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We present realizability and realization logic, two program logics that jointly address the problem of finding

solutions in semantics-guided synthesis. What is new is that we proceed eagerly and not only analyze a

single candidate program but a whole set. Realizability logic computes information about the set of candidate

programs in a forward fashion. Realization logic uses this information as guidance to identify a suitable

candidate in a backward fashion. Realizability logic is able to analyze a set of programs due to a new form of

assertions that tracks synthesis alternatives. Realizability logic then picks alternatives to arrive at a program,

and we give the guarantee that this process will not need backtracking. We show how to implement the

program logics using verification conditions, and report on experiments with a prototype in the context of

safe memory reclamation for lock-free data structures.

1 INTRODUCTION
The syntax-guided synthesis (SyGuS) initiative [2, 3] has been instrumental in pushing the develop-

ment of program synthesis technology. Key to this success has been the definition of a standardized

input format that is solver independent: the format only refers to the synthesis task but does not

constrain the synthesis technology. This means every SyGuS solver can, in principle, be applied to

the entire SyGuS benchmark set, and the community can focus on comparing and improving the

synthesis technology. A SyGuS task consists of a specification of the desired program behavior

and a grammar for the programs that may be chosen. The inherent limitation of SyGuS is that the

grammar should refer to SMT expressions, expressions from logical theories that are supported by

SMT solvers. SyGuS cannot handle expressions that fall outside the known logical theories, and for

the expressions it can handle it assumes the standard semantics.

Semantics-guided synthesis (SemGuS) [23] has recently been proposed as a successor of SyGuS
that is meant to overcome the dependence on SMT expressions and describe synthesis problems

in a domain-independent way. The key to domain independence is to add a third parameter to

the definition of the synthesis problem, namely a definition of the program semantics. Giving the

user the ability to define the program semantics dramatically increases the reach of SemGuS over

SyGuS. The user can now define loop constructs and synthesize programs with complex control

flow. In fact, synthesizing full programs rather than logical expressions has been one of the goals

behind SemGuS. It is a goal that SemGuS shares with solver-aided languages like Rosette [42] or
Sketch [39]. Note, however, that Rosette and Sketch are neither solver nor domain independent.

Rosette will not be able to read Sketch input and vice versa, and both can only draw conclusions

about the standard semantics of the language. SemGuS allows the user to provide approximate

semantics, and applications abound.

Giving the user the ability to define the program semantics also dramatically increases the

computational effort of solving SemGuS tasks over SyGuS tasks. To come up with efficient synthesis

algorithms, it has turned out helpful to decompose the problem and develop algorithms dedicated to

proving synthesis tasks unrealizable and algorithms for synthesizing solutions. For unrealizability,

the state-of-the-art approach, implemented in the toolMessy [23] and its SyGuS precursors nay [19]
and nope [18], is unrealizability logic [22]. Unrealizability logic tries to prove Hoare triples of the

form {r}N{s}. The novelty is that N denotes a set of programs, and by proving the triple one shows

that all programs in this set satisfy the pre-post specification. The pre-post specification is set-up

in a way that validity of the triple means no program in the set can solve the SemGuS task at hand,

hence the name unrealizability.
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Our contribution is a new algorithm for realizability, for synthesizing solutions to SemGuS
tasks. The state-of-the-art tool for realizability, calledMessy-Enum [23], implements the CEGIS

algorithm [40] algorithm for search-based synthesis [3]. Guided by knowledge about failed synthesis

attempts,Messy-Enum iteratively constructs candidate programs and checks every single one of

them for validity, i.e., for whether it solves the synthesis task. There is, however, an important

difference between SyGuS and SemGuS. In SyGuS, checking the validity of a candidate program is

cheap, it is an SMT query. In SemGuS, checking the validity of a candidate program is expensive:

Messy-Enum reduces it to a constraint Horn clause (CHC) query, and solving them may turn out

as hard as conducting a full verification run. This is not unexpected, after all SemGuS aims to

synthesize full programs. But it means that search-based solvers have no chance to scale without

new strategies to reduce (i) the number of iterations and (ii) the cost of each iteration.

Our algorithm reduces the number of iterations by analyzing sets of candidate programs for

validity, in an eager fashion, rather than a single one. What makes this scale is compositionality. We

construct the sets of programs bottom-up, starting from sets of commands to sets of more and more

complex programs. The key idea is to abstract the sets of programs to their input-output behavior.

Abstracting single programs to their input-output behavior to compute over equivalence classes is an

idea that has been widely used in synthesis [1, 15, 36, 44, 46]. The novelty in our work is eagerness:

we abstract sets of programs whose input-output behavior does not match. Compositionality

requires that the input-output is rich enough (i) to only reason with this abstraction, without

having to resort to the underlying programs, and (ii) to answer the realizability problem.

We develop this idea in a new program logic [17]. Our realizability logic reasons over triples of the
form ⟨R⟩P⟨S⟩, where P is a set of programswhose input-output behavior is given in the form of a pre-

condition R and a postcondition S. What is new is that the pre- and postcondition are not single pred-

icates, but sets of predicates. This reflects the fact that the programs in P are synthesis alternatives.

To achieve compositionality, it is important to get the notion of validity right. Given ⟨R⟩P⟨S⟩ and
⟨S⟩Q⟨T⟩, we want to be able to conclude ⟨R⟩P ;Q⟨T⟩, where P ;Q contains all programs prog; prog′

with prog ∈ P and prog′ ∈ Q. The right choice is to reason backwards and define validity

|=𝑎 ⟨R⟩P⟨S⟩ by ∀s ∈ S. ∃r ∈ R. ∃prog ∈ P . |=𝑑 {r}prog{s} .

It is worth contrasting this definition with the notion of validity in the recent unrealizability

logic [22]. Their triples {r}P{s} are valid, if |=𝑑 {r}prog{s} holds for all programs prog ∈ P .
Moreover, note that r and s are single predicates, and not sets of predicates as in our case. In fact,

the paper explicitly asks for a realizability analogue of their unrealizability logic, and we named

our program logic after that proposal.

The relation |=𝑑 {r}prog{s} is validity in classical Hoare logic. The index 𝑑 stands for demonic,
and indicates that the choice of the initial state in r as well as the choice of the execution in program

prog are made demonically, and the postcondition s has to over-approximate all the resulting states.

The index 𝑎 for validity |=𝑎 ⟨R⟩P⟨S⟩ in our synthesis logic stands for angelic, and indicates that the

choice of the predicate r in the precondition R as well as the choice of the program prog ∈ P are

made angelically, and the postcondition S is an under-approximation of all predicates s that can be

guaranteed. Assertions in our program logic are thus angelic choices over predicates, and these

predicates are demonic choices over states. To the best of our knowledge, there is no program logic

that would reason over such alternations in related work.

Consider the program proof given in Figure 1. The program has two Boolean variables x and y
and two non-terminals, M that may be rewritten to x=0 or x=1 and N that may be rewritten to

y=0 or y=1. Starting from the set of all states, represented by the singleton predicate true, the two
programs represented by M give us two synthesis alternatives: we can guarantee x = 0 or we can

guarantee x = 1. In both cases, we still do not have any knowledge about the value of y. We do
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1 ⟨true⟩
2 M(⟨true⟩x = 0⟨x = 0⟩ |
3 ⟨true⟩x = 1⟨x = 1⟩);

4 ⟨x = 0, x = 1⟩

5 N(⟨x = 0, x = 1⟩y = 0⟨x = 0 ∧ y = 0, x = 1 ∧ y = 0⟩ |
6 ⟨x = 0, x = 1⟩y = 1⟨x = 0 ∧ y = 1, x = 1 ∧ y = 1⟩);

7 ⟨𝑥 = 0 ∧ y = 0, . . . , x = 1 ∧ y = 1⟩

8 assert(x = 1 ∧ y = 1)

9 ⟨x = 1 ∧ y = 1, fail⟩

Fig. 1. Proof outline in realizability logic.

1 ⟨true⟩
2 M(⟨true⟩x = 0⟨x = 0⟩ |
3 ⟨true⟩x = 1⟨x = 1⟩);

4 ⟨x = 1⟩

5 N(⟨x = 0, x = 1⟩y = 0⟨x = 1 ∧ y = 1⟩ |
6 ⟨x = 1⟩y = 1⟨x = 1 ∧ y = 1⟩);

7 ⟨x = 1 ∧ y = 1⟩

8 assert(x = 1 ∧ y = 1)

9 ⟨x = 1 ∧ y = 1⟩

Fig. 2. Proof outline derived from Figure 1.

not yet make a decision, but use the two alternatives to consider the programs that can be derived

from N. This yields four synthesis alternatives, namely x=0 ∧ y=0 to x=1 ∧ y=1. Only the last of

these alternatives passes the assertion, the others lead to a failure of the execution.

A first point of criticism one may have about realizability logic is that the alternation between

angelic and demonic choice will explode too quickly. In the end, all we have done is to replace the

choice of a program by a powerset construction over predicates, a technique pioneered in automata

theory [37]. This merely translates a complex search into complex assertions. We argue that, for

SemGuS where validity checks are expensive, the assertions may be the right place to keep the

complexity. Formal methods has developed expressive logical languages and abstract domains that

can denote complex sets of states with very concise assertions. In our experiments, we have worked

with Cartesian abstraction [8, Chapter 9].

A more severe point of criticism is that our realizability triples ⟨R⟩P⟨S⟩ drop the relationship

between the single programs prog ∈ P and the pre- and postconditions r ∈ R and s ∈ S that this
program can achieve. Hence, when we have given a proof in realizability logic, like the one in

Figure 1, all we know is that the program sketch M; N; assert(x = 1 ∧ y = 1) can be completed to a

program that passes the assertion, but we do not know the program. What we have, however, is a

proof outline in realizability logic that annotates the program with intermediary assertions. The

idea is to use this proof outline as guidance of how to instantiate the non-terminals.

Our second contribution is realization logic, a program logic to derive rewriting steps po p∼ po′

between proof outlines in realizability logic. The guarantee given by realization logic is that valid

proof outlines are rewritten to valid proof outlines. The rewriting process will not only eliminate

alternatives from the definition of non-terminals until a program that satisfies the specification

has been found. An equally important step is to eliminate predicates that will not be helpful to

satisfy the desired postcondition, or may even fail in the future. The elimination of predicates is

done backwards, starting from the postcondition, and we illustrate it on our example:

⟨x = 0 ∧ y = 0, . . . , x = 1 ∧ y = 1⟩assert(x = 1 ∧ y = 1)⟨x = 1 ∧ y = 1, fail⟩ (1)

p∼⟨x = 0 ∧ y = 0, . . . , x = 1 ∧ y = 1⟩assert(x = 1 ∧ y = 1)⟨x = 1 ∧ y = 1⟩ (2)

p∼⟨x = 1 ∧ y = 1⟩assert(x = 1 ∧ y = 1)⟨x = 1 ∧ y = 1⟩ .

The first step drops the alternative fail. As there are less synthesis options to choose from, this

weakens the postcondition and the step is thus sound by the standard rule of consequence in Hoare

logic. The second step propagates this elimination backwards by weakening the precondition, which
is rather uncommon in program logics. We can weaken the precondition, because x = 1 ∧ y = 1

is sufficient to obtain the postcondition. For the following rewriting steps, it will be helpful to

consider Figure 2. We propagate the precondition x = 1 ∧ y = 1 to the postconditions of the

alternatives for non-terminal N. Note that the proof outline remains valid although the alternative
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{x = 0, x = 1}y=0{x = 1 ∧ y = 1} is invalid. The point is that there is still the alternative y=1.
We eliminate the incorrect alternative in the next rewriting step. The backwards reasoning thus

revealed that the alternative y=0 will not help to satisfy the specification. We then weaken the

precondition of the alternative y=1 and obtain the proof outline shown in the figure. The logic

will proceed along the same lines and identify the program x=1; y=1; assert(x = 1 ∧ y = 1) as a
solution to the synthesis task.

Our third contribution is an algorithm to construct valid proof outlines in realizability logic. The

ambition is to avoid expensive CHC queries and get away with standard SMT queries, very much

like SyGuS. To achieve this, we are willing to rely on user guidance, namely the loop invariants

that are known to be crucial for verification. Our algorithm is then a generalization of deductive

verification to realizability logic. We start from a realizability triple whose program sketch comes

with invariant annotations. We show how to compute the missing intermediary assertions with

the help of strongest postconditions. From the resulting proof outline, we compute verification

conditions: a set of constraints whose validity entails the validity of the proof outline (and the

annotations). Given that our assertions are new, we had to adapt the strongest postconditions and

the verification conditions. The new definitions are made such that they can be handled by standard

technology: the postconditions can be computed in a symbolic way and the verification conditions

can be discharged by an SMT solver.

Our next contribution is to automate realization logic: we give an algorithm that rewrites proof

outlines until a solution to the synthesis problem has been found. Our algorithm is again based on

deductive verification and solver support. The idea is to derive from the given proof outline (ordi-

nary) verification conditions (over predicates rather than sets of predicates) whose validity proves

that a certain program is a solution to the synthesis problem. What is new is that the verification

condition checks have to be interleaved with their construction, because they control the choice

of the program and thus the future verification conditions. The choice of verification conditions

is not unique but depends on the program as much as the argument why this program solves the

synthesis problem. Interestingly, we can show that there is a backtracking freedom guarantee: no

matter the choice, the synthesis is guaranteed to succeed. At a high level, this is a consequence

of the notion of validity in realzability logic.

We implemented our algorithms for realizability and realization logic in a new tool. Given that

we have not yet developed generic assertion languages to deal with sets of sets of predicates, our

implementation is tied to one application domain: memory management in lock-free data structures

with the help of a safe memory reclamation algorithm. Due to the lock-free processing, protecting

a memory cell is not a mere call to the safe memory reclamation algorithm, but a complicated

sequence of calls followed by checks of global invariants that indicate whether a call has been

successful. The data structures include tricky ones like the ORVYY set and the DGLM queue, the

challenging protection is with ordered hazard pointers (the first has priority over the second),

but we can also handle epochs. This set of case studies is interesting in several respects. It works

over an abstract data domain, namely the SMR types introduced in [27], and therefore cannot be

handled by solver-aided languages out-of-the-box (an encoding would be possible). The programs

contain unbounded loops, and therefore cannot be handled by SyGuS solvers. The places in which

to synthesize information are far apart, which means we have to capture the influence of complex

code on the to-be-synthesized information. Our approach handles all instances in a matter of

seconds. Moreover, we did not need any user annotations but were able to infer the required loop

invariants automatically.

It may have become clear that we develop our algorithms in the context of an imperative

programming language that is parameterized in the data domain, the set of commands, and the

semantics of commands. We fix the semantics of choice, sequential composition, and Kleene star.
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In its original formulation, SemGuS is more liberal and would also take the operators for building

programs as a parameter. To generalize our work to that setting, the user would have to come up

with appropriate proof rules for the new operators. This is also the approach taken by unrealizability

logic [22]. We believe, however, that this should only be a second step. The parameterization we

work with is the standard assumption in program logics [5], and it has proven rich enough to

handle a large variety of benchmarks. In fact, it is rich enough to handle all examples that are

typically given to motivate SemGuS (C, Python, regular expressions, and bounded loops).

To sum up, our contributions are the following.

• Realizability logic (Section 3), the first program logic to reason about realizability in SemGuS.
The new idea is to have sets of predicates as assertions to represent synthesis alternatives.

• Realization logic (Section 4), the first program logic to compute a solution to a SemGuS
problem from a proof outline in realizability logic. The key idea of realization logic is to

propagate failing synthesis attempts backwards, and eliminate unsuitable alternatives.

• An algorithm to find proofs in realizability logic (Section 5). We use deductive verification

and develop appropriate strongest postconditions and verification conditions.

• An algorithm to find program derivations in realization logic (Section 6). Also here we rely

on deductive verification, and we can give a backtracking freedom guarantee.

• We implemented our algorithms and applied them to synthesize the protection of memory

accesses in a lock-free data structure by a safe memory reclamation algorithm (Section 8).

The synthesis works over an abstract semantics of protection types, and the problem cannot

be handled by state-of-the-art synthesizers.

We start with a recapitulation of program logic, which forms the foundation of our work.

2 PRELIMINARIES
We introduce an imperative programming language that is parameterized in the data domain and

in the set of commands, and give a Hoare logic for it that will form the basis of our development.

2.1 Parameters
The development in this paper is parameterized in a triple (States, COM, ⟦−⟧) which is given as part

of the synthesis task. The set States is the data domain, the set of states programs operate over.

There are no requirements, the set may be finite or infinite. The set COM contains the commands

com that can be used in programs. The function ⟦−⟧ : COM→ States→ Predicates assigns to each

command a function from states to the set of predicates we define in a moment.

2.2 Programs
We use a classical while-language whose commands stem from the given set COM. Apart from that,

we have sequential composition, choice, and Kleene star:

prog ::= com | prog; prog | prog + prog | prog∗ .

We use Programs for the set of all programs. We use Execs for the set of all executions ex, programs

that neither contain choices nor loops. The function exec yields all executions that can originate

from a given program. For example, exec((com1+com2); com) is the set {com1; com, com2; com}. Loops
are unrolled. Formally, we see the program as a regular expression and take the language.

To give the program semantics, we first define Predicates = P(States) ∪ {fail}. Predicates are
sets of states or a distinguished element fail, and we typically use r, s, t for predicates. We have

sets of states to support non-determinism, and failure to track program crashes, due to problems

like segfaults or failing assertions. The predicates form a complete lattice with inclusion as the
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ordering and fail as the top element: 𝑟 ⪯𝑑 𝑠 is defined by 𝑠 = fail ∨ (𝑟 ≠ fail ∧ 𝑟 ⊆ 𝑠), and we

say that 𝑟 is more precise than 𝑠 . We also write

⊔
𝑑 for the join. The index 𝑑 reminds us that the

non-determinism in programs is resolved demonically. Note that we formulated predicates in a

semantic way, there is no assertion language to denote sets of states. Nevertheless, we emphasize

that the inclusion in the formulation of 𝑟 ⪯𝑑 𝑠 corresponds to implication in logic, meaning the

definition can be implemented with solver technology right away.

To give a semantics to executions, we first lift the semantics of commands from states to predicates.

We define ⟦com⟧(fail) = fail and ⟦com⟧(𝑟 ) = ⊔
𝑑 {⟦com⟧(𝑠) | 𝑠 ∈ 𝑟 }, where 𝑟 ≠ fail. We then set

⟦ex1; ex2⟧(𝑟 ) = ⟦ex2⟧(⟦ex1⟧(𝑟 )). A consequence is that programs cannot recover from failure.

2.3 Hoare Logic
We specify the correctness of programs by Hoare triples of the form {𝑟 }prog{𝑠}. The triple is valid,
if every possible execution of prog that starts in a state from 𝑟 ends in a state from 𝑠 . We define

|=𝑑 {𝑟 }prog{𝑠} by ∀ex ∈ exec(prog) . ⟦ex⟧(𝑟 ) ⪯𝑑 𝑠 .

To derive valid triples in a compositional way, Hoare logic offers proof rules similar to the

black ones in Figure 3, we just have to replace all angle brackets by set brackets, the indices 𝑎

by 𝑑 , and assume 𝑅, 𝑆,𝑇 are predicates as we have defined them above. Rule (COM) requires that

the postcondition over-approximates the effect of the command on the precondition. Rule (SEQ)

composes programs sequentially if the intermediary assertion matches. Rule (LOOP) checks that the

predicate is invariant under the loop body. Rule (DEM) is commonly called choice and lets the demon

choose the alternative with which to continue the execution. The rule of consequence (CSQ) lets us

strengthen the precondition and weaken the postcondition. We use ⊢𝑑 {𝑟 }prog{𝑠} to indicate that

a Hoare triple can be derived with these proof rules. It is readily checked that these rules are sound

in that ⊢𝑑 {r}prog{s} implies |=𝑑 {r}prog{s}.
One can also show that the rules are complete, |=𝑑 {r}prog{s} implies ⊢𝑑 {r}prog{s}. As we

will need it later, we explain the proof. The idea is to consider the full state space of program prog
from states in r . Now for each line of code, we collect all states from the state space that decorate

this line, and let them form a predicate. We construct a proof outline in which every line of code

carries the predicate we have just constructed as a precondition. One can now check that this proof

outline can be derived with the above rules.

3 REALIZABILITY LOGIC
We extend programs to program sketches that contain yet to be resolved non-terminals, and present

our program logic to reason about realizability.

3.1 Sketches
We extend the grammar of Programs by non-terminals N from a finite setN . The resulting sketches
are given by the grammar:

sketch ::= com | sketch; sketch | sketch + sketch | sketch∗ | N .

We use Sketches for the set of all sketches. We assume each non-terminal N ∈ N comes with

a set of productions ∅ ≠ prod (N) ⊆ Sketches and usually write N ::= sketch1 | sketch2 rather
than prod (N) = {sketch1, sketch2}. There may be more than two alternatives, and the sketches

may themselves contain non-terminals so that we have proper recursion. The pair (N , prod) of
non-terminals and their productions belong to the synthesis task and are given by the user.

To lift the semantics from programs to sketches, we let the function drv determine all programs

(without non-terminals) that can be derived from a sketch by rewriting the non-terminals. For
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(COM)

⟦com⟧(r ) ⪯𝑑 s

⊢𝑎 ⟨{r }⟩com⟨{s}⟩

(SEQ)

⊢𝑎 ⟨R⟩sketch1⟨S⟩
⊢𝑎 ⟨S⟩sketch2⟨T ⟩

⊢𝑎 ⟨R⟩sketch1; sketch2⟨T ⟩

(LOOP)

R = {r }
⊢𝑎 ⟨R⟩sketch⟨R⟩

⊢𝑎 ⟨R⟩sketch∗⟨R⟩

(CSQ)

R ⪯𝑎 R′ S′ ⪯𝑎 S
⊢𝑎 ⟨R′⟩sketch⟨S′⟩

⊢𝑎 ⟨R⟩sketch⟨S⟩

(DEM)

R = {r }
⊢𝑎 ⟨R⟩sketch1⟨S⟩
⊢𝑎 ⟨R⟩sketch2⟨S⟩

⊢𝑎 ⟨R⟩sketch1 + sketch2⟨S⟩

(ANG)

N ::= sketch | . . .
⊢𝑎 ⟨R⟩sketch⟨S⟩

⊢𝑎 ⟨R⟩N⟨S⟩

(GATHER)

⊢𝑎 ⟨R1⟩sketch⟨S1⟩
⊢𝑎 ⟨R2⟩sketch⟨S2⟩

⊢𝑎 ⟨R1 ∪ R2⟩sketch⟨S1 ∪ S2⟩

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

1 ⟨true⟩ N(x = 0 | x = 1); ⟨𝑥 = 0, 𝑥 = 1⟩

2 (assert(x==0) + assert(x==1))

3 ⟨fail⟩

Fig. 4. Demonic choice.

(SHARE)

⊢𝑎 ⟨𝑇 ⟩N⟨𝑈 ⟩ ⊢𝑎 ⟨R⟩sketch[N/⟨𝑇 ⟩⟨𝑈 ⟩ ]⟨S⟩
⊢𝑎 ⟨R⟩sketch⟨S⟩

Fig. 5. Subproof sharing.

example, with N ::= com1 | com2 we have drv(N; com) = {com1; com, com2; com}. Formally, we see the

sketch as a sentential form in a context-free grammar and take the language.

3.2 Realizability Logic
Realizability logic reasons over correctness specification of the form ⟨R⟩sketch⟨S⟩. Here, R, S are
so-called selections from the set Selections = Pfin (Predicates). A selection is a finite set of predicates

as we have defined them above. The idea is this. When we encounter a non-terminal in a sketch,

we do not yet determine how to resolve it to a program with the function drv. Instead, we collect
in a selection the predicates that these programs may justify as a postcondition. Since also the

precondition is a selection, we can not only choose the program but also the precondition to justify

the postcondition. We thus define validity of realizability triples via validity in Hoare logic:

|=𝑎 ⟨R⟩sketch⟨S⟩ by ∀s ∈ S. ∃r ∈ R. ∃prog ∈ drv(sketch). |=𝑑 {r}prog{s} .

To derive valid realizability triples, we use the proof rules in Figure 3. We write ⊢𝑎 ⟨R⟩sketch⟨S⟩
if the realizability triple can be derived with the help of these rules. Rule (COM) checks whether

the effect of a command com on a predicate r is captured by s. The rule allows us to derive the

realizability triple ⟨{r}⟩com⟨{s}⟩ in which the selections are singleton sets. The rule plays together

with (GATHER): if we can also derive ⟨{r′}⟩com⟨{s′}⟩ for another pre- and postcondition, then we

can join the selections and obtain ⟨{r, r′}⟩com⟨{s, s′}⟩. Rule (GATHER) is also important to join the

pre- and postconditions for the various programs that can be derived from a non-terminal. To

obtain a realizability triple ⟨R⟩N⟨S⟩, Rule (ANG) unwinds the non-terminal to a sketch sketch that

is given by a production and then proves ⟨R⟩sketch⟨S⟩. Note that the sketch may again contain N,
and may contain more than one occurrence. We explain at the end of the section how to avoid the

repetition of proof trees and handle non-terminals in an efficient way.

Rule (DEM) looks like the standard rule for choice operators in Hoare logic. In realizability

logic, the precondition has to be a singleton selection, and the rule is unsound without this side

condition. If there were multiple predicates in R, then the synthesis from sketch1 and the synthesis
from sketch2 could use different predicates. This would be incorrect, because the synthesis is

7
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done at compile-time while the branch is chosen at runtime, and therefore the synthesis is not

allowed to react on the branch. To see this, consider the sketch in Figure 4 and let choice stand for

assert(x==0)+ assert(x==1). Without the side condition, we could derive the realizability triple

⊢𝑎 ⟨𝑥 = 0, 𝑥 = 1⟩choice⟨x = 0, x = 1⟩, because we could enter the left branch with the predicate 𝑥 =

0 and the right branch with the predicate 𝑥 = 1. However, the programs we can synthesize, namely

x=0; choice and x=1; choice, have to commit to one of the assignments, and therefore choice is
doomed to fail. A similar reasoning applies for Rule (LOOP). The way to handle multiple predicates

in a precondition is to consider them one by one and join the results, again using (GATHER).

Rule (SEQ) reinforces the definition of validity for realizability triples. Consider |=𝑎 ⟨R⟩sketch1⟨S⟩
and |=𝑎 ⟨S⟩sketch2⟨T⟩. If validity was defined by an existential instead of a universal quantifier

over the postcondition, then it would not be sound to derive |=𝑎 ⟨R⟩sketch1; sketch2⟨T⟩. The
point is that the existentially quantified predicate s1 ∈ S that is chosen to justify the validity of

the first triple could differ from the predicate s2 ∈ S needed for the second. There is an alternative

definition of validity that admits compositionality. We discuss it at the end of the following section

when we have developed the overall synthesis technique.

It remains to discuss (CSQ). The rule of consequence needs an ordering on selections. We say

that selection R is more versatile than selection S, if for every predicate in S there is a more precise

predicate in R, so we define

R ⪯𝑎 S by ∀s ∈ S. ∃r ∈ R. r ⪯𝑑 s .

Having more predicates available makes a selection more versatile and having less predicates makes

a selection less versatile. It is also possible to have a more versatile selection with less predicates if

they are more precise. With this, ∅ is the least versatile and {∅} is the most versatile selection.

The rules are sound and, together with a rule for the edge case of an empty precondition that we

give in the appendix, also complete.

Theorem 3.1 (Sound-And-Complete). ⊢𝑎 ⟨R⟩sketch⟨S⟩ if and only if |=𝑎 ⟨R⟩sketch⟨S⟩ .

Proof. Soundness holds by an induction on the height of the proof tree. We argue for complete-

ness and consider |=𝑎 ⟨R⟩sketch⟨S⟩. By the definition of validity, this means for every predicate

s ∈ S there is a predicate r ∈ R and a program prog ∈ drv(sketch) so that |=𝑑 {r}prog{s} holds. We

invoke the completeness of Hoare logic and obtain ⊢𝑑 {r}prog{s}. The derivation can be mimicked

in realizability logic and yields ⊢𝑎 ⟨r⟩prog⟨s⟩. Since the program has been derived from sketch,
we can also obtain ⊢𝑎 ⟨r⟩sketch⟨s⟩ with finitely many applications of (ANG). Rule (GATHER) allows

us to join the triples ⟨r⟩sketch⟨s⟩ and obtain the desired ⊢𝑎 ⟨R⟩sketch⟨S⟩. □

3.3 Discussion
On SemGuS. The synthesis tasks we consider have the following input: the states, the commands,

and the semantics (States, COM, ⟦−⟧) of the programming language, the non-terminals with their

production rules (N , prod), and the realizability triple ⟨R⟩sketch⟨S⟩ of interest. In its original

formulation [23], SemGuS would be more liberal and allow the user to also define the operators

(their syntax and their semantics) from which programs can be built. We fix those operators to

concatenation, choice, and Kleene star, instead. This allows us to work with an extension of Hoare

logic. To lift our approach to the more general setting, the user would have to specify the proof rules

that are sound for the new operators, which would be in-line with the approach in unrealizability

logic [22].

The reader may also note that we have not made assumptions about the correctness specification.

In synthesis, it is common to work with sets of examples. The work on unrealizability logic has

8
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shown that such sets can be captured by so-called vector assertions [22]. Vector assertions are

predicates of a particular form, and our construction of selections readily applies to them.

On search-based synthesis. Realizability logic is formulated such that it can be readily combined

with search-based synthesis. The point is that Rule (ANG) does not force us to consider all programs

a non-terminal can be rewritten to. Instead, we can consider a set of programs that appear most

promising, as can be judged from a probabilistic grammar [20].

On the implementation of non-terminals. A non-terminal may occur multiple times in a proof in

realizability logic, it may even occur recursively. Rather than duplicating the subproofs for this

non-terminal, we would like to share them in the various places the non-terminal is used. This is

made possible by Rule (SHARE) given in Figure 5. If we have already derived the triple ⟨𝑇 ⟩N⟨𝑈 ⟩,

then we can eliminate the non-terminal from a program sketch and replace it by the pair ⟨𝑇 ⟩⟨𝑈 ⟩.

The pair stands for the fact that we can synthesize a program that transforms𝑇 to𝑈 . Rule (SHARE) is

readily checked to be sound. However, it is a derived rule whose application can easily be mimicked

by Rule (ANG), at the cost of blowing-up the proof. An implementation would refine the rule so

that different occurrences of the non-terminal can be replaced in different ways. Moreover, one

would maintain a pointer to the subproof that should be inserted, to be able to derive the program

with the technique given next.

4 REALIZATION LOGIC
We define realization logic, a program logic to derive programs from sketches. The key insight

is that a proof outline in realizability logic for the sketch of interest is helpful guidance to find a

program that solves the synthesis task. To make use of this guidance, realization logic rewrites the

given proof outline until a suitable program is found. Realization logic thus reasons over rewriting

steps of the form po p∼ po′ between proof outlines. The strategy behind the rewriting is to propagate
information about failed synthesis attempts backwards, and thereby iteratively eliminate predicates

from selections and productions from the definition of non-terminals.

As we need a precise understanding of proof outlines, we give the definition:

po ::= ⟨R⟩com⟨S⟩ | po; po | po + po | po∗ | N(po) | (po | po) .
We write ⊢𝑎 po to indicate that the proof outline has been derived with realizability logic. The

assertions we track are the ones that have been used in the application of (SEQ), (LOOP), and (ANG).

The formal definition is in the appendix. We abuse the notation a bit and write ⟨R⟩po⟨S⟩ to indicate
that R is the precondition and S is the postcondition of the proof outline po. This is well-defined,
because ⊢𝑎 po

1
+ po

2
implies that po

1
and po

2
have the same pre- and postcondition.

The proof rules of realization logic are listed in Figure 6, we discuss them below. The rules give

the following soundness guarantee: if we start from a proof outline in realizability logic and rewrite

it to another proof outline, then also this proof outline can be derived with realizability logic.

Theorem 4.1 (Soundness). ⊢𝑎 po and po p∼ po′ together imply ⊢𝑎 po′.

This allows us to invoke the soundness of realizability logic from Theorem 3.1 and obtain the

desired semantic guarantee for the program we have derived.

A feature all rules share is that they are guided by the original proof outline: the selections in the

proof outline that results from rewriting are limited to the selections in the original proof outline.

To ease the notation, we use Rw
to denote a selection that is known to be less versatile than R,

meaning R ⪯𝑎 Rw holds. This may be used repeatedly, so R ⪯𝑎 Rw ⪯𝑎 Rww.
The rules in Figure 6 rewrite the given proof outline in a compositional fashion. The base case

(RCOM) allows us to pick a pre- and postcondition from a selection. This is the moment we realize

9
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(RCOM)

⟦com⟧(r ) ⪯𝑑 s R ⪯𝑎 {r } S ⪯𝑎 {s}
⟨R⟩com⟨S⟩ p∼ ⟨{r }⟩com⟨{s}⟩

(RANG)

po p∼ po′

N(po
1
| po | po

2
) p∼ N(po

1
| po′ | po

2
)

(RSELECT)

N(po
1
| po | po

2
) p∼ po

(RSEQL)

⟨R⟩po
1
⟨S⟩ p∼ ⟨Rw⟩po′

1
⟨S⟩

⟨R⟩po
1
⟨S⟩; po

2
p∼ ⟨Rw⟩po′

1
⟨S⟩; po

2

(RSEQR)

⟨S⟩po
2
⟨T ⟩ p∼ ⟨Sw⟩po′

2
⟨Tw

⟩

⟨R⟩po
1
⟨S⟩; ⟨S⟩po

2
⟨T ⟩ p∼ ⟨R⟩po

1
⟨Sw⟩; ⟨Sw⟩po′

2
⟨Tw

⟩

(RDEM)

Rw = {r } ⟨R⟩po𝑖 ⟨S⟩ p∼ ⟨Rw⟩po′𝑖 ⟨S
w
⟩ for 𝑖 = 1, 2

⟨R⟩po
1
⟨S⟩ + ⟨R⟩po

2
⟨S⟩ p∼ ⟨Rw⟩po′

1
⟨Sw⟩ + ⟨Rw⟩po′

2
⟨Sw⟩

(RLOOP)

⟨𝐼 ⟩po⟨𝐼 ⟩ p∼ ⟨𝐼w⟩po′⟨𝐼w⟩ 𝐼w = {𝑖 }
⟨𝐼 ⟩po∗⟨𝐼 ⟩ p∼ ⟨𝐼w⟩po∗⟨𝐼w⟩

(RTRANS)

po
1
p∼ po

2

po
2
p∼ po

3

po
1
p∼ po

3

(RCSQ)

⟨R⟩po⟨S⟩ p∼ ⟨Rww⟩po′⟨Sw⟩

⟨R⟩po⟨S⟩ p∼ ⟨Rw⟩po′⟨Sww⟩

(RGATHER)

R ⪯𝑎 (R1 ∪ R2 ) S ⪯𝑎 (S1 ∪ S2 ) sketch(po′
1
) = sketch(po′

2
)

⟨R⟩po⟨S⟩ p∼ ⟨R1⟩po′1⟨S1⟩ ⟨R⟩po⟨S⟩ p∼ ⟨R2⟩po′2⟨S2⟩

⟨R⟩po⟨S⟩ p∼ ⟨R1 ∪ R2⟩gather (po′1, po′2 ) ⟨S1 ∪ S2⟩

Fig. 6. Rules of realization logic.

that predicates from the precondition can be dropped because they are not needed to obtain the

postcondition, as shown in the introduction. We have to explicitly check the over-approximation

because realizability triples do not maintain the interplay between the predicates in the pre- and in

the postcondition. Using (RANG), we can rewrite proofs for the right-hand sides of non-terminals.

The heart of the calculus is (RSELECT), which allows us to replace non-terminals by their right-

hand sides. The Rules (RSEQL) and (RSEQR) rewrite the left resp. the right part of a sequence. In

(RSEQL), it is important that the new intermediary assertion matches the original intermediary

assertion. This does not have to be the case in (RSEQR), which uses the rule of consequence to

automatically weaken the postcondition on the left. As in realizability logic, Rule (RDEM) forces

us to commit to a predicate when reasoning about demonic choices. It also produces the same

postcondition 𝑆w in both branches. Rule (RLOOP) for rewriting loop bodies has a similar behavior.

The rule of consequence (RCSQ) is used like in realizability logic. The same is true for (RGATHER),

which uses function gather to recursively join the intermediary assertions in the proof outlines.

The definition is in the appendix. The need for this function stems from the fact that (RDEM) can

only work with single predicates. Rule (TRANS) is the transitivity of rewriting. This rule is needed

to combine rewrites, for example when rewriting the left and the right part of a sequence.

Realization logic always rewrites a proof outline into one that is weaker in the sense that it has

less synthesis options or, phrased differently, is closer to a program.

Lemma 4.2. po p∼ po′ implies po ⪯𝑝 po′ .

The ordering po ⪯𝑝 po′ states that po′ has less versatile assertions than po and a sketch or even

program that can be derived from the sketch in po. The definition is by induction on the structure of

proof outlines. The base case is ⟨R⟩com⟨S⟩ ⪯𝑝 ⟨Rw⟩com⟨Sw⟩. The step cases are similar to the one

for choice: po
1
+ po

2
⪯𝑝 po′

1
+ po′

2
if po

1
⪯𝑝 po′

1
and po

2
⪯𝑝 po′

2
. Non-terminals are an exception,

where we use N(po
1
| po | po

2
) ⪯𝑝 N(po

1
| po′ | po

2
) if po ⪯𝑝 po′ . A proof outline over a

non-terminal is also stronger than a proof outline over a derivative, N(po
1
| po | po

2
) ⪯𝑝 po.

Realization logic also has a completeness property: proof outlines can be rewritten into all weaker

proof outlines that are derivable in realizability logic.

Theorem 4.3 (Completeness). ⊢𝑎 po and ⊢𝑎 po′ and po ⪯𝑝 po′ together imply po p∼ po′.
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A final guarantee that is interesting from an algorithmic point of view is that realization logic

provably does not need backtracking: from every proof outline and for every predicate in the

postcondition, one can derive a program that satisfies this postcondition. By Theorem 4.1, the

guarantee continues to hold after a rewriting step (that should not remove the predicate of interest),

hence the name.

Theorem 4.4 (Backtracking Freedom). Let ⊢𝑎 ⟨R⟩po⟨S⟩ and s ∈ S. Then there are r and po′ so
that ⟨R⟩po⟨S⟩ p∼ ⟨{r}⟩po′⟨{s}⟩, r ∈ R, and sketch(po′) ∈ drv(sketch(po)).

It is tempting to try to prove backtracking freedom with the help of completeness in Theorem 3.1.

To understand why this does not work, consider the valid proof outline given in Figure 7 and

suppose both commands have the same semantics, namely the identity function. When we want to

derive a program for the postcondition {x = 0}, realization logic can only propose skip
1
. The notion

of validity in realizability logic, however, may justify the postcondition by |=𝑑 {x = 0}skip
2
{x = 0}.

Completeness in Theorem 3.1 now shows that there is a proof outline for ⊢𝑎 ⟨x = 0⟩skip
2
⟨x = 0⟩.

The point is that this proof outline is not weaker than the one in Figure 7. This also means that there

is no contradiction to Theorem 4.3. In short, Theorem 3.1 reasons about sketches and Theorem 4.4

reasons about proof outlines, and the two are incomparable.

1 ⟨𝑥 = 0⟩

2 N((⟨𝑥 = 0⟩ skip1 ⟨𝑥 = 0⟩) |
3 (⟨𝑥 = 0⟩ skip2 ⟨∅⟩))
4 ⟨𝑥 = 0⟩

Fig. 7. Guidance.

For an example application of realization logic, we refer to Sec-

tion 1. Eliminating the predicate fail in Equation (1) is an applica-

tion of Rule (RCSQ). Weakening the precondition in Equation (2) is

an application of Rule (RCOM). Resolving the non-terminal to the

left production is an application of rule (RSELECT). The resulting

proof outline fragments are put together using Rules (RSEQL),

(RSEQR), and (RTRANS).

Overall approach and the notion of validity. The overall approach to synthesizing a program from

a sketch sketch, a precondition R, and postcondition S is this. We prove the triple ⟨R⟩sketch⟨S⟩
in realizability logic. One may see this proof as a symbolic execution that annotates the code by

assertions in a forward fashion, starting from the precondition and ending at the postcondition.

When we have proven the triple, we in particular have a proof outline at hand. We rewrite this

proof outline to a program using the realization logic we have just developed. The rewriting

proceeds backwards: starting from failures and predicates that do not guarantee the postcondition,

we eliminate predicates from selections and productions from the definition of non-terminals.

We need the rewriting phase because realizability logic abstracts away the link between the

programs that can be synthesized from the sketch and the pre- and postconditions that these

programs can guarantee. This abstraction is precisely what makes realizability logic scale, and the

link is precisely what realization logic recovers. What makes realization logic efficient is that it is

guided by the proof outline in realizability logic. Moreover, realizability logic provably does not

need backtracking (the rewriting cannot go wrong).

It would be possible to define the notion of validity in realizability logic differently, namely by

universally quantifying over the precondition and existentially quantifying over the postcondition.

Our synthesis approach can be adapted to this definition as follows. We imagine the proof in realiz-

ability logic as being constructed backwards, the symbolic execution starts from the postcondition

and proceeds to the precondition. Realization logic would then start from unsuitable preconditions

and proceed forwards. Our approach has the advantage that forward reasoning tends to be more

deterministic than backwards reasoning, which leads to smaller assertions in realizability logic.

11
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5 IMPLEMENTING REALIZABILITY LOGIC
We give an algorithm that checks the validity of triples in realizability logic. The algorithm also

yields a proof outline that will be handed over to the implementation of realization logic developed

in the next section. The algorithm is a deductive verification: we compute a set of verification

conditions whose validity entails the validity of the given realizability triple. Importantly, although

the assertions in realizability logic are selections rather than mere predicates, the validity check can

be discharged with an off-the-shelf SMT solver. At the technical level, our contribution lies in the

definition of suitable verification conditions. We proceed forwards, using a tailor-made strongest

post. Deductive verification needs loop invariants, and this is no different in our case. We assume

these invariants are given by the user. Moreover, we assume the user gives us information about

the non-terminals, either in the form of an annotated assertion transformer, or in the form of a

recursion depth to which the non-terminal should be unwound in the search for a program. Taking

these user annotations as an input is a compromise: it is a burden on the user, but it improves the

applicability of the method. Having said that, we remark that in our experiments we were able to

automatically determine the loop invariants and handle the non-terminals.

5.1 Verification Conditions and Strongest Post
In Figure 8, we define the function vc : annRealizabilityTriples → P(VerifConds) which takes

an annotated realizability triple and produces a set of verification conditions. The annotation

we assume is an invariant 𝐼 in the case of loops sketch∗, denoted by sketch∗ [𝐼 ], and a selection

transformer Γ : Selections→ Selections in the case of non-terminals N, written as N[Γ]. A verification

condition is an inequality between selections from the set VerifConds = Selections × Selections.
We rely on the correctness of the annotations. A loop invariant is sound, if |=𝑎 ⟨{𝑖}⟩sketch⟨{𝑖}⟩

holds for all 𝑖 ∈ 𝐼 . It is complete if |=𝑎 ⟨{ 𝑗}⟩sketch⟨{ 𝑗}⟩ implies 𝑗 ∈ 𝐼 . A selection transformer is

sound, if Γ(R) = S implies |=𝑎 ⟨R⟩N⟨S⟩. It is complete, if |=𝑎 ⟨R⟩N⟨S⟩ implies Γ(R) ⪯𝑎 S.
Function vc is sound: when all verification conditions hold, then the realizability triple is valid.

Note that we do not need to assume the soundness of the annotations, but will check this as part of

the verification conditions. For completeness, however, we need to make this assumption.

Theorem 5.1 (VC-Sound-And-Complete). |= vc(⟨R⟩sketch⟨S⟩) implies |=𝑎 ⟨R⟩sketch⟨S⟩. If
all annotations are complete, |=𝑎 ⟨R⟩sketch⟨S⟩ implies |= vc(⟨R⟩sketch⟨S⟩).
The benefit of using verification conditions R ⪯𝑎 S as the proof obligation is that they can be

discharged with off-the-shelf SMT technology. For every predicate s ∈ S, we have to go through the

predicates r ∈ R until we find r ⊆ s. This means at most quadratically many SMT queries. Future

assertion languages for selections may suggest a different strategy.

Function vc makes use of the strongest post function sp which is also defined in Figure 8. It takes

as input a selection and a sketch and outputs a selection, sp : (Selections × Sketches) → Selections.
The output is a selection that can be guaranteed when running the sketch on the input. Moreover,

it is the most versatile selection, if the annotations are complete. Since the result does not refer to

the verification conditions, we have to require soundness.

Theorem 5.2 (SP-Sound-And-Complete). If the annotations are sound, sp(R, sketch) ⪯𝑎 S
implies |=𝑎 ⟨R⟩sketch⟨S⟩. If the annotations are sound and complete, |=𝑎 ⟨R⟩sketch⟨S⟩ implies
sp(R, sketch) ⪯𝑎 S.

The functions vc and sp are defined inductively over the structure of sketches. The novelty is in

the cases for demonic choices, non-terminals, and loops. For demonic choices, recall that Rule (DEM)

reasons over single predicates. The strongest post thus iterates through the predicates in the given

precondition. For each r ∈ R , it computes the strongest post for both branches. If we have s1 ∈
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sp (R, com) := {⟦com⟧(r ) | r ∈ R} sp (R, N[Γ ] ) := Γ (R)
sp (R, sketch1; sketch2 ) := sp (sp (R, sketch1 ), sketch2 ) sp (R, sketch∗ [𝐼 ] ) := {𝑖 ∈ 𝐼 | R ⪯𝑎 {𝑖 }}

sp (R, sketch1 + sketch2 ) := {s1 ⊔𝑑 s2 | s𝑘 ∈ sp ({r }, sketch𝑘 ) ∧ r ∈ R ∧ 𝑘 ∈ {1, 2}}

vc (⟨R⟩com⟨S⟩ ) := {sp (R, com) ⪯𝑎 S} vc (⟨R⟩N[Γ ]⟨S⟩ ) := {sp (R, N[Γ ] ) ⪯𝑎 S} ∪ ca(R, N, Γ)
vc (⟨R⟩sketch1;sketch2⟨𝑆 ⟩ ) := vc (⟨R⟩sketch1⟨sp (R, sketch1 ) ⟩ ) ∪ vc (⟨sp (R, sketch1 ) ⟩sketch2⟨S⟩ )

vc (⟨R⟩sketch∗ [𝐼 ]⟨S⟩ ) := {sp (R, sketch∗ [𝐼 ] ) ⪯𝑎 𝑆 } ∪ ca(𝐼 , sketch∗ )
vc (⟨R⟩sketch1 + sketch2⟨S⟩ ) := (∪{vc (⟨{r }⟩sketch𝑘 ⟨sp ({r }, sketch𝑘 ) ⟩ ) | r ∈ R ∧ 𝑘 ∈ {1, 2}})∪

{sp (R, sketch1 + sketch2 ) ⪯𝑎 S}

ca(R, N, Γ) := ∪ {vc (⟨R⟩prog⟨sp (R, prog) ⟩ ) | min 𝑗 : (∪{sp (R, prog′ ) | prog′ ∈ O(N, 𝑗 ) } ) ⪯𝑎 Γ (R) ∧ prog ∈ O(N, 𝑗 ) }
ca(𝐼 , sketch∗ ) := {vc (⟨{𝑖 }⟩sketch⟨{𝑖 }⟩ ) | 𝑖 ∈ 𝐼 }

Fig. 8. Definitions of strongest post, verification conditions, and check annotation functions.

sp({r}, sketch1), then we can guarantee the predicates s1 when running sketch1 on r . The same

holds for s2 ∈ sp({r}, sketch2). But as the branch will be chosen demonically, we can only enforce

the least upper bound of s1 and s2. However, we are free to combine all s1 with all s2. This explains
the definition. The verification conditions check each branch individually, again with a singleton pre-

condition. Moreover, they check whether the strongest post is sufficient to prove the postcondition.

For non-terminals, the strongest post is given by the annotated transformer. The verification

conditions check whether the strongest post entails the postcondition. Moreover, they check the

soundness of the annotation with the function ca(R, N, Γ). We elaborate on it in a moment. For

loops, we rely on an annotated invariant. The strongest post keeps only those predicates from the

invariant that follow from the precondition. The verification conditions again check whether the

strongest post entails the postcondition. Moreover, they check whether the invariant annotation is

sound via ca(𝐼 , sketch∗).
Soundness of a loop invariant is easy to check. Since Rule (LOOP) can only enter a loop with a

singleton, we check each predicate in 𝐼 for being an invariant. The soundness of transformers is

more difficult to check. Function ca(R, N, Γ) tries to derive a set of programs from N which justifies

the postcondition Γ(R). To this end, it repeatedly invokes an oracle O which returns programs from

drv(𝑁 ). The functionO(N, 𝑗) returns the first 𝑗 programs the oracle produces for the non-terminal N.
If the set of programs that have been returned so far is able to produce the postcondition, ca(R, N, Γ)
collects the corresponding verification conditions and terminates. The only guarantee we need

about the oracle is that every program will eventually be returned. If the transformer is sound,

we will eventually obtain a large enough set of programs. Otherwise, the verification condition

generation will not terminate. A simple implementation for an oracle is to return the programs

that can be obtained by unrolling each non-terminal at most 𝑘 times, for larger and larger 𝑘 .

5.2 Example: Checking Realizability of the Factorial Function
We illustrate the verification condition computation on an example. Consider the sketch depicted

in Figure 9. We check whether we can derive from it a program that computes the factorial of 42:

the precondition of interest is R = {x = 42 ∧ y = 1} and the postcondition is S = {y = 42!}. The
sketch is already annotated by the results of the strongest post in grey, the loop is annotated by

the invariant 𝐼 = {y ∗ x! = 42! ∧ x ≥ 0}, and the non-terminal N::= y=y+x | y=y*x is annotated
by the transformer Γ with Γ(R) = sp(R, y=y+x) ∪ sp(R, y=y*x). We refer to the sketch as sketch,
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the loop body as body, and the commands by their line number, so x-- is 17. We abbreviate the

non-terminal including Lines 6 to 14 by N.
We explain the computation of the verification conditions, which returns

vc(⟨R⟩sketch⟨S⟩) = {sp(𝐼 , 22) ⪯𝑎 S, 𝐼 ⪯𝑎 𝐼 (𝐼 = sp(R, body∗ [𝐼 ])), (3)

sp({𝑖}, 4;N;17) ⪯𝑎 {𝑖}, sp({𝑖}, 4) ⪯𝑎 sp({𝑖}, 4), (4)

sp({𝑖}, 4;N) ⪯𝑎 sp({𝑖}, 4;N), sp({𝑖}, 4;8) ⪯𝑎 sp({𝑖}, 4;8), (5)

sp({𝑖}, 4;12) ⪯𝑎 sp({𝑖}, 4;12)} . (6)

Executing vc(⟨R⟩sketch⟨S⟩) yields two recursive calls:

vc(⟨R⟩sketch⟨S⟩) = vc(⟨R⟩body∗ [𝐼 ]⟨sp(R, body∗ [𝐼 ])⟩) ∪ vc(⟨sp(R, body∗ [𝐼 ])⟩22⟨S⟩) .

To calculate the strongest post of the loop, R and each individual element of the loop invariant have

to be compared. Since 𝐼 = {𝑖} is a singleton and R ⪯𝑎 {𝑖}, we have that 𝐼 itself is the strongest post
of the loop. Therefore, the second recursive call boils down to checking sp(𝐼 , assume x = 0) ⪯𝑎 S,
Inequality (3)(left). Next, we invoke vc(⟨R⟩body∗ [𝐼 ]⟨sp(R, body∗ [𝐼 ])⟩). We already argued that

the strongest post of the loop is the loop invariant. Thus, 𝐼 ⪯𝑎 𝐼 is added as Inequality (3)(right).

Checking the loop invariant annotation with ca(𝐼 , body∗) returns vc(⟨{𝑖}⟩body⟨{𝑖}⟩). This, in turn,

yields two calls to the verification conditions function:

vc(⟨{𝑖}⟩body⟨{𝑖}⟩) = vc(⟨𝑖⟩4;N⟨sp({𝑖}, 4;N)⟩) ∪ vc(⟨sp({𝑖}, 4;N)⟩17⟨𝑖⟩) .

For the second recursive call, the base case of function vc(−) applies and adds sp({𝑖}, 4;N;17) ⪯𝑎 {𝑖}
to the output, Inequality (4)(left). The first recursive call yields

vc(⟨𝑖⟩4;N⟨sp({𝑖}, 4;N)⟩) = vc(⟨𝑖⟩4⟨sp({𝑖}, 4)⟩) ∪ vc(⟨sp({𝑖}, 4)⟩N⟨sp({𝑖}, 4;N)⟩) .

The first of these calls adds sp({𝑖}, 4) ⪯𝑎 sp({𝑖}, 4), Inequality (4)(right). The second recursive call

is for the non-terminal. Inequality sp({𝑖}, 4;N) ⪯𝑎 sp({𝑖}, 4;N) checks entailment of the postcon-

dition, Inequality (5)(left). For soundness of the annotation, ca(sp({𝑖}, 4), N, Γ) is called. For 𝑗 = 2,

the oracle proposes the programs y=y+x and y=y*x. See that by our definition of the selection

transformer Γ, the inequality sp(R, y=y+x) ∪ sp(R, y=y*x) ⪯𝑎 Γ(R) holds. Thus, the function ca
outputs two more inequalities (after resolving the recursive calls to the base case of vc): the in-
equality sp({𝑖}, 4; 8) ⪯𝑎 sp({𝑖}, 4; 8) considers the first production resolving the nonterminal and

the inequality sp({𝑖}, 4; 12) ⪯𝑎 sp({𝑖}, 4; 12) considers the second production. Both inequalities are

added to the output, Inequality (5)(right) and Inequality (6).

All inequalities of vc(⟨R⟩sketch⟨S⟩) hold and so |=𝑎 ⟨R⟩sketch⟨S⟩ by Theorem 5.1. This means,

the non-terminal can be resolved such that the resulting program will compute the factorial of 42.

We present next an algorithm to automatically choose the correct branch.

6 IMPLEMENTING REALIZATION LOGIC
We give an algorithm to compute a program from a proof outline in realizability logic. It is a

deductive verification that collects a set of verification conditions whose validity shows that the

program is a solution to the synthesis task. What is unconventional is that the validity has to be

checked in the course of the verification condition computation. The reason is that the validity

checks steer the program construction, and also the verification conditions that will be collected in

the future. Despite these dynamics, we can show that a small number of verification condition checks

will be sufficient to derive the program. Moreover, the verification conditions compare ordinary

predicates (rather than selections in the previous section), and therefore can be implemented as

single SMT solver queries. All this makes our algorithm efficient in practice.
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1 ⟨x = 42 ∧ y = 1⟩

2 (

3 ⟨y ∗ x! = 42! ∧ x ≥ 0⟩

4 assume(x > 0);

5 ⟨y ∗ x! = 42! ∧ x > 0⟩

6 N [Γ ](
7 ⟨y ∗ x! = 42! ∧ x > 0⟩

8 y = y + x;

9 ⟨ (y − x) ∗ x! = 42! ∧ x > 0⟩

10 |
11 ⟨y ∗ x! = 42! ∧ x > 0⟩

12 y = y * x;

13 ⟨ (y/x) ∗ x! = 42! ∧ x > 0⟩

14 )

15 ⟨ (y − x) ∗ x! = 42! ∧ x > 0,

16 (y/x) ∗ x! = 42! ∧ x > 0⟩

17 x--;

18 ⟨ (y − (x + 1) ) ∗ (x + 1)! = 42! ∧ x + 1 > 0,

19 (y/(x + 1) ) ∗ (x + 1)! = 42! ∧ x + 1 > 0⟩

20 )∗ [ {y ∗ x! = 42! ∧ x ≥ 0} ]
21 ⟨y ∗ x! = 42! ∧ x ≥ 0⟩

22 assume(x = 0);

23 ⟨y ∗ x! = 42! ∧ x = 0⟩

Fig. 9. Proof outline of a sketch for computing the factorial function.

Our algorithm implements the proof rules in realization logic, more precisely the non-backtracking

strategy stated in Theorem 4.4. Given a proof outline and a predicate in the postcondition, it traverses

the proof backwards to determine suitable preconditions and programs that justify the postcondi-

tion. Our algorithm is thus a function of type syn : prfOutls× Predicates → Predicates× Programs.
It is defined in Figure 10 and we discuss it in a moment. An important feature of the function is to

discard predicates from selections, in which case it may return (fail,−) and an arbitrary program.

The function gives strong guarantees: when we start from a sketch that has been derived in

realizability logic and a predicate in the postcondition, then the function is guaranteed not to fail

but return a precondition and a program that, together with the given postcondition, will form a

valid Hoare triple. It is also very efficient: the number of verification conditions that have to be

checked is linear, actually bounded by the size of the proof outline.

Theorem 6.1 (syn-Sound-And-Complete). Consider ⊢𝑎 ⟨R⟩po⟨S⟩ and s ∈ S with s ≠ fail. Then
syn(⟨R⟩po⟨S⟩, s) = (r, prog) with r ∈ R, r ≠ fail, prog ∈ drv(sketch(po)), and |=𝑑 {r}prog{s}. The
number of SMT solver calls is at most |po|.

Function syn is given in Figure 10. If several cases apply, the topmost one will be taken. This

means the invocation will always return (fail,−) on an empty precondition, and the fail predicate in
a precondition will always be skipped. When we have a command, we go through the predicates r in
the precondition until we find one that justifies the given postcondition s. Since s ∈ S and we started
from a proof outline in realizability logic, the search for r is guaranteed to be successful. Moreover,

for the guarantees given by Theorem 6.1 it does not matter which predicate r we take. The notion of

soundness in realizability logic gives the guarantee that the earlier (in the program text) assertions

can handle every r . But of course the choice has an influence on the shape of the program.

For a sequential composition po
1
; po

2
, we take the given predicates s, propagate it through

po
2
to obtain (t, prog

2
), propagate t through po

1
to get (r, prog

1
), and return (r, prog

1
; prog

2
).

Importantly, also here we have the guarantee that both calls will be successful. When we have a

non-terminal, we consult the proof outlines for the right-hand sides. For an angelic choice among

two right-hand sides, we first try to synthesize a program from the left proof outline, and if we fail

we know that we will be successful on the right. Whether the synthesis with the left proof outline

will succeed can be foreseen by checking if the target post condition s is in the post condition of

the left proof outline.
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syn(⟨∅⟩po⟨S⟩, s) := (fail, −)
syn(⟨{fail} ∪ R⟩po⟨S⟩, s) := syn(⟨R⟩po⟨S⟩, s)
syn(⟨{r } ∪ R⟩com⟨S⟩, s) := ⟦com⟧(r ) ⪯𝑑 s ? (r, com) : syn(⟨R⟩com⟨S⟩, s)

syn(po
1
; po

2
, s) := let (t, prog

2
) = syn(po

2
, s) and (r, prog

1
) = syn(po

1
, t ) in (r, prog

1
; prog

2
)

syn(N(po), s) := syn(po, s)
syn(po

1
| po

2
, s) := let (r, prog) ∈ syn(po

1
, s) in r ≠ fail ? (r, prog) : syn(po

2
, s)

syn(⟨{r } ∪ R⟩po
1
⟨S⟩ + ⟨{r } ∪ R⟩po

2
⟨S⟩, s) := outl (⟨{r }⟩sketch(po𝑖 ) ⟨{s}⟩ ) = abort ? syn(⟨R⟩po

1
⟨S⟩ + ⟨R⟩po

2
⟨S⟩, s) :

let po′𝑖 = outl (⟨{r }⟩sketch(po𝑖 ) ⟨{s}⟩ ) and (r, prog𝑖 ) = syn(po′𝑖 , s) in (r, prog1 + prog2 )
syn(⟨{𝑖 } ∪ 𝐼 ⟩po∗⟨{𝑖 } ∪ 𝐼 ⟩, s) := 𝑖 ̸⪯𝑑 s ? syn(⟨𝐼 ⟩po∗⟨𝐼 ⟩, s) :

let po′ = outl (⟨{𝑖 }⟩sketch(po) ⟨{𝑖 }⟩ ) and (𝑖, prog) = syn(po′, 𝑖 ) in (𝑖, prog∗ )

Fig. 10. Definition of the synthesis function.

The involved cases are for demonic choices and loops. These are the cases in which the program

logics had to consider single predicates. This is mimicked here, and we first discuss the demonic

choice. We go through all predicates r in the given precondition. We try to construct proof outlines

for both branches in which r is the precondition and s is the postcondition. This is the task of the

calls outl(⟨{r}⟩sketch(po
1
)⟨{s}⟩) and outl(⟨{r}⟩sketch(po

2
)⟨{s}⟩). We argue in a moment why

these calls can actually be looked up in the given proof outline, and therefore mean no effort. If one

of these calls aborts, we continue with the next r . Otherwise, we obtain the proof outlines po′
1
and

po′
2
. We invoke syn(po′

1
, s) and syn(po′

2
, s). They will for sure return r as it is the only precondition,

but we need the programs to be able to return (r, prog
1
+ prog

2
).

For loops, we have to make an assumption on the form of the proof outline: the loop invariant

should not be lost through weakening. If assertions have to be weakened, we assume the proof

outline takes the form ⟨R⟩⟨𝐼⟩po∗⟨𝐼⟩⟨S⟩. Like in the previous case, we go through the predicates

𝑖 ∈ 𝐼 to find one that is stronger than the given postcondition s. If it has been found, it remains

to synthesize the program for the loop body. We reconstruct the proof outline with 𝑖 as the pre

and postcondition, and rely on syn to determine the program. If the proof outline takes the form

⟨R⟩⟨𝐼⟩po∗⟨𝐼⟩⟨S⟩, instead of returning an 𝑖 of 𝐼 , we return an r of R with r ⪯𝑑 𝑖 .

We elaborate on why the function calls outl(⟨{r}⟩sketch(po)⟨{s}⟩) mean no overhead. The point

is that the Rules (DEM) and (LOOP) can only deal with single predicates in the precondition. This

means when we constructed the proof outline of interest, we have constructed the proof outlines

that we now need as a byproduct. We just have to store them explicitly to be able to look them up

now. This explains the case of loops.

In the case of demonic choices, the proof outline construction may abort, and we explain how to

handle this with hashing. Since Rule (DEM) requires a singleton as the precondition, we must have

done proofs of the form ⟨{r𝑖 }⟩sketch(po′1) + sketch(po′2)⟨S𝑖⟩. From the requirements of Rule (DEM),

we also have the proof outlines ⟨{r𝑖 }⟩po′𝑗 ⟨S𝑖⟩ for 𝑗 = 1, 2. The proofs might have been gathered

to form the proof outline ⟨R⟩po
1
+ po

2
⟨S⟩. Since the predicate s is in S, there must be a selection

S𝑖 with s ∈ S𝑖 . We can reuse the corresponding proof outlines ⟨{r𝑖 }⟩po′𝑗 ⟨S𝑖⟩ by weakening the

postcondition S𝑖 to the singleton {s}.

6.1 Example: Synthesizing Factorial Function
Recall the sketch sketch from last section’s example, Figure 9. In the last section, we have proven

|=𝑎 ⟨R⟩sketch⟨S⟩ with R = {x = 42 ∧ y = 1} and S = {y = 42!}. In this example, we will

concretize the sketch to a program prog such that |=𝑑 {r}prog{s} holds. To do so, we use the
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function syn. The whole proof outline is called po. We use the same abbreviations as in the last

example. Additionally, with T8 we abbreviate the full realizability triple of Line 8. That means

T8 stands for Lines 7 through 9. Other realizability triples are abbreviated similarly. The realiz-

ability triple around the nonterminal is abbreviated by TN, i.e. TN stands for Lines 5 to 16. We

abbreviate the selection of Lines 15 and 16 with 𝐴15. Other selections are abbreviated similarly.

Let {r} = R and {s} = S. We start by calling syn(⟨R⟩sketch⟨S⟩, s). More specifically, the call

is syn(⟨R⟩body∗⟨𝐼⟩;T22, s). The selection 𝐼 is the singleton {𝑖}. The function invokes the call

syn(T22, s) which returns (𝑖, assume(x = 0)). Next, it invokes syn(⟨R⟩body∗⟨𝐼⟩, 𝑖) which, in turn,

invokes syn(⟨{𝑖}⟩body⟨{𝑖}⟩, 𝑖) because 𝑖 ⪯𝑑 𝑖 holds trivially. We can reuse the already done

proof ⟨{𝑖}⟩body⟨{𝑖}⟩ as po′. The call syn(⟨{𝑖}⟩body⟨{𝑖}⟩, 𝑖) invokes syn(⟨𝐴15⟩x--⟨{𝑖}⟩, 𝑖). The
call syn(⟨{𝐴15 [0]} ∪ {𝐴15 [1]}⟩x--⟨{𝑖}⟩, 𝑖) will invoke syn(⟨{𝐴15 [1]}⟩x--⟨{𝑖}⟩, 𝑖) because the re-
sult of ⟦x--⟧(𝐴15 [0]) is not more precise than 𝑖 . However, the call syn(⟨{𝐴15 [1]}⟩x--⟨{𝑖}⟩, 𝑖)
returns (𝐴15 [1], x--). Here, we witness a foreshadowing on how the wrong angelic choice will

be eliminated. The eliminated predicate stems from the left production of the nonterminal which

will not be able to produce the now selected predicate 𝐴15 [1]. We continue the next recursive call

of syn(⟨{𝑖}⟩body⟨{𝑖}⟩, 𝑖), i.e. syn(T4;TN, 𝐴15 [1]). It invokes syn(TN, 𝐴15 [1]) This call first checks
whether the left branch can produce the target predicate. This is not the case, so eventually (fail,−)
is returned, eliminating the left branch. The right branch is now considered, where syn(T12, 𝐴15 [1])
resolves to (𝐴5 [0], y = y*x). Therefore, the next call is syn(T4, 𝐴5 [0]) which resolves to the pair

(𝑖, assume (x>0)). Getting back to the recursive call of the loop, syn(⟨R⟩body∗⟨𝐼⟩, 𝑖) yields the
pair (r, (4;12;17)∗) because r ⪯𝑑 𝑖 with {r} = R. In total, we get (r, prog) = (r, (4; 12; 17)∗; 22) as
output. We know that |=𝑑 {r}prog{s} holds. This means, the program indeed calculates 42 factorial.

7 APPLICATION: MEMORY MANAGEMENT IN LOCK-FREE DATA STRUCTURES
We show how to employ realizability and realization logic to automatically generate code for the

memory management in lock-free data structures. This will also be the setting for our experiments.

There are several aspects that make this setting interesting for benchmarks: the states are type

assignments and the semantics of commands is an abstract one. So SemGuS [23] is an ideal choice,

while SyGuS [2] and solver-aided languages [39, 42] need an encoding to capture the synthesis

tasks. The programs contain loops, which is difficult for SyGuS solvers. Finally, there are many

synthesis options, and the right ones may be far apart. This creates a large space of potential

solutions [3] that our compositional method manages to explore in a matter of seconds.

Safe Memory Reclamation. The asynchronous nature of lock-free data structures makes manual

memory management difficult: if the threads do not synchronize, how does a thread know that it is

safe to free a memory cell, or safe to access it? The solution is to add to the data structure a safe

memory reclamation algorithm (SMR) which acts as a central instance that is informed about the

intentions of all threads. If a thread wants to access a memory cell, it asks the reclamation algorithm

to protect the cell. If it wants to free a memory cell, it asks the SMR to do so. As the reclamation

algorithm manages the protections, it can defer the free until it is safe. Garbage collection is an

SMR, but there are more efficient solution. Epochs are a simple model [13, 16], we consider here the

hazard pointers that have been proposed for addition to the next C++ standard [31]. To be precise,

we support the elaborate version in which the first hazard pointer is stronger than the second.

Reclamation algorithms tend to implement lock-free data structures. This means protection

calls are non-atomic, and may be successful or fail due to interference. The reclamation algorithm

will not be able to determine success. Instead, the thread that issued the protection call will have

to find out by checking global invariants: if, for example, a sentinal node has not changed when
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returning from the call, then the call was successful. Unfortunately, finding the right combination

of protection calls and checks has turned out error-prone.

Meyer and Wolff [26, 27] gave a type system that checks memory safety. It can be instantiated

to different reclamation algorithms and applies to a variety of data structures. We report on experi-

ments with the queues MS and DGLM, and the sets ORVYY, Michael, VechevCAS, and VechevDCAS.

The type system is control-flow sensitive, which means the typing can be written as a proof outline

in Hoare logic. A type check on a program prog is successful, if the triple ⊢𝑡 ⟨¬fail⟩prog⟨¬fail⟩
can be derived: starting from no assumptions about the protection of pointers, the program will not

fail. This means all pointers were protected before they were dereferenced. Appendix B.1 provides

more background on [26, 27]. An important detail is that they use code annotations to inform the

type system about protections that can otherwise otherwise only be inferred with a shape analysis.

These annotations have to be discharged separately. We omit these checks in our experiments, and

therefore our synthesis is only valid relative to the validity of the annotations.

Instantiation. We instantiate the parameters of our development. Meyer and Wolff [26, 27] track

the protection of memory cells by assigning types from a set T to the pointers in the program Vars.
Our states, predicates, and selections are thus States = Vars→ T, Predicates = P(Vars→ T)∪{fail},
and Selections = P(P(Vars→ T) ∪ {fail}).

Our implementation needs an assertion language to represent predicates and selections. We use

Predicates# = (Vars→ T) ∪ {fail} and Selections# = P(Predicates#). The definition of the abstract

predicates is due to [26, 27]. The first step is to apply a Cartesian abstraction on the predicates,

which yields Vars→ P(T). A Cartesian predicate {x : {t1, t2}} × {y : {t}} represents the concrete
predicate {x : t1 ∧ y : t, x : t2 ∧ y : t}. The second step is to exploit the fact that the types form a

lattice, and represent x : {t1, t2} by x : t1 ⊔ t2. The details are in Appendix B.5.

The commands are the usual ones in C. The semantics is from [27] and defined in a way that

works with the above abstraction.

Synthesis. Given a lock-free data structure and a reclamation algorithm, our goal is to synthesize in

the data structure calls to the reclamation algorithm and code annotations that, together, guarantee

memory safety, more precisely, make the above type check go through.

First, we enrich every line of code with a non-terminal from which calls to the SMR algorithm

and invariant annotations may be generated. In the case of a single hazard pointer, for example, the

1 AC ::= skip; |
2 atomic {@inv active(v);} |
3 (in:protect(v);re:protect(v);)

the non-terminal has the definition to the left. For

each variable v, we may issue a protection, add an

annotation saying that the variable has not been freed,

or simply skip the annotation. For global invariants,

we use heuristics of where to put them, which improves the scalability. The result of this phase is

a sketch sketch. Next, we try to prove ⊢𝑎 ⟨¬fail⟩sketch⟨¬fail⟩ in realizability logic. We use the

algorithm from Section 5 and check the validity of the corresponding verification conditions. If

successful, we also get a proof outline that we feed to realization logic, implemented in the synthesis

algorithm from Section 6. The algorithm has the guarantee to be successful, and returns a program

that corresponds to the original code with suitable annotations added. What is interesting is that

we can control the synthesis function to avoid reclamation calls and code annotations whenever

possible. We give details on the implementation and its behavior on experiments.

8 EVALUATION
We implemented our synthesis algorithm in a C++ program. As we do not yet have an assertion

language for selections, our implementation targets the memory reclamation problem discussed
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Table 1. Results of experiments of the Pessimistic and Optimistic Approach conducted on an Apple M2.

Max/Avg/Med Max/Avg/Med Pessimistic Optimistic

|R | ⪯𝑑 per ⪯𝑎 7 vc 7 syn 7 syn 7 vc

HP1

Treiber’s [43]

Push 6 / 1.57 / 1 12 / 1.85 / 1 < 0.1𝑠 < 0.1𝑠 < 0.1𝑠 < 0.1𝑠

Pop 6 / 1.43 / 1 18 / 1.71 / 1 < 0.1𝑠 < 0.1𝑠 < 0.1𝑠 < 0.1𝑠

MS [30] EnQ 5 / 1.27 / 1 12 / 1.40 / 1 < 0.1𝑠 < 0.1𝑠 < 0.1𝑠 < 0.1𝑠

DGLM [9] EnQ 17 / 1.3 / 1 64 / 1.9 / 1 0.7𝑠 < 0.1𝑠 < 0.1𝑠 < 0.1𝑠

HP2

MS [30] DeQ 90 / 1.6 / 1 1K / 2.92 / 1 17𝑠 0.6𝑠 0.6𝑠 < 0.1𝑠

DGLM [9] DeQ 29 / 1.74 / 1 5K / 18.9 / 1 249𝑠 6.3𝑠 5.9𝑠 < 0.1𝑠

ORVYY [33]

Add 158 / 3.85 / 1 276 / 3.6 / 1 1.4𝑠 < 0.1𝑠 < 0.1𝑠 < 0.1𝑠

Rm 32 / 1.29 / 1 276 / 1.96 / 1 0.6𝑠 0.1𝑠 0.1𝑠 < 0.1𝑠

Michael [28]

Add 127 / 3.06 / 1 5K / 13.4 / 1 3.1𝑠 2.1𝑠 2.2𝑠 < 0.1𝑠

Rm 127 / 3.15 / 1 5K / 13.7 / 1 1.5𝑠 2.1𝑠 2.1𝑠 < 0.1𝑠

VechevCAS [45]

Add 25 / 1.7 / 1 148 / 3.1 / 1 0.6𝑠 < 0.1𝑠 < 0.1𝑠 < 0.1𝑠

Rm 21 / 1.7 / 1 178 / 3.1 / 1 0.1𝑠 < 0.1𝑠 < 0.1𝑠 < 0.1𝑠

VechevDCAS [45]

Add 45 / 2.64 / 1 341 / 6.68 / 1 0.4𝑠 < 0.1𝑠 < 0.1𝑠 < 0.1𝑠

Rm 21 / 1.7 / 1 145 / 2.9 / 1 0.1𝑠 < 0.1𝑠 < 0.1𝑠 < 0.1𝑠

above. It can handle different reclamation algorithms and challenging data structures, though. We

give details on the implementation and elaborate on the performance, which was surprisingly good.

Implementation. The most important technique we implemented to improve the scalability is

an optimistic variant of our approach. The pessimistic variant is the one from Section 7 that first

validates the proof outline and then derives a program. The optimistic variants derives the program

without having validated the proof outline. The point is that function syn checks the verification

conditions it needs to construct the program anyhow, and therefore the output will be sound. The

verification conditions for proof outlines have to compare selections, and each such comparison

may create quadratically many solver calls.

We moreover implemented the following application domain specific heuristics. We assume local

pointers do not need to be protected. We only insert annotations @inv active(v) for sentinel

nodes. The point is that sentinel nodes will never be freed. As discussed above, this would have

to be confirmed by a check that we omit. We automatically compute loop invariants from the

predicates that are available when entering a loop. There is no saturation nor widening. Still, the

approach worked for all data structures we examined. For resolving non-terminals, we prefer skip
over SMR calls and SMR calls over annotations.

Results. We experimented with the seven lock-free data structures and two hazard pointer

variants discussed in Section 7. The environment is an Apple M2 with 8GB RAM. We do not have a

solver backend but hand the bitvectors we need within our implementation. The results are given

in Table 1. In some methods we used hints that can be deduced by a lightweight shape analysis.

The first column shows the maximum, average, and median size of a selection. The next shows

the number of invocations of the comparison function on predicates per comparison of selection.

For example, {𝑎} ⪯𝑎 {𝑏1, 𝑏2, 𝑏3} may yield three comparisons 𝑎 ⪯𝑑 𝑏𝑖 . This only applies to the

pessimistic approach. The next two columns display the time for the functions vc and syn in the

pessimistic approach. The last two columns are for the optimistic approach. It clearly outperforms

the pessimistic approach, but both are quite fast.

The key insight of our experiments is that there are two classes of synthesis options. The options

that are handled well by our approach lead to similar predicates and thus small selections, or they

fail early. The options that are difficult for our approach lead to new predicates that fail late. This

can be seen in the benchmarks with two hazard pointers. In the set implementations, the order
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among the hazard pointers matters, and if we try to synthesize a protection with the wrong order

we fail early. For DGLM, the order does not matter and the synthesis time increases dramatically.

Taking a step back, the experiments indicate that our realizability and realization logics should

be combined with an outer search [3]. The search would concentrate on the synthesis options that

are difficult for our approach and only fix them. Our approach would handle the remaining, easier

options. We see this as a promising direction for future work.

9 RELATEDWORK
We have already discussed the related work on SemGuS, SyGuS, and solver-aided programming in

the introduction. There is a body of work on programming models with angelic non-determinism,

dating back to Floyd [12]. The common case, however, is that the angelic choices are made at

runtime, and therefore can react to the demonic choices. These models are related to two-player

zero-sum graph games [14] typically used in reactive synthesis, as originally proposed by Church

[7] and later developed by Pnueli and Rosner [35]. In SemGuS, the angelic choices have to be made

up-front, which adds a form of imperfect information [38] that the common case does not have to

deal with. This imperfect information shines through in Rules (DEM) and (LOOP), where the angelic

player cannot react. Two works, however, are closer to our development.

Mamouras [24] presents a Hoare logic to reason about the correctness of programs with (runtime)

angelic non-determinism. His assertions are classical predicates, whichmeans the proof construction

is forced to decide on a synthesis option early on, may later fail due to incompatible decisions,

and in this case has to backtrack. To avoid precisely this backtracking, we proposed selections as

assertions in realizability logic. As a consequence, the resulting theories are largely different.

Celiku and von Wright [6] consider the same class of programs as Mamouras, but try to refine

angelic choices to conditionals and loops. The refinement is guided by a proof outline, and may

be compared to our realization logic. An important difference is that they work with ordinary

predicates, and try to synthesize appropriate ones. We work with the new selections, instead, in

which we have gathered the relevant predicates.

Also related is the recent [32] that uses angelic non-determinism to synthesize recursive functions.

During recursive calls, they select an output value for the function and later check whether the

choice can be justified. The work [21, 41] infers a program from verification conditions that contain

unknown program parts which, in the case of [21], should be filled by library components. The

crucial difference to realization logic is that we have eagerly analyzed the program space, and the

task of syn amounts to a concretization rather than a search. We have not seen a backtracking

freedom guarantee in related work.

The deductive approach decomposes the task of synthesizing a program into synthesis tasks for

subprograms [25]. A popular idea is to factorize the subprograms along input-output equivalence so

that the computation can proceed with equivalence classes [1, 11, 15, 34, 36, 44]. What is different

in our work is that we try to be eager in the bottom-up construction, and consider a set of synthesis

options whose behavior does not have to match. Related to our approach are [10, 46] that weaken the

input-output equivalence by considering an abstract domain. A solution for the abstract domain is

then a restricted class of programs that can be searched more efficiently. Realizability and realization

logic may prove useful for this task.

We introduced our eager approach to reduce the number of costly verification queries, a promi-

nent endeavor in search-based synthesis [3]. An important development is to inform the solver

about semantic properties of the program sought [4]. In the context of example-based specifications,

a semantic property is the invariance to perturbations of the example set, which can be incorporated

by enriching the example set.
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A PROOFS
We present omitted proofs and details of this paper.

A.1 Proofs for Section 3
Lemma A.1. The function ⟦com⟧ is monotonic for all commands com, i.e. the following equation

holds:
r ⪯𝑑 s =⇒ ⟦com⟧(r) ⪯𝑑 ⟦com⟧(s) .

Proof. Let r and s be elements of Predicates with r ⪯𝑑 s.
Case 1: ⟦com⟧(s) = fail. Then ⟦com⟧(r) ⪯𝑑 ⟦com⟧(s).
Case 2: ⟦com⟧(s) ≠ fail. Then, s ≠ fail and there is no 𝑝 in s with ⟦com⟧(𝑝) = fail. Because

s ≠ fail, we have r ≠ fail and r ⊆ 𝑠 . Therefore, there also is no 𝑝 in r with ⟦com⟧(𝑝) = fail. Now,
let 𝑝′ be an element of ⟦com⟧(r). Thus, there exists a 𝑝 in r with 𝑝′ ∈ ⟦com⟧(𝑝). Since r ⊆ 𝑠 , this 𝑝

also is in s and therefore, 𝑝′ also is in ⟦com⟧(s), making ⟦com⟧(r) a subset of ⟦com⟧(s). In total,

⟦com⟧(r) ⪯𝑑 ⟦com⟧(s) holds. □

Lemma A.2. The relation ⪯𝑑 is a partial order relation on Predicates. This means, the order is
reflexive, transitive and antisymmetric, i.e. the following equations hold:

∀ r ∈ Predicates : r ⪯𝑑 r

∀ r, s, t ∈ Predicates : r ⪯𝑑 s ∧ s ⪯𝑑 t =⇒ r ⪯𝑑 t

∀ r, s ∈ Predicates : r ⪯𝑑 s ∧ s ⪯𝑑 r =⇒ r = s

Proof. Let r, 𝑠, 𝑡 be elements of Predicates.
Reflexivity (r ⪯𝑑 r):
Case 1: r = fail. We get r ⪯𝑑 r immediately. Case 2: r ≠ fail. So r is a set of states. Then, r ⊆ 𝑟

holds.

Transitivity (r ⪯𝑑 s ∧ s ⪯𝑑 𝑡 =⇒ r ⪯𝑑 𝑡):
Case 1: t = fail. Then r ⪯𝑑 t holds. Case 2: t ≠ fail. Then s ≠ fail and r ≠ fail. By transitivity of

the relation⊆, we get r ⪯𝑑 t.
Anti-symmetry (r ⪯𝑑 s ∧ s ⪯𝑑 r =⇒ r = s):
If either one of r and s is fail the other one also has to be fail for both inequalities to hold. If

neither one is fail, anti-symmetry follows from the anti-symmetry of ⊆. □

Lemma A.3. The partial order (Predicates, ⪯𝑑 ) is a complete lattice. That means for any subset R of
Predicates there exists a join and a meet. In fact, the join and meet can be computed by the following
equations: Let R be a subset of Predicates.

⊔(R) =
{
fail , fail ∈ R⋃

r∈R r , else

⊓(R) =
{
fail , R = {fail}⋂

r∈ (R\{fail}) 𝑟 , else

Proof. Let R ⊆ Predicates
We show that ⊔(R) is an upper bound of R: Let r be in R. Case 1: Assume fail ∈ R. Then
⊔(R) = fail. Thus, r ⪯𝑑 ⊔(R). Case 2: Assume fail is not in R. Then ⊔(R) = ⋃

r∈R r . Thus, r ⊆ ⊔(R)
and r ⪯𝑑 ⊔(R).
We show that ⊔(R) is the least upper bound of R: Let 𝑢 be an upper bound of R. Case 1: Assume

fail ∈ R. Then fail ⪯𝑑 𝑢. Thus, ⊔(R) ⪯𝑑 𝑢. Case 2: Assume fail is not in R. Then ⊔(R) = ⋃
r∈R r .

Since 𝑢 is an upper bound, ∀r ∈ R : r ⊆ 𝑢. Thus, (⋃r∈R r) ⊆ 𝑢. So, ⊔(R) ⪯𝑑 𝑢.
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We show that ⊓(R) is a lower bound of R: Let r be in R. Case 1: Assume R = {fail}. Then
r = fail = ⊓(R). Thus ⊓(R) ⪯𝑑 r . Case 2: Assume R ≠ {fail}. If r = fail, we get ⊓(R) ⪯𝑑 r .
Otherwise, ⊓(R) = ∩r∈R\{fail}r . Therefore, ⊓(R) ⊆ r and thus ⊓(R) ⪯𝑑 r .
We show that ⊓(R) is the greatest lower bound of R: Let 𝑙 be a lower bound of R. Case 1: Assume

R = {fail}. Then ⊓(R) = fail. Thus 𝑙 ⪯𝑑 ⊓(R). Case 2: Assume R ≠ {fail}. Let r be in R \ {fail}.
Then 𝑙 ⊆ r . This holds for every r . Thus, 𝑙 ⊆ ⊓(R). Therefore, 𝑙 ⪯𝑑 ⊓(R). □

The Missing EMPTY Rule:
For completeness, we need to add the following rule to the calculus:

(EMPTY)

⊢𝑎 ⟨R⟩sketch⟨∅⟩

Proof of Theorem 3.1.

We prove soundness by structural induction over the proof tree.

Base Case: We have ⊢𝑎 ⟨{r}⟩com⟨{s}⟩ through the rule (COM). Thus, we have ⟦com⟧(r) ⪯𝑑 s.
Therefore, the realizability triple |=𝑎 ⟨{r}⟩com⟨{s}⟩ holds.

Induction Step: In the first case, we have ⊢𝑎 ⟨R⟩sketch1; sketch2⟨T⟩ through the rule (SEQ).

Thus, we have the realizability triples ⊢𝑎 ⟨R⟩sketch1⟨S⟩ and ⊢𝑎 ⟨S⟩sketch2⟨T⟩. By applying the

induction hypothesis, we get |=𝑎 ⟨R⟩sketch1⟨S⟩ and |=𝑎 ⟨S⟩sketch2⟨T⟩. Let t be an element of

T . Then, there exists a predicate s ∈ S and a program prog
2
∈ drv(sketch2) with |=𝑑 {s}prog2{t}.

And, there exists r ∈ R and prog
1
∈ drv(sketch1) with |=𝑑 {r}prog1{s}. By completeness of Hoare

logic, we get ⊢𝑑 {r}prog1{s} and ⊢𝑑 {s}prog1{t}. Using rule (SEQ), we get ⊢𝑑 {r}prog1; prog2{t}.
In the next case we have the triple ⊢𝑎 ⟨R⟩sketch⟨S⟩ through the rule (CSQ). Thus we have

⊢𝑎 ⟨R′⟩sketch⟨S′⟩ with R ⪯𝑎 R′ and S′ ⪯𝑎 S. Through the induction hypothesis, we get |=𝑎
⟨R′⟩sketch⟨S′⟩. Now, let s be an element of S. Since S′ ⪯𝑎 S, there is an s′ in S′ with s′ ⪯𝑑 s. From
|=𝑎 ⟨R′⟩sketch⟨S′⟩ we know, that there is an r′ in R′ and a program prog ∈ drv(sketch) such that

|=𝑑 {r′}prog{s′} holds. Through transitivity of the relation ⪯𝑑 , we also get that |=𝑑 {r′}prog{s}
holds. Due to monotonicity of executions, and since R ⪯𝑎 R′ holds, there is an r in R for which

|=𝑑 {r}prog{s} is true. That means, |=𝑎 ⟨R⟩sketch⟨S⟩ holds.
In the next case, we have ⊢𝑎 ⟨R⟩sketch1 + sketch2⟨S⟩ through the rule (DEM). Therefore, we

know R = {r} and the realizability triples ⊢𝑎 ⟨R⟩sketch1⟨S⟩ and ⊢𝑎 ⟨R⟩sketch2⟨S⟩ hold. From
the induction hypothesis we know that |=𝑎 ⟨R⟩sketch1⟨S⟩ and |=𝑎 ⟨R⟩sketch2⟨S⟩ hold. Now, let
s be an element of S. Then, there exists prog

1
∈ drv(sketch1) for which |=𝑑 {r}prog1{s} is true.

Analogously, there exists prog
2
∈ drv(sketch2) for which |=𝑑 {r}prog2{s} is true. We now show

that |=𝑑 {r}prog1 + prog2{s} is true. This directly implies that |=𝑎 ⟨R⟩sketch1 + sketch2⟨S⟩ holds.
Let ex be an execution of prog

1
+prog

2
. Thus, it is either an execution of prog

1
or prog

2
. W.l.o.g. let

ex be in exec(prog
1
). Since |=𝑑 {r}prog1{s} is true, we also get that ⟦ex⟧(r) is more precise than s.

Therefore, the Hoare triple |=𝑑 {r}prog1 + prog2{s} is true and thus |=𝑎 ⟨R⟩sketch1 + sketch2⟨S⟩
holds.

In the next case, we have ⊢𝑎 ⟨R⟩sketch∗⟨R⟩ through the rule (LOOP). Thus we know the realizabil-

ity triple ⊢𝑎 ⟨R⟩sketch⟨R⟩ holds and R = {r}. The induction hypothesis yields |=𝑎 ⟨R⟩sketch⟨R⟩.
From this we know that there is a prog ∈ drv(sketch) with |=𝑑 {r}prog{r}. We now show that

|=𝑑 {r}prog∗{r} is true. For this, we inductively show |=𝑑 {r}prog𝑖 {r} for every 𝑖 ∈ N. Since prog0
is skip, |=𝑑 {r}prog0{r} immediately follows. In the induction step, we show |=𝑑 {r}prog𝑖;prog{r}.
From the hypothesis, we know that |=𝑑 {r}prog𝑖 {r} and |=𝑑 {r}prog{r} hold. Referring to the case
where we have proven sequences in this proof, this implies that |=𝑑 {r}prog𝑖+1{r} is true. Thus,
we know that |=𝑑 {r}prog∗{r} holds. Therefore, |=𝑎 ⟨R⟩sketch∗⟨R⟩ is true.
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Fig. 11. Definition of the Program Logic for Synthesis over proof outlines. Extensions of traditional Hoare
logic are blue.

(PCOM)

⟦com⟧(𝑟 ) ⪯𝑑 𝑠

⊢𝑝 ⟨{𝑟 }⟩com⟨{𝑠 }⟩

(PSEQ)

⊢𝑝 ⟨R⟩po
1
⟨S⟩ ⊢𝑝 ⟨S⟩po

2
⟨T ⟩

⊢𝑝 ⟨R⟩po
1
⟨S⟩;⟨S⟩po

2
⟨T ⟩

(PLOOP)

⊢𝑝 ⟨R⟩po⟨R⟩ R = {r }
⊢𝑝 ⟨R⟩ (⟨R⟩po⟨R⟩ )∗⟨R⟩

(PDEM)

⊢𝑝 ⟨R⟩po
1
⟨S⟩ ⊢𝑝 ⟨R⟩po

2
⟨S⟩ R = {𝑟 }

⊢𝑝 ⟨R⟩po
1
⟨S⟩ + ⟨R⟩po

2
⟨S⟩

(PCSQ)

⊢𝑝 ⟨𝑅′⟩po⟨𝑆 ′⟩ R ⪯𝑎 R′ S′ ⪯𝑎 S

⊢𝑝 ⟨R⟩po⟨S⟩

(PANG)

⊢𝑝 ⟨R⟩rhs⟨S⟩ N ::= rhs | . . .
⊢𝑝 N(⟨R⟩rhs⟨S⟩ )

(PEMPTY)

⊢𝑝 ⟨R⟩po⟨∅⟩

(PGATHER)

⊢𝑝 ⟨R1⟩po1⟨S1⟩ ⊢𝑝 ⟨R2⟩po2⟨S2⟩ sketch(po
1
) = sketch(po

2
)

⊢𝑝 ⟨R1 ∪ R2⟩gather (po1, po2 ) ⟨S1 ∪ S2⟩

In the next case, we have ⊢𝑎 ⟨R⟩N⟨S⟩ through the rule (ANG). From this, we know ⊢𝑎 ⟨R⟩rhs⟨S⟩
holds with N::= rhs | . . . . From the induction hypothesis we get |=𝑎 ⟨R⟩rhs⟨S⟩ . Since drv(rhs)
is a subset of drv(N), we get |=𝑎 ⟨R⟩N⟨S⟩ immediately.

In the last case, we have ⊢𝑎 ⟨R1 ∪ R2⟩sketch⟨S1 ∪ S2⟩ through the rule (GATHER). From this, we

know ⊢𝑎 ⟨R1⟩sketch⟨S1⟩ and ⊢𝑎 ⟨R2⟩sketch⟨S2⟩ hold. Let s be an element of S1 ∪ S2. W.l.o.g. let s
be an element of S1. From the induction hypothesis we know that there is an r in R1 ⊆ R1 ∪ R2 and
a program prog ∈ drv(sketch) with |=𝑑 {r}prog{s}. Thus, we get |=𝑎 ⟨R1 ∪ R2⟩sketch⟨S1 ∪ S2⟩.
This concludes the soundness proof.

We proceed with the proof for completeness. In the first case, the postcondition is empty. We

have |=𝑎 ⟨R⟩sketch⟨∅⟩. Using the rule (EMPTY), we get ⊢𝑎 ⟨R⟩sketch⟨∅⟩.
In the second case, the postcondition is not empty. We have |=𝑎 ⟨R⟩sketch⟨S⟩. Thus, for every

s ∈ S there is a program prog ∈ drv(sketch) and a predicate r ∈ R for which |=𝑑 {r}prog{s}.
Since Hoare logic is complete, we have ⊢𝑑 {r}prog{s}. We can mimic this proof in realizability

logic for sketch by using rule (ANG) mimicking the derivation of prog from sketch. Thus, we
have ⊢𝑎 ⟨r⟩sketch⟨s⟩. Since S is finite, we only need to do the proof for finitely many programs.

These proofs are then combined using the rule (GATHER)multiple times to derive ⊢𝑎 ⟨R′⟩sketch⟨S⟩
for the subset R′ of R containing the used predicates r of R. Then, using rule (CSQ), we get ⊢𝑎
⟨R⟩sketch⟨S⟩. □

A.2 Proofs for Section 4
To properly define the notation of a valid proof outline, we state a a proof system for that ranges

over proof outlines in Figure 11. When we write ⊢𝑝 N(po) we mean ⊢𝑝 ⟨R⟩N(po)⟨S⟩ where R resp.

S are the union of all pre- resp. postconditions of the subproofs in po. The function sketch extracts

the program sketch out of the proof outline:

Definition 1. The function gather combines two proofs over the same sketch.

gather : (prfOutls × prfOutls) ⇀ prfOutls
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gather (⟨R1⟩com⟨S1⟩, ⟨R2⟩com⟨S2⟩) = ⟨R1 ∪ R2⟩com⟨S1 ∪ S2⟩
gather (⟨R1⟩p1∗⟨S1⟩, ⟨R2⟩p2∗⟨S2⟩) = ⟨R1 ∪ R2⟩gather (p1, p2)∗⟨S1 ∪ S2⟩

gather (po
1
;po

2
, po′

1
;po′

2
) = gather (po

1
, po′

1
);gather (po

2
, po′

2
)

gather (po
1
+ po

2
, po′

1
+ po′

2
) = gather (po

1
, po′

1
) + gather (po

2
, po′

2
)

gather (po
1
| po

2
, po′

1
| po′

2
) = gather (po

1
, po′

1
) | gather (po

2
, po′

2
)

gather (N(po
1
| po

2
), N(po′

1
| po′

2
)) = N(gather (po

1
, po′

1
) | po

2
| po′

2
)

In the last case, po
1
and po′

1
are the productions where the right hand side in both proof outlines are the

same. The proof outlines po
2
and po′

2
reason over different sketches and their proof outlines therefore

cannot be combined.
In order for the function gather (po

1
, po

2
) to be defined, it is required that po

1
and po

2
are proofs

over the same sketch, i.e. sketch(po
1
) = sketch(po

2
).

We need the following theorem:

Theorem A.4 (Eqivalence). The following implication holds for any proof po of prfOutls and
any angels R and S:

⊢𝑝 ⟨R⟩po⟨S⟩ =⇒ ⊢𝑎 ⟨R⟩sketch(po)⟨S⟩ .
The following implication holds for any sketch sketch of Sketches and any angels R and S:

⊢𝑎 ⟨R⟩sketch⟨S⟩ =⇒ ∃ po ∈ prfOutls : sketch(po) = sketch∧ ⊢𝑝 ⟨R⟩po⟨S⟩ .

Proof of Theorem A.4.

We start with the first implication. We show the implication by structural induction over the

proof tree.

Base Case:: We have ⊢𝑝 ⟨{r}⟩com⟨{s}⟩ through (PCOM). Thus, we know ⟦com⟧(r) ⪯𝑑 s is true.
With rule (COM) we directly get ⊢𝑎 ⟨{r}⟩com⟨{s}⟩.

Induction Step: Since all induction steps are only applying the induction hypothesis and

rebuilding the proof in the other proof system, we demonstrate it on one case only.We have the proof

outline ⊢𝑝 ⟨R⟩po
1
;po

2
⟨T⟩ through (PSEQ). With the preconditions and the induction hypothesis we

get ⊢𝑎 ⟨𝑅⟩sketch1⟨𝑆⟩ and ⊢𝑎 ⟨𝑆⟩sketch2⟨𝑇 ⟩ where the sketches are of the corresponding proof.
Using the rule (SEQ), we get ⊢𝑎 ⟨𝑅⟩sketch1;sketch2⟨𝑇 ⟩
We continue with the second implication. Again, we show the implication by structural induction

over the proof tree.

Base Case:: We have ⊢𝑎 ⟨{r}⟩com⟨{s}⟩ through (COM). Thus, we know ⟦com⟧(r) ⪯𝑑 s is true.
With rule (PCOM) we directly get ⊢𝑝 ⟨{r}⟩com⟨{s}⟩.

Induction Step: Since all induction steps are only applying the induction hypothesis and

rebuilding the proof in the other proof system, we demonstrate it on one case only. We have

the realizability triple ⊢𝑎 ⟨R⟩sketch1;sketch2⟨T⟩ through (SEQ). With the preconditions and the

induction hypothesis we get two proofs po
1
and po

2
for which the following holds: ⊢𝑝 ⟨R⟩po

1
⟨S⟩ and

⊢𝑝 ⟨S⟩po
2
⟨T⟩. Furthermore, sketch(po𝑖 ) = sketch𝑖 . With rule (PSEQ)we get ⊢𝑝 ⟨𝑅⟩po

1
;po

2
⟨𝑇 ⟩. □

We show several properties of a valid proof outline:Whenwewrite ⊢𝑝 powith po = po
1
| . . . | po𝑛

we mean ⊢𝑝 po
1
∧ . . .∧ ⊢𝑝 po𝑛 .

Lemma A.5. In a sketch proof outline, all realizability triples hold, i.e. the following implications
are true:

⊢𝑝 po
1
;po

2
=⇒ ⊢𝑝 ⟨R⟩po

1
⟨S⟩∧ ⊢𝑝 ⟨S′⟩po

2
⟨T⟩ ∧ S = S′

⊢𝑝 po
1
+ po

2
=⇒ ⊢𝑝 ⟨R⟩po

1
⟨S⟩∧ ⊢𝑝 ⟨R′⟩po

2
⟨S′⟩ ∧ R = R′ ∧ S = S′
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⊢𝑝 N(po) =⇒ ⊢𝑝 po

⊢𝑝 ⟨R⟩(⟨𝐼⟩po⟨𝐼 ′⟩)∗⟨S⟩ =⇒ ⊢𝑝 ⟨𝐼⟩po⟨𝐼 ′⟩ ∧ 𝐼 = 𝐼 ′ ∧ R ⪯𝑎 𝐼 ∧ 𝐼 ⪯𝑎 S .

Proof. We use structural induction to prove the implications. We proof one implication at a

time.

For the first one, the only rules that need to be considered are (PSEQ), (PCSQ) and (PGATHER).

The base case holds trivially. Rule (PSEQ) immediately yields the sought after result. Through

transitivity of ⪯𝑎 , (PCSQ) also yields the implication after applying the induction hypothesis. When

rule (PGATHER) is applied, the proof has the following shape:

⊢𝑝 ⟨R ∪ R′⟩gather (po
1
, po′

1
)⟨S ∪ S′⟩;⟨S ∪ S′⟩gather (po

2
, po′

2
)⟨T ∪ T ′⟩

We can use the gather rule to show ⊢𝑝 gather (po𝑖 , po′𝑖 ) because the individual proofs hold according
to the induction hypothesis. That fact that the intermediary assertions match is a result of the

induction hypothesis.

The other cases all follow the same pattern: The proofs for the rule corresponding to the program

(here (PSEQ) for a program sequence) and rule (PCSQ) hold trivially. For rule (PGATHER), the rule

itself has to be applied to the result of the induction hypothesis, as seen here. □

Proof of Theorem 4.1.

With the newly introduced notation, the theorem is the following:

Theorem A.6 (Soundness). ⊢𝑝 po and po p∼ po′ together imply ⊢𝑝 po′.

We conduct the proof using structural induction over the proof tree in realization logic.

Base Case: We know that ⊢𝑝 ⟨𝑅⟩com⟨𝑆⟩ and ⟨𝑅⟩com⟨𝑆⟩ p∼ ⟨{𝑟 }⟩com⟨{𝑠}⟩ hold. From the rule

(RCOM) of the realization logic we know that ⟦com⟧(𝑟 ) ⪯𝑑 𝑠 is true. This directly implies that

⊢𝑝 ⟨{𝑟 }⟩com⟨{𝑠}⟩ holds.
Induction Step: Consider the rule (RSELECT). The implication immediately holds because the

nested proofs are sound per Lemma A.5.

Consider the rule (RAC). Again, since the nested proofs are sound, we get ⊢𝑝 po
1
and ⊢𝑝 po and

⊢𝑝 po
2
. Applying the induction hypothesis on the precondition of the rule yields the triple ⊢𝑝 po′

Applying rule (PANG) on each subproof, yields ⊢𝑝 𝑁 (po
1
) and ⊢𝑝 𝑁 (po′) and ⊢𝑝 𝑁 (po

2
). Applying

rule (PGATHER) multiple times yields the sought after result: ⊢𝑝 𝑁 (po
1
| po′ | po

2
) .

Consider rule (RSEQL). Since the nested proofs are sound, we get ⊢𝑝 ⟨R⟩po
1
⟨S⟩ and also ⊢𝑝 po

2
.

The induction hypothesis yields the realizability triple ⊢𝑝 ⟨Rw⟩po′
1
⟨S⟩. Using rule (PSEQ), we get

⊢𝑝 ⟨Rw⟩po′
1
⟨S⟩;po

2
.

Consider rule (RSEQR). Again, by soundness of the subproofs we get ⊢𝑝 ⟨R⟩po
1
⟨S⟩ and also

⊢𝑝 ⟨S⟩po
2
⟨T⟩. Applying the induction hypothesis we get ⊢𝑝 ⟨Sw⟩po′

2
⟨Tw⟩. Since S ⪯𝑎 Sw, the infer

rule can be applied to the first realizability triple resulting in ⊢𝑝 ⟨R⟩po
1
⟨Sw⟩ Then applying rule

(PSEQ) yields: ⊢𝑝 ⟨R⟩po
1
;po

2
⟨Tw⟩.

Consider rule (RDEM). Again, through the soundness of the sub proofs (Lemma A.5), we get

⊢𝑝 ⟨R⟩po
1
⟨S⟩ and ⊢𝑝 ⟨R⟩po

2
⟨R𝑝⟩. The induction hypothesis yields ⊢𝑝 ⟨Rw⟩po′𝑖 ⟨S

w⟩ with Rw = {r}.
Applying rule (PDEM) results in

⊢𝑝 ⟨Rw⟩po
1
+ po

2
⟨Sw⟩ .

Consider rule (RLOOP). Through the soundness of the sub proofs (Lemma A.5), we get the

realizability triple ⊢𝑝 ⟨𝐼⟩po⟨𝐼⟩ . Applying the induction hypothesis, we get the realizability triple

⊢𝑝 ⟨𝐼w⟩po′⟨𝐼w⟩ with 𝐼w = {𝑖}. Applying rule (PLOOP) yields the realizability triple

⊢𝑝 ⟨𝐼w⟩po′∗⟨𝐼w⟩ .
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Consider rule (RTRANS). The induction hypothesis yields soundness of ⊢𝑝 po
2
. Applying the

induction hypothesis again yields the sought after result: ⊢𝑝 po
3
.

Consider rule (RCSQ). The induction hypothesis yields ⊢𝑝 ⟨Rww⟩po′⟨Sw⟩. Using rule (PCSQ), we

get ⊢𝑝 ⟨Rw⟩po′⟨Sww⟩.
Lastly, consider rule (RGATHER). Applying the induction hypothesis yields ⊢𝑝 ⟨R1⟩po′1⟨S1⟩ and
⊢𝑝 ⟨R2⟩po′2⟨S2⟩ with sketch(po′

1
) = sketch(po′

2
). Applying the rule (PGATHER), we get

⊢𝑝 ⟨R1 ∪ R2⟩gather (po′1, po′2)⟨S1 ∪ S2⟩

□

Proof of Theorem 4.3. Again, we state theorem with the new notation:

Theorem A.7. ⊢𝑝 po and ⊢𝑝 po′ and po ⪯𝑝 po′ together imply po p∼ po′.

Proof. For this proof, we conduct a structural induction over the syntactic structure of the proof

po. Then, some cases require their own additional structural induction over the proof tree of po′ in
the proof outline calculus. In the following, we also have 𝑋 ⪯𝑎 𝑋w

for any selections 𝑋 and 𝑋w
.

Base Case: po = com. Then, po′ = com. We show ⟨R⟩po⟨S⟩ p∼ ⟨Rw⟩po′⟨Sw⟩ by induction over

the proof tree of ⊢𝑝 ⟨Rw⟩po′⟨Sw⟩. In the base case, we have the realizability triple ⊢𝑝 ⟨r⟩com⟨s⟩.
Thus, we know that ⟦com⟧(r) ⪯𝑑 s holds. Therefore, ⟨R⟩com⟨S⟩ p∼ ⟨{r}⟩com⟨{s}⟩ holds. In the

induction step, there are two cases. Either the rule (PGATHER) was used, or the rule (PCSQ) was

used. If (PGATHER) was used, we have ⊢𝑝 ⟨R1 ∪ R2⟩com⟨S1 ∪ S2⟩. From this, we know that ⊢𝑝
⟨R𝑖⟩com⟨S𝑖⟩ hold. Applying the induction hypothesis yields ⟨R⟩com⟨S⟩ p∼ ⟨R𝑖⟩com⟨S𝑖⟩. Using the
rule (RGA), we get ⟨R⟩com⟨S⟩ p∼ ⟨ ∪𝑖 R𝑖⟩com⟨ ∪𝑖 R𝑖⟩. If (PCSQ) was used, we have ⊢𝑝 ⟨Rw⟩com⟨Sww⟩.
From the precondition, we know ⊢𝑝 ⟨Rww⟩com⟨Sw⟩ holds. Using the induction hypothesis, we get

⟨R⟩com⟨S⟩ p∼ ⟨Rww⟩com⟨Sw⟩. Applying rule (RCSQ) yields ⟨R⟩com⟨S⟩ p∼ ⟨Rw⟩com⟨Sww⟩.
Induction Step:

If the proof is a sequence, i.e. ⟨R⟩po⟨T⟩ = ⟨R⟩po
1
⟨S⟩;⟨S⟩po

2
⟨T⟩ , then the other proof is

⟨Rw⟩po′⟨Tw⟩ = ⟨Rw⟩po′
1
⟨Sw⟩;⟨Sw⟩po′

2
⟨Tw⟩ .

Thus we know that, the realizability triples ⊢𝑝 ⟨S⟩po
2
⟨T⟩ and ⊢𝑝 ⟨Sw⟩po′

2
⟨Tw⟩ hold. Applying

the induction hypothesis, we get po
2
p∼ po′

2
. Applying the rule (RSEQR) yields

⟨R⟩po
1
⟨S⟩;⟨S⟩po

2
⟨T⟩ p∼ ⟨R⟩po

1
⟨Sw⟩;⟨Sw⟩po′

2
⟨Tw

⟩ .

Because ⊢𝑝 ⟨R⟩po
1
⟨S⟩ holds, the realizability triple ⊢𝑝 ⟨R⟩po

1
⟨Sw⟩ also holds due to the conse-

quence rule. We also have that ⊢𝑝 ⟨Rw⟩po′
1
⟨Sw⟩ is true. Applying the induction hypothesis, we get

⟨R⟩po
1
⟨Sw⟩ p∼ ⟨Rw⟩po′

1
⟨Sw⟩. Using rule (RSEQL) yields

⟨R⟩po′
1
⟨Sw⟩;⟨Sw⟩po′

2
⟨Tw

⟩ p∼ ⟨Rw⟩po′
1
⟨Sw⟩;⟨Sw⟩po′

2
⟨Tw

⟩ .

Combined with the rewrite from before and rule (RTRANS), we have

⟨R⟩po
1
⟨S⟩;⟨S⟩po

2
⟨T⟩ p∼ ⟨Rw⟩po′

1
⟨Sw⟩;⟨Sw⟩po′

2
⟨Tw

⟩ .

In the next case, the proof is a demonic choice, i.e.

⟨R⟩po⟨S⟩ = ⟨R⟩po
1
⟨S⟩ + ⟨R⟩po

2
⟨S⟩ .

Then, the other proof is

⟨Rw⟩po′⟨Sw⟩ = ⟨Rw⟩po′
1
⟨Sw⟩ + ⟨Rw⟩po′

2
⟨Sw⟩ .

We proceed by induction over the proof tree of

⟨Rw⟩po′
1
⟨Sw⟩ + ⟨Rw⟩po′

2
⟨Sw⟩ .
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If the proof was done with the rule (PDEM), it has the following shape:

⟨Rw⟩po′
1
⟨Sw⟩ + ⟨Rw⟩po′

2
⟨Sw⟩

with Rw = {r}. With the overall induction hypothesis and because the subproofs are sound, we

know that

⟨R⟩po
1
⟨S⟩ p∼ ⟨Rw⟩po′

1
⟨Sw⟩ and ⟨R⟩po

2
⟨S⟩ p∼ ⟨Rw⟩po′

2
⟨Sw⟩

hold. Using the rule (RDEM), we get

⟨R⟩po
1
⟨S⟩ + ⟨R⟩po

2
⟨S⟩ p∼ ⟨Rw⟩po′

1
⟨Sw⟩ + ⟨Rw⟩po′

2
⟨Sw⟩ .

Next, we, again, have two possibilities. The proof was conducted using (PGATHER) or (PCSQ). Starting

with rule (PGATHER), the proof has the following shape:

⊢𝑝 ⟨Rw
1
∪ Rw

2
⟩po′

1
⟨Sw

1
∪ Sw

2
⟩ + ⟨Rw

1
∪ Rw

2
⟩po′

2
⟨Sw

1
∪ Sw

2
⟩

From preconditions of the gather rule we get

⊢𝑝 ⟨Rw
1
⟩po′

1
⟨Sw

1
⟩ + ⟨Rw

1
⟩po′

2
⟨Sw

1
⟩

⊢𝑝 ⟨Rw
2
⟩po′′

1
⟨Sw

2
⟩ + ⟨Rw

2
⟩po′′

2
⟨Sw

2
⟩

and Applying the induction hypothesis then yields

⟨R⟩po
1
⟨S⟩ + ⟨R⟩po

2
⟨S⟩ p∼ ⟨Rw𝑖 ⟩po

′
1
⟨Sw𝑖 ⟩ + ⟨Rw𝑖 ⟩po′2⟨Sw𝑖 ⟩ .

Similarly for po′′
1
and po′′

2
. Using the rule (RGATHER) we get

⟨R⟩po
1
⟨S⟩ + ⟨R⟩po

2
⟨S⟩ p∼ ⟨ ∪𝑖 Rw𝑖 ⟩gather (po′1, po′′1 )⟨ ∪𝑖 Sw𝑖 ⟩ + ⟨ ∪𝑖 Rw𝑖 ⟩gather (po′1, po′′1 )⟨ ∪𝑖 Sw𝑖 ⟩ .

Closing with the rule (PCSQ), the proof has the following shape:

⟨Rw⟩po′
1
⟨Sww⟩ + ⟨Rw⟩po′

2
⟨Sww⟩ .

From the precondition of the infer rule, we have

⟨Rww⟩po′
1
⟨Sw⟩ + ⟨Rww⟩po′

2
⟨Sw⟩ .

Using the induction hypothesis, we get the following rewrite:

⟨R⟩po
1
⟨S⟩ + ⟨R⟩po

2
⟨S⟩ p∼ ⟨Rww⟩po′

1
⟨Sw⟩ + ⟨Rww⟩po′

2
⟨Sw⟩ .

Now, the rule (RCSQ) can be applied to get the sought after result:

⟨R⟩po
1
⟨S⟩ + ⟨R⟩po

2
⟨S⟩ p∼ ⟨Rw⟩po′

1
⟨Sww⟩ + ⟨Rw⟩po′

2
⟨Sww⟩ .

This concludes the proof for demonic choices.

In the next case, the proof is a loop. This case is analogous to demonic choices.

Finally, consider the proof is over a nonterminal. So, the first proof is

⊢𝑝 ⟨R⟩N(⟨R1⟩po1⟨S1⟩ | . . . | ⟨R𝑛⟩po𝑛⟨S𝑛⟩ | po𝑟 )⟨S⟩ .

Then, the other proof can either also be a weaker proof over a nonterminal or it is only one

production of the nonterminal. We start with the first case. The second proof is then

⊢𝑝 ⟨Rw⟩N(⟨Rw
1
⟩po′

1
⟨Sw

1
⟩ | . . . | ⟨Rw𝑛 ⟩po′𝑛⟨Sw𝑛 ⟩)⟨Sw⟩ .

We know that all the subproofs hold. Applying the induction hypothesis then yields the following

rewrites for all 𝑖:

⟨R𝑖⟩po𝑖 ⟨S𝑖⟩ p∼ ⟨Rw𝑖 ⟩po
′
𝑖 ⟨S

w
𝑖 ⟩ .
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We apply the rule (RANG) on the rewritten part several times. Together with rule (TRANS), we

combine the rewrites and get:

⟨R⟩N(⟨R1⟩po1⟨S1⟩ | . . . | ⟨R𝑛⟩po𝑛⟨S𝑛⟩ | po𝑟 )⟨S⟩ p∼
⟨ ∪𝑖 Rw𝑖 ⟩N(⟨Rw1 ⟩po′1⟨Sw1 ⟩ | . . . | ⟨Rw𝑛 ⟩po′𝑛⟨Sw𝑛 ⟩)⟨ ∪𝑖 Sw𝑖 ⟩ .

Moving on to the case where one production is chosen. Without loss of generality, let this be the

first production. The proof therefore is ⊢𝑝 ⟨Rw
1
⟩po′

1
⟨Sw

1
⟩. Since we know that ⊢𝑝 ⟨R1⟩po1⟨S1⟩ holds,

we can apply the induction hypothesis and get the rewrite ⟨R1⟩po1⟨S1⟩ p∼ ⟨Rw⟩po′
1
⟨Sw

1
⟩. Then, we

apply rule (RAC) and get the following:

⟨R⟩N(⟨R1⟩po1⟨S1⟩ | . . . | ⟨R𝑛⟩po𝑛⟨S𝑛⟩)⟨S⟩ p∼
⟨Rw

1
∪ (∪𝑖R𝑖 )⟩N(⟨Rw1 ⟩po′1⟨Sw1 ⟩ | . . . | ⟨R𝑛⟩po𝑛⟨S𝑛⟩)⟨Sw1 ∪ (∪𝑖S𝑖 )⟩ .

Furthermore, the rule (RSELECT) can be applied to get

⟨Rw
1
∪ (∪𝑖R𝑖 )⟩N(⟨Rw1 ⟩po′1⟨Sw1 ⟩ | . . . | ⟨R𝑛⟩po𝑛⟨S𝑛⟩)⟨Sw1 ∪ (∪𝑖S𝑖 )⟩ p∼ ⟨Rw

1
⟩po′

1
⟨Sw

1
⟩ .

Lastly, applying the rule (RTRANS) yields the sought after result:

⟨R⟩N(⟨R1⟩po1⟨S1⟩ | . . . | ⟨R𝑛⟩po𝑛⟨S𝑛⟩)⟨S⟩ p∼ ⟨Rw
1
⟩po′

1
⟨Sw

1
⟩ .

This concludes the proof. □

We proof the following lemma:

Lemma A.8. The following implication holds:

⊢𝑝 ⟨R⟩po
1
⟨S⟩ + ⟨R⟩po

2
⟨S⟩ ∧ S ⪯𝑎 {s} =⇒ ∃ r, po′

1
, po′

2
: r ∈ R∧ ⊢𝑝 ⟨{r}⟩po′

1
⟨{s}⟩∧

⊢𝑝 ⟨{r}⟩po′
2
⟨{s}⟩ ∧ po

1
⪯𝑝 po′

1
∧ po

2
⪯𝑝 po′

2
∧

sketch(po
1
) = sketch(po′

1
) ∧ sketch(po

2
) = sketch(po′

2
) .

Proof. We conduct the proof by induction over the proof tree of

⊢𝑝 ⟨R⟩po
1
⟨S⟩ + ⟨R⟩po

2
⟨S⟩

The base case holds trivially.

In the first case of the induction step, the proof was done using the rule (PDEM). Then, we have

⊢𝑝 ⟨R⟩po
1
⟨S⟩ and also ⊢𝑝 ⟨R⟩po

2
⟨S⟩ with R = {r}. Thus, we know ⊢𝑝 ⟨{r}⟩po𝑖 ⟨S⟩. Using the rule

(PCSQ) on both proofs, we get the realizability triples ⊢𝑝 ⟨{r}⟩po𝑖 ⟨{s}⟩.
We have two remaining cases, either the proof was finished using the rule (PGATHER) or rule

(PCSQ). In the first case, we have

⊢𝑝 ⟨ ∪𝑖 R𝑖⟩po1⟨ ∪𝑖 S𝑖⟩ + ⟨ ∪𝑖 R𝑖⟩po2⟨ ∪𝑖 S𝑖⟩
Since ∪𝑖S𝑖 ⪯𝑎 {𝑠}, one assertion S𝑖 is stronger than {s}. Without loss of generality, let this be S1.
From the above realizability triple, we know that the realizability triple

⊢𝑝 ⟨R1⟩po′1⟨S1⟩ + ⟨R1⟩po′2⟨S1⟩
holds. Applying the induction hypothesis, we get an r and the proofs po′′

1
and po′′

2
for which the

realizability triples ⊢𝑝 ⟨{r}⟩po′′
1
⟨{s}⟩ and ⊢𝑝 ⟨{r}⟩po′′

2
⟨{s}⟩ hold.

In the second case, we have

⊢𝑝 ⟨R⟩po
1
⟨Sw⟩ + ⟨R⟩po

2
⟨Sw⟩

The precondition of the rule (PCSQ) requires

⊢𝑝 ⟨Rw⟩po
1
⟨S⟩ + ⟨Rw⟩po

2
⟨S⟩
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Applying the induction hypothesis yields an r ∈ Rw and ⊢𝑝 ⟨{r}⟩po′𝑖 ⟨{s}⟩. Since R ⪯𝑎 Rw there is

an r′ of R with r′ ⪯𝑑 r . Thus we can strengthen the precondition of the realizability triples to get

⊢𝑝 ⟨{r′}⟩po′𝑖 ⟨{s}⟩. □

We proof the following lemma:

Lemma A.9. The following implication holds:

⊢𝑝 ⟨R⟩(⟨𝐼⟩po⟨𝐼⟩)∗⟨S⟩ ∧ 𝑖 ∈ 𝐼 =⇒ ∃ po′: ⊢𝑝 ⟨{𝑖}⟩po′⟨{𝑖}⟩∧
po ⪯𝑝 po′ ∧ sketch(po) = sketch(po′) .

Proof. The proof is analogous to one of the previous lemma. □

Proof of Theorem 4.4. The proof is done by an induction over the structure of the prf. Again, we
first state the theorem using the new notation:

Theorem A.10 (Backtracking Freedom). Let ⊢𝑝 ⟨R⟩po⟨S⟩ and s ∈ S. Then there are r and po′

so that ⟨R⟩po⟨S⟩ p∼ ⟨{r}⟩po′⟨{s}⟩, r ∈ R, and sketch(po′) ∈ drv(sketch(po)).

Proof. Base Case: The proof is ⊢𝑝 ⟨R⟩com⟨S⟩. Applying soundness yields a predicate r with
⟦com⟧(r) ⪯𝑑 s and r ∈ R. Therefore, we can apply rule (RCOM) and get ⟨R⟩com⟨S⟩ p∼ ⟨{r}⟩com⟨{s}⟩.

Induction Step: If the proof is a sequence, we have

⟨R⟩po
1
⟨S⟩;⟨S⟩po

2
⟨T⟩ .

Then, we know that the subproofs are true so po
1
and po

2
hold. Applying the induction hypothesis

on the second realizability triple from above, we get an s with s ∈ S and a proof po′
2
for which the

following holds:

⟨S⟩po
2
⟨T⟩ p∼ ⟨{s}⟩po′

2
⟨{t}⟩ .

Next, we apply the induction hypothesis on the other sequence and get a predicate r with r ∈ R
and a proof po′

1
for which the following holds:

⟨R⟩po
1
⟨S⟩ p∼ ⟨{r}⟩po′

1
⟨{s}⟩ .

Applying rule (RSEQR), we get the following rewrite:

⟨R⟩po
1
⟨S⟩;⟨S⟩po

2
⟨T⟩ p∼ ⟨R⟩po

1
⟨{s}⟩;⟨{s}⟩po′

2
⟨{t}⟩ .

Then, applying rule (RSEQL), we get the following rewrite:

⟨R⟩po
1
⟨{s}⟩;⟨{s}⟩po′

2
⟨{t}⟩ p∼ ⟨{r}⟩po′

1
⟨{s}⟩;⟨{s}⟩po′

2
⟨{t}⟩ .

Finally, with rule (RTRANS), we get the sought after result:

⟨R⟩po
1
⟨S⟩;⟨S⟩po

2
⟨T⟩ p∼ ⟨{r}⟩po′

1
⟨{s}⟩;⟨{s}⟩po′

2
⟨{t}⟩ .

If the proof is a demonic choice, so we have

⟨R⟩po
1
⟨S⟩ + ⟨R⟩po

2
⟨S⟩ ,

and a predicate s with s ∈ S. Then we can apply Lemma A.8 to get a predicate r and the proofs

⊢𝑝 ⟨{r}⟩po′
1
⟨{s}⟩ and ⊢𝑝 ⟨{r}⟩po′

2
⟨{s}⟩ with po𝑖 ⪯𝑝 po′𝑖 . . Using Theorem 4.3, the following two

rewrites are sound:

⟨R⟩po
1
⟨S⟩ p∼ ⟨{r}⟩po′

1
⟨{s}⟩ and ⟨R⟩po

2
⟨S⟩ p∼ ⟨{r}⟩po′

2
⟨{s}⟩ .

An application of the rule (RDEM) then yields the sought after result:

⟨R⟩po
1
⟨S⟩ + ⟨R⟩po

2
⟨S⟩ p∼ ⟨{r}⟩po′

1
⟨{s}⟩ + ⟨{r}⟩po′

2
⟨{s}⟩ .

31



Roland Meyer, Jakob Tepe, and Sebastian Wolff

Moving on with loops. We have the proof ⊢𝑝 ⟨R⟩(⟨𝐼⟩po⟨𝐼⟩)∗⟨S⟩ and a predicate s with s ∈ S.
Since 𝐼 ⪯𝑎 S, there also is an 𝑖 of 𝐼 with 𝑖 ⪯𝑑 s. Applying Lemma A.9, we get a proof po′ for which
⊢𝑝 ⟨{𝑖}⟩po′⟨{𝑖}⟩ holds and po ⪯𝑝 po′. Theorem 4.3 then yields

⟨𝐼⟩po⟨𝐼⟩ p∼ ⟨{𝑖}⟩po′⟨{𝑖}⟩ .
Applying rule (RLOOP) yields

⟨R⟩(⟨𝐼⟩po⟨𝐼⟩)∗⟨S⟩ p∼ ⟨{𝑖}⟩(⟨{𝑖}⟩po′⟨{𝑖}⟩)∗⟨{𝑖}⟩ .
Since R ⪯𝑎 𝐼 , we know there is an r in R for which r ⪯#

𝑑
𝑖 holds. Applying rule (RCSQ), we get the

sought after result:

⟨R⟩(⟨𝐼⟩po⟨𝐼⟩)∗⟨S⟩ p∼ ⟨{𝑟 }⟩(⟨{𝑖}⟩po′⟨{𝑖}⟩)∗⟨{𝑠}⟩ .
In the last case, we consider proofs over nonterminals. We have a predicate s and the proof

⊢𝑝 ⟨R⟩N(⟨R1⟩po1⟨S1⟩ | . . . | ⟨R𝑛⟩po𝑛⟨S𝑛⟩)⟨S⟩
with s ∈ S. Since (S1 ∪ . . .∪ S𝑛) = S, there is a selection S𝑖 with s ∈ S𝑖 . Without loss of generality, let

this 𝑖 be 1. We know the realizability triple ⊢𝑝 ⟨R1⟩po1⟨S1⟩ holds. Using the induction hypothesis,

we get the following for an r1 of R1:

⟨R1⟩po1⟨S1⟩ p∼ ⟨{r1}⟩po′1⟨{s}⟩ .
Using the rule (RANG), we get the following rewrite:

N(⟨R1⟩po1⟨S1⟩ | . . . | ⟨R𝑛⟩po𝑛⟨S𝑛⟩) p∼ N(⟨{r1}⟩po′1⟨{s}⟩ | . . . | ⟨R𝑛⟩po𝑛⟨S𝑛⟩) .
Then, with rule (RSELECT), we get

N(⟨{r1}⟩po′1⟨{s}⟩ | . . . | ⟨R𝑛⟩po𝑛⟨S𝑛⟩) p∼ ⟨{r1}⟩po′1⟨{s}⟩ .
Finally, applying rule (RTRANS) twice, we get

⟨R⟩N(⟨R1⟩po1⟨S1⟩ | . . . | ⟨R𝑛⟩po𝑛⟨S𝑛⟩)⟨S⟩ p∼ ⟨{r1}⟩po′1⟨{s}⟩ .
Because R1 ⊆ R, we have r1 ∈ R. This concludes the proof. □

A.3 Proofs for Section 5
We show the following lemma:

Lemma A.11. The function sp is monotonic (if the specifications of the nonterminals are monotonic):

R ⪯𝑎 R′ =⇒ sp(R, sketch) ⪯𝑎 sp(R′, sketch) .

Proof. We proof this lemma by induction over the structure of sketch.

Base Case: We show R ⪯𝑎 R′ implies sp(R, com) ⪯𝑎 sp(R′, com). Let the predicate 𝑠 be of

sp(R′, com). Then, 𝑠 = ⟦com⟧(r′) for some predicate r′ of R′. Since we know R ⪯𝑎 R′, there is a
predicate r in 𝑅 with 𝑟 ⪯𝑑 r′. Due to the interpretation of commands being monotonic, we get that

⟦com⟧(𝑟 ) ⪯𝑑 ⟦com⟧(r′) = 𝑠 . Because ⟦com⟧(𝑟 ) is in sp(R, com), sp(R, com) ⪯𝑎 sp(R′, com) follows.
Induction Step: First, we consider the case where the sketch is a sequence. We show R ⪯𝑎 R′

implies sp(R, sketch1; sketch2) ⪯𝑎 sp(R′, sketch1; sketch2). From the induction hypothesis, we

know that sp(R, sketch1) ⪯𝑎 sp(R′, sketch1) holds. Applying the induction hypothesis again

yields

sp(sp(R, sketch1), sketch2) ⪯𝑎 sp(sp(R′, sketch1), sketch2) .
Inserting the definition of the strongest post function, we get

sp(R, sketch1; sketch2) ⪯𝑎 sp(R′, sketch1; sketch2) .
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Next, we consider the case where the sketch is a choice. We show

R ⪯𝑎 R′ =⇒ sp(R, sketch1 + sketch2) ⪯𝑎 sp(R′, sketch1 + sketch2) .
Let the predicate 𝑠 𝑗 be of sp(R′, sketch1 + sketch2). Thus, there is an r′ of R′ with 𝑠′𝑗 = 𝑠′

1
⊔ 𝑠′

2

and 𝑠′
1
is of sp({r′}, sketch1) and 𝑠′2 is of sp({r′}, sketch2). Since R ⪯𝑎 R′, there is an r of 𝑅 with

{r} ⪯𝑎 {r′}. Applying the induction hypothesis yields

sp({r}, sketch1) ⪯𝑎 sp({r′}, sketch1) and sp({r}, sketch2) ⪯𝑎 sp({r′}, sketch2)
Therefore, there is an 𝑠1 ∈ sp({r}, sketch1) and an 𝑠2 ∈ sp({r}, sketch2) with {𝑠1} ⪯𝑎 {𝑠′1} and
{𝑠2} ⪯𝑎 {𝑠′2}. Therefore, 𝑠 𝑗 = 𝑠1 ⊔ 𝑠2 ⪯𝑑 𝑠′

1
⊔ 𝑠′

2
= 𝑠′𝑗 . Since 𝑠 𝑗 is of sp(R, sketch1 + sketch2), we

have

sp(R, sketch1 + sketch2) ⪯𝑎 sp(R′, sketch1 + sketch2) .
Next, consider the sketch is a loop. We show

R ⪯𝑎 R′ =⇒ sp(R, sketch∗ [𝐼 ]) ⪯𝑎 sp(R′, sketch∗ [𝐼 ]) .
Let 𝑖 be of sp(R′, sketch∗ [𝐼 ]). Thus, R′ ⪯𝑎 {𝑖}. By transitivity we have R ⪯𝑎 {𝑖} and thus 𝑖 is also

in sp(R, sketch∗ [𝐼 ]). The inequality 𝑖 ⪯𝑑 𝑖 holds trivially.

Lastly, consider the sketch is a nonterminal. Monotonicity follows directly from the required

monotonicity of the specification.

This concludes the proof. □

We show the following lemma:

Lemma A.12 (Soundness). For any R of Selections and any sketch sketch of Sketches, the
following realizability triple holds (if the specifications of the nonterminals and loops are sound):

⊢𝑎 ⟨R⟩sketch⟨sp(R, sketch)⟩ .

Proof. We proof this lemma by induction over the structure of the sketch.

Base Case:We show ⊢𝑎 ⟨R⟩com⟨sp(R, com)⟩. For every r ∈ R we can can show the realizability

triple ⊢𝑎 ⟨{r}⟩com⟨{⟦com⟧(r)}⟩. Using the rule (GATHER)we can show ⊢𝑎 ⟨R⟩com⟨
⋃

r∈R{⟦com⟧(r)}⟩.
By definition, this is the same as ⊢𝑎 ⟨R⟩com⟨sp(R, com)⟩.

Induction Step: First, consider a sequence of sketch. We show the realizability triple

⊢𝑎 ⟨R⟩sketch1;sketch2⟨sp(R, sketch1;sketch2)⟩ .
Applying the induction hypothesis twice yields the realizability triples:

⊢𝑎 ⟨R⟩sketch1⟨sp(R, sketch1)⟩ and ⊢𝑎 ⟨sp(R, sketch1)⟩sketch2⟨sp(sp(R, sketch1), sketch2)⟩ .
Using rule (SEQ), we get the realizability triple

⊢𝑎 ⟨R⟩sketch1;sketch2⟨sp(sp(R, sketch1), sketch2)⟩ .
This is the same as the realizability triple ⊢𝑎 ⟨R⟩sketch1;sketch2⟨sp(R, sketch1;sketch2)⟩ .

Next, consider the sketch is a choice. We show

⊢𝑎 ⟨R⟩sketch1 + sketch2⟨sp(R, sketch1 + sketch2)⟩ .
From the definition of the strongest post, we know that it is the following:

sp(R, sketch1 + sketch2) =
⋃
r∈R
{s1 ⊔ s2 | s1 ∈ sp({r}, sketch1) ∧ s2 ∈ sp({r}, sketch2)} .

For every r of R, we know from the induction hypothesis that ⊢𝑎 ⟨{r}⟩sketch1⟨sp({r}, sketch1)⟩
and ⊢𝑎 ⟨{r}⟩sketch2⟨sp({r}, sketch2)⟩ hold. Using the rule (CSQ), we can show the realizability

triples ⊢𝑎 ⟨{r}⟩sketch1⟨{s𝑘1}⟩ for any s𝑘1 of sp({r}, sketch1) and ⊢𝑎 ⟨{r}⟩sketch2⟨{s𝑘2}⟩ for any
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s𝑘2 of sp({r}, sketch2). Let s𝑗 be the join of any two s𝑘1 and s𝑘2. Using the rule (CSQ), we can show

⊢𝑎 ⟨{r}⟩sketch𝑖 ⟨{s𝑗 }⟩. With the rule (DEM), we get ⊢𝑎 ⟨{r}⟩sketch1 + sketch2⟨{s𝑗 }⟩. Applying
rule (GATHER) yields

⊢𝑎 ⟨{r}⟩sketch1 + sketch2⟨{s1 ⊔ s2 | s𝑖 ∈ sp({r}, sketch𝑖 )}⟩ .
Applying rule (GATHER) once more yields

⊢𝑎 ⟨R⟩sketch1 + sketch2⟨
⋃
r∈R
{s1 ⊔ s2 | s𝑖 ∈ sp({r}, sketch𝑖 )}⟩ .

This is the same as ⊢𝑎 ⟨R⟩sketch1 + sketch2⟨sp(R, sketch1 + sketch2)⟩.
Next, consider the sketch is a loop. Let 𝑖 be of sp(R, sketch∗). From soundness of the invariant

annotation, we get ⊢𝑎 ⟨{𝑖}⟩sketch⟨{𝑖}⟩. With rule loop, we get ⊢𝑎 ⟨{𝑖}⟩sketch∗⟨{𝑖}⟩. With gather,

we get

⊢𝑎 ⟨sp(R, sketch∗)⟩sketch∗⟨sp(R, sketch∗)⟩ .
With (CSQ), we get ⊢𝑎 ⟨R⟩sketch∗⟨sp(R, sketch∗)⟩.

Finally, consider the sketch is a nonterminal. Soundness follows directly from the required

soundness of the specification of the nonterminal.

This concludes the proof. □

We show the following corollary:

Corollary 1. For any R, S of Selections and any sketch sketch of Sketches with sound annota-
tions, the following implication holds:

sp(R, sketch) ⪯𝑎 S =⇒ ⊢𝑎 ⟨R⟩sketch⟨S⟩ .

Proof. Lemma A.12 yields ⊢𝑎 ⟨R⟩sketch⟨sp(R, sketch)⟩. Applying rule (CSQ) gives us the

sought after result ⊢𝑎 ⟨R⟩sketch⟨S⟩ □

Proof of Theorem 5.2.

We have already shown soundness above. We prove completeness by an induction over the proof

tree of ⊢𝑎 ⟨R⟩sketch⟨S⟩.
Base Case: We show ⊢𝑎 ⟨{r}⟩com⟨{s}⟩ =⇒ sp({r}, com) ⪯𝑎 {s}. From the precondition of rule

(COM), we know ⟦com⟧(r) ⪯𝑑 s. Therefore sp({r}, com) = {⟦com⟧(r)} ⪯𝑎 {s}.
Induction Step:Consider the rule (SEQ). We show that the validity of ⊢𝑎 ⟨R⟩sketch1; sketch2⟨𝑇 ⟩

implies sp(R, sketch1; sketch2) ⪯𝑎 𝑇 . From the preconditionswe know that both ⊢𝑎 ⟨R⟩sketch1⟨S⟩
and ⊢𝑎 ⟨S⟩sketch2⟨𝑇 ⟩ hold. Applying the induction hypothesis yields sp(R, sketch1) ⪯𝑎 S and

sp(S, sketch2) ⪯𝑎 𝑇 . Because the strongest post function is monotonic we get the sought after

inequality sp(R, sketch1; sketch2) ⪯𝑎 𝑇 .
Consider the rule (DEM). We show

⊢𝑎 ⟨{r}⟩sketch1 + sketch2⟨S⟩ =⇒ sp({r}, sketch1 + sketch2) ⪯𝑎 S .

From the preconditions we know that ⊢𝑎 ⟨{r}⟩sketch1⟨S⟩ and ⊢𝑎 ⟨{r}⟩sketch2⟨S⟩ hold. Applying
the induction hypothesis yields the inequalities sp({r}, sketch1) ⪯𝑎 S and sp({r}, sketch2) ⪯𝑎 S.
Let the predicate 𝑠 be an element of 𝑆 . Because the strongest posts are more versatile than 𝑆 , there

is an 𝑠𝑖 of each strongest post with 𝑠𝑖 ⪯𝑑 𝑠 . Therefore, 𝑠 is an upper bound of 𝑠1 and 𝑠2 and thus

𝑠1⊔𝑠2 ⪯𝑑 𝑠 holds. To conclude this case, see that 𝑠1⊔𝑠2 ∈ sp({r}, sketch1 +sketch2), and therefore
sp({r}, sketch1 + sketch2) ⪯𝑎 S holds.

Consider the rule (ANG). Completeness follows directly from the requirement that the specification

of the nonterminals is complete.
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Consider the rule (CSQ). We show

⊢𝑎 ⟨R⟩sketch⟨S′⟩ =⇒ sp(R, sketch) ⪯𝑎 S′ .

From the preconditions, we know that the realizability triple ⊢𝑎 ⟨R′⟩sketch⟨S⟩ holds with R ⪯𝑎 R′

and S ⪯𝑎 S′. From the induction hypothesis we know that sp(R′, sketch) ⪯𝑎 S. The sought

after result immediately follows from monotonicity and because the relation ⪯𝑎 is transitive:

sp(R, sketch) ⪯𝑎 S′.
Consider the rule (LOOP). We show ⊢𝑎 ⟨{𝑖}⟩sketch∗ [𝐼 ]⟨{𝑖}⟩ implies sp({𝑖}, sketch∗ [𝐼 ]) ⪯𝑎 {𝑖}.

Due to the precondition of rule (LOOP) and completeness of the annotation, we have 𝑖 ∈ 𝐼 . Thus,
𝑖 ∈ sp({𝑖}, sketch∗ [𝐼 ]) and therefore the inequality trivially holds.

Lastly, consider the rule (GATHER). We show

⊢𝑎 ⟨ ∪𝑖 R𝑖⟩sketch⟨ ∪𝑖 S𝑖⟩ =⇒ sp(∪𝑖R𝑖 , sketch) ⪯𝑎 (∪𝑖S𝑖 ) .
From the preconditions we know that ⊢𝑎 ⟨R𝑖⟩sketch⟨S𝑖⟩ hold. Applying the induction hy-

pothesis yields sp(R𝑖 , sketch) ⪯𝑎 S𝑖 . Using monotonicity of the strongest post function, we get

sp(∪𝑖R𝑖 , sketch) ⪯𝑎 S𝑖 for every 𝑖 . Together, this means sp(∪𝑖R𝑖 , sketch) ⪯𝑎 (∪𝑖S𝑖 ) This concludes
the proof. □

Proof of Theorem 5.1.

We prove soundness by induction over the structure of the sketch.

Base Case:We show |= vc(⟨R⟩com⟨S⟩) =⇒ ⊢𝑎 ⟨R⟩com⟨S⟩. Because the verification conditions

hold, we know that the inequality sp(R, com) ⪯𝑎 S is true. The realizability triple ⊢𝑎 ⟨R⟩com⟨S⟩
immediately follows from Corollary 1.

Induction Step: In the first case, the sketch is a sequence. We know the following verification

conditions hold: |= vc(⟨R⟩sketch1; sketch2⟨S⟩). Thus, we know that the verification conditions

|= vc(⟨R⟩sketch2⟨sp(R, sketch1)⟩) and |= vc(⟨sp(R, sketch1)⟩sketch2⟨S⟩) also hold. Applying

the induction hypothesis yields

⊢𝑎 ⟨R⟩sketch1⟨sp(R, sketch1)⟩ and ⊢𝑎 ⟨sp(R, sketch1)⟩sketch2⟨S⟩ .
Using the rule (SEQ), we get ⊢𝑎 ⟨R⟩sketch1; sketch2⟨S⟩.
If the sketch is a choice, we have sp(R, sketch1 + sketch2) ⪯𝑎 S and for every 𝑟 ∈ R we have

|= vc(⟨{r}⟩sketch1⟨sp({r}, sketch1)⟩) and |= vc(⟨{r}⟩sketch2⟨sp({r}, sketch2)⟩). Applying the
induction hypothesis yields the two realizability triples ⊢𝑎 ⟨{r}⟩sketch1⟨sp({r}, sketch1)⟩ and
⊢𝑎 ⟨{r}⟩sketch2⟨sp({r}, sketch2)⟩ for every 𝑟 ∈ R. Using rule (CSQ), we can show the realizabil-

ity triple ⊢𝑎 ⟨{r}⟩sketch1⟨sp({r}, sketch1 + sketch2)⟩ and ⊢𝑎 ⟨{r}⟩sketch2⟨sp({r}, sketch1 +
sketch2)⟩. Using the rule (DEM), we get ⊢𝑎 ⟨{r}⟩sketch1 + sketch2⟨sp({r}, sketch1 + sketch2)⟩
for every 𝑟 ∈ R. Using the gather rule, we get ⊢𝑎 ⟨R⟩sketch1 + sketch2⟨sp(R, sketch1 + sketch2)⟩.
Applying the rule (CSQ), we get ⊢𝑎 ⟨R⟩sketch1 + sketch2⟨S⟩.

If the sketch is a loop, we have the verification conditions |= (⋃𝑖∈𝐼 vc(⟨{𝑖}⟩s⟨{𝑖}⟩)) from the

check annotation function and the inequality sp(R, s∗ [𝐼 ]) ⪯𝑎 S. The induction hypothesis yields the

realizability triple ⊢𝑎 ⟨{𝑖}⟩s⟨{𝑖}⟩ for every 𝑖 ∈ 𝐼 . Applying the rule (LOOP) yields ⊢𝑎 ⟨{𝑖}⟩s∗⟨{𝑖}⟩ for
every 𝑖 ∈ 𝐼 . Since sp(R, s∗ [𝐼 ]) is a subset of 𝐼 we can use multiple applications of the rule (GATHER)

to get ⊢𝑎 ⟨sp(R, s∗ [𝐼 ])⟩s∗⟨sp(R, s∗ [𝐼 ])⟩. Per definition, we have R ⪯𝑎 sp(R, s∗ [𝐼 ]). Using the rule

(CSQ), we get that ⊢𝑎 ⟨R⟩s∗⟨S⟩ holds.
If the sketch is a nonterminal, we know that sp(R, N[Γ]) ⪯𝑎 S holds and from the check annota-

tions function we know there is a 𝑗 with |= vc(⟨R⟩prog⟨sp(R, prog)⟩) for every prog of the oracle

function O(N, 𝑗). Also, we have (⋃prog∈O(N, 𝑗 ) sp(R, prog)) ⪯𝑎 Γ(R). Using the induction hypothesis

and rule (ANG), we get ⊢𝑎 ⟨R⟩N⟨sp(R, prog)⟩ for every prog of O(N, 𝑗). Using the gather rule, we
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get ⊢𝑎 ⟨R⟩N⟨
⋃

prog∈O(N, 𝑗 ) sp(R, prog)⟩. Using the rule (CSQ), we get ⊢𝑎 ⟨R⟩N⟨Γ(R)⟩. Since Γ(R) is
equal to sp(R, N[Γ]), we can apply (CSQ) one more time to get ⊢𝑎 ⟨R⟩N⟨S⟩.
Next, we show completeness. First, see that if S ⪯𝑎 Sw and |= vc(⟨R⟩sketch⟨S⟩) then we also

have |= vc(⟨R⟩sketch⟨Sw⟩). We proceed by induction over the structure of sketches.

Base Case:We have sketch = com. Completeness results from completeness of sp.
Induction Step:We have |=𝑎 ⟨R⟩sketch1; sketch2⟨S⟩. From soundness of the strongest post

and the induction hypothesis, we get |= vc(⟨R⟩sketch1⟨sp(R, sketch1)⟩) and we also get the

verification conditions of |= vc(⟨sp(R, sketch1)⟩sketch2⟨sp(R, sketch1; sketch2)⟩). Because of
completeness of the strongest post and our remark that the post condition in verification conditions

may be weakened, we get |= vc(⟨sp(R, sketch1)⟩sketch2⟨S⟩).
The proof for choices directly follows from soundness and completeness of the strongest post

function. Then, only an application of the induction hypothesis is left.

In the case of loops we can discharge the first inequality by soundness and completeness from

strongest post. The inequalities from the check annotation function are true because the annotations

are sound and thus the induction hypothesis can be applied.

The case for non-terminals is more cumbersome. The first inequality follows from completeness

of the strongest post function. We now discuss why the inequalities in the check annotations

function hold: From |=𝑎 ⟨R⟩N[Γ]⟨S⟩, we get for every s ∈ S a program prog and an r ∈ S for

which |=𝑑 {r}prog{s} holds. This implies that |=𝑎 ⟨{r}⟩prog⟨{s}⟩ holds. From completeness of the

strongest post, we get sp({r}, prog) ⪯𝑎 {s}. By monotonicity of the strongest post function, we

get sp(R, prog) ⪯𝑎 {s}. We collect the programs returned from completeness in the set P . We get

that (∪prog∈Psp(R, prog)) ⪯𝑎 S. Since 𝑆 is finite, P is finite. Thus, there is a 𝑗 for which P ⊆ O(N, 𝑗)
holds. With this, we also have (∪prog∈O(N, 𝑗 ) sp(R, prog)) ⪯𝑎 S. The verification conditions on the

individual programs hold because of the soundness of the strongest post function and the induction

hypothesis. □

A.4 Proofs for Section 6
Proof of Theorem 6.1
First, we state the theorem using the new notation:

Theorem A.13 (syn-Sound-And-Complete). Consider ⊢𝑝 ⟨R⟩po⟨S⟩ and s ∈ S with s ≠ fail. Then
syn(⟨R⟩po⟨S⟩, s) = (r, prog) with r ∈ R, r ≠ fail, prog ∈ drv(sketch(po)), and |=𝑑 {r}prog{s}. The
number of SMT solver calls is at most |po|.

Proof. We proof this theorem by induction over the shape of ⟨R⟩po⟨S⟩.
Base Case:We have the valid realizability triple ⟨R⟩com⟨S⟩. Thus, we know for every s′ ∈ S there

is an r ∈ R with ⟦com⟧(r) ⪯𝑑 s′. Since s is of S, the call syn(⟨R⟩com⟨S⟩, s) eventually terminates

returning (r, com). The predicate r cannot be fail because s is not fail and com preserves fail. Also
com ∈ drv(com) holds trivially. Moreover, since ⟦com⟧(r) ⪯𝑑 s, the Hoare triple |=𝑑 {r}com{s}
holds. Since we only have to go through R once to find a suitable r , the number of SMT solver calls

is at most |R| ≤ |po|.
Induction Step: In the first case, we have ⟨R⟩po

1
; po

2
⟨S⟩. Thus, the call is syn(⟨R⟩po

1
; po

2
⟨S⟩, s).

Let T be the intermediary selection. Applying the induction hypothesis, the call syn(po
2
, s) returns

(t, prog
2
) with t ∈ T , t ≠ fail, prog

2
∈ drv(sketch(po

2
)), and |=𝑑 {t}prog2{s}. Also the number

of SMT calls is at most |po
2
|. Then we call syn(po

1
, t) and by the induction hypothesis we get

(r, prog
1
) with r ∈ R, r ≠ fail, prog

1
∈ drv(sketch(po

1
)), and |=𝑑 {r}prog1{t}. Also the number of

SMT calls is at most |po
1
|. Put together, the function returns (r, prog

1
; prog

2
). Since both Hoare

triples hold, we get |=𝑑 {r}prog1; prog2{s}. Also, we have prog1; prog2 ∈ drv(sketch(po)). And
the number of SMT calls is at most |po

1
| + |po

2
| ≤ |po|.

36



Realizability in Semantics-Guided Synthesis Done Eagerly

In the next case, we have ⟨R⟩N(po)⟨S⟩. We have two sub-cases: First, po is only one proof outline
as opposed to many separated by the | symbol. Then the pre and post condition of po and N(po)
match. We directly get the sought after result by applying the induction hypothesis and seeing that

drv(sketch(po)) ⊆ drv(sketch(N(po))). In the second sub-case, we know that po = po
1
| po

2
. Since

S is the union of all posts of po, we know that eventually we try out a subproof with s in its post.

Then, the induction hypothesis is applied again directly yielding the required results.

In the next case, we have ⟨R⟩po
1
⟨S⟩ + ⟨R⟩po

2
⟨S⟩. Because the proof outline is valid, we know

that for every s ∈ S there is an r of R for which there is a program prog
1
+ prog

2
for which

|=𝑑 {r}prog1 + prog2{s} holds. This implies that |=𝑑 {r}prog𝑖 {s} must hold. This also means, the

realizability triple |=𝑎 ⟨r⟩prog𝑖 ⟨s⟩ holds which in turn implies that |=𝑎 ⟨r⟩drv(po𝑖 )⟨s⟩ holds. By
completeness, the outlines po′𝑖 can be built when supplied with the correct r ∈ R. Then, we use
the induction hypothesis to get (r, prog𝑖 ) from the recursive calls with r ∈ {r} ⊆ R, and the Hoare

triple |=𝑑 {r}prog𝑖 {s}, and prog𝑖 ∈ drv(sketch(po′𝑖 )), and the number of SMT solver calls for each

recursion is at most |po′𝑖 |. Since sketch(po𝑖 ) = sketch(po′𝑖 ) we also have that prog
1
+ prog

2
is of

sketch(po
1
+ po

2
). Because |=𝑑 {r}prog𝑖 {s}, we also have |=𝑑 {r}prog1 + prog2{s}. When the proof

outlines po′𝑖 are properly looked up, there is no need for additional SMT calls. Thus, the SMT calls

are at most |po′
1
+ po′

2
| ≤ |po

1
+ po

2
|.

In the last case consider a loop ⟨R⟩⟨𝐼⟩po⟨𝐼⟩∗⟨S⟩. In the case the realizability triple of the loop

was weakened, we keep the original invariant selections. Thus R resp. S are stronger resp. weaker
than 𝐼 . We have 𝐼 ⪯𝑎 S. Therefore, there is an 𝑖 of 𝐼 with 𝑖 ⪯𝑑 s. This 𝑖 will eventually be found by

the syn function. Since the proof is sound, 𝐼 is a sound invariant for sketch(po). Thus, for every 𝑖 of
𝐼 , the realizability triple ⊢𝑎 ⟨{𝑖}⟩sketch(po)⟨{𝑖}⟩ is valid. Therefore, the proof outline po′ can be

constructed. By the induction hypothesis, syn(po′, 𝑖) returns (𝑖, prog) with prog ∈ drv(sketch(po′)),
and |=𝑑 {𝑖}prog{𝑖}, and the number of SMT solver calls is at most |po′ |. Because |=𝑑 {𝑖}prog{𝑖}
holds, we also have |=𝑑 {𝑖}prog∗{𝑖}. Since R ⪯𝑎 𝐼 there is an r of R with r ⪯𝑑 𝑖 . Since 𝑖 ⪯𝑑 s,
we can weaken to |=𝑑 {r}prog∗{s} and return r ∈ R. Because prog ∈ drv(sketch(po′)), we have
prog∗ ∈ drv(sketch(po′)∗). Because sketch(po′) = sketch(po), we have prog∗ ∈ drv(sketch(po)∗).
Because the proof outline po′ can be looked up and does not need recomputing, we need at most

|𝐼 | additional SMT calls. All in all, we have at most |po| SMT calls. □

A.5 Proofs for Section 7
Definition 2. An abstract predicate is fail or maps variables to sets of states of the SMR automaton.

Predicates# = (Vars→ P(O)) ∪ {fail}
To substitute the original more precise relation ⪯𝑑 defined on Predicates, we introduce a new

relation on the abstracted domain.

Definition 3. We define a stronger relation ⪯#
𝑑
on Predicates#.

𝑎 ⪯#
𝑑
𝑏 ⇔ 𝑏 = fail ∨ ∀ 𝑣 ∈ Vars : 𝑎(𝑣) ⊆ 𝑏 (𝑣)

Ignoring the predicate fail, this relation matches the order in Meyer and Wolff’s paper.

Definition 4. We define a predicate abstraction function to abstract the original predicate and a
predicate concretisation function to concretize abstract predicates. The predicate abstraction function is
a cartesian abstraction:

𝛼𝑑 : Predicates→ Predicates#

Let 𝑣 be a variable in Vars. Then, the function is defined as follows:{
𝛼𝑑 (𝑟 ) = fail , 𝑟 = fail
𝛼𝑑 (𝑟 ) (𝑣) =

⋃
𝑞∈𝑟 𝑞(𝑣) , else
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We continue with the demon concretisation function:

𝛾𝑑 : Predicates# → Predicates

𝛾𝑑 (𝑎) =
{
fail , 𝑎 = fail
{𝑞 ∈ States | ∀𝑣 ∈ Vars : 𝑞(𝑣) ⊆ 𝑎(𝑣)} , else

Lemma A.14. 𝑟 ⪯𝑑 𝑠 =⇒ 𝛼𝑑 (𝑟 ) ⪯#𝑑 𝛼𝑑 (𝑠) .

Proof. If the predicate 𝑠 is fail, then 𝛼𝑑 (𝑠) is also fail so the inequality holds. Otherwise, we

have

𝑟 ⊆ 𝑠 =⇒ (
⋃
𝑞∈𝑟

𝑞(𝑣)) ⊆ (
⋃
𝑞∈𝑠

𝑞(𝑣))

=⇒ 𝛼𝑑 (𝑟 ) ⪯#𝑑 𝛼𝑑 (𝑠) .
Here, 𝑣 is any variable of Vars. □

Lemma A.15. 𝑎 ⪯#
𝑑
𝑏 =⇒ 𝛾𝑑 (𝑎) ⪯𝑑 𝛾𝑑 (𝑏) .

Proof. If the abstract predicate 𝑏 is fail, then 𝛾𝑑 (𝑏) is also fail so the inequality holds. Otherwise,
we have

𝑎(𝑣) ⊆ 𝑏 (𝑣) =⇒ {𝑝 ∈ States | ∀𝑣 ′ ∈ Vars : 𝑝 (𝑣) ⊆ 𝑎(𝑣)} ⊆
{𝑝 ∈ States | ∀𝑣 ′ ∈ Vars : 𝑝 (𝑣) ⊆ 𝑏 (𝑣)}

=⇒ 𝛾𝑑 (𝑎) ⪯𝑑 𝛾𝑑 (𝑏) .
Here, 𝑣 is any variable of Vars. □

Lemma A.16. The pair (𝛼𝑑 , 𝛾𝑑 ) is a Galois connection between Predicates and Predicates#:

(Predicates, ⪯𝑑 ) −−−−→←−−−−𝛼𝑑

𝛾𝑑
(Predicates#, ⪯#

𝑑
)

This means, the following inequalities hold:

∀𝑟 ∈ Predicates : 𝑟 ⪯𝑑 𝛾𝑑 (𝛼𝑑 (𝑟 ))
∀𝑎 ∈ Predicates# : 𝛼𝑑 (𝛾𝑑 (𝑎)) ⪯#𝑑 𝑎

Proof. We start the proof with the first equation. Let 𝑟 be of Predicates. If 𝑟 = fail then
𝛾𝑑 (𝛼𝑑 (𝑟 )) = fail. Thus, the inequality 𝑟 ⪯𝑑 𝛾𝑑 (𝛼𝑑 (𝑟 )) = fail holds. If 𝑟 is not fail, then

𝛾𝑑 (𝛼𝑑 (𝑟 )) = {𝑝 ∈ States | ∀𝑣 ∈ Vars : 𝑝 (𝑣) ⊆
⋃
𝑞∈𝑟

𝑞(𝑣)} .

Let the state 𝑞 be of 𝑟 . Then 𝑞 is also in 𝛾𝑑 (𝛼𝑑 (𝑟 )). Therefore 𝑟 ⊆ 𝛾𝑑 (𝛼𝑑 (𝑟 )). And that means

𝑟 ⪯𝑑 𝛾𝑑 (𝛼𝑑 (𝑟 )).
We continue with the second equation. Let 𝑎 be of Predicates#. If 𝑎 is fail, then𝛼𝑑 (𝛾𝑑 (𝑎)) is trivially

stronger. If 𝑎 is not fail, then we show that for any 𝑣 of Vars the inclusion 𝛼𝑑 (𝛾𝑑 (𝑎)) (𝑣) ⊆ 𝑎(𝑣)
holds. Let 𝑣 be of Vars. Then

𝛼𝑑 (𝛾𝑑 (𝑎)) (𝑣) = ∪𝑞∈𝛾𝑑 (𝑎) 𝑞(𝑣)
= ∪𝑞∈{𝑝∈States |∀𝑣′∈Vars:𝑝 (𝑣′ )⊆𝑎 (𝑣′ ) } 𝑞(𝑣)
⊆ 𝑎(𝑣) .

This concludes the proof. □

Lemma A.17. The relation ⪯#
𝑑
is a partial order relation on Predicates#.
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Proof. We first show reflexivity. Let 𝑎 be of Predicates#. If 𝑎 = fail, then the inequality 𝑎 ⪯#
𝑑
𝑎

trivially holds. Otherwise, let 𝑣 be a variable of Vars. Then the inclusion 𝑎(𝑣) ⊆ 𝑎(𝑣) also holds.

We continue with transitivity. Let 𝑎, 𝑏 and 𝑐 be of Predicates#. We assume that the inequalities

𝑎 ⪯#
𝑑
𝑏 and 𝑏 ⪯#

𝑑
𝑐 are true. If 𝑐 = fail, then the inequality 𝑎 ⪯#

𝑑
𝑐 trivially holds. Otherwise, we get

that 𝑏 ≠ fail and also 𝑎 ≠ fail. Let 𝑣 be of Vars. We have 𝑎(𝑣) ⊆ 𝑏 (𝑣) and 𝑏 (𝑣) ⊆ 𝑐 (𝑣). Through
transitivity of the relation ⊆ we also get the inclusion 𝑎(𝑣) ⊆ 𝑐 (𝑣).
Lastly, we show antisymmetry. Let 𝑎 and 𝑏 be of Predicates#. We have 𝑎 ⪯#

𝑑
𝑏 and 𝑏 ⪯#

𝑑
𝑎. If 𝑎 is

fail then 𝑏 must also be fail and vice versa. If neither one is fail, let 𝑣 be of Vars. We know that the

inequalities 𝑎(𝑣) ⊆ 𝑏 (𝑣) and 𝑏 (𝑣) ⊆ 𝑎(𝑣) are true and thus we have 𝑎(𝑣) = 𝑏 (𝑣) for all 𝑣 of Vars.
That means, 𝑎 and 𝑏 are equal. □

Lemma A.18. The partial order (Predicates#, ⪯#
𝑑
) is a complete lattice. In fact, the join and meet can

be computed by the following equations: Let 𝐴 be a subset of Predicates#.{
⊔(𝐴) = fail , fail ∈ 𝐴
⊔(𝐴) (𝑣) = ⋃

𝑎∈𝐴 𝑎(𝑣) , else{
⊓(𝑅) = fail , 𝑅 = {fail}
⊓(𝑅) = ⋂

𝑎∈ (𝐴\{fail}) 𝑎(𝑣) , else

Proof. Let 𝐴 be a subset of Predicates#. Let 𝑎 be an element of 𝐴. We first show that the join is

an upper bound 𝑎 ⪯#
𝑑
⊔(𝐴). If fail ∈ 𝐴, then ⊔(𝐴) = fail so the inequality 𝑎 ⪯#

𝑑
⊔(𝐴) trivially holds.

Otherwise, let 𝑣 be of Vars. The inclusion 𝑎(𝑣) ⊆ ⋃
𝑎′∈𝐴 𝑎

′ (𝑣) holds trivially, since 𝑎 ∈ 𝐴. Now, to
show that the join is the least upper bound, let 𝑢 be an upper bound of 𝐴. If 𝑢 is fail the inequality
⊔(𝐴) ⪯#

𝑑
𝑢 holds trivially. Otherwise, if 𝑢 is not fail, we know fail ∉ 𝐴. Let 𝑣 be of Vars. For any

abstract demon 𝑎 of𝐴, 𝑎(𝑣) ⊆ 𝑢 (𝑣) must hold. Therefore the inclusion ⊔(𝐴) (𝑣) = ⋃
𝑎∈𝐴 𝑎(𝑣) ⊆ 𝑢 (𝑣)

holds. Thus, the inequality ⊔(𝐴) ⪯#
𝑑
𝑢 is true.

Moving on with the meet. Let 𝑎 be an element of𝐴. We first show that the meet is a lower bound:

⊓(𝐴) ⪯#
𝑑
𝑎. If 𝐴 = {fail}, then 𝑎 = fail so the inequality ⊓(𝐴) ⪯#

𝑑
𝑎 trivially holds. Otherwise, let 𝑣

be of Vars. Then, by definition we know that ⊓(𝐴) (𝑣) = ⋂
𝑎′∈𝐴\{fail} 𝑎

′ (𝑣). If 𝑎 is fail, the inequality
trivially holds. Otherwise, ⊓(𝐴) (𝑣) ⊆ 𝑎(𝑣) is also true. Now, to show that the meet is the greatest

lower bound, let 𝑙 be a lower bound of 𝐴. If 𝑙 is fail, 𝐴 must be {fail} and thus ⊓(𝐴) = fail, so
𝑙 ⪯#

𝑑
⊓(𝐴) trivially holds. Otherwise, let 𝑣 be of Vars. Then for any 𝑎 of𝐴 that is not fail, 𝑙 (𝑣) ⊆ 𝑎(𝑣)

must hold. Thus, 𝑙 (𝑣) ⊆ ⋂
𝑎′∈𝐴\{fail} 𝑎

′ (𝑣) = ⊓(𝐴) (𝑣) holds. And therefore the inequality 𝑙 ⪯#
𝑑
⊓(𝐴)

is true. □

Next, we lift the abstract predicates to abstract selections. We remind the reader, that selections

are sets of predicates, i.e. Selections = P(Predicates).

Definition 5. An Abstract Selection is a set of abstract predicates.

Selections# = P(Predicates#)

The more versatile relation on abstract angels is the same as on Selections, except that the
elements of the abstract selections are compared using the abstract more precise relation defined

on abstract predicates.

Definition 6. 𝐴 ⪯#𝑎 𝐵 ⇔ ∀𝑏 ∈ 𝐵 : ∃𝑎 ∈ 𝐴 : 𝑎 ⪯#
𝑑
𝑏

Definition 7. The selection abstraction function 𝛼𝑎 relates elements of Selections to their abstract
representation in Selections#.

𝛼𝑎 : Selections→ Selections#
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𝛼𝑎 (𝑅) = {𝛼𝑑 (𝑟 ) | 𝑟 ∈ 𝑅}
The selection concretisation function 𝛾𝑎 relates elements of Selections# to the elements of the original

domain Selections.
𝛾𝑎 : Selections# → Selections

𝛾𝑎 (𝐴) = {𝛾𝑑 (𝑎) | 𝑎 ∈ 𝐴}

Lemma A.19. 𝑅 ⪯𝑎 𝑆 =⇒ 𝛼𝑎 (𝑅) ⪯#𝑎 𝛼𝑎 (𝑆) .

Proof. Let 𝛼𝑑 (𝑠) be of 𝛼𝑎 (𝑆). We know there is a predicate 𝑟 in 𝑅 more precise than 𝑠 . Thus, the

inequality 𝛼𝑑 (𝑟 ) ⪯#𝑑 𝛼𝑑 (𝑠) is true. And therefore the inequality 𝛼𝑎 (𝑅) ⪯#𝑎 𝛼𝑎 (𝑆) holds. □

Lemma A.20. 𝐴 ⪯𝑎 𝐵 =⇒ 𝛾𝑎 (𝐴) ⪯𝑎 𝛾𝑎 (𝐵) .

Proof. Let the predicate 𝛾𝑑 (𝑏) be of 𝛾𝑎 (𝐵). We know there is an abstract predicate 𝑎 of 𝐴 with

𝑎 ⪯#
𝑑
𝑏. Thus, 𝛾𝑑 (𝑎) is more precise than 𝛾𝑑 (𝑏). Since 𝛾𝑑 (𝑎) ∈ 𝛾𝑎 (𝐴), we know the inequality

𝛾𝑎 (𝐴) ⪯𝑎 𝛾𝑎 (𝐵) holds. □

Lemma A.21. The pair (𝛼𝑎, 𝛾𝑎) is a Galois connection between Selections and Selections#:

(Selections, ⪯𝑎) −−−−→←−−−−𝛼𝑎

𝛾𝑎
(Selections#, ⪯#𝑎)

This means, the following inequalities hold:

∀𝑅 ∈ Selections : 𝑅 ⪯𝑎 𝛾𝑎 (𝛼𝑎 (𝑅))
∀𝐴 ∈ Selections# : 𝛼𝑎 (𝛾𝑎 (𝐴)) ⪯#𝑎 𝐴

Proof. We start the proof with the first inequality. Let 𝑅 be of Selections. Let the predicate 𝑠
be of 𝛾𝑎 (𝛼𝑎 (𝑅)). Then 𝑠 ∈ {𝛾𝑑 (𝑎) | 𝑎 ∈ {𝛼𝑑 (𝑟 ) | 𝑟 ∈ 𝑅}}. Thus, 𝑠 ∈ {𝛾𝑑 (𝛼𝑑 (𝑟 )) | 𝑟 ∈ 𝑅}. Since
the inequality 𝑟 ⪯#

𝑑
𝛾𝑑 (𝛼𝑑 (𝑟 )) is true, we get that there is an 𝑟 in 𝑅 more precise than 𝑠 , thus the

inequality 𝑅 ⪯#𝑎 𝛾𝑎 (𝛼𝑎 (𝑅)) holds.
Moving on with the second inequality, let 𝐴 be of Selections#. Let the abstract predicate 𝑎 be

of 𝐴. We have 𝛼𝑎 (𝛾𝑎 (𝐴)) = {𝛼𝑑 (𝑟 ) | 𝑟 ∈ {𝛾𝑑 (𝑎) | 𝑎 ∈ 𝐴}}. Thus, 𝛼𝑑 (𝛾𝑑 (𝑎)) is in 𝛼𝑎 (𝛾𝑎 (𝐴)). Since
we know that the inequality 𝛼𝑑 (𝛾𝑑 (𝑎)) ⪯#𝑑 𝑎 holds, we get that the inequality 𝛼𝑎 (𝛾𝑎 (𝐴)) ⪯#𝑎 𝐴 is

true. □

Lemma A.22. The pair (𝛼𝑑 , 𝛾𝑑 ) is a Galois insertion, i.e. the following equation holds for any 𝑎 of
Predicates#: 𝛼𝑑 (𝛾𝑑 (𝑎)) = 𝑎.
The pair (𝛼𝑎, 𝛾𝑎) also is a Galois insertion, i.e. the following equation holds true for any 𝐴 of

Selections#: 𝛼𝑎 (𝛾𝑎 (𝐴)) = 𝐴.

Proof. We start with the first equality. Since we know the inequality 𝛼𝑑 (𝛾𝑑 (𝑎)) ⪯#𝑑 𝑎 holds, it is

sufficient to show that the inequality𝑎 ⪯#
𝑑
𝛼𝑑 (𝛾𝑑 (𝑎)) is true because the relation ⪯#𝑑 is antisymmetric.

So let 𝑎 be of Predicates#. If 𝑎 = fail, then 𝛼𝑑 (𝛾𝑑 (𝑎)) is also fail. If 𝑎 is not fail, then let 𝑣 be any

variable of Vars. Then

𝑎(𝑣) ⊆ ∪𝑝∈States∧𝑝 (𝑣)⊆𝑎 (𝑣) 𝑝 (𝑣)
⊆ ∪𝑝∈{𝑝′∈States |∀𝑣′∈Vars:𝑝′ (𝑣′ )⊆𝑎 (𝑣′ ) } 𝑝 (𝑣)
=𝛼𝑑 (𝛾𝑑 (𝑎))

The second inclusion holds true because of the abundance of available states. Therefore, the

inequality 𝑎 ⪯#
𝑑
𝛼𝑑 (𝛾𝑑 (𝑎)) holds. That means 𝑎 = 𝛼𝑑 (𝛾𝑑 (𝑎)) is true.
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Because the relation on abstract angels is not antisymmetric, we show equality directly:

𝛼𝑎 (𝛾𝑎 (𝐴)) = {𝛼𝑑 (𝑟 ) | 𝑟 ∈ {𝛾𝑑 (𝑎) | 𝑎 ∈ 𝐴}}
= {𝛼𝑑 (𝛾𝑑 ) | 𝑎 ∈ 𝐴}
= {𝑎 | 𝑎 ∈ 𝐴}
=𝐴 .

□

Definition 8. Meyer and Wolff also provide an interpretation of commands that either maps to
another state or to their notation of failing: ⊤.

⟦com⟧# (𝑎) =
{
fail , 𝑎 = fail ∨ ⟦com⟧𝑡 (𝑎) = ⊤
⟦com⟧𝑡 (𝑎) , else

Lemma A.23. The abstract interpretation of commands ⟦com⟧# is a safe abstraction for ⟦com⟧, i.e.
the following equation holds:

⟦com⟧# (𝑎) = 𝛼𝑑 (⟦com⟧(𝛾𝑑 (𝑎)))
Proof. The original interpretation of com in Meyer andWolff’s work is monotonic. Thus, ⟦com⟧#

is monotonic. We show equality by showing ⪯𝑑 in both ways. By antisymmetry, equality follows.

We start with ⟦com⟧# (𝑎) ⪯#
𝑑
𝛼𝑑 (⟦com⟧(𝛾𝑑 (𝑎))): If the right side is fail we are done. Otherwise, see

that 𝑎 ∈ 𝛾𝑑 (𝑎). Thus, ⟦com⟧# (𝑎) ∈ ⟦com⟧(𝛾𝑑 (𝑎)). Let 𝑣 be a variable of Vars. Then ⟦com⟧# (𝑎) (𝑣) is
a subset of 𝛼𝑑 (⟦com⟧(𝛾𝑑 (𝑎))) (𝑣). Therefore, the inequality ⟦com⟧# (𝑎) ⪯#𝑑 𝛼𝑑 (⟦com⟧(𝛾𝑑 (𝑎))) holds.
We proceed with the other direction: Again, if the left side is fail we are done. Otherwise, see that

for all 𝑞 of 𝛾𝑑 (𝑎), 𝑞 ⪯#𝑑 𝑎 holds. Now, let 𝑏 be an element of ⟦com⟧(𝛾𝑑 (𝑎)). Then, 𝑏 ⪯#𝑑 ⟦com⟧
# (𝑎)

holds because the original interpretation of commands is monotonic. Thus, for any variable 𝑣 of

Vars, we have 𝑏 (𝑣) ⊆ ⟦com⟧# (𝑎) (𝑣). Therefore, 𝛼𝑑 (⟦com⟧(𝛾𝑑 (𝑎))) (𝑣) is a subset of ⟦com⟧# (𝑎) (𝑣).
So, the inequality holds. This concludes the proof. □

Lemma A.24. The following inequality holds:

𝛼𝑎 (sp(𝛾𝑎 (𝐴), com)) ⪯#𝑎 sp# (𝐴, com)
Proof.

𝛼𝑎 (sp(𝛾𝑎 (𝐴), com)) = {𝛼𝑑 (⟦com⟧(𝑟 )) | 𝑟 ∈ 𝛾𝑎 (𝐴)}
= {𝛼𝑑 (⟦com⟧(𝛾𝑑 (𝑎))) | 𝑎 ∈ 𝐴}
= {⟦com⟧# (𝑎) | 𝑎 ∈ 𝐴}
= sp# (𝐴, com)

The inequality holds because ⪯#𝑎 is reflexive. □

Lemma A.25. The following equations hold:

𝛼𝑎 (𝑅 ∪ 𝑆) = 𝛼𝑎 (𝑅) ∪ 𝛼𝑎 (𝑆)
𝛾𝑎 (𝐴 ∪ 𝐵) = 𝛾𝑎 (𝐴) ∪ 𝛾𝑎 (𝐵) .

Proof. We start with the first equation.

𝛼𝑎 (𝑅 ∪ 𝑆) = {𝛼𝑑 (𝑟 ) | 𝑟 ∈ 𝑅 ∪ 𝑆}
= {𝛼𝑑 (𝑟 ) | 𝑟 ∈ 𝑅} ∪ {𝛼𝑑 (𝑠) | 𝑠 ∈ 𝑆}∪
=𝛼𝑎 (𝑅) ∪ 𝛼𝑎 (𝑆)
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The proof for the second equation is analogous. □

Lemma A.26. The following equation holds

sp# (𝐴, com) ⪯#𝑎 𝐵 =⇒ sp(𝛾𝑎 (𝐴), com) ⪯𝑎 𝛾𝑎 (𝐵)

Proof. Because the abstract strongest post is a safe abstraction, we have

𝛼𝑎 (sp(𝛾𝑎 (𝐴), com)) ⪯#𝑎 sp# (𝐴, com) ⪯#𝑎 𝐵 .

Because we have a Galois connection, the following inequality holds:

sp(𝛾𝑎 (𝐴), com) ⪯𝑎 𝛾𝑎 (𝛼𝑎 (sp(𝛾𝑎 (𝐴), com))) .
Applying the monotonicity of drv we get the following two inequalities:

sp(𝛾𝑎 (𝐴), com) ⪯𝑎𝛾𝑎 (sp# (𝐴, com))
sp(𝛾𝑎 (𝐴), com) ⪯𝑎𝛾𝑎 (𝐵)

□

Proof of Theorem B.1
We prove the theorem by induction over the structure of sketch.
Base Case: If sketch = com, then we know the inequality sp# (𝐴, com) ⪯#𝑎 𝐵 is true. This then

implies that the inequality sp(𝛾𝑎 (𝐴), com) ⪯𝑎 𝛾𝑎 (𝐵) holds. Therefore, all verification conditions of

vc(⟨𝛾𝑎 (𝐴)⟩com⟨𝛾𝑎 (𝐵)⟩) are valid. Thus, we can show the realizability triple ⊢𝑎 ⟨𝛾𝑎 (𝐴)⟩com⟨𝛾𝑎 (𝐵)⟩.
Induction Step: If the sketch sketch = sketch1; sketch2, we know that the verification condi-

tions of the functions vc# (⟨𝐴⟩sketch1⟨sp# (𝐴, sketch1)⟩) and vc# (⟨sp# (sketch1, 𝐴)⟩sketch2⟨𝐵⟩)
hold. Applying the induction hypothesis, we get that ⊢𝑎 ⟨𝛾𝑎 (𝐴)⟩sketch1⟨𝛾𝑎 (sp# (𝐴, sketch1))⟩
and ⊢𝑎 ⟨𝛾𝑎 (sp# (𝐴, sketch1))⟩sketch2⟨𝛾𝑎 (𝐵)⟩ are valid. Using rule (SEQ), we prove the realizability

triple ⊢𝑎 ⟨𝛾𝑎 (𝐴)⟩sketch1; sketch2⟨𝛾𝑎 (𝐵)⟩.
The other rules are also analogous to the original proof. □

Proof of Theorem B.2
By completeness of Hoare logic, we get ⊢𝑑 {𝛾𝑑 (𝑎)}prog{𝛾𝑑 (𝑏)}. Since the rules are the Same as

in Meyer and Wolff’s type system, we get ⊢𝑡 ⟨𝛾𝑑 (𝑎)⟩prog⟨𝛾𝑑 (𝑏)⟩. □

B DETAILS ON THE APPLICATION
B.1 Background on Safe Memory Reclamation
Our goal is to synthesize code that makes a lock-free data structure memory safe. We recall the

basics of safe memory reclamation and outline the approach from [26, 27, 47] to verify that a

lock-free data structure properly protects its memory using a safe memory reclamation algorithm.

We also demonstrate the approach on an example.

B.2 Background
When writing programs in languages such as C++, memory management is manual. This is opposed

to other programming languages, such as Java, which provide Garbage Collection (GC) for automatic

memory management. Not having GC at hand proves challenging in implementing (and verifying)

concurrent, especially lock-free data structures due to use-after-free errors and the ABA problem.

For assistance, programmers can resort to Safe Memory Reclamation (SMR) algorithms, e.g. Hazard

Pointers (HP) [29]. Instead of freeing memory directly, these algorithms provide a retire function
that delays freeing memory until it is safe to do so. In order for the SMR algorithm to know when

freeing memory is allowed, the programmer has to call SMR specific functions. With HP, the

42



Realizability in Semantics-Guided Synthesis Done Eagerly

Fig. 12. SMR automaton for HP, adapted from [47].
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programmer has to call a protect function on a pointer they want to access. Afterwards, however,

the programmer has to check if the protection was successful. In the next chapter, we automatically

synthesize the code for such calls and checks.

In [26, 27, 47], Meyer and Wolff proposed a type-based approach to automatically verify lock-free

data structures that use SMR algorithms for memory reclamation. We base our synthesis upon their

work. The idea is to abstract away the implementation details of the SMR and verify the program

with the help of a specification, a so-called SMR automaton. The automata consist of states, and

subsets of these states form the types, also called guarantees, in their approach. The states capture

the effect that the SMR algorithm has on a pointer. Every SMR automaton comes with at least three

guarantees. The local guarantee, L, signals that the pointer is thread local. The active guarantee, A,
signals that the pointer is published and was not yet retired. The safe guarantee, S, signals that the
pointer is protected by the SMR algorithm. Additionally, SMR automata may bring SMR specific

guarantees E𝐿 .
Pointer dereferences are only allowed when the SMR automaton for the pointer is guaranteed to

be in a state described by L, A, or S.
The type system tracks the guarantees each pointer has. It annotates the original program

commands, SMR commands, and invariant annotations that may have to be added to the code.

The invariant annotations provide information about the protection status of a pointer that the

type system can rely on, e.g. that a shared pointer is not retired at a certain program location. The

invariant annotations need to be verified separately. Importanty, this can be done assuming GC.

When the type check is successful and the invariant annotations can be discharged, the program

does not unsafely dereference memory and does not suffer from ABAs.

B.3 Example SMR Automaton: Hazard Pointer
We demonstrate the concept of SMR automata on the SMR algorithm Hazard Pointer. In Figure 12,

the SMR automaton O for Hazard Pointers is depicted. It consists of eight states, one of them final.

The automaton specifies illegal behavior. That means, when using HP, all transitions to the final

state will not occur. The automaton takes two parameters: 𝑧𝑝 representing the pointer whose state

is tracked, and 𝑧𝑡 representing the thread whose perspective is taken. The automaton has two extra

guarantees: Einv and Eisu. In Figure 12, all guarantees are depicted by colored zones. A pointer is
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safe to access when it possesses the guaranteesA, L, or S, because all transitions for command free
lead to the fail state. Therefore, when a pointer is guaranteed to be in one of the states described

by the three guarantees, it cannot be freed. Thus, a dereference would be safe. Here, guarantee S
represents the protection by the SMR algorithm. Guarantee Einv describes the states the automaton

is guaranteed to be in when thread 𝑧𝑡 invokes a protection on pointer 𝑧𝑝 . When that call returns,

the automaton is guaranteed to be in the states described by Eisu. When thread 𝑧𝑡 protects another

pointer, or unprotects pointer 𝑧𝑝 , the aforementioned guarantees are lost. The transitions for free
and retire do not depend on the executing thread and can be interferences from other threads.

The guarantee A is not closed under interferences. Local pointers cannot experience interference,

thus interference can be disregarded for guarantee L. When using HP, after issuing a protection,

it must be checked if the protection was successful. This is represented in the automaton by the

fact that the guarantees Eisu and S are not the same. After returning from the protection call, the

automaton could be in state 𝑞5 where it is not safe yet. The strategy to protect a pointer therefore

is to first call the method protect and then compare it to a pointer that possesses the guarantee A.
If both are equal, they must be in the state 𝑞4 (𝑞𝑓 is never reached) and thus both automatically get

the guarantee S and are thereby safe to access.

B.4 Example Type Check: Treiber’s Stack pop

Fig. 13. Excerpt of pop in Treiber’s stack demonstrating Meyer
and Wolff’s type system using Hazard Pointers (simplified).

1 top : O, TOS : O
2 top = TOS;

3 top : O, TOS : O
4 in:protect(top);

5 top : Einv, TOS : O
6 re:protect ();

7 top : Eisu, TOS : O
8 atomic {

9 top : Eisu, TOS : O
10 @inv active(TOS);

11 top : Eisu, TOS : A

12 assume(top == TOS);

13 (top : Eisu ∧ A,
14 TOS : A ∧ Eisu )
15 (top : Eisu ∧ A ∧ S,
16 TOS : A ∧ Eisu ∧ S)
17 }

18 top : Eisu ∧ S, TOS : O
19 d = top.data;

20 top : Eisu ∧ S, TOS : O

We demonstrate the type check

from [27, 47]. Figure 13 shows an

excerpt of the pop method from

Treiber’s stack using Hazard Pointers

as the SMR algorithm. There are two

pointer variables: the local variable

top and the shared variable TOS. In
the beginning, both pointers possess

no guarantees. First, the current value

of the shared variable is read into top.
Afterwards a hazard pointer protec-

tion for top is called. It is invoked in

Line 4 and returns in Line 6. After a

protection, one has to check if it was

successful. This requires two steps.

First, we signal the type system that

the shared variable TOS is not yet re-
tired through the invariant annotation active(TOS). Afterwards, we compare the previously read

value stored in the variable top with the current value of TOS. If both variables point to the same

address, we combine the information we have on each variable. Therefore, both pointers now have

the guarantees Eisu and A and by inference also S. Leaving the atomic block, other threads are able

to interfere again, so the active guarantee is lost for top. Because the pointer TOS is shared and

other threads can manipulate it in any way, it loses all its guarantees. However, the pointer top
can now be safely dereferenced in Line 19. We use the theory presented in this paper and leverage

the type system discussed above to automatically synthesize the extra code needed to pass the type

check, i.e. Lines 4, 6, and 10.

B.5 Assertion Language
Our assertion language for predicates is Predicates# = (Vars→ P(O)) ∪ {fail}, and we also call the
elements in this domain abstract predicates. We annotate our development by # to indicate that we
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Fig. 14. Treiber’s Stack Popwith inserted nonterminals. Red nonterminals resolve to skip. Purple nonterminals
resolve to the gray code beside them.

1 BEGIN LOOP {

2 top := TOS; AC;

3 (( assume(top == NULL); AC;

4 result := EMPTY; AC;)

5 +
6 (

7 assume(top != NULL); AC;

8 ((

9 atomic {

10 AC;p∼@inv active(TOS);

11 top := TOS;

12 AC;p∼in:protect(top);
13 re:protect ();

14 assume(top != NULL); AC;

15 }

16 AC; next := top.next; AC;

17 atomic {

18 AC;p∼@inv active(TOS);

19 (( assume(CAS(TOS , top , next ));

20 AC;

21 flag := true; AC;

22 )

23 +
24 ( flag := false; AC;))

25 }

26 AC;

27 (( assume(flag == true); AC;

28 result := top.data; AC;)

29 +
30 (assume(flag == false); AC;

31 skip; AC;))

32 ))

33 +
34 ( skip; AC;)

35 ))

36 }* END LOOP

work with abstract predicates. Functions defined on the abstract domain that are annotated with

a # symbol, e.g. vc#. As an abstraction function we have 𝛼𝑑 and 𝛼𝑎 for predicates and selections,

respectively. Abstract selections are a set of abstract predicates. Similarly, the concretisation

functions are called 𝛾𝑑 and 𝛾𝑎 . Since it is deterministic, the original interpretation of commands

⟦com⟧𝑡 serves as a safe abstract interpretation of ⟦com⟧ when the semantics for fail are added.
Thus, there is no need to concretize to the non abstract domain. We use the abstract version of

verification conditions to proof realizability triples:

Theorem B.1. |= vc# (⟨𝐴⟩stmt⟨𝐵⟩) implies ⊢𝑎 ⟨𝛾𝑎 (𝐴)⟩stmt′⟨𝛾𝑎 (𝐵)⟩ .
Proofs over programs that start and end in singletons can be replicated in the type system of

Meyer and Wolff of which a successful type check is denoted by ⊢𝑡 :
Theorem B.2. |=𝑑 {𝛾𝑑 (𝑎)}prog{𝛾𝑑 (𝑏)} implies ⊢𝑡 ⟨𝑎⟩prog⟨𝑏⟩ .

C EXAMPLE: POP METHOD IN TREIBER’S STACK
We demonstrate our synthesis approach on the pop method of Treiber’s Stack. First, we insert

nonterminals that can resolve to calls to the SMR algorithm and invariant annotations into the

program code. Then, using verification conditions, it is shown that these nonterminals are sufficient

for deriving a memory safe program that passes Meyer and Wolff’s type check. Afterwards, using

the synthesis function, we derive a memory safe program.

In Figure 14, the pop method of Treiber’s stack is depicted. Therein, we already inserted the

nonterminal AC. Insertions that will resolve to skip are marked in red. Insertions that will resolve

to commands other than skip are marked in purple with the commands they will resolve to in

gray right beside them. The atomic block in Lines 9 to 15 serves as an atomicity abstraction for

assume(top = TOS). The assumption is required to check if a protection was successful. Without

diving into details, the atomicity abstraction is required in Meyer and Wolff’s type system because
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Fig. 15. Insertions for HP in Treiber’s Stack.

1 AC ::= skip; |
2 atomic {@inv active(TOS);} |
3 (in:protect(top); re:protect(top);)

this assumption is at risk of a harmless ABA. A type check does not pass on a harmless ABA. (This

is a detail we left out in the overview in Appendix B.2.) The atomicity abstraction circumvents this

problem.

In the type system, dereferences and checks for equality can only be performed on pointers

that are safe to access, i.e. pointers that possess the active, local, or safe guarantee. Since the next
pointer is never accessed or compared, it does not need any protection. We therefore omit it in the

following. As mentioned before, we assume the shared pointer TOS to always be active, therefore a

protection is not needed because having the active guarantee A is sufficient for safe dereferences

and comparisons. However, signaling the type system that the pointer is indeed active is still

required and is done using invariant annotations. Observe that TOS needs to be active at least in

Line 19 as it is compared to top there. The pointer top needs to be protected at multiple locations.

It is accessed and compared to another pointer in Lines 16, 19 and 28. Knowing which pointers need

to be protected, we restrict nonterminal to the definition depicted in Figure 15. (This optimization

is not required.)

We call the resulting program sketch sketch. Using verification conditions, the realizability

triple ⊢𝑎 ⟨𝛾𝑑 ((TOS : O, top : O))⟩sketch⟨𝛾𝑑 ((TOS : O, top : O))⟩ is proven. In order to generate

verification conditions, the loop of sketch needs to be annotated with a loop invariant. We choose

the invariant 𝐼 = {(TOS : O, top : O)}. In total, the verification conditions function generates 27

unique comparisons. The result is that every comparison holds. Therefore, the above realizability

triple is true. Inserting the selections used for generating the verification conditions into the

program yields a proof outline po with sketch(po) = sketch. Having shown that there is a way to

concretize this program sketch, we now use the synthesis algorithm to eliminate the nonterminals.

Thus, we call the synthesis function with the predicate (TOS : O, top : O) as the target for condition.
In Lines 10, 12 and 18 the nonterminals resolve to commands other than skip. In the following,

we discuss the invocations of the synthesis function where the nonterminal does not resolve to

skip. In Equation (7), the active invariant annotation for TOS is chosen. This insertion can be seen

in Line 10. Here, executing the active invariant annotation on the first and second predicate in the

pre condition results in the first and second predicate of the post condition, respectively. The third

predicate of the post condition can be reached from both of the predicates in the pre condition.

From the first predicate, a protection to top needs to be issued. From the second predicate, a skip
is sufficient. The last predicate of the post condition is reached through executing skip on the first

predicate of the pre condition. Thus, the first, third and fourth predicates of the post condition are

reachable from the target pre condition. The first predicate of the post condition matches. Therefore,

@inv active needs to be inserted and the first predicate of the precondition is returned. Next,

in Equation (8), the protections for top are synthesized. The result is inserted in Line 12. There

are 5 predicates in the post condition of the nonterminal. The first two predicates are results of

executing the nonterminal on the second predicate of the precondition. The first predicate of the

postcondition stems from calling skip or @inv active(TOS). The second predicate is the result

of issuing the protection for top. The third, fourth and fifth predicate are results of executing

the nonterminal on the first predicates of the pre condition. The third predicate is the product

of inserting the protection for top. The fourth predicate comes from a skip. The last predicate
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Fig. 16. Recursive calls of decision function

syn(⟨𝛾𝑎 ({(TOS : O, top : O), (TOS : O, top : Einv ∧ Eisu)})⟩AC⟨𝛾𝑎 ({(TOS : A, top : O),
(TOS : A, top : Einv ∧ Eisu), (TOS : O, top : Einv ∧ Eisu), (TOS : O, top : O)})⟩,

𝛾𝑑 ((TOS : A, top : O)))
= (𝛾𝑑 ((TOS : O, top : O)), @inv active(TOS);)

(7)

syn(⟨𝛾𝑎 ({(TOS : O, top : O), (TOS : A, top : A)})⟩AC⟨𝛾𝑎 ({(TOS : A, top : A),
(TOS : A, top : Einv ∧ Eisu ∧ A ∧ S), (TOS : A, top : O),

(TOS : O, top : O), (TOS : O, top : Einv ∧ Eisu)})⟩,
𝛾𝑑 ((TOS : A, top : Einv ∧ Eisu ∧ A ∧ S)))

= ((TOS : A, top : A), (in:protect(top); re:protect();))

(8)

syn(⟨𝛾𝑎 ({(TOS : O, top : Einv ∧ Eisu ∧ S), fail})⟩AC⟨𝛾𝑎 ({(TOS : A, top : Einv ∧ Eisu ∧ S),
(TOS : O, top : Einv ∧ Eisu ∧ S), fail})⟩,

𝛾𝑑 ((TOS : A, top : Einv ∧ Eisu ∧ S)))
= ((TOS : O, top : Einv ∧ Eisu ∧ S), @inv active(TOS);)

(9)

is the result of calling @inv active(TOS). The second predicate of the post condition matches

target post condition. Therefore, the protections for top must be synthesized here and the second

predicate of the precondition is returned.

Lastly, in Equation (9), the active annotation in Line 18 before the compare and swap is synthesized.

There are two predicates in the pre condition, one of which is fail. Executing the nonterminal

on fail leads to fail in the post condition. Using the invariant annotation on the first predicate of

the pre condition yields the first predicate of the post condition. Inserting skip or a protection

to top leads to the second predicate. The first predicate of the post condition matches the target

post condition, thus @inv active(TOS) is inserted and the first predicate from the precondition is

returned.

We call the version of Treiber’s stack with the resolved nonterminals from Figure 14 prog.
We know that the Hoare triple |=𝑑 {𝛾𝑑 ((TOS : O, top : O))}prog{𝛾𝑑 ((TOS : O, top : O))} holds
due to Theorem 6.1. Applying Theorem B.2, we conclude that the resulting program type checks:

⊢𝑡 ⟨(TOS : O, top : O)⟩prog⟨(TOS : O, top : O)⟩ is true. That means, we successfully synthesized

a program prog that passes Meyer and Wolff’s type check and therefore is memory safe (if the

invariant annotations can be discharged).
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