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The orbital-free frozen-density embedding scheme within density-functional theory �T. A.
Wesolowski and A. Warshel, J. Phys. Chem. 97, 8050 �1993�� is applied to the calculation of
induced dipole moments of the van der Waals complexes CO2¯X �X=He, Ne, Ar, Kr, Xe, Hg�. The
accuracy of the embedding scheme is investigated by comparing to the results of supermolecule
Kohn-Sham density-functional theory calculations. The influence of the basis set and the
consequences of using orbital-dependent approximations to the exchange-correlation potential in
embedding calculations are examined. It is found that in supermolecular Kohn-Sham
density-functional calculations, different common approximations to the exchange-correlation
potential are not able to describe the induced dipole moments correctly and the reasons for this
failure are analyzed. It is shown that the orbital-free embedding scheme is a useful tool for applying
different approximations to the exchange-correlation potential in different subsystems and that a
physically guided choice of approximations for the different subsystems improves the calculated
dipole moments significantly. © 2005 American Institute of Physics. �DOI: 10.1063/1.2107567�
I. INTRODUCTION

Orbital-free embedding is a promising approach to the
efficient calculation of large scale molecular systems because
it allows to split up the calculation using a “divide-and-
conquer” strategy.

In the subsystem formulation of density-functional
theory �DFT� proposed by Cortona1 the total electron density
�tot�r� is �in the case of two subsystems� represented as the
sum of two components �I�r� and �II�r�, which are deter-
mined separately from a set of one-electron equations. Usu-
ally �I�r� and �II�r� are chosen to be either the electron den-
sities of two interacting fragments of the considered system
or as the electron densities of a system under investigation
and an environment. Since both subsystems are described
using DFT, the formalism described here can be viewed as a
“DFT in DFT” embedding scheme.

Given this partitioning of the electron density, the DFT
total energy can be expressed as a bifunctional of �I and �II,
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E��I,�II� = ENN +� ��I�r� + �II�r���VI
nuc�r� + VII

nuc�r��dr

+� ��I�r� + �II�r����I�r�� + �II�r���
�r − r��

drdr�

+ Exc��I + �II� + Ts��I� + Ts��II� + Ts
nadd��I,�II� , �1�

where ENN is the nuclear repulsion energy, VI
nuc and VII

nuc are
the electrostatic potentials of the nuclei in subsystems I and
II, Exc is the exchange-correlation functional, Ts��� is the
kinetic energy of the noninteracting reference system, and
Ts

nadd��I ,�II� is the nonadditive kinetic energy, which is de-
fined as

Ts
nadd��I,�II� = Ts��I + �II� − Ts��I� − Ts��II� . �2�

If the densities �I�r� and �II�r� are represented using the ca-
nonical Kohn-Sham �KS� orbitals for the individual sub-
systems �i

�n� with �n�r�=�i=1
Nn �i

�n��r�*�i
�n��r� �n=I, II�, it is

possible to calculate the kinetic energy of the corresponding
noninteracting reference system as

Ts��n� = �
i=1

Nn ��i
�n�	−

�2

2
	�i

�n�
 . �3�

With the partitioning of the total electron density into �I�r�
and �II�r� there is in general no representation of �tot�r� in the

canonical KS orbitals available, so that Ts��I+�II� cannot be
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calculated in this way. Because of this Ts
nadd��I ,�II� is calcu-

lated using an approximated kinetic-energy functional in
practical implementations.

The exchange-correlation energy in Eq. �1� can be split
up in a similar way as the kinetic energy into

Exc��I + �II� = Exc��I� + Exc��II� + Exc
nadd��I,�II� , �4�

where the nonadditive part of the exchange-correlation en-
ergy is defined as

Exc
nadd��I,�II� = Exc��I + �II� − Exc��I� − Exc��II� . �5�

This partitioning of the exchange-correlation energy func-
tional is introduced here to make it possible to use different
approximations for the exchange-correlation functionals in
the two subsystems, which will be exploited in this work.

For a given frozen electron density �II�r� in one of the
subsystems �fragment II� one can derive2 the one-electron
equations for the calculation of the electron density �I�r� in
the other subsystem �fragment I�. The effective potential in
these equations can be derived from the requirement that the
total density �tot�r�=�I�r�+�II�r� of the system is obtained, in
an optimization process in which the electron density �II�r�
of fragment II is kept frozen. On the assumption that the
complementary �I�r� is positive definite and is noninteracting
pure-state �-representable,3 one obtains KS-type equations in
which the effect of �II�r� is represented by an embedding
term in the effective potential for the �I�r� system,2

�−
�2

2
+ Veff

KS�r;�I� + Veff
emb�r;�I,�II���i

�I��r� = �i�i
�I��r�,

�6�
i = 1,…,NI .

These equations and the corresponding formalism, which are
applied in this work, will be referred to as the Kohn-Sham
equations with constrained electron density �KSCED�. In
these equations, Veff

KS�r ;�I� is the KS effective potential of the
isolated subsystem I and Veff

emb�r ;�I ,�II� is the KSCED em-
bedding potential which reads

Veff
emb�r;�I,�II� = VII

nuc�r� +� �II�r��
�r − r��

dr� +
�Ts

nadd��I,�II�
��I

+
�Exc

nadd��I,�II�
��I

. �7�

In this KSCED effective embedding potential one recognizes
the kinetic and exchange-correlation parts of the potential,
given as functional derivative of the corresponding nonaddi-
tive �kinetic and exchange-correlation� energy functionals.
These derivatives can also be written as

�Ts
nadd��I,�II�

��I
= 	�Ts���

��
	

�=�I+�II

− 	�Ts���
��

	
�=�I

, �8�
and
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�Exc
nadd��I,�II�

��I
= 	�Exc���

��
	

�=�I+�II

− 	�Exc���
��

	
�=�I

. �9�

In the case that �II�r� is chosen in such a way that the differ-
ence between the exact ground-state density of the entire
system and �II�r� is positive definite and noninteraction pure-
state v-representable, the solution of Eq. �6� will yield the
exact ground-state electron density.4 This makes the KSCED
scheme an exact approach in the exact functional limit, in
contrast to most other embedding methods commonly used
in practical computer simulations.

Since Eq. �6� can be solved for any postulated electron
density, �II�r� may also be obtained from simpler
considerations.2 For instance, a solvent can be modeled by
just using a sum of electron densities of the individual sol-
vent molecules.5–8 This type of applications underlines the
“orbital-free” nature of the KSCED embedding scheme,
since all the information concerning the environment of an
embedded system is contained in the electron density �II�r�.

While this strategy can be applied when the electron
density of an environment has to be approximated, the
KSCED embedding formalism can also be applied in so-
called “freeze-and-thaw” iterations to determine the electron
densities of both subsystems.9 This is done by starting with
the calculation of one isolated fragment, freezing its density
and calculating the density of the other fragment, taking the
frozen density of the first fragment into account. Then the
role of the frozen and the nonfrozen subsystem is iteratively
interchanged until convergence is reached.

This procedure corresponds to minimizing the total en-
ergy bifunctional given in Eq. �1� by solving a set of two
coupled KSCED equations,

�−
�2

2
+ Veff

KS�r;�I� + Veff
emb�r;�I,�II���i

�I��r� = �i
�I��i

�I��r�,

�10�
i = 1,…,NI ,

�−
�2

2
+ Veff

KS�r;�II� + Veff
emb�r;�II,�I���i

�II��r� = �i
�II��i

�II��r�,

�11�
i = 1,…,NII,

where Veff
KS�r ;�I� and Veff

KS�r ;�II� are the KS potentials of the
isolated subsystem I or II, respectively, and Veff

emb is the
KSCED effective embedding potential as defined in Eq. �7�.
The electron densities �I�r� and �II�r� are defined by the sets
of KSCED orbitals �i

�I��r� and �i
II�r� which are obtained as

the solutions of the above equations.
In practical applications of the above equations, not only

the nonadditive kinetic-energy component of the KSCED
embedding potential �cf. Eq. �8�� has to be approximated, but
also the exchange-correlation potential, which enters these
equations at different points. First, it appears as part of the
KS potentials Veff

KS of subsystems I and II. Since the electron
densities of the two subsystems are determined separately
from Eqs. �10� and �11�, it is possible to use different ap-
proximations for the different subsystems. Furthermore, it is

also possible to use orbital-dependent approximations to the
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exchange-correlation potential of the isolated subsystems I
and II. The benefits of these possibilities, not investigated in
detail so far, will be demonstrated in this work. Second, an
approximation to the exchange-correlation potential is also
needed in the KSCED effective embedding potential, where
the nonadditive exchange-correlation component of Eq. �9�
appears. For this component it is in general not possible to
use orbital-dependent approximations because there is no
representation of �tot�r� in the canonical KS orbitals avail-
able. Details about the different approximations which have
been used in this work are given in Sec. II.

The KSCED orbital-free embedding scheme has been
used in a number of different applications such as the calcu-
lation of interaction energies in van der Waals
complexes10–12 and in hydrogen-bound complexes,6,13 the
description of the absorption of CO in zeolites14 or the cal-
culation of crystal-field splittings of lanthanide cations.15 Re-
cently, the extension of the KSCED scheme to time-
dependent density-functional theory16 �TDDFT� has been
used to model hydrogen-bonding-induced shifts of excitation
energies in nucleic acid base pairs17 and for the calculation
of solvatochromic shifts.7,8

The KSCED embedding potential of Eq. �7� was
also used by Carter and co-workers in a hybrid approach
�“ab initio in DFT” embedding� combining a wave-function-
based ab initio treatment of the system under investigation, a
molecule absorbed on a surface, with a periodic DFT de-
scription of the surface. Using this approach they studied the
absorption of CO on a Cu�111� surface18,19 and localized
electronic excitations in a CO molecule absorbed on a
Pd�111� surface.20,21

Even though the KSCED scheme has been applied suc-
cessfully to a number of different systems, there remain a
number of open questions related to the quality of the ap-
proximations to the nonadditive kinetic-energy functional.
For the development of improved approximations it is of
great importance to identify and analyze the possible prob-
lems of the currently used approximations.

Furthermore, the ability to apply different approxima-
tions for the exchange-correlation potential for different sub-
systems in a straightforward way is another application of
the KSCED scheme not exploited previously which will be
examined in this work. This is particularly useful since the
approximate exchange-correlation potentials which are ap-
plied in practical calculations do not lead to exact results. In
this work, we show that a physically guided choice of ap-
proximations to the exchange-correlation potential for differ-
ent subsystems can lead to results which are superior to those
obtained from using a single KS-DFT calculation. This ap-
proach follows ideas similar to those of Carter and
co-workers,18,20 in which instead of selecting the most appro-
priate approximation to the exchange-correlation potential
for a given subsystem, as we do in the current work, they
replaced the DFT description for one of the subsystems by a
wave-function-based ab initio one.

The induced dipole moments in the weakly interacting
CO2¯X �X=He, Ne, Ar, Kr, Xe, Hg� van der Waals com-
plexes are ideally suited to investigate the performance of the

KSCED scheme and the quality of the approximation to the

Downloaded 29 Jul 2008 to 129.132.208.61. Redistribution subject to
nonadditive kinetic-energy functional in detail. The interac-
tion in these van der Waals complexes is weak and the over-
lap between the densities of the CO2 molecule and the rare-
gas or mercury atom is small. The KSCED scheme has been
applied to other van der Waals complexes before10–12 and the
approximated nonadditive kinetic-energy functional used
there has been shown to be the most accurate, both for the
energy and for the potential, among a large family of
gradient-dependent approximations. In particular, it gives ac-
curate interaction energies for weakly overlapping densities.
We note that in the KSCED scheme an approximated nonad-
ditive kinetic-energy functional is used for two different pur-
poses: First, its functional derivative is used in the construc-
tion of the embedding potential �Eqs. �7� and �8�� which is
used to calculate the electron density and second, the func-
tional itself is needed to calculate the total energy �Eqs. �1�
and �2��. Since the induced dipole moments depend directly
on the density we only need to consider the functional de-
rivative of the approximate nonadditive kinetic-energy func-
tional and not the nonadditive kinetic-energy functional it-
self. This reduces the chances of encountering error
cancellations which could mask possible problems with the
method.

The induced dipole moments in these complexes should
be mainly determined by the electrostatic interaction and the
Pauli repulsion between the CO2 molecule and the rare-gas
or mercury atom. KS-DFT and the KSCED scheme are be-
lieved to be able to describe both effects accurately. Disper-
sion interactions, which cannot be described correctly within
KS-DFT, would be important for the calculations of interac-
tion energies and of geometries, but they should only have a
small influence on the induced dipole moment. However, the
accurate calculation of the small induced dipole moments in
the van der Waals complexes investigated here is still a chal-
lenging task. The calculated dipole moments will be very
sensitive to small changes in the electron density and can,
therefore, be used as a good measure for the quality of the
electron density which results from KSCED calculations.

van der Waals complexes of CO2 and a rare-gas atom
have been subject to a number of experimental and theoret-
ical studies because they are a prototype system for the weak
interaction of nonpolar constituents. For all CO2–rare-gas
complexes, infrared22,23 and microwave spectra24–26 have
been measured. All experiments have found that the com-
plexes have a T-shaped geometry. Except for CO2¯He, the
dipole moments of the complexes have been determined
from measurements of the Stark effect on the rotational tran-
sitions. In our study, we also include the CO2¯Hg complex,
which can be viewed as an analog of the CO2–rare-gas com-
plexes. This complex has also been investigated experimen-
tally by microwave spectroscopy where a T-shaped structure
has been found from the rotational spectrum and the dipole
moment has been determined from the Stark effect
splitting.27

A number of theoretical works deal with CO2–rare-gas
complexes. For CO2¯He, CO2¯Ne, and CO2¯Ar, the
potential-energy surfaces have been calculated using Møller-
Plesset perturbation theory.28–31 All these calculations con-

firm that the T-shaped structure is the global minimum on the
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potential-energy surface and that the linear structure is a lo-
cal minimum at significantly higher energy. Maroulis and
Haskopoulos32 have studied the induced dipole moments and
polarizabilities in the CO2–rare-gas complexes using second-
order Møller-Plesset perturbation theory �MP2�. For the He
and Ne complexes, they also performed CCSD�T� calcula-
tions, which are in good agreement with the MP2
results.

This work is organized as follows: After a brief outline
of the computational details in Sec. II, the results of the
calculations are discussed in Sec. III. In Sec. III A, a simple
electrostatic interaction model for the description of the
induced dipole moments in the considered complexes is
presented. In Sec. III B, we present the results of supermo-
lecular KS-DFT calculations of CO2¯X. These calculations
show that different exchange-correlation potentials fail to re-
produce the experimentally observed induced dipole mo-
ments and we investigate the reasons for this failure. In
Sec. III C, we investigate the performance of the KSCED
embedding scheme by comparing the results of embedding
calculations to the supermolecular KS-DFT results and it is
demonstrated how the KSCED scheme can be use to get
around the problems we have found when comparing
the supermolecular KS-DFT calculations to experiment in
Sec. III D. Concluding remarks are collected in Sec. IV.

II. COMPUTATIONAL DETAILS

For the performance of the KSCED scheme �Eqs. �1�,
�3�, �10�, and �11��, the choice of the approximation which is
used for the nonadditive kinetic-energy component of the

KSCED effective embedding potential is of great impor-

In the KSCED embedding calculations, i.e., when Eqs.
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tance. The simplest approximation for the kinetic-energy
functional, corresponding to the local-density approximation
in KS-DFT, is the Thomas-Fermi functional,

Ts
TF��� = CTF� �5/3�r�dr . �12�

An analysis of different approximations for the kinetic-
energy functional is given in Refs. 10, 13, and 33. For the
construction of these approximated functionals, the sugges-
tion of Lee et al.34 to use similar analytical forms for ap-
proximated kinetic-energy and exchange energy functionals
is applied there,

Ex���  Ex
GGA��� =� f���r�, ����r���dr

= − Cx� �4/3�r�F�s�r��dr , �13�

and

Ts
GGA��� = CF� �5/3�r�F�s�r��dr , �14�

where Cx= �3/4��3/��1/3, CF= �3/10��3�2��2/3�, and s
= ���� / �2�kF�, with kF= �3�2��1/3.

Studies6,10,13 of the accuracy of various approximations
to Ts

nadd��I ,�II�, approximated as Ts
nadd��I ,�II�Ts

approx��I

+�II�−Ts
approx��I�−Ts

approx��II�, in the case of weakly overlap-
ping pairs of electron densities showed that the most accurate
nonadditive kinetic-energy functional �and the associated
functional derivative� has the same analytic form of the en-
hancement factor F�s� as the exchange functional of Perdew
and Wang35 but should be reparametrized for the kinetic en-
ergy as described by Lembarki and Chermette.36 Its complete

form reads,
FLC94�s� =
1 + 0.093 907s arcsinh�76.32s� + �0.266 08 − 0.080 961 5e−100s2

�s2

1 + 0.093 907s arcsinh�76.32s� + 0.577 67 � 10−4s4 . �15�
Equations �2�, �14�, and �15� lead to the nonadditive kinetic-
energy functional �dubbed PW91k in the following� used in
this work. In the current application, the calculation of the
electron density using the KSCED equations, not this nonad-
ditive kinetic-energy functional itself but only its functional
derivative �Eq. �8�� is needed in the construction of the em-
bedding potential.

In the supermolecular KS-DFT calculations two different
approximations were employed for the exchange-correlation
potential: The Perdew-Wang 91 functional, dubbed
PW91,35,37 which is a typical example of the generalized
gradient approximation �GGA�, and the “statistical averaging
of �model� orbital potentials” �SAOP�,38–40 which is a more
advanced approximation to the KS potential and shows the
correct Coulombic decay of the potential at long distances.
�10� and �11� were solved using freeze-and-thaw iterations,
approximations to the exchange-correlation potential are
needed in different places, as explained in Sec. I. Different
combinations of the two approximations PW91 and SAOP
were used in these calculation. First, calculations were per-
formed using PW91 both in the KS potential of the isolated
subsystems and in the KSCED embedding potential. These
calculations will be referred to as KSCED/PW91.

Second, the SAOP potential was used to approximate the
exchange-correlation potential in the KS potentials of the
isolated subsystems �Veff

KS�r ;�I,II� in Eqs. �10� and �11��. Be-
cause the SAOP potential is orbital dependent it does not
provide an expression for the nonadditive exchange-
correlation potential �see Eqs. �5� and �9�� and therefore, can-
not be used in the KSCED embedding potential. We chose to

use the PW91 functional for the nonadditive exchange-
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correlation contributions to the KSCED embedding potential
�Veff

emb in Eqs. �10� and �11�� in these calculations, which in-
troduces an inconsistency compared to the supermolecular
KS-DFT calculations using SAOP. This inconsistency rela-
tive to supermolecular calculations will be further discussed
in Sec. III C. Calculations using this combination of approxi-
mations to the exchange-correlation potential will be labeled
KSCED/SAOP.

Finally, we will present KSCED calculations where dif-
ferent approximations to the exchange-correlation potential
in the KS potential of the isolated subsystems I and II were
chosen based on the physical knowledge about the investi-
gated system and the available approximations. In these cal-
culations, which will be referred to as KSCED/combi, PW91
was used to approximate the exchange-correlation potential
in the KS potential of the isolated subsystem I
�Veff

KS�r ;�I� in Eq. �10�� and SAOP was used in the KS poten-
tial of the isolated subsystem II �Veff

KS�r ;�II� in Eq. �11��. For
the complexes investigated in this work fragment I was cho-
sen to be the CO2 molecule and fragment II was chosen to be
the attached rare-gas or mercury atom. For the nonadditive
exchange-correlation contribution to the KSCED embedding
potential �Veff

emb in Eqs. �10� and �11��, PW91 was used.
All calculations were performed using the Amsterdam

density-functional �ADF� package.41,42 The KSCED scheme
�Eqs. �10� and �11�� is implemented in a development ver-
sion of ADF. To include the effects of relativity for the com-
plexes containing the heavier elements Xe or Hg, the scalar
zeroth-order regular approximation �ZORA�43–45 was used.
The calculations of dipole polarizabilities were done using
TDDFT as implemented in ADF.46,47 For numerical integra-
tion we used a grid that was denser than the default settings
of ADF to get the dipole moments with the required accuracy.
In the KSCED calculations, the same integration grid as in
the corresponding supermolecular KS-DFT calculations was
used. The use of a grid which is larger than the one in
KS-DFT calculations for the isolated subsystems is needed
because of the embedding potential of Eq. �7� extends over
the environment.

By default, the ADF package uses the fitted electron den-
sity for the evaluation of the exchange-correlation potential.
We found that for the evaluation of the nonadditive kinetic-
energy and exchange-correlation contributions to the embed-
ding potential in weakly interacting systems this fitted den-
sity is not accurate enough, especially when gradient-
dependent functionals are used. This can be related to the
differences between the fitted and the exact electron density
in the outer regions, that are usually not important for the
evaluation of the exchange-correlation potential, but that are
significant for the contributions of the nonadditive kinetic
energy to the embedding potential in KSCED calculations.
Therefore, we modified the ADF implementation of the
KSCED scheme48 to use the exact electron density of both
subsystems ��I and �II� in the evaluation of the nonadditive
kinetic-energy and exchange-correlation contributions �Eqs.
�8� and �9�� to the embedding potential.

For the accurate calculation of the induced dipole mo-
ments in the CO2¯X complexes, large basis sets with a suf-

32
ficient number of diffuse functions are needed. We used a
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series of basis sets of increasing size to examine the influ-
ence of the basis set on the calculated dipole moments. First,
we used the quadruple-� basis set with four sets of polariza-
tion functions �QZ4P� from the ADF basis set library.41 In
addition, we used the even-tempered ET-pVQZ basis set,49

which was augmented with field-induced polarization func-
tions �aug-ET-pVQZ�.50,51 This augmented basis set is
smaller than the QZ4P basis set, but it was shown to be of
similar quality for the calculation of various molecular
properties.49 Finally, we used the largest basis set available in
the ADF basis set library, the even-tempered ET-QZ3P-
3DIFFUSE basis set, which is of quadruple-� quality and
contains three sets of diffuse functions. Unfortunately, the
large even-tempered basis sets ET-pVQZ and ET-QZ3P-
3DIFFUSE are only available for the elements up to Kr.
Therefore, we have extended the standard QZ4P basis sets
for Xe and Hg with additional diffuse functions, using the
scheme described in Refs. 50 and 51, yielding the basis set
labeled aug-QZ4P in this work. The convergence of the in-
duced dipole moments with the size of the basis set will be
discussed in the following section.

All calculations were performed for the same T-shaped
geometries, which were used in Ref. 32, at which the C–O
bond length in the CO2 molecule is kept fixed at the experi-
mental value of 2.192 a.u.52 The C—Rg �Rg=He, Ne, Ar, Kr,
Xe� distances obtained from MP2 calculations taken from
Ref. 32 were used. These values are in excellent agreement
with the experimental geometries. For CO2¯Hg, the experi-
mental C—Hg distance27 was used. Table I collects the used
distances.

III. RESULTS AND DISCUSSION

A. Simple electrostatic interaction model

In a simple electrostatic model, the interaction of the
CO2 molecule and the attached rare-gas or mercury atom can
be described in the following picture: The electric field of the
CO2 molecule, which can be approximated by the electric
field of a quadrupole, distorts the charge distribution around
the rare-gas or mercury atom and induces a dipole moment
which is given by

	ind =
3 Qxx
X

R4 , �16�

where Qxx is the xx component of the traceless quadrupole

TABLE I. Intermolecular distances R used in this work �in a.u.�. R denotes
the distance between the carbon atom and the rare-gas or mercury atom in
the T-shaped geometry of CO2¯X.

X R

He 6.019
Ne 6.206
Ar 6.605
Kr 6.846
Xe 7.332
Hg 6.983
moment of CO2 �the z axis being along the CO2 molecule�,
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X is the static dipole polarizability of the attached atom X,
and R is the C–X distance.

In Table II, the induced dipole moments calculated using
the model of Eq. �16� are given. The experimental values for
the polarizabilities of the rare-gas atoms53 and mercury,54

which are also given in Table IV, were used. For the quad-
rupole moment of CO2 the experimental value of Qxx

=1.595 a.u. �Ref. 55� was used.
The results obtained within this simple model already

account for the largest part of the experimentally observed
induced dipole moments. It is—if experimental values are
used as an input—able to reproduce the increase in the in-
duced dipole moments along this series of complexes quali-
tatively and is able to give numerical values which are in
reasonable agreement with the experimental dipole moments.

This simple electrostatic interaction model neglects the
effects of higher multipole moments of the CO2 molecule
and of the finite size of the attached atom, which are ex-
pected to become more important if the size of the attached
atom increases. The electrostatic interaction model could be
further refined to take these effects into account, but it would
still neglect the effects of Pauli repulsion and orbital interac-
tions, which can only be described using quantum chemical
methods.

Comparing the results which are obtained from the elec-
trostatic interaction model with the experimental induced di-
pole moments shows that the effects which are neglected in
the simple model become more important when going to the
heavier attached atoms. Especially for the mercury complex
the electrostatic interaction model overestimates the induced
dipole moment significantly.

Still, the fact that the main part of the induced dipole
moment originates from the interaction of the quadrupole
moment of the CO2 molecule with the polarizable electron

TABLE II. Induced dipole moments �in debye� of CO
interaction model as described in the text.

He Ne

Electrostatic model 0.0128 0.0219
Experimenta 0.0244

aReferences 26 and 27.

TABLE III. Induced dipole moments �in debye� of CO
calculations with the PW91 functional using differen
the results of the previous MP2 and CCSD�T� calcul

He

KS-DFT ET-pVQZ 0.0123
aug-ET-pVQZ 0.0132
QZ4P 0.0102
ET-QZ3P-3DIFFUSEa 0.0134

MP2b 0.0160
CCSD�T�c 0.0158
Experimentd

aBasis set aug-QZ4P was used for Xe and Hg.
bReference 32.
cReference 32.
d
References 26 and 27.
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cloud of the attached atom shows that it is important to en-
sure that the methods used in more advanced calculations are
capable of describing the CO2 quadrupole moment and the
polarizability of the attached atom accurately.

B. Supermolecular KS-DFT calculations

To provide a reference for the discussion of the results of
the KSCED embedding calculations, we first performed su-
permolecular KS-DFT calculations. These calculations will
also be used to investigate the influence of the basis set and
the approximated exchange-correlation potential on the in-
duced dipole moments. Table III shows the results for the
supermolecular KS-DFT calculations using PW91 and differ-
ent basis sets. They are compared to the experimentally ob-
served dipole moments and the results of the CCSD�T� and
MP2 calculations.32 The calculated dipole moments are—
unlike the values given by Maroulis and Haskopoulos in Ref.
32—not corrected for basis set superposition errors �BSSE�
to make comparisons with the results of the KSCED calcu-
lations in the next sections easier.

Nevertheless, we calculated the effect of the BSSE on
the dipole moments using the counterpoise correction
method and found these corrections to be small in all cases.
In the calculations using the largest basis set the BSSE cor-
rection is smaller than 0.001 D for all complexes.

The results with different basis sets show that inclusion
of diffuse functions is of great importance for the calculation
of the induced dipole moments. The inclusion of diffuse
functions when going from ET-pVQZ to aug-ET-pVQZ and
when going from QZ4P to ET-QZ3P-3DIFFUSE/aug-QZ4P
results in a large increase in the induced dipole moments. For
the basis sets which do already include diffuse functions, the
difference in the induced dipole moments when going from

complexes, calculated from the simple electrostatic

Ar Kr Xe Hg

0.0708 0.0928 0.1148 0.1734
0.0679 0.0829 0.1029 0.1070

complexes calculated from supermolecule KS-DFT
s sets. For comparison, the experimental values and
s are also given.

Ne Ar Kr Xe Hg

.0228 0.0611 0.0890

.0229 0.0743 0.0995

.0211 0.0712 0.0916 0.1132 0.1385

.0253 0.0736 0.0943 0.1194 0.1464

.0274 0.0714 0.0877 0.0976

.0267

.0244 0.0679 0.0829 0.1029 0.1070
2¯X
2¯X
t basi
ation

0
0
0
0
0
0
0
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the aug-ET-pVQZ basis set to the largest basis set used �ET-
QZ3P-3DIFFUSE� is significantly smaller. The negligibly
small BSSE correction gives another indication that the re-
sults obtained with the largest basis set are close to the basis
set limit. All calculations presented in the following section
use these large basis sets, e.g., ET-QZ3P-3DIFFUSE for the
elements up to Kr and aug-QZ4P for Xe and Hg.

Comparing the results of the PW91 calculations to the
experimental values, one notices that, except for CO2¯He,
the induced dipole moments are overestimated in all cases.
For CO2¯He, where no experimental value is available, the
calculated dipole moment is slightly below the CCSD�T� cal-
culation by Maroulis and Haskopoulos.

In the previous section, it was pointed out that to be able
to describe the induced dipole moments correctly, it is im-
portant to describe the polarizability of the attached atom
accurately. GGA potentials like PW91 are known to overes-
timate polarizabilities38 because they do not give the correct
asymptotic behavior of the KS potential.56 Therefore, we
also use the SAOP potential, which does have the correct
asymptotic behavior and which is known to perform well in
the calculation of polarizabilities.38 In Table IV, the calcu-
lated induced dipole moments and static dipole polarizabil-
ities calculated using PW91 and SAOP are given together
with the experimental values.

We notice that PW91 overestimates indeed the polariz-
abilities of the rare gases and mercury while the SAOP po-
tential gives polarizabilities which are in good agreement
with the experiment. Even though SAOP gives better polar-
izabilities, for the induced dipole moments the agreement
with experiment calculated is much worse than for PW91.
These surprising findings are explained by looking at quad-
rupole moments of CO2 calculated with KS-DFT using
PW91 and SAOP, which are given in Table V. While the
quadrupole moment calculated using PW91 is in good agree-
ment with the experimental value, the SAOP potential over-
estimates the CO2 quadrupole moment by 15%.

Summarizing the results of the supermolecular KS-DFT
calculations, we can conclude that both PW91 and SAOP fail

TABLE IV. Dipole moments 	 �in debye� of X¯CO
X calculated from supermolecular KS-DFT calculati
largest basis set available �aug-QZ4P for Xe and Hg a
used. For comparison, the experimental values and th
are also given.

He

Dipole moment 	 KS-DFT �PW91� 0.0134
KS-DFT �SAOP� 0.0190
MP2a 0.0160
CCSD�T�b 0.0158
Experimentc

Polarizability 
 KS-DFT �PW91� 1.59
KS-DFT �SAOP� 1.42
Experimentd 1.38

aReference 32.
bReference 32.
cReferences 26 and 27.
dReferences 53 and 54.
to reproduce the induced dipole moments of the investigated
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CO2¯X complexes, but for quite different reasons. PW91
overestimates the dipole polarizability of the rare gases, a
consequence of the wrong asymptotic behavior of GGA po-
tentials. On the other hand SAOP does describe the polariz-
abilities of the rare gases correctly, due to its correct
asymptotic behavior, but it gives a poor description of the
quadrupole moment of CO2.

C. KSCED embedding calculations

To assess the performance of the orbital-free KSCED
embedding scheme we compared the induced dipole mo-
ments calculated using this scheme to the results of the su-
permolecular KS-DFT calculations presented in the previous
section. This comparison was done for the two approxima-
tions to the exchange-correlation potential considered in the
previous section: PW91 and SAOP.

We applied the KSCED scheme in freeze-and-thaw itera-
tions as described above. In all the calculations done here the
dipole moment was converged to an accuracy of 0.0001 D
after only two or three freeze-and-thaw iterations. The dipole
moments calculated for the two subsystems were added to
yield the total induced dipole moment.

Following the formalism presented in the Introduction,
applying the KSCED scheme in freeze-and-thaw iterations
should result in the same electron density and thus the same
total dipole moment as the supermolecular KS-DFT calcula-
tion. However, there are some approximations involved,
which can lead to differences between the KSCED results
and the results of supermolecular KS-DFT calculations.

plexes and static dipole polarizabilities 
 �in a.u.� of
sing both PW91 and SAOP. In all calculations, the
-QZ3P-3DIFFUSE for all other elements� have been
ults of the previous MP2 and CCSD�T� calculations

e Ar Kr Xe Hg

253 0.0736 0.0943 0.1194 0.1494
286 0.0831 0.1112 0.1375 0.1651
274 0.0714 0.0877 0.0976
267
244 0.0679 0.0829 0.1029 0.1070

3 12.10 18.09 29.11 35.14
7 11.56 17.30 28.28 30.02
7 11.07 16.77 27.29 33.91

TABLE V. Quadrupole moment Qxx �in atomic units� of CO2 calculated
using KS-DFT with the ET-QZ3P-3DIFFUSE basis set.

Qxx

PW91 1.55
SAOP 1.85

Experimenta 1.595

a

2 com
ons u
nd ET
e res

N

0.0
0.0
0.0
0.0
0.0

3.1
2.5
2.6
Reference 55.
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First, in all KSCED calculation, the approximated non-
additive kinetic-energy functional is not exact and its func-
tional derivative, which is used in the construction of the
embedding potential, is not exact either. Second, in calcula-
tions using orbital-dependent approximations to the
exchange-correlation potential like SAOP, one furthermore
encounters the complication that the supermolecular
exchange-correlation potential is constructed in terms of a
set of supermolecular orbitals. This potential cannot be re-
constructed in a KSCED calculation since only the sub-
system orbitals are available. This makes it necessary to
choose a non-orbital-dependent form for the nonadditive
exchange-correlation contribution �Eq. �9��, introducing an
additional inconsistency relative to the supermolecular calcu-
lation. This is not the case with a GGA potential like PW91,
because then the same approximation can be used for the
exchange-correlation potential in the subsystems and for the
nonadditive exchange-correlation contribution to the embed-
ding potential. Therefore, the treatment of the exchange-
correlation potential in KS-DFT and KSCED calculations is
consistent.

With regard to possible basis set errors, there are two
possibilities for the choice of the basis functions which are
used to expand the densities of the two subsystems.13 The
most obvious choice is to use only basis functions that are
centered on the atoms in the considered subsystem to expand
the corresponding density. This choice is in line with the
“divide-and-conquer” strategy mentioned earlier since the
size of the KS-Fock matrix is reduced in the separate calcu-
lations of �I�r� and �II�r�. Calculations using this monomo-
lecular basis set expansion will be labeled KSCED�m� fol-
lowing the convention of Ref. 13. However, this choice of
the basis functions introduces an additional source of differ-
ences to the supermolecular calculation. In the expansion of
the total electron density the products of basis functions cen-

TABLE VI. Induced dipole moments �in debye� in C
ding scheme with different approximations for the
SAOP, and KSCED/combi; see text for details�. In all
Xe and Hg and ET-QZ3P-3DIFFUSE for all other ele
corresponding supermolecule KS-DFT calculations a
results of the previous MP2 and CCSD�T� calculatio

He

KSCED/PW91 KSCED�m� 0.0136 0
KSCED�s� 0.0121 0

PW91 KS-DFT 0.0134 0

KSCED/SAOP KSCED�m� 0.0128 0
KSCED�s� 0.0116 0

SAOP KS-DFT 0.0190 0

KSCED/combi KSCED�m� 0.0103 0

MP2a 0.0160 0
CCSD�T�b 0.0158 0
Experimentc 0

aReference 32.
bReference 32.
cReferences 26 and 27.
tered at atoms in different subsystems are neglected. Further-
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more, since the total number of electrons in both subsystems
is fixed, a charge transfer between the two subsystems is not
possible.

These problems are both removed in the KSCED�s�
scheme which uses the full supermolecular basis set to ex-
pand the density of both subsystems. In this scheme, the
advantage of the computational efficiency is lost. However, it
is interesting from a theoretical point of view because the
only sources of differences between KSCED�s� and super-
molecular KS-DFT calculations are the approximation to the
nonadditive kinetic-energy functional which is used when
constructing the embedding potential and, in SAOP calcula-
tions, the approximations in the nonadditive exchange-
correlation component of the embedding potential. It was,
however, noticed in earlier works13,33 that in the KSCED�s�
scheme the results are more sensitive to the problems in the
kinetic-energy potential because the electron density is more
flexible. Furthermore it should be noted that the differences
between the KSCED�s� and KSCED�m� schemes should be-
come smaller for larger basis sets as they approach the basis
set limit.4

In Table VI, the induced dipole moments calculated with
the KSCED scheme using different approximations to the
exchange-correlation potential are presented and compared
to the results of the corresponding supermolecule KS-DFT
calculations and to the experimental dipole moments.

In the KSCED/PW91 calculations the induced dipole
moments calculated using the KSCED�m� scheme are in ex-
cellent agreement with the results of the corresponding su-
permolecular KS-DFT calculations. For all considered com-
plexes these differences are below 5%. Opposite to what
would be expected, the agreement with the supermolecular
KS-DFT calculations is worse for KSCED�s�. For the Ar, Kr,
Xe, and Hg complexes, the dipole moment calculated within
the KSCED�s� scheme overestimates the dipole moments by

X complexes calculated using the KSCED embed-
nge-correlation potential �KSCED/PW91, KSCED/
lations, the largest basis set available �aug-QZ4P for

s� have been used. For comparison, the results of the
o given, as well as the experimental values and the

Ar Kr Xe Hg

0.0747 0.0949 0.1136 0.1529
0.0761 0.1028 0.1231 0.1771
0.0736 0.0943 0.1194 0.1464

0.0775 0.0999 0.1204 0.1467
0.0780 0.1042 0.1273 0.1606
0.0831 0.1112 0.1375 0.1651

0.0668 0.0859 0.1017 0.1249

0.0714 0.0877 0.0976

0.0679 0.0829 0.1029 0.1070
O2¯

excha
calcu
ment
re als
ns.

Ne

.0261

.0258

.0253

.0225

.0220

.0286

.0200

.0274

.0267

.0244
up to 20%, with the differences becoming larger when mov-
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ing to the heavier attached atoms. While for the Ne complex
the KSCED�s� result is in good agreement with both the
KSCED�m� and the supermolecular KS-DFT result, for the
He complex the KSCED�s� dipole moment underestimates
the supermolecular result by 10%.

The increase in the dipole moment which is observed for
the complexes with the heavier attached atoms when going
from KSCED�m� to KSCED�s� corresponds to electron den-
sity of the rare-gas or mercury atom being moved in the
direction of the CO2 molecule, and the decrease for the
CO2¯He complex corresponds to electron density of the
CO2 molecule which is moved in the direction of the He
atom. We think that these artificial differences between
KSCED�m� and KSCED�s� are mainly caused by problems
of the embedding potential in the region close to the nuclei
of the frozen subsystem. Near these nuclei the embedding
potential has to compensate the large attractive Coulomb po-
tential of the nuclear charge. The observed differences indi-
cate that this is not achieved completely. In the calculation of
a rare-gas or mercury atom next to a frozen CO2 fragment
there is a small amount of electron density that is pulled to
the C and O nuclei, leading to an artificial increase of the
dipole moment. This effect shows up the most for the frag-
ment which is more polarizable, e.g., the rare gas or mercury
in the complexes with the heavier attached atoms. In the
CO2¯He complex the effect is the other way around. In the
calculation of the He fragment, a small amount of the more
polarizable CO2 electron density is attracted by the He
nucleus. This kind of charge transfer can only occur if the
basis set used is flexible enough near these nuclei in the
frozen fragment, which is only the case in the KSCED�s�
scheme. In the KSCED�m� calculations, the basis functions
centered on the nuclei of the frozen subsystem are not avail-
able so that the amount of spurious charge transfer is smaller
or not existent. It is important to note that the dipole mo-
ment, which is investigated here, is very sensitive to this
kind of charge transfer so that small problems in the embed-
ding potential have already a significant effect.

For the KSCED�m� /SAOP calculations, the agreement
with the corresponding supermolecular KS-DFT calculations
is not as good as in the KSCED/PW91 calculations. This is
not surprising because of the contribution of the nonadditive
exchange-correlation potential to the KSCED embedding po-
tential an additional inconsistency is introduced. For the Ar,
Kr, Xe, and Hg complexes the differences are rather small
�below 13%�, but for the He and Ne complexes the differ-
ences are larger �up to 32% for He�. A reason for this behav-
ior can be found in the way the SAOP potential is con-
structed. SAOP uses a statistical averaging over orbital
potentials, in which the difference between the orbital energy
and the orbital energy of the highest occupied molecular or-
bital �HOMO� is used to interpolate between two functional
forms of the exchange-correlation potential: one that is opti-
mal for the core region and one that is optimal for the va-
lence region. For the He and Ne complexes, the highest oc-
cupied rare-gas orbitals, which are most important for the
induced dipole moments, are more than 5 eV lower in energy
than the HOMO and give rise a “core” contribution to the

exchange-correlation potential. In the KSCED embedding
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calculations, the two subsystems are calculated separately,
however, so that the rare-gas HOMO is then considered a
valence orbital with corresponding contribution to the
exchange-correlation potential. In the Kr, Xe, and Hg com-
plexes, the rare-gas HOMO is also the HOMO in the super-
molecular calculation, while for the Ar complex it is only
about 1 eV below the HOMO of the supermolecule, so that
these differences between the supermolecular KS-DFT cal-
culation and the KSCED embedding calculation are then
much smaller.

Comparing the KSCED�s� /SAOP calculations to the
KSCED�m� /SAOP ones shows the same differences that
were observed with KSCED/PW91. Even with the large ba-
sis sets used here, the KSCED�s� results differ significantly
from the KSCED�m� results. As with KSCED/PW91, for the
Kr, Xe, and Hg complexes, the dipole moments calculated
using KSCED�s� are larger than the KSCED�m� values, with
the difference increasing when going to the heavier elements.
For the Ne and Ar complexes, the differences between
KSCED�m� and KSCED�s� are not significant, while for the
He complex the KSCED�s� dipole moment is smaller than
the KSCED�s� one. These differences can be explained in the
same way as it was done above for the KSCED/PW91 re-
sults. The fact that the KSCED�s� results are actually closer
to the supermolecular KS-DFT results than the KSCED�m�
results seems only to be a fortunate error cancellation be-
tween the nonadditive exchange-correlation and kinetic-
energy contributions to the embedding potential.

D. Embedding with a combination of different
exchange-correlation approximations

The supermolecular KS-DFT calculations in Sec. III B
showed that both GGA potentials like PW91 as well as the
asymptotically correct SAOP potential are not able to repro-
duce the experimental dipole moments of the investigated
CO2¯X complexes correctly, because none of them is able
to accurately describe the quadrupole moment of CO2 and
the polarizability of the attached atom at the same time.

One advantage of the KSCED embedding scheme pre-
sented here is that it allows one to use different approxima-
tions for the exchange-correlation potential in the two sub-
systems in a straightforward way. Therefore, we performed
KSCED calculations �KSCED/combi� using PW91 to ap-
proximate the exchange-correlation potential in the KS po-
tential of the CO2 fragment �because it reproduces the quad-
rupole moment of CO2 correctly� and SAOP in the KS
potential of the rare-gas or mercury fragment �because it is
able to describe the polarizability of the attached atom cor-
rectly�. We would like to note that the use of this combina-
tion of different approximations is not just an arbitrary
choice but one that is based on both physical knowledge
about the systems under investigation �see the simple elec-
trostatic interaction model presented in Sec. III A� and on the
knowledge about the ability of different approximations to
describe the polarizabilities and molecular multipole mo-
ments correctly.

In the previous section, we have demonstrated that the

KSCED scheme works well for the considered complexes
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both with PW91 and with SAOP. Therefore, we are confident
that the embedding scheme will also work when these differ-
ent approximations are combined by using them for the
two subsystems. We can expect that the errors introduced by
the use of the embedding scheme will be similar to the errors
observed in the previous section. To get around the problems
with the nonadditive kinetic-energy potential which were
found in the previous section, we only applied the
KSCED�m� scheme here, that is less affected by these
problems.

The results of these calculations are shown in Table VI.
For the Ar, Kr, Xe, and Hg complexes the embedding calcu-
lations using a combination of different approximations sig-
nificantly improve the results of the simple electrostatic in-
teraction model of Sec. III A, while giving dipole moments
of comparable quality for the He and Ne complexes.

The results obtained in the KSCED/combi calculations
are, for the Ar, Kr, and Xe complexes, in perfect agreement
with the experimental values, with the differences being
smaller than 5%. For CO2¯Ne, the experimental dipole mo-
ment is underestimated by about 20% and an underestima-
tion is also observed for CO2¯He, where we have to com-
pare to CCSD�T� calculations because no experimental value
is available. For CO2¯Hg, the experimental value is over-
estimated by about 20%. These differences are of about the
same size as the differences between the KSCED�m� /SAOP
calculations and the corresponding supermolecular KS-DFT
calculations in the previous section, so that these differences
can be mainly attributed to the approximation which has to
be made in the nonadditive exchange-correlation potential
and the nonadditive kinetic-energy functional.

IV. CONCLUSIONS

In this study, we have for the first time applied the
KSCED embedding scheme to the calculation of induced
dipole moments in van der Waals complexes. We have
shown that the embedding calculations are able to reproduce
the results of the supermolecular KS-DFT calculations, if
only basis functions centered on atoms of the nonfrozen sub-
system are included �KSCED�m��. The agreement is much
better with a GGA potential like PW91 than for the calcula-
tions using the orbital-dependent SAOP potential, which can
be explained by the additional approximations in the
exchange-correlation part of the embedding potential that
have to be made in this case.

Including the basis functions of the frozen subsystem in
the embedding calculations �KSCED�s�� lead to a spurious
change transfer. We attribute this to the approximation used
for the nonadditive kinetic-energy part of the embedding po-
tential. These problems are most important if there are larger
differences between the nuclear charges in the two sub-
systems, like in the CO2¯X complexes where X is a heavier
rare-gas or a mercury atom.

For the van der Waals complexes investigated here, it is
possible to circumvent these problems by using the
KSCED�m� scheme that does not probe the embedding po-
tential in the region around the nuclei of the frozen sub-

system as much as the KSCED�s� scheme does. However,
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this will not be possible in systems with a stronger interac-
tion or where a charge transfer between the subsystems oc-
curs indeed, because for these systems the inclusion of the
additional basis functions in the KSCED�s� is very impor-
tant. Therefore, it will be interesting for future work to ana-
lyze these problems in more detail and to develop more ad-
vanced approximations to the nonadditive kinetic-energy
functional.

Furthermore, we have demonstrated that the KSCED
embedding scheme is a useful tool for combining different
approximated exchange-correlation potentials by applying
different approximations in the different subsystems. In this
study, we have made use of this feature for the calculation of
induced dipole moments, where both the GGA potential
PW91 and the asymptotically correct SAOP potential fail to
give a correct overall description. The KSCED embedding
scheme made it possible to use in both subsystems an ap-
proximation to the exchange-correlation potential that is able
to describe those properties of the fragments correctly that
are important for the induced dipole moment of the complex:
the polarizability for the rare-gas or mercury atom and the
quadrupole moment for the CO2 molecule. This strategy
makes it possible to get induced dipole moments for the
CO2¯X van der Waals complexes that are in good agree-
ment with the experiment, whereas KS-DFT calculations fail
to achieve this. We mention here that a similar scheme was
recently, mainly for reasons of computational efficiency, also
used in studies on solvatochromism.7,8 While the SAOP po-
tential was used to get accurate excitation energies for the
solute, the local-density approximation �LDA� was used to
describe the solvent molecules.
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