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Constant Time Analysis

Remove functions

<>| trusted-crypto-1lib.c Raw

CT-Analysis

1 encrypt(secret_data,key);

2 create_hmac(secret_data, key); tainting / symb exec/ ...
3
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CLangover (CVE-2024-37880)

ML-KEM.o

.LBBO_2: ; for(j = @; j < 8; j++)

movzx r8d, b ptr [rsi + rax]
Xxor edx, edx
bt r8d, ecx
jae .LBBO_4 ; leaks bit of msg
mov edx, 1665

.LBBO_4:
mov vord ptr [rdi + 2*rcx], dx
1nc rcx
cmp rex, 8

jne .LBBO_2
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CLangover (CVE-2024-37880)

RETDEC

ML-KEM.o — > ML-KEM.c

bt r8d, ecx ,
jae .LBB@_4 ; leaks bit of msg | (int32_t)byte) == 0 ?

// no leak
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S
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| O CT-Analysis
binary level 3
IR level

analyze

A input is LLVM-IR
*» on handcrafted example.o
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start with [ ] preserves CT and [ ] reflects CT
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CTprrog = [prog]l CT

THEOREM [Barthe et al. ’18, ’21]

> + T = preserves CT.
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THEOREM

reflects CT.
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Proving “[ ] is CT transparent” prog CT < [progl] CT

THEOREM

is CT transparent.

[ Loop Rotation ] [ Untiling ] [ Constant Folding ]
[ Unspilling ] [ Structural Analysis ]

[ Dead Assignment Elimination ] [ Dead Branch Elimination }
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160 (10x16) Binaries

with and without — [ CT-RETDEC ] = De. »mpiled Binaries
Real World Vulnerabilities ‘

transparent on all

ReTDEC removes vulnerabilities from 45
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