Oriented Metrics for
Bottom-Up Enumerative Synthesis

Roland Meyer and Jakob lepe

TU Braunschweig, Germany

Goal:

Unify and generalize

the existing approaches to bottom-up enumerative synthesis

Syntax-Guided Synthesis (SyGuS)

Syntax-Guided Synthesis (SyGuS)

Specification: Examples (In, Out)

Syntax-Guided Synthesis (SyGuS)

Specification: Examples (In, Out)

Defines the
ground truth gtz

Syntax-Guided Synthesis (SyGuS)

Grammar: G Specification: Examples (In, Out)

Defines the
ground truth gtz

Syntax-Guided Synthesis (SyGuS)

Grammar: G Specification: Examples (In, Out)
Detfines the \ Defines the
search space £(G) ground truth gt

Syntax-Guided Synthesis (SyGuS)

Grammar: G Specification: Examples (In, Out)
Detfines the \ Defines the
search space £(G) ground truth gt
g1

;

Task: Find program prog € © that implements gt

Syntax-Guided Synthesis (SyGuS)

In Out
"POPL_Conf™" "POPL"
"Rennes City" | "Rennes”
"PLDI Conf" "PLDI"
"Seoul City" "Seoul”

Syntax-Guided Synthesis (SyGuS)

S = V|]replace(S,S,S) | concat(S,S) In Out
v — x|e|"Conf"|"City" POPLuCor.\f POPL
"Rennes City" | "Rennes”
"PLDI Conf™" "PLDI"

"Seoul City" "Seoul”

Syntax-Guided Synthesis (SyGuS)

V | replace(S,S,S) | concat(S,S) In Out

%
]

<
ll

x| e|"Conf"|"City" "POPL Conf™ "POPL"
"Rennes City" | "Rennes”

"PLDI Conf™ "PLDI"
"Seoul Clty "Seoul”

prog(i) = o

Syntax-Guided Synthesis (SyGuS)

S == V]replace(S,S,S) | concat(S,S) In Out
V — X ‘ € | nucon_Fn | "I_ICity" "POPL Conf "POPL"
"Rennes City" | "Rennes”
"PLDI Conf™ "PLDI"
"Seoul Clty "Seoul”
prog(i) = o

Solution: r(r(x," Conf" €)," City", €)

Syntax-Guided Synthesis (SyGuS)

S == V|replace(S,S,S) | concat(S,S) In Out
V = x|e]|"Conf"|"City" "POPL_Conf™ "POPL"
"Rennes City" | "Rennes”
"PLDI Conf™ "PLDI"
"Seoul Clty "Seoul”
prog(i) = o

Solution: r(r(x," Conf" €)," City", €)

r(r("POPL Conf"," Conf",e)," City", €)

Syntax-Guided Synthesis (SyGuS)

S == V|replace(S,S,S) | concat(S,S) In Out
V = x|e]|"Conf"|"City" "POPL_Conf™ "POPL"
"Rennes City" | "Rennes”
"PLDI Conf™ "PLDI"
"Seoul Clty "Seoul”
prog(i) = o

Solution: r(r(x," Conf" €)," City", €)

r(r("POPL Conf"," Conf",e)," City", €)
—_—_— —

Syntax-Guided Synthesis (SyGuS)

S == V|replace(S,S,S) | concat(S,S) In Out
V = x|e]|"Conf"|"City" "POPL_Conf™ "POPL"
"Rennes City" | "Rennes”
"PLDI Conf™ "PLDI"
"Seoul Clty "Seoul”
prog(i) = o

Solution: r(r(x," Conf" €)," City", €)

r(r("POPL Conf"," Conf",e)," City", €)
—_—_— —
"POPL"

Syntax-Guided Synthesis (SyGuS)

S == V|replace(S,S,S) | concat(S,S) In Out
V = x|e]|"Conf"|"City" "POPL_Conf™ "POPL"
"Rennes City" | "Rennes”
"PLDI Conf™ "PLDI"
"Seoul Clty "Seoul”
prog(i) = o

Solution: r(r(x," Conf" €)," City", €)

r(r("POPL Conf"," Conf",e)," City", €)
—_—_— —

"POPL"
—m—

Syntax-Guided Synthesis (SyGuS)

S == V|replace(S,S,S) | concat(S,S) In Out
V = x|e]|"Conf"|"City" "POPL_Conf™ "POPL"
"Rennes City" | "Rennes”
"PLDI Conf™ "PLDI"
"Seoul Clty "Seoul”
prog(i) = o

Solution: r(r(x," Conf" €)," City", €)

r(r("POPL Conf"," Conf",e)," City", €)
—_—_— —

"POPL"
—m—

"POPL"

Syntax-Guided Synthesis (SyGuS)

S == V|replace(S,S,S) | concat(S,S) In Out
V = x|e]|"Conf"|"City" "POPL_Conf™ "POPL"
"Rennes City" | "Rennes”
"PLDI Conf™ "PLDI"
"Seoul Clty "Seoul”
prog(i) = o

Solution: r(r(x," Conf" €)," City", €)

r(r("POPL Conf"," Conf", €)," City", €) r(r("Rennes City"," Conf",¢)," City", €)
—_— —

"POPL"
—m—

"POPL"

Syntax-Guided Synthesis (SyGuS)

S == V|replace(S,S,S) | concat(S,S) In Out
V = x|e]|"Conf"|"City" "POPL_Conf™ "POPL"
"Rennes City" | "Rennes”
"PLDI Conf™ "PLDI"
"Seoul Clty "Seoul”
prog(i) = o

Solution: r(r(x," Conf" €)," City", €)

r(r("POPL Conf"," Conf", €)," City", €) r(r("Rennes City"," Conf",¢)," City", €)
—_— —_—
"POPL"

—m—
"POPL"

Syntax-Guided Synthesis (SyGuS)

S == V|replace(S,S,S) | concat(S,S) In Out
V = x|e]|"Conf"|"City" "POPL_Conf™ "POPL"
"Rennes City" | "Rennes”
"PLDI Conf™ "PLDI"
"Seoul Clty "Seoul”
prog(i) = o

Solution: r(r(x," Conf" €)," City", €)

r(r("POPL Conf"," Conf",e)," City", €) r(r("Rennes City"," Conf" €)," City", €)
—_— — —_—_—_———————
"POPL" "Rennes City"

—m—
"POPL"

Syntax-Guided Synthesis (SyGuS)

S == V|replace(S,S,S) | concat(S,S) In Out
V = x|e]|"Conf"|"City" "POPL_Conf™ "POPL"
"Rennes City" | "Rennes”
"PLDI Conf™ "PLDI"
"Seoul Clty "Seoul”
prog(i) = o

Solution: r(r(x," Conf" €)," City", €)

r(r("POPL Conf"," Conf",e)," City", €) r(r("Rennes City"," Conf" €)," City", €)
—_— — —_———
"POPL" "Rennes City"
N EEEEE—————————— —_—_—

"POPL"

Syntax-Guided Synthesis (SyGuS)

S == V|replace(S,S,S) | concat(S,S) In Out
V = x|e]|"Conf"|"City" "POPL_Conf™ "POPL"
"Rennes City" | "Rennes”
"PLDI Conf™ "PLDI"
"Seoul Clty "Seoul”
prog(i) = o

Solution: r(r(x," Conf" €)," City", €)

r(r("POPL Conf"," Conf",e)," City", €) r(r("Rennes City"," Conf" €)," City", €)
—_— — —_———
"POPL" "Rennes City"
N EEEEE—————————— —_—_—

"POPL" "Rennes"

Syntax-Guided Synthesis (SyGuS)

S == V|replace(S,S,S) | concat(S,S) In Out
V = x|e]|"Conf"|"City" "POPL_Conf™ "POPL"
"Rennes City" | "Rennes”
"PLDI Conf™ "PLDI"
"Seoul Clty "Seoul”
prog(i) = o

Solution: r(r(x, " Conf", €)," City", €)

r(r("POPL Conf"," Conf",e)," City", €) r(r("Rennes City"," Conf" €)," City", €)
—_— — —_———
"POPL" "Rennes City"
N EEEEE—————————— —_—_—

"POPL" "Rennes"

Understanding 1: Existing approaches

have a way 1o enumerate

S == V/|replace(S,S,S) | concat(S,S)

V. = x|e|"Conf"|"City"
Bottom-Up Enumeration In Out
"POPL_Conf" "POPL"
"Rennes City" | "Rennes”
"PLDI Conf" "PLDI"

"Seoul City" "Seoul"”

S == V/|replace(S,S,S) | concat(S,S)

V. = x|e|"Conf"|"City"
Bottom-Up Enumeration In Out
"POPL _Conf" "POPL"
., o . "Rennes City" | "Rennes”
Py = {x,€ " Conf"," City"} "PLDI Conf" | "PLDI"
"Seoul City" "Seoul"”

S == V/|replace(S,S,S) | concat(S,S)

V. = x|e|"Conf"|"City"
Bottom-Up Enumeration In Out
"POPL _Conf" "POPL"
., o . "Rennes City" | "Rennes”
P = {X, e," Conf"," City } P, =0 "PLDI Conf" | "PLDI"
"Seoul City" "Seoul"”

S == V/|replace(S,S,S) | concat(S,S)

V. = x|e|"Conf"|"City"
Bottom-Up Enumeration In Out
"POPL_Conf" "POPL"
., o . "Rennes City" | "Rennes”
Pl — {Xa €, ._.COh-F ’ ._.Clty } PZ — @ "PLDI Conf™ "PLDI"
"Seoul City" "Seoul"”

P; = {x.x, x.,x." Conf", x." City", €.x,€.¢,€." Conf", e." City",
"Conf".x," Conf".g," Conf"." Conft"," City"." City",
"Conf"." City","City".x," City".e, " City"." Conf"}

S == V/|replace(S,S,S) | concat(S,S)

V. = x|e|"Conf"|"City"
Bottom-Up Enumeration In Out
"POPL _Conf" "POPL"
., o . "Rennes City" | "Rennes”
P = {X, e," Conf"," City } P, =0 "PLDI Conf" | "PLDI"
"Seoul City" "Seoul"”

P; = {x.x, x.,x." Conf", x." City", €.x,€.¢,€." Conf", e." City",
"Conf".x," Conf".g," Conf"." Conft"," City"." City",
"Conf"." City","City".x," City".e, " City"." Conf"}

Py ={r(x,x," City"), r(x," City"," Conf"), r(x," Conf" €),...}

S == V/|replace(S,S,S) | concat(S,S)

V. = x|e|"Conf"|"City"
Bottom-Up Enumeration In Out
"POPL _Conf" "POPL"
., o . "Rennes City" | "Rennes”
P = {X, e," Conf"," City } P, =0 "PLDI Conf" | "PLDI"
"Seoul City" "Seoul"”

P; = {x.x, x.,x." Conf", x." City", €.x,€.¢,€." Conf", e." City",
"Conf".x," Conf".g," Conf"." Conft"," City"." City",
"Conf"." City","City".x," City".e, " City"." Conf"}
Py ={r(x,x," City"), r(x," City"," Conf"), r(x," Conf" €),...}
Ps=4...}

S == V/|replace(S,S,S) | concat(S,S)

V. = x|e|"Conf"|"City"
Bottom-Up Enumeration In Out
"POPL _Conf" "POPL"
., o . "Rennes City" | "Rennes”
P = {X, e," Conf"," City } P, =0 "PLDI Conf" | "PLDI"
"Seoul City" "Seoul"”

P; = {x.x, x.,x." Conf", x." City", €.x,€.¢,€." Conf", e." City",
"Conf".x," Conf".g," Conf"." Conft"," City"." City",
"Conf"." City","City".x," City".e, " City"." Conf"}
Py ={r(x,x," City"),r(x," City"," Conf"), r(x," Conf",e),...}
Ps={...} 2 Ps=A...}

S == V/|replace(S,S,S) | concat(S,S)

V. = x|e|"Conf"|"City"
Bottom-Up Enumeration In Out
"POPL _Conf" "POPL"
., o . "Rennes City" | "Rennes”
P = {X, e," Conf"," City } P, =0 "PLDI Conf" | "PLDI"
"Seoul City" "Seoul"”

P; = {x.x, Xx.€, x." Conf", x." City", e€.x,€.€,€." Conf", e€." City",
"Conf".x," Conf".g," Conf"." Conft"," City"." City",
"Conf"." City","City".x," City".e, " City"." Conf"}

Py ={r(x,x," City"),r(x," City"," Conf"), r(x," Conf", €),...}

Ps={..} Po={...} P,={....,r(r(x,"Conf"e)," City" €),...}

S == V/|replace(S,S,S) | concat(S,S)

V. = x|e|"Conf"|"City"
Bottom-Up Enumeration In Out
"POPL _Conf" "POPL"
., o . "Rennes City" | "Rennes”
P = {X, e," Conf"," City } P, =0 "PLDI Conf" | "PLDI"
"Seoul City" "Seoul"”

P; = {x.x, Xx.€, x." Conf", x." City", e€.x,€.€,€." Conf", e€." City",
"Conf".x," Conf".g," Conf"." Conft"," City"." City",
"Conf"." City","City".x," City".e, " City"." Conf"}

Py ={r(x,x," City"),r(x," City"," Conf"), r(x," Conf", €),...}

Ps={.}y Po={...} P,={....,r(r(x,"Conf"e)," City" €),...}

S == V/|replace(S,S,S) | concat(S,S)

V. = x|e|"Conf"|"City"
Bottom-Up Enumeration In Out
"POPL _Conf" "POPL"
., o . "Rennes City" | "Rennes”
P = {X, e," Conf"," City } P, =0 "PLDI Conf" | "PLDI"
"Seoul City" "Seoul"”

P; = {x.x, Xx.€, x." Conf", x." City", e€.x,€.€,€." Conf", e€." City",
"Conf".x," Conf".g," Conf"." Conft"," City"." City",
"Conf"." City","City".x," City".e, " City"." Conf"}

Py ={r(x,x," City"),r(x," City"," Conf"), r(x," Conf", €),...}

Ps={.}y Po={...} P,={....,r(r(x,"Conf"e)," City" €),...}

Exponential Blowup!

S == V/|replace(S,S,S) | concat(S,S)

V. = x|e|"Conf"|"City"
Bottom-Up Enumeration In Out
"POPL _Conf" "POPL"
., o . "Rennes City" | "Rennes”
P = {X, e," Conf"," City } P, =0 "PLDI Conf" | "PLDI"
"Seoul City" "Seoul"”

P; = {x.x, Xx.€, x." Conf", x." City", e€.x,€.€,€." Conf", e€." City",
"Conf".x," Conf".g," Conf"." Conft"," City"." City",
"Conf"." City","City".x," City".e, " City"." Conf"}

Py ={r(x,x," City"),r(x," City"," Conf"), r(x," Conf", €),...}

Ps={.}y Po={...} P,={....,r(r(x,"Conf"e)," City" €),...}

Method P1 P2 P3 P4 P5 P6 P7
No Pruning or Factorization 4 - 16 64 128 | 1280 | 4352

Exponential Blowup!

Enumeration, Factorization, Pruning

L(G)

Enumeration, Factorization, Pruning

Enumeration Order:

Size-based

L(G)

— S S S S S S S S S S S EEE S S S S S S S S EaE s s e e s e s am
AN #EEE #IEE S - -
I I S-S .- -

EIE S - -y,

Enumeration, Factorization, Pruning

Enumeration Order:

Size-based

Deduction [A
2023, Ding a

ur et al. 2017, Lee 2021, Yoon et

nd Qiu 2024, Ding and Qiu 2025

al.

— S S S S S S S S S S S EEE S S S S S S S S EaE s s e e s e s am
AN #EEE #IEE S - -
I I S-S .- -

EIE S - -y,

Deduction

Deduction

Deduction

€ 5 nuCi ty";

Deduction

IA

"I-ICi ty"j

IA

Deduction

6 5 "I-ICi ty"j

IA

~(x," Conf", €)

IA

Deduction

6 5 "I-ICi ty"j

IA

IA

r(x," Conf',e) <

Deduction

6 5 "I-ICi ty"j 5

IA

r(x," Conf'e) < < r(r(x,"Conf"¢)," City", €)

Deduction

6 5 "I-ICi ty"j 5

IA

< < r(r(x,"Conf" e)," City", €)

Deduction

6 5 "I-ICi ty"j 5

IA

< ... X r(r(x,"Conf"e€)," City" €)

Deduction

6 5 "I-ICi ty"j 5

IA

r(r(x," Conf" €)," City", €)

Deduction

6 5 "I-ICi ty"j 5

IA

< r(r(x," Conf" €)," City",)

Enumeration, Factorization, Pruning

Enumeration Order:

Size-based

Deduction [A
2023, Ding a

ur et al. 2017, Lee 2021, Yoon et

nd Qiu 2024, Ding and Qiu 2025

al.

— S S S S S S S S S S S EEE S S S S S S S S EaE s s e e s e s am
AN #EEE #IEE S - -
I I S-S .- -

EIE S - -y,

Understanding 2: Existing approaches

have a way to factorize the search space

Enumeration, Factorization, Pruning

Enumeration Order:

Size-based

Deduction [A
2023, Ding a

ur et al. 2017, Lee 2021, Yoon et al.

nd Qiu 2024, Ding and Qiu 2025

Factorizations:

Observational Equivalence Factorization [Udapa et

al. 2013, Albarghouthi et al. 2013

— S S S S S S S S S S S EEE S S S S S S S S EaE s s e e s e s am
AN #EEE #IEE S - -
I I S-S .- -

EIE S - -y,

Observational Equivalence Factorization

Observational Equivalence:

Vi € In : prog, (i) = prog,(i)
X X.€

L(G)

— S S S S S S S S S S S EEE S S S S S S S S EaE s s e e s e s am
AN #EEE #IEE S - -
I I S-S .- -

EIE S - -y,

Observational Equivalence Factorization

Observational Equivalence:

Vi € In : prog, (i) = prog,(i)
X~ X.€

L(G)

Factorizes search space

Observational Equivalence Factorization

Observational Equivalence:

Vi € In : prog, (i) = prog,(i)
X X.€

L(G)

Factorizes search space

Only keep one representative per class

Observational Equivalence Factorization

Observational Equivalence:
Vieln: prog§= prog, (i)
€

X~

L(G)

Factorizes search space

Only keep one representative per class

Observational Equivalence Factorization

Observational Equivalence:
Vieln: prog§= prog, (i)
€

X~

L(G)

Factorizes search space

Only keep one representative per class

Method P1 PZ P3 P4 P5 P@ P7

No Pruning or Factorization 4 - 16 64 128 | 1280 | 4352
OE Factorization 4 - 9 6 27 56 119

Enumeration, Factorization, Pruning

Enumeration Order:

Size-based

Deduction [Alur et al. 2017, Lee 2021, Yoon et al.

2023, Ding and Qiu 2024, Ding and Qiu 2025

Factorizations:

Observational

al. 2013, Albarghoutf

—quiva

ence Factor

et al. 2013

zation [Udapa et

L(G)

Enumeration, Factorization, Pruning

Enumeration Order:

Size-based

Deduction [Alur et al. 2017, Lee 2021, Yoon et al.

2023, Ding and Qiu 2024, Ding and Qiu 2025

Factorizations:

Observational

al. 2013, Albarghoutf

—quiva

ence Factor

et al. 2013

Abstraction [Wang et al. 2018]

zation [Udapa et

L(G)

Abstraction

Perform OE on abstracted values
Vi € In : a(prog, (1)) = a(prog,(1))

L(G)

Abstraction

Perform OE on abstracted values
Vi € In : a(prog, (1)) = a(prog,(1))

Coarser than OE L(G)

Abstraction

Perform OE on abstracted values
Vi € In : a(prog, (1)) = a(prog,(1))

Coarser than OE

Only keep one representative per class

L(G)

Enumeration, Factorization, Pruning

Enumeration Order:

Size-based

Deduction [Alur et al. 2017, Lee 2021, Yoon et al.

2023, Ding and Qiu 2024, Ding and Qiu 2025

Factorizations:

Observational

al. 2013, Albarghouth

—quiva

ence Factor

et al. 2013

Abstraction [WWang et al. 201 8]

zation [Udapa et

L(G)

Understanding 3: Existing approaches

have a way to prune the search space

Enumeration, Factorization, Pruning

Enumeration Order:

Size-based

Deduction [Alur et al. 2017, Lee 2021, Yoon et al.

2023, Ding and Qiu 2024, Ding and Qiu 2025

Factorizations:

Observational

al. 2013, Albarghouth

—quiva

ence Factor

et al. 2013

Abstraction [WWang et al. 201 8]

Pruning:

zation [Udapa et

Pruning with a ball [Feser et al. 2023}

L(G)

Pruning with a Ball

Use a metric to define a ball around gt

L(G)

— S S S S S S S S S S S EEE S S S S S S S S EaE s s e e s e s am
AN #EEE #IEE S - -
I I S-S .- -

EIE S - -y,

Pruning with a Ball

Use a metric to define a ball around gt

L(G)

— — — — — — — - — -
— —
— — — — — — — — [& — — — — — — — — — — — — — -— — — — — — — — —

— — — — — — — — [\ — _—y,

Pruning with a Ball

Use a metric to define a ball around gt

Only consider programs inside the ball

L(G)

— — — — — — — - — -
— —
— — — — — — — — [& — — — — — — — — — — — — — -— — — — — — — — —

— — — — — — — — [\ — _—y,

Pruning with a Ball

Use a metric to define a ball around gt
Only consider programs inside the ball

Deliberately incomplete L(G)

— — — — — — — - — -
— — — — — — — — [& — — — — — — — — — — — — — -— — — — — — — — —

———————————————————————————————

Pruning with a Ball

Use a metric to define a ball around gt
Only consider programs inside the ball
Deliberately incomplete L(G)

Control completeness / speed-up via radius

————————————————————————————————
———————————————————————————————
—————————————————————————————————

————————————————————————————————
———————————————————————————————

Pruning with a Ball

Use a metric to define a ball around gt
Only consider programs inside the ball
Deliberately incomplete L(G)

Control completeness / speed-up via radius

— — — — — — — — — — — — — — — — — — - - — — — — — — — — — — — -
—— — — — — — — — — — — — — — — — — — rl— — — — — — — — — — — — —

———————————————————————————————

Pruning with a Ball

Use a metric to define a ball around gt
Only consider programs inside the ball
Deliberately incomplete L(G)

Control completeness / speed-up via radius

— - — — — — — — — -
— — — — — — — — - - — — — — — — — — — — — — — - — — — — — — — —

— [— — — — — — — — —

Pruning with a Ball

Use a metric to define a ball around gt

Only consider programs inside the ball

Deliberately incomplete L(G)
Control completeness / speed-up via radius

Downside; < | S L ______,

— - — — — — — — — -
— — — — — — — — - - — — — — — — — — — — — — — - — — — — — — — —
— [— — — — — — — — —

Require symmetry Nl i Wit

EXIsting approaches

EXIsting approaches

have a way to enumerate

EXIsting approaches

have a way to enumerate

have a way to factorize

EXIsting approaches

have a way to enumerate

have a way to factorize

have a way to prune

symmetric (undesirable)

EXIsting approaches

have a way to enumerate

have a way to factorize

have a way to prune

symmetric (undesirable)

—

Enumeration Order <

EXIsting approaches

have a way to enumerate

have a way to factorize

have a way to prune

symmetric (undesirable)

—
—

Enumeration Order <

Equivalence =

EXIsting approaches

have a way to enumerate Enumeration Order <

have a way to factorize EqQuivalence =

have a way to prune
Metric

symmetric (undesirable)

3 Parameters of Bottom-Up Enumerative Synthesizers:

Enumeration Order < Equivalence = Metric

3 Parameters of Bottom-Up Enumerative Synthesizers:

Enumeration Order < Equivalence = Metric

INSIGHT: Oriented Metric

2 Parameters of Bottom-Up Enumerative Synthesizers:

Enumeration Order <

INSIGHT: Oriented Metric

Oriented Metrics (Orimetrics)

m:DXD—>RZO

m(a,a) = 0 (reflexivity)
m(ba) = 0 = m(a, b) = 0 (symmetry at zero)
m(a,c) < m(a b) + m(b,c) (A-inequality)

Oriented Metrics (Orimetrics)

m:DXD—>RZO

m(ba) = 0 = m(aq,b) =0 (symmetry at zero)

Oriented Metrics (Orimetrics)

m:DXD—>RZO

m(ba) = 0 = m(aq,b) =0 (symmetry at zero)

Allows for asymmetry

Oriented Metrics (Orimetrics)

m:DXD—>RZO

m(ba) = 0 = m(aq,b) =0 (symmetry at zero)

Allows for asymmetry # Better pruning

Oriented Metrics (Orimetrics)

m:DXD—>RZO

m(ba) = 0 = m(aq,b) =0 (symmetry at zero)

Allows for asymmetry # Better pruning

Induces an equivalence

Oriented Metrics (Orimetrics)

m:DXD—>RZO

m(ba) = 0 = m(aq,b) =0 (symmetry at zero)

Allows for asymmetry Better pruning

Induces an equivalence # OE factorization, abstraction

Why asymmetry”?

SyGuS operators exhibit asymmetric behavior

Asymmetric Behavior: concat(S;, S»)

Asymmetric Behavior: concat(S;, S»)

Symmetry requ|res m("POPL", nPOn) — m("PO", "POPI_")

Asymmetric Behavior: concat(S;, S»)

Symmetry requ|res m("POPL", nPOn) — m("POH, "POPI_")

concat(S;, Sy) produces superstrings of S;and S,

Asymmetric Behavior: concat(S;, S»)

Symmetry requ|res m("POPL", nPOn) — m("POH, "POPI_")

concat(S;, Sy) produces superstrings of S;and S,

"POPL" Is a superstring of "P0O"

Asymmetric Behavior: concat(S;, S»)
Symmetry requ|res m("POPL", nPOn) — m("POH, "POPI_")

concat(S;, Sy) produces superstrings of S;and S,

"POPL" is a superstring of "PO"
"POPL" cannot produce "P0" with concat(S;, Sy)

Asymmetric Behavior: concat(S;, S»)

Symmetry requ|res m("POPL", nPOn) — m("POH, "POPI_")

concat(S;, Sy) produces superstrings of S;and S,

"POPL" is a superstring of "PO"
"POPL" cannot produce "P0" with concat(S;, Sy)

"PO" |s a substring of "POPL"

Asymmetric Behavior: concat(S;, S»)

Symmetry requ|res m("POPL", nPOn) — m("POH, "POPI_")

concat(S;, Sy) produces superstrings of S;and S,

"POPL" is a superstring of "PO"
"POPL" cannot produce "P0" with concat(S;, Sy)

nPOn |S 3 SUbStHﬂg Of HPOPLH
"PO™ might help produce "POPL" with concat(S;, S,)

Asymmetric Behavior: concat(S;, S»)

Symmetry requ|res m("POPL", nPOn) — m("POH, "POPI_")
big small

concat(S;, Sy) produces superstrings of S;and S,

"POPL" is a superstring of "PO"
"POPL" cannot produce "P0" with concat(S;, Sy)

nPOn |S 3 SUbStHﬂg Of HPOPLH
"PO™ might help produce "POPL" with concat(S;, S,)

Asymmetric Behavior: replace(Si, 8o, €)

Symmetry requ|res m("POPL", nPOn) — m("PO", "POPI_")

Asymmetric Behavior: replace(Si, 8o, €)

Symmetry requ|res m("POPL", nPOn) — m("POH, "POPI_")

replace(Si, Sy, €) produces substrings of S;

Asymmetric Behavior: replace(S;, S, €)
Symmetry requ|res m("POPL", nPOn) — m("POH, "POPI_")

replace(Si, Sy, €) produces substrings of S;

"POPL" is a superstring of "PQ"
"POPL™ might help produce "PO0" with replace(S;,S;, €)

Asymmetric Behavior: replace(Si, 8o, €)

Symmetry requ|res m("POPL", nPOn) — m("POH, "POPI_")

replace(Si, Sy, €) produces substrings of S;

"POPL" is a superstring of "PQ"
"POPL™ might help produce "PO0" with replace(S;,S;, €)

"PO" is a substring of "POPL"
"PO" cannot produce "POPL"with replace(S;, S, ¢)

Asymmetric Behavior: replace(Si, 8o, €)

Symmetry requ|res m("POPL", nPOn) — m("POH, "POPI_")
small big

replace(Si, Sy, €) produces substrings of S;

"POPL" is a superstring of "PQ"
"POPL™ might help produce "PO0" with replace(S;,S;, €)

"PO" is a substring of "POPL"
"PO" cannot produce "POPL"with replace(S;, S, ¢)

Asymmetric Behavior: and(S;, S»)

Asymmetric Behavior: and(S;, S»)

Symmetry requires m(110,100) = m(100, 110)

Asymmetric Behavior: and(S;, S»)

Symmetry requires m(110,100) = m(100, 110)

and(S;, S;) produces bitvectors bitwise less than Siand &:

Asymmetric Behavior: and(S;, S»)

Symmetry requires m(110,100) = m(100, 110)

and(S;, S;) produces bitvectors bitwise less than Siand Sz

110 s bitwise greater than 100

Asymmetric Behavior: and(S;, S»)

Symmetry requires m(110,100) = m(100, 110)

and(S;, S;) produces bitvectors bitwise less than Siand Sz

110 s bitwise greater than 100
110 might help produce 100 with and(S;, Sz)

Asymmetric Behavior: and(S;, S»)

Symmetry requires m(110,100) = m(100, 110)

and(S;, S;) produces bitvectors bitwise less than Siand Sz

110 s bitwise greater than 100
110 might help produce 100 with and(S;, Sz)

100 IS bitwise less than 110

Asymmetric Behavior: and(S;, S»)

Symmetry requires m(110,100) = m(100, 110)

and(S;, S;) produces bitvectors bitwise less than Siand Sz

110 s bitwise greater than 100
110 might help produce 100 with and(S;, Sz)

100 IS bitwise less than 110
100 cannot produce 110 with and(S;, S2)

Asymmetric Behavior: and(S;, S»)

Symmetry requires m(110,100) = m(100, 110)
small big

and(S;, S;) produces bitvectors bitwise less than Siand Sz

110 s bitwise greater than 100
110 might help produce 100 with and(S;, Sz)

100 IS bitwise less than 110
100 cannot produce 110 with and(S;, S2)

Asymmetric Behavior: and(S;, S»)

Symmetry requires m(110,100) = m(100, 110)
small big

and(S;, S;) produces bitvectors bitwise less than Siand Sz

110 s bitwise greater than 100
110 might help produce 100 with and(S;, Sz)

100 IS bitwise less than 110
100 cannot produce 110 with and(S;, S2)

We need asymmetry

Oriented Metrics (Orimetrics)

m:DXD—>RZO

m(ba) = 0 = m(aq,b) =0 (symmetry at zero)

Allows for asymmetry Better pruning

Induces an equivalence # OE factorization, abstraction

Oriented Metrics (Orimetrics)

m:DXD—>RZO

m(ba) = 0 = m(aq,b) =0 (symmetry at zero)

1
S
S

Equivalence at distance 0: a if m(a, b) =0

Oriented Metrics (Orimetrics)

m:DXD—>RZO

m(ba) = 0 = m(aq,b) =0 (symmetry at zero)

1
S
S

Equivalence at distance 0: a if m(a, b) =0

OE factorization, abstraction

Oriented Metrics (Orimetrics)

m:DXD—>RZO

m(ba) = 0 = m(aq,b) =0 (symmetry at zero)

Allows for asymmetry Better pruning

Induces an equivalence # OE factorization, abstraction

How to design an orimetric’?

1. Construct an orimetric m on the data domain

2. Lift m to programs

Oriented Metric for replace(S;, S, €) m: DXD — Ry

Reward superstrings

Oriented Metric for replace(S;, S, €) m: DXD — Ry

Reward superstrings

1. For strings i, o:

Oriented Metric for replace(S;, S, €) m: DXD — Ry

Reward superstrings

len(i) — len(o) if i is a superstring of o

1. For strings 1, 0: m(i,0) = | |
100 + |len(i) — len(o)| otherwise

Oriented Metric for replace(S;, S, €) m: DXD — Ry

Reward superstrings

len(i) — len(o) if i is a superstring of o

1. For strings 1, 0: m(i,0) = | |
100 + |len(i) — len(o)| otherwise

m(”P0”, "POPL”) = 102

Oriented Metric for replace(S;, S, €) m: DXD — Ry

Reward superstrings

len(i) — len(o) if i is a superstring of o

1. For strings 1, 0: m(i,0) = | |
100 + |len(i) — len(o)| otherwise

m(”P0”, "POPL”) = 102 m(”POPL”, ”P0”) = 2

Oriented Metric for replace(S;, S, €) m: DXD — Ry

Reward superstrings

len(i) — len(o) if i is a superstring of o

1. For strings 1, 0: m(i,0) = | |
100 + |len(i) — len(o)| otherwise

m(”P0”, "POPL”) = 102 m(”POPL”, ”P0”) = 2

2. For programs p, Q:

Oriented Metric for replace(S;, S, €) m: DXD — Ry

Reward superstrings

len(i) — len(o) if i is a superstring of o

1. For strings 1, 0: m(i,0) = | |
100 + |len(i) — len(o)| otherwise

m(”P0”, "POPL”) = 102 m(”POPL”, ”P0”) = 2

2. For programs p, @: mya(p,@) =) m(p(i), a(i))

i€ln

In Out

"POPL_Conf" "POPL"
: ' : : "Rennes City" | "Rennes”
PrUﬂlﬂg with an Orimetric "PLDI_Conf" | "PLDI"
"Seoul City" "Seoul”

(i 0) len(i) — len(o) if i is a superstring of o
m(i,0) =
100 + |len(i) — len(0)| otherwise

mm(p,a) =) m(p(i),a(i))

i€ln

In Out

"POPL_Conft" "POPL"

: , . . "Rennes City" | "Rennes”
PrUﬂlﬂg with an Orimetric "PLDI Conf" | "PLDT
"Seoul City" "Seoul”

(i 0) len(i) — len(o) if i is a superstring of o
m(i,0) = |
100 + |len(i) — len(0)| otherwise
mm(p,a) =) m(p(i),a(i))
£(G) 1€In
< A I \

— - — — — — — — — -
— — — — — — — — - - — — — — — — — — — — — — — - — — — — — — — —
— 7 - — — — — — — — —

— -a — — — — — — — — L

Set radius r to 100.

In Out

"POPL_Conft" "POPL"

: , . . "Rennes City" | "Rennes”
PrUﬂlﬂg with an Orimetric "PLDI Conf" | "PLDT
"Seoul City" "Seoul”

(i 0) len(i) — len(o) if i is a superstring of o
m(i,0) =
100 + |len(i) — len(0)| otherwise
mm(p,a) =) m(p(i),a(i))
£(G) 1€In
"I-ICity"."uCity"
< &

— - — — — — — — — -
— — — — — — — — - - — — — — — — — — — — — — — - — — — — — — — —
— 7 - — — — — — — — —

— -a — — — — — — — — L

Set radius r to 100.

In Out

"POPL_Conft" "POPL"

: , . . "Rennes City" | "Rennes”
PrUﬂlﬂg with an Orimetric "PLDI Conf" | "PLDT
"Seoul City" "Seoul”

(i 0) len(i) — len(o) if i is a superstring of o
m(i,0) =
100 + |len(i) — len(0)| otherwise
mm(p,a) =) m(p(i),a(i))
"I-ICity"."uCity"
< &
it ettt Rl ltetale \ mp (" City"." City", gt) > 100

————————————————————————————————
—————————————————————————————————

Set radius r to 100.

In Out

"POPL_Conft" "POPL"

: , . . "Rennes City" | "Rennes”
PrUﬂlﬂg with an Orimetric "PLDI Conf" | "PLDT
"Seoul City" "Seoul”

(i o) len(i) — len(o) if i is a superstring of o
m(i,0) =
100 + |len(i) — len(0)| otherwise
mm(p,a) =) m(p(i),a(i))
"uCithity"
< &
it ettt Rl ltetale * mp (" City"." City", gt) > 100

————————————————————————————————
—————————————————————————————————

Set radius r to 100.

L(G)

In Out

"POPL_Conf" "POPL"

. . . . "Rennes City" | "Rennes”

Pruning with an Orimetric PLDI Conf” | "PLDI"

"Seoul City" "Seoul”

(i o) len(i) — len(o) if i is a superstring of o
Mmii O) = .
100 + |len(i) — len(0)| otherwise
mn(p.q) =) m(p(i),a(i))
i€ln

Method P1 P2 P3 P4 P5 P6 P7
gt No Pruning or Factorization 4 - 16 64 128 | 1280 | 4352
_______________ R DRI OE Factorization 4 - 9 6 27 56 119
TIIIICIII)IIZIIIIIIIIIfIIoIIII: Orimetric Pruning (OP) « |- 7 | 18 |56 | 323 | 929

— -a — — — — — — — — L

————————————————————————————————

Set radius r to 100.

L(G)

In Out

"POPL_Conf" "POPL"

o . . . "Rennes City" | "Rennes”

Factorizing with an Orimetric PLDI Conf” | "PLDI"

"Seoul City" "Seoul”

(i o) len(i) — len(o) if i is a superstring of o
M\l 0) = :
100 + |len(i) — len(0)| otherwise
mn(p.q) =) m(p(i),a(i))
i€ln

Method P1 P2 P3 P4 P5 P6 P7
gt No Pruning or Factorization 4 - 16 64 128 | 1280 | 4352
_______________ R DRI OE Factorization 4 - 9 6 27 56 119
TIIIICIII)IIZIIIIIIIIIfIIoIIII: Orimetric Pruning (OP) « |- 7 [18 |56 | 323 | 929

— -a — — — — — — — — L

————————————————————————————————

L(G)

In Out

"POPL_Conf" "POPL"

o . . . "Rennes City" | "Rennes”

Factorizing with an Orimetric PLDIConf" | 'PLDI’

"Seoul City" "Seoul”

(i o) len(i) — len(o) if i is a superstring of o
M\l 0) = .
100 + |len(i) — len(0)| otherwise
mm(p,q) = E ’ m(p(i),q(i))
i€ln

Method P1 P2 P3 P4 P5 P6 P7
No Pruning or Factorization 4 - 16 64 128 | 1280 | 4352
OE Factorization 4 - 9 6 27 56 119
Orimetric Pruning (OP) 4 - 7 18 56 | 323 | 929

Factorizing with an Orimetric

L(G)

len(i) — len(o)

m(i,0) = 100 + |len(i) — len(0)]

In Out
"POPL_Conft" "POPL"
"Rennes City" | "Rennes”
"PLDI Conf" "PLDI"
"Seoul City" "Seoul”
if i is a superstring of o
otherwise
M (P, d) = E -m(p(i),q(i))
1€ln
Method P1 P2 P3 P4 P5 P6 P7
No Pruning or Factorization 4 - 16 64 128 | 1280 | 4352
OE Factorization 4 - 9 6 27 56 119
Orimetric Pruning (OP) 4 - 7 18 56 | 323 | 929
OE Factorization + OP 4 - 5 6 19 50 81

initial enumeration order <, initial orimetric m - grammar G, ground truth gt

~

()

j/> Prune wreh space P

() ()

Learn Factorize
m = mg () search space Q = P/
Refine Enumerate

\. J _ J

spurious programN D correct? Aogram P

_ J

l/

synthesized program p CEGAR

initial enumeration order <, initial orimetric m - grammar G, ground truth gt

j/> Prune wmh space P

Learn Factorize
m = mp () search space Q = P/
Refine Enumerate

Spurious programN p correct? Aogram P
l v/

synthesized program p CEGAR

In practice: concurrent instances employing different orimetrics

Evaluation of Merlin

Evaluation of Merlin

SyGuS-String

181 Duet [Lee 2021]

SyGuS-Bitvector

500 Deobfusc [Yoon et. al 2023] 49 Hacker's Delight [Warren 2013]

600.0 A
— == DryadSynth : Duet
Duet | 400.0 + Synthphonia
500.01 —_. Simba : - Probe _
— == Probe | : Merlin |I
400.0 - Merlin - 300.0 - :
| : I
n I I 0 I
o 300.0 A fl I g |l
& P £ 200.0 - F
== : I : — /
200.0 + I : I :
l I [I
: Il : 100.0 A I
&
|] I
”‘-‘ o~ ’ ! >
0.0 —— s 0.0 {r—————
300 350 450 500 550 100 110 120 140 150 160
Number of benchmarks solved

25x faster than DryadSynth

Number of benchmarks solved

Comptetitive with Synthphonia

Evaluation of Merlin

Blaze (String)

108 Blaze [Wang 2018]

- == Baseline I'
250.0 1 === Pruning v
— == Learning I
: I
500.0 4 Merlin :
- == Blaze .
— I
£ 150.0 - l'
& I
£ I
= | ,
100.0 - I [
' I I
=/ I I
’ ,./" I
50.0 A 1 I I
?” I "
-_/ s ——J -
O_O—+——ii==—————ﬁ=—= ______________ s
40 50 60 70 80 90

Number of benchmarks solved

/5x faster than Blaze

SyGuS-Ablation

500.0 -

400.0 -

300.0 -

Time (s)

200.0 A

100.0 -

0.0 A

- Baseline
- Pruning
- Learning

Merlin

600

620 640 660 680 700
Number of benchmarks solved

720

740

42X taster than Baseline

Conclusion

Framework for bottom-up enum. synthesis

L(G)

initial enumeration order X, initial orimetric m grammar G, ground truth gt
h space P

{Factorize}

) search space Q := P/=

{Enumerate}

spurious programyN[p correct? program p
l v/

synthesized program p CEGAR

Conclusion

Framework for bottom-up enum. synthesis Oriented Metrics
L(G) m(a,a) = 0 (reflexivity)
m(ba) = 0 = m(a,b) =0 (symmetry at zero)

m(a,c) < m(a b) + m(b,c) (A-inequality)

{Factorize}

search space Q := P/=

Enumerate}

spurious programyN[p correct? }Aogram P
l v

synthesized program p CEGAR

Conclusion

Framework for bottom-up enum. synthesis Oriented Metrics

L(G) m(a, a) 0 (reflexivity)

m(b,a) = 0 = m(a, b)
m(a,¢c) < m(a b) + m(b,c) (A-inequality)

0 (symmetry at zero)

Substantial impact on performance
grammar G, ground truth gt

initial enumeration order <, initial orimetric m

500.04 —=—- Baseline P

— == Pruning ! H

Prune search space P —=- Learning : :

400.0 1 Merlin L

1 1

1 |

1 |

1

1 1

1 I

1 1

I

{Factorize}
& 300.0 -

m = search space Q := P/= 2 ,
k= I
= i I 1
{Enumerate} 2000 ' : :

|
1 11
. X / VI
Spurious program p P correct? program p 100.0 A ! II I
’ I
~ 7]
l ‘/ gl-,"' ’J —'I

0.0 - S s
600 620 640 660 680 700 720 740

synthesized program p CEGAR
Number of benchmarks solved

Conclusion Thank you! Questions?

Framework for bottom-up enum. synthesis Oriented Metrics

L(6) m(a,a) = 0 (reflexivity)
m(ba) = 0 = m(a,b) =0 (symmetry at zero)
m(a,c) < m(a b) + m(b,c) (A-inequality)

Substantial impact on performance

initial enumeration order X, initial orimetric m grammar G, ground truth gt
500.04 —=—- Baseline tF

- Pruning : ,'

sssss h space P - Learning : :

400.0 1 Merlin P

1 |

: I

{Factorlze} Lo

% 300.0 - o

~ |
search space Q .= P/- @ b
= | l, :

1 I
Enumerate} 200.0 ror
I
| I
. X / /1
Spurious program p P correct? program p 100.0 A ! II I
/ I
~ 4]
l\/ -2
0.0 et

synthesized program p CEGAR 600 620 640 660 680 700 720 740
Number of benchmarks solved

