Decompiling
for Constant-Time Analysis

Decompilers disturb Formal Side Channel Security!

Santiago Arranz Olmos, Gilles Barthe, Lionel Blatter, PriSC 2026
Youcef Bouzid, Soren van der Wall, Zhiyuan Zhang Rennes

Formal Side-Channel Security 101

Attacker Model
;e‘%;f\\

Formal Side-Channel Security 101

Attacker Model

mem

crypto.o attacker.o

Formal Side-Channel Security 101

Attacker Model

mem

crypto.o os attacker.o

Formal Side-Channel Security 101

Attacker Model

) 4
LRAAL

mem

crypto.o os attacker.o

Formal Side-Channel Security 101

Attacker Model

) 4
LRAAL

mem

crypto.o os attacker.o

Formal Side-Channel Security 101

Attacker Model
LAA
)

mem

crypto.o os attacker.o

Formal Side-Channel Security 101

Attacker Model

P <
LAAL

attacker.o

Formal Side-Channel Security 101

Model: CT-Leakage Semantics

Formal Side-Channel Security 101 Model: CT-Leakage Semantics

operational semantics

Formal Side-Channel Security 101 Model: CT-Leakage Semantics

operational semantics (1 leakage observations)

Formal Side-Channel Security 101 Model: CT-Leakage Semantics

CT-Leakage

l»

depends on

leak . .
= executed instruction

Formal Side-Channel Security 101 Model: CT-Leakage Semantics

CT-Leakage

leak
— . .
S t instruction leak

load / store address

conditional branch branch outcome

depends on

leak . .
= executed instruction

Formal Side-Channel Security 101 Security Property

prog.cis CT WHEN

Formal Side-Channel Security 101 Security Property

prog.cis CT WHEN

Ve

. attacker-indistinguishable;
~ equal except on secrets.

Formal Side-Channel Security 101 Security Property

prog.cis CT WHEN

YV 1
IENEENEN

. attacker-indistinguishable;
~ equal except on secrets.

Formal Side-Channel Security 101 Security Property

prog.cis CT WHEN

YV 1
IENEENEEN

have |(1|(2|(3... — 111213...

. attacker-indistinguishable;
~ equal except on secrets.

Formal Side-Channel Security 101 Security Property

Prog.cis CT WHEN “Leakages don’t depend on secrets.”

YV 1
IENEENEN

have |(1|(2|(3... — 111213...

. attacker-indistinguishable;
~ equal except on secrets.

Formal Side Channel Security 101

ranch predictor

. L——é — = —— T, ~ — ———— — — - - - ;1

leak

observe

Mem

Formal Side Channel Security 101

ranch predictor

. L——é — = —— T, ~ — ———— — — - - - ;1

leak

observe

Mem

Formal Side Channel Security 101

ranch predictor

. L——é — = —— T, ~ — ———— — — - - - ;1

leak

observe

Mem

Formal Side Channel Security 101

harmless
leak

branch predictor |

observe

Mem

', > ,'
‘a e
& 4
A - 2
_'u_u.‘
SN
S
>
Al
A

CT-Analysis

Formal Side Channel Security 101

harmless
leak

branch predictor |

\, Observe

Mem

attacker.o

crypto.o ‘ T

CT-Analysis

Constant Time Analysis

Remove functions

<>| trusted-crypto-1lib.c Raw

CT-Analysis

1 encrypt(secret_data,key);

2 create_hmac(secret_data, key); tainting / symb exec/ ...
3

Decompile-then-Analyze

crypto.o

binary level

Decompile-then-Analyze

crypto.o

binary level
source level

CT-Analysis

Decompile-then-Analyze

crypto.o

binary level
source level decompille

C I'y p t 0 ° C CT-Analysis

Decompile-then-Analyze

crypto.o

binary level
source level decompille

C I'y p t 0 ° C CT-Analysis

Decompile-then-Analyze
CLangover (CVE-2024-37880)

ML-KEM.o

.LBBO_2: ; for(j = @; j < 8; j++)

movzx r8d, b ptr [rsi + rax]
Xxor edx, edx
bt r8d, ecx
jae .LBBO_4 ; leaks bit of msg
mov edx, 1665

.LBBO_4:
mov vord ptr [rdi + 2*rcx], dx
1nc rcx
cmp rex, 8

jne .LBBO_2

Decompile-then-Analyze
CLangover (CVE-2024-37880)

ML-KEM.o

bt r8d, ecx
jae .LBBO_4 ; leaks bit of msg

Decompile-then-Analyze
CLangover (CVE-2024-37880)

RETDEC

ML-KEM.o — > ML-KEM.c

bt r8d, ecx
jae .LBBO_4 ; leaks bit of msg

Decompile-then-Analyze
CLangover (CVE-2024-37880)

RETDEC

ML-KEM.o — > ML-KEM.c

bt r8d, ecx ,
jae .LBB@_4 ; leaks bit of msg | (int32_t)byte) == 0 ?

// no leak

Decompile-then-Analyze

Q’r crypto.o

binary level
source level

CT-Analysis

Decompile-then-Analyze

Q’r crypto.o

binary level
source level decompille

CT C I'y p t 0 ° C CT-Analysis

Decompile-then-Analyze

Q’r crypto.o

binary level
source level decompille

CT C I'y p t 0 ° C CT-Analysis

Decompile-then-Analyze

Q’r crypto.o

UNSOUND

binary level
source level decompille

CT C I'y p t 0 ° C CT-Analysis

Decompile-then-Analyze

Q’r crypto.o

UNSOUND | ANGR

BINARY NINJA

(GHIDRA
RETDEC

Hex-RAYS

binary level
source level decompille

CT C I'y p t 0 ° C CT-Analysis

Decompile-then-Analyze

Q’r crypto.o
CT-Analysis

binary level

Decompile-then-Analyze

crypto.o

binary level

Decompile-then-Analyze

crypto.o
3
)
2
O CT-Analysis
binary level 3

IR level

Decompile-then-Analyze

crypto.o
S
D)
%
O CT-Analysis
binary level 3
IR level

analyze

Decompile-then-Analyze

crypto.o
S
D)
%
O CT-Analysis
binary level 3
IR level

analyze

Decompile-then-Analyze

crypto.o
S
D)
%
O CT-Analysis
binary level 3
IR level

analyze

Decompile-then-Analyze

crypto.o CT-VERIF"*
—+ BINSEC®
S
-
@,
| O CT-Analysis
binary level 3
IR level

analyze

A input is LLVM-IR
*» on handcrafted example.o

Properties for Sound Decompilation

PLOY.0 ™ unsounp[~ P*99-C

Properties for Sound Decompilation

o)

Properties for Sound Decompilation

o)

[] reflects CT

[] preserves CT

[] CT transparent

Properties for Sound Decompilation

i)

prog @ — [prog] €1

“ T removes no vulnerabilities”

[| reflects CT WHEN

[] preserves CT

[] CT transparent

Properties for Sound Decompilation

i)

prog @ — [prog] €1

“ T removes no vulnerabilities”

[| reflects CT WHEN

prog CT — [progl]l CT

“[1 introduces no vulnerabilities”

[] preserves CT WHEN

[] CT transparent

Properties for Sound Decompilation

o)

prog @ — [prog] €1

“ T removes no vulnerabilities”

[| reflects CT WHEN

prog CT — [progl]l CT

“[1 introduces no vulnerabilities”

[] preserves CT WHEN

| | CT transparent WHEN

prog CT < [prog] CT

Decompile-then-Analyze

crypto.o

| CT-Analysis
binary level

IR level

analyze

Decompile-then-Analyze

crypto.o
S
>
7p,
2 CT-Analysis
binary level @
IR level =

analyze

Decompile-then-Analyze

crypto.o
S
>
7p,
2 CT-Analysis
binary level @
IR level =

ﬁ analyze

Decompile-then-Analyze

crypto.o
S
>
7p,
2 CT-Analysis
binary level @
IR level =

ﬁ analyze

Proving “[| is CT transparent”

Proving “[| is CT transparent”

start with [] preserves CT and [] reflects CT

prog CT — [prog]l CT
Proving “[] preserves CT”

Proving “[] preserves CT” prog CT — [prog] CT

Cites!

pYogQ [prog]

Proving “[] preserves CT” prog CT — [prog] CT

Cites!

pYogQ [prog]
[

K1 W

i

Ko W

i

Kz W

i

Proving “[] preserves CT” prog CT — [prog] CT

Cites!

pYogQ [prog]
[

K1 W

i

Ko W

i

Kz W

i

Proving “[] preserves CT” prog CT — [prog] CT

Cites!
pYogQ [prog]
]]
v Lg K1 W
]]
v Ly Ko ¥
]]
v L3 K3 ¥

i i

Proving “[] preserves CT” prog CT — [prog] CT

Cites!
pYogQ [prog]
U U
v L1 ?é K1 W
B B
v b -+ Ko W
U U
v L3 -+ K3 ¥

i i

——

Proving “[] preserves CT” prog CT — [prog] CT

Cites!
pYogQ [prog]
]]
v Lg K1 W
]]
v Ly Ko ¥
]]
v L3 K3 ¥

i i

Proving “[] preserves CT” prog CT — [prog] CT

T . leakage
o transformer

Cites!
pYogQ [prog]
]]
v L1 T(l1) ¥
[[
v Lo (1) ¥
[[

v L3 T(15) ¥

i i

——

Proving “[] preserves CT” prog CT — [prog] CT

T . leakage
o transformer

Cites!
pYogQ [prog]

]]
e () ¥ N N
]) 5
v by T(-l.z) v D
]) 5
v L3 T(13) v D
] g) 5

a

Proving “[] preserves CT” prog CT — [prog] CT
T . leakage
o transformer

prog [prog]

Cites!

N

J«U)<«UJ«

Proving “[] preserves CT” prog CT — [prog] CT
T . leakage
o transformer

prog [prog]

Cites!

N

J«U)<«UJ«

Proving “[] preserves CT” prog CT — [prog] CT
T . leakage
o transformer

prog [prog]

Cites!

z N

J«U)<«UJ«
J«U)<«UJ«

Proving “[] preserves CT” prog CT — [prog] CT
T . leakage
o transformer

prog [prog]

Cites!

v K1 v T(|(1)
3 i

v Ko v T(K>)
3 i

v K3 v T(ks)

Proving “[] preserves CT” prog CT — [prog] CT

T . leakage
o transformer

Cites!
CT prog [prog]
17 o S g
ékl le éT(|(1)
ékz @13 éT(|(2)
v K3 D v T(|(3)

i

Proving “[] preserves CT” prog CT — [prog] CT

T . leakage
o transformer

Cites!
CT prog [prog]
17 o S g
ékl le éT(|(1)
ékz @13 éT(|(2)
v K3 D v T(|(3)

i

|<1 |(2 |(3... = 11213...

Proving “[] preserves CT” prog CT — [prog] CT

T . leakage
o transformer

Cites!
CT prog [prog]
]]

D 4 éll T(ll)é % D
ék1 élz T(lz)é éT(k1)
ékz v s T(1s) éT(k”
v K3 D D v 1T(k

<_>_ (3)
(] G

|(1|(2|(3... = L1l Ls.. T(|(1|(2|(3...) —_— T(111213...)

Proving “[] preserves CT” prog CT — [prog] CT
T . leakage
o transformer

CTprog = [progl CT

Cites!

]]
D 4 éll T(ll)é % D
ékl élz T(lz)é éT(k1)
ékz VL T(15) ¥ éT(k”
v K3 D D v 1T(k
> — (3)
O 4

|(1|(2|(3... = L1l Ls.. T(|<1|(2|(3...) —_— T(111213...)

Proving “[] preserves CT”

CTprrog = [prog]l CT

THEOREM [Barthe et al. ’18, ’21]

> + T = preserves CT.

Proving “[]| reflects CT”

prog CT <= [prog] CT
Proving “[]| reflects CT”

Proving “[] reflects CT” prog CT <= [prog] CT

pYogQ [prog]

Proving “[] reflects CT” prog CT <= [prog] CT

pYogQ [prog]

N

<0<«
J«U)<«UJ«

Proving “[] reflects CT” prog CT <= [prog] CT

pYogQ [prog]
AN

i
\
i
\
i
\
i

J«U)<«UJ«

Proving “[] reflects CT” prog CT <= [prog] CT

pYogQ [prog]

_C 0«
pae Al
D O 0 5
U0 0 Y
B '_:_ B

Proving “[] reflects CT” prog CT <= [prog] CT

l] . Reverse
e [ransformer

pYogQ [prog]

_C 0«
pae Al
D O 0 5
U0 0 Y
B '_Z_ B

Proving “[] reflects CT” prog CT <= [prog] CT
U . Reverse
o [ransformer
prog [prog]

[;] L1 w % D
A 5
v Lo w D
g] 13@ <3
0 0 Y

> |(3 é

Proving “[] reflects CT” prog CT <= [prog] CT

l] . Reverse
e [ransformer

pYogQ [prog]
]]
D z v U(1l1) L1 v N D
U(ki) ¥ D D K1 ¥
D v U(-l.z) Lo w D
U(ky) ¥ D D Ko ¥
D v U(13) [R 4 D
U(ks) ¥ D D K3 ¥

O o aQ

Proving “[] reflects CT” prog CT <= [prog] CT

l] . Reverse
e [ransformer

nrog [prog] CT
[[
D z v U(1l1) L1 v N D
U(ky) ¥ D D K1 ¥
D v U(-l.z) Lo w D
U(ky) ¥ D D Ko ¥
D v U(1ls) [4 D
U(ks) ¥ D D K3 W
—
(] G

|(1 |(2 |(3... = 11213...

Proving “[] reflects CT” prog CT <= [prog] CT
U . Reverse
e [ransformer

CTprog < [progl CT

]]
D z v U(1l1) L1 v N D
U(Cki) ¥ D D K1 ¥
E] v U(1ly) Low D
U(ka) ¥ D D Ko ¥
D v U(13) [ER D
U(ks) ¥ D D <3 ¥
—
(] G

U(|(1|(2|(3...) — U(111213...) kKikoks... = L1lo1s..

Proving “[] reflects CT”

CTprrog < [prog]l CT

THEOREM

reflects CT.

Proving “[| is CT transparent”

Proving “[] is CT transparent” prog CT < [progl] CT

| | preserves CT + L | reflects CT

Proving “[] is CT transparent” prog CT < [progl] CT

| | preserves CT + L | reflects CT

transformer reverse transformer
T + prog __ [progl] » [progl _, prog
* |leakage leakage * leakage leakage

Proving “[] is CT transparent” prog CT < [progl] CT

| | preserves CT + L | reflects CT

transformer reverse transformer
* Pprog [prog] [prog] _, prog
T * |leakage — leakage U * leakage Ieakage

exist for many [] already

Proving “[] is CT transparent” prog CT < [progl] CT

| | preserves CT + L | reflects CT

transformer reverse transformer
* Pprog [prog] [prog] _, prog
T * |leakage — leakage U * leakage Ieakage

exist for many [] already how?

Proving “[] is CT transparent” prog CT < [progl] CT

| | preserves CT + L | reflects CT

transformer reverse transformer
T . prog [prog] » [prog] _, prog
* |leakage leakage * leakage leakage
exist for many [] already how?

Idea: Flip 7 to get U

Proving “[] is CT transparent” prog CT < [progl] CT

| | preserves CT + L | reflects CT

transformer reverse transformer
e prog [prog] —1. [prog] prog
T * |leakage — leakage T * leakage — leakage
exist for many [] already how?

Idea: Flip 7 to get U

Proving “[] is CT transparent” prog CT < [progl] CT

| | preserves CT + L | reflects CT

transformer reverse transformer
e prog [prog] —1. [prog] prog
T * |leakage — leakage T * leakage — leakage
exist for many [] already how?

Idea: Flip 7 to get U

Sufficient Condition
1 must be !

Proving “[] is CT transparent” prog CT < [progl] CT

| | preserves CT + L | reflects CT

transformer reverse transformer
e prog [prog] —1. [prog] prog
T * |leakage — leakage T * leakage — leakage
exist for many [] already how?

Idea: Flip 7 to get U

Sufficient Condition
1 must be !

Proving “[] is CT transparent” prog CT < [progl] CT

THEOREM

is CT transparent.

Proving “[] is CT transparent” prog CT < [progl] CT

THEOREM

is CT transparent.

[Loop Rotation] [Untiling] [Constant Folding]
[Unspilling] [Structural Analysis]

[Dead Assignment Elimination] [Dead Branch Elimination }

Making ReTDEc transparent

Making ReTDEec transparent

Making ReTDEec transparent

Handcrafted

“likely to fail”
Snippets

Making ReTDEec transparent

Handcrafted Transformed
“Iil;el_y to Ia"" — RETDEC PASS -> Snippets
nippets

Making ReTDEec transparent

Handcrafted

“likely to fail” — [RETDEC PASS] -> Trgrr:is;;rer:\: ;
Snippets

Transparent on Snippets?

Making ReTDEec transparent

Handcrafted

“likely to fail” — [RETDEC PASS] -> Trgrr:is;grer?: ;
Snippets

Transparent on Snippets?

(Keep pass (49) X Remove pass (13)

Making ReTDEec transparent

Handcrafted

“likely to fail” — [RETDEC PASS] -> Trgrr:is;grer?: ;
Snippets

Transparent on Snippets?

(Keep pass (49) X Remove pass (13)

Making ReTDEec transparent

CT-ReTDEC

Making ReTDEec transparent

160 (10x16) Binaries

with and without CT—RETDEC

Real World Vulnerabilities

Making ReTDEec transparent

160 (10x16) Binaries
with and without — CT-RETDEC = Decompiled Binaries
Real World Vulnerabilities

Making ReTDEec transparent

160 (10x16) Binaries

with and without —_ [CT-ReTDEC] >

Real World Vulnerabilities

transparent on all

Making ReTDEec transparent

160 (10x16) Binaries

with and without — [CT-RETDEC] = De. »mpiled Binaries
Real World Vulnerabilities ‘

transparent on all

ReTDEC removes vulnerabilities from 45

appearing in OOPSLA 26 E ﬂ!

Decompiling for Constant Time Analy5|s -

Santiago Arranz OImos, Gilles Barthe, Lionel Blatter,
Youcef Bouzid, Soéren van der Wall, Zhiyuan Zhang

s.van-der-wall@tu-bs.de E & =,

#f crypto.o

ANGR

U NSOU N D BiNARY NINJA
GHIDRA
RETDEC
Hex-RAYsS

decompile

CTcrypto.cC

appearing in OOPSLA 26 E ﬂ!

Decompiling for Constant Time Analy5|s -

Santiago Arranz OImos, Gilles Barthe, Lionel Blatter,
Youcef Bouzid, Soéren van der Wall, Zhiyuan Zhang

s.van-der-wall@tu-bs.de E & =,

#f crypto.o

ANGR
U NSOU N D BiNARY NINJA
GHIDRA
decompile e

CTcrypto.cC

[] T transparent appearing in OOPSLA 26 E ﬂ!
WHEN Decompiling for Constant Time Analysis -

Santiago Arranz OImos, Gilles Barthe, Lionel Blatter, I
Youcef Bouzid, Soren van der Wall, Zhiyuan Zhang

Prog CT — [prog] CT s.van-der-wall@tu-bs.de E_- :

#f crypto.o

[|
ANGR

BiNARY NINJA
GHIDRA

decompile e
\{
CT Crypt O.C Proving “[] preserves CT”
O U
“Z N
07 Q T 0
9 7 B
O U
0 < 0
T(|(1|(2|(3...) — T(111213...)
[] CT transparent appearing in OOPSLA 26 E ﬂ!
WHEN Decompiling for Constant Time Analysis -

Santiago Arranz OImos, Gilles Barthe, Lionel Blatter, I
Youcef Bouzid, Soren van der Wall, Zhiyuan Zhang

PYO(Q CT — [Prog] CT s.van-der-wall@tu-bs.de E_- T

ﬁ Cry pt 0.0 Proving “[] is CT transparent”

:
UNSOUND BiNARY NINJA
decompile EEH;BI;? > + iniective | = is CT transparent.

CT Crypt O0.C Proving “[] preserves CT”

0" g ““o

U T U
0 Q[q O
0 g, _ oo
T(|(1|(2|(3...) —_ T(111213...)

[] CT transparent appearing in OOPSLA 26 E ﬂ_.
WHEN Decompiling for Constant Time Analy5|s -

Santiago Arranz OImos, Gilles Barthe, Lionel Blatter,
Youcef Bouzid, Soéren van der Wall, Zhiyuan Zhang

PXrog CT — [prog] CT s.van-der-wall@tu-bs.de E&u‘_

ﬁ Cry pt 0.0 Proving “[] is CT transparent”

. THEOREM
U NSO U N D BiNARY NINJA
GHIDRA
. RETDEC
decompile o R

> + iniective | = is CT transparent.

CT Crypto « C Proving “[] preserves CT”
z U U A
u q O
g 0 A 0 g [CT—RETDEC]
0 D
0 ™ O

T(|(1|(2|(3...) —_ T(111213...)

[] CT transparent IEI
appearing in OOPSLA 26
WHEN Decompiling for Constant Time Analysis

Santiago Arranz OImos, Gilles Barthe, Lionel Blatter,
Youcef Bouzid, Soren van der Wall, Zhiyuan Zhang -

PXrog CT — [prog] CT s.van-der-wall@tu-bs.de Eh:‘

