
Santiago Arranz Olmos, Gilles Barthe, Lionel Blatter,  
Youcef Bouzid, Sören van der Wall, Zhiyuan Zhang

Decompiling  
for Constant-Time Analysis
Decompilers disturb Formal Side Channel Security!

PriSC 2026 
Rennes



Formal Side-Channel Security 101
Attacker Model

😈😸



Formal Side-Channel Security 101
Attacker Model

crypto.o attacker.o

😈😸

mem



Formal Side-Channel Security 101
Attacker Model

crypto.o attacker.o

😈😸

mem

OS



Formal Side-Channel Security 101
Attacker Model

crypto.o attacker.o

😈😸

mem

OS

cache

branch predictor



Formal Side-Channel Security 101
Attacker Model

crypto.o attacker.o

😈😸

mem

OS

cache

branch predictorleak



Formal Side-Channel Security 101
Attacker Model

crypto.o attacker.o

😈😸

mem

OS

cache

branch predictor observeleak



Formal Side-Channel Security 101
Attacker Model

crypto.o attacker.o

😈😸

mem

OS

cache

branch predictor observeModel This!

leak



Formal Side-Channel Security 101

Model: CT-Leakage Semantics



Formal Side-Channel Security 101 Model: CT-Leakage Semantics

s t u

operational semantics



Formal Side-Channel Security 101 Model: CT-Leakage Semantics

s t u

operational semantics leakage observations

leak leak



Formal Side-Channel Security 101 Model: CT-Leakage Semantics

s tleak

leak depends on 
executed instruction

CT-Leakage



Formal Side-Channel Security 101 Model: CT-Leakage Semantics

s tleak
instruction leak

load / store address

conditional branch branch outcome
leak depends on 

executed instruction

CT-Leakage



CTprog.c is WHEN

Formal Side-Channel Security 101 Security Property



CTprog.c is WHEN

=∀

Formal Side-Channel Security 101

attacker-indistinguishable: 
equal except on secrets.=

Security Property



CTprog.c is WHEN

=∀

Formal Side-Channel Security 101

l1 l2 l3 ⋯
k1 k2 k3 ⋯

attacker-indistinguishable: 
equal except on secrets.=

Security Property



CTprog.c is WHEN

=∀

Formal Side-Channel Security 101

l1 l2 l3 ⋯
k1 k2 k3 ⋯

k1k2k3… l1l2l3…=have
attacker-indistinguishable: 
equal except on secrets.=

Security Property



CTprog.c is WHEN

=∀

Formal Side-Channel Security 101

l1 l2 l3 ⋯
k1 k2 k3 ⋯

k1k2k3… l1l2l3…=have

“Leakages don’t depend on secrets.”

attacker-indistinguishable: 
equal except on secrets.=

Security Property



😈😸

Mem

O
S

cache

branch predictor observeleak

Formal Side Channel Security 101



😈😸

Mem

O
S

cache

branch predictor observeleak

CT

Formal Side Channel Security 101



😈😸

Mem

O
S

cache

branch predictor observeleak

CT

Formal Side Channel Security 101

harmless



😈😸

Mem

O
S

cache

branch predictor observeleak

CT

Formal Side Channel Security 101

CT-Analysis

harmless



😈😸

Mem

O
S

cache

branch predictor observeleak

CT

Formal Side Channel Security 101

CT-Analysis

harmless

crypto.o attacker.o



Constant Time Analysis

CT-Analysis 
 

tainting / symb exec / …

CT
CT

Remove functions



binary level

Decompile-then-Analyze

CT?crypto.o



binary level

Decompile-then-Analyze

CT-Analysis

source level

CT?crypto.o



binary level

Decompile-then-Analyze

CT-Analysis CT

source level

crypto.c

decompile

CT?crypto.o



binary level

Decompile-then-Analyze

CT-Analysis CT

source level

crypto.c

decompile

CT?

⟹?

crypto.o



CLangover (CVE-2024-37880)
Decompile-then-Analyze

ML-KEM.o



CLangover (CVE-2024-37880)
Decompile-then-Analyze

ML-KEM.o



CLangover (CVE-2024-37880)
Decompile-then-Analyze

ML-KEM.o ML-KEM.cRetDec



CLangover (CVE-2024-37880)
Decompile-then-Analyze

ML-KEM.o ML-KEM.cRetDec



CT-Analysis

binary level
source level

crypto.o

Decompile-then-Analyze

CT



CT-Analysis

binary level
source level

crypto.c

decompile

crypto.o

Decompile-then-Analyze

CT

CT



CT-Analysis CT

binary level
source level

crypto.c

decompile

crypto.o

Decompile-then-Analyze

CT

CT



CT-Analysis CT

binary level
source level

crypto.c

decompile

crypto.o

Decompile-then-Analyze

UNSOUND

CT

CT



CT-Analysis CT

binary level
source level

crypto.c

decompile

crypto.o

Decompile-then-Analyze

UNSOUND

CT

CT
Binary Ninja

Angr

Ghidra

Hex-Rays

RetDec



binary level

CT-Analysis
crypto.o

Decompile-then-Analyze

CTCT



binary level

crypto.o

CT-Analysis

Decompile-then-Analyze

CT



binary level

crypto.o

CT-Analysis

Decompile-then-Analyze

transform

.IR

IR level

CT



binary level

crypto.o

CT-Analysis

Decompile-then-Analyze

transform

.IR analyze
IR level

CT



binary level

crypto.o

CT-Analysis

Decompile-then-Analyze

transform

.IR analyze
IR level

CT

CT



binary level

crypto.o

CT-Analysis

Decompile-then-Analyze

transform

.IR analyze
IR level

CT

CT

UNSOUND



binary level

crypto.o

CT-Analysis

Decompile-then-Analyze

transform

.IR analyze
IR level

CT

CT

UNSOUND

*: on handcrafted example.o

CT-Verif^*

BinSec*

^: input is LLVM-IR



decompile

Properties for Sound Decompilation

prog.o prog.cUNSOUND



Properties for Sound Decompilation
[]

prog [prog]UNSOUND



Properties for Sound Decompilation
[]

[] CT transparent

[] preserves CT

[] reflects CT

prog [prog]UNSOUND



Properties for Sound Decompilation
[]

[] CT transparent

[] preserves CT

WHEN [prog]prog ⟹CT CT
“[] removes no vulnerabilities”[] reflects CT

prog [prog]UNSOUND



Properties for Sound Decompilation
[]

[] CT transparent

WHEN [prog]prog ⟹CT CT
“[] introduces no vulnerabilities”[] preserves CT

WHEN [prog]prog ⟹CT CT
“[] removes no vulnerabilities”[] reflects CT

prog [prog]UNSOUND



Properties for Sound Decompilation
[]

WHEN [prog]prog ⟺CT CT[] CT transparent

WHEN [prog]prog ⟹CT CT
“[] introduces no vulnerabilities”[] preserves CT

WHEN [prog]prog ⟹CT CT
“[] removes no vulnerabilities”[] reflects CT

prog [prog]UNSOUND



binary level

crypto.o

CT-Analysis

Decompile-then-Analyze

.IR analyze
IR level

CT



binary level

crypto.o

CT-Analysis

Decompile-then-Analyze

[]

transparent

.IR analyze
IR level

CT



binary level

crypto.o

CT-Analysis

Decompile-then-Analyze

[]

transparent

.IR analyze
IR level

CT

CTCT



binary level

crypto.o

CT-Analysis

Decompile-then-Analyze

[]

transparent

.IR analyze
IR level

CT

CT

SOUND

CT



Proving “[] is CT transparent”



Proving “[] is CT transparent”

start with [] preserves CT and [] reflects CT



Proving “[] preserves CT”
[prog]prog ⟹CT CT



prog

[prog]prog ⟹CT CT

[prog]
Cites!

Proving “[] preserves CT”



prog

[prog]prog ⟹CT CT

[prog]

k1

k2

k3

Cites!

Proving “[] preserves CT”



prog

[prog]prog ⟹CT CT

[prog]

k1

k2

k3

Cites!

Proving “[] preserves CT”

≺



prog

[prog]prog ⟹CT CT

[prog]

l1

l2

l3

k1

k2

k3

Cites!

Proving “[] preserves CT”

≺



prog

[prog]prog ⟹CT CT

[prog]

l1

l2

l3

≠

≠

≠

k1

k2

k3

Cites!

Proving “[] preserves CT”

≺



prog

[prog]prog ⟹CT CT

[prog]

l1

l2

l3

k1

k2

k3

Cites!

Proving “[] preserves CT”

≺



(l3)T

(l2)T

(l1)T

prog

[prog]prog ⟹CT CT

[prog]

l1

l2

l3

Cites!

Proving “[] preserves CT”
leakage 
transformerT :

≺



(l3)T

(l2)T

(l1)T

prog

[prog]prog ⟹CT CT

[prog]

l1

l2

l3

Cites!

=

Proving “[] preserves CT”
leakage 
transformerT :

≺



(l3)T

(l2)T

(l1)T

prog

[prog]prog ⟹CT CT

[prog]

l1

l2

l3

Cites!

=

Proving “[] preserves CT”
leakage 
transformerT :

≺



(l3)T

(l2)T

(l1)T

prog

[prog]prog ⟹CT CT

[prog]

l1

l2

l3

Cites!

=

Proving “[] preserves CT”
leakage 
transformerT :

≺
≺



(l3)T

(l2)T

(l1)T

prog

[prog]prog ⟹CT CT

[prog]

l1

l2

l3

Cites!

==

Proving “[] preserves CT”
leakage 
transformerT :

≺
≺



(l3)T

(l2)T

(l1)T

prog

[prog]prog ⟹CT CT

[prog]

l1

l2

l3

k1

k2

k3 (k3)T

(k2)T

(k1)T

Cites!

==

Proving “[] preserves CT”
leakage 
transformerT :

≺
≺



(l3)T

(l2)T

(l1)T

prog

[prog]prog ⟹CT CT

[prog]

l1

l2

l3

k1

k2

k3

CT

(k3)T

(k2)T

(k1)T

Cites!

==

Proving “[] preserves CT”
leakage 
transformerT :

≺
≺



(l3)T

(l2)T

(l1)T

prog

[prog]prog ⟹CT CT

[prog]

l1

l2

l3

k1

k2

k3

CT

(k3)T

(k2)T

(k1)T

k1k2k3… l1l2l3…=

Cites!

==

Proving “[] preserves CT”
leakage 
transformerT :

≺
≺



(l3)T

(l2)T

(l1)T

prog

[prog]prog ⟹CT CT

[prog]

l1

l2

l3

k1

k2

k3

CT

(k3)T

(k2)T

(k1)T

k1k2k3… l1l2l3…= (k1k2k3…)T (l1l2l3…)T=

Cites!

==

Proving “[] preserves CT”
leakage 
transformerT :

≺
≺



(l3)T

(l2)T

(l1)T

prog

[prog]prog ⟹CT CT

[prog]

l1

l2

l3

k1

k2

k3

CT

(k3)T

(k2)T

(k1)T

k1k2k3… l1l2l3…= (k1k2k3…)T (l1l2l3…)T=

CT Cites!

==
⟹

Proving “[] preserves CT”
leakage 
transformerT :

≺
≺



(l3)T

(l2)T

(l1)T

prog

[prog]prog ⟹CT CT

[prog]

l1

l2

l3

k1

k2

k3

CT

(k3)T

(k2)T

(k1)T

k1k2k3… l1l2l3…= (k1k2k3…)T (l1l2l3…)T=

CT
==

⟹

Proving “[] preserves CT”
Leakage 
TransformerT :

 THEOREM

   +           [] preserves CT.≻ T ⟹

[Barthe et al. ’18, ’21]



[prog]prog ⟹CT CT
Proving “[] reflects CT”



[prog]prog ⟹CT CT
Proving “[] reflects CT”



prog [prog]

Proving “[] reflects CT” [prog]prog ⟹CT CT



prog [prog]

=

Proving “[] reflects CT” [prog]prog ⟹CT CT



prog [prog]

=

Proving “[] reflects CT” [prog]prog ⟹CT CT

≺
≺



prog [prog]

==

Proving “[] reflects CT” [prog]prog ⟹CT CT

≺
≺



prog [prog]

==

Proving “[] reflects CT” [prog]prog ⟹CT CT
Reverse 
TransformerU :

≺
≺



k1

k2

k3

l1

l2

l3

prog [prog]

==

Proving “[] reflects CT” [prog]prog ⟹CT CT
Reverse 
TransformerU :

≺
≺



k1

k2

k3

l1

l2

l3(l3)U

(l2)U

(l1)U

(k3)U

(k2)U

(k1)U

prog [prog]

==

Proving “[] reflects CT” [prog]prog ⟹CT CT
Reverse 
TransformerU :

≺
≺



k1

k2

k3

l1

l2

l3(l3)U

(l2)U

(l1)U

(k3)U

(k2)U

(k1)U

prog [prog]

k1k2k3… l1l2l3…=

CT
==

Proving “[] reflects CT” [prog]prog ⟹CT CT
Reverse 
TransformerU :

≺
≺



k1

k2

k3

l1

l2

l3

(k1k2k3…)U (l1l2l3…)U=

(l3)U

(l2)U

(l1)U

(k3)U

(k2)U

(k1)U

prog [prog]CT

k1k2k3… l1l2l3…=

CT
==

⟹

Proving “[] reflects CT” [prog]prog ⟹CT CT
Reverse 
TransformerU :

≺
≺



k1

k2

k3

l1

l2

l3

(k1k2k3…)U (l1l2l3…)U=

(l3)U

(l2)U

(l1)U

(k3)U

(k2)U

(k1)U

prog [prog]CT

k1k2k3… l1l2l3…=

CT
==

⟹

Proving “[] reflects CT” [prog]prog ⟹CT CT
Reverse 
TransformerU :

≺
≺

 THEOREM

    +    reverse         [] reflects CT.≻ U ⟹



Proving “[] is CT transparent”



[] preserves CT [] reflects CT

Proving “[] is CT transparent” [prog]prog ⟺CT CT



[] preserves CT [] reflects CT

T : prog
leakage

[prog]
leakage U: prog

leakage
[prog]
leakage

transformer reverse transformer

Proving “[] is CT transparent” [prog]prog ⟺CT CT



[] preserves CT [] reflects CT

T : prog
leakage

[prog]
leakage U: prog

leakage
[prog]
leakage

exist for many [] already

transformer reverse transformer

Proving “[] is CT transparent” [prog]prog ⟺CT CT



[] preserves CT [] reflects CT

T : prog
leakage

[prog]
leakage U: prog

leakage
[prog]
leakage

exist for many [] already how?

transformer reverse transformer

Proving “[] is CT transparent” [prog]prog ⟺CT CT



[] preserves CT [] reflects CT

T : prog
leakage

[prog]
leakage U: prog

leakage
[prog]
leakage

exist for many [] already how?

Idea: Flip  to get T U

transformer reverse transformer

Proving “[] is CT transparent” [prog]prog ⟺CT CT



[] preserves CT [] reflects CT

T : prog
leakage

[prog]
leakage : prog

leakage
[prog]
leakage

exist for many [] already how?

Idea: Flip  to get T U

T−1
transformer reverse transformer

Proving “[] is CT transparent” [prog]prog ⟺CT CT



[] preserves CT [] reflects CT

T : prog
leakage

[prog]
leakage : prog

leakage
[prog]
leakage

exist for many [] already how?

Idea: Flip  to get T U
Sufficient Condition

 must be injective!T

T−1
transformer reverse transformer

Proving “[] is CT transparent” [prog]prog ⟺CT CT



[] preserves CT [] reflects CT

T : prog
leakage

[prog]
leakage : prog

leakage
[prog]
leakage

exist for many [] already how?

Idea: Flip  to get T U
Sufficient Condition

 must be injective!T details 

T−1
transformer reverse transformer

Proving “[] is CT transparent” [prog]prog ⟺CT CT



Proving “[] is CT transparent” [prog]prog ⟺CT CT

 THEOREM

    +    injective         [] is CT transparent.≻ T ⟹



Proving “[] is CT transparent” [prog]prog ⟺CT CT

 THEOREM

    +    injective         [] is CT transparent.≻ T ⟹

[Unspilling]

[Dead Assignment Elimination]

[Structural Analysis]

[Dead Branch Elimination]

[Constant Folding][Loop Rotation] [Untiling]



Making RetDec transparent



Making RetDec transparent



Making RetDec transparent
Handcrafted 
“likely to fail” 

Snippets



Making RetDec transparent
Handcrafted 
“likely to fail” 

Snippets ]RetDec Pass[ Transformed 
Snippets



Making RetDec transparent
Handcrafted 
“likely to fail” 

Snippets ]RetDec Pass[ Transformed 
Snippets

Transparent on Snippets?



Making RetDec transparent
Handcrafted 
“likely to fail” 

Snippets ]RetDec Pass[ Transformed 
Snippets

Transparent on Snippets?

✓ Keep pass (49) ✗ Remove pass (13)



Making RetDec transparent
Handcrafted 
“likely to fail” 

Snippets ]RetDec Pass[ Transformed 
Snippets

Transparent on Snippets?

✓ Keep pass (49) ✗ Remove pass (13)

CT-RetDec



Making RetDec transparent

CT-RetDec



Making RetDec transparent
160 (10x16) Binaries 

with and without 
Real World Vulnerabilities

CT-RetDec



Making RetDec transparent
160 (10x16) Binaries 

with and without 
Real World Vulnerabilities ][ Decompiled BinariesCT-RetDec



Making RetDec transparent
160 (10x16) Binaries 

with and without 
Real World Vulnerabilities ][ Decompiled BinariesCT-RetDec

transparent on all



Making RetDec transparent
160 (10x16) Binaries 

with and without 
Real World Vulnerabilities ][ Decompiled BinariesCT-RetDec

transparent on all
RetDec removes vulnerabilities from 45



s.van-der-wall@tu-bs.de

Decompiling for Constant Time Analysis
Santiago Arranz Olmos, Gilles Barthe, Lionel Blatter,  

Youcef Bouzid, Sören van der Wall, Zhiyuan Zhang

appearing in OOPSLA 26



crypto.c

decompile

crypto.o
UNSOUND

CT

CT

Binary Ninja
Angr

Ghidra

Hex-Rays
RetDec

s.van-der-wall@tu-bs.de

Decompiling for Constant Time Analysis
Santiago Arranz Olmos, Gilles Barthe, Lionel Blatter,  

Youcef Bouzid, Sören van der Wall, Zhiyuan Zhang

appearing in OOPSLA 26



crypto.c

decompile

crypto.o
UNSOUND

CT

CT

Binary Ninja
Angr

Ghidra

Hex-Rays
RetDec

[prog]prog ⟺CT CT

[] CT transparent

WHEN
s.van-der-wall@tu-bs.de

Decompiling for Constant Time Analysis
Santiago Arranz Olmos, Gilles Barthe, Lionel Blatter,  

Youcef Bouzid, Sören van der Wall, Zhiyuan Zhang

appearing in OOPSLA 26



crypto.c

decompile

crypto.o
UNSOUND

CT

CT

Binary Ninja
Angr

Ghidra

Hex-Rays
RetDec

[prog]prog ⟺CT CT

[] CT transparent

WHEN

Proving “[] preserves CT”

==

≺≺

T
(k1k2k3…)T (l1l2l3…)T=

s.van-der-wall@tu-bs.de

Decompiling for Constant Time Analysis
Santiago Arranz Olmos, Gilles Barthe, Lionel Blatter,  

Youcef Bouzid, Sören van der Wall, Zhiyuan Zhang

appearing in OOPSLA 26



crypto.c

decompile

crypto.o
UNSOUND

CT

CT

Binary Ninja
Angr

Ghidra

Hex-Rays
RetDec

[prog]prog ⟺CT CT

[] CT transparent

WHEN

Proving “[] preserves CT”

==

≺≺

T
(k1k2k3…)T (l1l2l3…)T=

 THEOREM

  +  injective     [] is CT transparent.≻ T ⟹

Proving “[] is CT transparent”

s.van-der-wall@tu-bs.de

Decompiling for Constant Time Analysis
Santiago Arranz Olmos, Gilles Barthe, Lionel Blatter,  

Youcef Bouzid, Sören van der Wall, Zhiyuan Zhang

appearing in OOPSLA 26



crypto.c

decompile

crypto.o
UNSOUND

CT

CT

Binary Ninja
Angr

Ghidra

Hex-Rays
RetDec

[prog]prog ⟺CT CT

[] CT transparent

WHEN

Proving “[] preserves CT”

==

≺≺

T
(k1k2k3…)T (l1l2l3…)T=

 THEOREM

  +  injective     [] is CT transparent.≻ T ⟹

Proving “[] is CT transparent”

][CT-RetDec

s.van-der-wall@tu-bs.de

Decompiling for Constant Time Analysis
Santiago Arranz Olmos, Gilles Barthe, Lionel Blatter,  

Youcef Bouzid, Sören van der Wall, Zhiyuan Zhang

appearing in OOPSLA 26


