolated solvent molecules.

Since the solvent structure used in this work consists of rigid

water molecules, it is even possible to use the same electron

density for each solvent molecule.

This approximated electron density of the environment can

be improved by including the effects of relaxation of the

solvent using ‘‘freeze-and-thaw’’ iterations,51 i.e., by exchan-

ging the role of the frozen and the non-frozen system. In this

work, this is done using the partial relaxation scheme de-

scribed in ref. 43. For the ten solvent molecules closest to the

solute molecule the electron density was updated using two

freeze-and-thaw cycles,51 while for the outer solvent molecules

we still use the sum-of-molecular-fragments density as de-

scribed above. The frozen density of these outer solvent

molecules is taken into account during all freeze-and-thaw

cycles.

A time-dependent linear response generalization of this

embedding scheme was derived in ref. 52. Under the assump-

tion that the response to an external electromagnetic field in

resonance with an electronic transition of the embedded

molecule is localized to the non-frozen system (system I),

i.e., that the response of the frozen environment (system II)

can be neglected, this leads—in addition to the kernel within

the adiabatic local density approximation (ALDA) in conven-

tional TDDFT—to an effective embedding kernel (see the

supplementary material to ref. 53),

f emb
xc ðr; r0Þ ¼

d2Exc½r�
drðrÞdrðr0Þ

����
r¼rIþrII

� d2Exc½r�
drðrÞdrðr0Þ

����
r¼rI
þ d2Tnadd

s ½rI; rII�
drIðrÞdrIðr0Þ

;

ð4Þ

which now also contains a contribution of the non-additive

kinetic energy. This contribution is, for consistency with the

ALDA-kernel, approximated by using the (local density)

Thomas–Fermi functional in eqn (4). This means that the

additional term depending on the solvent response function in

the exact formulation in ref. 52 is assumed to be negligible, and

the exchange–correlation kernel in eqn (4) is evaluated for the

density rII of the ground state calculation. An alternative

interpretation is that an assumption is made which assumes

that the whole response can be described in terms of a change

in the density rI.

2.2. The discrete reaction field model

The DRF model is a polarizable QM/MM model. The solvent

is represented by atomic charges qs and polarizabilities as that
are placed at positions Rs. Although the DRF model can

describe a frequency-dependent atomic polarizability,54,55 we

will assume that the atomic polarizabilities are independent of

the frequency. This is expected to be a reasonable assumption

due to the small dispersion of the polarizability in the fre-

quency range that lies well below any electronic excitation. In

the DRF model the QM/MM operator at a point r is given as

an extra term in the effective potential in the KS equations,8

�r
2

2
þ VKS

eff ½r�ðrÞ þ VDRF½r�ðrÞ
� �

fiðrÞ ¼ eifiðrÞ;

i ¼ 1; . . . ;N:

ð5Þ

where the DRF potential is given by

VDRF½r�ðrÞ ¼ VelðrÞ þ Vpol½r�ðrÞ

¼
X
s

qs

jr� Rsj
þ
X
s

lind
s �
ðr� RsÞ
jr� Rsj3

: ð6Þ

The first term, Vel, describes the Coulomb interaction

between the QM system (the solute) and the permanent charge
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distribution of the solvent molecules. The second term, Vpol,

describes the many-body polarization of the solvent molecules.

The induced atomic dipole at a site s is given by

minds ¼ as Finit
s þ

X
t;t 6¼s

T
ð2Þ
st lind

t

" #
; ð7Þ

where T(2)
st is the screened dipole interaction tensor8,56,57 for the

interaction between sites s and t. The induced dipole arises

from the field Fs
init at site s that is due to the electronic charge

distribution of the QM part, the field from the QM nuclei, and

the field from the point charges at the solvent molecules as well

as the field from all other induced dipoles. The induced dipole

moments are therefore calculated self-consistently in every

iteration of the KS procedure.

The combination of the DRF model with TDDFT linear

response theory was presented in ref. 9. It introduces an

additional contribution in the TDDFT kernel that describes

the change in the DRF potential of eqn (6) due to a perturba-

tion in the electron density of the QM system, i.e., the response

of the atomic polarizabilities. This additional contribution is

given by

fDRFðr; r0Þ ¼ dVDRF½r�ðrÞ
drðr0Þ

¼
X
s

X
t

ðr0 � RtÞ
jr0 � Rtj3

� Bst
ðRs � rÞ
jRs � rj3

: ð8Þ

In this equation Bst is the relay matrix that relates the induced

dipole moment at site s to the electric field at site t and that is

defined by

lind
s ¼

X
t

BstF t: ð9Þ

This relay matrix is never calculated explicitly, but the

induced dipole moments due to the first-order change in the

electron density are calculated iteratively by solving eqn (7) in

the linear response calculation. Details can be found in ref. 9.

2.3. Computational details

All density functional calculations were performed using the

Amsterdam Density Functional (ADF) package.58,59 The ‘‘sta-

tistical averaging of molecular orbital potentials’’ (SAOP)

potential60–62 was used to approximate the exchange–correla-

tion potential, since it is well suited for the calculation of

response properties. To provide a consistent comparison we

also employed the SAOP potential for ground state properties,

even though it has been found that SAOP is less reliable in this

case.63

All calculations were done using the VDiff basis set from the

ADF basis set library, which is a triple-z-quality Slater basis set
containing additional diffuse functions. Previous studies8,9

showed that this basis set is sufficiently large for the accurate

calculation of both the ground state and response properties

investigated here. This was confirmed in the present work by

test calculations using the large even-tempered ET-QZ3P-

3DIFFUSE Slater basis set, in which the results did not

change significantly.

In the FDE calculations, the initial solvent density was

constructed as a sum of the electron densities of molecular

fragment calculated using the local-density approximation

(LDA) and a DZP basis set. In the FDE calculations using

the orbital-dependent SAOP potential, the exchange–correla-

tion component of the effective embedding potential was

approximated using the Becke–Perdew–Wang (BPW91) ex-

change–correlation functional.64,65

The parameters needed for the solvent molecules in the

DRF model, i.e., point charges and atomic polarizabilities,

were adopted from ref. 8. The point charges are qH = 0.3345

a.u. and qo = �0.6690 a.u. which generate a molecular dipole

moment of 1.88 Debye. The atomic polarizabilities are aH =

0.0690 a.u. and ao = 9.3005 a.u. which reproduced the

molecular polarizability tensor with a mean polarizability of

9.62 a.u. and a polarizability anisotropy of 0.52 a.u. The

screening parameter, a = 2.1304, used in eqn (7), was taken

from ref. 57.

The calculations of excitation energies and polarizabilities

were done using the TDDFT implementation of ADF.66,67 The

finite field calculations of the polarizabilities in section 3.3

were performed using an electric field of 0.001 a.u. To obtain

the static mean polarizability, six separate calculations were

performed in which an electric field was applied in the x, y, and

z direction. The individual components of the polarizability

tensor were then obtained by numerical differentiation of the

dipole moment.

3. Results and discussion

The comparison of the DRF and FDE solvent models is

carried out for the system investigated in ref. 8 and 9, where

a water molecule in the ‘‘liquid phase’’ was studied. It is a fixed

structure of 128 rigid water molecules. The structure was

obtained from a molecular dynamics simulation using a

polarizable force field in an earlier work.45 One of the 128

water molecules is considered as the solute, while the remain-

ing 127 form the solvent shell. The structure of the water

molecule inside the solvent shell is shown in Fig. 1 and the

coordinates are given in the electronic supplementary material

(ESI).w
We note that by using only one solvent structure any effects

of the dynamics of the solvent are neglected, i.e., the fluctua-

tions in the geometrical structure of both the solute and the

solvent molecules are not taken into account and replaced by a

static picture. For correctly describing all solvent effects it

would be necessary to include a large number of solvent

structures instead of just one average configuration.15,43 It will

therefore be difficult to directly compare the obtained results

to experimental values. However, the error that results from

neglecting the dynamical effects will be made consistently in all

calculations. As the purpose of this study is to provide a

comparison of different solvent models, this consistent error is

not relevant for the conclusions drawn here. Furthermore, the

restriction to only one structure enables us to do a very

detailed analysis of the results and greatly simplifies their

interpretation.

3.1. Dipole and quadrupole moments

First, we compare the performance of DRF and FDE for

dipole and quadrupole moments. These are both ground state
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properties that depend directly on the electron density. They

are a sensitive measure for the distribution of the electron

density obtained within the different solvent models. Table 1

gives the dipole and quadrupole moments that were calculated

for the isolated water molecule and for the water molecule in

the ‘‘liquid phase’’, i.e., inside the solvation shell of 127 water

molecules.

For the isolated molecule, the calculated dipole moment

overestimates the experimental value68 of 1.854 D. This over-

estimation is a artifact of the use of the SAOP exchange–cor-

relation potential that was primarily developed to yield

accurate response properties. For the water molecule in solu-

tion, DRF predicts a shift in the dipole moment of 0.73 D.

This increase in the dipole moment of water in the liquid

phase relative to the gas phase has been discussed in detail in

ref. 8. The obtained values agree with previous CCSD calcula-

tions45 using a solvent model similar to DRF and were also

found to be within suggested limits that can be deduced from

experiment.8

The FDE calculations using a sum-of-molecular-fragments

electron density for the solvent [labeled FDE(SumFrag)] pre-

dict a shift in the dipole moment that is significantly smaller

than that predicted by DRF. The situation changes when

relaxation of the solvent electron density is included in the

FDE calculations [labeled FDE(relaxed)]. In this case, the

calculated dipole moments are in good agreement with the

dipole moment calculated using DRF. This shows that the

effect of polarization of the solvent density is of great im-

portance for the correct description of the dipole moment in

the system considered here. It was already noticed in earlier

works43,53 that the inclusion of relaxation has a strong influ-

ence in systems with direct hydrogen bonds between the

solvated molecule and the solvent. Since relaxation is needed

mainly for the correct description of hydrogen bonds it is

sufficient to relax the solvent molecules that are close to the

solvated molecule whereas relaxation of the outer solvent

shells can safely be neglected.43

In FDE the effect of relaxation of the solvent density, i.e., of

changes in the solvent electron density due to the solvated

molecule, has to be included explicitly using freeze-and-thaw

cycles. In DRF calculations a discrete model of the same effect

is used, where the polarization of the solvent electron density is

modeled using distributed atomic polarizabilities that can be

obtained from gas phase calculations. While this strategy of

modeling the change of the solvent density is computationally

more efficient than the full treatment in FDE, the FDE

description should be more accurate, especially at short dis-

tances where the discretization of the charge distribution gives

larger errors.

For the quadrupole moments, the shift from the gas to the

liquid phase is smaller than for the dipole moment. The

quadrupole moments calculated using DRF and FDE are in

good agreement. While the effect of relaxation in the FDE

calculations is large for the dipole moment, this is not the case

for the quadrupole moment.

Summarizing these results, we find that for the dipole and

quadrupole moments DRF and FDE give results that are very

similar if relaxation of the innermost solvent molecules is

included in FDE. Since both the dipole and the quadrupole

moment only depend on the calculated electron density, these

results give a good indication that the electron densities

calculated within the different solvent models are not very

different.

3.2. Excitation energies

After comparing DRF and FDE for ground state properties,

we investigate the performance of the different solvent models

for properties depending on the density response, starting with

the electronic excitation energies. Table 2 gives the excitation

energies of the three lowest excitations of an isolated water

molecule and of the corresponding excitations for the system

described in the previous section, a water molecule inside a

solvation shell consisting of 127 water molecules. Addition-

ally, the solvation shifts of the excitation energies and the

oscillator strengths of the corresponding transitions are re-

ported.

The excitation spectra of water in the gas and condensed

phase are known experimentally69–71 and have been discussed

in detail before (see, e.g., ref. 72). The gas phase spectrum

shows two very diffuse bands with absorption maxima at 7.4

and 9.7 eV, which are assigned to the 11A1 - 11B1 and to the

11A1 - 21A1 transition, respectively. Qualitatively, both ex-

citations have significant Rydberg character. The 11A1 - 11A2

Table 1 Dipole moments l, solvation shifts in dipole moments Dsolvm
relative to the isolated molecule, and traceless quadrupole moments Q
for an isolated water molecule in the gas phase and inside a solvation
shell of 127 water molecules modeled using DRF as well as FDE. For
FDE results are given with an unrelaxed sum-of-molecular-fragments
electron density for the solvent (SumFrag) and with a solvent density
in which the density of the ten innermost water molecules is relaxed
with respect to the solute (relaxed)

m/D Dsolvl/D Qxx/a.u. Qyy/a.u. Qzz/a.u.

Isolated 1.80 1.79 –1.86 0.07
DRF 2.66 þ0.86 2.05 –2.15 0.11
FDE (SumFrag) 2.45 þ0.65 2.04 –2.12 0.09
FDE (relaxed) 2.71 þ0.91 2.09 –2.17 0.08

Fig. 1 Structure of a water molecule inside a solvent shell of 127

water molecules. The ‘‘solvated’’ water molecule is the one that is

highlighted, the other water molecules are considered to belong to the

solvent shell. Coordinates are given in the ESI.w
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transition, which is the second excitation in the calculations, is

dipole forbidden in the gas phase. The excitation spectrum of

liquid water shows two very broad overlapping bands. The

first band has a maximum at 8.2 eV (corresponding to a

solvent shift of approximately 0.8 eV), while the maximum

of the second band is at 9.9 eV (corresponding to a much

smaller solvent shift of 0.2 eV).

The Rydberg character of the excitations requires the use of

a large number of diffuse functions in the basis set and of an

asymptotically correct exchange–correlation potential like

SAOP.73,74 If this is taken care of, the results for the isolated

molecule in the gas phase are in good agreement with the

experimental values. For the water molecule in the ‘‘liquid

phase’’, DRF predicts solvent shifts of approximately 0.7 eV

for the three lowest transitions. These results have already

been discussed in ref. 9. The predicted solvent shifts are of

similar size for the first and third excitation. For the first

excitation, the calculated solvent shift is in fair agreement with

experiment, but there is a significant overestimation of the

solvent shift for the third excitation.

FDE using a sum-of-molecular-fragments solvent density

predicts significantly larger solvent shifts than DRF. The shifts

increase even further to roughly 1.2 eV if relaxation of the

solvent density is included. In this case, FDE predicts solvent

shifts that are larger than the shifts predicted by DRF by 0.47,

0.31, and 0.61 eV for the first, second, and third transition,

respectively. Like DRF, FDE also predicts similar solvent

shifts for the first and third transition. The shifts predicted by

FDE are larger than those obtained with DRF, but for the

lowest excitation there is still a fair agreement with the

experimentally observed shift. However, FDE does not de-

scribe the lower solvent shift for the third transition correctly.

As mentioned earlier, it is difficult to directly compare the

obtained solvent shifts to experiment, because we only con-

sidered one average solvent structure.

The accuracy of the two different solvent models for the

electronic excitations investigated here can be assessed by a

comparison to the results of a supermolecular DFT calcula-

tion. Such a supermolecular calculation contains all interac-

tions that are modeled in DRF and FDE explicitly, so that it

can provide information about the quality of the approxima-

tions made in the two models. Obtaining the excitation

energies of interest from a supermolecular calculation is

problematic, because the charge transfer excitation problem

in TDDFT leads to a large number of artificially too low

excitations in the energy range of interest.15 In addition, for

the system investigated here, where the solvent is also water,

the lowest excitation energies of the solvent molecules will also

perturb the analysis.

To minimize these problems, the comparison with a super-

molecular calculation is done for a small cluster consisting

only of the water molecule in question and of the two closest

solvent water molecules. The structure is a substructure of the

larger cluster containing 127 solvent molecules and is shown in

Fig. 2. In this structure, the ‘‘solvated’’ water molecule is

involved in two hydrogen bonds.

Even though in this small cluster the solvent shift of the

excitation energies will be much smaller than for the larger

water cluster considered earlier, the main cause of the differ-

ences between DRF and FDE is expected to originate from the

innermost solvent molecules. This small cluster will therefore

already provide useful information.

The excitation energies of the lowest excitation energy of the

‘‘solvated’’ water molecule calculated using DRF and FDE as

well as a supermolecular calculation are given in Table 3. In

the supermolecular calculation, the DZP basis set was used for

the two solvent molecules for consistency with the FDE

calculation. As in all previous calculations, the VDiff basis

set is used for the solute molecule. The transition correspond-

ing to the lowest excitation of the isolated water molecule is

identified using the transition density overlap criterion intro-

duced in ref. 15. The excitation found to have the largest

overlap with the lowest transition of the isolated water mole-

cule is the seventh excitation in the supermolecular calcula-

tion.

The solvent shift obtained using FDE is in reasonable

agreement with the result of the supermolecular calculation,

with FDE slightly underestimating the supermolecular result

by 0.13 eV. In contrast to this, DRF yields a value that

significantly underestimates the solvent shift by 0.35 eV. This

Table 2 Excitation energies Eex of the three lowest excitations for an isolated water molecule in the gas phase and of the corresponding excitations
for a water molecule inside a solvation shell of 127 water molecules modeled using DRF and FDE. The solvation shifts of the excitation energies
DsolvEex and the oscillator strength f are also given

11A1 - 11B1 11A1 - 11A2 11A1 - 21A1

Eex/eV DsolvEex/eV f/a.u. Eex/eV DsolvEex/eV f/a.u. Eex/eV DsolvEex/eV f/a.u.

Isolated 7.76 0.05 9.61 0.00 9.72 0.09
DRF 8.41 þ0.65 0.08 10.38 þ0.77 0.011 10.40 þ0.68 0.11
FDE (SumFrag) 8.71 þ0.95 0.07 10.43 þ0.82 0.0023 10.70 þ0.98 0.04
FDE (relaxed) 8.88 þ1.12 0.07 10.69 þ1.08 0.0011 11.01 þ1.29 0.06

Fig. 2 Structure of the cluster containing a water molecule and the

two closest solvent water molecules. The ‘‘solvated’’ water molecule is

the one that is highlighted, the other two water molecules are

considered to belong to the solvent shell.
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indicates that for the calculation of excitation energies the

FDE scheme provides an approximation that is closer to the

full description of the solvent effects than the DRF model. In

the following we will analyze the reasons for the differences in

the excitation energies obtained with DRF and FDE and try

to identify the problems and shortcomings of the different

solvent models. For this analysis we will focus on the lowest

excitation only.

For this analysis we split up the calculated excitation

energies into different components,

Eex = De þ Dresp
vac Eex þ Dresp

env Eex. (10)

In this equation, De is the orbital energy difference, i.e., for the
excitation studied here the difference between the orbital

energies of the highest occupied molecular orbital (HOMO)

and the lowest unoccupied molecular orbital (LUMO). The

‘‘vacuum’’ response contribution Dresp
vac Eex is the correction that

TDDFT applies to the HOMO–LUMO gap if the effects of

the environment are only included in the KS step but not in the

TDDFT part of the calculation. It is calculated by subtracting

the HOMO–LUMO gap, obtained for the solvated water

molecule, from the excitation energy that is calculated from

the embedded orbitals without including any additional

contributions of the solvent model in the exchange–correlation

kernel. It is important to note that for the calculations using

solvent models, both the HOMO–LUMO gap De as well as

the ‘‘vacuum’’ contribution Dresp
vac Eex include the effect of the

solvent model on the ground state orbitals and orbital

energies.

In addition to this effect on the ground state orbitals, both

solvent models employed here introduce an additional term in

the exchange–correlation kernel that gives rise to the environ-

ment contribution Dresp
env Eex. For DRF, this additional contri-

bution is given by eqn (8) and describes the response of the

induced dipoles on the solvent to the change in electronic

density upon excitation. For FDE, the additional contribution

is given by the effective embedding kernel of eqn (4) that arises

from the contribution of the non-additive kinetic energy and

the non-additivity of the exchange–correlation functional and

its derivatives.

The results of the decomposition of the excitation energies

according to eqn (10) for the isolated and solvated water

molecules described using either DRF or FDE are given in

Table 4. The differences in the calculated excitation energies

are mainly explained by the effects that the solvent models

have on the HOMO–LUMO gap, which amounts to 0.70 eV

for DRF and 1.08 eV for FDE. The ‘‘vacuum’’ response

correction Dresp
vac Eex is of similar size for both the isolated

molecule calculation and the calculations in solution (DRF

and FDE). The difference is only approximately �0.03 eV,

which is negligible compared to the large change in the

HOMO–LUMO gap that is induced by the solvation shell.

The additional environment correction Dresp
env Eex is also small

compared to the change in the HOMO–LUMO gap caused by

the solvation shell. However, these corrections are responsible

for part of the differences that are observed between DRF and

FDE. In DRF the environment correction is negative, i.e., it

lowers the calculated excitation energy, because the response

of the solvent stabilizes the excited state. In FDE, the envir-

onment contribution is positive and therefore increases the

excitation energy. This is because the effective embedding

kernel in FDE contains the effects of the Pauli repulsion of

the solvent molecules, which will destabilize the excited state.

These environmental contributions in DRF and FDE are

largely complementary, i.e., each of them is describing an

effect that is missing in the other model. In total, the different

description of the solvent effects in TDDFT causes a difference

in the excitation energies of 0.10 eV. This is a small part of the

total difference between DRF and FDE of 0.47 eV.

The differences in the HOMO–LUMO gap are mainly

caused by two effects that are included in FDE but are absent

in the DRF model. First, the effects of hydrogen bonding are

only partly included in the purely electrostatic DRF model.

For the solvated water molecule considered here, the HOMO

is stabilized by hydrogen bonding, while the LUMO is desta-

bilized. Hydrogen bonding thus leads to an increase in the

HOMO–LUMO gap. This chemical bonding part of the

hydrogen bonding should be described correctly by FDE,

while DRF only contains the electrostatic part. As a second

effect, FDE also includes the Pauli repulsion of the solvent.

The unoccupied orbitals partly extend into regions that are

occupied by solvent molecules and experience the Pauli repul-

sion of their electrons. This leads to a further increase in the

orbital energies of the diffuse unoccupied orbitals and there-

fore to an increase in the HOMO–LUMO gap. This is

especially important in the system investigated here, since

the lowest excitation is quite diffuse.

3.3. Polarizabilities

Finally, we compare the performance of DRF and FDE for

modeling solvent effects on polarizabilities, again using the

Table 4 Analysis of the excitation energies calculated for an isolated
water molecule and for a water molecule inside a solvent shell of 127
water molecules using DRF and FDE to model the solvent shell. The
HOMO–LUMO gap De calculated for the ground state is given as a
first order approximation to the excitation energy. The term Dresp

vac Eex

refers to the correction to this gap as calculated using TDDFT without
including any contributions of the environment. The additional con-
tributions of the environment to the excitation energies are given as
Dresp
envEex

De/eV Dresp
vac Eex/eV Dresp

envEex/eV Eex/eV

Isolated 7.59 þ0.17 — 7.76
DRF 8.29 þ0.15 �0.03 8.41
FDE (relaxed) 8.67 þ0.14 þ0.07 8.88

Table 3 Excitation energies Eex and solvation shifts in excitation
energies DsolvEex of the lowest excitation of a water molecule in the gas
phase and in a cluster with two solvent water molecules, modeled using
DRF and FDE. In addition, the results of a supermolecular KS-DFT
calculation of the same cluster are given, see text for details

Eex/eV DsolvEex/eV

Isolated 7.76
DRF 8.08 þ0.32
FDE (relaxed) 8.30 þ0.54
Supermolecule 8.43 þ0.67
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same solvent structure. In Table 5, for both the isolated

molecule and the water molecule in the solvent cage the

calculated mean polarizabilities and the polarizability aniso-

tropies g are given. Both the static polarizabilities and the

frequency-dependent polarizabilities at the frequencies o =

0.0428, 0.0570, 0.0856 a.u. (l = 1064, 800, 532 nm, respec-

tively) are given.

The static mean polarizability of 9.40 a.u. calculated for the

isolated molecule is in good agreement with both the results of

previous CCSD(T) calculations75 (9.62 a.u.) and with the

experimental value of 9.83 a.u. taken from ref. 76. For the

frequency-dependent polarizabilities our DFT results are in

good agreement with previous CCSD calculations37 that

obtained mean polarizabilities of 9.52, 9.57, and 9.71 a.u.

calculated at frequencies of 0.0428, 0.0570, and 0.0856 a.u.,

respectively.

For the water molecule inside the solvation shell of 127 water

molecules, DRF predicts a slight increase in the mean polariz-

ability of approximately 0.2 a.u., both for the static and

frequency-dependent polarizabilities. For the polarizability an-

isotropy, DRF predicts a slight decrease, in agreement with the

previous results of ref. 9. With FDE, the mean polarizability

decreases in solution by approximately 0.7 a.u. compared to the

isolated molecule, which is in contrast to the increase in

polarizability that was found with DRF. The polarizability

anisotropies calculated using FDE are in qualitative agreement

with the DRF calculations, but FDE predicts a lowering about

twice as large as predicted by DRF. We further note that for the

calculation of the polarizabilities the relaxation of the solvent

density in the FDE approach is much less important than for

dipole moments and excitation energies.

The most striking finding of this comparison is the qualita-

tive difference between DRF and FDE for the mean polariz-

abilities. With DRF the mean polarizability increases in

solution, whereas it decreases with FDE. To analyze the

qualitative differences between DRF and FDE, we performed

an analysis similar to that in section 3.2 for the excitation

energies. We decomposed the calculated shifts of the mean

polarizability in solution into contributions due to changes in

the (ground state) molecular orbitals and solvent contribu-

tions in the linear response calculation. To simplify this

analysis, we focus on the static mean polarizabilities.

The static mean polarizabilities calculated using the differ-

ent solvent models are decomposed according to

�atot = �anoenv þ Dresp
env a, (11)

where �anoenv is the static mean polarizability calculated from

the embedded orbitals without including the additional envir-

onmental contributions in the linear response calculation. The

results of this analysis are given in Table 6.

The mean polarizabilities �anoenv follow the trend that is

given by the solvent shifts of the excitation energies, since

larger excitation energies should qualitatively correspond to a

smaller mean polarizabilities. In the case of a larger solvent

shift of the excitation energies, the mean polarizability without

the environment contribution decreases. For DRF, the mean

polarizability in solution decreases by 0.18 a.u. compared to

the isolated molecule, which is in agreement with the larger

excitation energies. For FDE, where the solvent shift of the

excitation energies is even larger than in DRF, the mean

polarizability in solution decreases by 0.62 a.u. compared to

the isolated molecule.

The qualitative differences between DRF and FDE are

caused by the environmental corrections to the mean polariz-

abilities Dresp
env a that appear when the contributions of the

environment are also included in the TDDFT part of the

calculation. In the case of the DRF calculation, this correction

contains the effect of the response of the solvent to the

polarization of the solvated molecule. This response stabilizes

the polarized molecule and therefore leads to an increase in the

polarizability. This correction to the mean polarizability of

þ0.40 a.u. is larger than the change in the polarizability due to

the changed molecular orbitals in solution of �0.18 a.u. and

leads to an overall increase in the mean polarizability in

solution. For the FDE calculation, where the response of the

solvent is neglected, the environmental correction is much

smaller than the corresponding DRF correction and is of

opposite sign, i.e., the environment destabilizes the polarized

molecule and thus leads to a lower polarizability. Therefore,

the FDE correction does not change the lowering of the mean

polarizability in solution, which could be estimated from the

increase in the excitation energies.

This analysis shows that for the calculation of polarizabil-

ities the inclusion of the solvent response is apparently very

Table 5 Static and frequency-dependent polarizabilities calculated
for an isolated water molecule in the gas phase and inside a solvation
shell of 127 water molecules modeled using DRF and FDE. The mean
polarizabilities �a and the polarizability anisotropy g are given

o/a.u. �a/a.u. g/a.u.

Isolated 0.0000 9.40 0.91
0.0428 9.47 0.89
0.0570 9.51 0.88
0.0856 9.65 0.82

DRF 0.0000 9.62 0.72
0.0428 9.68 0.71
0.0570 9.73 0.71
0.0856 9.87 0.70

FDE (SumFrag) 0.0000 8.77 0.47
0.0428 8.82 0.47
0.0570 8.86 0.46
0.0856 8.98 0.46

FDE (relaxed) 0.0000 8.67 0.50
0.0428 8.72 0.50
0.0570 8.76 0.50
0.0856 8.87 0.50

Table 6 Analysis of the static mean polarizabilities calculated for an
isolated water molecule and for a water molecule inside a solvent shell
of 127 water molecules using DRF and FDE to model the solvent
shell. The mean polarizability calculated without including any effects
of the environment in the TDDFT calculation is given as �anoenv. The
additional contributions of the environment to the polarizabilities are
given as Dresp

env a. The resulting mean polarizability is given as �atot

�anoenv/a.u. Dresp
env a/a.u. �atot/a.u.

Isolated 9.40 — 9.40
DRF 9.22 þ0.40 9.62
FDE (relaxed) 8.78 �0.11 8.67
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important. For the system considered here, it changes the sign

of the solvent effect on the static mean polarizability in the

DRF calculation. On the other hand, even though the re-

sponse of the solvent is included, the ground state orbital

energies obtained from DRF are worse than the ones obtained

from FDE, because the effects of hydrogen bonding and Pauli

repulsion are only partly accounted for.

In the FDE calculation, where the response of the solvent is

missing in the current TDDFT extension, it is possible to

include the response of the solvent in the FDE calculations by

calculating the static polarizabilities from the change in the

dipole moment due to a finite electric field. In these calcula-

tions one can allow the solvent density to adapt to the

polarization of the solute water molecule due to an applied

electric field so that the response of the solvent is included. To

estimate the effect of the environmental response in the FDE

case, we calculate the difference between the static mean

polarizabilities obtained from two different series of finite field

calculations. In the first calculations, the solvent density is

relaxed with respect to the non-polarized solute molecule,

whereas it was relaxed with respect to the solute molecule

polarized by the applied electric field in the second series of

calculations to include the response of the solvent.

The first calculations were performed by converging the

electron densities of the solvent and solute in two freeze-and-

thaw FDE iterations. As in all earlier calculations, in these

freeze-and-thaw iterations only the ten solvent molecules that

are closest to the solute are allowed to relax, while for all other

solvent molecules the frozen gas phase density is used. The

relaxed solvent density was then used as the frozen density in

an FDE calculation of the solute water molecule. From the

numerical differentiation of the dipole moment obtained in

this calculation with respect to the applied electric field, the

polarizability tensor was obtained. These calculations yield a

static mean polarizability of 7.79 a.u. In these finite field

calculations the solvent density cannot respond to the polar-

ization of the solute. The corresponding TDDFT calculation,

labeled FDE(relaxed) in Table 5, resulted in a mean polariz-

ability of 8.67 a.u. The difference between these values arise

because in the TDDFT calculations the ALDA approximation

is used for the exchange–correlation kernel in combination

with the SAOP potential. Therefore, the polarizabilities ob-

tained from finite field SAOP calculations do not agree with

the TDDFT results. However, since the SAOP potential was

designed to be used together with the ALDA kernel, the

TDDFT calculations using ALDA should be more accurate

than the finite field calculation (which corresponds to a

TDDFT calculation using the ‘‘true’’ SAOP kernel).60

To obtain the polarizability from finite field FDE calcula-

tions that take the response of the solvent into account, the

electron densities of the solute and solvent were calculated

from freeze-and-thaw FDE calculations in which a finite

electric field was applied in the calculation of the solute water

molecule. The finite electric field was not applied in the

calculations of the solvent electron density since we are only

interested in the calculation of the local solute polarizability.

Including the finite electric field in the solvent calculations

would introduce a screening of the macroscopic field at the

solute molecule, leading to the so-called effective polarizabil-

ity.38 By applying the finite electric field in all calculations of

the solute during the freeze-and-thaw cycles, the converged

solvent density is relaxed with respect to the polarized solute

molecule. The polarizabilities obtained from numerical differ-

entiation of the dipole moments thus include the response of

the solvent with respect to the solute polarization. From these

calculations, a static mean polarizability of 8.09 a.u. is ob-

tained. The difference between these two sets of finite field

FDE calculations, which is our estimate for the effect of the

solvent response on the mean polarizability, amounts to þ0.30
a.u. This is comparable to the solvent response correction of

þ0.40 a.u. in the DRF case.

Adding this correction to the static mean polarizability from

the TDDFT calculations using FDE to model the solvent leads

to an estimated total static mean polarizability of 8.97 a.u.,

i.e., even when the (positive) correction due to the response of

the solvent is taken into account, the FDE calculations still

predict a decrease in the static mean polarizability in solution

compared to the isolated molecule. The DRF model predicts

an increase, because the response of the solvent—modeled by

atomic polarizabilities—is the largest solvent effect. In con-

trast to this, the major solvent effect in the FDE calculation

arises from the increased HOMO–LUMO gap and thus leads

to a smaller mean polarizability.

4. Conclusions

In this work we performed a detailed comparison of the two

discrete solvent models DRF and FDE for a number of

molecular properties. For the dipole and quadrupole moment

as ground state properties both solvent models lead to similar

results. To be able to account for the polarization of the

solvent in FDE, it is necessary to relax the solvent density

with respect to the solute in freeze-and-thaw cycles. The same

effect is included in DRF in a computationally more efficient,

though more approximate way by using distributed atomic

polarizabilities.

For response properties, there are significant differences

between the two solvent models. In the case of the excitation

energies of the water system studied here, FDE predicts a

larger solvent shift than the DRF model. Our analysis showed

that this difference mainly originates from a different descrip-

tion of the ground state molecular orbitals of the solute

molecule. The embedded orbitals obtained from the FDE

calculation show a larger HOMO–LUMO gap than those

obtained in the DRF calculation.

We attribute this difference in the HOMO–LUMO gap to a

different description of short-range effects, the most important

effects being direct hydrogen bonding between the solute and

the solvent as well as the additional Pauli repulsion of the

solvent on the diffuse excited states. Since the FDE scheme is

in principle exact, it should be able to describe these effects

more accurately than the DRF model, where both effects can

only be modeled by the parameterization of the atomic point

charges and polarizabilities. This was confirmed by a compar-

ison to a supermolecular calculation on a smaller system that

agreed well with the excitation energy calculated using FDE,

while DRF yields an excitation energy that is too low. The

small contribution of the response of the solvent to the
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excitation energies shows that the approximation of a response

localized on the solute in the FDE calculation of excitation

energies is obviously fulfilled.

For the polarizabilities, the effect of the response of the

solvent to the polarization of the solute becomes nearly as

important as the effect of the solvent on the ground state

orbitals, whereas it was negligible for the calculation of

excitation energies. The solvent response is modeled in DRF

by means of distributed atomic polarizabilities, but it is

missing in the TDDFT extension of the FDE scheme. Since

it apparently can not be neglected for the calculation of

molecular polarizabilities in solution, DRF performs better

for this kind of response properties. It can be expected that the

effect of the solvent response will become even more important

when going to hyperpolarizabilities and other nonlinear op-

tical properties.

The inclusion of the environmental response in DRF does

not overcome the problems that are caused by the inaccurate

description of the ground state orbitals of the solute. The finite

field calculations that were done to get an estimate of the

polarizability calculated using FDE including the response of

the environment still yield a static mean polarizability that

significantly differs from the results of the DRF calculation. In

particular, the two models predict a different sign of the

solvent shift in the mean polarizability. It would, therefore,

be interesting to extend the FDE scheme to explicitly include

the response of the solvent, since the finite field approach

employed here can only be applied for static polarizabilities.

This would make the FDE scheme more generally applicable,

e.g., to the calculation of other nonlinear optical properties in

solution.
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