
On the Complexity of Multi-Pushdown Games
Roland Meyer
TU Braunschweig, Germany
roland.meyer@tu-bs.de

Sören van der Wall
TU Braunschweig, Germany
s.van-der-wall@tu-bs.de

Abstract
We study the influence of parameters like the number of contexts, phases, and stacks on the
complexity of solving parity games over concurrent recursive programs. Our first result shows that
k-context games are b-EXPTIME-complete, where b = max{k−2, 1}. This means up to three contexts
do not increase the complexity over an analysis for the sequential case. Our second result shows
that for ordered k-stack as well as k-phase games the complexity jumps to k-EXPTIME-complete.

2012 ACM Subject Classification Theory of computation → Automata over infinite objects

Keywords and phrases concurrency, complexity, games, infinite state, multi-pushdown

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.52

Funding This work was partially supported by DFG grant 417532197 Effective Denotational Se-
mantics for Synthesis (EDS@SYN).

1 Introduction

Software verification and synthesis are difficult, even more so when concurrency comes into
play. Algorithmically, both tasks often amount to solving games [33] over an operational
model that captures implementation and specification details [62, 40]. What makes these
games hard to solve is the size of the underlying graph, which easily ends up having an infinite
set of positions. One reason is that software often computes over infinite data domains.
Another reason is that the control flow tends to be structured into recursive procedures or
even functional code. Despite this difficulty, efficent algorithms and tools for solving games
over infinite graphs have been proposed. Data aspects are discharged to logical reasoning
engines [9, 21]. Recursive functions are summarized to their call-return relationship [58, 54,
61, 10], an idea that generalizes to functional programs [3, 46, 45, 55, 34, 41, 36]. Alternatively,
the set of reachable call stacks is tracked symbolically and saturated until a fixed point is
reached [20, 14, 32, 23], which is again applicable to functional programs [15, 37, 26, 17, 25].
There are efficient implementations of saturation [18, 19]. Yet, tools that participate in the
Software Verification Competition [11], like CPAchecker [1, 12, 13] and the ULTIMATE
framework [2, 38, 39], favor summarization.

What remains a challenge, not only for game solvers but already for verification engines,
is concurrency. When combined with recursion, even the simplest analysis problems become
undecidable [31, 53]. One way out is under-approximation, analyzing only a (critical) subset
of the semantics. In context-bounded computations [52] the thread holding the processor
(the context) may switch only a bounded number of times. Phase-bounded computations [47]
generalize the idea. During a phase all threads may push their stack but only one thread can
pop. In ordered computations [16], the threads are ordered and a pop transition may only be
performed by the smallest thread whose stack is non-empty. The complexity is similar to the
phase-bounded case [6, 5]. Technically, the above results are obtained for multi-pushdown
systems [16], a programming model with multiple stacks accessed by a sequential control
flow representing the interleaving of the threads.

© Roland Meyer and Sören van der Wall;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 52; pp. 52:1–52:35

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:roland.meyer@tu-bs.de
mailto:s.van-der-wall@tu-bs.de
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.52
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

52:2 On the Complexity of Multi-Pushdown Games

Table 1 Overview of the state-of-the-art and new results with technical highlights marked.

Previous results New results
Upper bounds k fixed k input k fixed k input
k-stack ordered — — k-EXP non-elem.
k-context k-EXP [57] non-elem. [57] max{k − 2, 1}-EXP non-elem.
k-phase k-EXP [57] non-elem. [57] k-EXP non-elem.
Lower bounds
k-stack ordered — — k-EXP non-elem.
k-context — — max{k − 2, 1}-EXP non-elem.
k-phase — non-elem. [7, 8] k-EXP non-elem.

The aforementioned works are limited to (linear-time) verification. There are considerably
less results towards under-approximate synthesis (and branching-time model checking). Seth
was the first to study parity games over multi-pushdown systems, multi-pushdown games
(MPDG) for short [57]. He considered phase boundedness and gave a summarization-based
decision procedure. It can be lifted to a subclass of concurrent higher-order programs [56].
Using saturation, Hague [35] was able to capture the full class of concurrent higher-order
programs. The algorithm works for orderedness, bounded phases, and the bounded scopes
explained below. The winning condition is reachability. Also using saturation, Atig et al. [8]
showed how to reduce the number of phases in an MPDG, leading to a recursive decision
procedure. It yields a k-EXPTIME upper bound for k phases. If the phases are part of the
input, the upper bound is non-elementary and the authors present a matching lower bound.
An also non-elementary lower bound was shown for the related problem of branching-time
model checking under a given context bound [7].

Contribution. We determine the precise influence of the number of contexts, phases, and
stacks on the complexity of solving parity MPDG (Table 1). The practically most relevant
and at the same time technically most interesting case is k-context parity MPDG for which
we show max{k − 2, 1}-EXPTIME-completeness.1 The upper bound reflects the fact that
three contexts can be translated into a single stack pushdown. Interestingly, each further
context increases the complexity by one exponent, as in the case of the seemingly more
expressive phase-bounded MPDG. There, the complexity settles at k-EXPTIME-complete for
k phases. The same complexity holds for ordered k-stack parity MPDG.

Motivated by the success of summarization algorithms [1, 13, 2, 38], we decided to derive
our upper bounds by summarization. The algorithms reduce the given MPDG to a finite game
by abstracting plays through completed function calls (between matching pushes and pops)
to their effect on the control states. This approach has been pioneered by Walukiewicz for
pushdown games [61] and generalized to phase-bounded MPDG by Seth [57]. Our algorithms
are generalizations and optimizations of Seth’s work. Unlike [57], we do not assume a constant
number of stacks under context bounds.

Unfortunately, we also discovered a flaw in [57] that makes the existing finite game
construction unsound. We explain and fix the problem, and thus obtain the first (correct)
summarization algorithm for MPDG.

We complement the findings by matching lower bounds. They work by reductions from
space-bounded alternating Turing machines. To demonstrate the expressiveness of MPDG
without getting lost in the case distinctions often involved with Turing machine reductions,

1 Class k-EXPTIME is the union of all DTIME(expk(poly(n))) with exp0(n) = n, expk+1(n) = 2expk(n).

R. Meyer and S. van der Wall 52:3

we propose the formalism of first-order relations. These are relations among words formulated
in a fragment of first-order logic. Our main result shows that k-phase, (k + 2)-context, and
k-stack ordered MPDG can decide first-order relations over words of length (k − 1)-fold
exponential. Reachability is sufficient as the winning condition. The reductions are a
considerable step beyond the non-elementary and parameterwise rough lower bounds in [7, 8].
We build on ideas in [7], the result for phase-bounded MPDG in [8] cannot be adapted to
context boundedness.

Related Work. There are further restrictions on concurrent recursive programs. Round-
bounded computations [48] schedule the threads in round-robin fashion for a given number of
rounds. Scope-bounded computations [49] require a matching pop to occur within a bounded
number of contexts from the corresponding push. Very recently, hole boundedness [4] has
been proposed as a generalization of bounded scope. Common to these notions is that they
limit the ability of the scheduler in contrast to the studied restrictions.

A framework that has led to algorithmic meta-theorems of the above form is bounded
tree-width [28, 50] and its developments like split-width [29, 22]. The idea is to capture
a programming model that acts on infinite storage by a finite-state device operating over
enriched computations. So far, this approach has not been lifted to games.

Remotely related is higher-order model checking [51]. The complexity is similar, namely
k-EXPTIME for schemes of order k. Moreover, besides Ong’s game semantics approach [51],
there are saturation [17] and summarization [46] algorithms. The technical challenges,
however, are different. In HOMC, the task is to represent and manipulate recursively defined
functions of higher order. In MPDG, the task is to capture the interferences among threads.

2 Multi-Pushdown Games

Multi-Pushdown Systems. A multi-pushdown system (MPDS) is a finite-control program
that operates on finitely many stacks of unbounded height [16]. Formally, it is a tuple
P = (Q,Γ, δ, n), where Q is a finite set of control states, n is the number of stacks, Γ is a
finite stack alphabet, and δ = δint ∪ δpush ∪ δpop is a set of internal, push, and pop transitions
with

δint ⊆ Q× [1..n]×Q δpush ⊆ Q× [1..n]× Γ×Q δpop ⊆ Q× Γ× [1..n]×Q .

Each transition acts on a stack r ∈ [1..n]. We refer to all internal transitions for stack r with
δint,r, and similarly for δpush,r and δpop,r. Let δr = δint,r ∪ δpush,r ∪ δpop,r. The size of P is
given by |P | = |Q|+ |Γ|+ |δ|.

The behavior of MPDS is defined in terms of configurations and labeled transitions
between them. A configuration of P is a pair (q,P) consisting of a control state q ∈ Q and a
vector of stack contents P ∈ (Γ∗)n. We use C = Q× (Γ∗)n for the set of all configurations.
The labeled transition relation −→ ⊆ C × δ × C implements the transitions given by P on its
configurations. We have (q,P) τ−→ (q′,P ′) if one of the following holds:

τ = (q, r, q′) ∈ δint and P ′ = P
τ = (q, r, s, q′) ∈ δpush and P ′ = P[r 7→s.P[r]]

τ = (q, s, r, q′) ∈ δpop and P ′[r 7→s.P′[r]] = P.

If transition label τ is not important, we may omit it. Vector P[j 7→y] is defined to coincide with
P except for the content of stack j which is replaced by y, P[j 7→y][j] = y and P[j 7→y][z] = P [z]
for all z 6= j. We use P[1..r] = y to indicate that stacks 1 to r hold content y.

FSTTCS 2020

52:4 On the Complexity of Multi-Pushdown Games

Ordered Computations, Contexts, and Phases. A computation of P is a finite or infinite
sequence of configurations (q0,P0) τ0−→ (q1,P1) τ1−→ . . . that respects the transition relation.
It is ordered [16] if for every pop transition from stack r the stacks 1, . . . , r − 1 are empty,
Pp[1..r − 1] = ε for all τp ∈ δpop,r. The computation is a context on stack r if all transitions
act on that stack, for all τp we have τp ∈ δr. It is a phase on stack r if every pop transition
acts on that stack, for all τp ∈ δpop we have τp ∈ δpop,r. A computation is said to have k
contexts [52] if it decomposes into k contexts but does not decompose into k − 1 contexts,
and similar for k phases [47].

Graph Games. A graph game is a two-player zero-sum game played by moving a pebble
along the edges of a potentially infinite graph [33]. Formally, it is a tuple (V,E, own,win),
where (V,E) is a directed graph, own : V → {Eve,Ana} is an ownership function, and
win : V ω → {Eve,Ana} is a winning condition. We call V the positions and E the moves of
the game. We call a graph game finite, if the set of positions is finite.

A play is a maximal path π in the graph (V,E) underlying the game. Eve wins the play
if either the play is infinite and win(π) = Eve, or the play is finite and ends in a position
from VAna (with no move left for Ana). Otherwise, Ana wins the play. Whenever a play
reaches a position, the owner of the position has to decide about the next move. A strategy
for Eve is a function σ : V ∗VEve → V such that v E σ(πv) holds for all πv ∈ V ∗VEve. The
strategy is positional if it only depends on the current position. In this case, the strategy
can be given as σ : VEve → V . A play π = π0π1 . . . is compliant with strategy σ for Eve if
for all πp ∈ VEve we have πp+1 = σ(π0 . . . πp). A strategy for Eve is winning from position v
if Eve wins all compliant plays that start in v. If there is a strategy that is winning from v,
we call v a winning position. The definitions for Ana are similar.

A reachability winning condition winW is defined by a set W ⊆ V of so-called winning
positions. We define winW (π) = Eve if a winning position πi ∈W is visited, and winW (π) =
Ana otherwise. A reachability game is a tuple (V,E, own,W). A parity winning condition
winΩ is defined by a mapping from positions to priorities, Ω : V → [0..max]. The winner of
a play is determined by the highest priority that occurs infinitely often during the play, i.e.
winΩ(π) = Eve if the highest infinitely often occurring priority is even, and winΩ(π) = Ana
if it is odd. A parity game is a tuple (V,E, own,Ω).

Multi-Pushdown Games. An n-stack multi-pushdown game (MPDG) [57] is a triple of the
form G = (P, own,win) consisting of a multi-pushdown system P = (Q,Γ, δ, n), an ownership
function own : Q→ {Eve,Ana}, and a winning condition win. The MPDG induces the graph
game (C,→, own,win), and we say that Eve wins the MPDG if she wins the induced graph
game. The set of positions C and the set of moves → are the configurations and transition
relation of P as defined above. The ownership function carries over from control states to
configurations, own(q,P) = own(q) for all (q,P) ∈ C. To be precise, in a reachability MPDG
we are given a set of control states Qreach to represent the winning set Creach = Qreach×(Γ∗)n.
In a parity MPDG, the winning condition is given by a priority assignment Ω : Q→ [0..max]
to the states. Again, we lift it to configurations by Ω(q,P) = Ω(q). The size of a reachability
MPDG G is |G| = |P |, the size of a parity MPDG is |G| = |P |+ max.

A k-context multi-pushdown game (G, k) is a restriction of the MPDG G so that plays
have at most k contexts [7]. The formal definition tracks the number of contexts within
the positions. Moves that would introduce context k + 1 do not exist. The definition of
k-phase multi-pushdown games is similar [57, 8]. An ordered n-stack multi-pushdown game
only admits moves that lead to an ordered play: a pop transition on stack r exists only in
positions where stacks 1 to r − 1 are empty.

R. Meyer and S. van der Wall 52:5

In our development, it will be convenient to assume that the MPDG of interest does not
deadlock. Every MPDG G can be turned into a deadlock-free MPDG G′ that has the same
winner, the same highest priority, and is larger by only a linear factor. This continues to
hold with a polynomial factor under the aforementioned restrictions.

3 Upper Bound for Ordered MPDG

We give an algorithm for computing the winning positions in an ordered n-stack MPDG
that works in n-EXPTIME. The algorithm is a slight optimization of Seth’s summarization
construction for phase-bounded MPDG [57]. We discovered a bug in this construction that
we explain and show how to correct. Details can be found in Appendix B.

I Theorem 1. Given an ordered n-stack MPDG G with parity winning condition, we can
compute Eve’s winning positions of the form (q, εn) in time expn(poly(|G|2)).

The algorithm constructs from the given MPDG G a finite parity game F and solves
the latter. The finite game preserves the winner for the positions of interest, the set of
priorities, and is not too costly to compute. For the complexity, note that n is not part of
the input but fixed. Further, parity games are solved in time exponential only in the number
of priorities [42, 43].

I Lemma 2. Let G be an ordered n-stack parity MPDG. In time expn(poly(|G|2)) we can
compute a finite parity game F so that Eve wins G from position (q, εn) if and only if she
wins F from a corresponding position. The priorities in G and F coincide.

3.1 Summarization for Ordered MPDG
We explain the summarization construction from [57], highlight our optimization for ordered
MPDG, and finally make the construction formal. The game G has infinitely many position
due to arbitrarily growing stacks. The finite parity game F removes the stacks and instead
tracks the current top of stack symbol for each stack. This forbids pop transitions in F .
When one player decides to make a pop transition F ends and determines a winner.

In order to model G’s behavior after a pop, F implements a summarization mechanism.
When a symbol s is pushed onto a stack r, Eve proposes a set of summaries. This set can be
understood as fixing a strategy for Eve in G that she will follow for as long as s remains on
stack r. Fixing a strategy results in the set of all plays that are compliant to it and lead
from the push of s to a situation where s is popped again. Each summary captures such a
situation and thereby abstracts a play from this set. The finite game F can thus skip any of
the abstracted plays up to the captured situation after the pop of s.

There is no guarantee that Eve will be honest in the sense that the proposed set of
summaries indeed abstracts all plays that pop s and are compliant to some fixed strategy. To
account for this, Ana is allowed to react to the proposal. First, she may trust Eve by choosing
a summary from the proposed set. In this case, F executes the skip of the abstracted play
and replaces (parts of) the current position with the position after the pop as captured by
the summary. This can be understood as also fixing a strategy for Ana in G that, together
with Eve’s strategy, leads to the abstracted play.

Second, she may doubt Eve’s proposal by executing the push transition instead of skipping.
This replaces the top of stack symbol for stack r. Executing the push also stores the set
of summaries proposed by Eve in the position of F . It is remembered for as long as s
remains the topmost symbol of stack r. To be precise, the position will hold a separate set of

FSTTCS 2020

52:6 On the Complexity of Multi-Pushdown Games

π
r i j

Figure 1 A fixed play π in G. Each arc matches a push to its pop. The highlighted paths show
different plays in F .

summaries for the topmost symbol of each stack. When a stack is popped, the remembered
set of summaries for that stack is checked for containing a summary that captures the current
situation of the play. Eve wins if and only if some summary in the set applies.

Finally, there may be another reason for Ana to execute the push transition. In this case,
she trusts Eve’s proposed set, but her own strategy will make sure that s is never removed
from the stack.

Ordered Summaries. To abstract a play π in G from a push to a matching pop on a stack r,
a summary for an ordered MPDG, or ordered summary for short, takes the shape

(q,m, T ,M,S) .

The entries q ∈ Q and T ∈ Γn−r describe the configuration resulting from the final pop
transition, with q the control state and T the topmost symbol for each stack. The orderedness
restriction forces the stacks 1, . . . , r− 1 to be empty. The entry m ∈ [0..max] is the maximal
priority encountered during the abstracted play, from after the push up to before the pop.
Each entry M[j] of M ∈ [0..max]n−r is the maximal priority encountered since after the
push of the topmost symbol T [j] of stack j.

The summary recursively holds a vector S ∈ (2OS)n−r of sets of summaries for the other
non-empty stacks. Here, OS is the set of all summaries as defined below. Assume the
abstracted play pushes the symbol T [j] onto a stack j 6= r and does not contain a matching
pop. The set of summaries S[j] is Eve’s proposed set for how the top of stack symbol T [j]
can be popped after the abstracted play. When the play skips to the position captured by
this summary, S[j] becomes the set of summaries stored for T [j].

Pathing. When Ana doubts a set of summaries for the push on stack r she might have a
strategy that pops stack r with a combination of control state, highest priority and top of
stack symbols, that are not present in the set. Alternatively, they coincide but after the
pop on stack r, her strategy pops stack j in a situation not captured by S[j]. Observe that
if Ana wants to doubt a set S[j], she needs to find a play in F , which runs into a pop on
stack j without running into a pop on another stack. Alternatively, if she wants to skip to a
situation captured by a summary within S[j], she needs to steer the play to run into the
push of T [j], so she gets the option of skipping.

To understand this, assume some summary abstracts a play π in G from the push to a
pop on stack r, which first contains a push on stack i and then a push on stack j (Figure 1).
If the set of summaries S[j] does not capture the situation how π pops T [j], Ana can run
into its pop as illustrated by the dashed path in the figure, i.e. Ana executes the push on
stack r and then skips upon the push on stack i. The play reaches the pop on stack j and is
checked against S[j]. If it is captured, Ana wants to continuetheplaybeyondthepopofstackj
byskipping to a summary in S[j]. To achieve this, she executes both, the push on stack r and
i. Then she can skip upon reaching the push on stack j as illustrated by the dotted path.

R. Meyer and S. van der Wall 52:7

I Definition 3. We proceed by induction on the stack from n down to one. The set of
ordered summaries for stack r is

OSr = Q× [0..max]× Γn−r × [0..max]n−r ×
∏

r<j≤n

2OSj .

In the base case r = n, the last three components are defined to be absent. The set of all
ordered summaries is OS =

⋃
1≤r≤nOSr.

Our optimization targets the orderedness restriction. During an abstracted play between a
push and a pop on stack r, if we find an unmatched push on another stack j, then we can
conclude that j > r. This means a summary for stack r only needs to contain summaries for
stacks of larger order. The largest set is OS1 which has size expn−1(O(|G|2)), Appendix A.1.
When we construct the game F , it will be convenient to assume that all vectors have length n.
We fill the missing entries for stacks one to r with ε for T , 0 forM, and ∅ for S.

3.2 The Finite Parity Game
Consider the ordered n-stack MPDG with parity winning condition G = (P, own,Ω), where
P = (Q,Γ, δ, n), own : Q→ {Eve,Ana}, and Ω : Q→ [0..max]. We define the finite parity
game F explained above, following Seth [57] but correcting a mistake. Rather than giving
the positions of F right away, we explain the behavior of the game and introduce them
together with their moves. Game F regularly visits check positions (Check, q, T ,M,S) with
q ∈ Q, T ∈ Γn,M ∈ [0..max]n, and S ∈ (2OS)n. Note that there is a set of summaries for
each stack. The owner and the priority are the ones for q.

Internal Transitions. Internal transitions (q, r, p) ∈ δint of game G are mirrored in F . They
only update the priorities:

(Check, q, T ,M,S) → (Check, p, T , upd(M, p),S) . (1)

The new priority vector is defined by upd(M, q)[j] = max{M[j],Ω(q)}, for each stack j. Note
that we use an implicit universal quantification over the parameters that are not specified
further, meaning the transition exists for all T ,M, and S.

Push Transitions. Push transitions (q, r, s, p) ∈ δpush in G lead to a series of transitions in
F originating from (Check, q, T ,M,S):

(Check, q, T ,M,S) → (Pushr, T ,M,S, p, s) (2)
(Pushr, T ,M,S, p, s) → (Claimr, T ,M,S, p, s, S) (3)

(Claimr, T ,M,S, p, s, S) → (Check, p, T[r 7→s], upd(M, p)[r 7→Ω(p)],S[r 7→S]) (4)
(Claimr, T ,M,S, p, s, S) → (Jumpr, q′,m′, T ′′,M′,S ′′,M[r]) (5)

(Jumpr, q′,m′, T ′′,M′,S ′′,M[r]) → (Check, q′, T ′′,M′′,S ′′) . (6)

The transitions introduce intermediary push, claim, and jump positions with the following
ownership and priority assignments:

own(Pushr,−) = Eve Ω(Pushr,−) = 0
own(Claimr,−) = Ana Ω(Claimr,−) = 0
own(Jumpr,−) = Eve Ω(Jumpr, q′,m′, T ′′,M′,S ′′,M[r]) = m′.

FSTTCS 2020

52:8 On the Complexity of Multi-Pushdown Games

Move (2) remembers control state p and symbol s and gives Eve the next move. With
Move (3), Eve proposes a set of summaries S ⊆ OSr for the symbol to be pushed. By implicit
universal quantification, there is a transition for each such set. Move (4) performs the push:
the priority vector takes into account the priority of p for all stacks. For stack r, Ω(p) is the
highest (and only) priority seen since the push of s. Move (5) corresponds to a skip and exists
for every summary (q′,m′, T ′,M′,S ′) ∈ S. For stack r, we preserve the top of stack symbol
T [r] and the set of summaries S[r]. For the other stacks, we use the information given by
the summary. Thus, T ′′ = T ′[r 7→T [r]] and S ′′ = S ′[r 7→S[r]]. The role of the jump position is
to make visible the priority m′ of the summary. In Move (6), we update the priority vector
toM′′. For stack r, note that T [r] remains the topmost symbol after the skip. Hence, the
priority assignment has to take into accountM[r], the highest priority seen before the skip.
Thus,M′′ = upd(M′[r 7→max{M[r],m′}], q

′).

3.3 Pop Transitions and a Correction to a Mistake
As defined in [57] Ana may win F in cases where she does not win G. We correct the
definition and explain the difference to the original formulation. The ordered MPDG G can
only perform a pop (q, s, r, p) ∈ δpop of symbol s from stack r if the stacks 1 to r − 1 are
empty. Given the side condition, the finite game F has simulating moves only in positions
(Check, q, T[r 7→s],M,S) where T [1..r − 1] = ε, M[1..r − 1] = 0, and S[1..r − 1] = ∅. The
simulating moves immediately decide about the winner of the game and take the following
shape. The positions EveWin and AnaWin are winning for Eve resp. Ana. Both are owned
by Eve, have self-loops, and EveWin has priority 0 while AnaWin has priority 1.

(Check, q, T[r 7→s],M,S) → EveWin (7)
(Check, q, T[r 7→s],M,S) → AnaWin . (8)

Recall that the goal of a pop transition is to check whether Ana caught Eve lying on
the proposal of summaries for the popped symbol. If the current position is captured by a
summary, Eve was honest and Ana could have found a path to skip after the current pop.
Otherwise, Eve was lying, Ana was right in questioning the proposal and wins.

To check whether position (Check, q, T[r 7→s],M,S) is captured, we compare it to each
summary stored for stack r. The finite game has Move (7) if and only if there is a summary
x = (p,m, T ′,M′,S ′) ∈ S[r] with m =M[r], T ′ = T[r 7→ε],M′ =M[r 7→0], and

S ′[j] ⊆ S[j] for all j 6= r . (9)

If summary x exists, it indeed captures the current position in the game: The state after the
pop transition is p, the priority m is equal the maximal priority seen during the play with s
on stack r, i.e. m =M[r]. The top of stack symbols T ′ coincide with the current ones T ,
also the maximal priorities encountered since the moment these symbols have been pushed
coincide,M[j] =M′[j].

The problem in [57] refers to the relationship between S ′ and S. The incorrect definition
required an equality and therefore missed Moves (7) winning for Eve. The correction is to
require Inclusion (9). To understand the problem with equality, consider the play π in an
ordered MPDG G depicted in Figure 2. The play has two pushes with corresponding pops,
one on stack r and drawn above the play, the other on stack j and drawn below the play.
The push on stack j is simulated in the finite game F in two different ways.

Upon the push of stack r, Eve chooses a strategy up until the pop of stack r, enumerates
all compliant plays (up to the pop), and summarizes them in the proposed set S1. The play
π is among the compliant plays and yields summary x ∈ S1. The part of π abstracted by x

R. Meyer and S. van der Wall 52:9

π
S1

S2

x

S′2

Figure 2 Matching pushes and pops, the above on stack r, the below on stack j.

contains a push on stack j 6= r. Eve extends her strategy and enumerates all plays from the
push to the pop of stack j that coincide with π on the already fixed dashed part, from the
push of stack j to the pop of stack r. The resulting set of summaries S′2 is contained in x.

Ana may decide against skipping and execute the push on stack r. The play may follow π

and reach the push on stack j. Eve is again asked to summarize all plays up to the pop on
stack j, and proposes a set S2. Even though the proposed sets are for the same push in the
same play, the result may be S2 6= S′2. When forming S′2, the play was already fixed on the
dashed part, up to the pop of stack r. When forming S2, this does not hold. Hence, there
may be plays starting with the push of stack j that pop stack r in a situation not captured
by x and later pop stack j (e.g. with a different highest priority seen). However, Eve will
have to at least propose a summary for each play that coincides with π on the dashed part
and later pops stack j. Thus, the formed set of summaries S2 is a superset of the set S′2.
Accordingly, if Ana also executes the push on stack j, and the play runs into the pop of stack
r, checking whether summary x captures the situation at the pop of stack r requires that
S′2 ⊆ S2 and not S′2 = S2.

4 Upper Bound for Context-Bounded MPDG

We give an algorithm to solve context-bounded MPDG that takes max{1, k − 2}-EXPTIME
when considering k contexts. From a practical point of view, the interesting observation is that
communication across two context switches does not increase the complexity over the problem
of solving (sequential) pushdown games, which are EXPTIME-complete [61]. This compares
well to the fact that a 3-context MPDS can be encoded as a single stack PDS. Interestingly,
beyond the third context the complexity rises at the same pace as for phase-bounded MPDG,
namely by one exponent per context/phase (Section 5).

I Theorem 4. Given a k-context MPDG G with parity winning condition, we can compute
Eve’s winning positions of the form (q, εn) in time expmax{1,k−2}(poly(|G|)).

Note that we do not assume the number of stacks to be fixed. The observation is that in
a play with k contexts we can only make use of k stacks and it can be converted into an
MPDG with only k stacks at only polynomial overhead (cf. Appendix C).

Our algorithm starts by reducing the number of stacks, if necessary. Afterwards, we
construct a finite parity game identical to the one from the previous section except for a
different set of summaries. The correctness statement is therefore a variant of Lemma 2,
with a similar proof that can be found in [60].

I Lemma 5. Let G be a k-context k-stack parity MPDG. In time expmax{1,k−2}(poly(|G|))
we can compute a finite parity game F so that Eve wins G from position (q, εn) if and only
if she wins F from a corresponding position. The priorities in G and F coincide.

The set of summaries we use to construct F is an optimization of Seth’s summaries for
phase-bounded MPDG. We repeat Seth’s definition in our notation.

FSTTCS 2020

52:10 On the Complexity of Multi-Pushdown Games

I Definition 6 ([57]). We fix a stack r and define the set of phase summaries PSr,c by
induction on the phase c from k down to 1:

PSr,c = Q× {c} × [1..max]× Γn−1 × [1..max]n−1 ×
∏
j 6=r

2PSj,>c

where PSj,>c =
⋃k
i=c+1 PSj,i.

A phase summary (q, c,m, T ,M,S) in PSr,c still contains the information required to skip a
play from a push on stack r to the matching pop. The matching pop is defined to occur in
phase c. The meaning of q,m, T ,M is unchanged from Definition 3. The sets of summaries
for stacks j 6= r refer to phases later than c. If a symbol is popped in phase c from stack r
then stack j can only be popped in a later phase.

When considering context-bounded rather than phase-bounded MPDG, the key insight is
that the summaries for the first and the second context can be simplified. A summary for
these contexts describes a situation where the push and the matching pop happen within the
same context. As a consequence, the other stacks will not change between the push and the
pop. This means a summary for context one and two does not need to contain entries for
other stacks. This yields the following optimization of Definition 6.

I Definition 7. Consider stack r. We define the set of context summaries by CSr,c = PSr,c
for c from 3 to k. For c = 1, 2, the stack has no influence on the definition:

CSc = Q× {c} × [1..max] .

The largest set of summaries is CSr,3, which has size expk−3(O(|G|2k)) or expk−3(poly(|G|))
since k is fixed, Appendix A.2. Note that the optimization in Definition 7 is not sound for
phase-bounded MPDG. There, symbols can be pushed on all stacks in phases one and two.
The difference also manifests itself in the lower bound.

5 Lower Bounds

We show lower bounds on the complexity of solving context-bounded, phase-bounded, and
ordered MPDG. They match the upper bounds established in the previous sections. The
lower bounds already hold for reachability as the winning condition and thus carry over to
parity. Interestingly, for phase and context-bounded MPDG we only need two stacks.

I Theorem 8. Solving (k + 2)-context respectively k-phase 2-stack reachability MPDG is
k-EXPTIME-hard. Solving ordered n-stack reachability MPDG is n-EXPTIME-hard.

The proofs are by reduction from the membership problem for space-bounded alternating
Turing machines [27]. We want to focus on the main ideas. A detailed presentation can be
found in Appendix D and [60]. Let M be an alternating Turing machine that is guaranteed
to terminate (decider) and operate with space bound expk−1(poly(|w|)). Given an input
word w, we show how to construct a 2-stack reachability MPDG Gw satisfying the following.

I Lemma 9. Eve wins Gw if and only if w ∈ L(M). No play in Gw exceeds (k+ 2) contexts
and k phases. The construction of Gw works in time polynomial in |w|.

Note that the same MPDG Gw proves the lower bound for the context-bounded and for
the phase-bounded case. Appendix D.4 explains how to adapt the construction to ordered
MPDG. In that setting, we need n stacks. Together, this proves Theorem 8.

R. Meyer and S. van der Wall 52:11

We give the construction of Gw in three steps. First, we explain the overall idea of
how Gw simulates M . Next, we present the key techniques used in the construction,
first-order relations defined by a fragment of first-order logic, and Stockmeyer’s nested
indexing [59, 24, 36]. Finally, we give details of the construction.

5.1 Reduction
We recall the semantics of alternating Turing machines. Configurations (q, c) of M on input
w consist of a state q and tape content c. States are defined to be existentially or universally
branching. We generalize this terminology to configurations and speak of existential and
universal configurations, respectively. The tape content is a word over the tape alphabet
together with a marker denoting the head of the alternating Turing machine. We do not use an
additional work tape. A computation of M on w yields a tree. The nodes are configurations,
the edges are transitions. Existential configurations have one successor configuration, if a
transition is possible. Universal configurations have a successor for each possible transition.
A configuration is final if it is universal and no transitions are possible. The tree is accepting
if every branch reaches a final configuration. There may be different computation trees and
M accepts w if one of them is accepting.

Configurations (q, c) of the alternating Turing machine will be modeled by positions in
the game Gw. Alternation will be reflected by the ownership function: Eve will own the
positions modeling existential configurations, and hence decide about the transition to take
from there. Transitions between configurations will be mimicked by moves. A play of Gw
reflects a branch in some computation tree of M on input w. A winning strategy for Eve
will yield a computation tree of M on w that is accepting. A winning strategy for Ana will
find a branch that violates acceptance in any computation tree.

When modeling configuration (q, c), state q will be the control state of Gw. To understand
how tape content is stored, consider a computation branch of M that leads to (q, c). It is a
sequence of configurations (q0, c0) . . . (qm, cm)(q, c). The game stores the tape contents on
the first stack, in the form c#cm# . . .#c0. The owner of q chooses a transition δ to take
from (q, c), that results in a configuration (q′, c′). The game pushes the tape content c′ onto
the first stack and sets the new control state to q′.

The difficulty is that tape content c′ is of size expk−1(len) with len = poly(|w|) while the
size of Gw has to remain polynomial. This means the tape content cannot be pushed in a
faithful way by only using the control states of the MPDG. Instead, we let Eve propose a
sequence of symbols γ from an appropriate alphabet. Afterwards, we give Ana the opportunity
to check the sequence for correctness. Correctness is expressed by a number of relations
between γ and its predecessor c on the first stack.

For each relation, we show how to construct a verification mechanism, an MPDG that is
entered when Ana chooses to check correctness. Once entered, the verification mechanism
cannot be left again. It is constructed in such a way that Eve has a winning strategy from
the entry point if and only if the topmost sequences γ and c on the first stack are in the
required relation. The use of verification mechanisms forces a winning strategy for Eve in
the overall game to push a sequence γ that satisfies all relations.

Consider the verification mechanism required to implement the relation of a Turing
machine transition δ, say from configuration (q, c) to (q′, c′). The verification mechanism has
to check that γ = c′, the proposed word is the tape content of the successor configuration. If
not, then a single position will witness the mismatch. It is either a position that changed
without having the head, or the change did not respect δ. The verification mechanism
thus needs to compare the same position in γ and c. Still, the number of positions is not
polynomial and verification mechanisms cannot store the position in the control state.

FSTTCS 2020

52:12 On the Complexity of Multi-Pushdown Games

The idea is to annotate the letters in c and in γ with their positions. This reduces counting
to the problem of comparing annotations. However, even if the positions are encoded binary
the annotation is still expk−2(len) long. The problem can be addressed in the same way,
we again annotate the letters of the encoding with their positions. This recursive process
is known as Stockmeyer’s nested indexing [59, 24, 36], written here as function enc. As a
consequence, the first stack will actually hold the sequence enc(c)#enc(cm)# . . .#enc(c0).

The relations between γ and enc(c) that Ana will have to check by means of verification
mechanisms are: is γ a correct encoding at all, γ = enc(u) for some u, and is the encoded
tape content u the successor c′ of content c according to a Turing machine transition δ. We
already discussed how to check the latter relation. For the former, the essence is to check
the binary increment relation. We rely on further auxiliary relations.

Our key observation is that all relations required for the reduction are defined by a finite
alternation of quantifiers over the set of positions. We introduce first-order relations, a
formalism sufficiently expressive to capture each of these relations. Then we show how to
construct a verification mechanism for any first-order relation. This is the main technical
contribution of the section.

5.2 First-Order Relations
A first-order relation is a relation u ∼ϕ v between words u and v that is defined by a closed
formula ϕ from a fragment of first-order logic. For the definition of the fragment, let Σ be
a finite alphabet ranged over by s. Let V be a countable set of so-called position variables
ranged over by y. A term t is either an alphabet symbol or the symbol at position y in the
first or in the second word. A formula ϕ quantifies over positions, compares positions, and
compares symbols given by terms t1 and t2:

t ::= s | symb1(y) | symb2(y) ϕ ::= y1 ≤ y2 | t1 = t2 | ϕ1 ∧ ϕ2 | ¬ϕ | ∃y.ϕ .

The remaining logical connectives, the universal quantifier, and common predicates are defined
as abbreviations. A formula is closed if every position variable is bound by a quantifier.

Formulas ϕ are evaluated over pairs of words u = u0 . . . un−1 and v = v0 . . . vn−1 over Σ
of the same length together with a valuation of the free position variables val : V → [0..n− 1].
The semantics of terms is

JsKval
u,v = s Jsymb1(y)Kval

u,v = uval(y) Jsymb2(y)Kval
u,v = vval(y) .

The semantics of first-order formulas is as expected [30]. For closed formulas, it is independent
of the valuation. A closed formula ϕ defines a so-called first-order relation among words
that contains all models of the formula, ∼ϕ = {(u, v) | u, v |= ϕ}. To give an example, the
ordering < on natural numbers in most-significant-bit-first encoding is defined by

∃y1.∀y2. [(y2 < y1) → symb1(y2) = symb2(y2)] ∧ symb1(y1) = 0 ∧ symb2(y1) = 1 .

A first-order formula is in prenex normal form if is has the shape Q1y1 . . . Qmym.ϕ, where
Qi ∈ {∃,∀} and ϕ does not contain quantifiers. Every first-order formula can be transformed
into an equivalent formula in prenex normal form [30].

5.3 Stockmeyer’s Nested Indexing
Our reduction relies on Stockmeyer’s nested indexing [59, 24, 36]. It takes a word of length
expd(n) and appends to each letter an index. The index is the letter’s position given in
most-significant-bit-first encoding. Each index has length expd−1(n). This encourages to
index it as well, and do so on until the indices have polynomial length.

R. Meyer and S. van der Wall 52:13

For each nesting depth d > 0 of indices we introduce the alphabet Σd = {0d, 1d}.
Let function msbf d assign to a number its most-significant-bit-first encoding over Σd. We
define the d-nested indexing indd(u) of words u = u0 . . . um by induction. The base case is
ind0(u) = u, the word itself and the inductive case is

indd+1(u) = u0x0 . . . um−1xm−1 , where xi = indd(msbf d+1(i)) .

To give an example, ind2(abra) = a02010211b02011211r12010211a12011211.
In our reduction, all words indexed by indd are of length expd(len) for some len ∈ N.

Then all indices in each layer d have the same length and their msbf d encoding ranges from
0expd−1(len) to 1expd−1(len). Since the tape contents in the reduction are of length (k− 1)-fold
exponential in the input word of the Turing machine, we define this to be our encoding,
enc(c) = indk−1(c). As a result, the lowest layer indices are of polynomial length.

5.4 Verification Mechanisms
We proceed by induction on the depth d of the nested indexing. We show how to construct
for every closed first-order formula ϕ a verification mechanism, a 2-stack MPDG Gdϕ that
decides ∼ϕ over words of length expd(len) in the following sense. We have u ∼ϕ v if and only
if Eve has a winning strategy from the initial position with u, v ∈ Σexpd(len) on top of the
first stack. The initial position takes the shape

(Checkdϕ, indd(u)γ1indd(v)γ2, γ3) ,

where γ1, γ2, γ3 are arbitrary stack contents up to some delimiting symbols. For the reduction,
we want to verify the relation of a Turing machine transition δ between encoded configurations
of length (k − 1)-fold exponential in the input. We invoke the next lemma with d = k − 1
and len = poly(|w|) and w the input to M . The verification mechanism thus takes at most
k + 1 contexts and k, once entered. The first phase for pushing the configurations has no
fixed stack, so it merges with the first phase of the verification mechanism for a total of k+ 2
contexts and k phases.

I Lemma 10. Let ϕ be a first-order formula over Σ and d ∈ N. In time poly(d+ |Σ|+ len) we
can construct a 2-stack reachability MPDG Gdϕ that decides ϕ over words of length expd(len).
Any play takes at most d+ 2 contexts and d+ 1 phases.

We explain the main ideas behind the construction. Details can be found in Appendix D
and [60]. Let ϕ = Qy1.Qym.ψ be a closed first-order formula in prenex normal form.
The game reflects the choice of a valuation val for y1, . . . , ym, discharging the quantifier
alternation to the players. For each yj , the responsible player chooses a position val(yj) whose
binary representation has length expd−1(len). Then she pushes the encoding indd−1(val(yj))
on the second stack (cf. Appendix D.3). When all variables have been processed, the second
stack holds a sequence ymindd−1(msbf d(val(ym))) . . . y1indd−1(msbf d(val(y1))) representing
val, where y1, . . . , ym serve as delimiting symbols.

After val has been chosen, we are interested in the value JψKval
u,v. Eve wins if and only if

it is true. The difficult case is to evaluate the atomic formulas in ψ. The idea is to let Eve
propose auxiliary information about u, v, and y1, . . . , ym, which is sufficient to evaluate the
atomic formulas. The size of this information is independent from d, len, so it can be stored
in the control state. Together, this means the game does not need to access the stack during
evaluation. As before, Ana may verify the proposed information.

FSTTCS 2020

52:14 On the Complexity of Multi-Pushdown Games

Atomic formulas can take the shape Jsymb1/2(y)Kval
u,v. Eve proposes symbol assignments

symbu, symbv : {y1, . . . , ym} → Σ, mapping each variable y stored on stack two to the symbol
of word u, v at the position val(y). If Ana chooses to verify symbu(y) (resp. symbv(y)) for
some y, Eve removes symbols from stack one until she claims to have found position val(y).
Ana then decides to either compare the symbol found on stack one to symbu(y) (symbv(y))
or verify the equality of the valuation indd−1(val(y)) on stack two and the annotated index
on stack one (Appendix D.1).

Alternatively, an atomic formula can be Jy ≤ y′Kval
u,v. For these, Eve proposes a variable

order, a sequence of variables interleaved with relations of the form

yl1 θ1 yl2 θ2 . . . θm−1 ylm , with θj ∈ {=, <} .

Verifying an entry y θ y′ amounts to verifying one of the first-order relations =, <, and > on
the corresponding valuations stored on stack two. This is an application of induction, since
the valuations are of smaller nested depth, i.e. indd−1(val(y)) and indd−1(val(y′)).

Note that the number of possible symbu, symbv, and variable orders is independent of
the indexing depth d and the input length len, but exponential in the size of ϕ.

Contexts and Phases. The verification mechanism begins by pushing the valuation onto
stack two. This process either succeeds with the final valuation on stack two, which costs
one context or phase, but does not fix the stack for the phase, or fails and takes at most
d+ 1 contexts and d phases (Appendices D.3, D.2).

Then, Eve proposes information. Ana may doubt that symb1(y) or symb2(y) equals
uval(y) resp. vval(y). Popping the first stack introduces a second context and sets the stack for
the first phase. The comparison routine adds (d− 1) + 2 contexts and phases (Appendix D.1).
Since the context and phase for popping merges with the first context or phase of this routine,
the resulting play has up to d+ 2 contexts and d+ 1 phases.

Alternatively, Ana may doubt an entry y θ y′ of the variable order. This includes removing
irrelevant variable values from stack two, which continues the first context and sets the stack
for the first phase. Then Gd−1

ϕθ
adds up to (d− 1) + 2 contexts and (d− 1) + 1 phases by the

induction hypothesis. This yields a bound of d+ 2 contexts and d phases.
If Ana believes the proposal, the game ends without a further context or phase. The

maximum across all plays is thus d+ 2 contexts and d+ 1 phases.

References
1 CPAchecker. URL: https://cpachecker.sosy-lab.org/index.php.
2 ULTIMATE Automizer and ULTIMATE Taipan. URL: https://monteverdi.informatik.

uni-freiburg.de/tomcat/Website/.
3 K. Aehlig. A finite semantics of simply-typed lambda terms for infinite runs of automata.

LMCS, 3(3), 2007.
4 S. Akshay, P. Gastin, S. Krishna, and S. Roychowdhury. Revisiting underapproximate

reachability for multipushdown systems. In TACAS, volume 12078 of LNCS, pages 387–404.
Springer, 2020. doi:10.1007/978-3-030-45190-5_21.

5 M. F. Atig. From multi to single stack automata. In CONCUR, volume 6269 of LNCS, pages
117–131. Springer, 2010.

6 M. F. Atig. Global model checking of ordered multi-pushdown systems. In FSTTCS, volume 8
of LIPIcs, pages 216–227. Dagstuhl, 2010.

7 M. F. Atig, A. Bouajjani, K. N. Kumar, and P. Saivasan. Model checking branching-time
properties of multi-pushdown systems is hard. CoRR, abs/1205.6928, 2012. URL: http:
//arxiv.org/abs/1205.6928.

https://cpachecker.sosy-lab.org/index.php
https://monteverdi.informatik.uni-freiburg.de/tomcat/Website/
https://monteverdi.informatik.uni-freiburg.de/tomcat/Website/
https://doi.org/10.1007/978-3-030-45190-5_21
http://arxiv.org/abs/1205.6928
http://arxiv.org/abs/1205.6928

R. Meyer and S. van der Wall 52:15

8 M. F. Atig, A. Bouajjani, K. N. Kumar, and P. Saivasan. Parity games on bounded phase
multi-pushdown systems. In NETYS, volume 10299 of LNCS, pages 272–287. Springer, 2017.

9 T. A. Beyene, S. Chaudhuri, C. Popeea, and A. Rybalchenko. A constraint-based approach to
solving games on infinite graphs. In POPL, pages 221–234. ACM, 2014.

10 T. A. Beyene, S. Chaudhuri, C. Popeea, and A. Rybalchenko. Recursive games for compositional
program synthesis. In VSTTE, volume 9593 of LNCS, pages 19–39. Springer, 2015.

11 D. Beyer. Advances in automatic software verification: SV-COMP 2020. In TACAS, volume
12079 of LNCS, pages 347–367. Springer, 2020.

12 D. Beyer, M. Dangl, and P. Wendler. A unifying view on SMT-based software verification.
JAR, 60(3):299–335, 2018.

13 D. Beyer and M. E. Keremoglu. CPAchecker: A tool for configurable software verification.
In Proc. CAV, volume 6806 of LNCS, pages 184–190. Springer, 2011.

14 A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata:
Application to model-checking. In CONCUR, volume 1243 of LNCS, pages 135–150. Springer,
1997.

15 A. Bouajjani and A. Meyer. Symbolic reachability analysis of higher-order context-free
processes. In FSTTCS, volume 3328 of LNCS, pages 135–147. Springer, 2004.

16 L. Breveglieri, A. Cherubini, C. Citrini, and S. Crespi-Reghizzi. Multi-push-down languages
and grammars. Int. J. Found. Comput. Sci., 7(3):253–292, 1996.

17 C. H. Broadbent, A. Carayol, M. Hague, and O. Serre. A saturation method for collapsible
pushdown systems. In ICALP, volume 7392 of LNCS, pages 165–176. Springer, 2012.

18 C. H. Broadbent, A. Carayol, M. Hague, and O. Serre. C-SHORe: a collapsible approach to
higher-order verification. In ICFP, pages 13–24. ACM, 2013.

19 C. H. Broadbent and N. Kobayashi. Saturation-based model checking of higher-order recursion
schemes. In CSL, volume 23 of LIPIcs, pages 129–148. Dagstuhl, 2013.

20 J. R. Büchi. Regular canonical systems. Archiv für mathematische Logik und Grundlagen-
forschung, 6(3):91–111, 1964.

21 T. Cathcart Burn, C.-H. L. Ong, and S. J. Ramsay. Higher-order constrained Horn clauses for
verification. Proc. ACM Program. Lang., 2(POPL):11:1–11:28, 2018.

22 Aiswarya C. Verification of communicating recursive programs via split-width. PhD thesis,
ENS Cachan, 2014.

23 T. Cachat. Symbolic strategy synthesis for games on pushdown graphs. In ICALP, volume
2380 of LNCS, pages 704–715. Springer, 2002.

24 T. Cachat and I. Walukiewicz. The complexity of games on higher order pushdown automata.
CoRR, abs/0705.0262, 2007. URL: http://arxiv.org/abs/0705.0262.

25 A. Carayol and M. Hague. Saturation algorithms for model-checking pushdown systems. In
AFL, volume 151 of EPTCS, pages 1–24, 2014.

26 A. Carayol, M. Hague, A. Meyer, C.-H. L. Ong, and O. Serre. Winning regions of higher-order
pushdown games. In LICS, pages 193–204. IEEE, 2008.

27 A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. JACM, 28(1):114–133, 1981.
28 B. Courcelle and J. Engelfriet. Graph Structure and Monadic Second-Order Logic. CUP, 2012.
29 A. Cyriac, P. Gastin, and K. N. Kumar. MSO decidability of multi-pushdown systems

via split-width. In CONCUR, volume 7454 of LNCS, pages 547–561. Springer, 2012. doi:
10.1007/978-3-642-32940-1_38.

30 H. B. Enderton. A mathematical introduction to logic. Academic Press, 1972.
31 J. Esparza. On the decidability of model checking for several µ-calculi and Petri nets. In

CAAP, volume 787 of LNCS, pages 115–129. Springer, 1994.
32 A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach to model checking pushdown

systems. In Infinity, volume 9 of ENTCS, pages 27–37. Elsevier, 1997.
33 E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and Infinite Games, volume

2500 of LNCS. Springer, 2002.

FSTTCS 2020

http://arxiv.org/abs/0705.0262
https://doi.org/10.1007/978-3-642-32940-1_38
https://doi.org/10.1007/978-3-642-32940-1_38

52:16 On the Complexity of Multi-Pushdown Games

34 C. Grellois and P.-A. Melliès. Finitary semantics of linear logic and higher-order model-checking.
In MFCS, volume 9234 of LNCS, pages 256–268. Springer, 2015.

35 M. Hague. Saturation of concurrent collapsible pushdown systems. In FSTTCS, volume 24 of
LIPIcs, pages 313–325. Dagstuhl, 2013.

36 M. Hague, R. Meyer, and S. Muskalla. Domains for Higher-Order Games. In MFCS, volume 83
of LIPIcs, pages 59:1–59:15. Dagstuhl, 2017.

37 M. Hague and C.-H. L. Ong. Symbolic backwards-reachability analysis for higher-order
pushdown systems. LMCS, 4(4), 2008.

38 M. Heizmann, Y.-W. Chen, D. Dietsch, M. Greitschus, A. Nutz, B. Musa, C. Schätzle,
C. Schilling, F. Schüssele, and Andreas Podelski. Ultimate Automizer with an on-demand
construction of Floyd-Hoare automata. In TACAS, volume 10206 of LNCS, pages 394–398.
Springer, 2017.

39 M. Heizmann, J. Hoenicke, and A. Podelski. Nested interpolants. In POPL, pages 471–482.
ACM, 2010.

40 T. A. Henzinger. Games in system design and verification. In TARK, pages 1–4. National
University of Singapore, 2005.

41 M. Hofmann and J. Ledent. A cartesian-closed category for higher-order model checking. In
LICS, pages 1–12. IEEE, 2017.

42 M. Jurdzinski. Small progress measures for solving parity games. In STACS, volume 1770 of
LNCS, pages 290–301. Springer, 2000. doi:10.1007/3-540-46541-3.

43 M. Jurdzinski and R. Lazic. Succinct progress measures for solving parity games. In LICS,
pages 1–9. IEEE, 2017.

44 M. Jurdzinski, M. Paterson, and U. Zwick. A deterministic subexponential algorithm for
solving parity games. SIAM J. C., 38(4):1519–1532, 2008.

45 N. Kobayashi. Types and higher-order recursion schemes for verification of higher-order
programs. In POPL, pages 416–428. ACM, 2009.

46 N. Kobayashi and C.-H. L. Ong. A type system equivalent to the modal mu-calculus model
checking of higher-order recursion schemes. In LICS, pages 179–188. IEEE, 2009.

47 S. La Torre, P. Madhusudan, and G. Parlato. A robust class of context-sensitive languages. In
LICS, pages 161–170. IEEE, 2007.

48 S. La Torre, P. Madhusudan, and G. Parlato. Model-checking parameterized concurrent
programs using linear interfaces. In CAV, volume 6174 of LNCS, pages 629–644. Springer,
2010.

49 S. La Torre and M. Napoli. Reachability of multistack pushdown systems with scope-bounded
matching relations. In CONCUR, volume 6901 of LNCS, pages 203–218. Springer, 2011.

50 P. Madhusudan and G. Parlato. The tree width of auxiliary storage. In POPL, pages 283–294.
ACM, 2011.

51 C.-H. L. Ong. On model-checking trees generated by higher-order recursion schemes. In LICS,
pages 81–90. IEEE, 2006.

52 S. Qadeer and J. Rehof. Context-bounded model checking of concurrent software. In TACAS,
volume 3440 of LNCS, pages 93–107. Springer, 2005.

53 G. Ramalingam. Context-sensitive synchronization-sensitive analysis is undecidable. ACM
ToPLaS, 22(2):416–430, 2000.

54 T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via graph
reachability. In POPL, pages 49–61. ACM, 1995.

55 S. Salvati and I. Walukiewicz. A model for behavioural properties of higher-order programs.
In CSL, volume 41 of LIPIcs, pages 229–243. Dagstuhl, 2015.

56 A. Seth. Games on higher order multi-stack pushdown systems. In RP, volume 5797 of LNCS,
pages 203–216. Springer, 2009.

57 A. Seth. Games on multi-stack pushdown systems. In LFCS, volume 5407 of LNCS, pages
395–408. Springer, 2009.

https://doi.org/10.1007/3-540-46541-3

R. Meyer and S. van der Wall 52:17

58 M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis. TR 2, NYU,
1978.

59 L. J. Stockmeyer. The complexity of decision problems in automata theory and logic. PhD
thesis, MIT, 1974.

60 S. van der Wall. Bounded analysis of concurrent and recursive programs. Mas-
ter’s thesis, TU Braunschweig, 2019. URL: http://www.tcs.cs.tu-bs.de/documents/
thesis-van-der-wall-2019.pdf.

61 I. Walukiewicz. Pushdown processes: games and model-checking. IC, 164(2):234–263, 2001.
62 I. Walukiewicz. A landscape with games in the background. In LICS, pages 356–366. IEEE,

2004.

A Details on Section 3

We argue that Theorem 1 follows from Lemma 2. To check whether Eve wins G, by
the first statement in the lemma it is sufficient to check whether she wins F . We thus
construct the finite game F , which takes (k − 2)-fold exponential time. We apply a modern
parity game solving algorithm to determine the winner in F , like the recent subexponential
algorithms [43, 44]. The algorithm takes time exponential only in the priorities of F , which
by the second statement in the lemma are the priorities [0..max] in G. We thus obtain an
overall time complexity

expk−2(poly(|G|)) + expk−2(poly(|G|))max ≤ expk−2((1 + max) poly(|G|)),

which is still expk−2(poly(|G|)).

A.1 Size of the sets of ordered summaries
We estimate the size of the optimized sets of summaries by induction on the stack. In the
base case:

|OSn| = |Q| ·max = expn−n(O(|G|2)) .

For the induction step, assume |OSr+1| = expn−(r+1)(O(|G|2)). For stack r we obtain

|OSr| = |Q| ·
n∏

j=r+1
|Γ| ·max · 2

∑n

i=r+1
|OSi| ≤ |Q| · |Γ|n−r ·maxn−r ·

n∏
j=r+1

2n|OSr+1|

≤ |G|2(n−r)+1 · 2(n−r)n|OSr+1| ≤ 2(2n+1)|G|+n2|OSr+1|

The equality is by definition. The first inequality relies on |OSr| ≥ . . . ≥ |OSn|. Since n is a
constant,

2(2n+1)|G|+n2|OSr+1| = 2(2n+1)|G|+n2expn−(r+1)(O(|G|2)) = expn−r(O(|G|2)) .

A.2 Size of the sets of context summaries
We estimate the size of the optimized sets of summaries by induction on the context. In the
base case:

|OSr,1| = |OSr,2| ≤ |OSr,k| ≤ |Q| ·max · |Γ|k−1 ·maxk−1 = expk−k(O(|G|2k)) .

FSTTCS 2020

http://www.tcs.cs.tu-bs.de/documents/thesis-van-der-wall-2019.pdf
http://www.tcs.cs.tu-bs.de/documents/thesis-van-der-wall-2019.pdf

52:18 On the Complexity of Multi-Pushdown Games

The function is indeed polynomial as the number of stacks k is fixed. For the induction step,
assume |OSr,c+1| = expk−(c+1)(O(|G|2k)) with 4 ≤ c+ 1 ≤ k. For context c we obtain

|OSr,c| = |Q| ·max ·
r−1∏
j=1
|Γ| ·max · 2

∑k

l=c+1
|OSj,l|

·
k∏

j=r+1
|Γ| ·max · 2

∑k

l=c+1
|OSj,l|

≤ |G|2k ·
k∏
j=1

2k|OSj,c+1| ≤ 22k|G|+k2|OSr,c+1| .

The equality is by definition. The first inequality relies on |OSr,c| ≥ . . . ≥ |OSr,k|. Also,
|OSj,c| = |OSj′,c| for stacks j 6= j′ by Symmetry.

22k|G|+k2|OSr,c+1| = 22k|G|+k2expk−(c+1)(O(|G|2k)) = expk−c(O(|G|2k))) .

B Equivalence of the MPDG G and the finite game F

In the following, we give a construction intuition for how winning strategies for Eve can be
converted between G and F .

B.1 Transforming a winning strategy from F to G

We proceed in the following steps: First, we introduce a strategy transducer T to transport σ
from F = (VF , EF , own,Ω) to G = (P, own,Ω). Then, we define the strategy ν it implements
and show an invariant between plays compliant with that strategy and runs of T (Lemma
14). Next, we show that if T can perform a run from a stair (q,R) to some configuration
(q′,R′), then there is a play compliant to σ in F from Tr(q,R) to Tr(q′,R′) (Lemma 15
and Lemma 16). Lastly, putting the previous results together, we get that a run compliant
to ν that is losing for Eve leads to a play in F that is compliant to σ losing for Eve, which
contradicts it being a winning strategy. Thus, ν is also a winning strategy.

Intuitively, the transducer T is a multi-pushdown system with the same number of stacks
as P . At any point in the game, the stack heights of T are identical to the stack heights
of P . However, the transitions are amplified to update all top of stack contents with each
transition.

The strategy automaton remembers information of the finite state game in the following
sense. If the finite state game would be in a position (Check, q, T ,M,S), then the strategy
automaton is in state q and the top of stack symbol of each stack r is a tuple (T [r],M[r],S[r]).
The automaton mimics a play of G. Whenever Eve has the next move, she can use it to
follow her strategy σ for F .

I Definition 11. Given a strategy σ for Eve in F , the strategy automaton T is a tuple
T = (Q,Γ × [0..max] × 2OS, 7→, n) where Q is the state space, Γ × [0..max] × 2OS is the
stack alphabet, and 7→ is a transition relation, which we will define directly on the set of
configurations CT .

A configuration of T ∈ CT is (q,R), where R : [1..n] → (Γ × [0..max])∗ × 2OS are the
stack contents. For each stack j, the stack contents R[j] = Rj |R[j]| R

j
|R[j]|−1 . . . R

j
1 is a

seqence of tuples, and Rj |R[j]| is the top of stack symbol. We denote the tuple contents by
Rj i = (γj i, m

j
i, S
j
i).

R. Meyer and S. van der Wall 52:19

For the sake of notation, we introduce a context sensitive top of stack pointer ↑. It obtains
the index value of the top of stack symbol:

R[j] = Rj |R[j]| R
j
|R[j]|−1 . . . R

j
1 = Rj ↑ R

j
↑−1 . . . R

j
1.

This notation also carries over to the individual tuple contents. Thus,

γj ↑ = γj |R[j]| Sj ↑ = Sj |R[j]| mj ↑ = mj |R[j]|.

I Definition 12. We define a transformation function Tr : CT → VF mapping configurations
of T to positions in F by Tr(q,R) = (Check, q, T ,M,S), where T [j] = γj ↑, M[j] = mj ↑
and S[j] = Sj ↑.

To define the transition relation 7→ ⊆ CT × δ × CT , let Tr(q,R) = (Check, q, T ,M,S)
and Tr(q′,R′) = (Check, q′, T ′,M′,S ′). For every transition rule τ of P , T has a transition
(q,R) τ7−→ (q′,R′), if either q is owned by Eve and σ tells her for position Tr(q,R) to use the
move simulating τ , or own(q) = Ana.

Further, for all stacks j 6= r, T ′[j] = γ′
j
↑ = γj ↑ = T ′[j] and T updates the stackcontents

R to R′ dependent on the transition:

Case 1 (τ is an internal transition (q, r, q′)): R = R′ except for each stack j, m′
j
↑ =

max{Ω(q′), mj ↑}.

Case 2 (τ is a push transition (q, r, s, q′)): R = R′, except for each stack j 6= r, m′
j
↑ =

max{Ω(q′), mj ↑}. And for stack r, R′[r] = (s,Ω(q′),S)R[r], where S is determined by σ:

σ(Pushr, T ,M,S, q′, s) = (Claimr, T ,M,S, q′, s, S).

Case 3 (τ is a pop transition (q, s, r, q′) ∈ δpop and R[j] = ε for all j < r):
Case 3.1 (there is (q′,M[r], T[r 7→ε],M[r 7→0],S) ∈ Sr ↑ s.t. for each j > r, S[j] ⊆ Sj ↑):
R = R′, except for each j > r, m′

j
↑ = max{Ω(q′), mj ↑} and S′

j
↑ = S[j]. And for stack r,

R′[r] = (γr ↑−1,max{ mr ↑, m
r
↑−1,Ω(q′)}, Sr ↑−1) Rr ↑−2 Rr ↑−3 . . . Rr 1.

Case 3.2 (there is no (q′,M[r], T[r 7→ε],M[r 7→0],S) ∈ Sr ↑ s.t. for each j > r, S[j] ⊆ Sj ↑):
R = R′, except for each j > r, m′

j
↑ = max{Ω(q′), mj ↑} and for stack r, R′[r] =

(γr ↑−1,max{ mr ↑, m
r
↑−1,Ω(q′)}, Sr ↑−1) Rr ↑−2 Rr ↑−3 . . . Rr 1.

Note that case 3.2 is almost a copy of case 3.1. It simply does not find a matching
summary. We will later use case distinction on whether a transition is due to case 3.1 or 3.2.
Also note that when a configuration (q,R) belongs to Eve, T can only perfom the transition
which σ wants to simulate from Tr(q,R).

The following lemma tells us, that during a run of T , the summary for a stack symbol
can only shrink during the run.

I Lemma 13. Let η = (q,R) and η′ = (q′,R′) with η τ7−→ η′ in T . For each stack j ∈ [1..n],
let shj = min{|R[j]|, |R[j]′|}.
For each stack j ∈ [1..n], S′

j
shj ⊆ Sj shj and for each u ∈ [1..shj − 1], Rj u = R′j

u.

Proof. By construction. Only transition case 3.1 changes Sj shj . When transition case 3.1
happens for a stack r, it changes on stacks j > r the set Sj ↑ to S[j]. But S[j] ⊆ Sj ↑ by the
conditions for transition 3. J

FSTTCS 2020

52:20 On the Complexity of Multi-Pushdown Games

A run of the strategy automaton is a sequence (qinit, (ε,∅,Ω(qinit)n) = η0
τ07−→ η1

τ17−→
We can use the strategy automaton to define a strategy ν on G for starting positions of the
form (qinit, εn). We define ν inductively on the play prefix. The proof of the next lemma
does both, it defines the strategy and states an invariant between plays in G conform to it
and runs of T .

I Lemma 14. Let π = π0
τ0−→ . . .

τl−1−−−→ πl be a play prefix compliant to the strategy ν and
η = η0

τ07−→ . . .
τl−17−−−→ ηl the corresponding run of T . At any position p ∈ N, if ηp = (q,R),

then
1. πp = (q, (γ1 ↑ γ1 ↑−1 . . . γ

1
1, γ

2
↑ γ

2
↑−1 . . . γ

2
1, . . . , γn ↑ γ

n
↑−1 . . . γn 1)).

2. If lupπj (p) 6= ⊥ is defined, then maxu∈[lupπ
j

(p)..p]{Ω(qu)} = mj ↑. And if lupπj (p) = ⊥ is
undefined, then maxu∈[0..p]{Ω(qu)} = mj ↑.

Proof.

I Base Case (π0, η0). π0 = (qinit, εn), η0 = ((qinit, 0, 0), (ε,∅,Ω(qinit))n). Both invariants
hold immediately.

I Inductive Case (πi to πi+1, ηi to ηi+1). Let π = π0
τ07−→ . . .

τi−17−−−→ πi = (q,P) τi7−→ (q,P ′) be
a play prefix in G. By induction, the strategy automaton has a run prefix η0

τ17−→ . . .
τi−17−−−→

ηi = (q,R), that fulfills the lemma.
In case of own(ηi) = Eve, by construction, T has only an enabled transition for a single

τ at ηi. Namely the one, which σ would choose to simulate from ψ(q,P). We choose
ν(π0

τ07−→ . . .
τi−17−−−→ πi) to use that transition.

In the other case, for every transition τi enabled in πi, a corresponding is enabled in T
by construction.

If π is compliant with ν, we continue η by the corresponding enabled transition ηi = (q,
R) τi7−→ (q′,R′) = ηi+1.

Remains to show, that the lemma holds for position i+ 1 as well.
For all stacks j 6= r, the third condition is fulfilled by construction and induction: By

induction, the maximal parity seen since position lupπj (i) up to πi is mj ↑. For all stacks
j 6= r, the stack height does not change. There has been seen a new parity Ω(q′). The
construction sets m′

j
↑ appropriately to max{Ω(q′), mj ↑}.

Case 1 (τi = (q, r, q′) ∈ δint): The first condition is fulfilled trivially, since the symbols in
the stack contents did not change. For the second condition, in this case, the same arguments
apply as for the other stacks.

Case 2 (τi = (q, r, s, q′) ∈ δpush): For the first condition, the symbols in the stack contents
don’t change for all stacks j 6= r. For stack r however, R′[r] = (s,Ω(q′),S)R[r], such that s
is the new additional symbol, which is the pushed symbol by τi. This meets the lemma’s
requirenment.

For the third condition, Ω(q′) is the only parity seen since the push of s.

Case 3 (τi = (q, s, r, q′) ∈ δpop): Be aware that T contains multiple possible transitions for
τi. These only differ in the sets of summaries Sj ↑ for each stack j > r. The lemma does not
state any conditions on the summary sets, so there is no need for case distinction.

For the first condition, the symbols in the stack contents don’t change for stacks j 6= r.
For stack r however, (s,Ω(q′),S)R[r]′ = R[r], removing the top most symbol from the stack,
which is the symbol removed by τi. This meets the lemma’s requirenment.

R. Meyer and S. van der Wall 52:21

For the second condition, the maximal parity seen since the push of γ′
r
↑ is determined

by the maximal parity seen since the last unmatched push before pushing s, the just popped
symbol. This is the position lupπr (i+ 1) = lupπr (lupπr i).

The correct priority is chosen by m′
r
↑ = max{ mr ↑, m

r
↑−1,Ω(q′)}. J

The next lemma ensures that the strategy automaton T and the mapping Tr of configu-
rations from T to positions in F behave well with respect to the strategy σ itself. When
the strategy automaton is able to make a move η τ7−→ η′, then there should be transitions
Tr(η) 7→ · · · 7→ Tr(η′) compliant with σ in F .

I Lemma 15. Let σ be a strategy for Eve in F and T the strategy automaton. Let η =
η0

τ07−→ η1
τ17−→ . . . be a computation of T starting in a stair η0.

For each position i ∈ N, let

ηi = (qi,Ri) Tr(ηi) = (Check, qi, T i,Mi,Si)

where for each stack j, Ri[j] = (γj i
↑, m
j i
↑, S
j i
↑)(γ

j i
↑−1, m

j i
↑−1, S

j i
↑−1) . . . (γj i

1, m
j i

1, S
j i

1).
Let i ∈ N. Let ηi

τi7−→ ηi+1 be a transition of T that is not by transition case 3.2.
Then the following transitions exist in F and are compliant with σ.

If τi = (qi, r, qi+1) ∈ δint:
Tr(ηi) = (Check, qi, T i,Mi,Si) 7→ (Check, qi+1, T i+1,Mi+1,Si+1) = Tr(ηi+1)

τi = (q, r, s, q′) ∈ δpush:
Tr(ηi) = (Check, qi, T i,Mi,Si)

7→ (Pushr, T i,Mi,Si, qi+1, s)
7→ (Claimr, T i,Mi,Si, qi+1, s, Sr i+1

↑)

7→ (Check, qi+1, T i[r 7→s],M
i+1,Si[r 7→ Sr i+1

↑]) = Tr(ηi+1)

If τi = (q, s, r, q′) ∈ δpop: Since η0 is a stair, position i is in a push-pop-pair (t, i).
Tr(ηt) = (Check, qt, T t,Mt,St)

7→ (Pushr, T t,Mt,St, qt+1, s)
7→ (Claimr, T t,Mt,St, qt+1, s, Sr t+1

↑)

7→ (Jumpr, qi+1,Mi[r], T i+1,Mi
[r 7→0],S

i+1,Mt[r])

7→ (Check, qi+1, T i+1,Mi+1,Si+1,) = Tr(ηi+1)

Proof. For any of the following, the correctness of qi+1 is immediate and therefore skipped.
Also be aware that both, F and T , respect the orderedness restriction.

Case 1 (τi = (qi, r, qi+1) ∈ δint): By construction of F , τi causes the existence of the
transition

Tr(ηi) = (Check, qi, T i,Mi,Si) 7→ (Check, qi+1, T i,M′,Si)
!= (Check, qi+1, T i+1,Mi+1,Si+1) = Tr(ηi+1)

Remains to show the equality of the last two check states. By definition of T , Ri = Ri+1.
Together with Tr we get that T i = T i+1 and Si = Si+1. By construction of F and T , for
any stack j,

M[j]i+1 = mj i+1
↑ = max{ mj i

↑,Ω(qi+1)} = max{M[j]i,Ω(qi+1)} =M[j]′.

FSTTCS 2020

52:22 On the Complexity of Multi-Pushdown Games

Also, by construction of T , the transition ηi
τi7−→ ηi+1 only exists, if own(qi) = Ana or

σ(Check, qi, T i,Mi,Si) = (Check, qi+1, T i,M′,Si). The transition is compliant with σ.

Case 2 (τi = (qi, r, s, qi+1) ∈ δpush): By construction of F , τi causes the existence of the
transitions

Tr(ηi) = (Check, qi, T i,Mi,Si)
7→ (Pushr, T i,Mi,Si, qi+1, s)
7→ (Claimr, T i,Mi,Si, qi+1, s, Sr i+1

↑)

7→ (Check, qi+1, T i[r 7→s],M
′,Si[r 7→ Sr i+1

↑])

!= (Check, qi+1, T i+1,Mi+1,Si+1) = Tr(ηi+1)

Remains to show the equality of the last two check states. By definition of T , Ri =
Ri+1, except for each j 6= r, mj i+1

↑ = max{Ω(qi+1), mj i
↑}, and for stack r, Ri+1[r] =

(s,Ω(qi+1), Sr i+1
↑)R[r], where

σ(Pushr, T i,Mi,Si, qi+1, s) = (Claimr, T i,Mi,Si, qi+1, s, Sr i+1
↑).

This immediately yields T i[r 7→s] = T i+1 and Si[r 7→ Sr i+1
↑] = Si+1.

Also,M′[r] = Ω(qi+1) = mr i+1
↑ and for each stack j 6= r:

M′[j] = max{Ω(qi+1),M[j]i} = max{Ω(qi+1), mj i
↑} = mj i+1

↑ .

Since the transition ηi
τi7−→ ηi+1 exists in T , by its construction,

σ(Pushr, T i,Mi,Si, qi+1, s) = (Claimr, T i,Mi,Si, qi+1, s, Sr i+1
↑).

Also, either own(qi) = Ana or

σ(Check, qi, T i,Mi,Si) = (Pushr, T i,Mi,Si, qi+1, s).

Thus, the transitions exist in F and are compliant with σ.

Case 3 (τi = (q, r, s, q′) ∈ δpop and (t, i) is a push-pop-pair): Since (t, i) is a push-pop-pair,
there is a push transition τt = (qt, r, s, qt+1).

By construction of F , τt causes the existence of the transitions

Tr(ηt) = (Check, qt, T t,Mt,St)
7→ (Pushr, T t,Mt,St, qt+1, s)
7→ (Claimr, T t,Mt,St, qt+1, s, Sr t+1

↑)

which are compliant with σ, as discussed in the previous case. Since (t, i) is a push-pop-pair,
for any position t < p < i, |Rt+1[r]| = |Ri[r]| ≤ |Rp[r]|. Then, by repetitive use of Lemma
13, Sr i

↑ ⊆ Sr t+1
↑ .

Next, we show that

(Claimr, T t,Mt,St, qt+1, s, Sr t+1
↑) 7→ (Jumpr, qi+1,Mi[r], T i+1,Mi

[r 7→0],S
i+1,Mt[r])

is a valid transition in F . Since the transition ηi
τi7−→ ηi+1 is not by transition case 3.2, it must

be by transition case 3.1 of T . Thus, T finds a summary (qi+1,Mi[r], T i[r 7→ε],Mi
[r 7→0],S) ∈

R. Meyer and S. van der Wall 52:23

Si[r] such that for each stack j 6= r, S[j] ⊆ Si[j]. By construction of F , there is the transition

(Claimr, T t,Mt,St, qt+1, s, Sr t+1
↑)

7→ (Jumpr, qi+1,Mi[r], T i[r 7→T t[r]],Mi
[r 7→0],S[r 7→St[r]],Mt[r])

!= (Jumpr, qi+1,Mi[r], T i+1,Mi
[r 7→0],S

i+1,Mt[r])

To find the last equation, we need to identify T i[r 7→T t[r]] = T i+1 and S[r 7→St[r]] = Si+1.
Remember that τi = (qi, s, r, qi+1) is a popping transition with

ηi = (qi,Ri) τi7−→ (qi+1,Ri+1) = ηi+1,

that used transition case 3.1 of the strategy automaton conditions for a transition with the
prediction S ∈ Sr i

↑ = Si[r]. Since (t, i) is a push-pop-pair, for all positions t+ 1 ≤ p ≤ i,

|Rt[r]| = |Rt+1[r]| − 1 = |Ri[r]| − 1 = |Ri+1[r]| < |Rp[r]|.

As T does not change the symbol of its tuples and by repetitive use of Lemma 13,

T i+1[r] = γr i+1
↑ = γr t

↑ = T t[r] and St[r] = Sr t
↑ = Sr t+1

↑−1 = Sr i
↑−1 = Sr i+1

↑ = Si+1[r].

Since T used S for its case 3.1 transition, by its construction: For all stacks j 6= r,
S[j]i+1 = Sj i+1

↑ = S[j].
The last transition is

(Jumpr, qi+1,Mi[r], T i+1,Mi
[r 7→0],S

i+1,Mt[r]) 7→ (Check, qi+1, T i+1,M′,Si+1)
!= (Check, qi+1, T i+1,Mi+1,Si+1) = Tr(ηi+1)

It remains to showM′ =Mi+1. For any stack j > r, by construction of F and T ,

Mi+1[j] = mj i+1
↑ = max{ mj i

↑,Ω(qi+1)} = max{Mi[j],Ω(qi+1)} =M′[j].

For stack r, again since (t, i) is a push-pop-pair, for all positions t+ 1 ≤ p ≤ i holds:

|Rt[r]| = |Rt+1[r]| − 1 = |Ri[r]| − 1 = |Ri+1[r]| < |Rp[r]|.

Repetitive use of Lemma 13 leads to mr t
↑ = mr t+1

↑−1 = mr i
↑−1. Finally,

Mi+1[r] = max{ mr i
↑, m
r i
↑−1,Ω(qi+1)}

= max{ mr i
↑, m
r t
↑,Ω(qi+1)} = max{Mi[r],Mt[r],Ω(qi+1)} =M′[r].

The positions

(Claimr, T t,Mt,St, qt+1, s, Sr t+1
↑), (Jumpr, qi+1,Mi[r], T i+1,Mi

[r 7→0],S
i+1,Mt[r])

are both not owned by Eve. The transitions are compliant with σ. J

Let σ be a winning strategy for Eve in F from (Check, qinit, εn, 0n,∅n). We use T to
derive a strategy ν for Eve in G as described above (Lemma 14). Let there be a play π
compliant with ν together with its strategy automaton run η. Towards contradiction, assume
π is losing for Eve. We construct a play ρ = ρ0 . . . in F compliant with σ from ρ0 = (Check,
qinit, ε

n, 0n,∅n) that is losing for Eve.

FSTTCS 2020

52:24 On the Complexity of Multi-Pushdown Games

For each position i ∈ N, let

ηi = (qi,Ri), Tr(ηi) = (Check, qi, T i,Mi,Si).

where for each stack j, R[j]i = (γj i
↑, m
j i
↑, S
j i
↑)(γ

j i
↑−1, m

j i
↑−1, S

j i
↑−1) . . . (γj i

1, m
j i

1, S
j i

1).
In the following, assume that for all i ∈ N there is no transition ηi

τi7−→ ηi+1 following
transition case 3.2 of T for having a transition. We handle that case later.

I Lemma 16. Let p ∈ N be a stair of η. There is ψ : N → N, such that for each i ∈ N
with p ≤ i, there is a play ρi = ρi1 7→ · · · 7→ ρiψ(i) of length ψ(i) compliant with σ in F from
ρi1 = Tr(ηp) to ρiψ(i) = Tr(ηi) such that

max
u∈[p..i]

{Ω(qu)} = max
u∈[1..ψ(i)]

{Ω(ρu)}.

Proof. We show this by induction.

I Base Case (i = p). Set ψ(p) = 1. Immediatly, Tr(ηp) = Tr(ηi) and Ω(qp) = Ω(Tr(ηp)).

I Inductive Case (i 7→ i+ 1). Assume, that for each t ∈ [p..i], there is a play ρt compliant
with σ from Tr(ηp) = ρt1 to Tr(ηt) = ρtψ(t).

We create a play in F from Tr(ηp) to Tr(ηi+1) compliant with σ.

Case 1 (τi ∈ δint): Set ψ(i + 1) = ψ(i) + 1. The desired play is a continuation of ρi. By
Lemma 15, the following transition is compliant with σ.

Tr(ηi) = (Check, qi, T i,Mi,Si) 7→ (Check, qi+1, T ,Mi+1,S) = Tr(ηi+1)

By induction,

max
u∈[p..i+1]

{Ω(qu)} = max{ max
u∈[p..i]

{Ω(qu)},Ω(qi+1)}

= max{ max
u∈[1..ψ(i)]

{Ω(ρiu)},Ω(ρψ(t+1))} = max
u∈[1..ψ(i+1)]

{Ω(ρi+1
u)}

Case 2 (τi = (qi, r, s, qi+1) ∈ δpush): The desired play is a continuation of ρi, which ends in
Tr(ηi). By Lemma 15, the following transitions are compliant with σ.

Tr(ηi) = (Check, qi, T i,Mi,Si)
7→ (Pushr, T i,Mi,Si, qi+1, s)
7→ (Claimr, T i,Mi,Si, qi+1, s, Sr i+1

↑)

7→ (Check, qi+1, T i+1,Mi+1,Si+1) = Tr(ηi+1)

By induction,

max
u∈[p..i+1]

{Ω(qu)} = max
{

max
t∈[p..i]

{Ω(qt)},Ω(qi+1)
}

= max
{

max
u∈[1..ψ(i)]

{Ω(ρpu)}, 0, 0,Ω(qi+1)
}

= max
{

max
u∈[1..ψ(i)]

{Ω(ρpu)},Ω(Pushr,−),Ω(Claimr,−),

Ω(Check, qi+1,−)
}

= max
u∈[1..ψ(i+1)]

{Ω(ρpu)}

R. Meyer and S. van der Wall 52:25

Case 3 (τi = (qi, s, r, qi+1) ∈ δpop): Since p is a stair, position i is in a push-pop-pair (t, i)
such that p ≤ t < i. Set ψ(i + 1) = ψ(t) + 4. The desired play is a continuation of ρt.
Because ηi

τi7−→ ηi+1 is not by transition case 3.2 of T ’s transition conditions, by Lemma 15,
the following transitions are compliant with σ.

Tr(ηt) = (Check, qt, T t,Mt,St)
7→ (Pushr, T t,Mt,St, qt+1, s)
7→ (Claimr, T t,Mt,St, qt+1, s, Sr t+1

↑)

7→ (Jumpr, qi+1,Mi[r], T i+1,Mi
[r 7→0],S

i+1,Mt[r])

7→ (Check, qi+1, T i+1,Mi+1,Si+1) = Tr(ηi+1)

Since (t, i) is push-pop-pair, lupηr(i) = t. By Lemma 14,

Mi[r] = max
u∈[lupηr (i)..i]

{Ω(qu)} = max
u∈[t..i]

{Ω(qu)}.

By induction,

max
u∈[p..i+1]

{Ω(qu)} = max
{

max
u∈[p..t]

{Ω(qu)}, max
u∈[t..i]

{Ω(qu)},Ω(qi+1)
}

= max
{

max
u∈[1..ψ(t)]

{Ω(ρtu)},M[r]i,Ω(ρtψ(i+1))
}

= max
u∈[1..ψ(i+1)]

{Ω(ρi+1
u)} J

Since (Nn,≤n) is a well-quasi ordering, η contains an infinite set of stairs ST η =
{p1, p2, . . . } ⊆ N with p1 < p2 < Towards contradiction, we can now construct a play
ρ = ρ0 7→ ρ1 7→ . . . in F that is winning for Ana and is compliant with σ. We need a
function φ : ST → N, such that for any p ∈ ST , Tr(ηp) = ρφ(p). Furthermore, we want for
each pi, pi+1 ∈ ST that

max
u∈[pi..pi+1]

{Ω(πu)} = max
u∈[φ(pi)..φ(pi+1)]

{Ω(ρu)},

which leads to

max
u∈N

inf{Ω(πu)} = max
i∈N

inf{Ω(πpi), max
pi<u<pl+1

Ω(πu)} =

max
i∈N

inf{Ω(ρφ(pi)), max
φ(pi)<u<φ(pi+1)

Ω(ρu)} = max
u∈N

inf{Ω(ρu)}.

And thus ρ is a play compliant with σ, that is won by Ana, contradicting σ being a
winning strategy for Eve.

I Base Case (p1). Initial position of the play is ρ0 = (Check, qinit, εn, 0n,∅n) = Tr(η0),
which is a stair. Thus, p1 = 0.

I Inductive Case (pi → pi+1). Assume, we constructed ρ and the function φ, such that

ρ0 = Tr(η0) 7→ · · · 7→ ρφ(p1) = Tr(η1) 7→ · · · 7→ ρφ(p2) = Tr(η2) 7→ · · · 7→ ρφ(pi) = Tr(ηpi)

and for all i ∈ [1..i− 1],

max
u∈[pi..pi+1]

{Ω(πu)} = max
u∈[φ(pi)..φ(pi+1)]

{Ω(ρu)}.

FSTTCS 2020

52:26 On the Complexity of Multi-Pushdown Games

Since ηpi is a stair and Tr(ηpi) = ρφ(pi), by Lemma 16, we can find a position for φ(pi+1)
and continue ρ by some transitions Tr(ηpi) = ρφ(pi) 7→ · · · 7→ ρφ(pi+1) = Tr(ηpi+1), such that

max
u∈[pi..pi+1]

{Ω(πu)} = max
u∈[φ(pi)..φ(pi+1)]

{Ω(ρu)}.

Now we handle the case where one of the transitions in η is due to transition case 3.2
of the strategy automaton. Let there is a minimal position i ∈ N, such that ηi

τi7−→ ηi+1
is due to transition case 3.2 of T ’s transition conditions. Be aware, that the induction
in Lemma 16 still works up to position i. Thus, there is a play ρ compliant with σ from
(Check, qinit, εn, 0n,∅n), which is a stair, to ψ(ηi). Since T had a transition for τi, either
own(ψ(ηi)) = Ana or σ chose the transition introduced to F caused by τi. In either case,
the following transition is compliant with σ:

ψ(ηi) = (Check, qi, T i,Si,Mi) 7→ AnaWin.

Because τi used transition case 3.2, we know that there is no (qi+1,Mi[r], T i[r 7→ε],Mi
[r 7→0],S) ∈

S[r] such that for each stack j > r, S[j] ⊆ Sj ↑.
Thus the above transition is indeed a continuation of ρ, compliant with σ, that is won by

Ana, contradicting σ being a winning strategy for Eve.

B.2 Transforming a winning strategy from G to F

We handle a lot of play prefixes in this section. Let us introduce the notation π..i = π0π1 . . . πi
for play prefixes of π.

Let ν be a winning strategy for Eve in G. We construct a strategy σ for Eve in F . For
this, we need to maintain a play prefix of G. During a play ρ in F , we build up and continue
this prefix and use it to determine the moves to be taken by σ in ρ.

I Definition 17. Given a strategy ν for Eve in G, a play prefix π..l = π0
τ07−→ . . .

τl−17−−−→ πl
compliant with ν and an unmatched pushing position p ∈ [0..l−1] with τp = (q, r, s, q′) ∈ δpush,
we define the summary set Sπ..l,ν,p ⊆ OSr recursively:
For every play π..l′ that is a continuation of π..l, i.e. l < l′, and compliant with ν, if p is
matched in π..l′ , i.e. (p, t) is a push-pop-pair in π..l, we add a summary as follows to Sπ..l,ν,p:

Let q′′ be the state at position t+ 1, and T be the top of stack symbols at πt+1. For each
stack j ∈ [1..n], let tj = lupπ..tj (t). LetM be such that

M[j] =
{

maxu∈[tj+1..t]{Ω(πu)} tj 6= ⊥
maxu∈[0..t]{Ω(πu)} tj = ⊥

We add (q′′,M[r], T[r 7→ε],M[r 7→0],S) to Sπ..l,ν,p, where S[j] for each stack j > r,

S[j] = Sπ..t+1,ν,tj .

Be aware, that this construction is finite and the result is an actual prediction: The sets
Sπ..t+1,ν,tj contain sets of summaries for only stacks greater, thus the recursion terminates
for stack n. Furthermore, this construction is finite as OSj is finite.

For a play prefix π..l and its continuation π..l′ , i.e. l < l′, it is immediate that Sπ..l′ ,ν,p ⊆
Sπ..l,ν,p. This is because the set of play continuations for π..l′ is a subset of the play
continuations for π..l.

For a play ρ in F compliant with σ, we maintain the play prefix of G. In order to keep
the construction short, we define the strategy and an invariant (Lemma 18) between the

R. Meyer and S. van der Wall 52:27

two plays at the same time. For this, define the set Checksρ ⊆ N of all indecies where
ρ is in a Check-state. We can order these positions by their occurence in ρ so we get
Checksρ = {p1, p2, . . . } with p1 < p2 < We define a function ψ : Checksρ → N that
maps play indecies of Check-states in ρ to positions in π.

I Lemma 18. Let ρ be a play compliant with σ and π the corresponding play created.
π is compliant with ν
For any position p ∈ Checksρ, if ρp = (Check, q, T ,M,S), then πψ(p) is in state q and
the top of stack symbols are T . Let tj = lupπ..ψ(p)

j (ψ(p)). For every stack j with tj 6= ⊥,
Sπ..ψ(p),ν,tj ⊆ S[j].
for pi, pi+1 ∈ Checksρ,

max
u∈[pi..pi+1]

{Ω(ρu)} = max
u∈[ψ(pi)..ψ(pi+1)]

{Ω(πu)}

Proof and Construction. by induction.

I Base Case (i = 1). This is only the initial position. π0 = (qinit, εn), ρ0 = (Check,
qinit, ε

n,Ω(qinit)n,∅n). ψ(p1) = ψ(0) = 0.

I Inductive Case (i→ i+ 1). We first show how σ continues ρ and π..ψ(pi) before focussing
on the invariant stated in Lemma 18.

If own(ρpi) = Eve, we need to construct σ for ρpi = (Check, q, T ,M,S). In that case,
let πψ(pi)

τ7−→ ν(πψ(pi)) be the transition used by ν in G. If own(ρpi) = Ana, Ana takes some
transition in F that was introduced by some transition τ enabled in πψ(pi).

Let πψ(pi) = (q,P), where by indcution, the top of stack symbols form T .

Case 1 (τ = (q, r, q′) ∈ δint): ρ continues with the transition introduced in F :

ρpi = (Check, q, T ,M,S) τ7−→ (Check, q′, T ,M′,S) = ρpi+1

Further, we set ψ(pi+1) = ψ(pi) + 1 and continue π by

πψ(pi) = (q,P) τ7−→ (q′,P) = πψ(pi+1).

to arrive at π..ψ(pi+1).
To the invariant: This tranisition is compliant with ν. The state conditions are fulfilled

by construction, as well as the top of stack condition. The prediction sets did not change,
thus Sπ..ψ(pi+1),ν,tj ⊆ Sπ..ψ(pi),ν,tj ⊆ S[j]. And for the parity condition,

max
u∈[pi..pi+1]

{Ω(ρu)} = max{Ω(ρpi),Ω(ρpi+1)} =

max{Ω(πψ(pi)),Ω(πψ(pi+1))} = max
u∈[ψ(pi)..ψ(pi+1)]

{Ω(πu)}.

Case 2 (τ = (q, r, s, q′) ∈ δpush): ρ continues with the transition introduced in F :

ρpi = (Check, q, T ,M,S) 7→ (Pushr, T ,M,S, q′, s)

First, we continue π..ψ(pi) by π..ψ(pi)+1 = π..ψ(pi)
τ7−→ πψ(pi)+1 which is compliant with ν.

Then, Eve has to make a claim in F . To define their strategy, we use the game prediction
from above.

σ(Pushr, T ,M,S, q′, s) = (Claimr, T ,M,S, q′, s, Sπ..ψ(pi)+1,ν,ψ(pi))

FSTTCS 2020

52:28 On the Complexity of Multi-Pushdown Games

Case 2.1 (Ana continues to (Check, q′, r, T[r 7→s],M′,S[r 7→Sπ..ψ(pi)+1,ν,ψ(pi)])): The transitions
in F up to pi+1 are

ρpi = (Check, q, T ,M,S)
7→ (Pushr, T ,M,S, q′, s)

7→ (Claimr, T ,M,S, q′, s, Sπ..ψ(pi)+1,ν,ψ(pi))
7→ (Check, q′, r, T[r 7→s],M′,S[r 7→Sπ..ψ(pi)+1,ν,ψ(pi)]) = ρpi+1

Thus, pi+1 = pi + 3. Set ψ(pi+1) = ψ(pi) + 1. Then, π..ψ(pi+1) = π..ψ(pi)+1.
To the invariant, state conditions are fulfilled by construction, as well as the top of stack

condition. The prediction sets for all stacks j 6= r did not change and tj = lupπ..ψ(pi)
j (ψ(pi)) =

lup
π..ψ(pi+1)

j (ψ(pi+1)), thus Sπ..ψ(pi+1),ν,tj ⊆ Sπ..ψ(pi),ν,tj ⊆ S[j] = S[r 7→Sπ..ψ(pi),ν,ψ(pi)][j].

For stack r, we have lup
π..ψ(pi+1)

j (ψ(pi+1)) = ψ(pi). Adequately, Sπ..ψ(pi+1),ν,ψ(pi) =
S[r 7→Sπ..ψ(pi),ν,ψ(pi)][r].

For the parity condition, we have

max
u∈[pi..pi+1]

{Ω(ρu)} = max{ρpi , (Pushr,−), (Claimr,−), ρpi+1} =

max{ρpi , ρpi+1} = max{πψ(pi), πψ(pi+1)} = max
u∈[ψ(pi)..ψ(pi+1)]

{Ω(πu)}.

Case 2.2 (Ana continues to (Jumpr, q′′,m, T ′[r 7→T [r]],M
′,S ′[r 7→S[r]],M[r])): The transitions

in F up to pi+1 are

ρpi = (Check, q, T ,M,S)
7→ (Pushr, T ,M,S, q′, s)

7→ (Claimr, T ,M,S, q′, s, Sπ..ψ(pi),ν,ψ(pi))
7→ (Jumpr, q′′,m, T ′[r 7→T [r]],M

′,S ′[r 7→S[r]],M[r])

7→ (Check, q′′, T ′[r 7→T [r]],M
′′,S ′[r 7→S[r]]) = ρpi+1

We set pi+1 = pi + 4. Further, it must be that (q′′,m, T ′,M′,S ′) ∈ Sπ..ψ(pi),ν,ψ(pi) in order
for

(Claimr, T ,M,S, q′, s, Sπ..ψ(pi),ν,ψ(pi)) 7→ (Jumpr, q′′,m, T ′[r 7→T [r]],M
′,S ′[r 7→S[r]],M[r])

to exist. By construction of Sπ..ψ(pi),ν,ψ(pi), there is a play continuation π..l of π..ψ(pi)
compliant with ν, such that ψ(pi) is in a push-pop-pair (ψ(pi), t) with ψ(pi) < t < l.

Finally, we continue π..ψ(pi) to π..t+1 and set ψ(pi+1) = t+ 1.
To the invariant: By construction of Sπ..ψ(pi),ν,ψ(pi), this is compliant with ν.
By construction of Sπ..ψ(pi),ν,ψ(pi), πt+1 is in state q′′ with the top of stack symbols being

T ′[r 7→γ[r]].
Furthermore, for each stack j > r, since (q′′,m, T ′,M′,S ′) ∈ Sπ..ψ(pi),ν,ψ(pi), with

tj = lupπ..tj (t),

S ′[r 7→S[r]][j] = S ′[j] =
{
Sπ..t,ν,tj tj 6= ⊥
∅ tj = ⊥

.

For stack r, we know that since (ψ(pi), t) is a push-pop-pair, that

tr = lupπ..ψ(pi)
r (ψ(pi)) = lupπ..t+1

r (t+ 1) = lup
π..ψ(pi+1)
r (ψ(pi+1)).

R. Meyer and S. van der Wall 52:29

Due to π..ψ(pi+1) being a continuation of π..ψ(pi), we arrive at

Sπ..ψ(pi+1),ν,tr ⊆ Sπ..ψ(pi),ν,tr ⊆ S[r] = S ′[r 7→S[r]][r].

For the parity condition, be aware, that by construction of Sπ..ψ(pi),ν,ψ(pi),

m = max
u∈[ψ(pi)+1..t]

{Ω(πu)}.

Together, we arrive at:

max
u∈[pi..pi+1]

{Ω(ρu)} = max{ρpi , ρpi+1 , (Pushr,−), (Claimr,−),

(Jumpr, q′′,m, T ′[r 7→T [r]],M
′,S ′[r 7→S[r]],M[r])}

= max{ρpi , ρpi+1 ,m} = max
u∈[ψ(pi)..ψ(pi+1)]

{Ω(πu)}.

Case 3 (τ = (q, s, r, q′) ∈ δpop): ρ continues with the transition introduced for τ . This is
either

ρpi = (Check, q, T ,M,S) 7→ EveWin or
ρpi = (Check, q, T ,M,S) 7→ AnaWin.

We show, that the second case is impossible. Since τ is enabled in πψ(pi), we can
continue π..ψ(pi) by πψ(pi)

τ7−→ πψ(pi)+1. Due to the enabledness of a pop-transition, there is
tr = lupπ..ψ(pi)

r (ψ(pi)) and by definition of Sπ..ψ(pi),ν,tr , there is a summary (q′,M[r], T[r 7→ε],

M[r 7→0],S ′) ∈ Sπ..ψ(pi),ν,tr ⊆ S[r], such that for all stacks j > r:

S ′[j] = Sπ..ψ(pi)+1,ν,tj ⊆ S[j].

Thus, by construction of F , the second transition does not exist.

Now we can show, that ρ is winning for Eve:

Case 1 (ρ contains EveWin): This play is winning for Eve.

Case 2 (ρ contains AnaWin): We have just shown, that this can not happen.

Case 3 (ρ contains infinitly many Check states): In this case, Checksρ is infinite and

max
u∈N
{Ω(ρu)} = max

i∈N

{
max

u∈[pi..pi+1]
{Ω(ρu)}

}
= max

i∈N

{
max

u∈[ψ(pi)..ψ(pi+1)]
{Ω(πu)}

}
= max

u∈N
{Ω(πu)},

which is winning for Eve, since π is compliant with ν, which is a winning strategy. J

C Stack Elimination for Context-Bounded MPDG

For k-context bounded MPDG can only visit up to k stacks in a play, we can eliminate stacks
to obtain a k-context k-stack MPDG.

I Lemma 19. For every k-context-bounded n-stack MPDG G = (P, own,Ω) with MPDS
P = (Q,Γ, δ, n), there is k-context-bounded k-stack MPDG G′ = (P ′, own′,Ω′) with P ′ =
(Q′,Γ, δ′, k) such that Eve wins G if and only if she wins G′. The set of priorities coincide
and G′ is constructible in time O(|G| · nk+1).

FSTTCS 2020

52:30 On the Complexity of Multi-Pushdown Games

First, present the construction of P ′: The new state space is Q′ = [1..n]k× [0..k]× [1..n]×
[1..k] × Q. A configuration of P ′ is thus ((f, k, d, e, q),R), where the task of the different
parameters is as follows. f is an injective mapping from the available stacks [1..k] to the used
stacks of P . The inverse function is f−1. k tracks the current context. d tracks the stack of
the current context. e tracks the number of different stacks used so far. R : [1..k]→ Γ∗ are
the stack contents.

For each transition τ ∈ δd′ with (q,P) τ−→ (q′,P ′), P ′ has transitions

((f, k, d, e, q),R) τ−→ ((f ′, k′, d′, e′, q),R[(f ′)−1(d′) 7→P′[d′]]) ,

where either
d′ = d and f ′ = f , k′ = k, e′ = e or
d 6= d′ and k + 1 ≤ k and k′ = k + 1 and f−1(d′) 6= ⊥ and e′ = e and f ′ = f or
d 6= d′ and k + 1 ≤ k and k′ = k + 1 and f−1(d′) = ⊥ and e′ = e+ 1 and f ′ = f[e′ 7→d′].

Let π = π0 → · · · → πl be a play prefix of G. We define the function gπ, which takes a
position p of the run π and transforms it to stack contents Rp for P ′. It takes the stack
contents of πp = (qp,Pp) and reduces them to the stacks to which a transition belonged
in π0 → . . . → πp, then reorders them, so that they are in the order in which the stacks
were visited with their first respective context. Further, let fp be the corresponding stack
assigning function, ep the number of stacks visited so far, kp the context, and dp the stack of
that context at position p. Thus, for all already visited stacks d, Pp[d] = Rp[f(d)] Define
the function h(π) = ((f0, k0, d0, e0, q0), g(0))→ . . .→ ((f l, kl, dl, el, ql), g(l))

Vice versa, let π′ = π′0 → · · · → π′l be a play prefix of G′. We create the function
h′(π′) = (q0,P0)→ . . .→ (ql,P l), where for every position p and stack j,

Pp[j] =
{
ε (fp)−1(j) = ⊥
Rp[(fp)−1(j)] otherwise .

I Lemma 20. h and h′ form a bijection on the play prefixes starting with empty stack
contents, i.e. h′(h(π)) = π and h(h′(π′)) = π′ for all play prefixes π and π′ starting with
empty stacks.

Proof. By induction on the length l of the plays.

Base Case. At π0, no stacks were visited. Thus, f is undefined, no context has been visited
and there is no active stack, and no stacks have been used. Rerversely, at π′0, f is undefined
for every stack. Thus, h′(h(π)) = π = π0 and h(h′(π′)) = π′ = π′0.

Ind. Case. Let π = π0 → . . .→ πl
τ−→ πl+ with h′(h(π0 . . . πl)) = π0 . . . πl with h(π0 . . . πl) =

π′0 → . . .→ π′l. Then, π′l = ((f l, kl, dl, el, ql),Rl), where Rl = gπ(l).
We have h(π) = h(π0 . . . πl) → π′l+1, where π′l+1 = ((f l+1, kl+1, dl+1, el+1, ql+1),Rl+1)

and Rl+1 = gπ(l).
Case 1. τ ∈ δdp . Then, there is the transition to ((f ′, k′, d′, e′, q),R[(f ′)−1(d′)7→P′[d′]]),

where d′ = dp and f ′ = fp, k′ = kp, e′ = ep. Since the stack did not change, these coincide
with dp+1, fp+1, kp+1, and ep+1. The stack contents did also change for the stack representing
stack dp by R[(fp)−1(dp) 7→P′[dp]]. Thus, h(π) is a play prefix in G′.

Case 2. τ ∈ δdp+1 and dp+1 6= dp and (fp)−1(dp+1) = ⊥. To be k-bounded, kp must
be less than k. Then, there is the transition to ((f ′, k′, d′, e′, q),R[(f ′)−1(d′)7→P′[d′]]), where
e′ = ep + 1 and f ′ = fp[e′ 7→d′]. Since the stack was not seen before (by induction, it was not
found in fp)), f ′ = fp+1, further, kp+1 = k′ = kp+1, the next context is introduced and the

R. Meyer and S. van der Wall 52:31

active stack is dp+1 = d′. The stack contents did also change for the stack representing stack
dp by R[(fp+1)−1(dp+1)7→P′[dp+1]]. Thus, h(π) is a play prefix in G′.

Case 3. τ ∈ δdp+1 and dp+1 6= dp and (fp)−1(dp+1) 6= ⊥. To be k-bounded, kp must
be less than k. Then, there is the transition to ((f ′, k′, d′, e′, q),R[(f ′)−1(d′)7→P′[d′]]), where
e′ = ep and f ′ = f . Since the stack was seen before (by induction, it was found in fp)),
f ′ = fp+1, further, kp+1 = k′ = kp+1, the next context is introduced and the active stack
is dp+1 = d′. The stack contents did also change for the stack representing stack dp by
R[(fp+1)−1(dp+1) 7→P′[dp+1]]. Thus, h(π) is a play prefix in G′.

Further, by induction h′(h(π))) = π0 . . . πl → (ql+1,P), where for every stack j,

P[j] =
{
Rl+1[(fp)−1(j)] = P l+1[j] (fp)−1(j) 6= ⊥
ε = P l+1[j] (fp)−1(j) = ⊥

Thus, h′(h(π)) = π.
Showing h(h′(π′)) = π′ is analogue. J

Proof of Lemma 19. Together with the ownership assignment of own′((f, k, d, e, q),R) =
own(q) and priority assignment Ω′((f, k, d, e, q),R) = Ω(q), the bijection of play prefixes
immediatly presents a portation of strategies for both players.

Starting positions with non-empty stacks need to be encoded into the MPDS P first. This
can be done by encoding them into the state space in the following sense: When a context
would first be initiated on a stack, it first pushes their stack content (The player doing this
is unimportant). When the first transition on that stack would be a pop, the player chosing
the pop transition will lose, if after the pushes, the symbol to be popped is not on top. J

D Construction of MPDG for the Lower Bound

Formally, we introduce 3 gadgets to prove correctness. Each represents a verification
mechanism.

Gdcomp, which checks, whether on top of two stacks is the same encoded word,
Gindd , which checks, whether the top of a stack is a valid encoding, and
Gdϕ, which checks the two topmost encoded words for the relation ∼ϕ.

We construct them by induction. Notably, the latter two are constructed by simultaneous
induction: Gdϕ needs Gindd−1 and Gd−1

ϕ internally. The latter mechanism is described in
section 5.4.

D.1 Construction of Gd
comp

This gadget expects the top of both stacks to be d-nested indexings w1, w2 of words u, v of
length expd(len). Eve has a winning strategy, if they index the same word.

To be precise, it is also sufficient if they are not on top, but marked by a delimiter Symbol.
In our construction we need the latter case for the verification mechanism Gdϕ, where Ana
wants to verify the position (of a variable after doubting the symbol is correct) and the
valuation is still complete on the second stack. Remembering the correct variable in the
control state is no problem as there are a constant amount of variables. For presentational
reasons, this differs a little from our detailed version [60].

I Lemma 21. There is a 2-stack MPDG such that Eve has a winning strategy from positions
(CheckEqd, w1σ1γ1⊥, w2σ2γ2⊥) if and only if u = v. It is contructible in time poly(d+|Σ|+n).
The maximal number of contexts or phases of any play from such a position is at most d+ 2.

FSTTCS 2020

52:32 On the Complexity of Multi-Pushdown Games

Proof idea. At the top of the stacks are the d-nested indexings w1 and w2, where w1 =
indd(u) and w2 = indd(v) for some u, v ∈ Σmaxd . They have form

w1 = u0x0 . . . umaxdxmaxd , w2 = v0x0 . . . vmaxdxmaxd .

Intuitively, Ana removes a sequence of (ΣΣ∗≤d)
∗ from stack one, until she claims to have

found a position p, where up 6= vp. She leaves xp on top of stack one and store the symbol
up in the control state. Then, Eve has to pop a sequence of (ΣΣ∗≤d)

∗ from stack two. They
are supposed to find the corresponding position in v. Removing the sequence leaves vp′xp′
on top of stack two for some position p′. After storing vp′ in the control state, Ana may now
choose to
1. Believe Eve’s choice to be p′ = p. Then, if up = vp′ , Eve wins and vice versa.
2. Doubt Eve’s choice and claim p 6= p. Since w1, w2 are d-nested indexings, xp =

indd−1(msbf (p)) and xp′ = indd−1(msbf (p′)). Checking p 6= p can thus be done by
(d− 1)-Equality(Σd).

Number of Contexts and Phases. The first context or phase starts by Ana removing
symbols from stack one. The second context or phase is then started by Eve popping from
stack two to find the corresponding position. Then, we can use a copy of Gd−1

comp, where the
stacks are swapped, so that it first pops from stack two. This way, the first context or phase
of that game merges with the second context or phase. By induction from Lemma 21, this
results in a bound of 1 + (d− 1) + 2 = d+ 2 contexts or phases. J

D.2 Construction of Gindd

This gadget checks the top of the first stack for whether it is a valid d-nested indexing.

I Lemma 22. There is a 2-stack MPDG Gindd such that Eve has a winning strategy from
an initial position (Check indd, wσγ1⊥, γ2⊥) if and only if w = indd(u), where u is any word.
It is contructible in time poly(d+ |Σ|+ n). Any play has at most d+ 2 contexts and d+ 1
phases.

From the initial position, with w ∈ (Σ ∪ Σ≤d)∗, the goal is to check whether w is a valid
d-nested indexing. This holds if and only if the following three conditions are met. (1) The
word has the shape w = u0x0 . . . umxm ∈ (ΣΣ∗≤d)

+. (2) Each xp is a valid (d − 1)-nested
indexing. (3) We have

x0 = indd−1(msbf d(0)) = indd−1(0expd−1(len)
d),

xm = indd−1(msbf d(maxd)) = indd−1(1expd−1(len)
d),

and for all positions 1 ≤ p < m with indexing xp = indd−1(msbf d(i)) and indexing xp+1 =
indd−1(msbf d(i′)) we have i′ = i+ 1.

We let Ana choose which condition is violated. In the first case, Eve has to prove that w
is of the form (ΣΣ∗≤d)

+. This can be done by a popping loop.
In the second case, Ana identifies a position p by removing a sequence from Σ(Σ∗≤dΣ)∗

and leaving xp on top of the stack. We use Gindd−1 from the induction hypothesis to check
whether xp is a (d− 1)-nested indexing.

In the last case, there are first-order formulas ϕ0 and ϕ1 for the constant conditions and
a formula ϕ+1 for the successor relation under most-significant-bit-first encodings. With
the induction hypothesis for Lemma 10, we construct the corresponding games Gk−1

ϕ0/ϕ1/ϕ+1
.

For checking relation ϕ1, before invoking the game, Eve has the task of removing symbols
until xm is on top of the stack. For checking relation ϕ+1, Ana first pops symbols to find a
position where xp = indd−1(msbf d(i)) and xp+1 = indd−1(msbf d(i′)), but i+ 1 6= i′.

R. Meyer and S. van der Wall 52:33

Number of Contexts and Phases. In either case the play starts by popping, leading to a
first context or phase on stack one. Actually, in the first case the play already ends after
having popped stack one.

In the second case, the play continues to invoke the game Gindd−1 . This adds (d− 1) + 2
contexts or (d − 1) + 1 phases respectively, by the induction hypothesis for Lemma 22.
However, the first context or phase in Gindd−1 also acts on stack one. So it merges with the
previous context or phase for popping from stack one, leading to d+ 1 contexts or d phases.

In the last case, the play enters the game Gd−1
ϕ for ϕ0, ϕ1, or ϕ+1, leading to (d− 1) + 2

contexts or d− 1 phases respectively, by induction from Lemma 10. With the initial context
or phase, we arrive at d+ 2 contexts and d phases

Together, this is at most d + 2 contexts and d phases. This covers the required d + 1
phases in the Lemma. The base case requires the additional phase.

D.3 Details on how the players push a valuation
Intuitively, we want to reuse the same principles for pushing successing configuration to push
a correctly indexed valuation for variable y. Eve pushes any sequence and afterwards, Ana
can verify that this is indeed a (d− 1)-nested indexing by the use of Gindd−1 . However, when
Ana has to choose the valuation, we can not check that Eve pushed the correct position
(that is a expd−1(n) long sequence from {0d, 1d} arbitrarily chosen by Ana). We also cannot
swap the roles: Whenever Ana gets the chance of pushing arbitrary long sequences, she can
just push symbols infinitely and win the safety winning condition. Thus, we need to let
Eve determine when to stop pushing symbols. We do so by letting Eve push sequences in
between Ana’s choices for single digits of the position. Also, Eve may choose to end the
pushing of the sequence at any time. Afterwards, Ana may choose to check, whether the
result is a (d− 1)-nested indexing.

D.4 Adaptions for ordered multi-pushdown systems
It is possible to adapt the lowerbound construction, so that it provides the same strategies
for ordered pushdowns. The key idea is to use d stacks to simulate the d phases in the
lowerbound construction. To this end, we need instances for the gadgets created in the
previous sections not only for two stacks, but for combinations of stacks j, r with j < r.
Further, it should be noted that the gadget Gdcomp can not be used as is, since it pops symbols
from both stacks alternatingly, which cannot be done with an ordered pushdown. Instead,
it will need some intermediate steps, which will copy the contents to be compared to the
another stack (higher in order). Further adaptions are of minor importance and will be
mentioned later for completeness.

To this end, we will adapt the gadgets and recieve for each stack j < r,
Gdcomp(j, r), comparing the top of stacks j and r,
Gdcopy(j, r), copying the top of stack indexing from stack j to r,
Gindd(j), checking the top of stack j for a d-indexing and
Gdϕ(j), checking the ∼ϕ relation on the marked indexings on stack j.

In this, Gdcopy(j, r) will internally use Gdcomp(j, r), which, in turn, uses Gd−1
copy(j, r). Again,

we create the gadget in simultaneous induction together with Gindd(j, r).
The adaptions for Gindd(j) and Gdϕ(j) are rather small: Gindd(j) only needs the stack

of the transitions to be changed to j. Gdϕ(j) also needs the stacks to be changed; stack one
becomes j and stack two becomes j + 1. Further, when doubting the suggested variable
order, stack j needs to be emptied, before Gd−1

ϕ (j + 1) can be called.

FSTTCS 2020

52:34 On the Complexity of Multi-Pushdown Games

After these adaptions, the construction of the multi-pushdown game simulating an
alternating Turing machine is the same as in Section 5. The only difference is, that the
ordered pushdown-system created posseses d stacks.

The following lemma states the same as Lemma 21, but for Gdcomp(j, r). Let u, u′ ∈ Σld+1,
w1 = indd(u), w2 = indd(u′) and j < r ≤ n− d. Note that the latter requires this gadget to
have at least d+ 2 stacks.

I Lemma 23. There is an n-stack ordered MPDG such that Eve has a winning strategy
from positions (start, [w1γ1]j , [w2γ1]r) if and only if u = v. It is contructible in time
poly(d+ |Σ|+ n).

I Base Case (d = 0). The gadget is almost the same as G0
comp, where transition rules for

stack one (2) are swapped for transition rules for stack j (r). The stacks j to r − 1 are
emptied before the transitions popping from r are executed. Correctness is follows as for
G0

comp.

I Inductive Case (d > 0). Instantiate Gd−1
copy(j, r + 1) on (copyPos, s) with out state

(copyDone, s) for each s ∈ Σ.
Instantiate Gd−1

comp(r, r + 1) on state disbelievePos.
Let s, s′ range over Σ.

(start, (ΣΣ∗≤d)
∗
s, j, (copyPos, s))

((copyDone, s), j, (reproducePos, s))
((reproducePos, s), (ΣΣ∗≤d)

∗
s′, r, (claimPos, s, s′))

((claimPos, s, s′), r, (believe, s, s′))
((claimPos, s, s′), r,disbelievePos)
((believe, s, s), r,EveWin)
((believe, s, s′), r,AnaWin) s 6= s′

Note that the induction hypothesis (Lemma 24) for the copy gadget holds: r+ 1 ≤ n− d+ 1.
Given by induction (Lemma 24) that each player possesses a strategy from ((copyPos, s),
[xsγ]j , [x′s′γ]r, [ε]r+1) to ((copyDone, s), [ε]j , [x′s′γ]r, [xsγ]r+1), the proof is analogue to the
proof for Lemma 21.

And for copying.

I Lemma 24. Let u ∈ Σld+1, w1 = indd(u) and j ≤ n− d. Each player possesses a strategy
from (start, [w1σ1γ1]j , [ε]r) to (Out, [ε]j , [w1]r).
The number of states of this gadget (not counting the states of additionally instantiated
gadgets) is polynomially in the size of Σ and l0.

The construction is pretty straightforward: Eve guesses the stackcontent for stack r and
Ana may doubt or believe it.

Instantiate Gindd(r) on position disbelieveValidity.
Instantiate Gdcomp(j, r) on position disbelieveEquality.

(start, (ΣΣ∗≤d)∗, r,pushed)
(pushed, r,disbelieveValidity)
(pushed, r,disbelieveEquality)
(pushed, j, (Σ ∪ Σ≤d)∗,Out)

R. Meyer and S. van der Wall 52:35

Be aware, that the definition of MPDS does not allow for testing a stack for ε. One can,
however, implement such a transition rule for games given the allowed transition rules.

Now to show that each player possesses a strategy from position (start, [w1σ1γ1]j , [ε]r) to
(start, [ε]j , [w1]r).

Be aware, that r ≤ n− d holds. The following assumes that Lemma 23 and 22 already
hold for the current induction step, which has been shown already.

The strategy for Eve pushes w1 on stack r in the first transition. If Ana chooses to go to
disbelieveValidity or disbelieveEquality, Eve wins (Lemma 22 and Lemma 23).

The strategy for Ana analyzes the pushed sequence w from Eve. If it is not a d-indexing,
Ana wins the play using the move to disbelieveValidity (Lemma 22). If it is a valid d-
indexing, but w 6= w1, i.e. w = indd(u′) with u′ 6= u, Ana wins the play using the move to
disbelieveEquality (Lemma 23).

FSTTCS 2020

	Introduction
	Multi-Pushdown Games
	Upper Bound for Ordered MPDG
	Summarization for Ordered MPDG
	The Finite Parity Game
	Pop Transitions and a Correction to a Mistake

	Upper Bound for Context-Bounded MPDG
	Lower Bounds
	Reduction
	First-Order Relations
	Stockmeyer's Nested Indexing
	Verification Mechanisms

	Details on Section 3
	Size of the sets of ordered summaries
	Size of the sets of context summaries

	Equivalence of the MPDG G and the finite game F
	Transforming a winning strategy from F to G
	Transforming a winning strategy from G to F

	Stack Elimination for Context-Bounded MPDG
	Construction of MPDG for the Lower Bound
	Construction of Gcompd
	Construction of Gindd
	Details on how the players push a valuation
	Adaptions for ordered multi-pushdown systems

