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Goal:

Unify and generalize

the existing approaches to bottom-up enumerative synthesis
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Method P1 PZ P3 P4 P5 P@ P7

No Pruning or Factorization 4 - 16 64 128 | 1280 | 4352
OE Factorization 4 - 9 6 27 56 119
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Oriented Metrics (Orimetrics)

m:DXD—>RZO

m(a,a) = 0 (reflexivity)
m(ba) = 0 = m(a, b) = 0 (symmetry at zero)
m(a,c) < m(a b) + m(b,c) (A-inequality)
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Why asymmetry”?

SyGuS operators exhibit asymmetric behavior
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and(S;, S;) produces bitvectors bitwise less than Siand Sz
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Oriented Metrics (Orimetrics)

m:DXD—>RZO

m(ba) = 0 = m(aq,b) =0 (symmetry at zero)

Allows for asymmetry Better pruning

Induces an equivalence # OE factorization, abstraction



How to design an orimetric’?

1. Construct an orimetric m on the data domain

2. Lift m to programs
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Oriented Metric for replace(S;, S, €) m: DXD — Ry

Reward superstrings

len(i) — len(o) if i is a superstring of o

1. For strings 1, 0: m(i,0) = | |
100 + |len(i) — len(o)| otherwise

m(”P0”, "POPL”) = 102 m(”POPL”, ”P0”) = 2

2. For programs p, @:  mya(p,@) = ) m(p(i), a(i))

i€ln
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In Out
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(i o) len(i) — len(o) if i is a superstring of o
Mmii O) = .
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mn(p.q) = ) m(p(i),a(i))
i€ln

Method P1 P2 P3 P4 P5 P6 P7
gt No Pruning or Factorization 4 - 16 64 128 | 1280 | 4352
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M\l 0) = .
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Factorizing with an Orimetric

L(G)

len(i) — len(o)

m(i,0) = 100 + |len(i) — len(0)]

In Out
"POPL_Conft" "POPL"
"Rennes City" | "Rennes”
"PLDI Conf" "PLDI"
"Seoul City" "Seoul”
if i is a superstring of o
otherwise
M (P, d) = E -m(p(i),q(i))
1€ln
Method P1 P2 P3 P4 P5 P6 P7
No Pruning or Factorization 4 - 16 64 128 | 1280 | 4352
OE Factorization 4 - 9 6 27 56 119
Orimetric Pruning (OP) 4 - 7 18 56 | 323 | 929
OE Factorization + OP 4 - 5 6 19 50 81




initial enumeration order <, initial orimetric m - grammar G, ground truth gt

~

( )

j/> Prune wreh space P

( ) ( )

Learn Factorize
m = mg ( ) search space Q = P/
Refine Enumerate

\. J \_ J

spurious programN D correct? Aogram P

\_ J

l/

synthesized program p CEGAR




initial enumeration order <, initial orimetric m - grammar G, ground truth gt

j/> Prune wmh space P

Learn Factorize
m = mp ( ) search space Q = P/
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Spurious programN p correct? Aogram P
l v/

synthesized program p CEGAR

In practice: concurrent instances employing different orimetrics
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SyGuS-String

181 Duet [Lee 2021]

SyGuS-Bitvector

500 Deobfusc [Yoon et. al 2023] 49 Hacker's Delight [Warren 2013]
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Evaluation of Merlin

Blaze (String)

108 Blaze [Wang 2018]
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Conclusion

Framework for bottom-up enum. synthesis

L(G)

initial enumeration order X, initial orimetric m grammar G, ground truth gt
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{Factorize}

) search space Q := P/=

{Enumerate}

spurious programyN[ p correct? program p
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Conclusion

Framework for bottom-up enum. synthesis Oriented Metrics

L(G) m(a, a) 0 (reflexivity)

m(b,a) = 0 = m(a, b)
m(a,¢c) < m(a b) + m(b,c) (A-inequality)

0 (symmetry at zero)

Substantial impact on performance
grammar G, ground truth gt
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Prune search space P —=- Learning : :

400.0 1 Merlin L

1 1

1 |

1 |

1

1 1

1 I

1 1

I

{Factorize}
& 300.0 -

m = search space Q := P/= 2 ,
k= I
= i I 1
{Enumerate} 2000 ' : :

|
1 11
. X / VI
Spurious program p P correct? program p 100.0 A ! II I
’ I
~ 7 ]
l ‘/ gl-,"' ’J —'I

0.0 - S s
600 620 640 660 680 700 720 740

synthesized program p CEGAR
Number of benchmarks solved



Conclusion Thank you! Questions?

Framework for bottom-up enum. synthesis Oriented Metrics

L(6) m(a,a) = 0 (reflexivity)
m(ba) = 0 = m(a,b) =0 (symmetry at zero)
m(a,c) < m(a b) + m(b,c) (A-inequality)

Substantial impact on performance
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