

Oriented Metrics for Bottom-Up Enumerative Synthesis

Roland Meyer and Jakob Tepe

TU Braunschweig, Germany

Goal:

Unify and generalize

the existing approaches to bottom-up enumerative synthesis

Syntax-Guided Synthesis (SyGuS)

Syntax-Guided Synthesis (SyGuS)

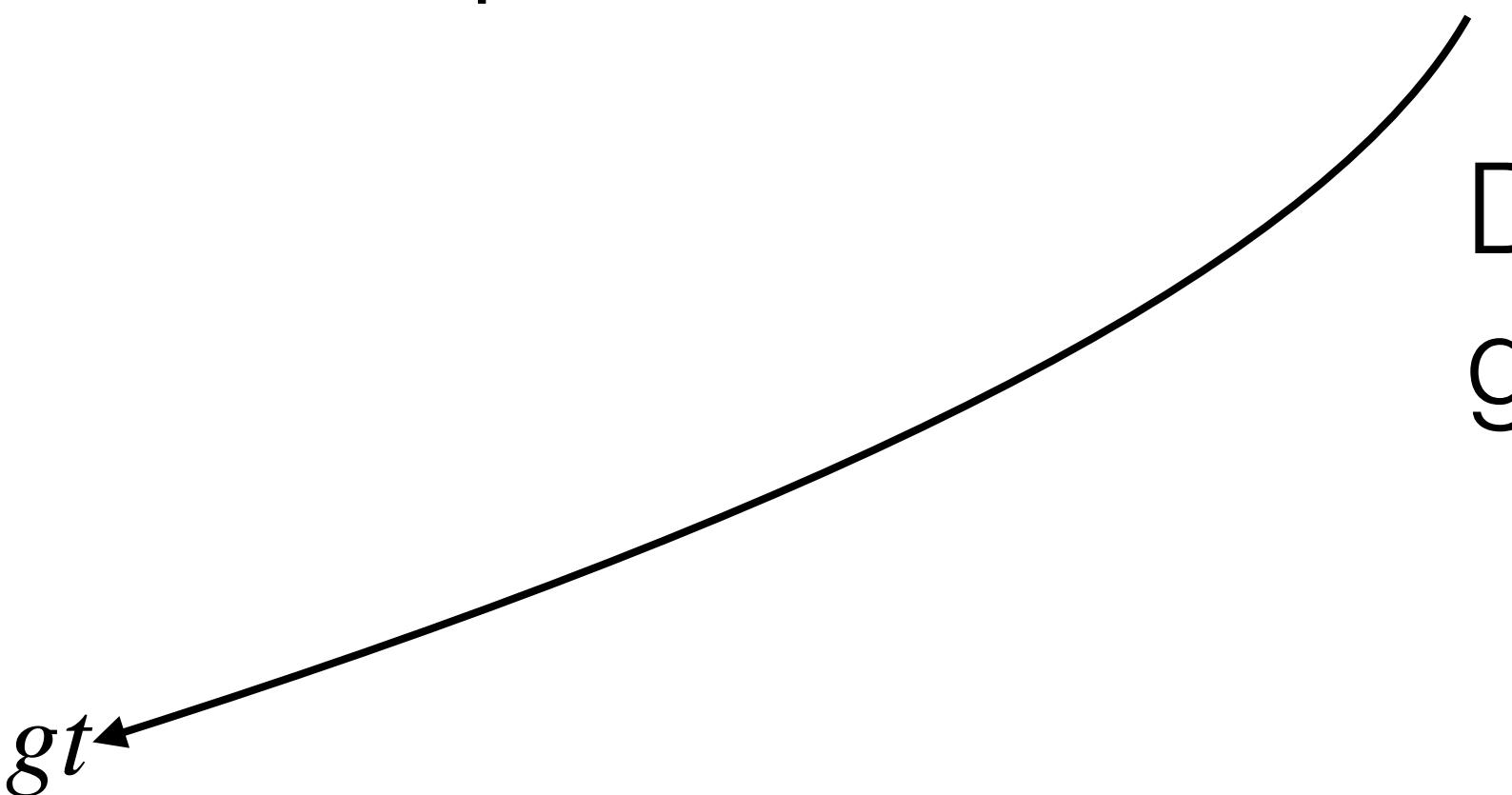
Specification: Examples (*In, Out*)

Syntax-Guided Synthesis (SyGuS)

Specification: Examples (*In, Out*)

Defines the
ground truth gt

gt



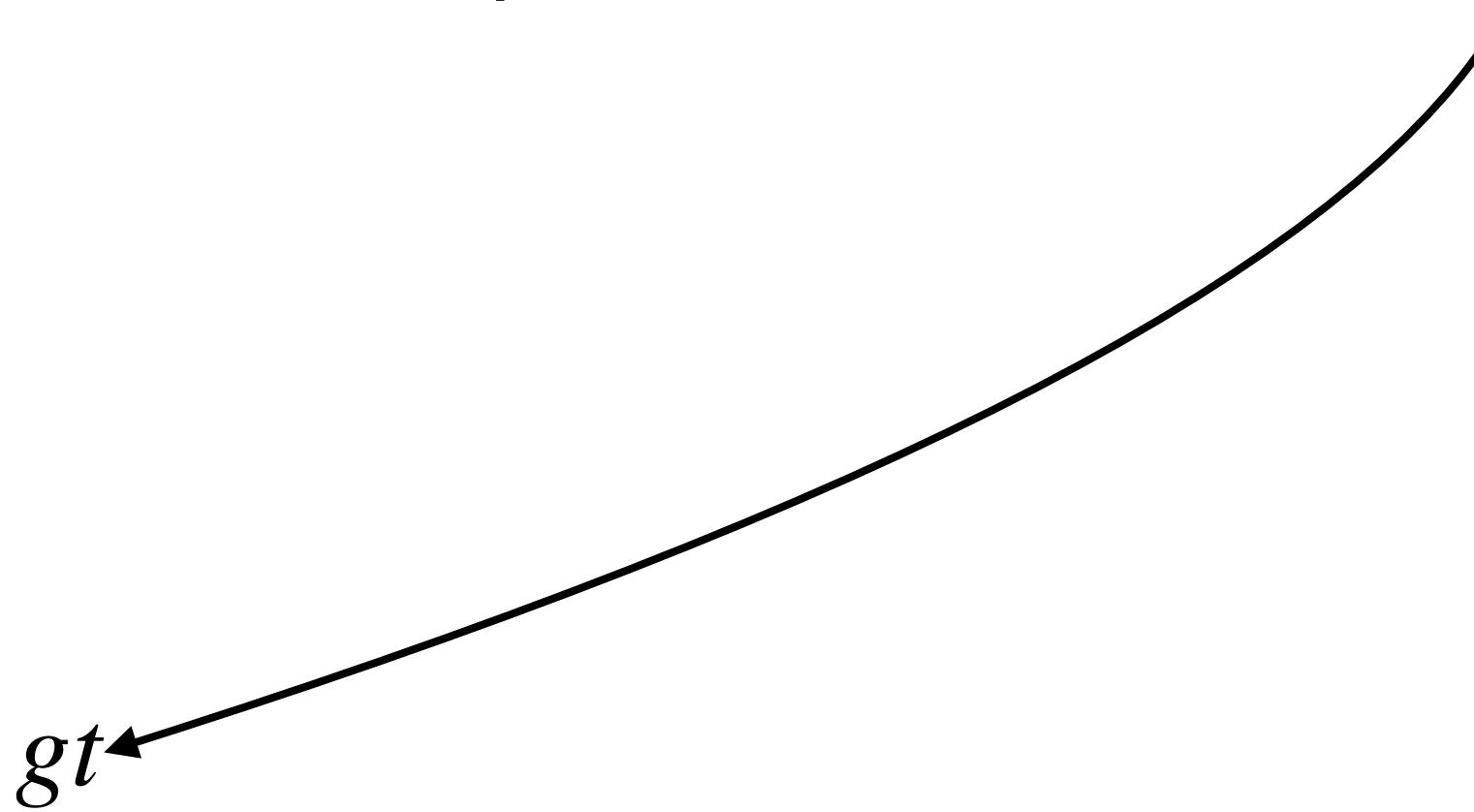
Syntax-Guided Synthesis (SyGuS)

Grammar: \mathcal{G}

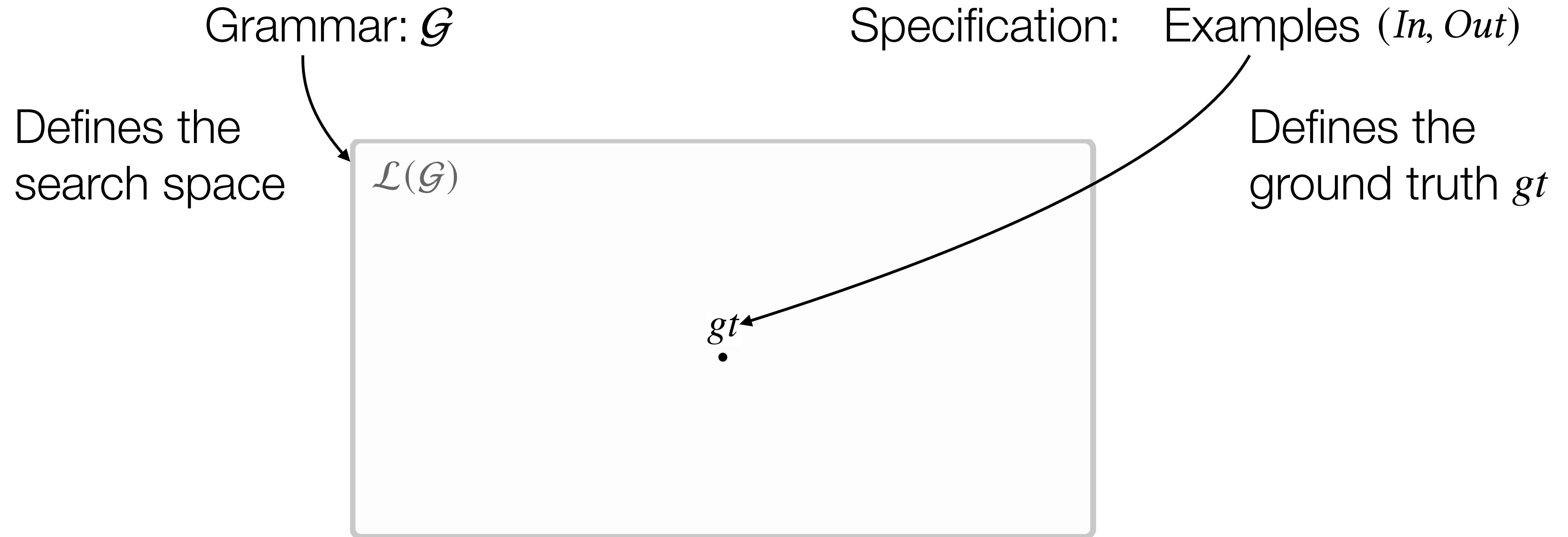
Specification: Examples (*In*, *Out*)

Defines the
ground truth gt

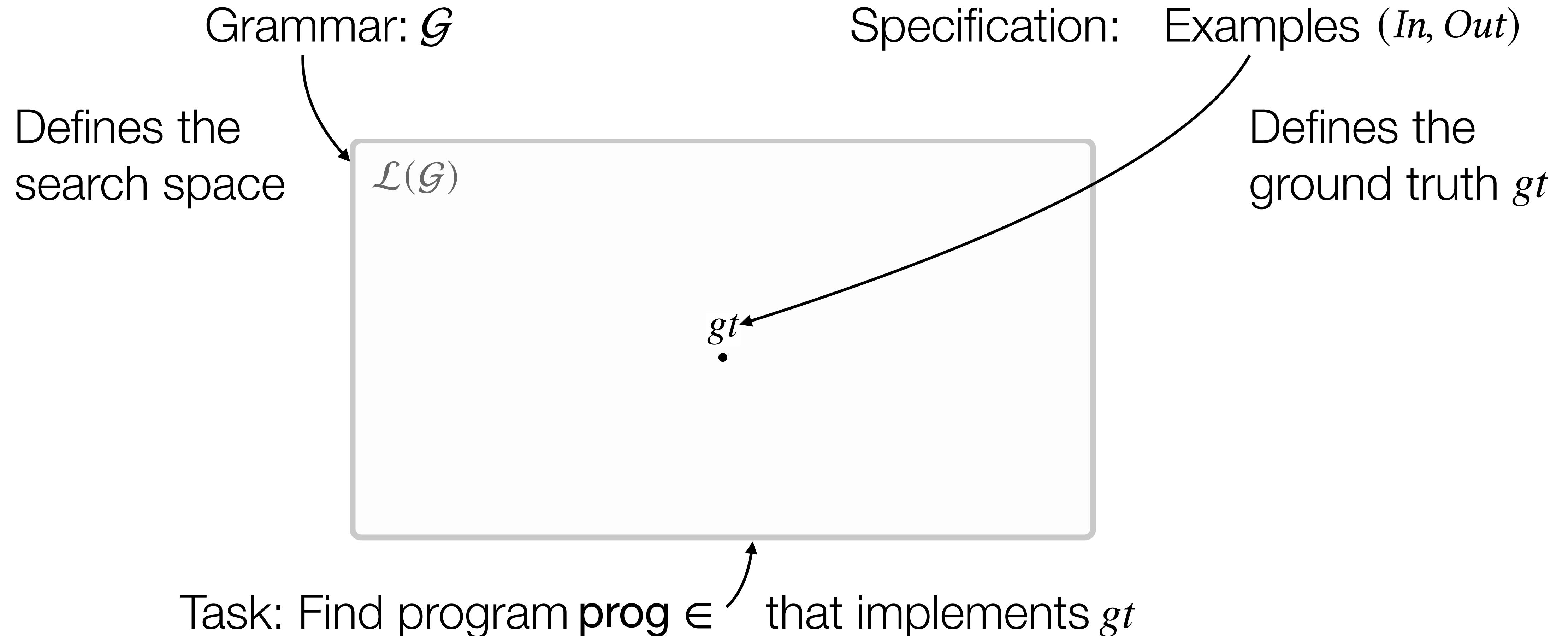
gt



Syntax-Guided Synthesis (SyGuS)



Syntax-Guided Synthesis (SyGuS)



Syntax-Guided Synthesis (SyGuS)

<i>In</i>	<i>Out</i>
"POPL_Conf"	"POPL"
"Rennes_City"	"Rennes"
"PLDI_Conf"	"PLDI"
"Seoul_City"	"Seoul"

Syntax-Guided Synthesis (SyGuS)

$S ::= V \mid \text{replace}(S, S, S) \mid \text{concat}(S, S)$

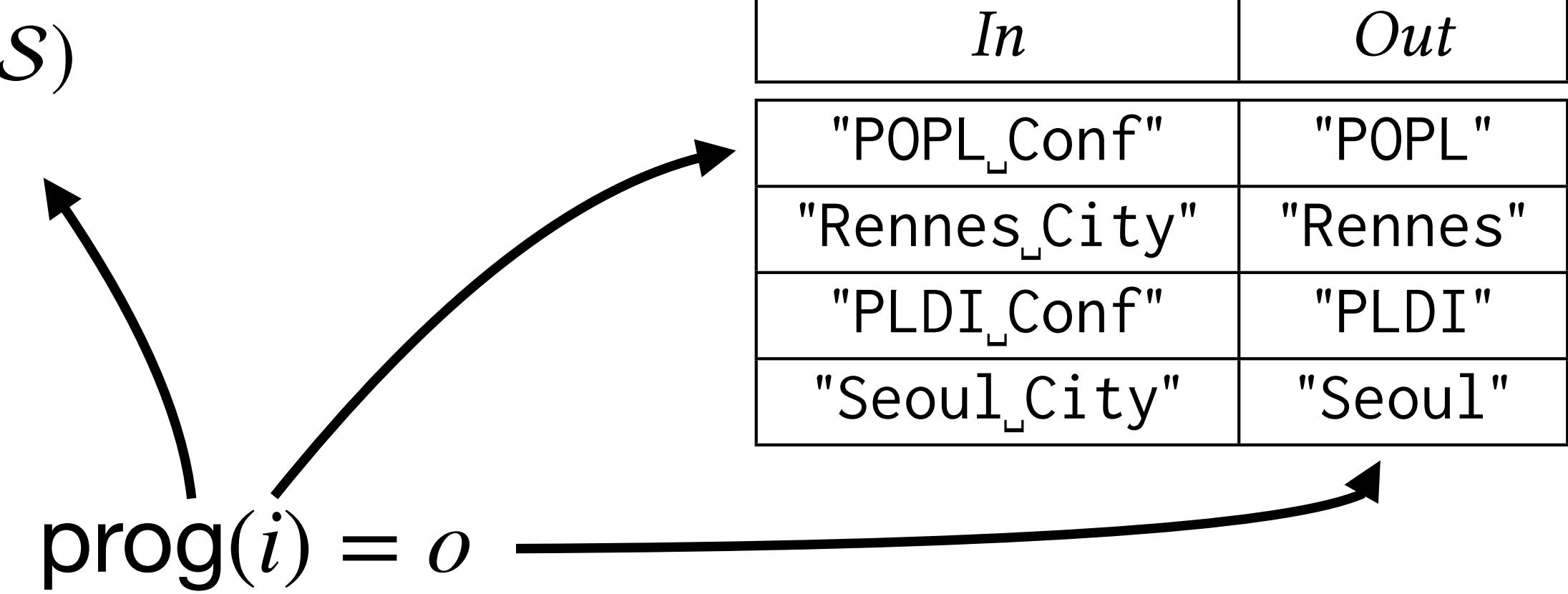
$V ::= x \mid \epsilon \mid \text{"_Conf"} \mid \text{"_City"}$

<i>In</i>	<i>Out</i>
"POPL_Conf"	"POPL"
"Rennes_City"	"Rennes"
"PLDI_Conf"	"PLDI"
"Seoul_City"	"Seoul"

Syntax-Guided Synthesis (SyGuS)

$S ::= V \mid \text{replace}(S, S, S) \mid \text{concat}(S, S)$

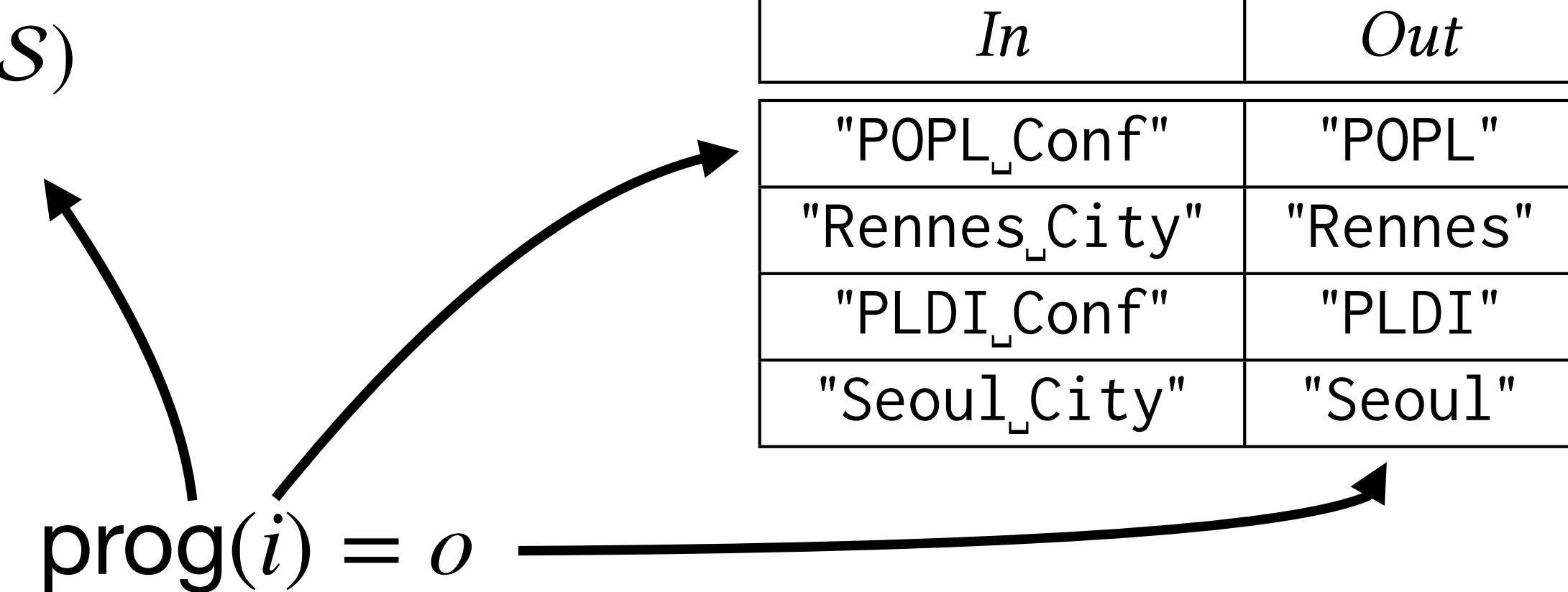
$V ::= x \mid \epsilon \mid \text{"Conf"} \mid \text{"City"}$



Syntax-Guided Synthesis (SyGuS)

$S ::= V \mid \text{replace}(S, S, S) \mid \text{concat}(S, S)$

$V ::= x \mid \epsilon \mid \text{"_Conf"} \mid \text{"_City"}$



<i>In</i>	<i>Out</i>
"POPL_Conf"	"POPL"
"Rennes_City"	"Rennes"
"PLDI_Conf"	"PLDI"
"Seoul_City"	"Seoul"

$\text{prog}(i) = o$

Solution: $r(r(x, \text{"_Conf"}, \epsilon), \text{"_City"}, \epsilon)$

Syntax-Guided Synthesis (SyGuS)

$S ::= V \mid \text{replace}(S, S, S) \mid \text{concat}(S, S)$

$V ::= x \mid \epsilon \mid \text{"_Conf"} \mid \text{"_City"}$

<i>In</i>	<i>Out</i>
"POPL_Conf"	"POPL"
"Rennes_City"	"Rennes"
"PLDI_Conf"	"PLDI"
"Seoul_City"	"Seoul"

$\text{prog}(i) = o$

Solution: $r(r(x, \text{"_Conf"}, \epsilon), \text{"_City"}, \epsilon)$

$r(r(\text{"POPL_Conf"}, \text{"_Conf"}, \epsilon), \text{"_City"}, \epsilon)$

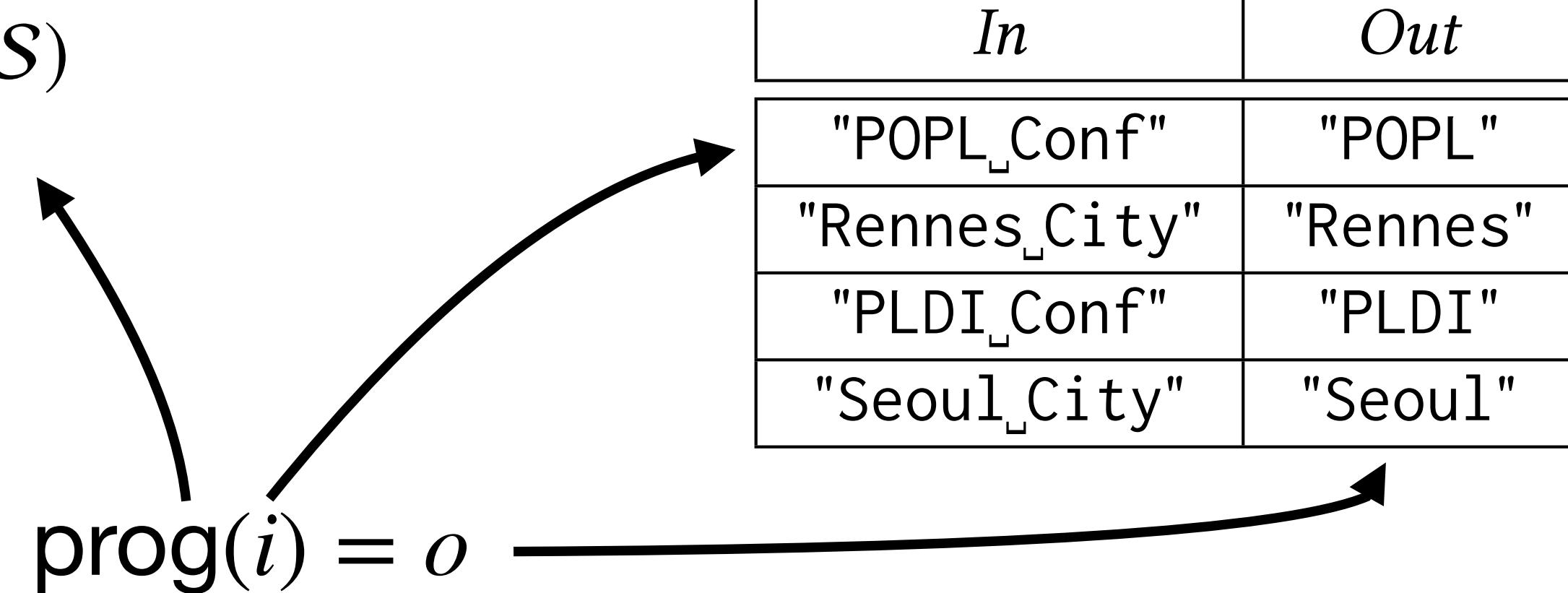
Syntax-Guided Synthesis (SyGuS)

$S ::= V \mid \text{replace}(S, S, S) \mid \text{concat}(S, S)$

$V ::= x \mid \epsilon \mid \text{"_Conf"} \mid \text{"_City"}$

<i>In</i>	<i>Out</i>
"POPL_Conf"	"POPL"
"Rennes_City"	"Rennes"
"PLDI_Conf"	"PLDI"
"Seoul_City"	"Seoul"

$\text{prog}(i) = o$



Solution: $r(r(x, \text{"_Conf"}, \epsilon), \text{"_City"}, \epsilon)$

$r(\underbrace{r("POPL_Conf", \text{"_Conf"}, \epsilon)}_{\text{prog}(i) = o}, \text{"_City"}, \epsilon)$

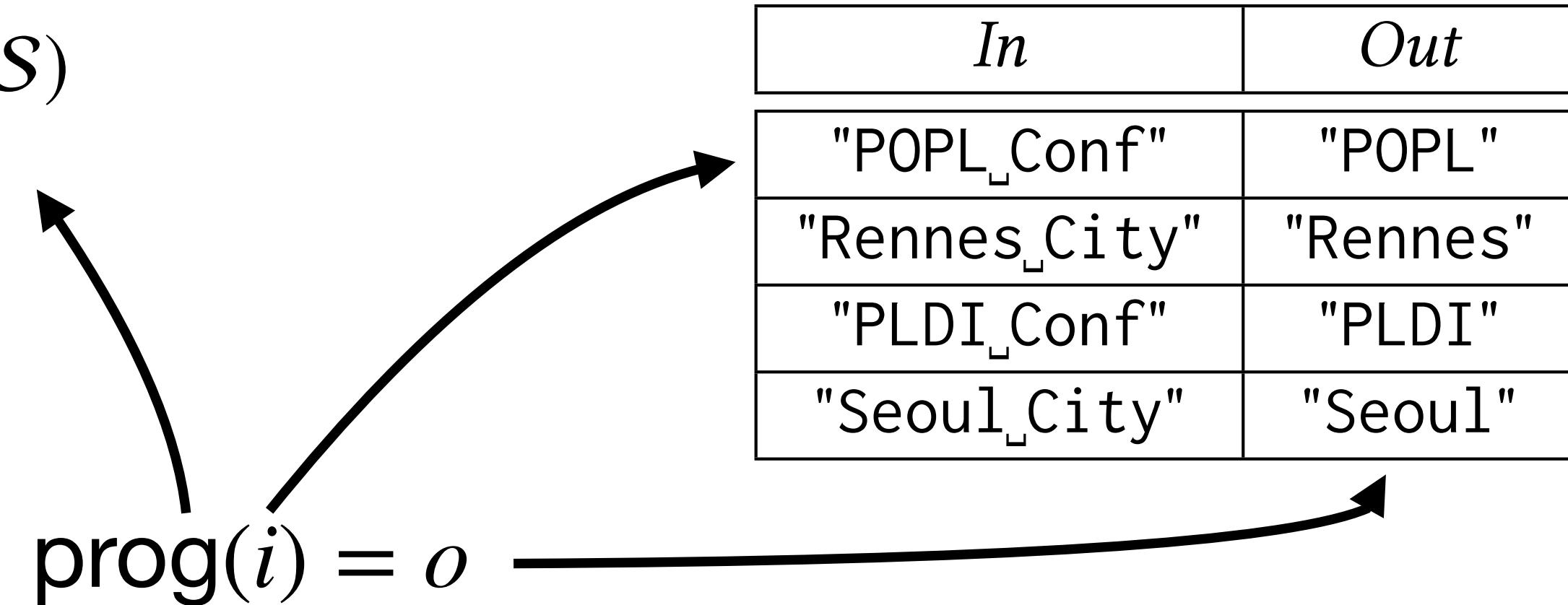
Syntax-Guided Synthesis (SyGuS)

$S ::= V \mid \text{replace}(S, S, S) \mid \text{concat}(S, S)$

$V ::= x \mid \epsilon \mid \text{"_Conf"} \mid \text{"_City"}$

In	Out
"POPL_Conf"	"POPL"
"Rennes_City"	"Rennes"
"PLDI_Conf"	"PLDI"
"Seoul_City"	"Seoul"

$\text{prog}(i) = o$



Solution: $r(r(x, \text{"_Conf"}, \epsilon), \text{"_City"}, \epsilon)$

$r(\underbrace{r("POPL_Conf", \text{"_Conf"}, \epsilon), \text{"_City"}, \epsilon}_{\text{"POPL"}}$

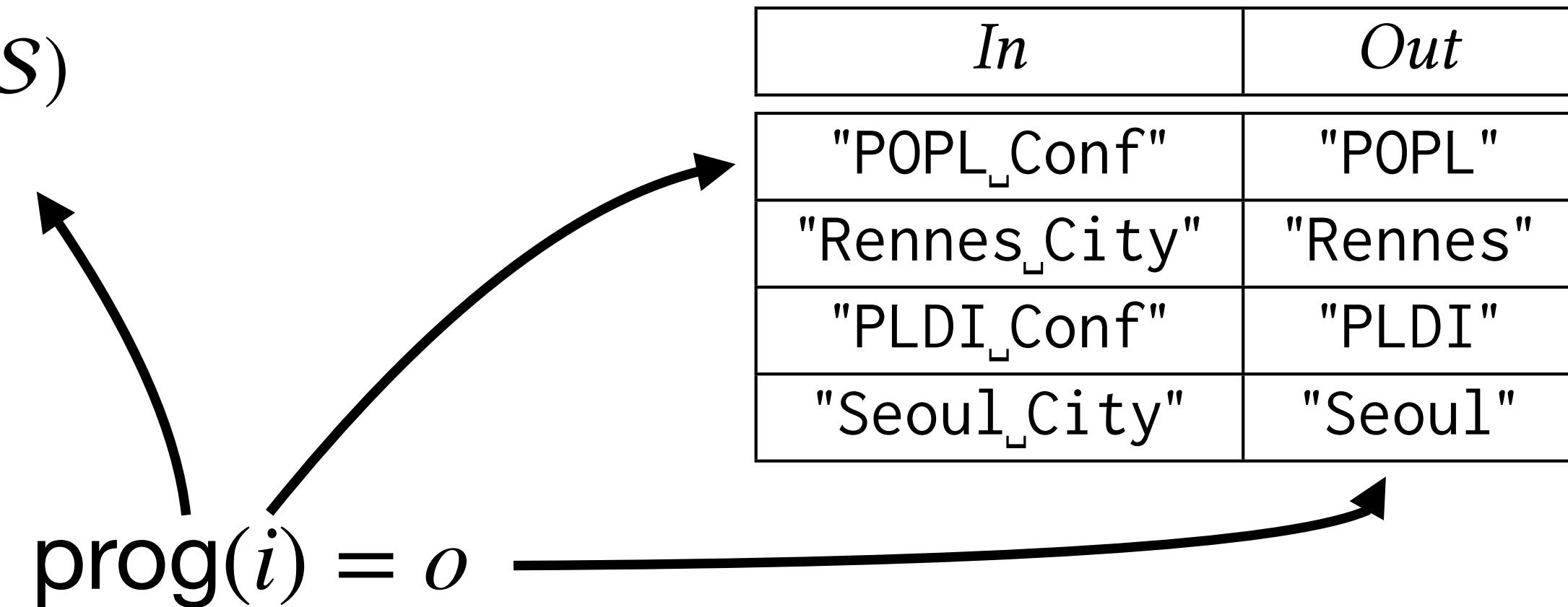
Syntax-Guided Synthesis (SyGuS)

$S ::= V \mid \text{replace}(S, S, S) \mid \text{concat}(S, S)$

$V ::= x \mid \epsilon \mid \text{"_Conf"} \mid \text{"_City"}$

<i>In</i>	<i>Out</i>
"POPL_Conf"	"POPL"
"Rennes_City"	"Rennes"
"PLDI_Conf"	"PLDI"
"Seoul_City"	"Seoul"

$\text{prog}(i) = o$



Solution: $r(r(x, \text{"_Conf"}, \epsilon), \text{"_City"}, \epsilon)$

$r(\underbrace{r("POPL_Conf", \text{"_Conf"}, \epsilon), \text{"_City"}, \epsilon}_{\text{"POPL" }})$

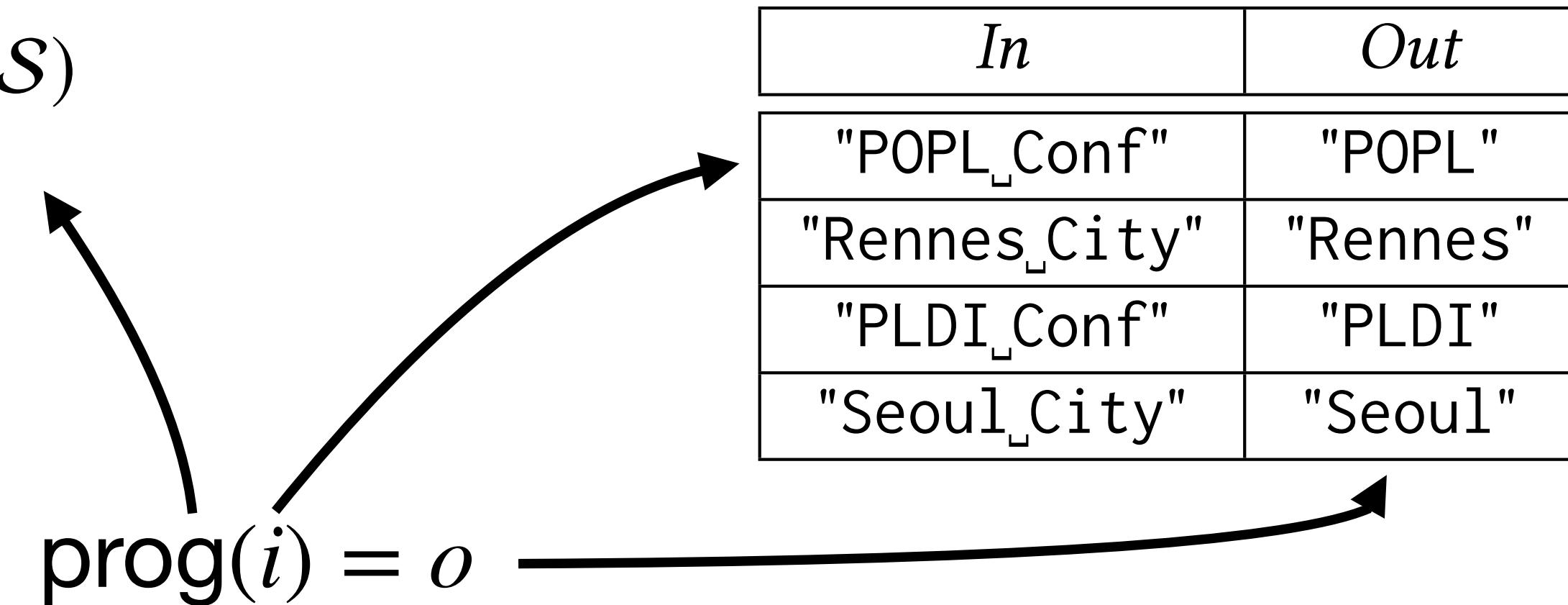
Syntax-Guided Synthesis (SyGuS)

$S ::= V \mid \text{replace}(S, S, S) \mid \text{concat}(S, S)$

$V ::= x \mid \epsilon \mid \text{"_Conf"} \mid \text{"_City"}$

In	Out
"POPL_Conf"	"POPL"
"Rennes_City"	"Rennes"
"PLDI_Conf"	"PLDI"
"Seoul_City"	"Seoul"

$\text{prog}(i) = o$



Solution: $r(r(x, \text{"_Conf"}, \epsilon), \text{"_City"}, \epsilon)$

$r(\underbrace{r("POPL_Conf", \text{"_Conf"}, \epsilon), \text{"_City"}, \epsilon}_{\text{"POPL"}}, \underbrace{\text{"POPL"}_{\text{}}}_{\text{"POPL"}}$

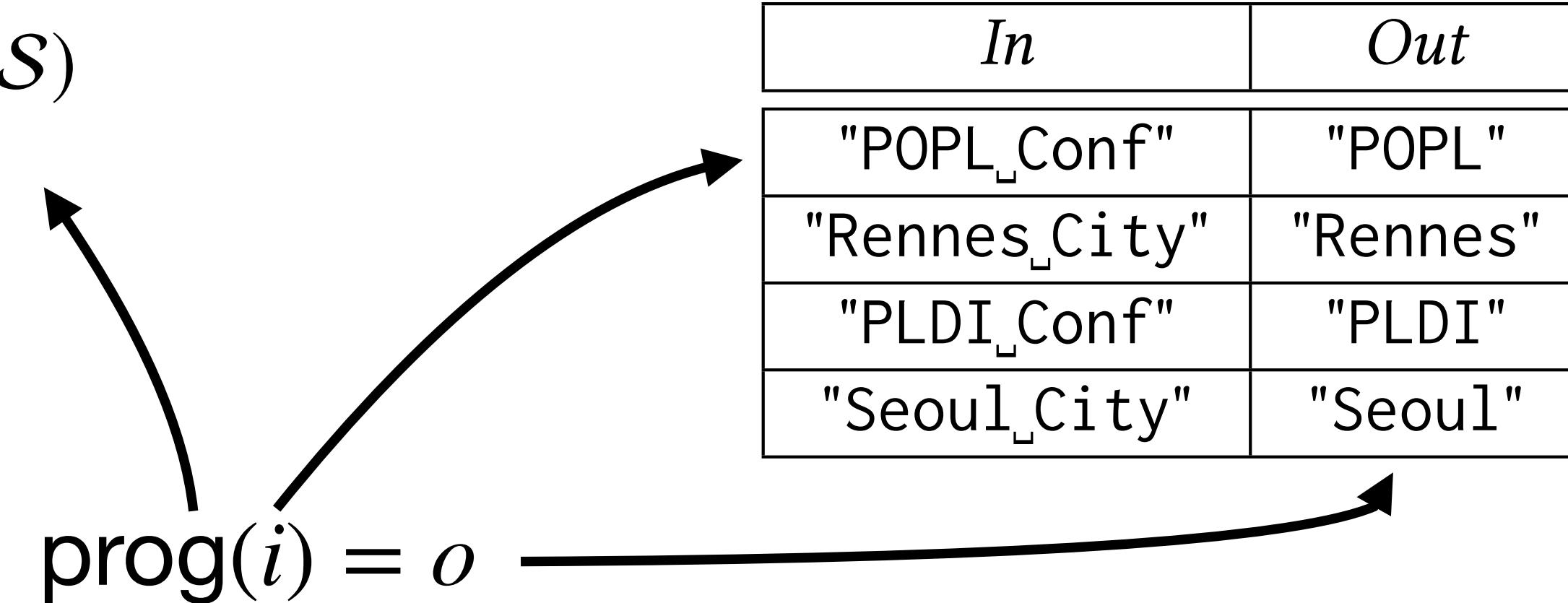
Syntax-Guided Synthesis (SyGuS)

$S ::= V \mid \text{replace}(S, S, S) \mid \text{concat}(S, S)$

$V ::= x \mid \epsilon \mid \text{"_Conf"} \mid \text{"_City"}$

In	Out
"POPL_Conf"	"POPL"
"Rennes_City"	"Rennes"
"PLDI_Conf"	"PLDI"
"Seoul_City"	"Seoul"

$\text{prog}(i) = o$



Solution: $r(r(x, \text{"_Conf"}, \epsilon), \text{"_City"}, \epsilon)$

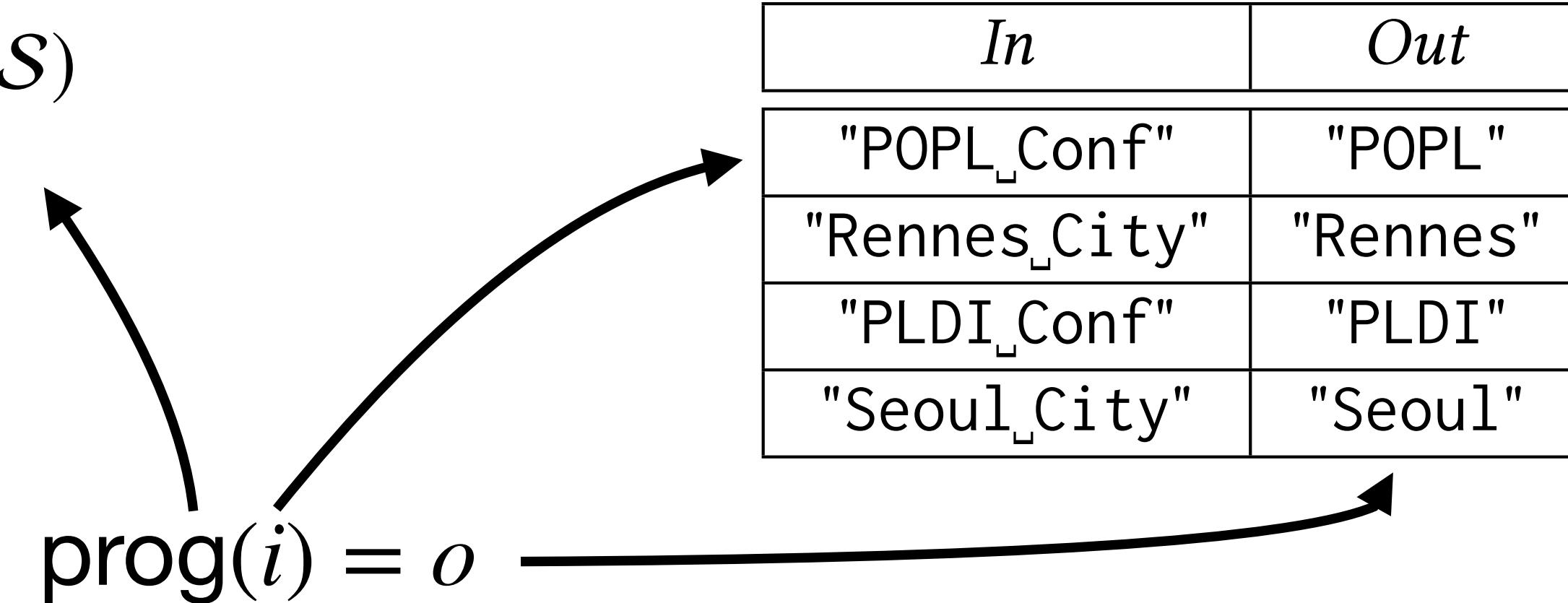
$r(\underbrace{r("POPL_Conf", \text{"_Conf"}, \epsilon), \text{"_City"}, \epsilon}_{\text{"POPL" }})$

$r(r("Rennes_City", \text{"_Conf"}, \epsilon), \text{"_City"}, \epsilon)$

Syntax-Guided Synthesis (SyGuS)

$S ::= V \mid \text{replace}(S, S, S) \mid \text{concat}(S, S)$

$V ::= x \mid \epsilon \mid \text{"_Conf"} \mid \text{"_City"}$



<i>In</i>	<i>Out</i>
"POPL_Conf"	"POPL"
"Rennes_City"	"Rennes"
"PLDI_Conf"	"PLDI"
"Seoul_City"	"Seoul"

$\text{prog}(i) = o$

Solution: $r(r(x, \text{"_Conf"}, \epsilon), \text{"_City"}, \epsilon)$

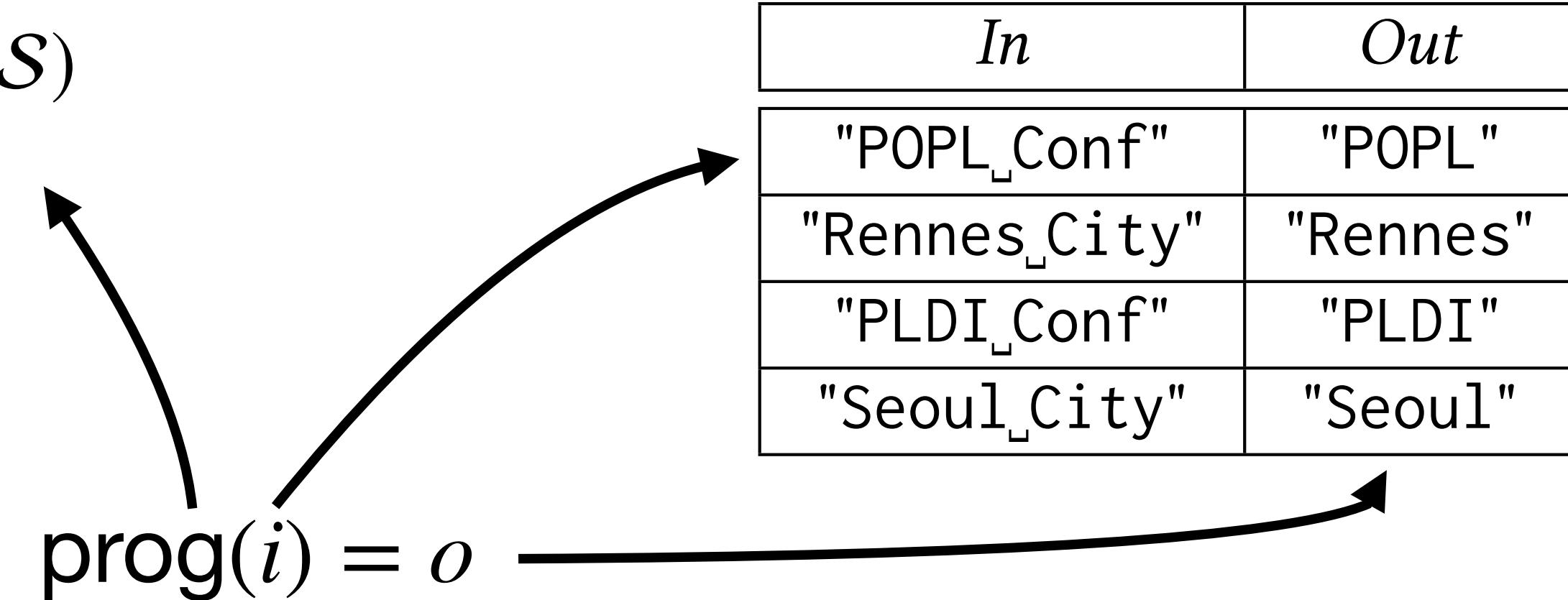
$r(\underbrace{r("POPL_Conf", \text{"_Conf"}, \epsilon), \text{"_City"}, \epsilon}_{\text{"POPL" }})$

$r(\underbrace{r("Rennes_City", \text{"_Conf"}, \epsilon), \text{"_City"}, \epsilon}_{\text{"Rennes" }})$

Syntax-Guided Synthesis (SyGuS)

$S ::= V \mid \text{replace}(S, S, S) \mid \text{concat}(S, S)$

$V ::= x \mid \epsilon \mid \text{"_Conf"} \mid \text{"_City"}$



<i>In</i>	<i>Out</i>
"POPL_Conf"	"POPL"
"Rennes_City"	"Rennes"
"PLDI_Conf"	"PLDI"
"Seoul_City"	"Seoul"

$\text{prog}(i) = o$

Solution: $r(r(x, \text{"_Conf"}, \epsilon), \text{"_City"}, \epsilon)$

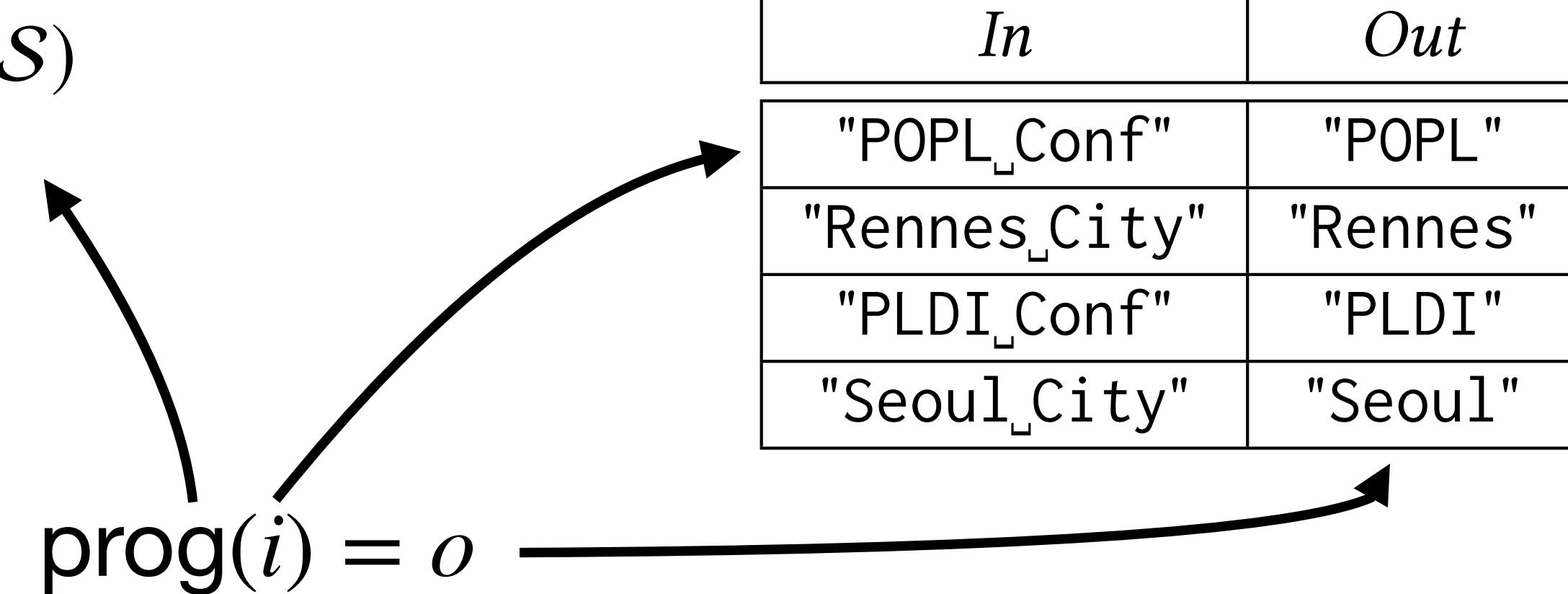
$r(\underbrace{r("POPL_Conf", \text{"_Conf"}, \epsilon), \text{"_City"}, \epsilon}_{\text{"POPL" }})$

$r(\underbrace{r("Rennes_City", \text{"_Conf"}, \epsilon), \text{"_City"}, \epsilon}_{\text{"Rennes_City" }})$

Syntax-Guided Synthesis (SyGuS)

$S ::= V \mid \text{replace}(S, S, S) \mid \text{concat}(S, S)$

$V ::= x \mid \epsilon \mid \text{"_Conf"} \mid \text{"_City"}$



<i>In</i>	<i>Out</i>
"POPL_Conf"	"POPL"
"Rennes_City"	"Rennes"
"PLDI_Conf"	"PLDI"
"Seoul_City"	"Seoul"

$\text{prog}(i) = o$

Solution: $r(r(x, \text{"_Conf"}, \epsilon), \text{"_City"}, \epsilon)$

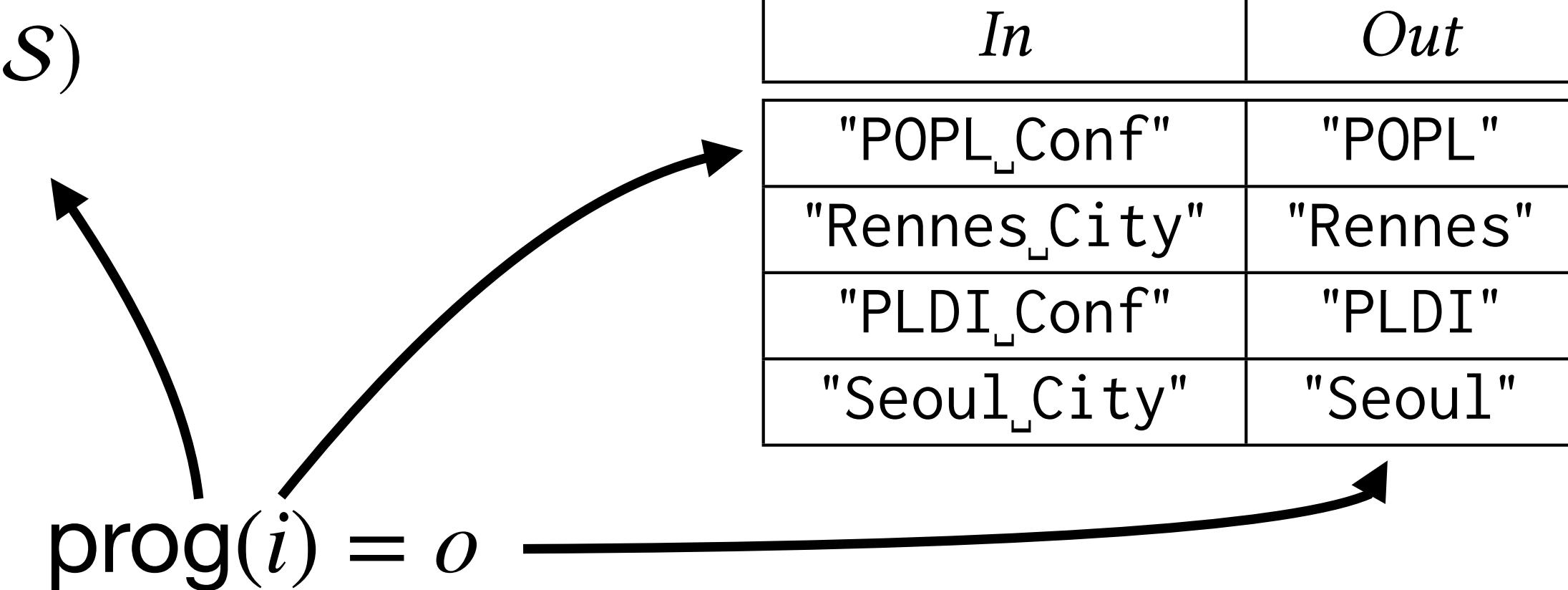
$r(\underbrace{r("POPL_Conf", \text{"_Conf"}, \epsilon), \text{"_City"}, \epsilon}_{\text{"POPL" }}, \text{"POPL"})$

$r(\underbrace{r("Rennes_City", \text{"_Conf"}, \epsilon), \text{"_City"}, \epsilon}_{\text{"Rennes_City" }}, \text{"Rennes_City"})$

Syntax-Guided Synthesis (SyGuS)

$S ::= V \mid \text{replace}(S, S, S) \mid \text{concat}(S, S)$

$V ::= x \mid \epsilon \mid \text{"_Conf"} \mid \text{"_City"}$



<i>In</i>	<i>Out</i>
"POPL_Conf"	"POPL"
"Rennes_City"	"Rennes"
"PLDI_Conf"	"PLDI"
"Seoul_City"	"Seoul"

$\text{prog}(i) = o$

Solution: $r(r(x, \text{"_Conf"}, \epsilon), \text{"_City"}, \epsilon)$

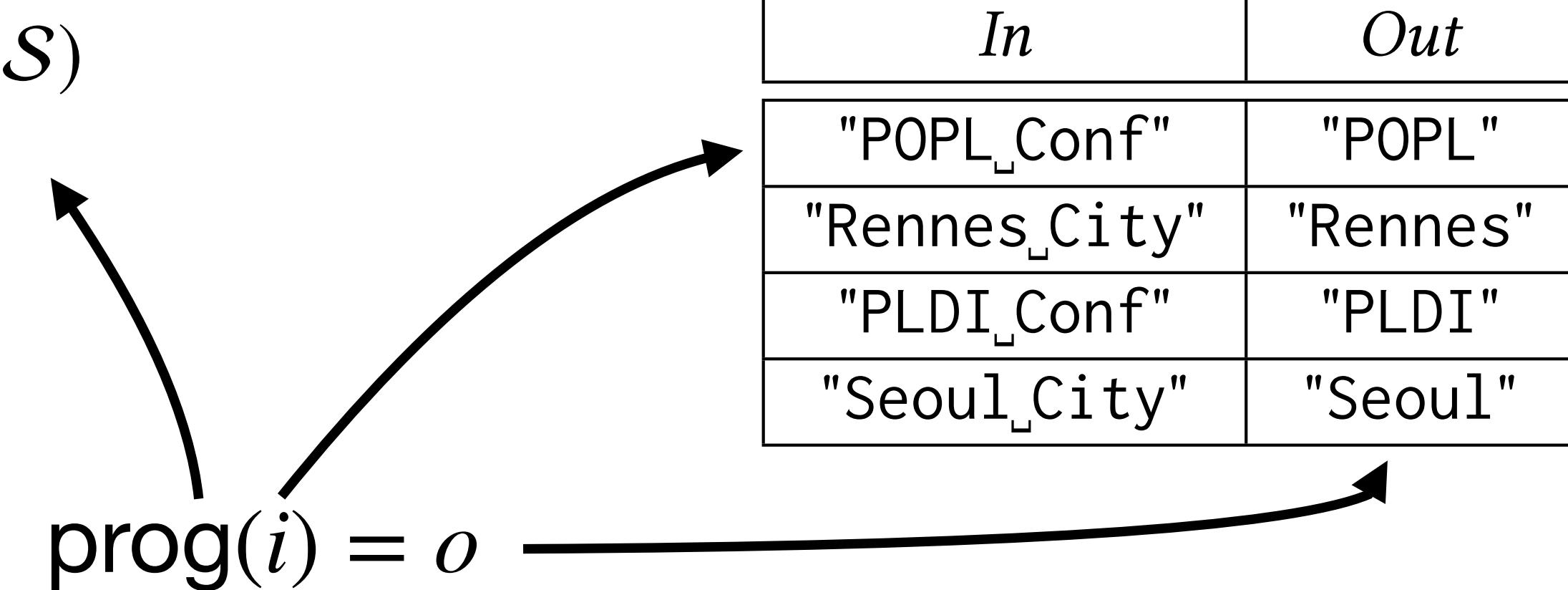
$r(\underbrace{r("POPL_Conf", \text{"_Conf"}, \epsilon), \text{"_City"}, \epsilon}_{\text{"POPL" }}, \epsilon)$

$r(\underbrace{r("Rennes_City", \text{"_Conf"}, \epsilon), \text{"_City"}, \epsilon}_{\text{"Rennes_City" }}, \epsilon)$

Syntax-Guided Synthesis (SyGuS)

$S ::= V \mid \text{replace}(S, S, S) \mid \text{concat}(S, S)$

$V ::= x \mid \epsilon \mid \text{"_Conf"} \mid \text{"_City"}$



<i>In</i>	<i>Out</i>
"POPL_Conf"	"POPL"
"Rennes_City"	"Rennes"
"PLDI_Conf"	"PLDI"
"Seoul_City"	"Seoul"

$\text{prog}(i) = o$

Solution: $r(r(x, \text{"_Conf"}, \epsilon), \text{"_City"}, \epsilon)$

$r(\underbrace{r("POPL_Conf", \text{"_Conf"}, \epsilon), \text{"_City"}, \epsilon}_{\text{"POPL" }}, \epsilon)$

$r(\underbrace{r("Rennes_City", \text{"_Conf"}, \epsilon), \text{"_City"}, \epsilon}_{\text{"Rennes_City" }}, \epsilon)$

Understanding 1: Existing approaches

have a way to **enumerate**

$$\begin{array}{lcl}
 \mathcal{S} & ::= & V \mid \text{replace}(\mathcal{S}, \mathcal{S}, \mathcal{S}) \mid \text{concat}(\mathcal{S}, \mathcal{S}) \\
 V & ::= & x \mid \epsilon \mid \text{"Conf"} \mid \text{"City"}
 \end{array}$$

Bottom-Up Enumeration

<i>In</i>	<i>Out</i>
"POPL_Conf"	"POPL"
"Rennes_City"	"Rennes"
"PLDI_Conf"	"PLDI"
"Seoul_City"	"Seoul"

$$\begin{array}{lcl}
 \mathcal{S} & ::= & V \mid \text{replace}(\mathcal{S}, \mathcal{S}, \mathcal{S}) \mid \text{concat}(\mathcal{S}, \mathcal{S}) \\
 V & ::= & x \mid \epsilon \mid \text{"_Conf"} \mid \text{"_City"}
 \end{array}$$

Bottom-Up Enumeration

$$P_1 = \{x, \epsilon, \text{"_Conf"}, \text{"_City"}\}$$

<i>In</i>	<i>Out</i>
"POPL_Conf"	"POPL"
"Rennes_City"	"Rennes"
"PLDI_Conf"	"PLDI"
"Seoul_City"	"Seoul"

$$\begin{array}{lcl}
 \mathcal{S} & ::= & V \mid \text{replace}(\mathcal{S}, \mathcal{S}, \mathcal{S}) \mid \text{concat}(\mathcal{S}, \mathcal{S}) \\
 V & ::= & x \mid \epsilon \mid \text{"_Conf"} \mid \text{"_City"}
 \end{array}$$

Bottom-Up Enumeration

$$P_1 = \{x, \epsilon, \text{"_Conf"}, \text{"_City"}\}$$

$$P_2 = \emptyset$$

<i>In</i>	<i>Out</i>
"POPL_Conf"	"POPL"
"Rennes_City"	"Rennes"
"PLDI_Conf"	"PLDI"
"Seoul_City"	"Seoul"

$$\begin{array}{lcl}
 \mathcal{S} & ::= & V \mid \text{replace}(\mathcal{S}, \mathcal{S}, \mathcal{S}) \mid \text{concat}(\mathcal{S}, \mathcal{S}) \\
 V & ::= & x \mid \epsilon \mid \text{"_Conf"} \mid \text{"_City"}
 \end{array}$$

Bottom-Up Enumeration

$$P_1 = \{x, \epsilon, \text{"_Conf"}, \text{"_City"}\}$$

$$P_2 = \emptyset$$

$$\begin{aligned}
 P_3 = \{ & x.x, x.\epsilon, x.\text{"_Conf"}, x.\text{"_City"}, \epsilon.x, \epsilon.\epsilon, \epsilon.\text{"_Conf"}, \epsilon.\text{"_City"}, \\
 & \text{"_Conf".}x, \text{"_Conf".}\epsilon, \text{"_Conf".}\text{"_Conf"}, \text{"_City".}\text{"_City"}, \\
 & \text{"_Conf".}\text{"_City"}, \text{"_City".}x, \text{"_City".}\epsilon, \text{"_City".}\text{"_Conf"} \}
 \end{aligned}$$

<i>In</i>	<i>Out</i>
"POPL_Conf"	"POPL"
"Rennes_City"	"Rennes"
"PLDI_Conf"	"PLDI"
"Seoul_City"	"Seoul"

$$\begin{array}{lcl}
 \mathcal{S} & ::= & V \mid \text{replace}(\mathcal{S}, \mathcal{S}, \mathcal{S}) \mid \text{concat}(\mathcal{S}, \mathcal{S}) \\
 V & ::= & x \mid \epsilon \mid \text{"_Conf"} \mid \text{"_City"}
 \end{array}$$

Bottom-Up Enumeration

$$P_1 = \{x, \epsilon, \text{"_Conf"}, \text{"_City"}\}$$

$$P_2 = \emptyset$$

$$\begin{aligned}
 P_3 = \{ & x.x, x.\epsilon, x.\text{"_Conf"}, x.\text{"_City"}, \epsilon.x, \epsilon.\epsilon, \epsilon.\text{"_Conf"}, \epsilon.\text{"_City"}, \\
 & \text{"_Conf".}x, \text{"_Conf".}\epsilon, \text{"_Conf".}\text{"_Conf"}, \text{"_City".}\text{"_City"}, \\
 & \text{"_Conf".}\text{"_City"}, \text{"_City".}x, \text{"_City".}\epsilon, \text{"_City".}\text{"_Conf"} \}
 \end{aligned}$$

$$P_4 = \{r(x, x, \text{"_City"}), r(x, \text{"_City"}, \text{"_Conf"}), r(x, \text{"_Conf"}, \epsilon), \dots\}$$

<i>In</i>	<i>Out</i>
"POPL_Conf"	"POPL"
"Rennes_City"	"Rennes"
"PLDI_Conf"	"PLDI"
"Seoul_City"	"Seoul"

$$\begin{array}{lcl}
 \mathcal{S} & ::= & V \mid \text{replace}(\mathcal{S}, \mathcal{S}, \mathcal{S}) \mid \text{concat}(\mathcal{S}, \mathcal{S}) \\
 V & ::= & x \mid \epsilon \mid \text{"_Conf"} \mid \text{"_City"}
 \end{array}$$

Bottom-Up Enumeration

$$P_1 = \{x, \epsilon, \text{"_Conf"}, \text{"_City"}\}$$

$$P_2 = \emptyset$$

$$\begin{aligned}
 P_3 = \{ & x.x, x.\epsilon, x.\text{"_Conf"}, x.\text{"_City"}, \epsilon.x, \epsilon.\epsilon, \epsilon.\text{"_Conf"}, \epsilon.\text{"_City"}, \\
 & \text{"_Conf".}x, \text{"_Conf".}\epsilon, \text{"_Conf".}\text{"_Conf"}, \text{"_City".}\text{"_City"}, \\
 & \text{"_Conf".}\text{"_City"}, \text{"_City".}x, \text{"_City".}\epsilon, \text{"_City".}\text{"_Conf"} \}
 \end{aligned}$$

$$P_4 = \{r(x, x, \text{"_City"}), r(x, \text{"_City"}, \text{"_Conf"}), r(x, \text{"_Conf"}, \epsilon), \dots\}$$

$$P_5 = \{\dots\}$$

<i>In</i>	<i>Out</i>
"POPL_Conf"	"POPL"
"Rennes_City"	"Rennes"
"PLDI_Conf"	"PLDI"
"Seoul_City"	"Seoul"

$$\begin{array}{lcl}
 \mathcal{S} & ::= & V \mid \text{replace}(\mathcal{S}, \mathcal{S}, \mathcal{S}) \mid \text{concat}(\mathcal{S}, \mathcal{S}) \\
 V & ::= & x \mid \epsilon \mid \text{"_Conf"} \mid \text{"_City"}
 \end{array}$$

Bottom-Up Enumeration

$$P_1 = \{x, \epsilon, \text{"_Conf"}, \text{"_City"}\}$$

$$P_2 = \emptyset$$

$$\begin{aligned}
 P_3 = \{ & x.x, x.\epsilon, x.\text{"_Conf"}, x.\text{"_City"}, \epsilon.x, \epsilon.\epsilon, \epsilon.\text{"_Conf"}, \epsilon.\text{"_City"}, \\
 & \text{"_Conf".}x, \text{"_Conf".}\epsilon, \text{"_Conf".}\text{"_Conf"}, \text{"_City".}\text{"_City"}, \\
 & \text{"_Conf".}\text{"_City"}, \text{"_City".}x, \text{"_City".}\epsilon, \text{"_City".}\text{"_Conf"} \}
 \end{aligned}$$

$$P_4 = \{r(x, x, \text{"_City"}), r(x, \text{"_City"}, \text{"_Conf"}), r(x, \text{"_Conf"}, \epsilon), \dots\}$$

$$P_5 = \{\dots\} \quad P_6 = \{\dots\}$$

<i>In</i>	<i>Out</i>
"POPL_Conf"	"POPL"
"Rennes_City"	"Rennes"
"PLDI_Conf"	"PLDI"
"Seoul_City"	"Seoul"

$$\begin{array}{lcl}
 \mathcal{S} & ::= & V \mid \text{replace}(\mathcal{S}, \mathcal{S}, \mathcal{S}) \mid \text{concat}(\mathcal{S}, \mathcal{S}) \\
 V & ::= & x \mid \epsilon \mid \text{"_Conf"} \mid \text{"_City"}
 \end{array}$$

Bottom-Up Enumeration

$$P_1 = \{x, \epsilon, \text{"_Conf"}, \text{"_City"}\}$$

$$P_2 = \emptyset$$

$$\begin{aligned}
 P_3 = \{ & x.x, x.\epsilon, x.\text{"_Conf"}, x.\text{"_City"}, \epsilon.x, \epsilon.\epsilon, \epsilon.\text{"_Conf"}, \epsilon.\text{"_City"}, \\
 & \text{"_Conf".}x, \text{"_Conf".}\epsilon, \text{"_Conf".}\text{"_Conf"}, \text{"_City".}\text{"_City"}, \\
 & \text{"_Conf".}\text{"_City"}, \text{"_City".}x, \text{"_City".}\epsilon, \text{"_City".}\text{"_Conf"} \}
 \end{aligned}$$

$$P_4 = \{r(x, x, \text{"_City"}), r(x, \text{"_City"}, \text{"_Conf"}), r(x, \text{"_Conf"}, \epsilon), \dots\}$$

$$P_5 = \{\dots\} \quad P_6 = \{\dots\} \quad P_7 = \{\dots, r(r(x, \text{"_Conf"}, \epsilon), \text{"_City"}, \epsilon), \dots\}$$

<i>In</i>	<i>Out</i>
"POPL_Conf"	"POPL"
"Rennes_City"	"Rennes"
"PLDI_Conf"	"PLDI"
"Seoul_City"	"Seoul"

$$\begin{array}{lcl}
 \mathcal{S} & ::= & V \mid \text{replace}(\mathcal{S}, \mathcal{S}, \mathcal{S}) \mid \text{concat}(\mathcal{S}, \mathcal{S}) \\
 V & ::= & x \mid \epsilon \mid \text{"_Conf"} \mid \text{"_City"}
 \end{array}$$

Bottom-Up Enumeration

$$P_1 = \{x, \epsilon, \text{"_Conf"}, \text{"_City"}\}$$

$$P_2 = \emptyset$$

$$\begin{aligned}
 P_3 = \{ & x.x, x.\epsilon, x.\text{"_Conf"}, x.\text{"_City"}, \epsilon.x, \epsilon.\epsilon, \epsilon.\text{"_Conf"}, \epsilon.\text{"_City"}, \\
 & \text{"_Conf".}x, \text{"_Conf".}\epsilon, \text{"_Conf".}\text{"_Conf"}, \text{"_City".}\text{"_City"}, \\
 & \text{"_Conf".}\text{"_City"}, \text{"_City".}x, \text{"_City".}\epsilon, \text{"_City".}\text{"_Conf"} \}
 \end{aligned}$$

$$P_4 = \{r(x, x, \text{"_City"}), r(x, \text{"_City"}, \text{"_Conf"}), r(x, \text{"_Conf"}, \epsilon), \dots\}$$

$$P_5 = \{\dots\} \quad P_6 = \{\dots\} \quad P_7 = \{\dots, r(r(x, \text{"_Conf"}, \epsilon), \text{"_City"}, \epsilon), \dots\}$$

<i>In</i>	<i>Out</i>
"POPL_Conf"	"POPL"
"Rennes_City"	"Rennes"
"PLDI_Conf"	"PLDI"
"Seoul_City"	"Seoul"

$$\begin{array}{lcl}
 \mathcal{S} & ::= & V \mid \text{replace}(\mathcal{S}, \mathcal{S}, \mathcal{S}) \mid \text{concat}(\mathcal{S}, \mathcal{S}) \\
 V & ::= & x \mid \epsilon \mid \text{"_Conf"} \mid \text{"_City"}
 \end{array}$$

Bottom-Up Enumeration

$$P_1 = \{x, \epsilon, \text{"_Conf"}, \text{"_City"}\}$$

$$P_2 = \emptyset$$

$$\begin{aligned}
 P_3 = \{ & x.x, x.\epsilon, x.\text{"_Conf"}, x.\text{"_City"}, \epsilon.x, \epsilon.\epsilon, \epsilon.\text{"_Conf"}, \epsilon.\text{"_City"}, \\
 & \text{"_Conf".}x, \text{"_Conf".}\epsilon, \text{"_Conf".}\text{"_Conf"}, \text{"_City".}\text{"_City"}, \\
 & \text{"_Conf".}\text{"_City"}, \text{"_City".}x, \text{"_City".}\epsilon, \text{"_City".}\text{"_Conf"} \}
 \end{aligned}$$

$$P_4 = \{r(x, x, \text{"_City"}), r(x, \text{"_City"}, \text{"_Conf"}), r(x, \text{"_Conf"}, \epsilon), \dots\}$$

$$P_5 = \{\dots\} \quad P_6 = \{\dots\} \quad P_7 = \{\dots, r(r(x, \text{"_Conf"}, \epsilon), \text{"_City"}, \epsilon), \dots\}$$

<i>In</i>	<i>Out</i>
"POPL_Conf"	"POPL"
"Rennes_City"	"Rennes"
"PLDI_Conf"	"PLDI"
"Seoul_City"	"Seoul"

Exponential Blowup!

$$\begin{array}{lcl}
 \mathcal{S} & ::= & V \mid \text{replace}(\mathcal{S}, \mathcal{S}, \mathcal{S}) \mid \text{concat}(\mathcal{S}, \mathcal{S}) \\
 V & ::= & x \mid \epsilon \mid \text{"_Conf"} \mid \text{"_City"}
 \end{array}$$

Bottom-Up Enumeration

$$P_1 = \{x, \epsilon, \text{"_Conf"}, \text{"_City"}\}$$

$$P_2 = \emptyset$$

$$\begin{aligned}
 P_3 = \{ & x.x, x.\epsilon, x.\text{"_Conf"}, x.\text{"_City"}, \epsilon.x, \epsilon.\epsilon, \epsilon.\text{"_Conf"}, \epsilon.\text{"_City"}, \\
 & \text{"_Conf".}x, \text{"_Conf".}\epsilon, \text{"_Conf".}\text{"_Conf"}, \text{"_City".}\text{"_City"}, \\
 & \text{"_Conf".}\text{"_City"}, \text{"_City".}x, \text{"_City".}\epsilon, \text{"_City".}\text{"_Conf"} \}
 \end{aligned}$$

$$P_4 = \{r(x, x, \text{"_City"}), r(x, \text{"_City"}, \text{"_Conf"}), r(x, \text{"_Conf"}, \epsilon), \dots\}$$

$$P_5 = \{\dots\} \quad P_6 = \{\dots\} \quad P_7 = \{\dots, r(r(x, \text{"_Conf"}, \epsilon), \text{"_City"}, \epsilon), \dots\}$$

<i>In</i>	<i>Out</i>
"POPL_Conf"	"POPL"
"Rennes_City"	"Rennes"
"PLDI_Conf"	"PLDI"
"Seoul_City"	"Seoul"

Exponential Blowup!

Method	P_1	P_2	P_3	P_4	P_5	P_6	P_7
No Pruning or Factorization	4	-	16	64	128	1280	4352

Enumeration, Factorization, Pruning

$\mathcal{L}(\mathcal{G})$

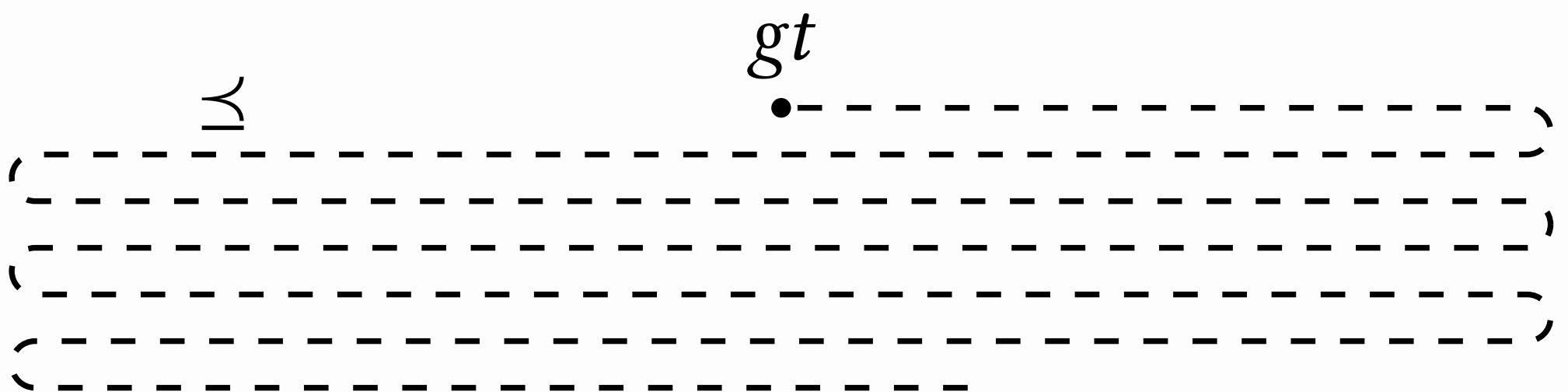
gt
•

Enumeration, Factorization, Pruning

Enumeration Order:

Size-based

$$\mathcal{L}(\mathcal{G})$$

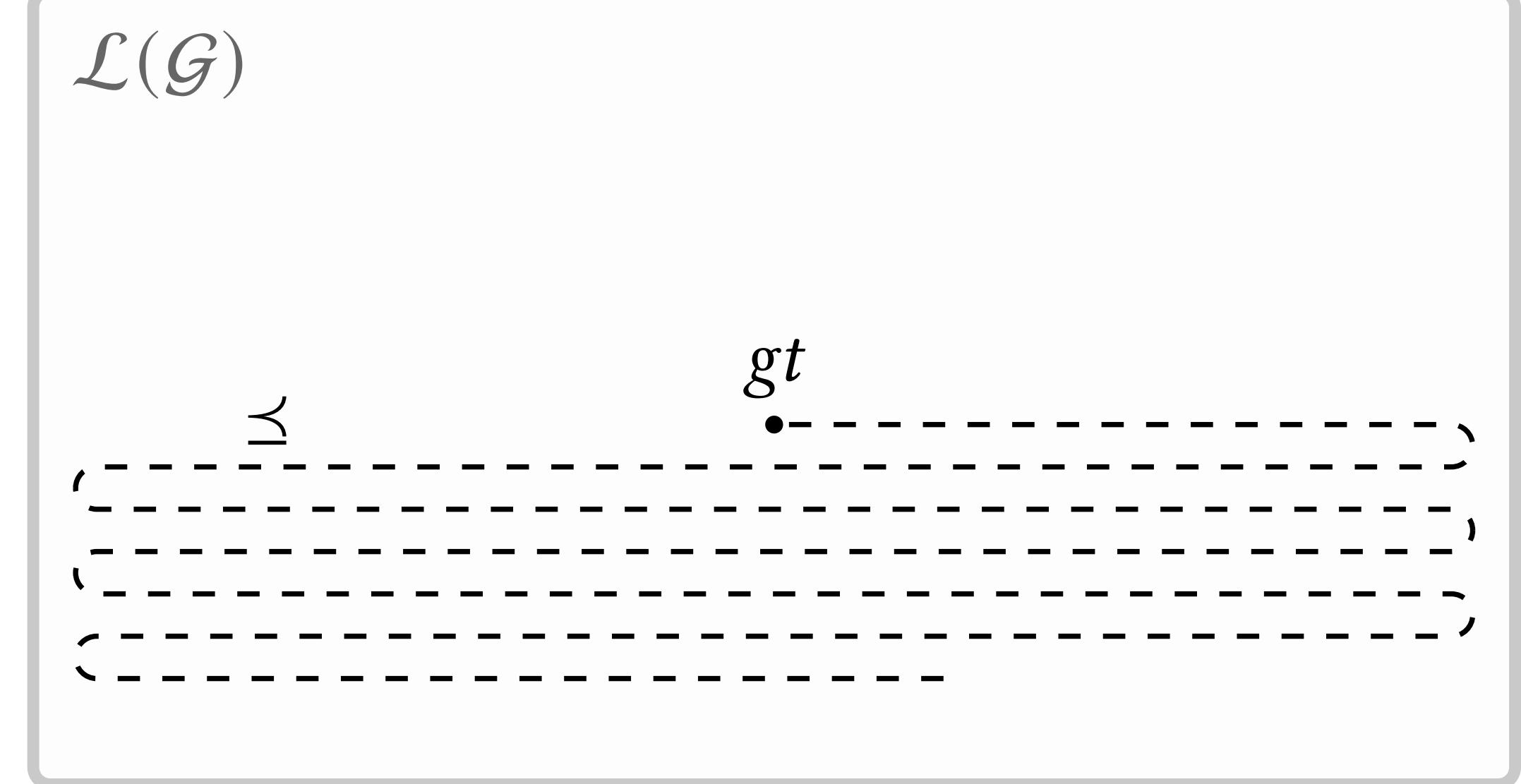


Enumeration, Factorization, Pruning

Enumeration Order:

Size-based

Deduction [Alur et al. 2017, Lee 2021, Yoon et al. 2023, Ding and Qiu 2024, Ding and Qiu 2025]



Deduction

Deduction

ϵ

Deduction

$\epsilon \in \text{City}$

Deduction

$\epsilon \in \text{"City"}$ $\wedge \dots$

\dots

Deduction

$\epsilon \vdash \text{"City"} \wedge \dots$

$\dots \vdash r(x, \text{"Conf"}, \epsilon)$

Deduction

$\epsilon \ \text{Iy} \ \text{"City"} \ \text{Iy} \ \dots$

$\dots \ \text{Iy} \ r(x, \text{"Conf"}, \epsilon) \ \text{Iy} \ \dots$

Deduction

$\epsilon \ \text{I}\!\text{Y} \ \text{"_City"} \ \text{I}\!\text{Y} \ \dots$

$\dots \ \text{I}\!\text{Y} \ r(x, \text{"_Conf"}, \epsilon) \ \text{I}\!\text{Y} \ \dots \ \text{I}\!\text{Y} \ r(r(x, \text{"_Conf"}, \epsilon), \text{"_City"}, \epsilon)$

Deduction

$\epsilon \vdash "City" \wedge \dots$
 $\dots \vdash \underline{r(x, "Conf", \epsilon)} \wedge \dots \vdash r(r(x, "Conf", \epsilon), "City", \epsilon)$

Deduction

€ γ "City" γ ...

$$\dots \preceq r(x, "Conf", \epsilon) \preceq \dots \preceq r(r(x, "Conf", \epsilon), "City", \epsilon)$$

Deduction

€ γ "City" γ ...

... \preceq $r(x, "Conf", \epsilon)$ $r(r(x, "Conf", \epsilon), "City", \epsilon)$

Deduction

€ ↳ "City" ↳ ...

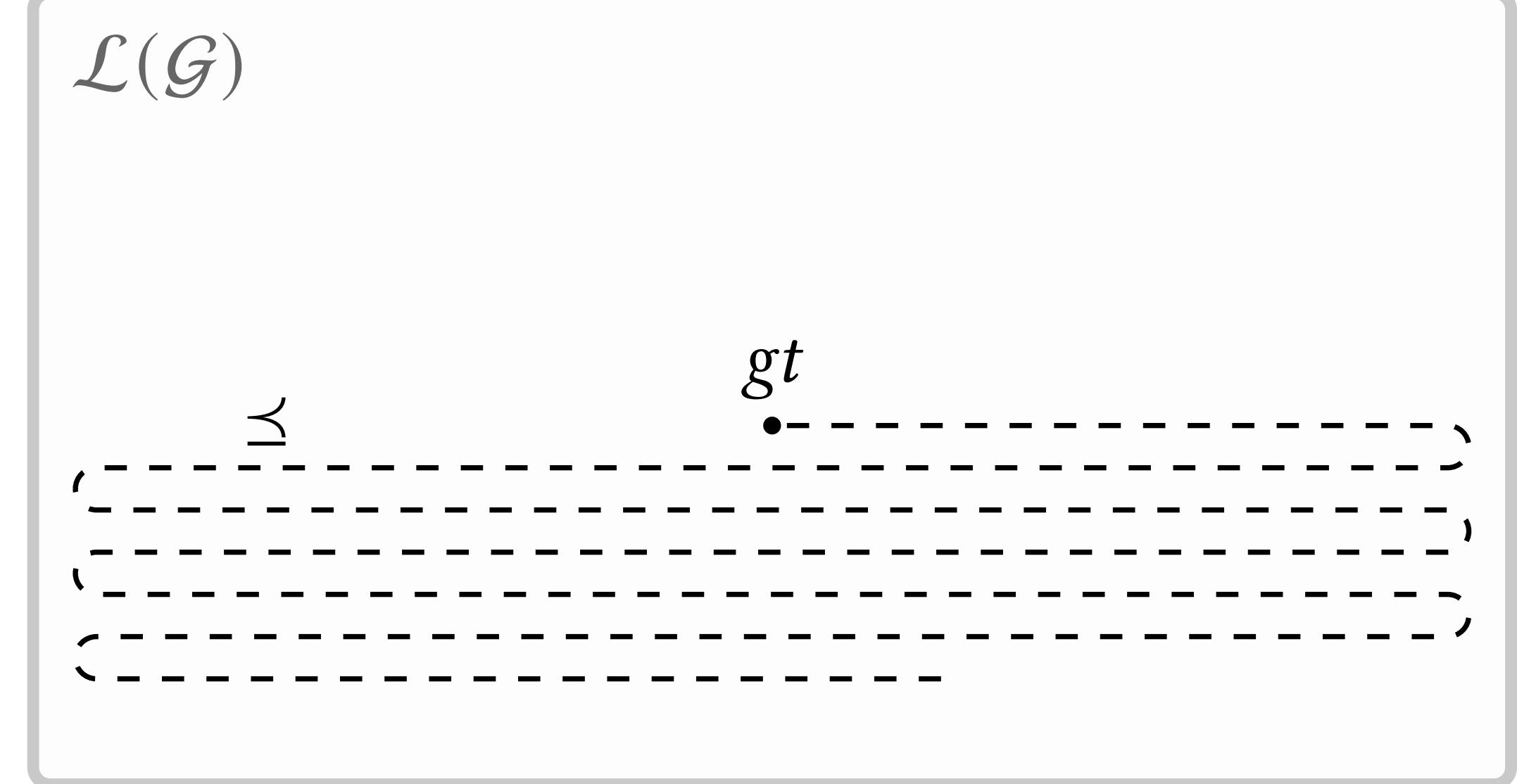
$$\dots \preceq r(x, \text{``Conf''}, \epsilon) \preceq r(r(x, \text{``Conf''}, \epsilon), \text{``City''}, \epsilon)$$

Enumeration, Factorization, Pruning

Enumeration Order:

Size-based

Deduction [Alur et al. 2017, Lee 2021, Yoon et al. 2023, Ding and Qiu 2024, Ding and Qiu 2025]



Understanding 2: Existing approaches

have a way to **factorize** the search space

Enumeration, Factorization, Pruning

Enumeration Order:

Size-based

Deduction [Alur et al. 2017, Lee 2021, Yoon et al. 2023, Ding and Qiu 2024, Ding and Qiu 2025]

Factorizations:

Observational Equivalence Factorization [Udapa et al. 2013, Albarghouthi et al. 2013]

$$\mathcal{L}(G)$$

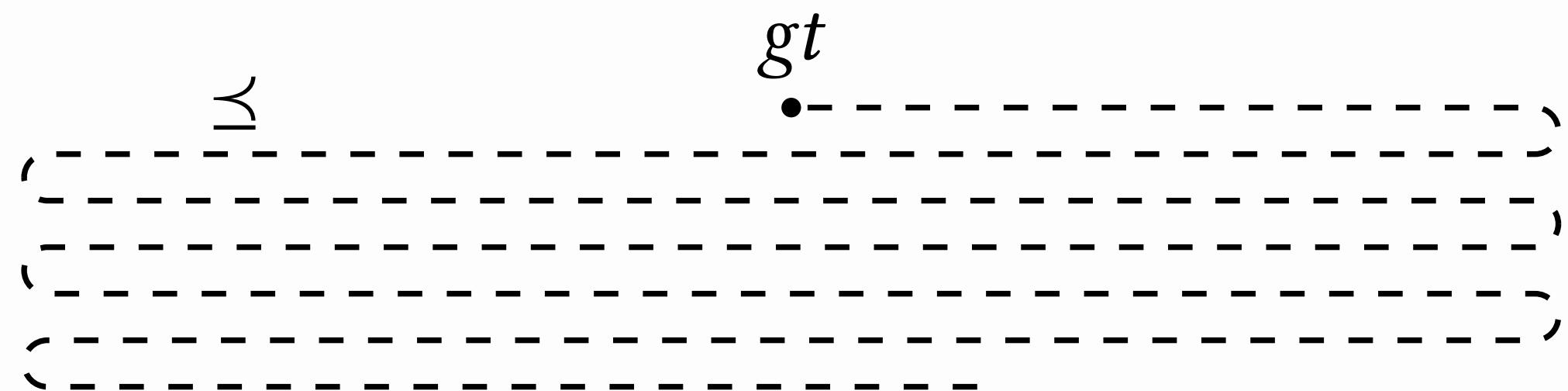
Observational Equivalence Factorization

Observational Equivalence:

$$\forall i \in In : \text{prog}_1(i) = \text{prog}_2(i)$$

$$x \approx x . \epsilon$$

$$\mathcal{L}(\mathcal{G})$$



Observational Equivalence Factorization

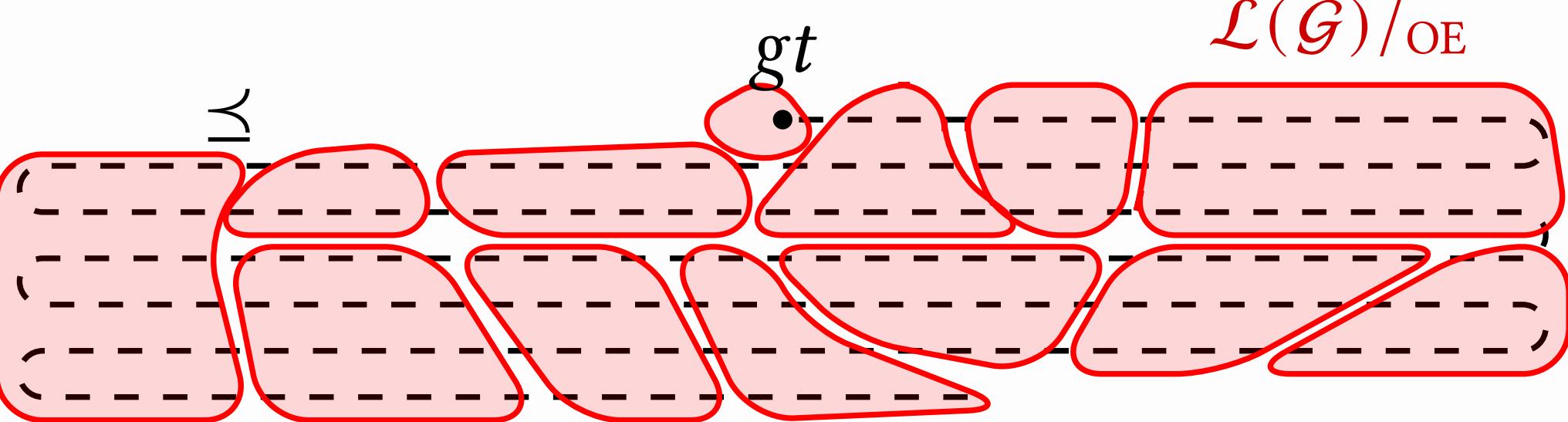
Observational Equivalence:

$$\forall i \in In : \text{prog}_1(i) = \text{prog}_2(i)$$

$$\mathbf{x} \approx \mathbf{x} . \epsilon$$

Factorizes search space

$$\mathcal{L}(\mathcal{G})$$



Observational Equivalence Factorization

Observational Equivalence:

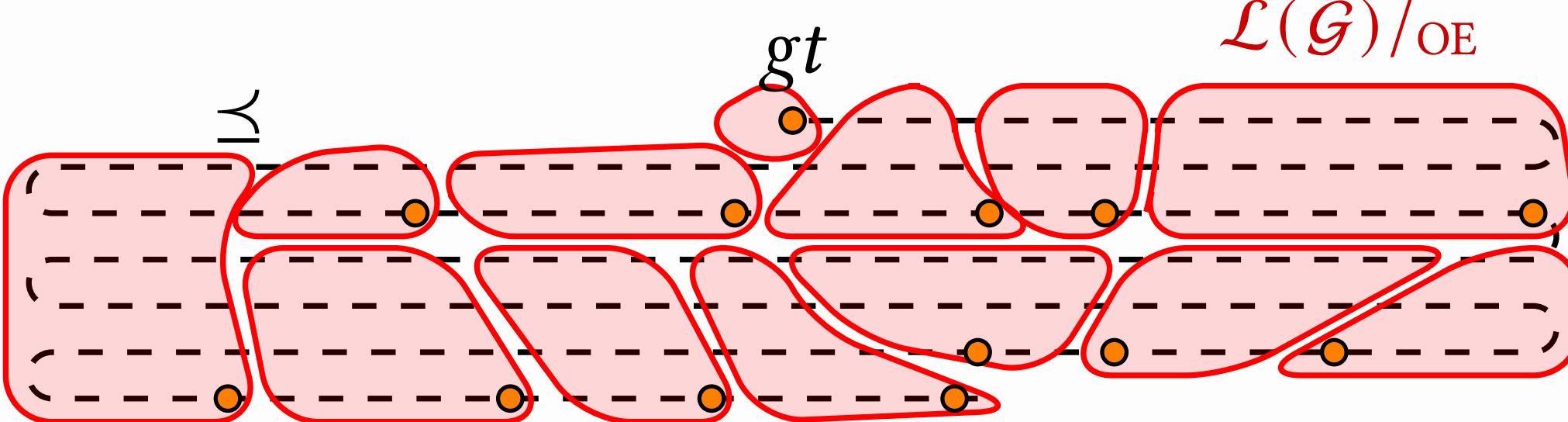
$$\forall i \in In : \text{prog}_1(i) = \text{prog}_2(i)$$

$$\mathbf{x} \approx \mathbf{x} \cdot \epsilon$$

Factorizes search space

Only keep one representative per class

$$\mathcal{L}(\mathcal{G})$$



Observational Equivalence Factorization

Observational Equivalence:

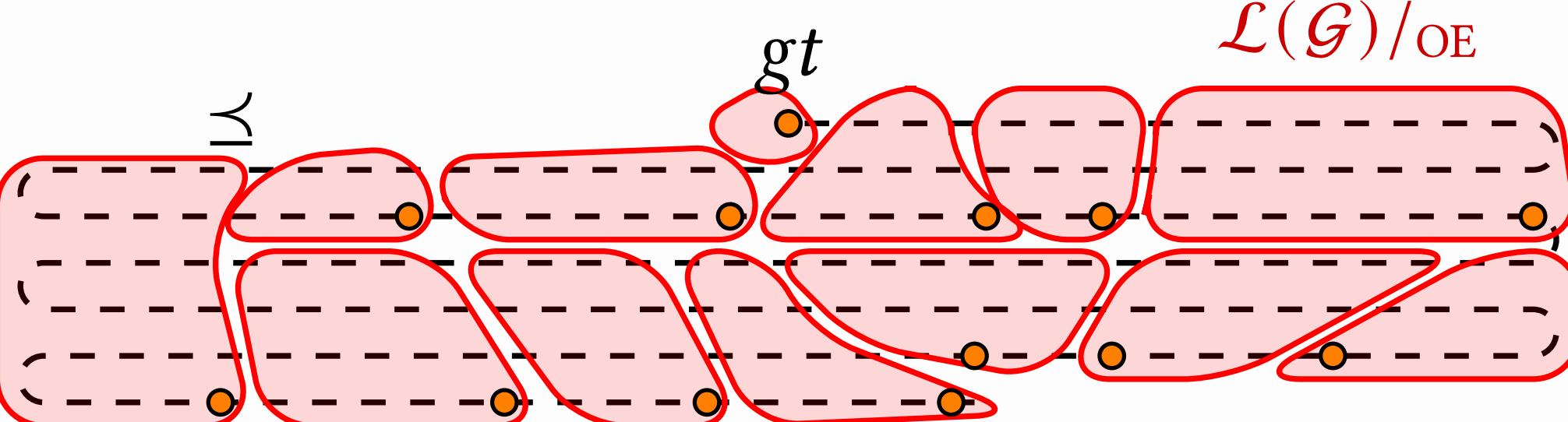
$$\forall i \in In : \text{prog}_1(i) = \text{prog}_2(i)$$

$x \approx \cancel{x} \epsilon$

Factorizes search space

Only keep one representative per class

$$\mathcal{L}(\mathcal{G})$$



Observational Equivalence Factorization

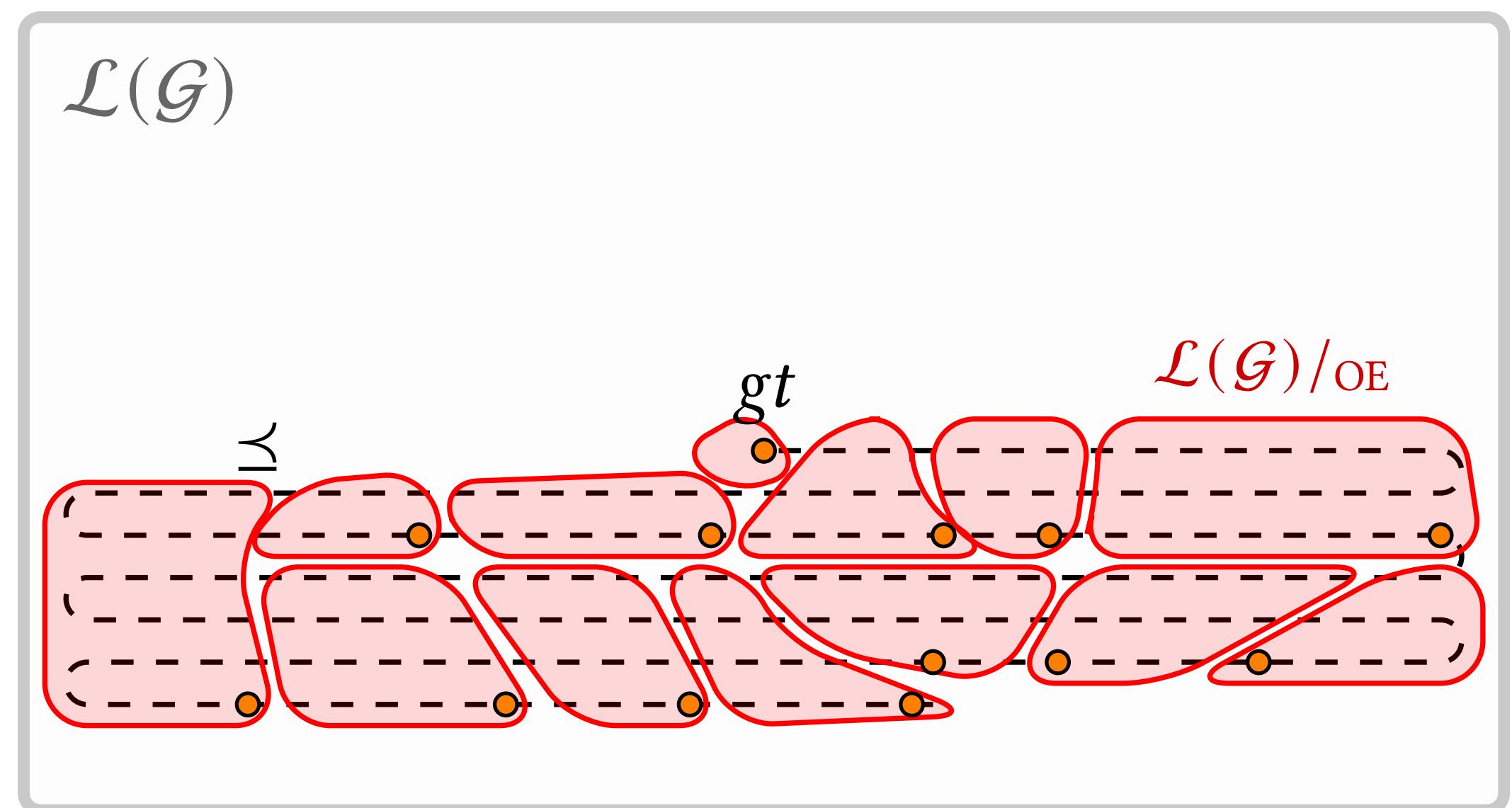
Observational Equivalence:

$$\forall i \in In : \text{prog}_1(i) = \text{prog}_2(i)$$

~~$x \approx x \epsilon$~~

Factorizes search space

Only keep one representative per class



Method	P_1	P_2	P_3	P_4	P_5	P_6	P_7
No Pruning or Factorization	4	-	16	64	128	1280	4352
OE Factorization	4	-	9	6	27	56	119

Enumeration, Factorization, Pruning

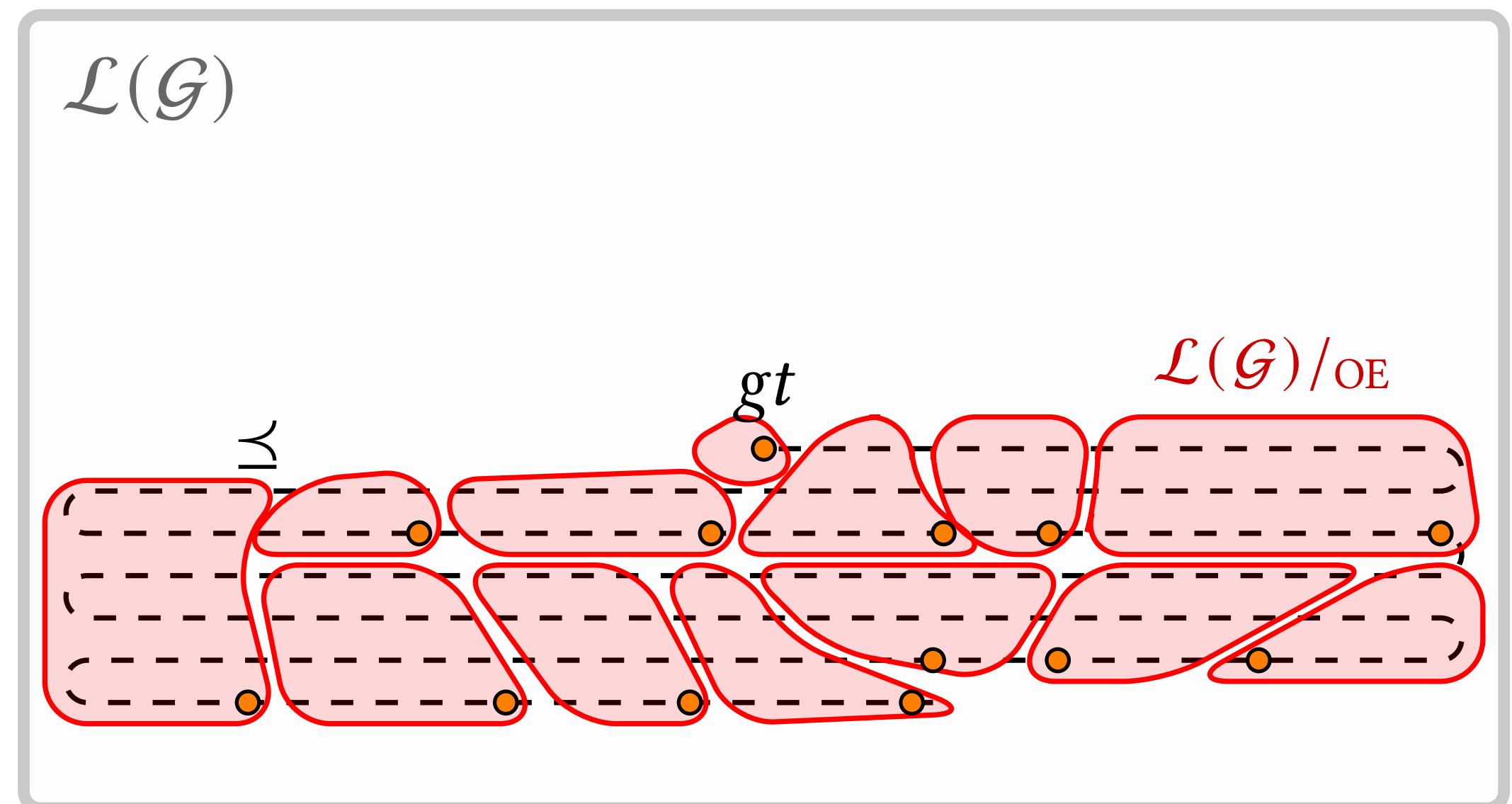
Enumeration Order:

Size-based

Deduction [Alur et al. 2017, Lee 2021, Yoon et al. 2023, Ding and Qiu 2024, Ding and Qiu 2025]

Factorizations:

Observational Equivalence Factorization [Udapa et al. 2013, Albarghouthi et al. 2013]



Enumeration, Factorization, Pruning

Enumeration Order:

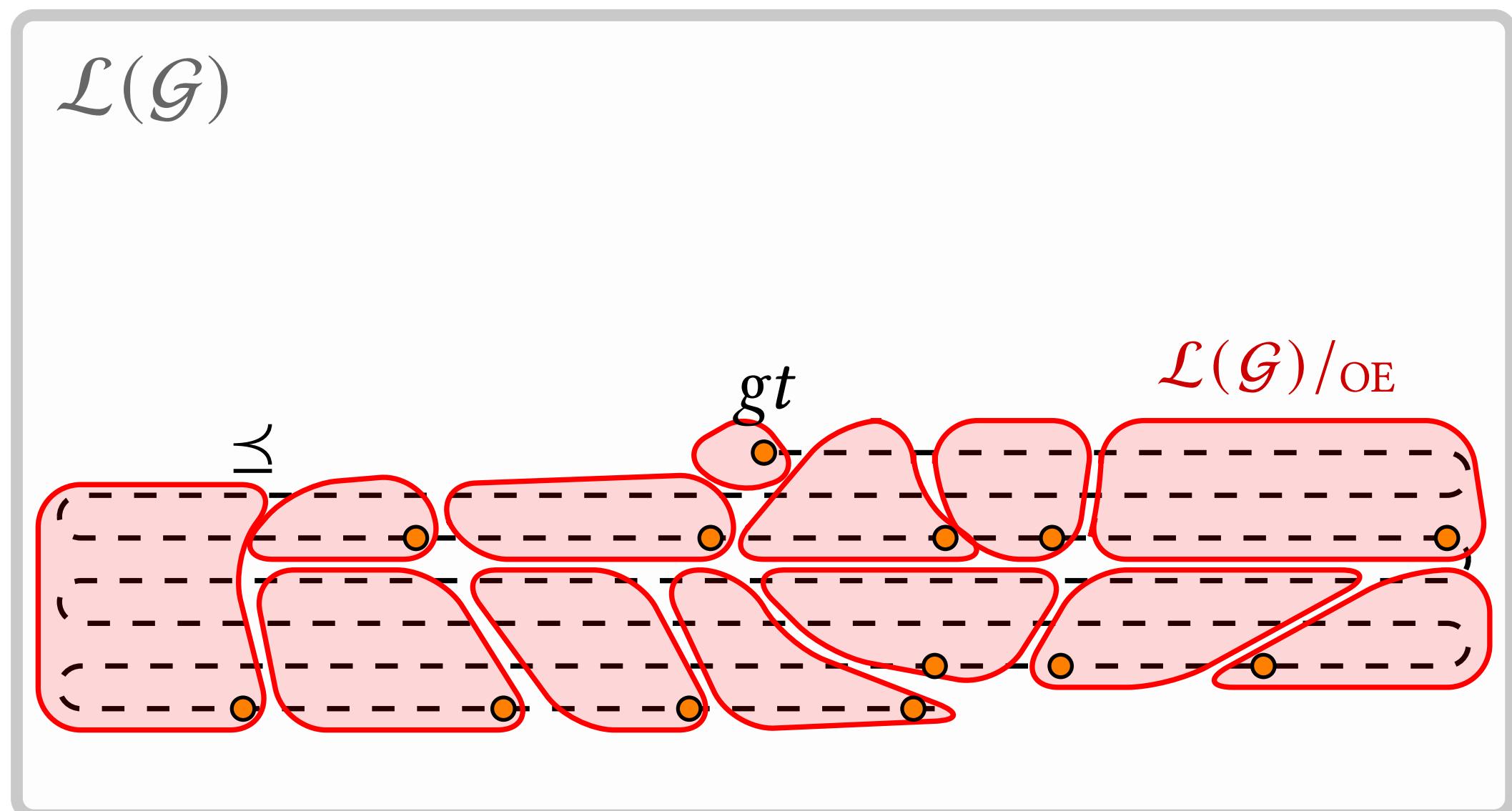
Size-based

Deduction [Alur et al. 2017, Lee 2021, Yoon et al. 2023, Ding and Qiu 2024, Ding and Qiu 2025]

Factorizations:

Observational Equivalence Factorization [Udapa et al. 2013, Albarghouthi et al. 2013]

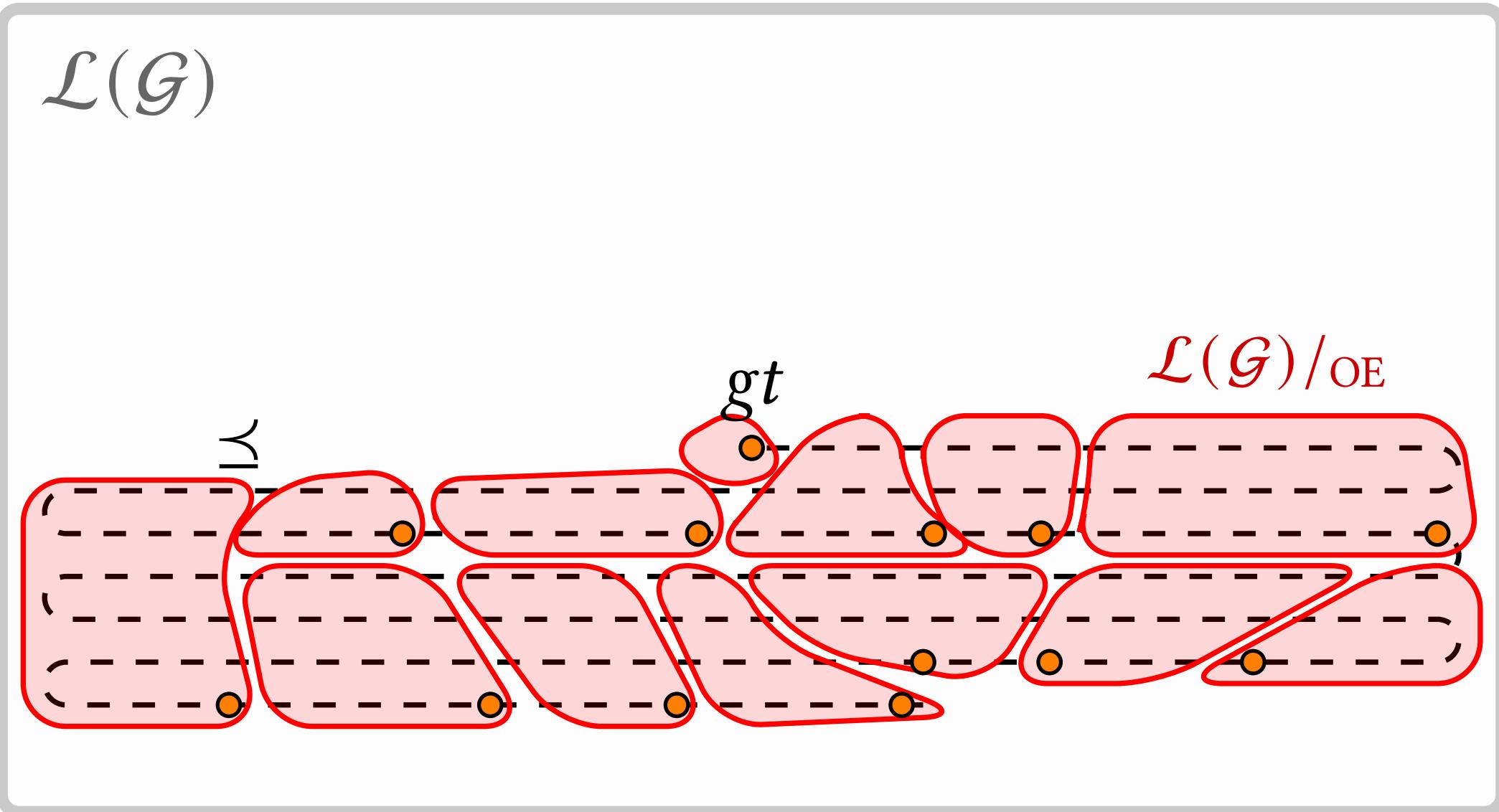
Abstraction [Wang et al. 2018]



Abstraction

Perform OE on abstracted values

$$\forall i \in In : \alpha(\text{prog}_1(i)) = \alpha(\text{prog}_2(i))$$



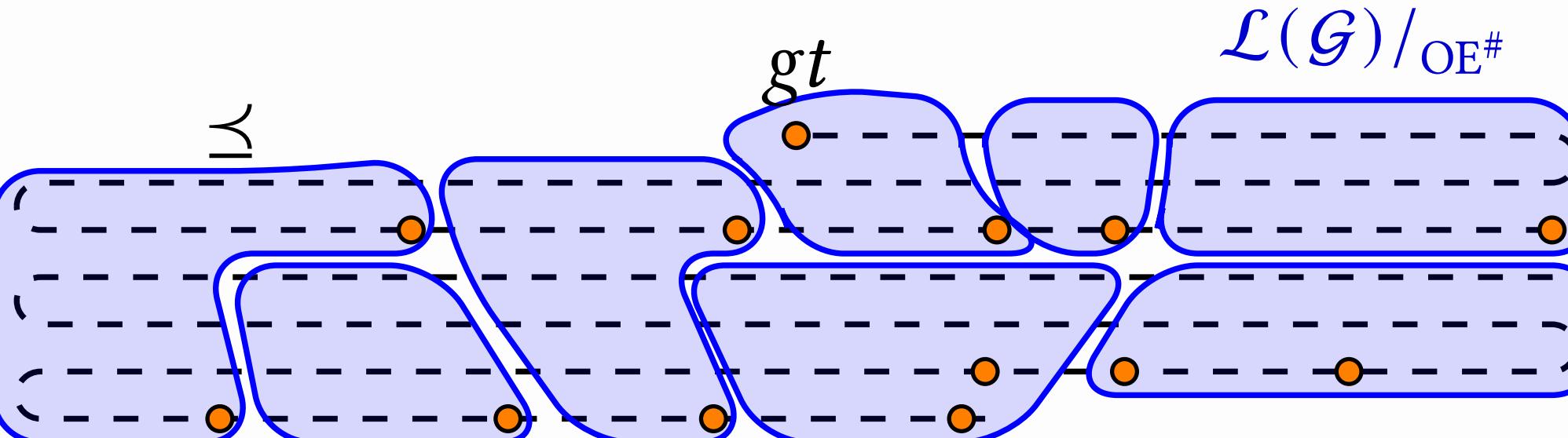
Abstraction

Perform OE on abstracted values

$$\forall i \in In : \alpha(\text{prog}_1(i)) = \alpha(\text{prog}_2(i))$$

Coarser than OE

$$\mathcal{L}(\mathcal{G})$$



Abstraction

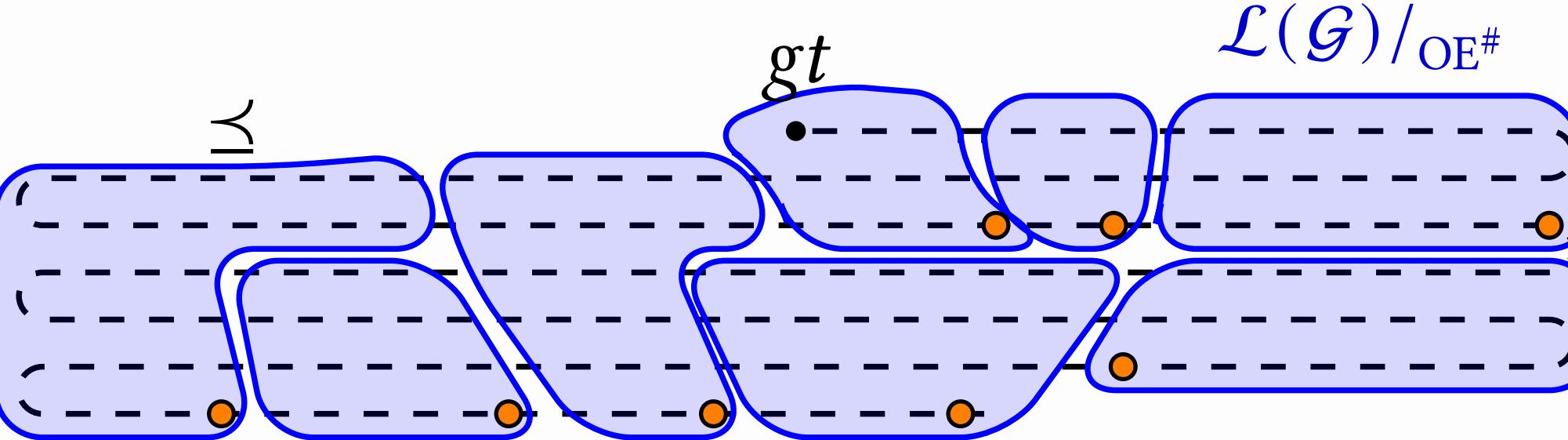
Perform OE on abstracted values

$$\forall i \in In : \alpha(\text{prog}_1(i)) = \alpha(\text{prog}_2(i))$$

Coarser than OE

Only keep one representative per class

$$\mathcal{L}(\mathcal{G})$$



Enumeration, Factorization, Pruning

Enumeration Order:

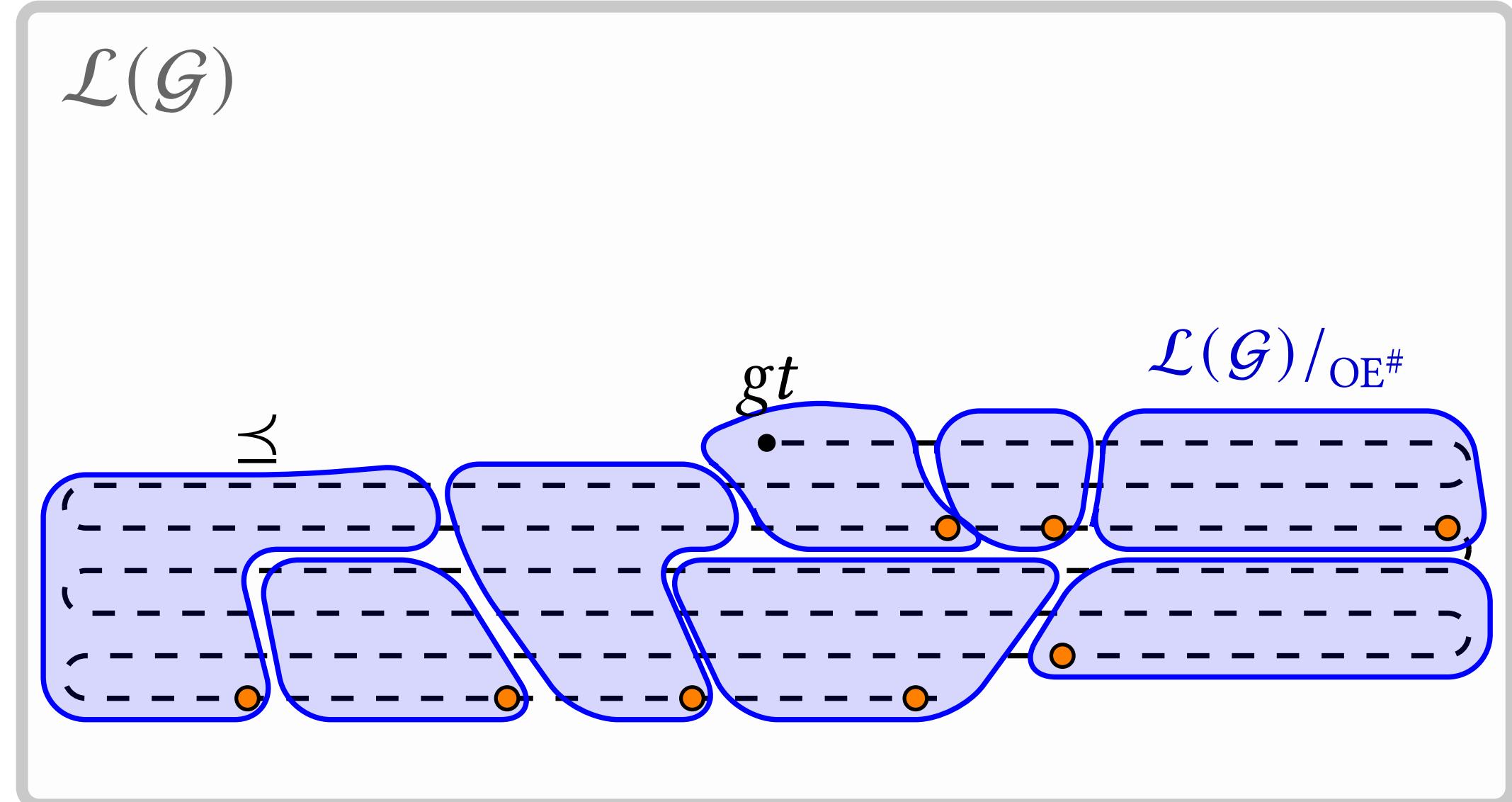
Size-based

Deduction [Alur et al. 2017, Lee 2021, Yoon et al. 2023, Ding and Qiu 2024, Ding and Qiu 2025]

Factorizations:

Observational Equivalence Factorization [Udapa et al. 2013, Albarghouthi et al. 2013]

Abstraction [Wang et al. 2018]



Understanding 3: Existing approaches

have a way to **prune** the search space

Enumeration, Factorization, Pruning

Enumeration Order:

Size-based

Deduction [Alur et al. 2017, Lee 2021, Yoon et al. 2023, Ding and Qiu 2024, Ding and Qiu 2025]

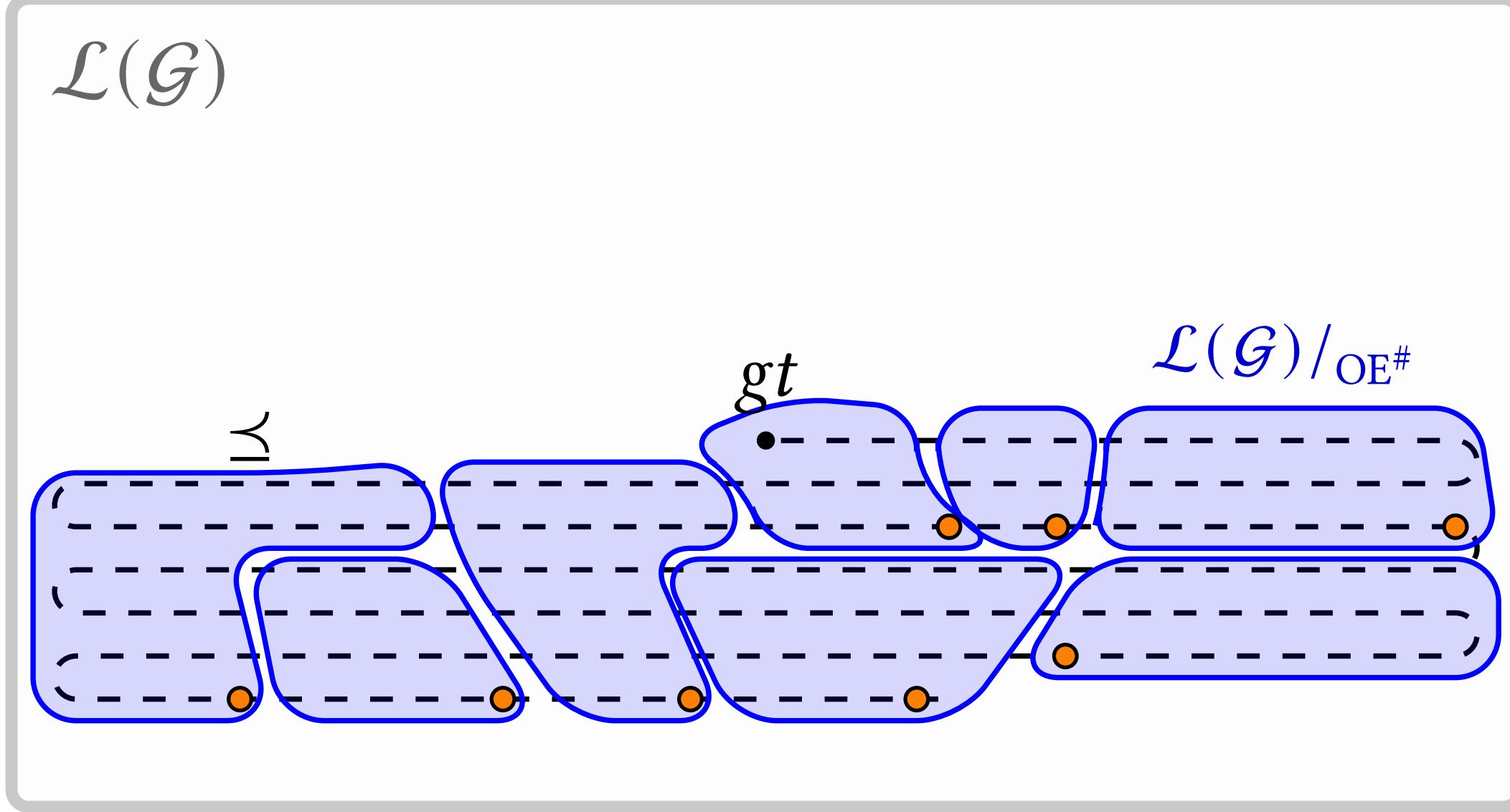
Factorizations:

Observational Equivalence Factorization [Udapa et al. 2013, Albarghouthi et al. 2013]

Abstraction [Wang et al. 2018]

Pruning:

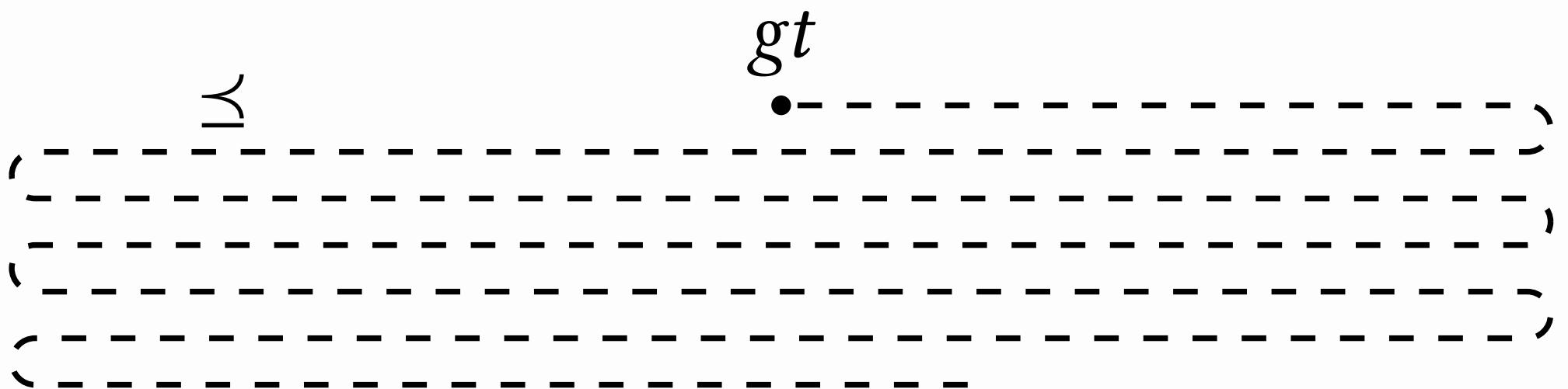
Pruning with a ball [Feser et al. 2023]



Pruning with a Ball

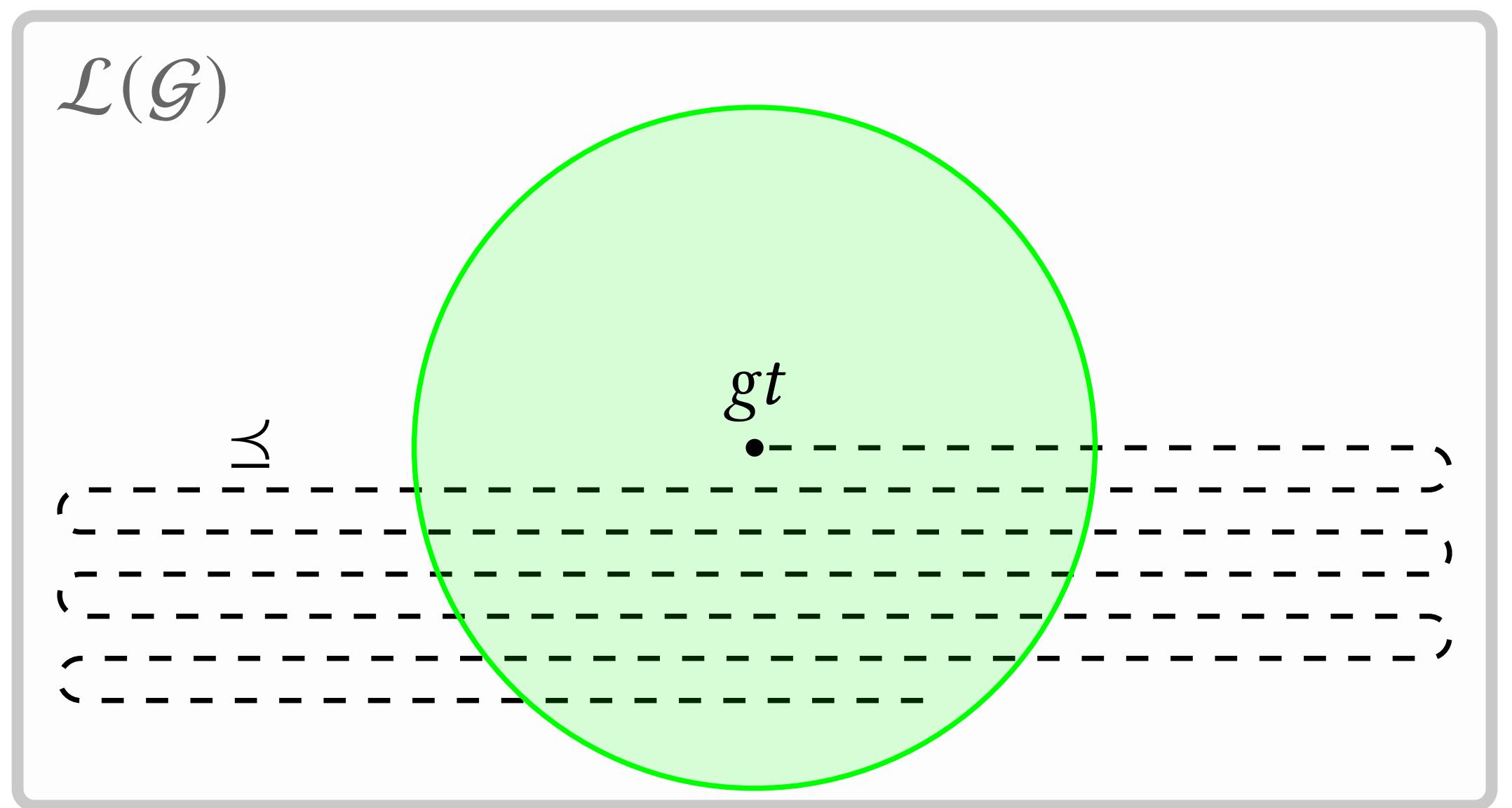
Use a metric to define a ball around gt

$$\mathcal{L}(\mathcal{G})$$



Pruning with a Ball

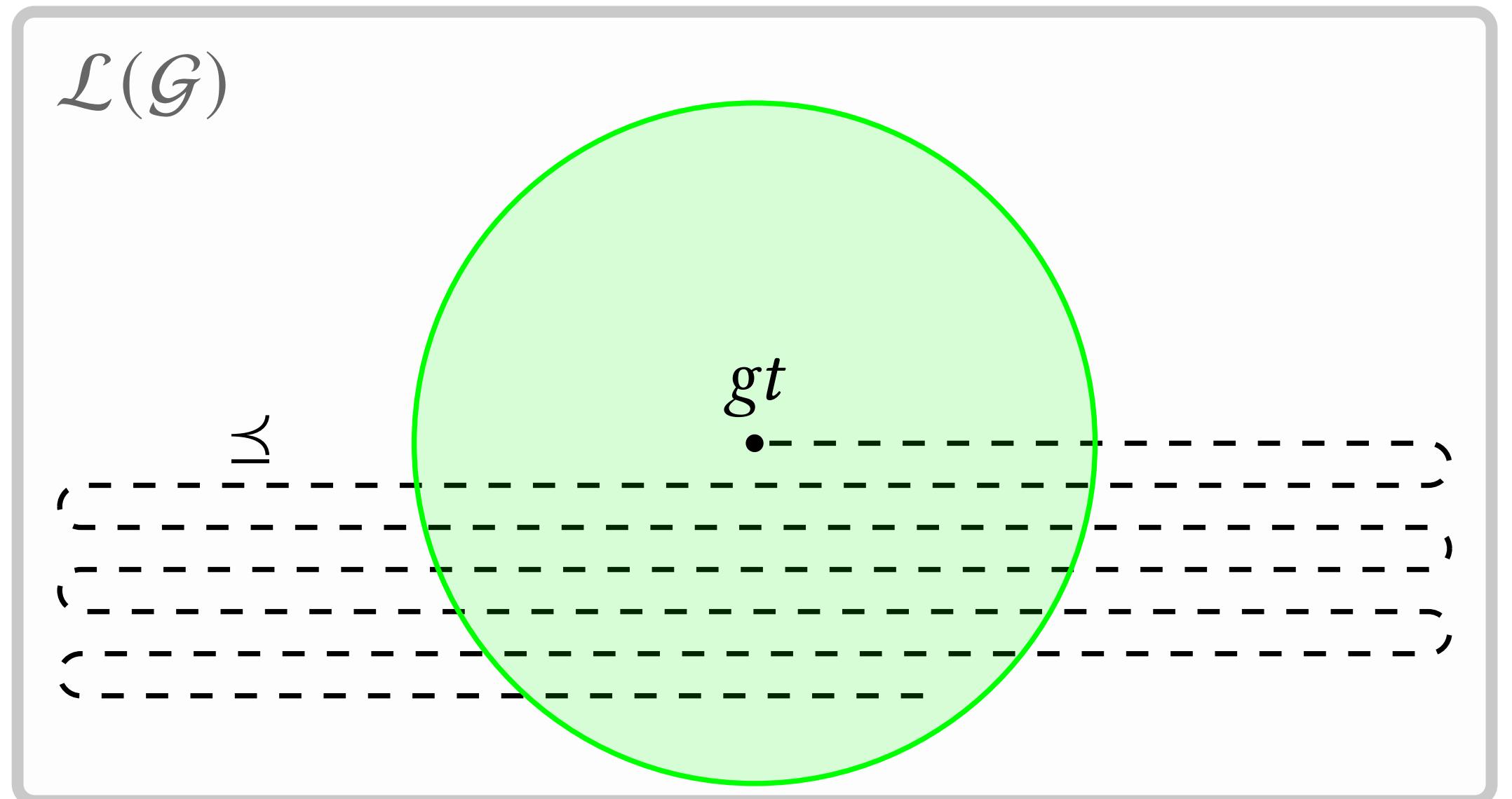
Use a metric to define a ball around gt



Pruning with a Ball

Use a metric to define a ball around gt

Only consider programs inside the ball

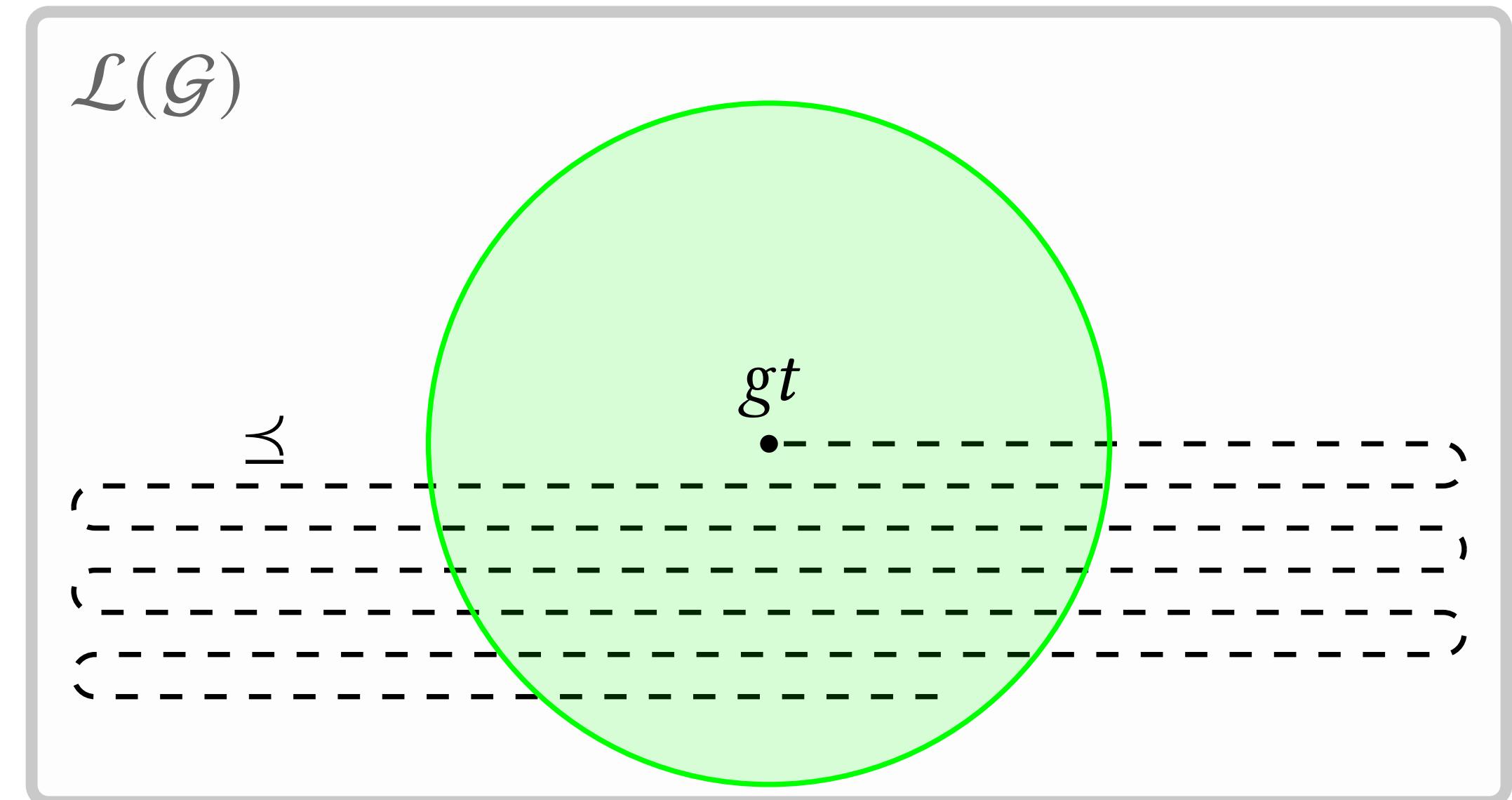


Pruning with a Ball

Use a metric to define a ball around gt

Only consider programs inside the ball

Deliberately incomplete



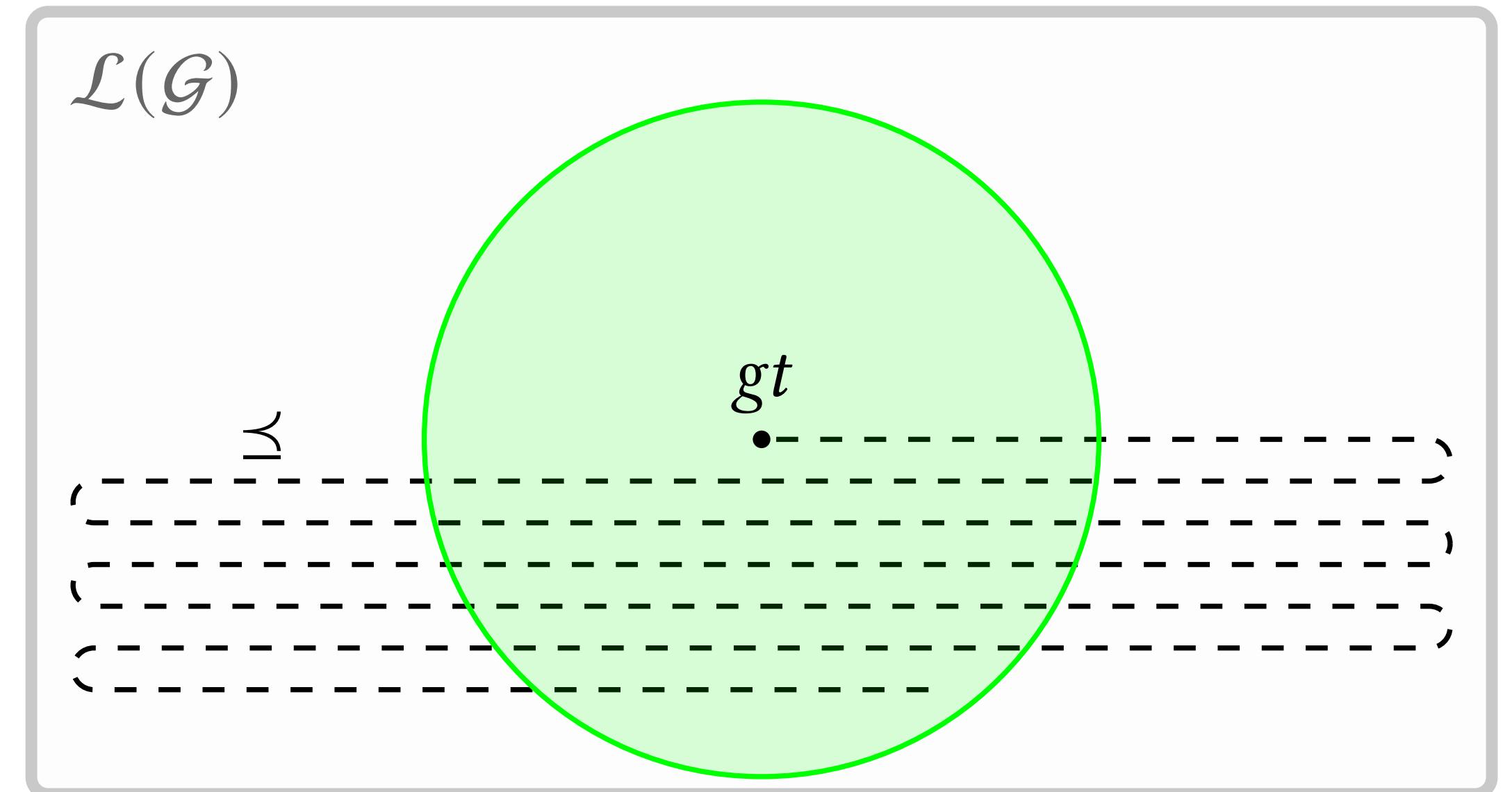
Pruning with a Ball

Use a metric to define a ball around gt

Only consider programs inside the ball

Deliberately incomplete

Control completeness / speed-up via radius



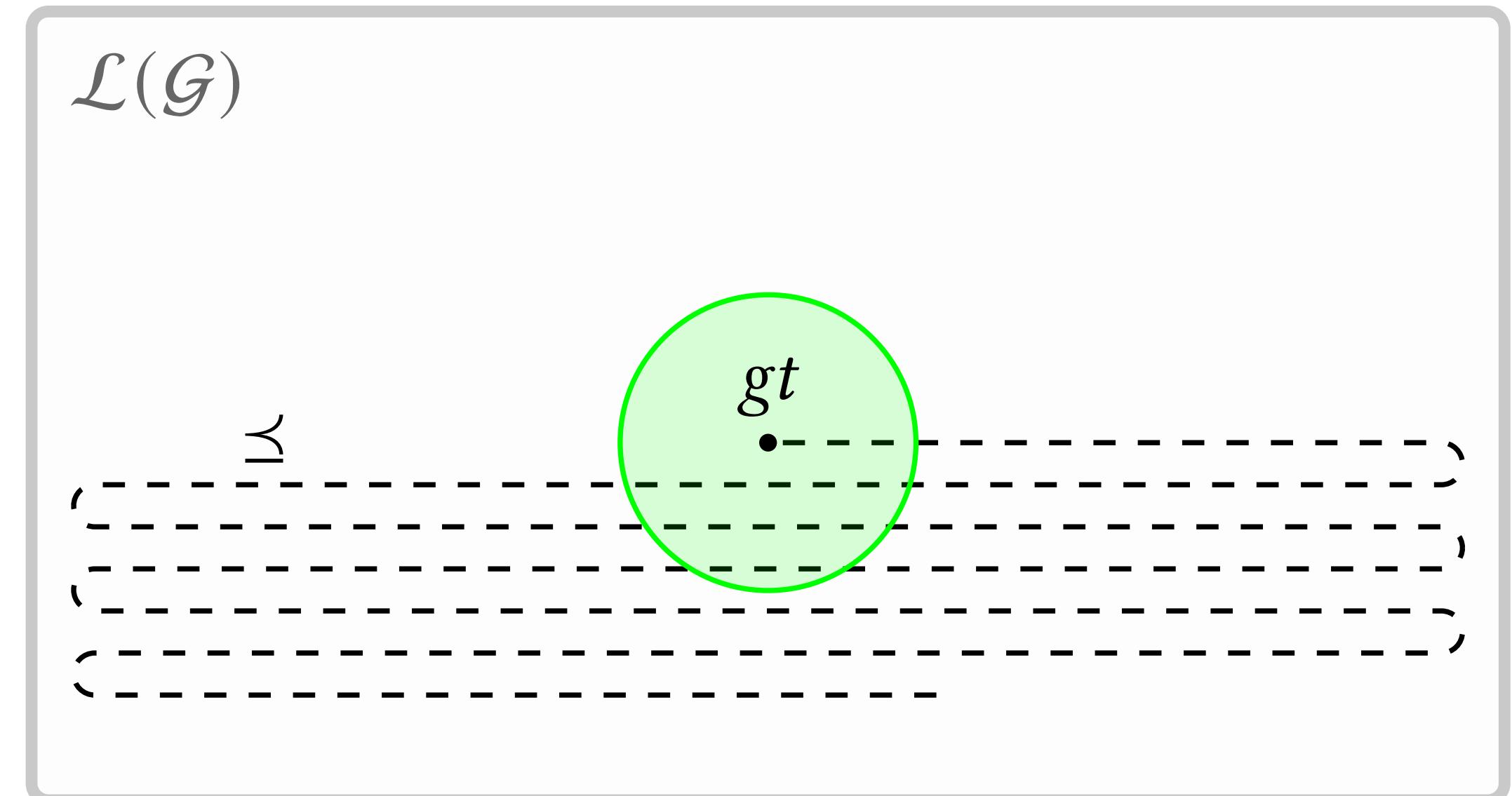
Pruning with a Ball

Use a metric to define a ball around gt

Only consider programs inside the ball

Deliberately incomplete

Control completeness / speed-up via radius



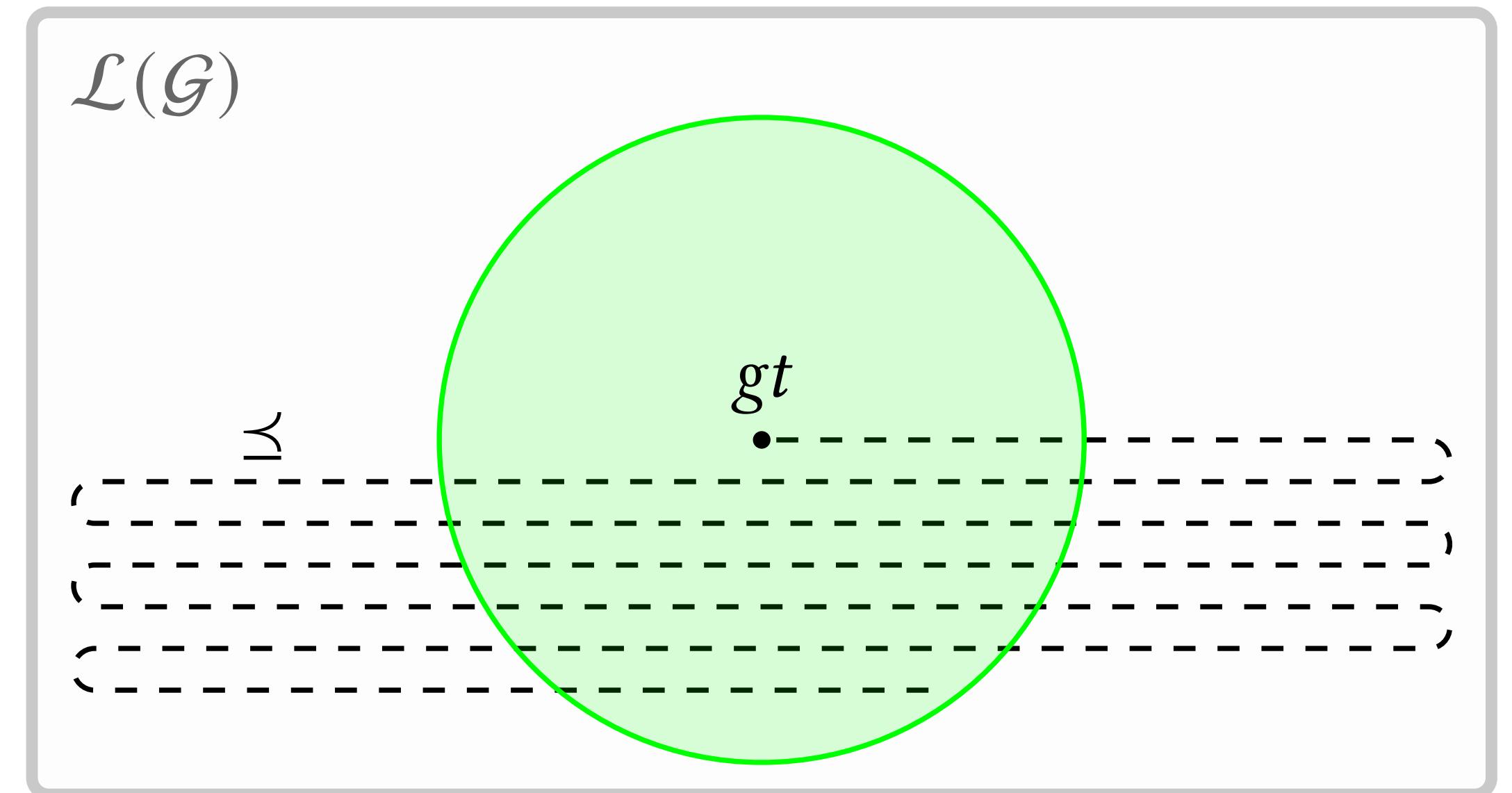
Pruning with a Ball

Use a metric to define a ball around gt

Only consider programs inside the ball

Deliberately incomplete

Control completeness / speed-up via radius



Pruning with a Ball

Use a metric to define a ball around gt

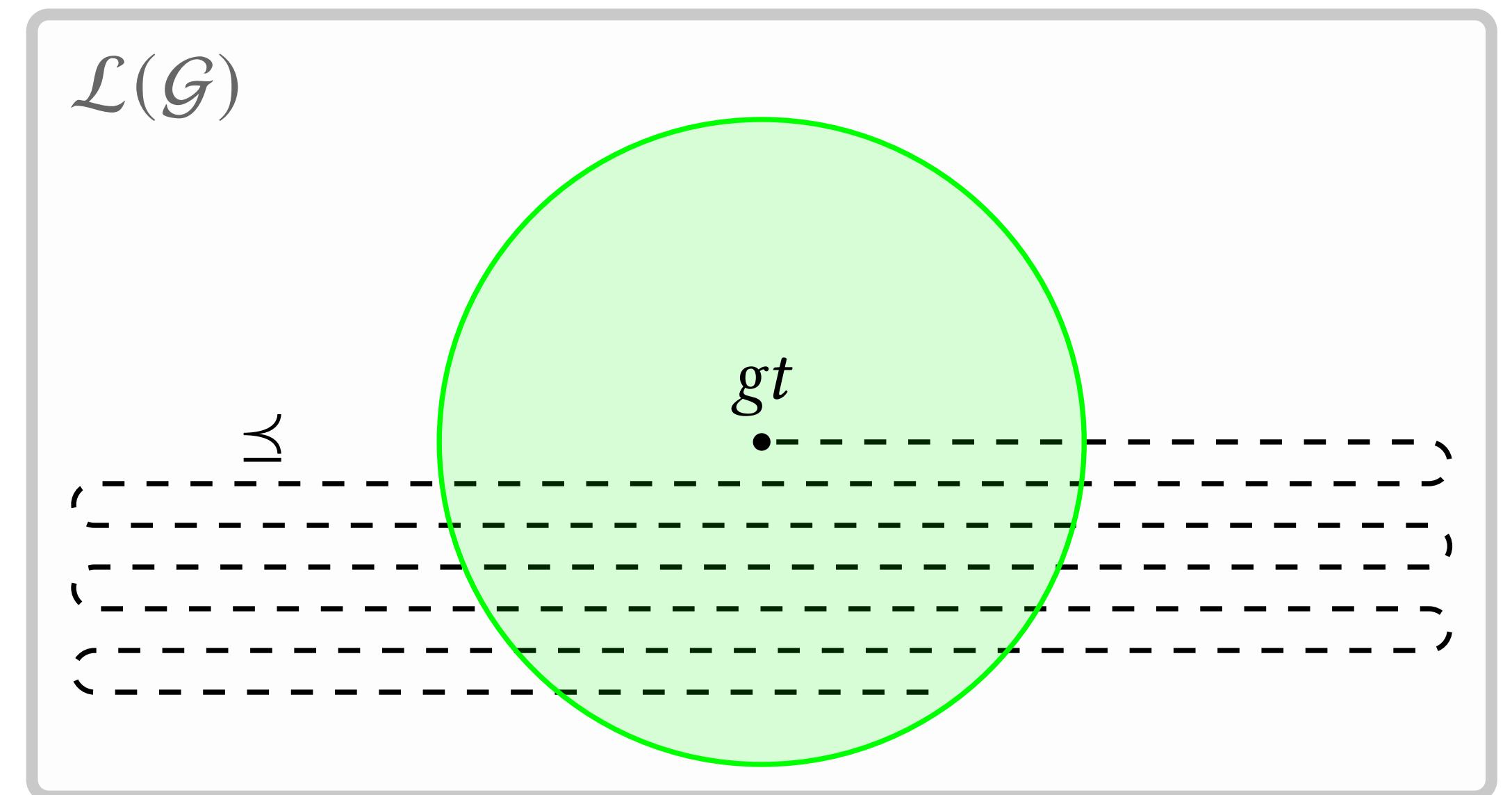
Only consider programs inside the ball

Deliberately incomplete

Control completeness / speed-up via radius

Downside:

Require symmetry



Existing approaches

Existing approaches

have a way to **enumerate**

Existing approaches

have a way to **enumerate**

have a way to **factorize**

Existing approaches

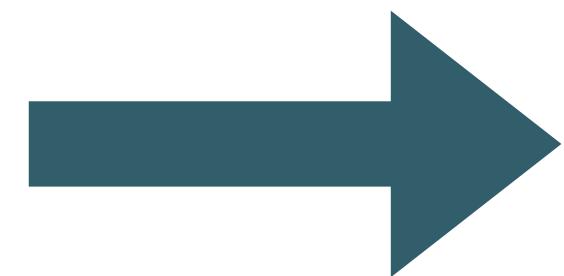
have a way to **enumerate**

have a way to **factorize**

have a way to **prune**
symmetric (undesirable)

Existing approaches

have a way to **enumerate**



Enumeration Order \preceq

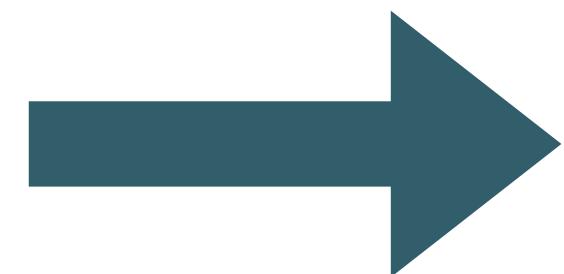
have a way to **factorize**

have a way to **prune**

symmetric (undesirable)

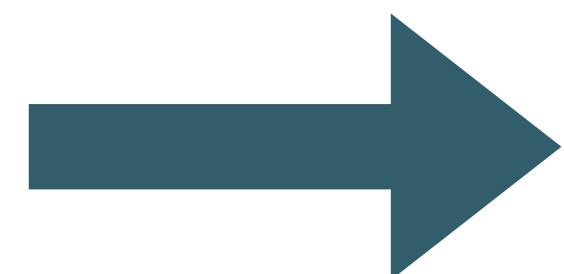
Existing approaches

have a way to **enumerate**



Enumeration Order \preceq

have a way to **factorize**

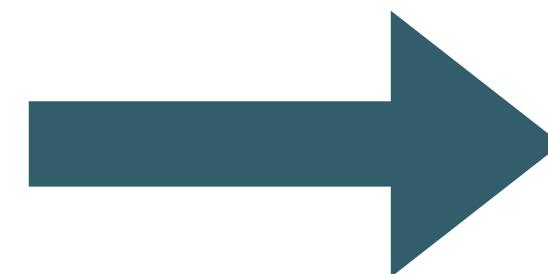


Equivalence \equiv

have a way to **prune**
symmetric (undesirable)

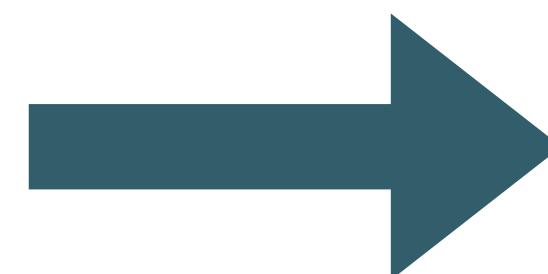
Existing approaches

have a way to **enumerate**



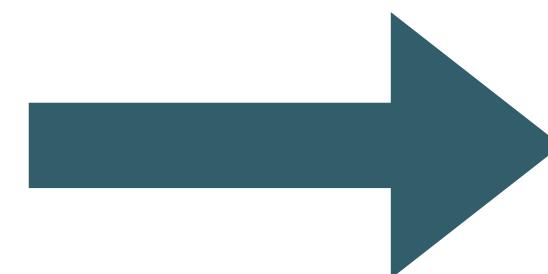
Enumeration Order \preceq

have a way to **factorize**



Equivalence \equiv

have a way to **prune**
symmetric (undesirable)



Metric

3 Parameters of Bottom-Up Enumerative Synthesizers:

Enumeration Order \preceq

Equivalence \equiv

Metric

3 Parameters of Bottom-Up Enumerative Synthesizers:

Enumeration Order \preceq

Equivalence \equiv

Metric

INSIGHT:

Oriented Metric

2 Parameters of Bottom-Up Enumerative Synthesizers:

Enumeration Order \preceq

~~Equivalence \equiv Metric~~

INSIGHT:

Oriented Metric

Oriented Metrics (Orimetrics)

$$m : D \times D \rightarrow \mathbb{R}_{\geq 0}$$

$$m(a, a) = 0 \quad \text{(reflexivity)}$$

$$m(b, a) = 0 \Rightarrow m(a, b) = 0 \quad \text{(symmetry at zero)}$$

$$m(a, c) \leq m(a, b) + m(b, c) \quad \text{(Δ -inequality)}$$

Oriented Metrics (Orimetrics)

$$m : D \times D \rightarrow \mathbb{R}_{\geq 0}$$

$$m(a, a) = 0 \quad \text{(reflexivity)}$$

$$m(b, a) = 0 \Rightarrow m(a, b) = 0 \quad \text{(symmetry at zero)}$$

$$m(a, c) \leq m(a, b) + m(b, c) \quad \text{(Δ -inequality)}$$

Oriented Metrics (Orimetrics)

$$m : D \times D \rightarrow \mathbb{R}_{\geq 0}$$

$$m(a, a) = 0 \quad \text{(reflexivity)}$$

$$m(b, a) = 0 \Rightarrow m(a, b) = 0 \quad \text{(symmetry at zero)}$$

$$m(a, c) \leq m(a, b) + m(b, c) \quad \text{(Δ -inequality)}$$

Allows for **asymmetry**

Oriented Metrics (Orimetrics)

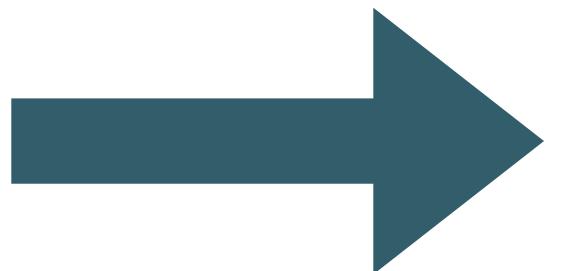
$$m : D \times D \rightarrow \mathbb{R}_{\geq 0}$$

$$m(a, a) = 0 \quad (\text{reflexivity})$$

$$m(b, a) = 0 \Rightarrow m(a, b) = 0 \quad (\text{symmetry at zero})$$

$$m(a, c) \leq m(a, b) + m(b, c) \quad (\Delta\text{-inequality})$$

Allows for **asymmetry**



Better pruning

Oriented Metrics (Orimetrics)

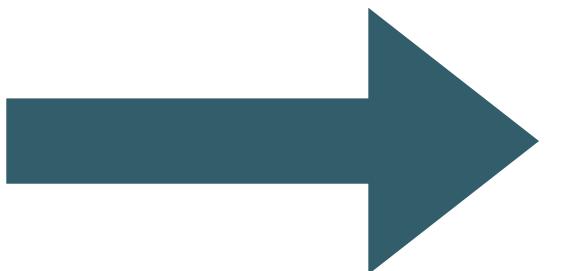
$$m : D \times D \rightarrow \mathbb{R}_{\geq 0}$$

$$m(a, a) = 0 \quad (\text{reflexivity})$$

$$m(b, a) = 0 \Rightarrow m(a, b) = 0 \quad (\text{symmetry at zero})$$

$$m(a, c) \leq m(a, b) + m(b, c) \quad (\Delta\text{-inequality})$$

Allows for **asymmetry**



Better pruning

Induces an equivalence

Oriented Metrics (Orimetrics)

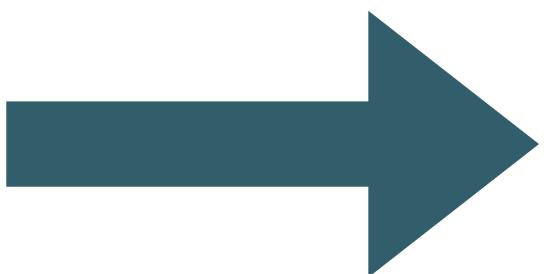
$$m : D \times D \rightarrow \mathbb{R}_{\geq 0}$$

$$m(a, a) = 0 \quad (\text{reflexivity})$$

$$m(b, a) = 0 \Rightarrow m(a, b) = 0 \quad (\text{symmetry at zero})$$

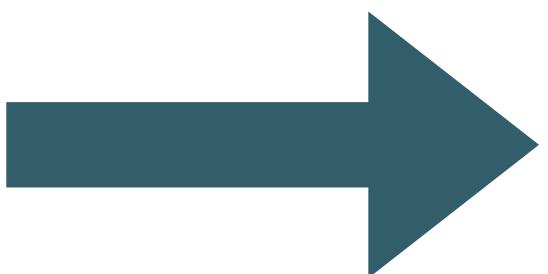
$$m(a, c) \leq m(a, b) + m(b, c) \quad (\Delta\text{-inequality})$$

Allows for **asymmetry**



Better pruning

Induces an equivalence



OE factorization, abstraction

Why asymmetry?

SyGuS operators exhibit **asymmetric behavior**

Asymmetric Behavior: $\text{concat}(\mathcal{S}_1, \mathcal{S}_2)$

Asymmetric Behavior: $\text{concat}(\mathcal{S}_1, \mathcal{S}_2)$

Symmetry requires $m(\text{"POPL"}, \text{"PO"}) = m(\text{"PO"}, \text{"POPL"})$

Asymmetric Behavior: $\text{concat}(\mathcal{S}_1, \mathcal{S}_2)$

Symmetry requires $m("POPL", "PO") = m("PO", "POPL")$

$\text{concat}(\mathcal{S}_1, \mathcal{S}_2)$ produces **super**strings of \mathcal{S}_1 and \mathcal{S}_2

Asymmetric Behavior: $\text{concat}(\mathcal{S}_1, \mathcal{S}_2)$

Symmetry requires $m(\text{"POPL"}, \text{"PO"}) = m(\text{"PO"}, \text{"POPL"})$

$\text{concat}(\mathcal{S}_1, \mathcal{S}_2)$ produces **super**strings of \mathcal{S}_1 and \mathcal{S}_2

"POPL" is a **super**string of "PO"

Asymmetric Behavior: $\text{concat}(\mathcal{S}_1, \mathcal{S}_2)$

Symmetry requires $m(\text{"POPL"}, \text{"PO"}) = m(\text{"PO"}, \text{"POPL"})$

$\text{concat}(\mathcal{S}_1, \mathcal{S}_2)$ produces **super**strings of \mathcal{S}_1 and \mathcal{S}_2

"POPL" is a **super**string of "PO"

"POPL" cannot produce "PO" with $\text{concat}(\mathcal{S}_1, \mathcal{S}_2)$

Asymmetric Behavior: $\text{concat}(\mathcal{S}_1, \mathcal{S}_2)$

Symmetry requires $m("POPL", "PO") = m("PO", "POPL")$

$\text{concat}(\mathcal{S}_1, \mathcal{S}_2)$ produces **super**strings of \mathcal{S}_1 and \mathcal{S}_2

"POPL" is a **super**string of "PO"

"POPL" cannot produce "PO" with $\text{concat}(\mathcal{S}_1, \mathcal{S}_2)$

"PO" is a **sub**string of "POPL"

Asymmetric Behavior: $\text{concat}(\mathcal{S}_1, \mathcal{S}_2)$

Symmetry requires $m("POPL", "PO") = m("PO", "POPL")$

$\text{concat}(\mathcal{S}_1, \mathcal{S}_2)$ produces **super**strings of \mathcal{S}_1 and \mathcal{S}_2

"POPL" is a **super**string of "PO"

"POPL" cannot produce "PO" with $\text{concat}(\mathcal{S}_1, \mathcal{S}_2)$

"PO" is a **sub**string of "POPL"

"PO" might help produce "POPL" with $\text{concat}(\mathcal{S}_1, \mathcal{S}_2)$

Asymmetric Behavior: $\text{concat}(\mathcal{S}_1, \mathcal{S}_2)$

Symmetry requires $m(\text{"POPL"}, \text{"PO"}) = m(\text{"PO"}, \text{"POPL"})$

big small

$\text{concat}(\mathcal{S}_1, \mathcal{S}_2)$ produces **super**strings of \mathcal{S}_1 and \mathcal{S}_2

"POPL" is a **super**string of "PO"

"POPL" cannot produce "PO" with $\text{concat}(\mathcal{S}_1, \mathcal{S}_2)$

"PO" is a **sub**string of "POPL"

"PO" might help produce "POPL" with $\text{concat}(\mathcal{S}_1, \mathcal{S}_2)$

Asymmetric Behavior: $\text{replace}(\mathcal{S}_1, \mathcal{S}_2, \epsilon)$

Symmetry requires $m(\text{"POPL"}, \text{"PO"}) = m(\text{"PO"}, \text{"POPL"})$

Asymmetric Behavior: $\text{replace}(\mathcal{S}_1, \mathcal{S}_2, \epsilon)$

Symmetry requires $m("POPL", "PO") = m("PO", "POPL")$

$\text{replace}(\mathcal{S}_1, \mathcal{S}_2, \epsilon)$ produces **sub**strings of \mathcal{S}_1

Asymmetric Behavior: $\text{replace}(\mathcal{S}_1, \mathcal{S}_2, \epsilon)$

Symmetry requires $m(\text{"POPL"}, \text{"PO"}) = m(\text{"PO"}, \text{"POPL"})$

$\text{replace}(\mathcal{S}_1, \mathcal{S}_2, \epsilon)$ produces **sub**strings of \mathcal{S}_1

"POPL" is a **super**string of "PO"

"POPL" might help produce "PO" with $\text{replace}(\mathcal{S}_1, \mathcal{S}_2, \epsilon)$

Asymmetric Behavior: $\text{replace}(\mathcal{S}_1, \mathcal{S}_2, \epsilon)$

Symmetry requires $m(\text{"POPL"}, \text{"PO"}) = m(\text{"PO"}, \text{"POPL"})$

$\text{replace}(\mathcal{S}_1, \mathcal{S}_2, \epsilon)$ produces **sub**strings of \mathcal{S}_1

"POPL" is a **super**string of "PO"

"POPL" might help produce "PO" with $\text{replace}(\mathcal{S}_1, \mathcal{S}_2, \epsilon)$

"PO" is a **sub**string of "POPL"

"PO" cannot produce "POPL" with $\text{replace}(\mathcal{S}_1, \mathcal{S}_2, \epsilon)$

Asymmetric Behavior: $\text{replace}(\mathcal{S}_1, \mathcal{S}_2, \epsilon)$

Symmetry requires $m(\text{"POPL"}, \text{"PO"}) = m(\text{"PO"}, \text{"POPL"})$

small big

$\text{replace}(\mathcal{S}_1, \mathcal{S}_2, \epsilon)$ produces **sub**strings of \mathcal{S}_1

"POPL" is a **super**string of "PO"

"POPL" might help produce "PO" with $\text{replace}(\mathcal{S}_1, \mathcal{S}_2, \epsilon)$

"PO" is a **sub**string of "POPL"

"PO" cannot produce "POPL" with $\text{replace}(\mathcal{S}_1, \mathcal{S}_2, \epsilon)$

Asymmetric Behavior: $\text{and}(\mathcal{S}_1, \mathcal{S}_2)$

Asymmetric Behavior: $\text{and}(\mathcal{S}_1, \mathcal{S}_2)$

Symmetry requires $m(110, 100) = m(100, 110)$

Asymmetric Behavior: $\text{and}(\mathcal{S}_1, \mathcal{S}_2)$

Symmetry requires $m(110, 100) = m(100, 110)$

$\text{and}(\mathcal{S}_1, \mathcal{S}_2)$ produces bitvectors bitwise **less** than \mathcal{S}_1 and \mathcal{S}_2

Asymmetric Behavior: $\text{and}(\mathcal{S}_1, \mathcal{S}_2)$

Symmetry requires $m(110, 100) = m(100, 110)$

$\text{and}(\mathcal{S}_1, \mathcal{S}_2)$ produces bitvectors bitwise **less** than \mathcal{S}_1 and \mathcal{S}_2

110 is bitwise **greater** than 100

Asymmetric Behavior: $\text{and}(\mathcal{S}_1, \mathcal{S}_2)$

Symmetry requires $m(110, 100) = m(100, 110)$

$\text{and}(\mathcal{S}_1, \mathcal{S}_2)$ produces bitvectors bitwise **less** than \mathcal{S}_1 and \mathcal{S}_2

110 is bitwise **greater** than 100

110 might help produce 100 with $\text{and}(\mathcal{S}_1, \mathcal{S}_2)$

Asymmetric Behavior: $\text{and}(\mathcal{S}_1, \mathcal{S}_2)$

Symmetry requires $m(110, 100) = m(100, 110)$

$\text{and}(\mathcal{S}_1, \mathcal{S}_2)$ produces bitvectors bitwise **less** than \mathcal{S}_1 and \mathcal{S}_2

110 is bitwise **greater** than 100

110 might help produce 100 with $\text{and}(\mathcal{S}_1, \mathcal{S}_2)$

100 is bitwise **less** than 110

Asymmetric Behavior: $\text{and}(\mathcal{S}_1, \mathcal{S}_2)$

Symmetry requires $m(110, 100) = m(100, 110)$

$\text{and}(\mathcal{S}_1, \mathcal{S}_2)$ produces bitvectors bitwise **less** than \mathcal{S}_1 and \mathcal{S}_2

110 is bitwise **greater** than 100

110 might help produce 100 with $\text{and}(\mathcal{S}_1, \mathcal{S}_2)$

100 is bitwise **less** than 110

100 cannot produce 110 with $\text{and}(\mathcal{S}_1, \mathcal{S}_2)$

Asymmetric Behavior: $\text{and}(\mathcal{S}_1, \mathcal{S}_2)$

Symmetry requires $m(110, 100) = m(100, 110)$

small big

$\text{and}(\mathcal{S}_1, \mathcal{S}_2)$ produces bitvectors bitwise **less** than \mathcal{S}_1 and \mathcal{S}_2

110 is bitwise **greater** than 100

110 might help produce 100 with $\text{and}(\mathcal{S}_1, \mathcal{S}_2)$

100 is bitwise **less** than 110

100 cannot produce 110 with $\text{and}(\mathcal{S}_1, \mathcal{S}_2)$

Asymmetric Behavior: $\text{and}(\mathcal{S}_1, \mathcal{S}_2)$

Symmetry requires $m(110, 100) = m(100, 110)$

small big

$\text{and}(\mathcal{S}_1, \mathcal{S}_2)$ produces bitvectors bitwise **less** than \mathcal{S}_1 and \mathcal{S}_2

110 is bitwise **greater** than 100

110 might help produce 100 with $\text{and}(\mathcal{S}_1, \mathcal{S}_2)$

100 is bitwise **less** than 110

100 cannot produce 110 with $\text{and}(\mathcal{S}_1, \mathcal{S}_2)$

We need **asymmetry**

Oriented Metrics (Orimetrics)

$$m : D \times D \rightarrow \mathbb{R}_{\geq 0}$$

$$m(a, a) = 0 \quad (\text{reflexivity})$$

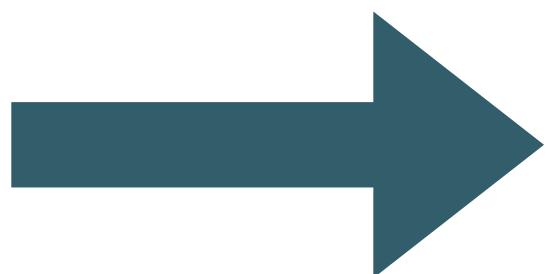
$$m(b, a) = 0 \Rightarrow m(a, b) = 0 \quad (\text{symmetry at zero})$$

$$m(a, c) \leq m(a, b) + m(b, c) \quad (\Delta\text{-inequality})$$

Allows for **asymmetry**

Better pruning

Induces an equivalence



OE factorization, abstraction

Oriented Metrics (Orimetrics)

$$m : D \times D \rightarrow \mathbb{R}_{\geq 0}$$

$$m(a, a) = 0 \quad \text{(reflexivity)}$$

$$m(b, a) = 0 \Rightarrow m(a, b) = 0 \quad \text{(symmetry at zero)}$$

$$m(a, c) \leq m(a, b) + m(b, c) \quad \text{(Δ -inequality)}$$

Equivalence at distance 0: $a \equiv_m b$ if $m(a, b) = 0$

Oriented Metrics (Orimetrics)

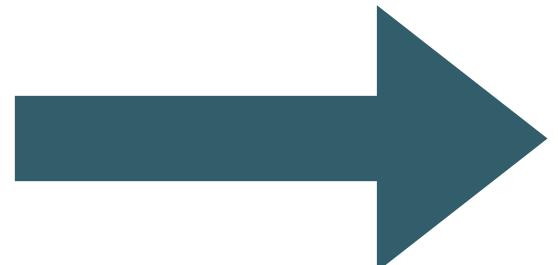
$$m : D \times D \rightarrow \mathbb{R}_{\geq 0}$$

$$m(a, a) = 0 \quad \text{(reflexivity)}$$

$$m(b, a) = 0 \Rightarrow m(a, b) = 0 \quad \text{(symmetry at zero)}$$

$$m(a, c) \leq m(a, b) + m(b, c) \quad \text{(Δ -inequality)}$$

Equivalence at distance 0: $a \equiv_m b$ if $m(a, b) = 0$



OE factorization, abstraction

Oriented Metrics (Orimetrics)

$$m : D \times D \rightarrow \mathbb{R}_{\geq 0}$$

$$m(a, a) = 0 \quad (\text{reflexivity})$$

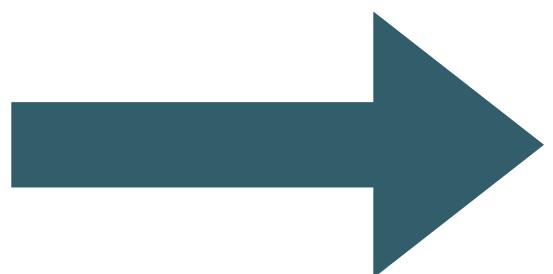
$$m(b, a) = 0 \Rightarrow m(a, b) = 0 \quad (\text{symmetry at zero})$$

$$m(a, c) \leq m(a, b) + m(b, c) \quad (\Delta\text{-inequality})$$

Allows for **asymmetry**

Better pruning

Induces an equivalence



OE factorization, abstraction

How to design an orimetric?

1. Construct an orimetric m on the data domain
2. Lift m to programs

Oriented Metric for $\text{replace}(\mathcal{S}_1, \mathcal{S}_2, \epsilon)$

$$m : D \times D \rightarrow \mathbb{R}_{\geq 0}$$

Reward superstrings

Oriented Metric for $\text{replace}(\mathcal{S}_1, \mathcal{S}_2, \epsilon)$

$$m : D \times D \rightarrow \mathbb{R}_{\geq 0}$$

Reward superstrings

1. For strings i, o :

Reward superstrings

1. For strings i, o : $m(i, o) = \begin{cases} \text{len}(i) - \text{len}(o) & \text{if } i \text{ is a superstring of } o \\ 100 + |\text{len}(i) - \text{len}(o)| & \text{otherwise} \end{cases}$

Oriented Metric for $\text{replace}(\mathcal{S}_1, \mathcal{S}_2, \epsilon)$

$m : D \times D \rightarrow \mathbb{R}_{\geq 0}$

Reward superstrings

1. For strings i, o : $m(i, o) = \begin{cases} \text{len}(i) - \text{len}(o) & \text{if } i \text{ is a superstring of } o \\ 100 + |\text{len}(i) - \text{len}(o)| & \text{otherwise} \end{cases}$

$$m(\text{"PO"}, \text{"POPL"}) = 102$$

Oriented Metric for $\text{replace}(\mathcal{S}_1, \mathcal{S}_2, \epsilon)$

$m : D \times D \rightarrow \mathbb{R}_{\geq 0}$

Reward superstrings

1. For strings i, o : $m(i, o) = \begin{cases} \text{len}(i) - \text{len}(o) & \text{if } i \text{ is a superstring of } o \\ 100 + |\text{len}(i) - \text{len}(o)| & \text{otherwise} \end{cases}$

$$m(\text{"PO"}, \text{"POPL"}) = 102$$

$$m(\text{"POPL"}, \text{"PO"}) = 2$$

Oriented Metric for $\text{replace}(\mathcal{S}_1, \mathcal{S}_2, \epsilon)$

$m : D \times D \rightarrow \mathbb{R}_{\geq 0}$

Reward superstrings

1. For strings i, o : $m(i, o) = \begin{cases} \text{len}(i) - \text{len}(o) & \text{if } i \text{ is a superstring of } o \\ 100 + |\text{len}(i) - \text{len}(o)| & \text{otherwise} \end{cases}$

$$m(\text{"PO"}, \text{"POPL"}) = 102$$

$$m(\text{"POPL"}, \text{"PO"}) = 2$$

2. For programs p, q:

Oriented Metric for $\text{replace}(\mathcal{S}_1, \mathcal{S}_2, \epsilon)$

$m : D \times D \rightarrow \mathbb{R}_{\geq 0}$

Reward superstrings

1. For strings i, o : $m(i, o) = \begin{cases} \text{len}(i) - \text{len}(o) & \text{if } i \text{ is a superstring of } o \\ 100 + |\text{len}(i) - \text{len}(o)| & \text{otherwise} \end{cases}$

$$m(\text{"PO"}, \text{"POPL"}) = 102$$

$$m(\text{"POPL"}, \text{"PO"}) = 2$$

2. For programs p, q : $m_{In}(p, q) = \sum_{i \in In} m(p(i), q(i))$

Pruning with an Orimetric

<i>In</i>	<i>Out</i>
"POPL_Conf"	"POPL"
"Rennes_City"	"Rennes"
"PLDI_Conf"	"PLDI"
"Seoul_City"	"Seoul"

$$m(i, o) = \begin{cases} \text{len}(i) - \text{len}(o) & \text{if } i \text{ is a superstring of } o \\ 100 + |\text{len}(i) - \text{len}(o)| & \text{otherwise} \end{cases}$$

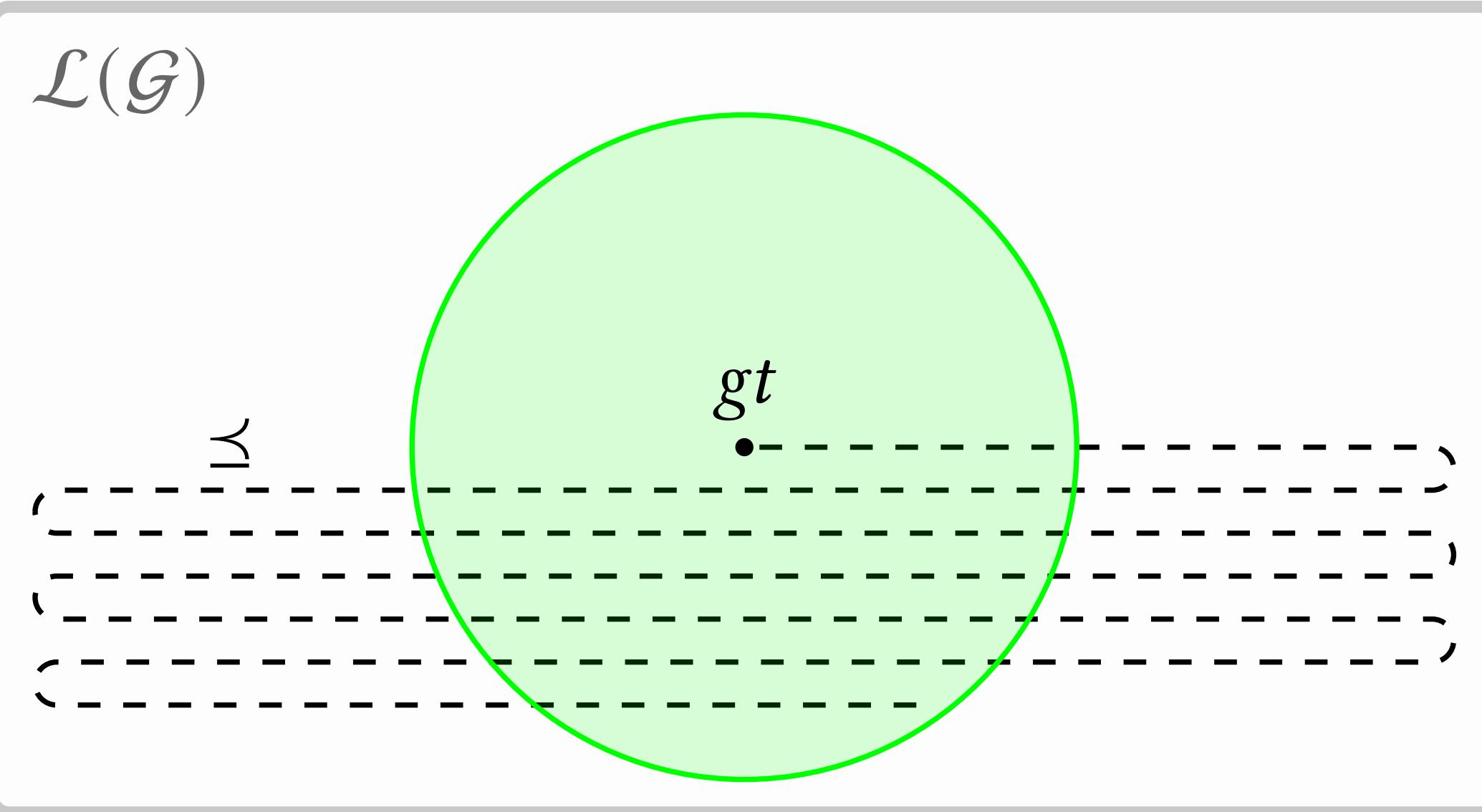
$$m_{In}(p, q) = \sum_{i \in In} m(p(i), q(i))$$

Pruning with an Orimetric

<i>In</i>	<i>Out</i>
"POPL_Conf"	"POPL"
"Rennes_City"	"Rennes"
"PLDI_Conf"	"PLDI"
"Seoul_City"	"Seoul"

$$m(i, o) = \begin{cases} \text{len}(i) - \text{len}(o) & \text{if } i \text{ is a superstring of } o \\ 100 + |\text{len}(i) - \text{len}(o)| & \text{otherwise} \end{cases}$$

$$m_{In}(p, q) = \sum_{i \in In} m(p(i), q(i))$$



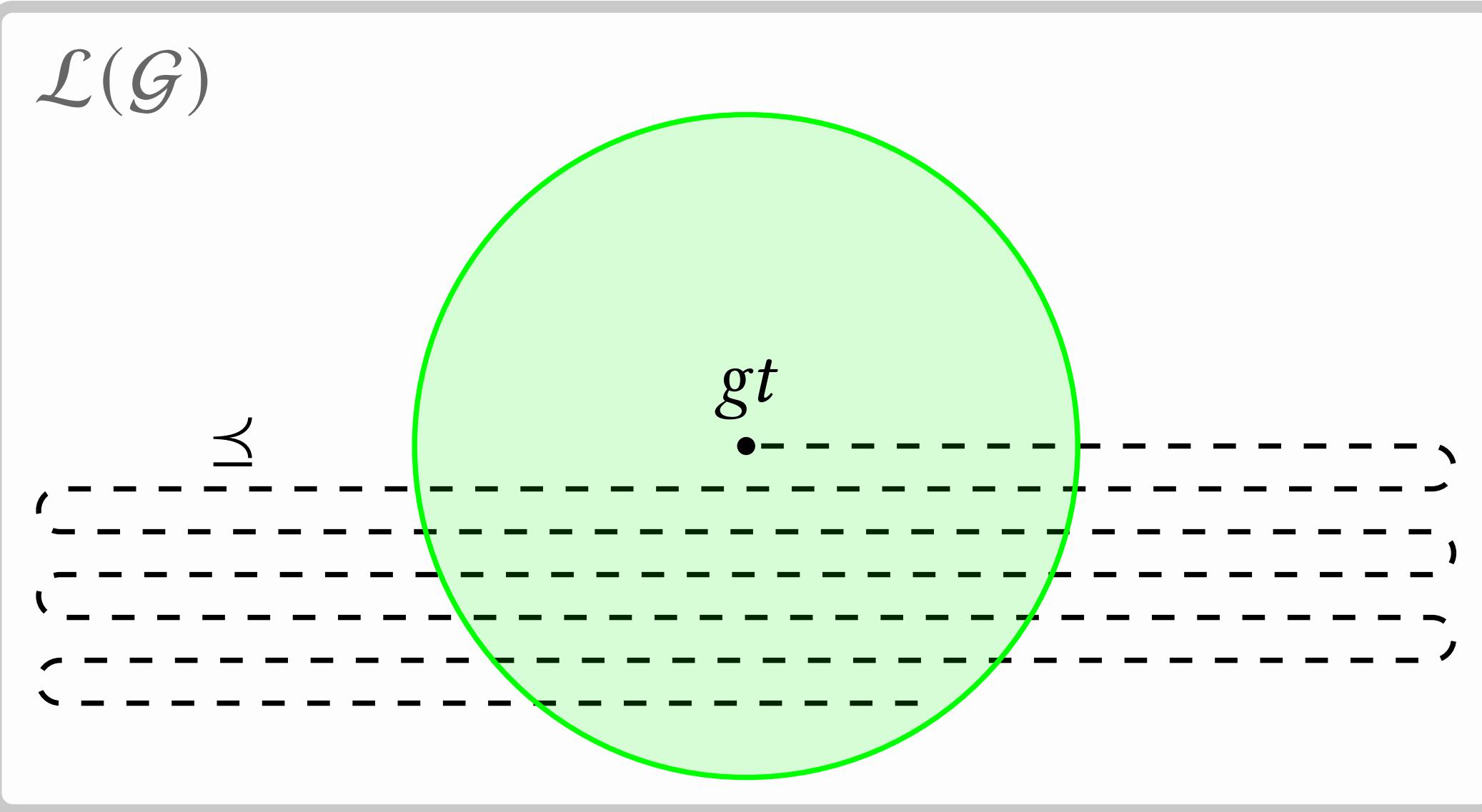
Set radius r to 100.

Pruning with an Orimetric

<i>In</i>	<i>Out</i>
"POPL_Conf"	"POPL"
"Rennes_City"	"Rennes"
"PLDI_Conf"	"PLDI"
"Seoul_City"	"Seoul"

$$m(i, o) = \begin{cases} \text{len}(i) - \text{len}(o) & \text{if } i \text{ is a superstring of } o \\ 100 + |\text{len}(i) - \text{len}(o)| & \text{otherwise} \end{cases}$$

$$m_{In}(p, q) = \sum_{i \in In} m(p(i), q(i))$$



"_City"."_City"

Set radius r to 100.

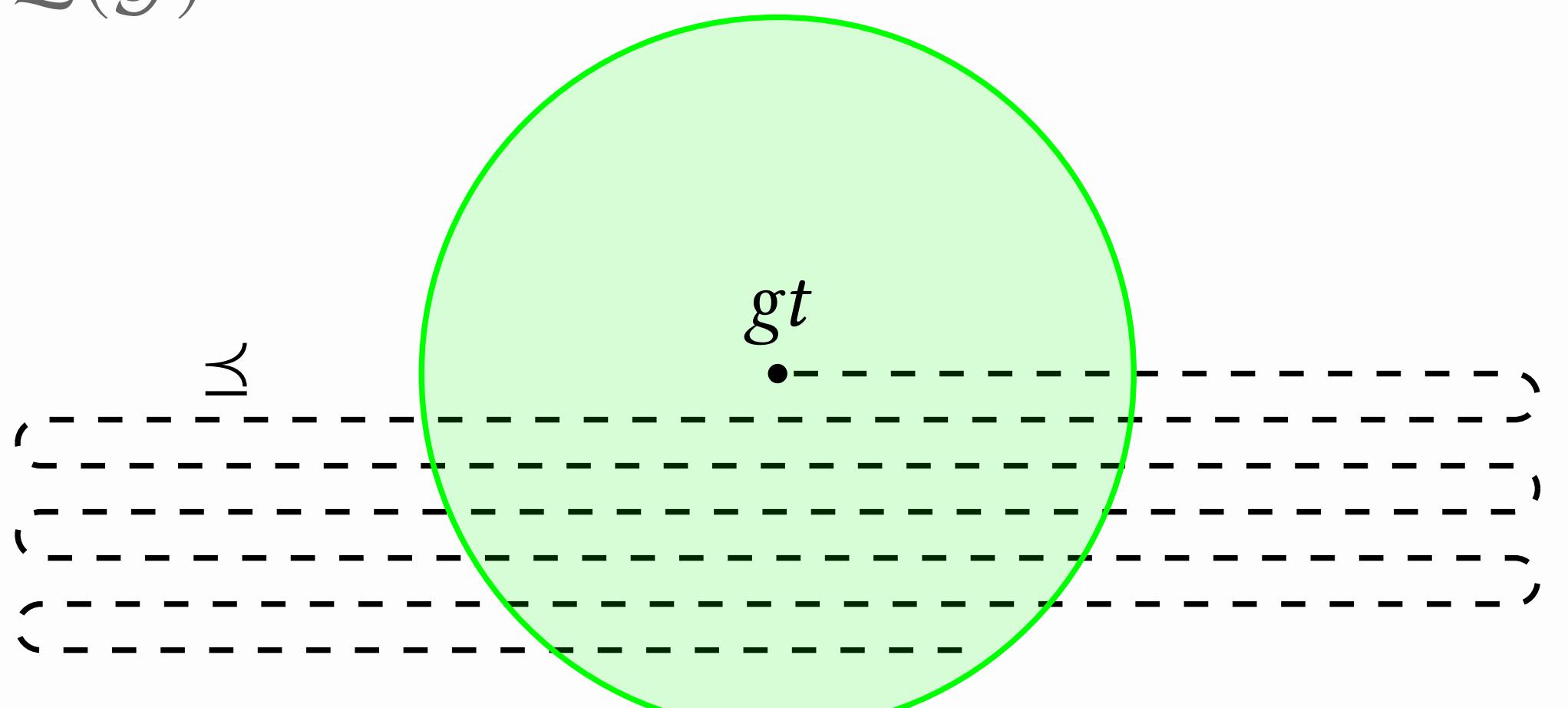
Pruning with an Orimetric

<i>In</i>	<i>Out</i>
"POPL_Conf"	"POPL"
"Rennes_City"	"Rennes"
"PLDI_Conf"	"PLDI"
"Seoul_City"	"Seoul"

$$m(i, o) = \begin{cases} \text{len}(i) - \text{len}(o) & \text{if } i \text{ is a superstring of } o \\ 100 + |\text{len}(i) - \text{len}(o)| & \text{otherwise} \end{cases}$$

$$m_{In}(p, q) = \sum_{i \in In} m(p(i), q(i))$$

$\mathcal{L}(\mathcal{G})$



Set radius r to 100.

"_City"._City"
 $m_{In}("City"._City, gt) > 100$

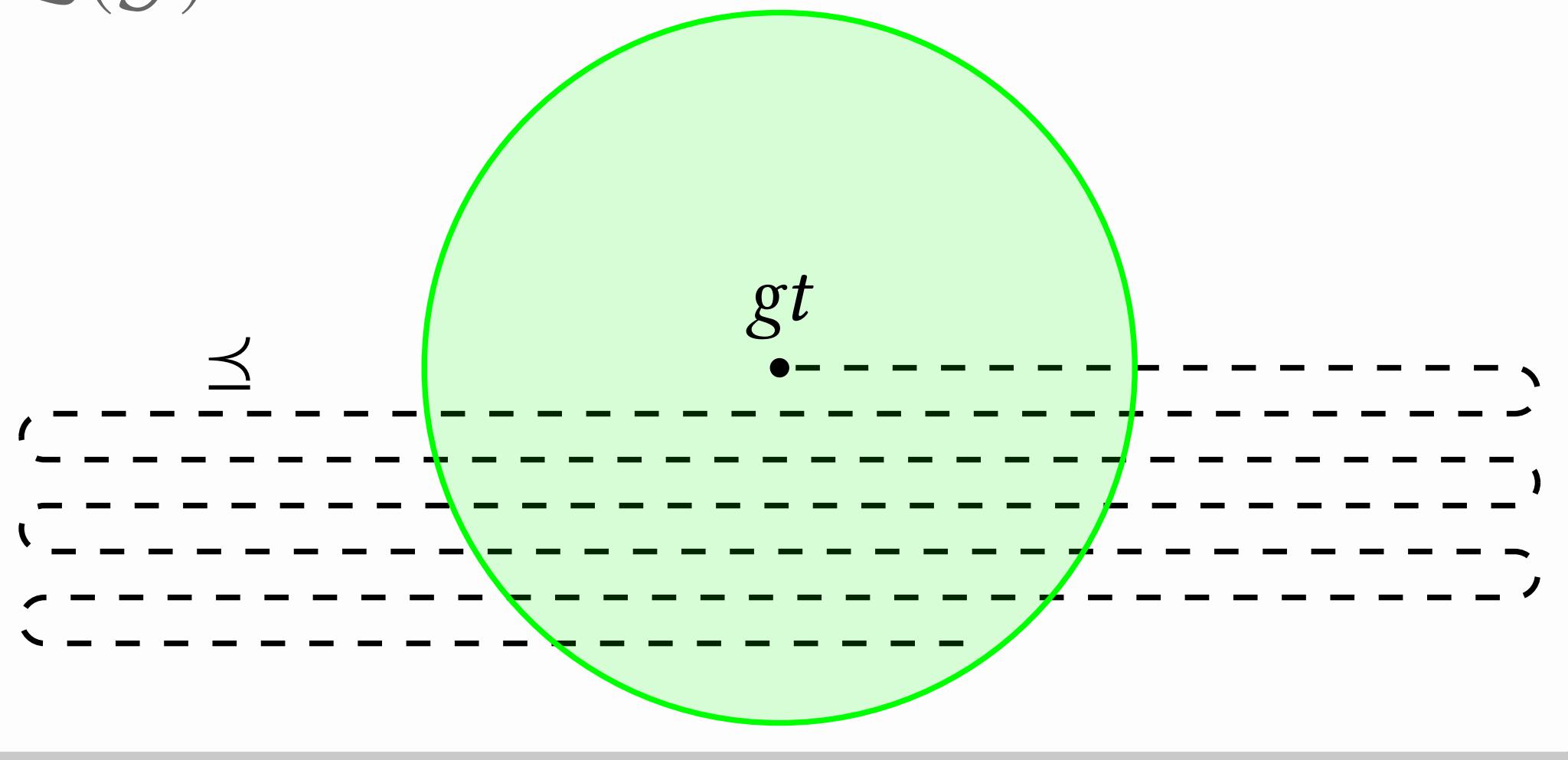
Pruning with an Orimetric

<i>In</i>	<i>Out</i>
"POPL_Conf"	"POPL"
"Rennes_City"	"Rennes"
"PLDI_Conf"	"PLDI"
"Seoul_City"	"Seoul"

$$m(i, o) = \begin{cases} \text{len}(i) - \text{len}(o) & \text{if } i \text{ is a superstring of } o \\ 100 + |\text{len}(i) - \text{len}(o)| & \text{otherwise} \end{cases}$$

$$m_{In}(p, q) = \sum_{i \in In} m(p(i), q(i))$$

$\mathcal{L}(\mathcal{G})$



Set radius r to 100.

"_City_X_City"

$$m_{In}("City". "City", gt) > 100$$

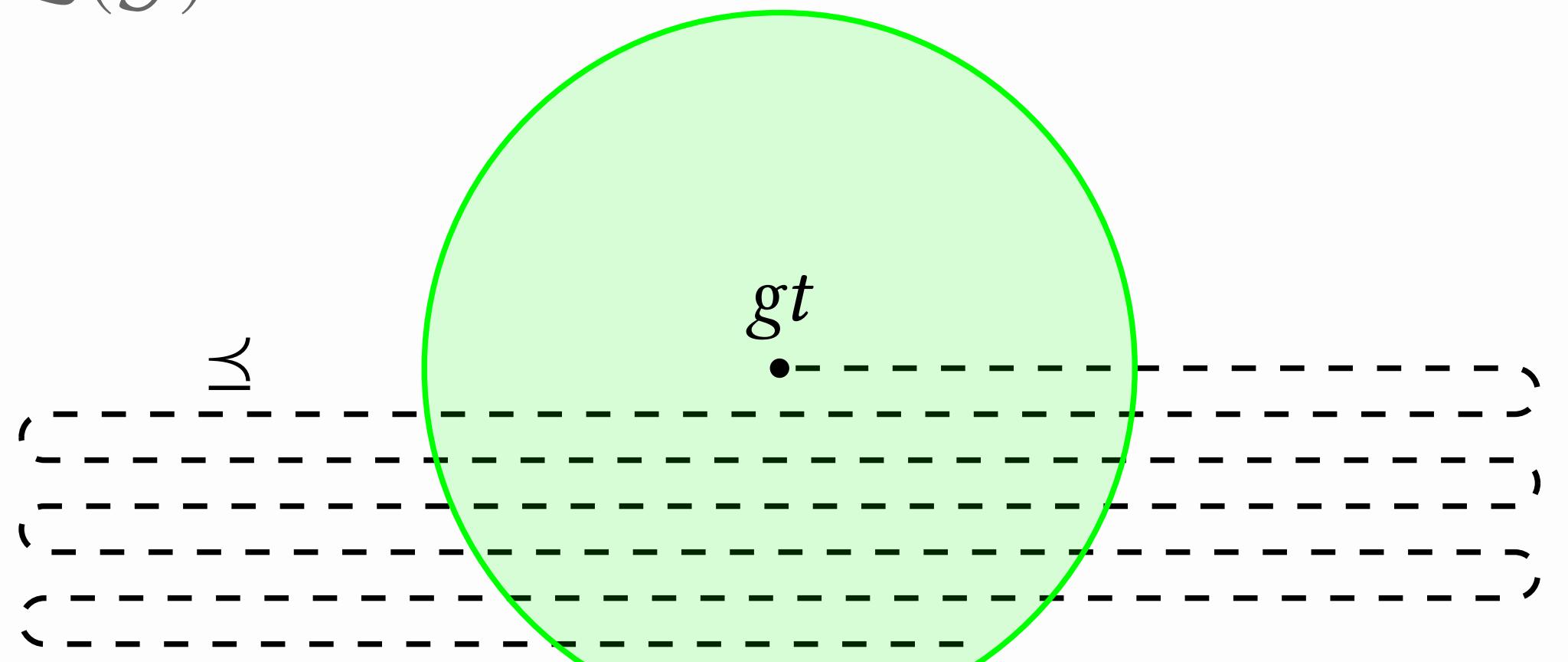
Pruning with an Orimetric

<i>In</i>	<i>Out</i>
"POPL_Conf"	"POPL"
"Rennes_City"	"Rennes"
"PLDI_Conf"	"PLDI"
"Seoul_City"	"Seoul"

$$m(i, o) = \begin{cases} \text{len}(i) - \text{len}(o) & \text{if } i \text{ is a superstring of } o \\ 100 + |\text{len}(i) - \text{len}(o)| & \text{otherwise} \end{cases}$$

$$m_{In}(p, q) = \sum_{i \in In} m(p(i), q(i))$$

$\mathcal{L}(\mathcal{G})$



Set radius r to 100.

Method	P_1	P_2	P_3	P_4	P_5	P_6	P_7
No Pruning or Factorization	4	-	16	64	128	1280	4352
OE Factorization	4	-	9	6	27	56	119
Orimetric Pruning (OP)	4	-	7	18	56	323	929

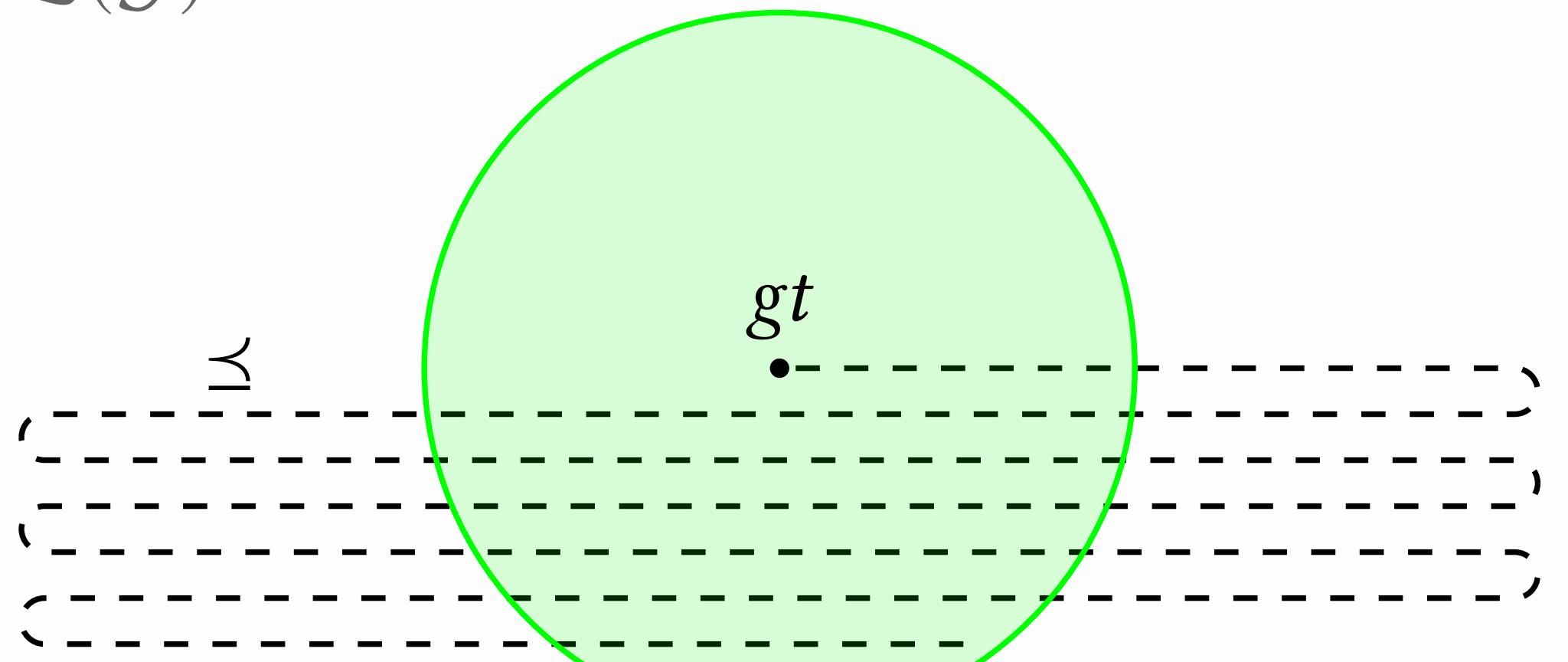
Factorizing with an Orimetric

<i>In</i>	<i>Out</i>
"POPL_Conf"	"POPL"
"Rennes_City"	"Rennes"
"PLDI_Conf"	"PLDI"
"Seoul_City"	"Seoul"

$$m(i, o) = \begin{cases} \text{len}(i) - \text{len}(o) & \text{if } i \text{ is a superstring of } o \\ 100 + |\text{len}(i) - \text{len}(o)| & \text{otherwise} \end{cases}$$

$$m_{In}(p, q) = \sum_{i \in In} m(p(i), q(i))$$

$\mathcal{L}(\mathcal{G})$



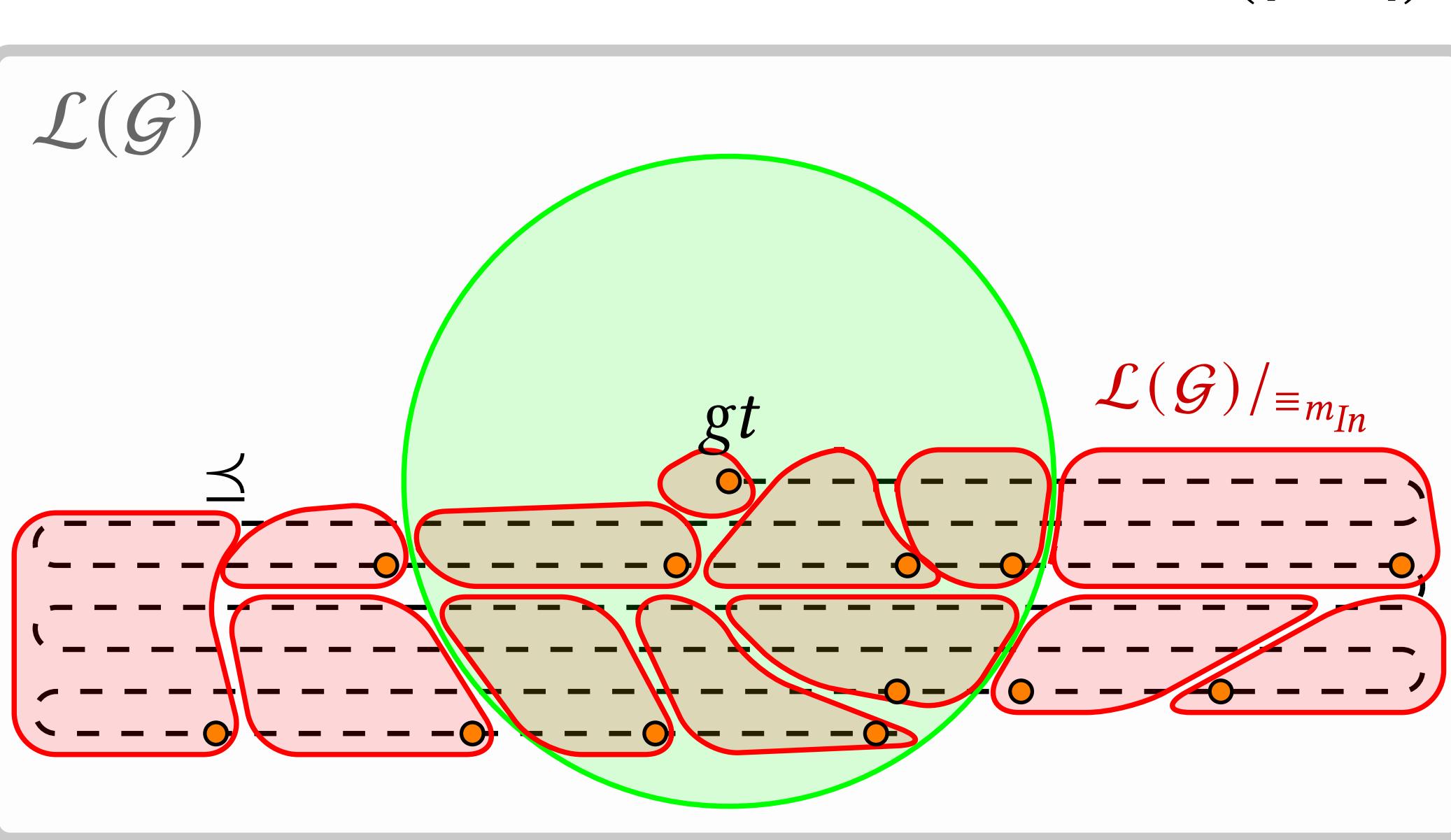
Method	P_1	P_2	P_3	P_4	P_5	P_6	P_7
No Pruning or Factorization	4	-	16	64	128	1280	4352
OE Factorization	4	-	9	6	27	56	119
Orimetric Pruning (OP)	4	-	7	18	56	323	929

Factorizing with an Orimetric

<i>In</i>	<i>Out</i>
"POPL_Conf"	"POPL"
"Rennes_City"	"Rennes"
"PLDI_Conf"	"PLDI"
"Seoul_City"	"Seoul"

$$m(i, o) = \begin{cases} \text{len}(i) - \text{len}(o) & \text{if } i \text{ is a superstring of } o \\ 100 + |\text{len}(i) - \text{len}(o)| & \text{otherwise} \end{cases}$$

$$m_{In}(p, q) = \sum_{i \in In} m(p(i), q(i))$$



Method	P_1	P_2	P_3	P_4	P_5	P_6	P_7
No Pruning or Factorization	4	-	16	64	128	1280	4352
OE Factorization	4	-	9	6	27	56	119
Orimetric Pruning (OP)	4	-	7	18	56	323	929

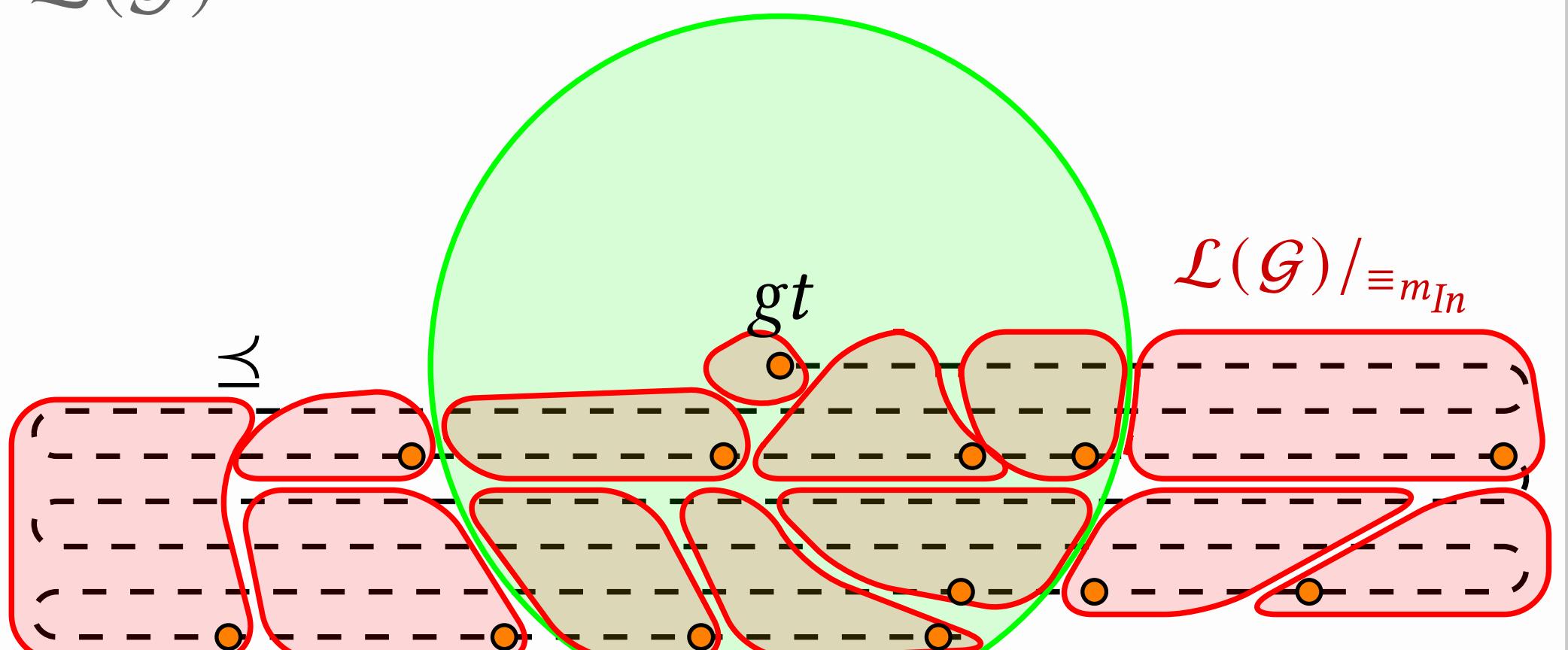
Factorizing with an Orimetric

<i>In</i>	<i>Out</i>
"POPL_Conf"	"POPL"
"Rennes_City"	"Rennes"
"PLDI_Conf"	"PLDI"
"Seoul_City"	"Seoul"

$$m(i, o) = \begin{cases} \text{len}(i) - \text{len}(o) & \text{if } i \text{ is a superstring of } o \\ 100 + |\text{len}(i) - \text{len}(o)| & \text{otherwise} \end{cases}$$

$$m_{In}(p, q) = \sum_{i \in In} m(p(i), q(i))$$

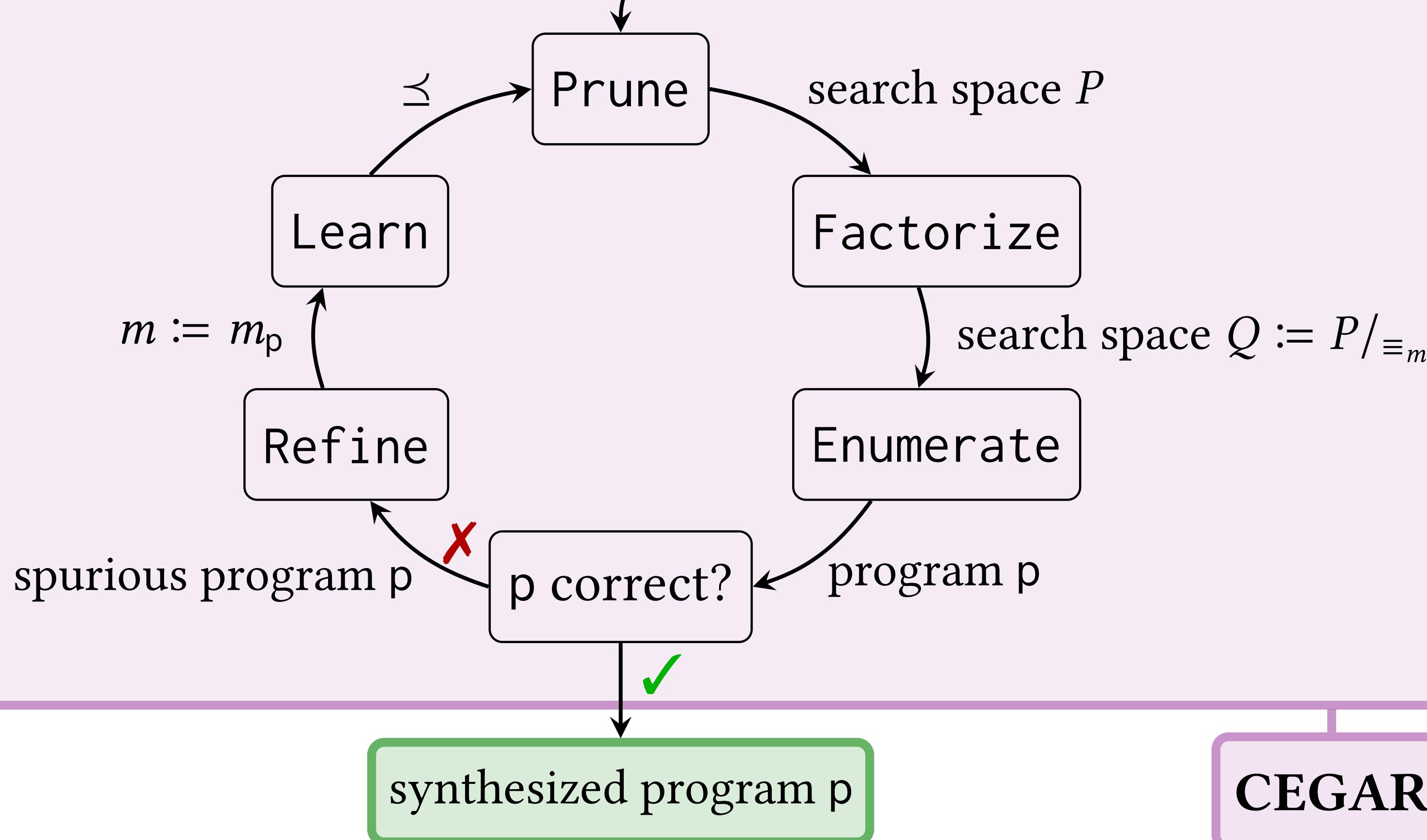
$\mathcal{L}(\mathcal{G})$



Method	P_1	P_2	P_3	P_4	P_5	P_6	P_7
No Pruning or Factorization	4	-	16	64	128	1280	4352
OE Factorization	4	-	9	6	27	56	119
Orimetric Pruning (OP)	4	-	7	18	56	323	929
OE Factorization + OP	4	-	5	6	19	50	81

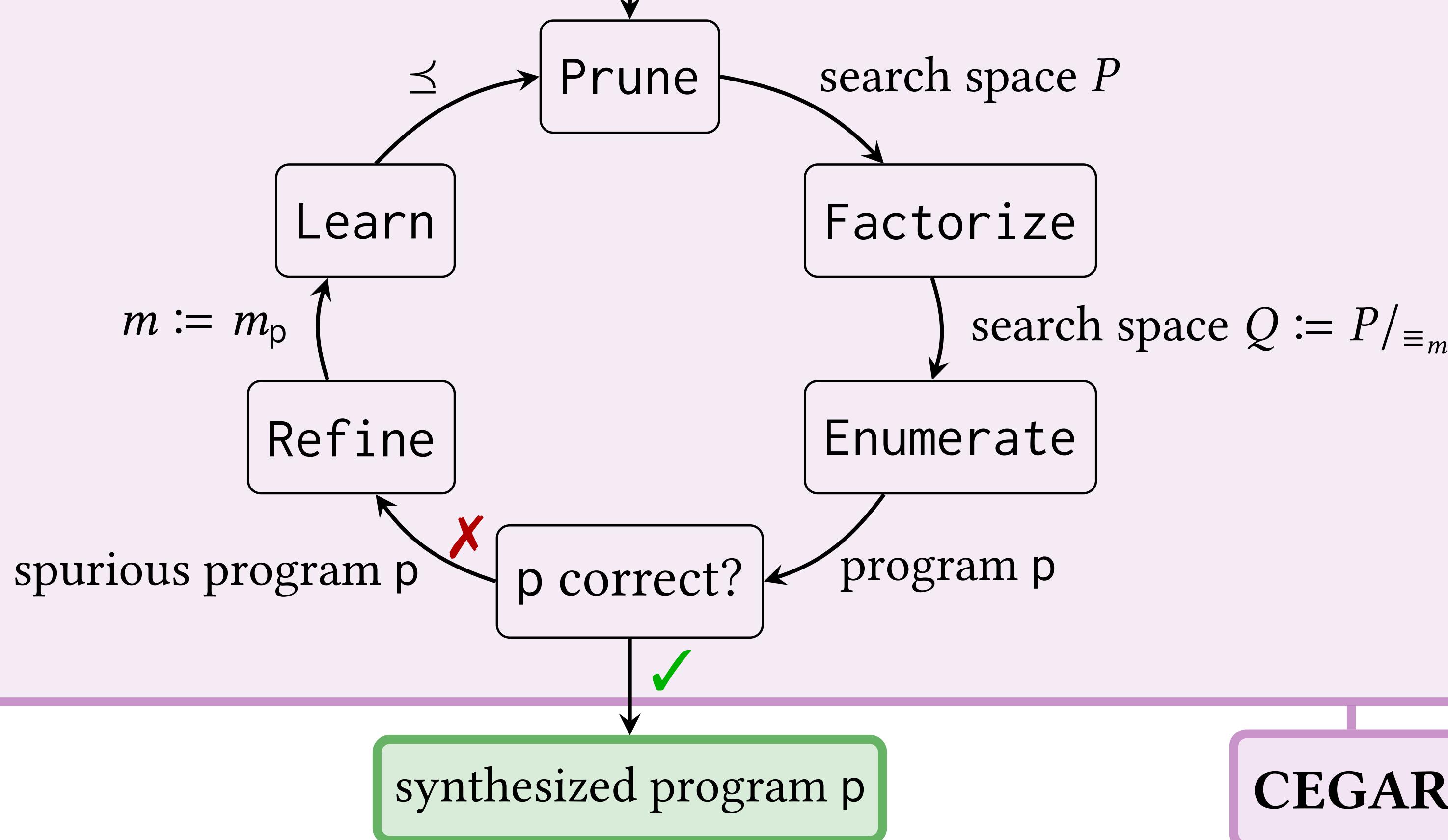
initial enumeration order \preceq , initial orimetric m

grammar \mathcal{G} , ground truth gt



initial enumeration order \preceq , initial orimetric m

grammar \mathcal{G} , ground truth gt



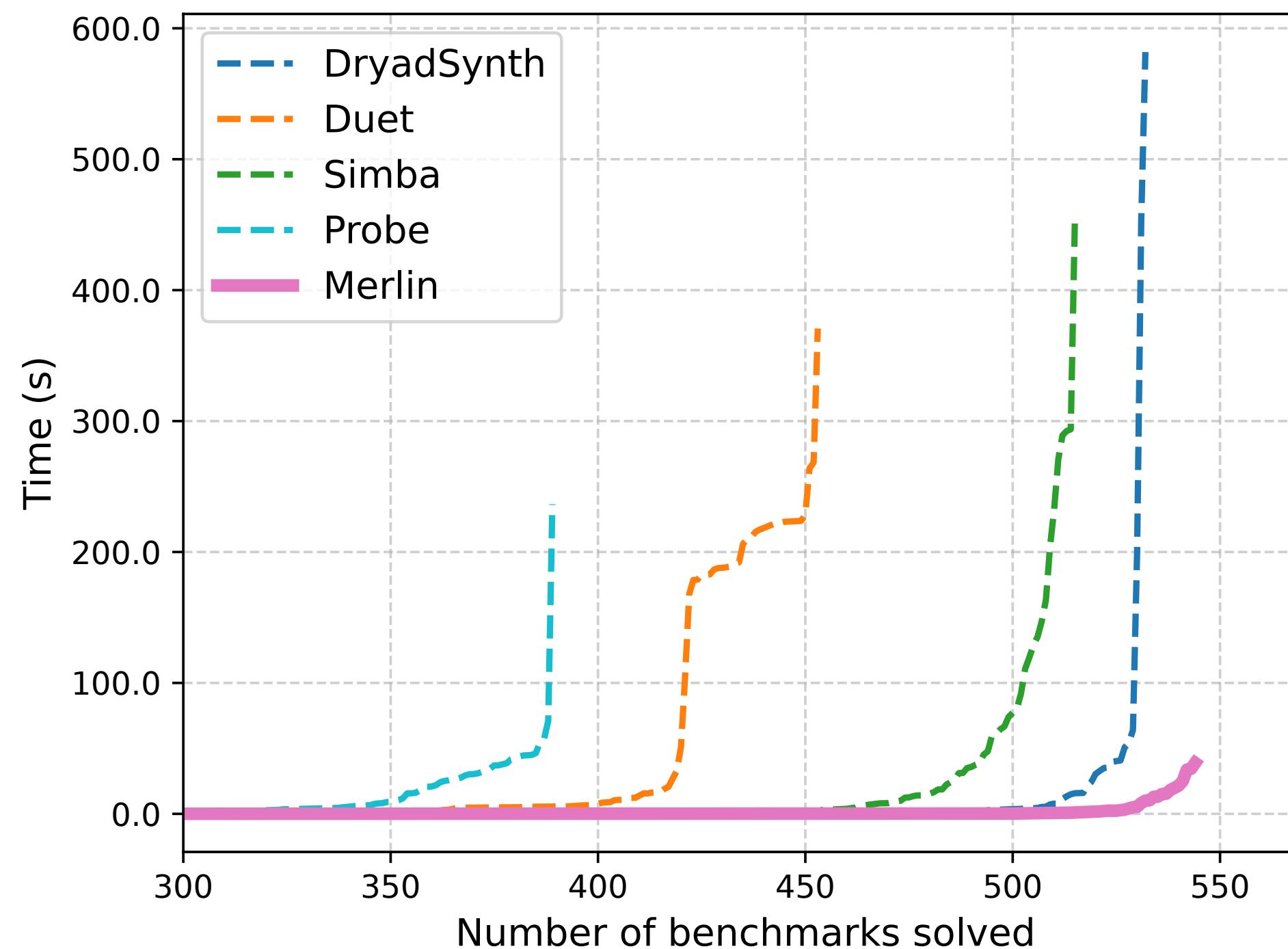
In practice: concurrent instances employing different orimetrics

Evaluation of Merlin

Evaluation of Merlin

SyGuS-Bitvector

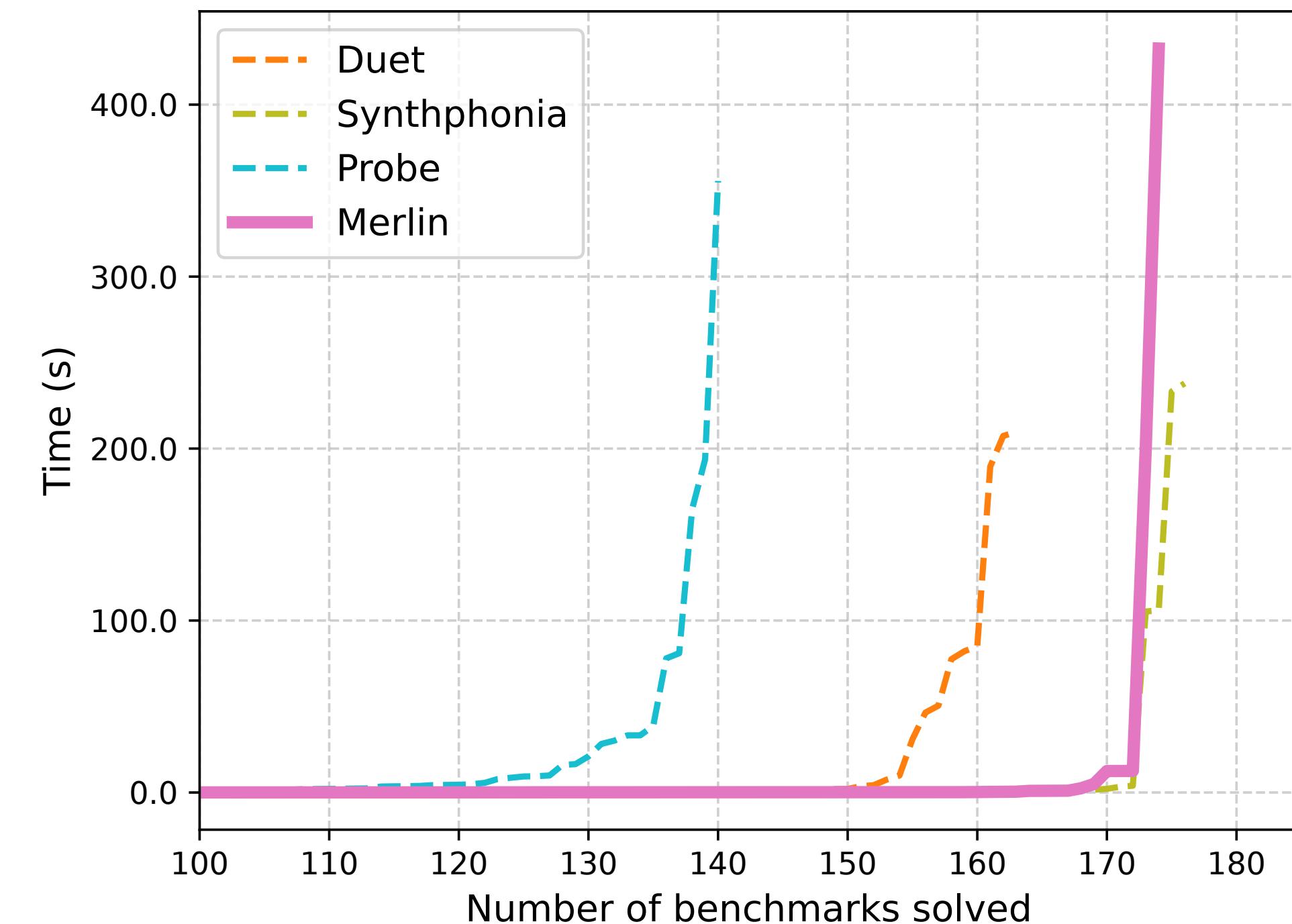
500 Deobfusc [Yoon et. al 2023] 49 Hacker's Delight [Warren 2013]



25x faster than DryadSynth

SyGuS-String

181 Duet [Lee 2021]

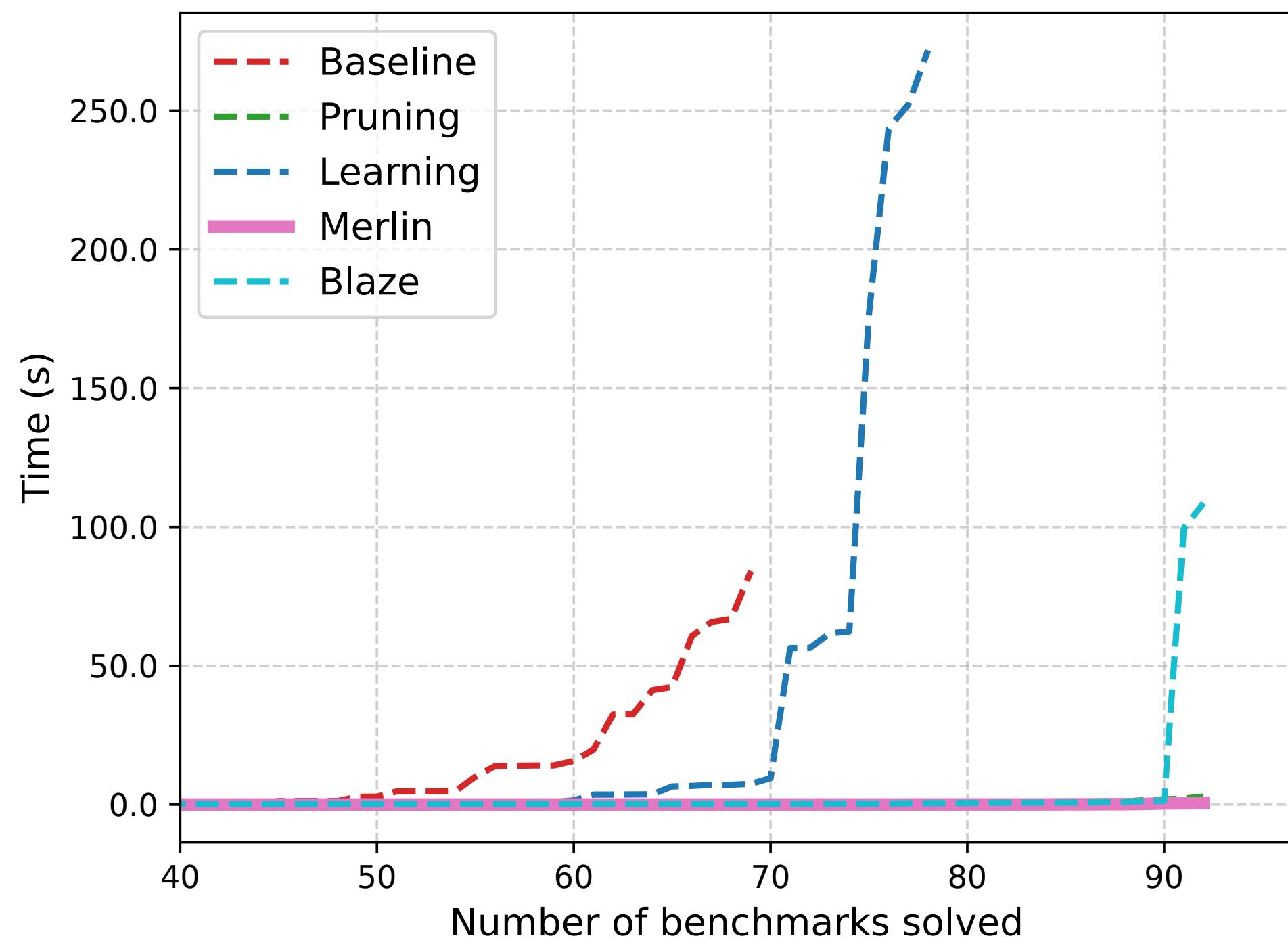


Competitive with Synthphonia

Evaluation of Merlin

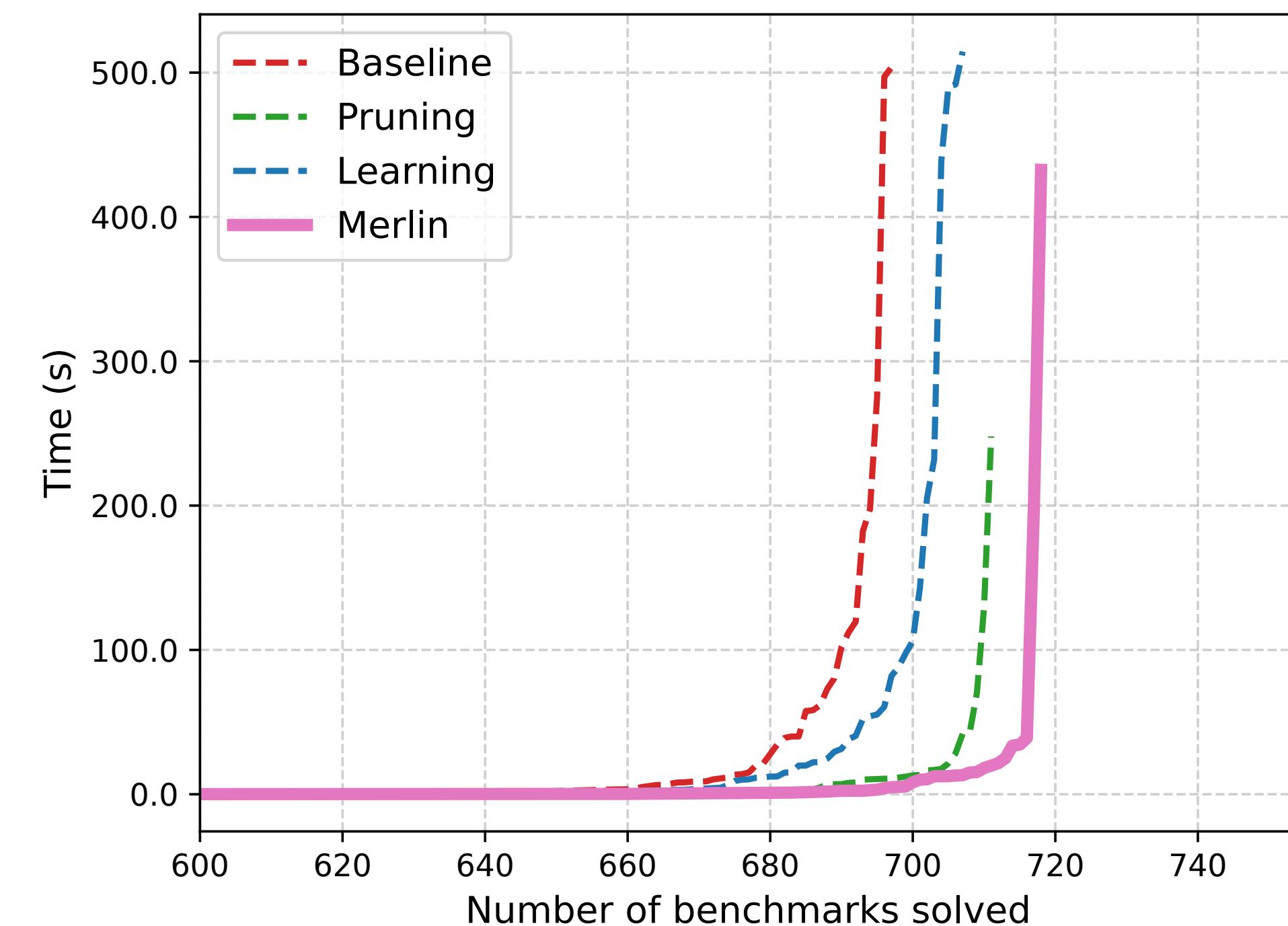
Blaze (String)

108 Blaze [Wang 2018]



75x faster than Blaze

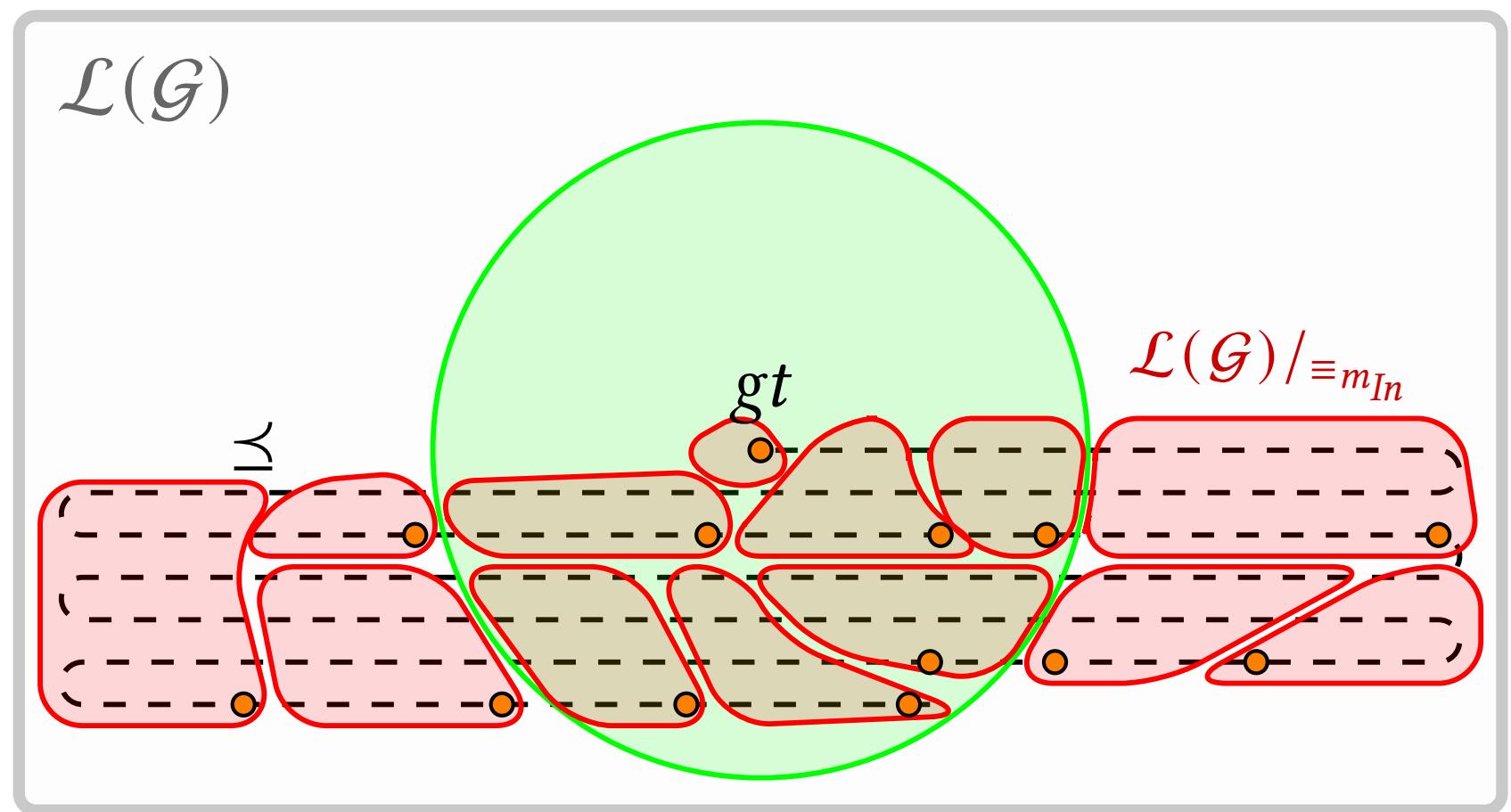
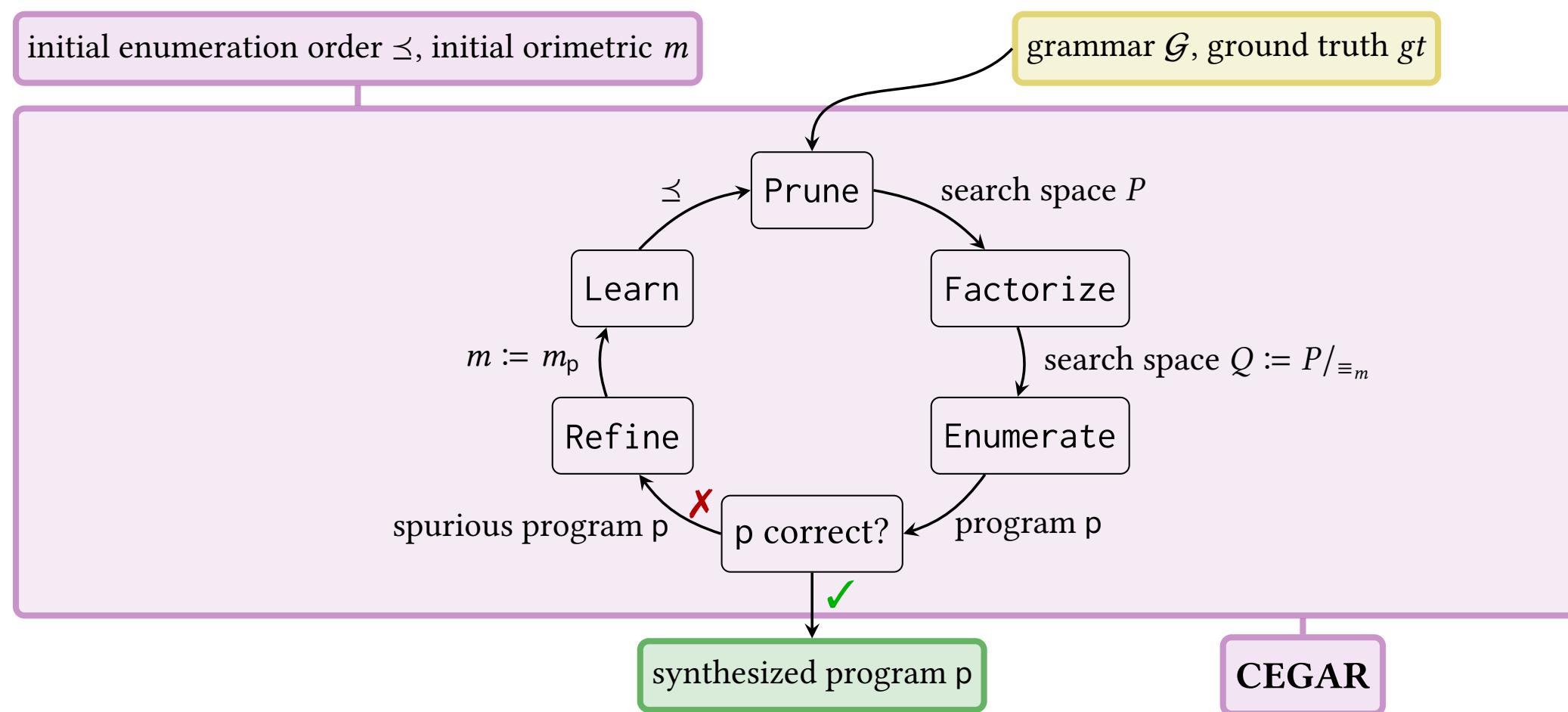
SyGuS-Ablation



42x faster than Baseline

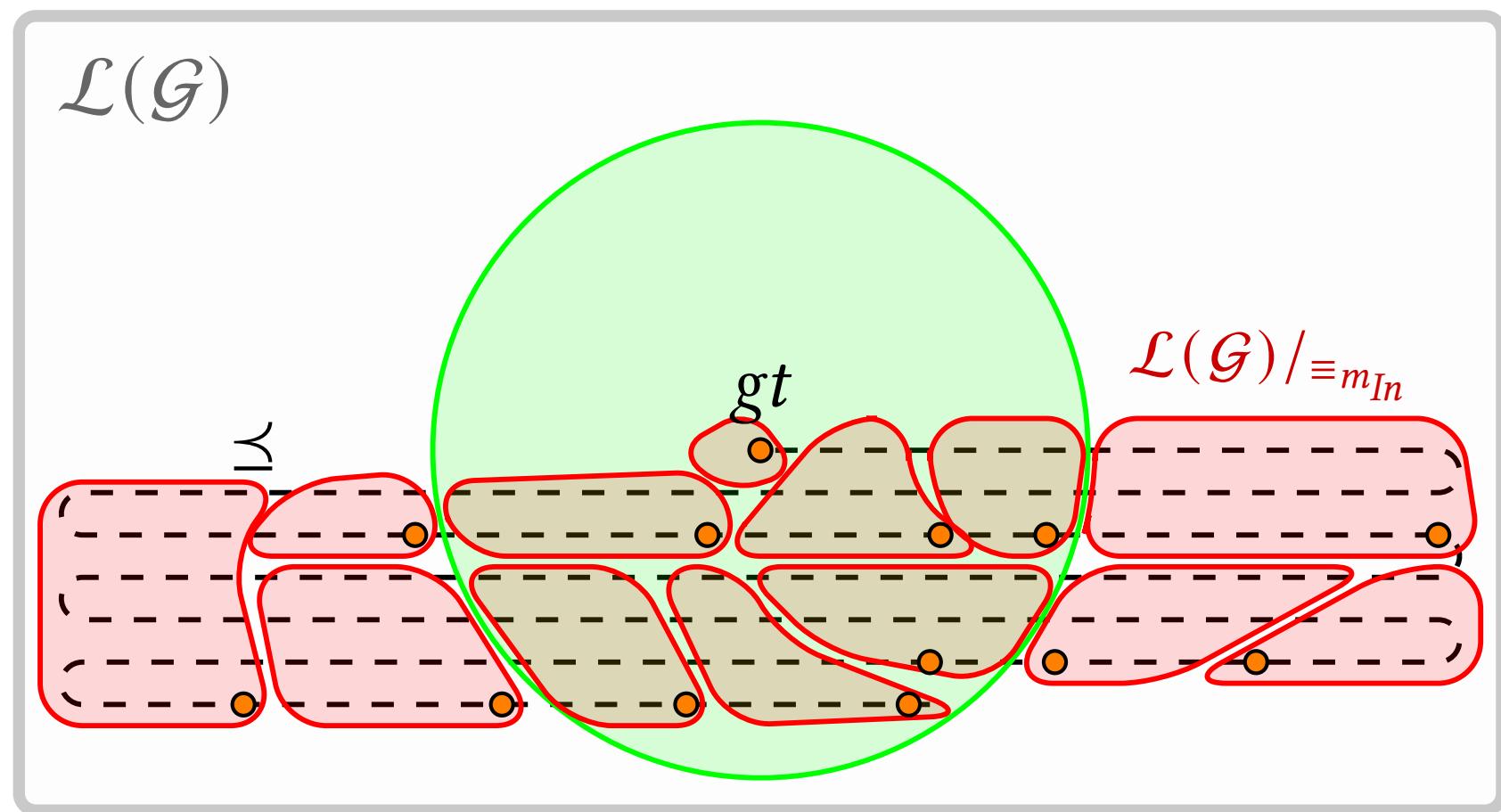
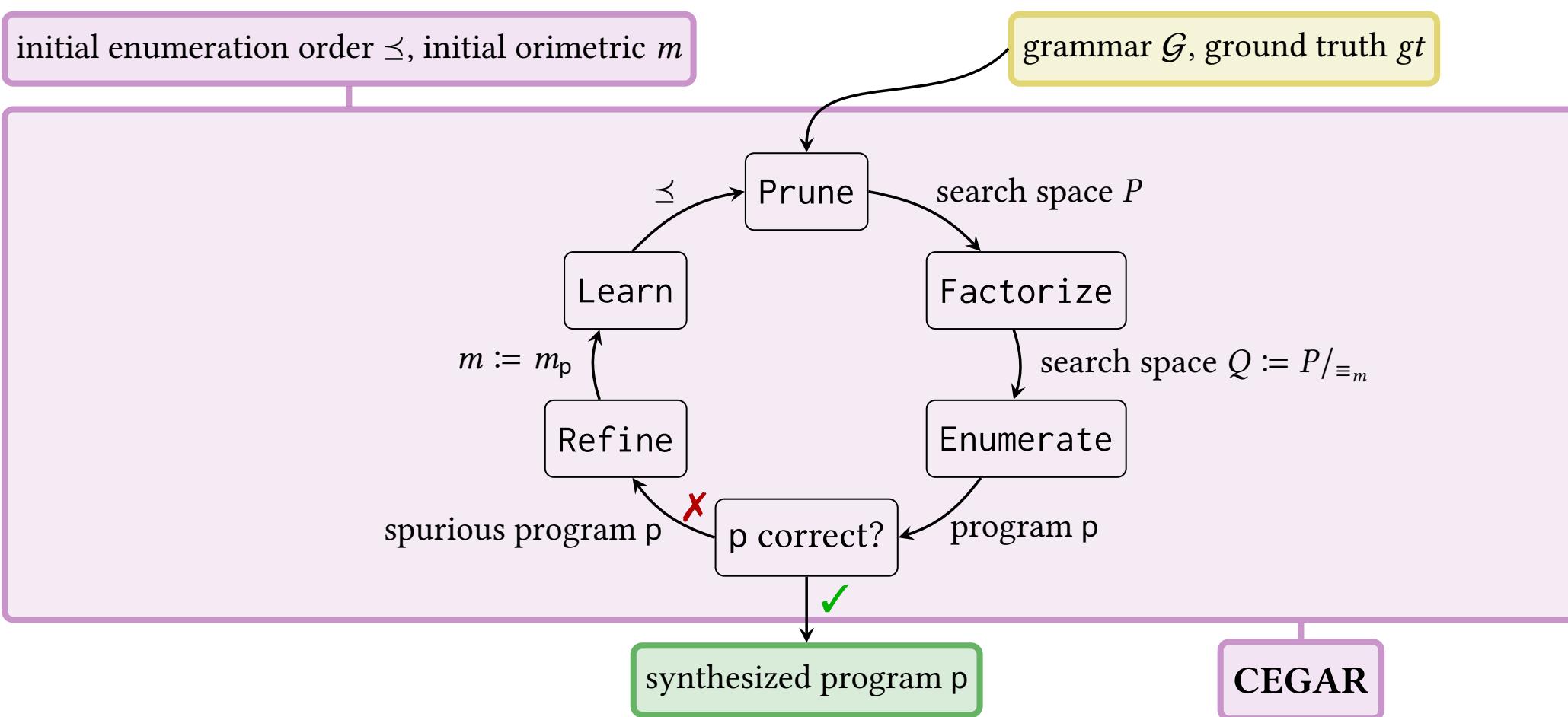
Conclusion

Framework for bottom-up enum. synthesis



Conclusion

Framework for bottom-up enum. synthesis

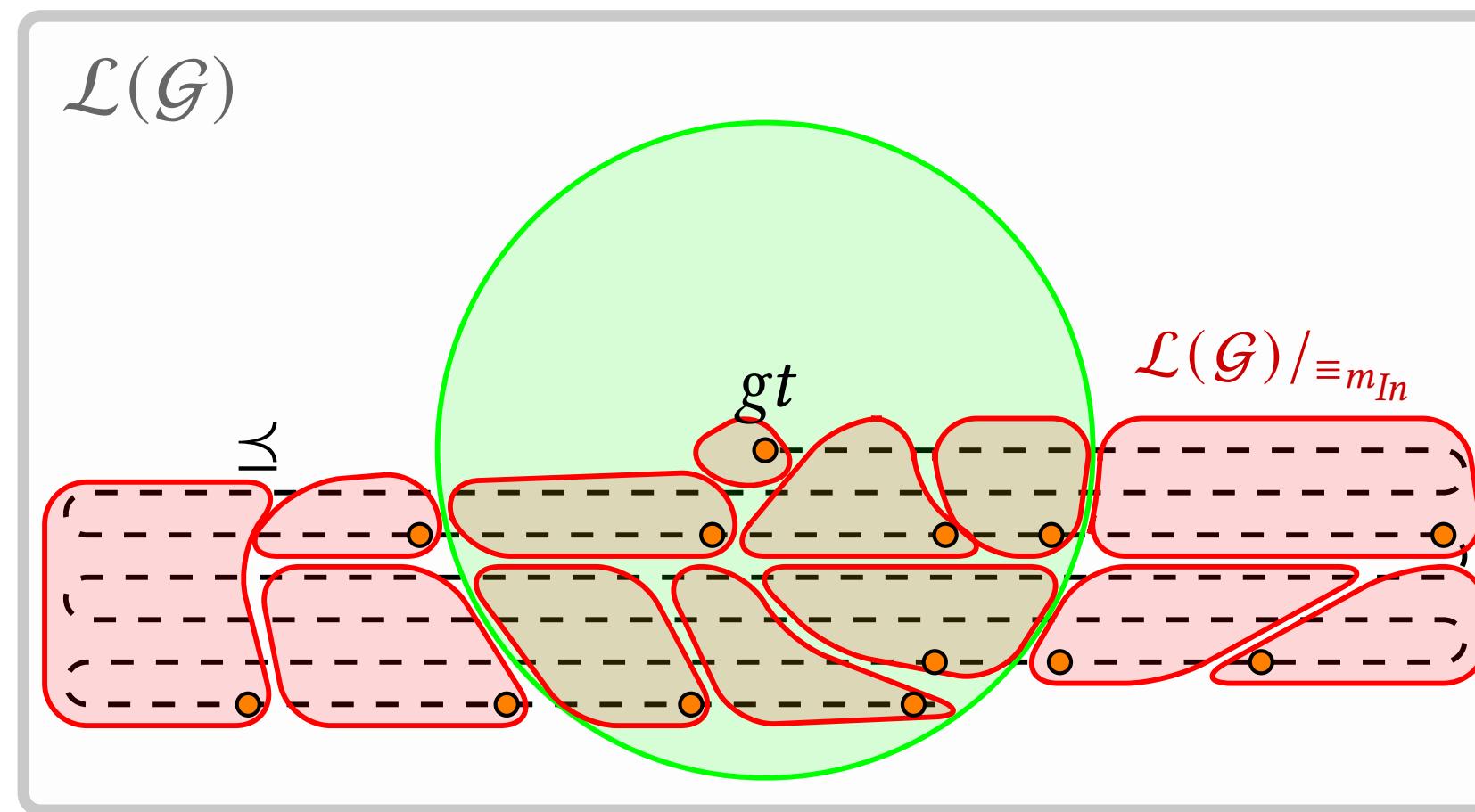
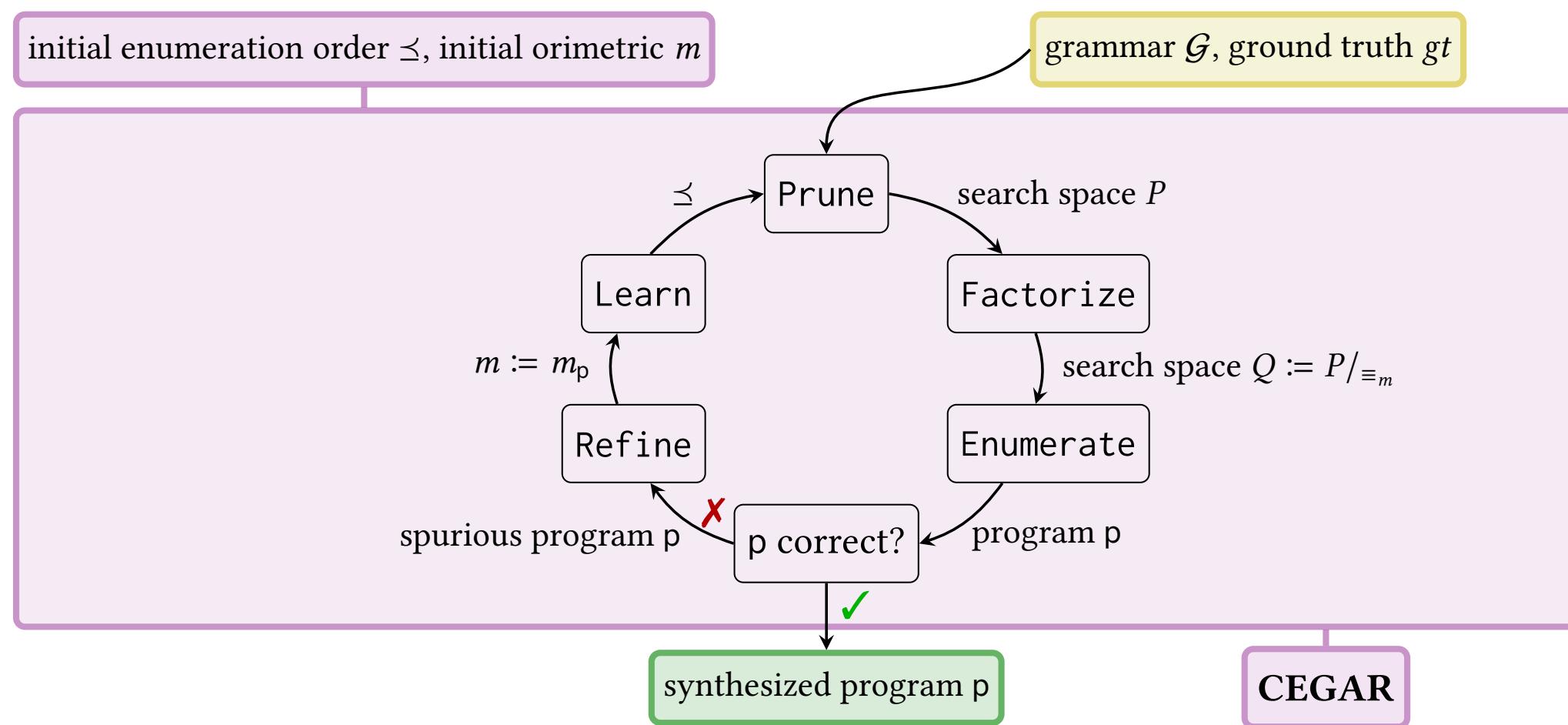


Oriented Metrics

$$\begin{aligned} m(a, a) &= 0 && \text{(reflexivity)} \\ m(b, a) = 0 \Rightarrow m(a, b) &= 0 && \text{(symmetry at zero)} \\ m(a, c) \leq m(a, b) + m(b, c) &&& \text{(Δ -inequality)} \end{aligned}$$

Conclusion

Framework for bottom-up enum. synthesis



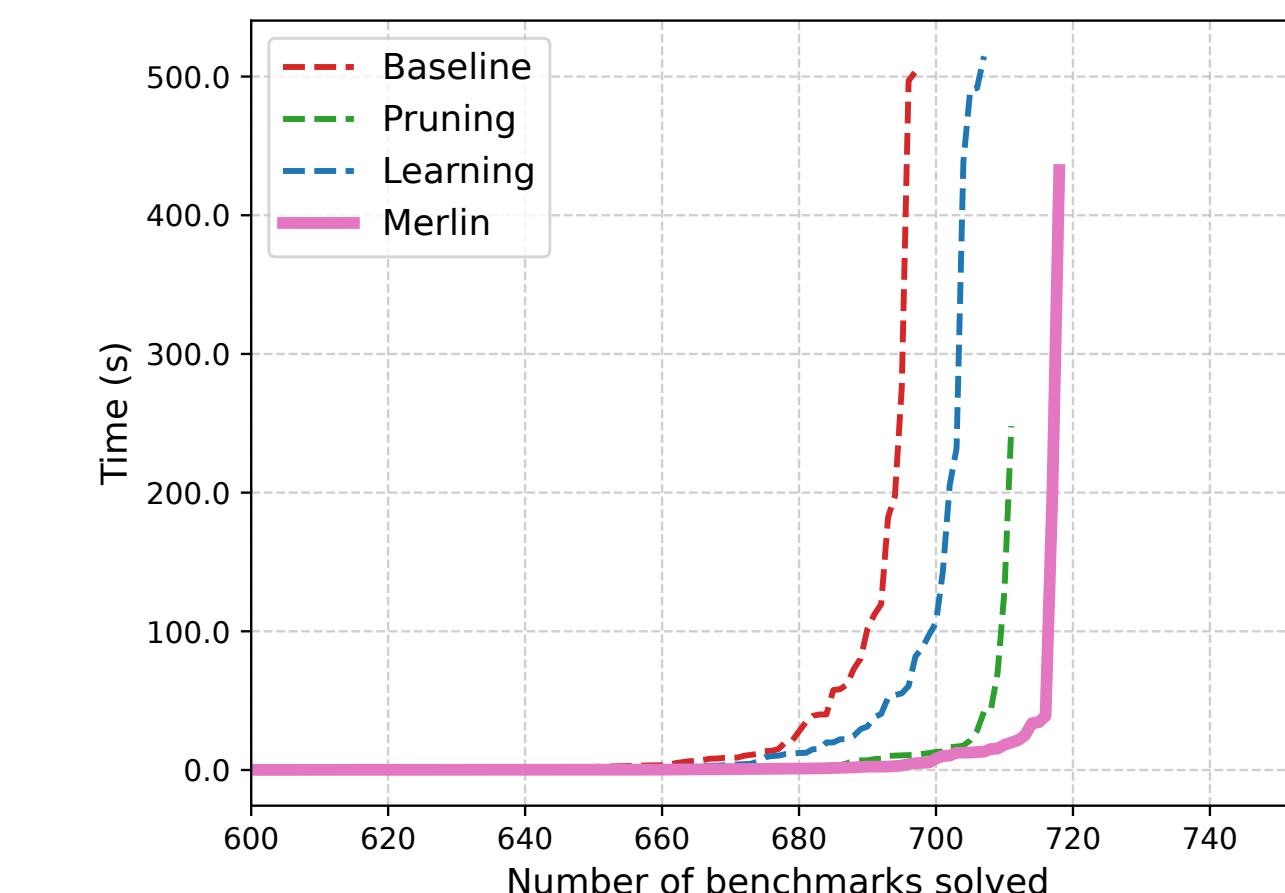
Oriented Metrics

$$m(a, a) = 0 \quad \text{(reflexivity)}$$

$$m(b, a) = 0 \Rightarrow m(a, b) = 0 \quad (\text{symmetry at zero})$$

$$m(a, c) \leq m(a, b) + m(b, c) \quad (\Delta\text{-inequality})$$

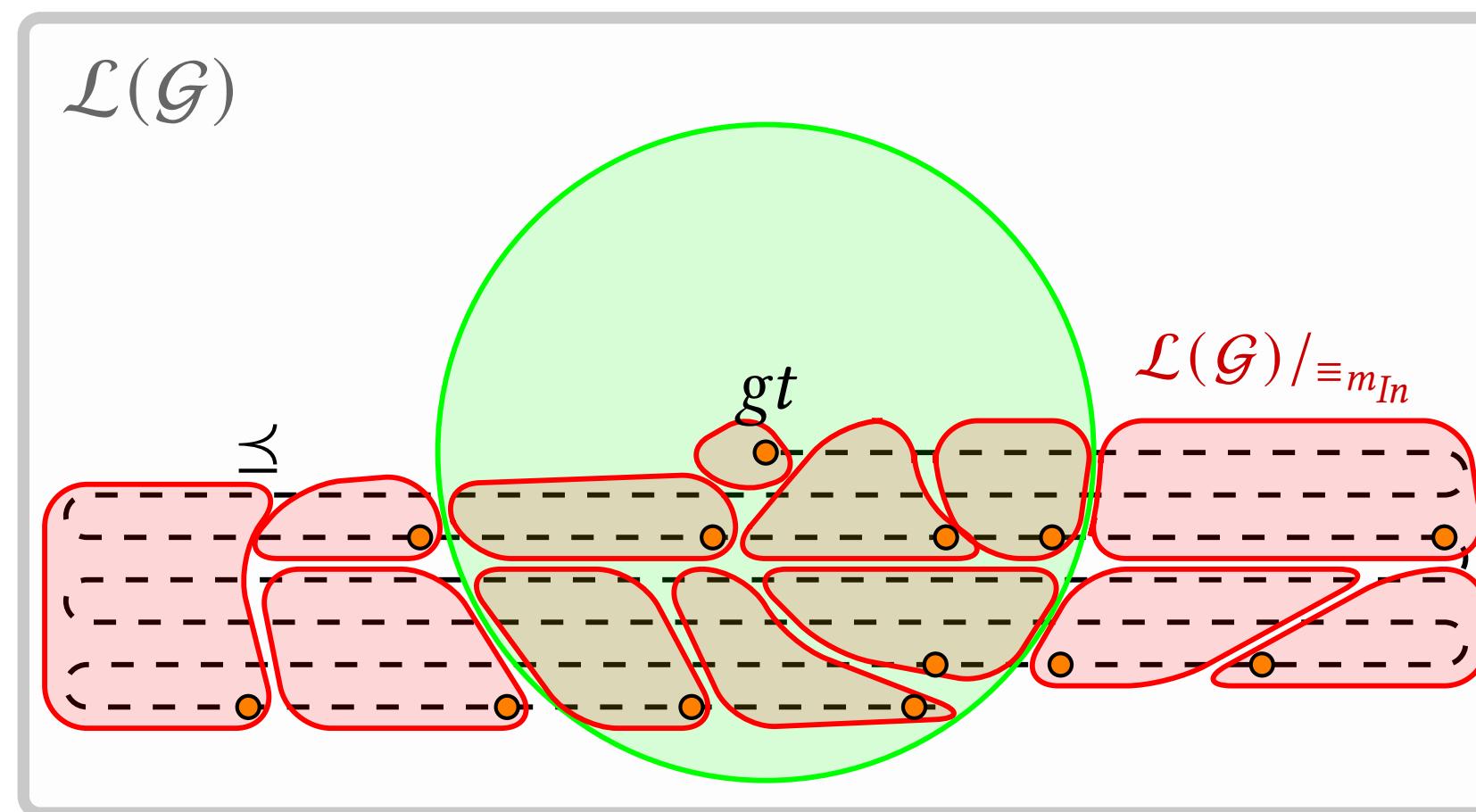
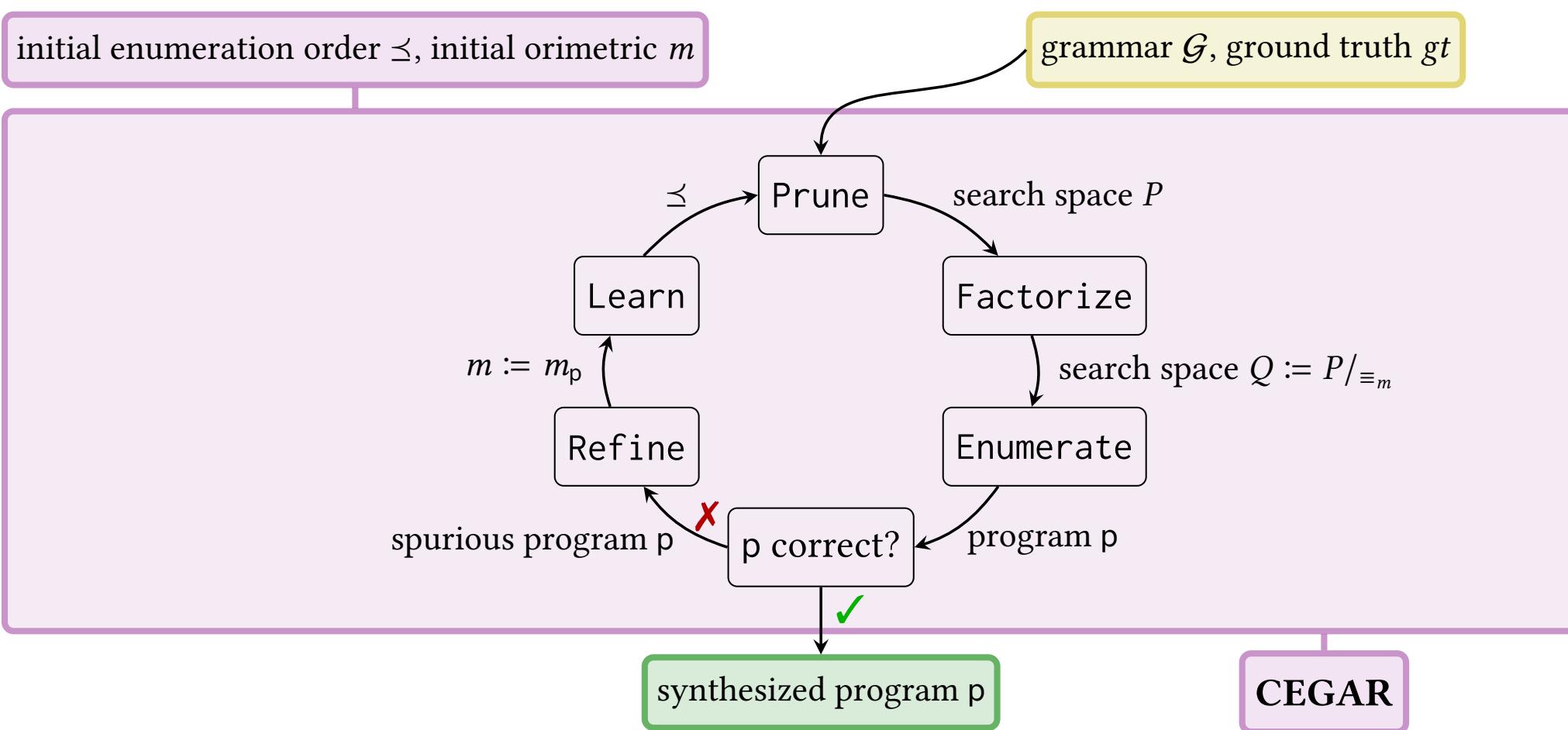
Substantial impact on performance



Conclusion

Thank you! Questions?

Framework for bottom-up enum. synthesis



Oriented Metrics

$$\begin{aligned}
 m(a, a) &= 0 && \text{(reflexivity)} \\
 m(b, a) = 0 \Rightarrow m(a, b) &= 0 && \text{(symmetry at zero)} \\
 m(a, c) \leq m(a, b) + m(b, c) && \text{(\triangle-inequality)}
 \end{aligned}$$

Substantial impact on performance

