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Goal:

Unify and generalize 

the existing approaches to bottom-up enumerative synthesis



Syntax-Guided Synthesis (SyGuS)



Syntax-Guided Synthesis (SyGuS)

Specification: Examples

Oriented Metrics for Bo!om-Up Enumerative Synthesis 75:7

initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune(L(G),m𝐿, gt)

Search(Q,m𝐿, gt,→ ↑ (Q ↓ Q))

Factorize(P,m𝐿,→)

Refine(m𝐿, p, gt)

Learn(→, { q ↔ Q | q → p }, gt)

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 1. CEGAR loop for synthesis.
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S ::= V | replace(S,S,S) | concat(S,S)
V ::= x | 𝐿 | "!Conf" | "!City"

Fig. 3. Example grammar G.

In Out
"POPL!Conf" "POPL"
"Rennes!City" "Rennes"
"PLDI!Conf" "PLDI"
"Seoul!City" "Seoul"

Fig. 4. Input-output examples (In,Out).
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S ::= Init | replace(S,S,S) | concat(S,S)
Init ::= x | 𝐿 | "!Conference" | "!City"

Fig. 2. Example grammar G.

𝑀 Input Output
1 "POPL!Conference" "POPL"
2 "Rennes!City" "Rennes"
3 "PLDI!Conference" "PLDI"
4 "Seoul!City" "Seoul"

Fig. 3. Input-output examples (I ,𝑁).

depicts a context-free grammar G and Figure 3 shows gt as four input-output examples (I ,𝑁).
The nonterminal Init can be rewritten to the input variable x or to string constants, where 𝐿 is
the empty string. The operator replace takes as arguments three strings: the "rst is the string in
which the replacement should happen, namely the "rst occurrence of the second argument, should
it exist, will be replaced by the third argument. The operator concat concatenates the strings that
are given as arguments.

gt

L(G)

Fig. 4. Search space and enumeration order.

In Figure 5, we show the set L(G) of all programs
as a collection of sets P𝐿 that contain all programs of
size 𝑂 . The set P1 contains all programs that can be
derived from Init. Programs of size greater than one
are constructed by combining programs of smaller
size. We use an enumeration order → that orders
programs by their size. Programs that have the same
size are ordered from left to right in Figure 5. The
set P7 contains the solution to the synthesis task,
highlighted in yellow. The "rst row in Figure 6 gives
the cardinality of each set P𝐿 . Note how the number
of programs grows exponentially with the size, and
so eliminating programs early on is essential. In Figure 4, the set of programs is represented by the
gray box and the enumeration order by the dashed line.

State-of-the-art bottom-up enumerative SyGuS solvers [2, 3, 15, 16, 27, 47, 48] factorize the search
space, often using observational equivalence [1, 43]. In Figure 5, programs that are pruned because
they are observationally equivalent to a program that was enumerated earlier are highlighted in
red. The cardinality of the factorized sets is given in the second row in Figure 6. In Figure 4, this
search space is represented by the red area.

Using orimetrics, we can further reduce the search space. The "rst step is to de"ne an orimetric
on programs. The orimetric is chosen based on the data and data manipulations that should
be supported. For strings with replacement, it is bene"cial to reward programs that produce
superstrings of the outputs given in the examples and punish programs that do not. We explain in
a moment how this plays together with the fact that concatenation prefers substrings. We begin by
de"ning an auxiliary quasimetric m̃ on strings:

m̃(i, o) =

{
len(i) ↑ len(o) if i is a superstring of o
100 + |len(i) ↑ len(o) | otherwise .

For example, m̃(”PO”, ”POPL”) = 102 but m̃(”POPL”, ”PO”) = 2. Note that m̃ is not symmetric in
general, but it is symmetric at distance zero. We now lift the auxiliary quasimetric m̃ on strings
to an orimetric m on functions over strings. The de"nition is as expected, we evaluate the given
functions on the inputs from all examples and sum up the distances of the output values. To make

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 75. Publication date: January 2026.

Syntax-Guided Synthesis (SyGuS)

Grammar: Specification:

Defines the  
search space

Examples

Defines the  
ground truth gt

gt

Oriented Metrics for Bo!om-Up Enumerative Synthesis 75:7

initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune(L(G),m𝐿, gt)

Search(Q,m𝐿, gt,→ ↑ (Q ↓ Q))

Factorize(P,m𝐿,→)

Refine(m𝐿, p, gt)

Learn(→, { q ↔ Q | q → p }, gt)

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 1. CEGAR loop for synthesis.

initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune

Search

Factorize

Refine

Learn

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 2. CEGAR loop for synthesis.

S ::= Init | replace(S,S,S) | concat(S,S)
Init ::= x | 𝐿 | "!Conference" | "!City"

Fig. 3. Example grammar G.

𝑀 Input Output
1 "POPL!Conference" "POPL"
2 "Rennes!City" "Rennes"
3 "PLDI!Conference" "PLDI"
4 "Seoul!City" "Seoul"

Fig. 4. Input-output examples (I ,𝑁).

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 75. Publication date: January 2026.

Oriented Metrics for Bo!om-Up Enumerative Synthesis 75:7

initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune(L(G),m𝐿, gt)

Search(Q,m𝐿, gt,→ ↑ (Q ↓ Q))

Factorize(P,m𝐿,→)

Refine(m𝐿, p, gt)

Learn(→, { q ↔ Q | q → p }, gt)

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 1. CEGAR loop for synthesis.

initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune

Search

Factorize

Refine

Learn

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 2. CEGAR loop for synthesis.

S ::= V | replace(S,S,S) | concat(S,S)
V ::= x | 𝐿 | "!Conf" | "!City"

Fig. 3. Example grammar G.

In Out
"POPL!Conf" "POPL"
"Rennes!City" "Rennes"
"PLDI!Conf" "PLDI"
"Seoul!City" "Seoul"

Fig. 4. Input-output examples (In,Out).

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 75. Publication date: January 2026.



Oriented Metrics for Bo!om-Up Enumerative Synthesis 75:7

S ::= Init | replace(S,S,S) | concat(S,S)
Init ::= x | 𝐿 | "!Conference" | "!City"

Fig. 2. Example grammar G.

𝑀 Input Output
1 "POPL!Conference" "POPL"
2 "Rennes!City" "Rennes"
3 "PLDI!Conference" "PLDI"
4 "Seoul!City" "Seoul"

Fig. 3. Input-output examples (I ,𝑁).

depicts a context-free grammar G and Figure 3 shows gt as four input-output examples (I ,𝑁).
The nonterminal Init can be rewritten to the input variable x or to string constants, where 𝐿 is
the empty string. The operator replace takes as arguments three strings: the "rst is the string in
which the replacement should happen, namely the "rst occurrence of the second argument, should
it exist, will be replaced by the third argument. The operator concat concatenates the strings that
are given as arguments.

gt

L(G)

Fig. 4. Search space and enumeration order.

In Figure 5, we show the set L(G) of all programs
as a collection of sets P𝐿 that contain all programs of
size 𝑂 . The set P1 contains all programs that can be
derived from Init. Programs of size greater than one
are constructed by combining programs of smaller
size. We use an enumeration order → that orders
programs by their size. Programs that have the same
size are ordered from left to right in Figure 5. The
set P7 contains the solution to the synthesis task,
highlighted in yellow. The "rst row in Figure 6 gives
the cardinality of each set P𝐿 . Note how the number
of programs grows exponentially with the size, and
so eliminating programs early on is essential. In Figure 4, the set of programs is represented by the
gray box and the enumeration order by the dashed line.

State-of-the-art bottom-up enumerative SyGuS solvers [2, 3, 15, 16, 27, 47, 48] factorize the search
space, often using observational equivalence [1, 43]. In Figure 5, programs that are pruned because
they are observationally equivalent to a program that was enumerated earlier are highlighted in
red. The cardinality of the factorized sets is given in the second row in Figure 6. In Figure 4, this
search space is represented by the red area.

Using orimetrics, we can further reduce the search space. The "rst step is to de"ne an orimetric
on programs. The orimetric is chosen based on the data and data manipulations that should
be supported. For strings with replacement, it is bene"cial to reward programs that produce
superstrings of the outputs given in the examples and punish programs that do not. We explain in
a moment how this plays together with the fact that concatenation prefers substrings. We begin by
de"ning an auxiliary quasimetric m̃ on strings:

m̃(i, o) =

{
len(i) ↑ len(o) if i is a superstring of o
100 + |len(i) ↑ len(o) | otherwise .

For example, m̃(”PO”, ”POPL”) = 102 but m̃(”POPL”, ”PO”) = 2. Note that m̃ is not symmetric in
general, but it is symmetric at distance zero. We now lift the auxiliary quasimetric m̃ on strings
to an orimetric m on functions over strings. The de"nition is as expected, we evaluate the given
functions on the inputs from all examples and sum up the distances of the output values. To make

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 75. Publication date: January 2026.

Syntax-Guided Synthesis (SyGuS)

Grammar: Specification:

Defines the  
search space

Examples

Defines the  
ground truth gt

gt

Task: Find program               that implements    prog ∈ gt

Oriented Metrics for Bo!om-Up Enumerative Synthesis 75:7

initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune(L(G),m𝐿, gt)

Search(Q,m𝐿, gt,→ ↑ (Q ↓ Q))

Factorize(P,m𝐿,→)

Refine(m𝐿, p, gt)

Learn(→, { q ↔ Q | q → p }, gt)

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 1. CEGAR loop for synthesis.

initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune

Search

Factorize

Refine

Learn

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 2. CEGAR loop for synthesis.

S ::= Init | replace(S,S,S) | concat(S,S)
Init ::= x | 𝐿 | "!Conference" | "!City"

Fig. 3. Example grammar G.

𝑀 Input Output
1 "POPL!Conference" "POPL"
2 "Rennes!City" "Rennes"
3 "PLDI!Conference" "PLDI"
4 "Seoul!City" "Seoul"

Fig. 4. Input-output examples (I ,𝑁).

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 75. Publication date: January 2026.

Oriented Metrics for Bo!om-Up Enumerative Synthesis 75:7

initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune(L(G),m𝐿, gt)

Search(Q,m𝐿, gt,→ ↑ (Q ↓ Q))

Factorize(P,m𝐿,→)

Refine(m𝐿, p, gt)

Learn(→, { q ↔ Q | q → p }, gt)

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 1. CEGAR loop for synthesis.

initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune

Search

Factorize

Refine

Learn

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 2. CEGAR loop for synthesis.

S ::= V | replace(S,S,S) | concat(S,S)
V ::= x | 𝐿 | "!Conf" | "!City"

Fig. 3. Example grammar G.

In Out
"POPL!Conf" "POPL"
"Rennes!City" "Rennes"
"PLDI!Conf" "PLDI"
"Seoul!City" "Seoul"

Fig. 4. Input-output examples (In,Out).

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 75. Publication date: January 2026.



Oriented Metrics for Bo!om-Up Enumerative Synthesis 75:7

initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune(L(G),m𝐿, gt)

Search(Q,m𝐿, gt,→ ↑ (Q ↓ Q))

Factorize(P,m𝐿,→)

Refine(m𝐿, p, gt)

Learn(→, { q ↔ Q | q → p }, gt)

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 1. CEGAR loop for synthesis.

initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune

Search

Factorize

Refine

Learn

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 2. CEGAR loop for synthesis.

S ::= V | replace(S,S,S) | concat(S,S)
V ::= x | 𝐿 | "!Conf" | "!City"

Fig. 3. Example grammar G.

In Out
"POPL!Conf" "POPL"
"Rennes!City" "Rennes"
"PLDI!Conf" "PLDI"
"Seoul!City" "Seoul"

Fig. 4. Input-output examples (In,Out).

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 75. Publication date: January 2026.

Syntax-Guided Synthesis (SyGuS)



Oriented Metrics for Bo!om-Up Enumerative Synthesis 75:7

initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune(L(G),m𝐿, gt)

Search(Q,m𝐿, gt,→ ↑ (Q ↓ Q))

Factorize(P,m𝐿,→)

Refine(m𝐿, p, gt)

Learn(→, { q ↔ Q | q → p }, gt)

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 1. CEGAR loop for synthesis.

initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune

Search

Factorize

Refine

Learn

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 2. CEGAR loop for synthesis.

S ::= V | replace(S,S,S) | concat(S,S)
V ::= x | 𝐿 | "!Conf" | "!City"

Fig. 3. Example grammar G.

In Out
"POPL!Conf" "POPL"
"Rennes!City" "Rennes"
"PLDI!Conf" "PLDI"
"Seoul!City" "Seoul"

Fig. 4. Input-output examples (In,Out).

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 75. Publication date: January 2026.

Oriented Metrics for Bo!om-Up Enumerative Synthesis 75:7

initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune(L(G),m𝐿, gt)

Search(Q,m𝐿, gt,→ ↑ (Q ↓ Q))

Factorize(P,m𝐿,→)

Refine(m𝐿, p, gt)

Learn(→, { q ↔ Q | q → p }, gt)

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 1. CEGAR loop for synthesis.

initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune

Search

Factorize

Refine

Learn

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 2. CEGAR loop for synthesis.

S ::= V | replace(S,S,S) | concat(S,S)
V ::= x | 𝐿 | "!Conf" | "!City"

Fig. 3. Example grammar G.

In Out
"POPL!Conf" "POPL"
"Rennes!City" "Rennes"
"PLDI!Conf" "PLDI"
"Seoul!City" "Seoul"

Fig. 4. Input-output examples (In,Out).

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 75. Publication date: January 2026.

Syntax-Guided Synthesis (SyGuS)



prog(i) = o

Oriented Metrics for Bo!om-Up Enumerative Synthesis 75:7

initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune(L(G),m𝐿, gt)

Search(Q,m𝐿, gt,→ ↑ (Q ↓ Q))

Factorize(P,m𝐿,→)

Refine(m𝐿, p, gt)

Learn(→, { q ↔ Q | q → p }, gt)

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 1. CEGAR loop for synthesis.

initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune

Search

Factorize

Refine

Learn

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 2. CEGAR loop for synthesis.

S ::= V | replace(S,S,S) | concat(S,S)
V ::= x | 𝐿 | "!Conf" | "!City"

Fig. 3. Example grammar G.

In Out
"POPL!Conf" "POPL"
"Rennes!City" "Rennes"
"PLDI!Conf" "PLDI"
"Seoul!City" "Seoul"

Fig. 4. Input-output examples (In,Out).

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 75. Publication date: January 2026.

Oriented Metrics for Bo!om-Up Enumerative Synthesis 75:7

initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune(L(G),m𝐿, gt)

Search(Q,m𝐿, gt,→ ↑ (Q ↓ Q))

Factorize(P,m𝐿,→)

Refine(m𝐿, p, gt)

Learn(→, { q ↔ Q | q → p }, gt)

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 1. CEGAR loop for synthesis.

initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune

Search

Factorize

Refine

Learn

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 2. CEGAR loop for synthesis.

S ::= V | replace(S,S,S) | concat(S,S)
V ::= x | 𝐿 | "!Conf" | "!City"

Fig. 3. Example grammar G.

In Out
"POPL!Conf" "POPL"
"Rennes!City" "Rennes"
"PLDI!Conf" "PLDI"
"Seoul!City" "Seoul"

Fig. 4. Input-output examples (In,Out).

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 75. Publication date: January 2026.

Syntax-Guided Synthesis (SyGuS)



prog(i) = o

Solution: 

Oriented Metrics for Bo!om-Up Enumerative Synthesis 75:7

initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune(L(G),m𝐿, gt)

Search(Q,m𝐿, gt,→ ↑ (Q ↓ Q))

Factorize(P,m𝐿,→)

Refine(m𝐿, p, gt)

Learn(→, { q ↔ Q | q → p }, gt)

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 1. CEGAR loop for synthesis.

initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune

Search

Factorize

Refine

Learn

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 2. CEGAR loop for synthesis.

S ::= V | replace(S,S,S) | concat(S,S)
V ::= x | 𝐿 | "!Conf" | "!City"

Fig. 3. Example grammar G.

In Out
"POPL!Conf" "POPL"
"Rennes!City" "Rennes"
"PLDI!Conf" "PLDI"
"Seoul!City" "Seoul"

Fig. 4. Input-output examples (In,Out).

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 75. Publication date: January 2026.

Oriented Metrics for Bo!om-Up Enumerative Synthesis 75:7

initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune(L(G),m𝐿, gt)

Search(Q,m𝐿, gt,→ ↑ (Q ↓ Q))

Factorize(P,m𝐿,→)

Refine(m𝐿, p, gt)

Learn(→, { q ↔ Q | q → p }, gt)

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 1. CEGAR loop for synthesis.

initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune

Search

Factorize

Refine

Learn

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 2. CEGAR loop for synthesis.

S ::= V | replace(S,S,S) | concat(S,S)
V ::= x | 𝐿 | "!Conf" | "!City"

Fig. 3. Example grammar G.

In Out
"POPL!Conf" "POPL"
"Rennes!City" "Rennes"
"PLDI!Conf" "PLDI"
"Seoul!City" "Seoul"

Fig. 4. Input-output examples (In,Out).

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 75. Publication date: January 2026.

Oriented Metrics for Bo!om-Up Enumerative Synthesis 75:11

P1 = {x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", 𝐿 .x, 𝐿 .𝐿, 𝐿 ."!Conf", 𝐿 ."!City",

"!Conf".x, "!Conf".𝐿, "!Conf"."!Conf",
"!Conf"."!City", "!City".x, "!City".𝐿, "!City"."!Conf",
"!City"."!City"}

P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), r(x, "!City", "!Conf"), . . . , r(x, "!Conf", 𝐿), . . .}
P5 = {. . .} P6 = {. . .} P7 = {. . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿), . . .}

Fig. 12. Example execution of a bo!om-up enumeration algorithm with highlights for OE factorization,
OE factorization with learning, orimetric pruning, partial correctness, and correctness. The concat operator
is abbreviated by an infix "." and the replace operator is abbreviated by r.

Method P1 P2 P3 P4 P5 P6 P7
No Pruning or Factorization 4 - 16 64 128 1280 4352

OE Factorization 4 - 9 6 27 56 119
Orimetric Pruning (OP) 4 - 7 18 56 323 929
OE Factorization + OP 4 - 5 6 19 50 81

↑m𝐿 Factorization + OP + Learning 4 / 5 - 5 / 12 3 / 10 - - -

Fig. 13. Number of programs at each size per solving method.

P1 = {r(x, "!Conf", 𝐿), x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", x.r(x, "!Conf", 𝐿), . . . , 𝐿 ."!City", . . .}
P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), . . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿) . . .}

Fig. 14. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 75. Publication date: January 2026.

Syntax-Guided Synthesis (SyGuS)



prog(i) = o

Solution: 

Oriented Metrics for Bo!om-Up Enumerative Synthesis 75:7

initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune(L(G),m𝐿, gt)

Search(Q,m𝐿, gt,→ ↑ (Q ↓ Q))

Factorize(P,m𝐿,→)

Refine(m𝐿, p, gt)

Learn(→, { q ↔ Q | q → p }, gt)

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 1. CEGAR loop for synthesis.

initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune

Search

Factorize

Refine

Learn

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 2. CEGAR loop for synthesis.

S ::= V | replace(S,S,S) | concat(S,S)
V ::= x | 𝐿 | "!Conf" | "!City"

Fig. 3. Example grammar G.

In Out
"POPL!Conf" "POPL"
"Rennes!City" "Rennes"
"PLDI!Conf" "PLDI"
"Seoul!City" "Seoul"

Fig. 4. Input-output examples (In,Out).

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 75. Publication date: January 2026.

Oriented Metrics for Bo!om-Up Enumerative Synthesis 75:7

initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune(L(G),m𝐿, gt)

Search(Q,m𝐿, gt,→ ↑ (Q ↓ Q))

Factorize(P,m𝐿,→)

Refine(m𝐿, p, gt)

Learn(→, { q ↔ Q | q → p }, gt)

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 1. CEGAR loop for synthesis.

initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune

Search

Factorize

Refine

Learn

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 2. CEGAR loop for synthesis.

S ::= V | replace(S,S,S) | concat(S,S)
V ::= x | 𝐿 | "!Conf" | "!City"

Fig. 3. Example grammar G.

In Out
"POPL!Conf" "POPL"
"Rennes!City" "Rennes"
"PLDI!Conf" "PLDI"
"Seoul!City" "Seoul"

Fig. 4. Input-output examples (In,Out).

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 75. Publication date: January 2026.

75:12 Roland Meyer and Jakob Tepe

speci!ed output "Rennes". We use Refine to generate a new orimetric for the next iteration. To
also take into account the second example, we set m𝐿 to m{i1,i2 } . While the approximate orimetric
and its re!nement are simple in this example, our approach can also be instantiated with predicate
abstraction as introduced in [47]. We discuss the details below.

We now use Learn to update the enumeration order for the next iteration. To do so, we use the
precise metric mIn to analyze the candidate solution p. We see that p produces a superstring of the
outputs for all examples. This means, mIn (!p", gt) < 100 and therefore the program lies within the
ball around gt. We consider p valuable and promote it in the enumeration order. Recall that the
enumeration order in our example is de!ned by the size. Function Learn rede!nes the size of p to
be 1. Then p and programs that use p as a subprogram will be considered early on.

Figure 14 gives the program sets constructed in the second iteration of the re!nement loop. Note
how p has size one. With this change in size, we already !nd the solution in P4. In the last row of
Figure 13, we see the cardinalities of the sets again. On the left of the slash are the cardinalities for
the !rst iteration of the re!nement loop, and on the right the cardinalities for the second iteration.
In total, we only consider 39 programs to solve the problem.

Selecting an Orimetric. Coming up with a good orimetric is key to the success of our method.
In our example, had we de!ned an orimetric that rewards functions producing substrings of the
output and punish those that produce superstrings, we would have failed to generate the solution
using bottom-up enumeration.

To construct good orimetrics, we derive them from the semantics of the operators in the grammar.
We already discussed how concatenation needs substrings to produce the desired output while
replacement favors superstrings. In practice, we concurrently run a portfolio of solvers employing a
di"erent orimetric each. We developed three orimetrics for the string domain and four orimetrics for
the bitvector domain. In Sections 5.3 and 5.4, we introduce a principled way of designing orimetrics.

Deduction. An aspect the above example did not highlight is the use of deduction. Conceptually,
deduction accelerates the search by modifying the enumeration order, as depicted in Figure 11. Our
tool Merlin implements the deduction technique from DryadSynth [15]. To explain it, consider the
sketch r(?, ?, ?). After we found the programs "#City", 𝐿 , and r(x, "#Conf", 𝐿), we would enumerate
r(r(x, "#Conf", 𝐿), "#City", 𝐿) next, which solves the synthesis problem. Deduction thus understands
a program sketch. This relies on the inverse semantics of a sketch. If one !nds arguments such
that the sketch !lled with these arguments is a solution to the synthesis problem, the solution
will be enumerated next. This means, for any supported sketch, we only need to !nd the correct
arguments. Most orimetrics we de!ne in this paper optimize the search for viable arguments of a
sketch by approximating its inverse semantics.

r(r(!POPL#Conf!, "#Conf", 𝐿), "#City", 𝐿)

!POPL!

!Rennes!

r(r(!Rennes#City!, "#Conf", 𝐿), "#City", 𝐿)
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Fig. 14. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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speci!ed output "Rennes". We use Refine to generate a new orimetric for the next iteration. To
also take into account the second example, we set m𝐿 to m{i1,i2 } . While the approximate orimetric
and its re!nement are simple in this example, our approach can also be instantiated with predicate
abstraction as introduced in [47]. We discuss the details below.

We now use Learn to update the enumeration order for the next iteration. To do so, we use the
precise metric mIn to analyze the candidate solution p. We see that p produces a superstring of the
outputs for all examples. This means, mIn (!p", gt) < 100 and therefore the program lies within the
ball around gt. We consider p valuable and promote it in the enumeration order. Recall that the
enumeration order in our example is de!ned by the size. Function Learn rede!nes the size of p to
be 1. Then p and programs that use p as a subprogram will be considered early on.

Figure 14 gives the program sets constructed in the second iteration of the re!nement loop. Note
how p has size one. With this change in size, we already !nd the solution in P4. In the last row of
Figure 13, we see the cardinalities of the sets again. On the left of the slash are the cardinalities for
the !rst iteration of the re!nement loop, and on the right the cardinalities for the second iteration.
In total, we only consider 39 programs to solve the problem.

Selecting an Orimetric. Coming up with a good orimetric is key to the success of our method.
In our example, had we de!ned an orimetric that rewards functions producing substrings of the
output and punish those that produce superstrings, we would have failed to generate the solution
using bottom-up enumeration.

To construct good orimetrics, we derive them from the semantics of the operators in the grammar.
We already discussed how concatenation needs substrings to produce the desired output while
replacement favors superstrings. In practice, we concurrently run a portfolio of solvers employing a
di"erent orimetric each. We developed three orimetrics for the string domain and four orimetrics for
the bitvector domain. In Sections 5.3 and 5.4, we introduce a principled way of designing orimetrics.

Deduction. An aspect the above example did not highlight is the use of deduction. Conceptually,
deduction accelerates the search by modifying the enumeration order, as depicted in Figure 11. Our
tool Merlin implements the deduction technique from DryadSynth [15]. To explain it, consider the
sketch r(?, ?, ?). After we found the programs "#City", 𝐿 , and r(x, "#Conf", 𝐿), we would enumerate
r(r(x, "#Conf", 𝐿), "#City", 𝐿) next, which solves the synthesis problem. Deduction thus understands
a program sketch. This relies on the inverse semantics of a sketch. If one !nds arguments such
that the sketch !lled with these arguments is a solution to the synthesis problem, the solution
will be enumerated next. This means, for any supported sketch, we only need to !nd the correct
arguments. Most orimetrics we de!ne in this paper optimize the search for viable arguments of a
sketch by approximating its inverse semantics.

r(r(!POPL#Conf!, "#Conf", 𝐿), "#City", 𝐿)

!POPL!

!Rennes!

r(r(!Rennes#City!, "#Conf", 𝐿), "#City", 𝐿)
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Oriented Metrics for Bo!om-Up Enumerative Synthesis 75:11

P1 = {x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", 𝐿 .x, 𝐿 .𝐿, 𝐿 ."!Conf", 𝐿 ."!City",

"!Conf".x, "!Conf".𝐿, "!Conf"."!Conf",
"!Conf"."!City", "!City".x, "!City".𝐿, "!City"."!Conf",
"!City"."!City"}

P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), r(x, "!City", "!Conf"), . . . , r(x, "!Conf", 𝐿), . . .}
P5 = {. . .} P6 = {. . .} P7 = {. . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿), . . .}

Fig. 12. Example execution of a bo!om-up enumeration algorithm with highlights for OE factorization,
OE factorization with learning, orimetric pruning, partial correctness, and correctness. The concat operator
is abbreviated by an infix "." and the replace operator is abbreviated by r.

Method P1 P2 P3 P4 P5 P6 P7
No Pruning or Factorization 4 - 16 64 128 1280 4352

OE Factorization 4 - 9 6 27 56 119
Orimetric Pruning (OP) 4 - 7 18 56 323 929
OE Factorization + OP 4 - 5 6 19 50 81

↑m𝐿 Factorization + OP + Learning 4 / 5 - 5 / 12 3 / 10 - - -

Fig. 13. Number of programs at each size per solving method.

P1 = {r(x, "!Conf", 𝐿), x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", x.r(x, "!Conf", 𝐿), . . . , 𝐿 ."!City", . . .}
P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), . . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿) . . .}

Fig. 14. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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Solver Search Space Pruning / Factorization Enumeration Order (Deduction)
ESolver [2] Observational Equivalence (OE) constant (✁)
EUSolver [3] OE constant (✂)
Blaze [47] OE + Abstraction Re!nement + Automata constant (✁)

EUPhony [28] weak OE constant/o"ine learning (✂)
Probe [6] OE learning (✁)
Duet [27] OE constant (✂)
Simba [48] OE constant (✂)

DryadSynth [15] OE constant (✂)
Synthphonia [16] OE constant (✂)

Merlin OE + Abstraction Re!nement + Orimetrics learning (✂)

Fig. 8. Comparison of enumerative SyGuS solvers.

Figure 7 gives the program sets constructed in the second iteration of the re!nement loop. Note
how p has size one. With this change in size, we already !nd the solution in P4. In the last row of
Figure 6, we see the cardinalities of the sets again. On the left of the slash are the cardinalities for
the !rst iteration of the re!nement loop, and on the right the cardinalities for the second iteration.
In total, we only consider 39 programs to solve the problem.

Selecting an Orimetric. Coming up with a good orimetric is key to the success of our method.
In our example, had we de!ned an orimetric that rewards functions producing substrings of the
output and punish those that produce superstrings, we would have failed to generate the solution
using bottom-up enumeration.

To construct good orimetrics, we derive them from the semantics of the operators in the grammar.
We already discussed how concatenation needs substrings to produce the desired output while
replacement favors superstrings. In practice, we concurrently run a portfolio of solvers employing a
di#erent orimetric each. We developed three orimetrics for the string domain and four orimetrics for
the bitvector domain. In Sections 5.3 and 5.4, we introduce a principled way of designing orimetrics.

Deduction. An aspect the above example did not highlight is the use of deduction. Conceptually,
deduction accelerates the search by modifying the enumeration order, as depicted in Figure 4. Our
tool Merlin implements the deduction technique from DryadSynth [15]. To explain it, consider
the sketch r(?, ?, ?). After we found the programs "$City", 𝐿 , and r(x, "$Conference", 𝐿), we would
enumerate r(r(x, "$Conference", 𝐿), "$City", 𝐿) next, which solves the synthesis problem. Deduction
thus understands a program sketch. This relies on the inverse semantics of a sketch. If one !nds
arguments such that the sketch !lled with these arguments is a solution to the synthesis problem,
the solution will be enumerated next. This means, for any supported sketch, we only need to
!nd the correct arguments. Most orimetrics we de!ne in this paper optimize the search for viable
arguments of a sketch by approximating its inverse semantics.

r(r(!POPL$Conference!, "$Conference", 𝐿), "$City", 𝐿)
!POPL!

r(r(!Rennes$City!, "$Conference", 𝐿), "$City", 𝐿)

2.2 State-of-the-Art
We discuss to what extent the state-of-the-art SyGuS solvers [2, 3, 15, 16, 27, 28, 47, 48] can be
seen as instances of the generic solver in Figure 1. The discussion shows that rather di#erent
techniques can be understood as (i) assuming an orimetric on the search space and (ii) improving
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initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune(L(G),m𝐿, gt)

Search(Q,m𝐿, gt,→ ↑ (Q ↓ Q))

Factorize(P,m𝐿,→)

Refine(m𝐿, p, gt)

Learn(→, { q ↔ Q | q → p }, gt)

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 1. CEGAR loop for synthesis.

initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune

Search

Factorize

Refine

Learn

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 2. CEGAR loop for synthesis.

S ::= V | replace(S,S,S) | concat(S,S)
V ::= x | 𝐿 | "!Conf" | "!City"

Fig. 3. Example grammar G.

In Out
"POPL!Conf" "POPL"
"Rennes!City" "Rennes"
"PLDI!Conf" "PLDI"
"Seoul!City" "Seoul"

Fig. 4. Input-output examples (In,Out).
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Prune(L(G),m𝐿, gt)

Search(Q,m𝐿, gt,→ ↑ (Q ↓ Q))

Factorize(P,m𝐿,→)

Refine(m𝐿, p, gt)
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initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p
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Search

Factorize
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p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 2. CEGAR loop for synthesis.

S ::= V | replace(S,S,S) | concat(S,S)
V ::= x | 𝐿 | "!Conf" | "!City"

Fig. 3. Example grammar G.

In Out
"POPL!Conf" "POPL"
"Rennes!City" "Rennes"
"PLDI!Conf" "PLDI"
"Seoul!City" "Seoul"

Fig. 4. Input-output examples (In,Out).
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speci!ed output "Rennes". We use Refine to generate a new orimetric for the next iteration. To
also take into account the second example, we set m𝐿 to m{i1,i2 } . While the approximate orimetric
and its re!nement are simple in this example, our approach can also be instantiated with predicate
abstraction as introduced in [47]. We discuss the details below.

We now use Learn to update the enumeration order for the next iteration. To do so, we use the
precise metric mIn to analyze the candidate solution p. We see that p produces a superstring of the
outputs for all examples. This means, mIn (!p", gt) < 100 and therefore the program lies within the
ball around gt. We consider p valuable and promote it in the enumeration order. Recall that the
enumeration order in our example is de!ned by the size. Function Learn rede!nes the size of p to
be 1. Then p and programs that use p as a subprogram will be considered early on.

Figure 14 gives the program sets constructed in the second iteration of the re!nement loop. Note
how p has size one. With this change in size, we already !nd the solution in P4. In the last row of
Figure 13, we see the cardinalities of the sets again. On the left of the slash are the cardinalities for
the !rst iteration of the re!nement loop, and on the right the cardinalities for the second iteration.
In total, we only consider 39 programs to solve the problem.

Selecting an Orimetric. Coming up with a good orimetric is key to the success of our method.
In our example, had we de!ned an orimetric that rewards functions producing substrings of the
output and punish those that produce superstrings, we would have failed to generate the solution
using bottom-up enumeration.

To construct good orimetrics, we derive them from the semantics of the operators in the grammar.
We already discussed how concatenation needs substrings to produce the desired output while
replacement favors superstrings. In practice, we concurrently run a portfolio of solvers employing a
di"erent orimetric each. We developed three orimetrics for the string domain and four orimetrics for
the bitvector domain. In Sections 5.3 and 5.4, we introduce a principled way of designing orimetrics.

Deduction. An aspect the above example did not highlight is the use of deduction. Conceptually,
deduction accelerates the search by modifying the enumeration order, as depicted in Figure 11. Our
tool Merlin implements the deduction technique from DryadSynth [15]. To explain it, consider the
sketch r(?, ?, ?). After we found the programs "#City", 𝐿 , and r(x, "#Conf", 𝐿), we would enumerate
r(r(x, "#Conf", 𝐿), "#City", 𝐿) next, which solves the synthesis problem. Deduction thus understands
a program sketch. This relies on the inverse semantics of a sketch. If one !nds arguments such
that the sketch !lled with these arguments is a solution to the synthesis problem, the solution
will be enumerated next. This means, for any supported sketch, we only need to !nd the correct
arguments. Most orimetrics we de!ne in this paper optimize the search for viable arguments of a
sketch by approximating its inverse semantics.

r(r(!POPL#Conf!, "#Conf", 𝐿), "#City", 𝐿)

!POPL!

!Rennes!

r(r(!Rennes#City!, "#Conf", 𝐿), "#City", 𝐿)
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Oriented Metrics for Bo!om-Up Enumerative Synthesis 75:11

P1 = {x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", 𝐿 .x, 𝐿 .𝐿, 𝐿 ."!Conf", 𝐿 ."!City",

"!Conf".x, "!Conf".𝐿, "!Conf"."!Conf",
"!Conf"."!City", "!City".x, "!City".𝐿, "!City"."!Conf",
"!City"."!City"}

P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), r(x, "!City", "!Conf"), . . . , r(x, "!Conf", 𝐿), . . .}
P5 = {. . .} P6 = {. . .} P7 = {. . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿), . . .}

Fig. 12. Example execution of a bo!om-up enumeration algorithm with highlights for OE factorization,
OE factorization with learning, orimetric pruning, partial correctness, and correctness. The concat operator
is abbreviated by an infix "." and the replace operator is abbreviated by r.

Method P1 P2 P3 P4 P5 P6 P7
No Pruning or Factorization 4 - 16 64 128 1280 4352

OE Factorization 4 - 9 6 27 56 119
Orimetric Pruning (OP) 4 - 7 18 56 323 929
OE Factorization + OP 4 - 5 6 19 50 81

↑m𝐿 Factorization + OP + Learning 4 / 5 - 5 / 12 3 / 10 - - -

Fig. 13. Number of programs at each size per solving method.

P1 = {r(x, "!Conf", 𝐿), x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", x.r(x, "!Conf", 𝐿), . . . , 𝐿 ."!City", . . .}
P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), . . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿) . . .}

Fig. 14. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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Syntax-Guided Synthesis (SyGuS)



prog(i) = o

Solution: 

75:10 Roland Meyer and Jakob Tepe

Solver Search Space Pruning / Factorization Enumeration Order (Deduction)
ESolver [2] Observational Equivalence (OE) constant (✁)
EUSolver [3] OE constant (✂)
Blaze [47] OE + Abstraction Re!nement + Automata constant (✁)

EUPhony [28] weak OE constant/o"ine learning (✂)
Probe [6] OE learning (✁)
Duet [27] OE constant (✂)
Simba [48] OE constant (✂)

DryadSynth [15] OE constant (✂)
Synthphonia [16] OE constant (✂)

Merlin OE + Abstraction Re!nement + Orimetrics learning (✂)

Fig. 8. Comparison of enumerative SyGuS solvers.

Figure 7 gives the program sets constructed in the second iteration of the re!nement loop. Note
how p has size one. With this change in size, we already !nd the solution in P4. In the last row of
Figure 6, we see the cardinalities of the sets again. On the left of the slash are the cardinalities for
the !rst iteration of the re!nement loop, and on the right the cardinalities for the second iteration.
In total, we only consider 39 programs to solve the problem.

Selecting an Orimetric. Coming up with a good orimetric is key to the success of our method.
In our example, had we de!ned an orimetric that rewards functions producing substrings of the
output and punish those that produce superstrings, we would have failed to generate the solution
using bottom-up enumeration.

To construct good orimetrics, we derive them from the semantics of the operators in the grammar.
We already discussed how concatenation needs substrings to produce the desired output while
replacement favors superstrings. In practice, we concurrently run a portfolio of solvers employing a
di#erent orimetric each. We developed three orimetrics for the string domain and four orimetrics for
the bitvector domain. In Sections 5.3 and 5.4, we introduce a principled way of designing orimetrics.

Deduction. An aspect the above example did not highlight is the use of deduction. Conceptually,
deduction accelerates the search by modifying the enumeration order, as depicted in Figure 4. Our
tool Merlin implements the deduction technique from DryadSynth [15]. To explain it, consider
the sketch r(?, ?, ?). After we found the programs "$City", 𝐿 , and r(x, "$Conference", 𝐿), we would
enumerate r(r(x, "$Conference", 𝐿), "$City", 𝐿) next, which solves the synthesis problem. Deduction
thus understands a program sketch. This relies on the inverse semantics of a sketch. If one !nds
arguments such that the sketch !lled with these arguments is a solution to the synthesis problem,
the solution will be enumerated next. This means, for any supported sketch, we only need to
!nd the correct arguments. Most orimetrics we de!ne in this paper optimize the search for viable
arguments of a sketch by approximating its inverse semantics.

r(r(!POPL$Conference!, "$Conference", 𝐿), "$City", 𝐿)
!POPL!

r(r(!Rennes$City!, "$Conference", 𝐿), "$City", 𝐿)

2.2 State-of-the-Art
We discuss to what extent the state-of-the-art SyGuS solvers [2, 3, 15, 16, 27, 28, 47, 48] can be
seen as instances of the generic solver in Figure 1. The discussion shows that rather di#erent
techniques can be understood as (i) assuming an orimetric on the search space and (ii) improving
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Oriented Metrics for Bo!om-Up Enumerative Synthesis 75:7

initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune(L(G),m𝐿, gt)

Search(Q,m𝐿, gt,→ ↑ (Q ↓ Q))

Factorize(P,m𝐿,→)

Refine(m𝐿, p, gt)

Learn(→, { q ↔ Q | q → p }, gt)

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 1. CEGAR loop for synthesis.

initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune

Search

Factorize

Refine

Learn

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 2. CEGAR loop for synthesis.

S ::= V | replace(S,S,S) | concat(S,S)
V ::= x | 𝐿 | "!Conf" | "!City"

Fig. 3. Example grammar G.

In Out
"POPL!Conf" "POPL"
"Rennes!City" "Rennes"
"PLDI!Conf" "PLDI"
"Seoul!City" "Seoul"

Fig. 4. Input-output examples (In,Out).
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speci!ed output "Rennes". We use Refine to generate a new orimetric for the next iteration. To
also take into account the second example, we set m𝐿 to m{i1,i2 } . While the approximate orimetric
and its re!nement are simple in this example, our approach can also be instantiated with predicate
abstraction as introduced in [47]. We discuss the details below.

We now use Learn to update the enumeration order for the next iteration. To do so, we use the
precise metric mIn to analyze the candidate solution p. We see that p produces a superstring of the
outputs for all examples. This means, mIn (!p", gt) < 100 and therefore the program lies within the
ball around gt. We consider p valuable and promote it in the enumeration order. Recall that the
enumeration order in our example is de!ned by the size. Function Learn rede!nes the size of p to
be 1. Then p and programs that use p as a subprogram will be considered early on.

Figure 14 gives the program sets constructed in the second iteration of the re!nement loop. Note
how p has size one. With this change in size, we already !nd the solution in P4. In the last row of
Figure 13, we see the cardinalities of the sets again. On the left of the slash are the cardinalities for
the !rst iteration of the re!nement loop, and on the right the cardinalities for the second iteration.
In total, we only consider 39 programs to solve the problem.

Selecting an Orimetric. Coming up with a good orimetric is key to the success of our method.
In our example, had we de!ned an orimetric that rewards functions producing substrings of the
output and punish those that produce superstrings, we would have failed to generate the solution
using bottom-up enumeration.

To construct good orimetrics, we derive them from the semantics of the operators in the grammar.
We already discussed how concatenation needs substrings to produce the desired output while
replacement favors superstrings. In practice, we concurrently run a portfolio of solvers employing a
di"erent orimetric each. We developed three orimetrics for the string domain and four orimetrics for
the bitvector domain. In Sections 5.3 and 5.4, we introduce a principled way of designing orimetrics.

Deduction. An aspect the above example did not highlight is the use of deduction. Conceptually,
deduction accelerates the search by modifying the enumeration order, as depicted in Figure 11. Our
tool Merlin implements the deduction technique from DryadSynth [15]. To explain it, consider the
sketch r(?, ?, ?). After we found the programs "#City", 𝐿 , and r(x, "#Conf", 𝐿), we would enumerate
r(r(x, "#Conf", 𝐿), "#City", 𝐿) next, which solves the synthesis problem. Deduction thus understands
a program sketch. This relies on the inverse semantics of a sketch. If one !nds arguments such
that the sketch !lled with these arguments is a solution to the synthesis problem, the solution
will be enumerated next. This means, for any supported sketch, we only need to !nd the correct
arguments. Most orimetrics we de!ne in this paper optimize the search for viable arguments of a
sketch by approximating its inverse semantics.

r(r(!POPL#Conf!, "#Conf", 𝐿), "#City", 𝐿)

!POPL!

!Rennes!

r(r(!Rennes#City!, "#Conf", 𝐿), "#City", 𝐿)
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P1 = {x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", 𝐿 .x, 𝐿 .𝐿, 𝐿 ."!Conf", 𝐿 ."!City",

"!Conf".x, "!Conf".𝐿, "!Conf"."!Conf",
"!Conf"."!City", "!City".x, "!City".𝐿, "!City"."!Conf",
"!City"."!City"}

P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), r(x, "!City", "!Conf"), . . . , r(x, "!Conf", 𝐿), . . .}
P5 = {. . .} P6 = {. . .} P7 = {. . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿), . . .}

Fig. 12. Example execution of a bo!om-up enumeration algorithm with highlights for OE factorization,
OE factorization with learning, orimetric pruning, partial correctness, and correctness. The concat operator
is abbreviated by an infix "." and the replace operator is abbreviated by r.

Method P1 P2 P3 P4 P5 P6 P7
No Pruning or Factorization 4 - 16 64 128 1280 4352

OE Factorization 4 - 9 6 27 56 119
Orimetric Pruning (OP) 4 - 7 18 56 323 929
OE Factorization + OP 4 - 5 6 19 50 81

↑m𝐿 Factorization + OP + Learning 4 / 5 - 5 / 12 3 / 10 - - -

Fig. 13. Number of programs at each size per solving method.

P1 = {r(x, "!Conf", 𝐿), x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", x.r(x, "!Conf", 𝐿), . . . , 𝐿 ."!City", . . .}
P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), . . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿) . . .}

Fig. 14. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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Solver Search Space Pruning / Factorization Enumeration Order (Deduction)
ESolver [2] Observational Equivalence (OE) constant (✁)
EUSolver [3] OE constant (✂)
Blaze [47] OE + Abstraction Re!nement + Automata constant (✁)

EUPhony [28] weak OE constant/o"ine learning (✂)
Probe [6] OE learning (✁)
Duet [27] OE constant (✂)
Simba [48] OE constant (✂)

DryadSynth [15] OE constant (✂)
Synthphonia [16] OE constant (✂)

Merlin OE + Abstraction Re!nement + Orimetrics learning (✂)

Fig. 8. Comparison of enumerative SyGuS solvers.

Figure 7 gives the program sets constructed in the second iteration of the re!nement loop. Note
how p has size one. With this change in size, we already !nd the solution in P4. In the last row of
Figure 6, we see the cardinalities of the sets again. On the left of the slash are the cardinalities for
the !rst iteration of the re!nement loop, and on the right the cardinalities for the second iteration.
In total, we only consider 39 programs to solve the problem.

Selecting an Orimetric. Coming up with a good orimetric is key to the success of our method.
In our example, had we de!ned an orimetric that rewards functions producing substrings of the
output and punish those that produce superstrings, we would have failed to generate the solution
using bottom-up enumeration.

To construct good orimetrics, we derive them from the semantics of the operators in the grammar.
We already discussed how concatenation needs substrings to produce the desired output while
replacement favors superstrings. In practice, we concurrently run a portfolio of solvers employing a
di#erent orimetric each. We developed three orimetrics for the string domain and four orimetrics for
the bitvector domain. In Sections 5.3 and 5.4, we introduce a principled way of designing orimetrics.

Deduction. An aspect the above example did not highlight is the use of deduction. Conceptually,
deduction accelerates the search by modifying the enumeration order, as depicted in Figure 4. Our
tool Merlin implements the deduction technique from DryadSynth [15]. To explain it, consider
the sketch r(?, ?, ?). After we found the programs "$City", 𝐿 , and r(x, "$Conference", 𝐿), we would
enumerate r(r(x, "$Conference", 𝐿), "$City", 𝐿) next, which solves the synthesis problem. Deduction
thus understands a program sketch. This relies on the inverse semantics of a sketch. If one !nds
arguments such that the sketch !lled with these arguments is a solution to the synthesis problem,
the solution will be enumerated next. This means, for any supported sketch, we only need to
!nd the correct arguments. Most orimetrics we de!ne in this paper optimize the search for viable
arguments of a sketch by approximating its inverse semantics.

r(r(!POPL$Conference!, "$Conference", 𝐿), "$City", 𝐿)
!POPL!

r(r(!Rennes$City!, "$Conference", 𝐿), "$City", 𝐿)

2.2 State-of-the-Art
We discuss to what extent the state-of-the-art SyGuS solvers [2, 3, 15, 16, 27, 28, 47, 48] can be
seen as instances of the generic solver in Figure 1. The discussion shows that rather di#erent
techniques can be understood as (i) assuming an orimetric on the search space and (ii) improving
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75:10 Roland Meyer and Jakob Tepe

Solver Search Space Pruning / Factorization Enumeration Order (Deduction)
ESolver [2] Observational Equivalence (OE) constant (✁)
EUSolver [3] OE constant (✂)
Blaze [47] OE + Abstraction Re!nement + Automata constant (✁)

EUPhony [28] weak OE constant/o"ine learning (✂)
Probe [6] OE learning (✁)
Duet [27] OE constant (✂)
Simba [48] OE constant (✂)

DryadSynth [15] OE constant (✂)
Synthphonia [16] OE constant (✂)

Merlin OE + Abstraction Re!nement + Orimetrics learning (✂)

Fig. 8. Comparison of enumerative SyGuS solvers.

Figure 7 gives the program sets constructed in the second iteration of the re!nement loop. Note
how p has size one. With this change in size, we already !nd the solution in P4. In the last row of
Figure 6, we see the cardinalities of the sets again. On the left of the slash are the cardinalities for
the !rst iteration of the re!nement loop, and on the right the cardinalities for the second iteration.
In total, we only consider 39 programs to solve the problem.

Selecting an Orimetric. Coming up with a good orimetric is key to the success of our method.
In our example, had we de!ned an orimetric that rewards functions producing substrings of the
output and punish those that produce superstrings, we would have failed to generate the solution
using bottom-up enumeration.

To construct good orimetrics, we derive them from the semantics of the operators in the grammar.
We already discussed how concatenation needs substrings to produce the desired output while
replacement favors superstrings. In practice, we concurrently run a portfolio of solvers employing a
di#erent orimetric each. We developed three orimetrics for the string domain and four orimetrics for
the bitvector domain. In Sections 5.3 and 5.4, we introduce a principled way of designing orimetrics.

Deduction. An aspect the above example did not highlight is the use of deduction. Conceptually,
deduction accelerates the search by modifying the enumeration order, as depicted in Figure 4. Our
tool Merlin implements the deduction technique from DryadSynth [15]. To explain it, consider
the sketch r(?, ?, ?). After we found the programs "$City", 𝐿 , and r(x, "$Conference", 𝐿), we would
enumerate r(r(x, "$Conference", 𝐿), "$City", 𝐿) next, which solves the synthesis problem. Deduction
thus understands a program sketch. This relies on the inverse semantics of a sketch. If one !nds
arguments such that the sketch !lled with these arguments is a solution to the synthesis problem,
the solution will be enumerated next. This means, for any supported sketch, we only need to
!nd the correct arguments. Most orimetrics we de!ne in this paper optimize the search for viable
arguments of a sketch by approximating its inverse semantics.

r(r(!POPL$Conference!, "$Conference", 𝐿), "$City", 𝐿)
!POPL!

r(r(!Rennes$City!, "$Conference", 𝐿), "$City", 𝐿)

2.2 State-of-the-Art
We discuss to what extent the state-of-the-art SyGuS solvers [2, 3, 15, 16, 27, 28, 47, 48] can be
seen as instances of the generic solver in Figure 1. The discussion shows that rather di#erent
techniques can be understood as (i) assuming an orimetric on the search space and (ii) improving
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initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune(L(G),m𝐿, gt)

Search(Q,m𝐿, gt,→ ↑ (Q ↓ Q))

Factorize(P,m𝐿,→)

Refine(m𝐿, p, gt)

Learn(→, { q ↔ Q | q → p }, gt)

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 1. CEGAR loop for synthesis.

initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune

Search

Factorize

Refine

Learn

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 2. CEGAR loop for synthesis.

S ::= V | replace(S,S,S) | concat(S,S)
V ::= x | 𝐿 | "!Conf" | "!City"

Fig. 3. Example grammar G.

In Out
"POPL!Conf" "POPL"
"Rennes!City" "Rennes"
"PLDI!Conf" "PLDI"
"Seoul!City" "Seoul"

Fig. 4. Input-output examples (In,Out).
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initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune(L(G),m𝐿, gt)

Search(Q,m𝐿, gt,→ ↑ (Q ↓ Q))

Factorize(P,m𝐿,→)

Refine(m𝐿, p, gt)

Learn(→, { q ↔ Q | q → p }, gt)

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 1. CEGAR loop for synthesis.

initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune

Search

Factorize

Refine

Learn

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 2. CEGAR loop for synthesis.

S ::= V | replace(S,S,S) | concat(S,S)
V ::= x | 𝐿 | "!Conf" | "!City"

Fig. 3. Example grammar G.

In Out
"POPL!Conf" "POPL"
"Rennes!City" "Rennes"
"PLDI!Conf" "PLDI"
"Seoul!City" "Seoul"

Fig. 4. Input-output examples (In,Out).
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speci!ed output "Rennes". We use Refine to generate a new orimetric for the next iteration. To
also take into account the second example, we set m𝐿 to m{i1,i2 } . While the approximate orimetric
and its re!nement are simple in this example, our approach can also be instantiated with predicate
abstraction as introduced in [47]. We discuss the details below.

We now use Learn to update the enumeration order for the next iteration. To do so, we use the
precise metric mIn to analyze the candidate solution p. We see that p produces a superstring of the
outputs for all examples. This means, mIn (!p", gt) < 100 and therefore the program lies within the
ball around gt. We consider p valuable and promote it in the enumeration order. Recall that the
enumeration order in our example is de!ned by the size. Function Learn rede!nes the size of p to
be 1. Then p and programs that use p as a subprogram will be considered early on.

Figure 14 gives the program sets constructed in the second iteration of the re!nement loop. Note
how p has size one. With this change in size, we already !nd the solution in P4. In the last row of
Figure 13, we see the cardinalities of the sets again. On the left of the slash are the cardinalities for
the !rst iteration of the re!nement loop, and on the right the cardinalities for the second iteration.
In total, we only consider 39 programs to solve the problem.

Selecting an Orimetric. Coming up with a good orimetric is key to the success of our method.
In our example, had we de!ned an orimetric that rewards functions producing substrings of the
output and punish those that produce superstrings, we would have failed to generate the solution
using bottom-up enumeration.

To construct good orimetrics, we derive them from the semantics of the operators in the grammar.
We already discussed how concatenation needs substrings to produce the desired output while
replacement favors superstrings. In practice, we concurrently run a portfolio of solvers employing a
di"erent orimetric each. We developed three orimetrics for the string domain and four orimetrics for
the bitvector domain. In Sections 5.3 and 5.4, we introduce a principled way of designing orimetrics.

Deduction. An aspect the above example did not highlight is the use of deduction. Conceptually,
deduction accelerates the search by modifying the enumeration order, as depicted in Figure 11. Our
tool Merlin implements the deduction technique from DryadSynth [15]. To explain it, consider the
sketch r(?, ?, ?). After we found the programs "#City", 𝐿 , and r(x, "#Conf", 𝐿), we would enumerate
r(r(x, "#Conf", 𝐿), "#City", 𝐿) next, which solves the synthesis problem. Deduction thus understands
a program sketch. This relies on the inverse semantics of a sketch. If one !nds arguments such
that the sketch !lled with these arguments is a solution to the synthesis problem, the solution
will be enumerated next. This means, for any supported sketch, we only need to !nd the correct
arguments. Most orimetrics we de!ne in this paper optimize the search for viable arguments of a
sketch by approximating its inverse semantics.

r(r(!POPL#Conf!, "#Conf", 𝐿), "#City", 𝐿)

!POPL!

!Rennes!

r(r(!Rennes#City!, "#Conf", 𝐿), "#City", 𝐿)

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 75. Publication date: January 2026.

O
ri
en
te
d
M
et
ri
cs

fo
rB

o!
om

-U
p
En

um
er
at
iv
e
Sy

nt
he

si
s

75
:1
3

So
lv
er

Se
ar
ch

Sp
ac
e
Pr
un

in
g
/F

ac
to
riz

at
io
n

En
um

er
at
io
n
O
rd
er

(D
ed
uc
tio

n)
ES

ol
ve
r[
2]

O
bs
er
va
tio

na
lE

qu
iv
al
en
ce

(O
E)

co
ns
ta
nt

(✁
)

EU
So
lv
er

[3
]

O
E

co
ns
ta
nt

(✂
)

Bl
az
e
[4
7]

O
E
+
A
bs
tr
ac
tio

n
Re

!n
em

en
t+

A
ut
om

at
a

co
ns
ta
nt

(✁
)

EU
Ph

on
y
[2
8]

w
ea
k
O
E

co
ns
ta
nt
/o
"
in
e
le
ar
ni
ng

(✂
)

Pr
ob

e
[6
]

O
E

le
ar
ni
ng

(✁
)

D
ue
t[
27
]

O
E

co
ns
ta
nt

(✂
)

Si
m
ba

[4
8]

O
E

co
ns
ta
nt

(✂
)

D
ry
ad
Sy
nt
h
[1
5]

O
E

co
ns
ta
nt

(✂
)

Sy
nt
hp

ho
ni
a
[1
6]

O
E

co
ns
ta
nt

(✂
)

M
er
lin

O
E
+
A
bs
tr
ac
tio

n
Re

!n
em

en
t+

O
rim

et
ric

s
le
ar
ni
ng

(✂
)

Fi
g.
15
.
C
om

pa
ri
so
n
of

en
um

er
at
iv
e
Sy

G
uS

so
lv
er
s.

                         𝐿 𝑀 𝑁 𝑂 𝐿 𝑀 𝑁

r
e
p
l
a
c
e
(S

1,
S 2

,𝑃
)

c
o
n
c
a
t
(S

1,
S 2

)

a
n
d
(S

1,
S 2

)

m
𝐿
(r
(x
,"
#C
o
n
f
",
𝑃)
,g
t)

=
0

m
𝐿
(r
(x
,"
#C
i
t
y
",
"#C

o
n
f
"),

x
)=

0
m

In
("#
C
i
t
y
"."
#C
i
t
y
",
gt
)>

10
0

2.
2

St
at
e-
of
-t
he

-A
rt

W
e
di
sc
us
s
to

w
ha
te

xt
en
tt
he

st
at
e-
of
-t
he
-a
rt
Sy

G
uS

so
lv
er
s
[2
,3
,1
5,
16
,2
7,
28
,4
7,
48
]
ca
n
be

se
en

as
in
st
an
ce
s
of

th
e
ge
ne
ri
c
so
lv
er

in
Fi
gu

re
1.
Th

e
di
sc
us
si
on

sh
ow

s
th
at

ra
th
er

di
$e

re
nt

te
ch
ni
qu

es
ca
n
be

un
de
rs
to
od

as
(i)

as
su
m
in
g
an

or
im

et
ri
c
on

th
e
se
ar
ch

sp
ac
e
an
d
(ii
)i
m
pr
ov
in
g

an
en
um

er
at
io
n
or
de
r
th
ro
ug

h
le
ar
ni
ng

.T
he
se

tw
o
in
gr
ed
ie
nt
sa

re
of
te
n
le
ft
im

pl
ic
it
in

th
e
re
la
te
d

w
or
k.
By

m
ak
in
g
th
em

ex
pl
ic
it
an
d
gi
vi
ng

th
em

rig
or
ou

sd
e!

ni
tio

ns
,w

e
pr
ov
id
e
a
fr
am

ew
or
k
in

w
hi
ch

Sy
G
uS

te
ch
no

lo
gy

ca
n
be

de
ve
lo
pe
d.

Th
e
di
sc
us
si
on

of
th
e
so
lv
er
s
is
su
m
m
ar
iz
ed

in
Fi
gu

re
15
.T

he
se
co
nd

co
lu
m
n
de
sc
ri
be
s
th
e

pr
un

in
g
te
ch
ni
qu

e
th
at

is
ap
pl
ie
d
to

re
du

ce
th
e
se
ar
ch

sp
ac
e.
Th

e
th
ird

co
lu
m
n
ca
te
go

ri
ze
s
th
e

en
um

er
at
io
n
or
de
ra

sc
on

st
an
to

rl
ea
rn
in
g,
an
d
in
di
ca
te
sw

he
th
er

de
du

ct
iv
e
el
em

en
ts
ar
e
us
ed
.

ES
ol
ve
r[
2]

is
th
e
ba
si
so

fe
nu

m
er
at
iv
e
Sy

G
uS

so
lv
er
s.
It
en
um

er
at
es

pr
og

ra
m
sb

y
si
ze

un
til

it
!n

ds
a
pr
og

ra
m

th
at

w
or
ks

fo
ra

ll
ex
am

pl
es
.E

So
lv
er

ap
pl
ie
so

bs
er
va
tio

na
le
qu

iv
al
en
ce

to
fa
ct
or
iz
e

th
e
se
ar
ch

sp
ac
e.
Th

e
en
um

er
at
io
n
or
de
r
is
co
ns
ta
nt

an
d
do

es
no

tu
se

de
du

ct
io
n.

EU
So
lv
er

[3
]

Pr
oc
.A

CM
Pr
og

ra
m
.L

an
g.
,V

ol
.1
0,
N
o.

PO
PL

,A
rt
ic
le
75
.P

ub
lic
at
io
n
da
te
:J
an
ua
ry

20
26
.

Oriented Metrics for Bo!om-Up Enumerative Synthesis 75:11

P1 = {x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", 𝐿 .x, 𝐿 .𝐿, 𝐿 ."!Conf", 𝐿 ."!City",

"!Conf".x, "!Conf".𝐿, "!Conf"."!Conf",
"!Conf"."!City", "!City".x, "!City".𝐿, "!City"."!Conf",
"!City"."!City"}

P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), r(x, "!City", "!Conf"), . . . , r(x, "!Conf", 𝐿), . . .}
P5 = {. . .} P6 = {. . .} P7 = {. . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿), . . .}

Fig. 12. Example execution of a bo!om-up enumeration algorithm with highlights for OE factorization,
OE factorization with learning, orimetric pruning, partial correctness, and correctness. The concat operator
is abbreviated by an infix "." and the replace operator is abbreviated by r.

Method P1 P2 P3 P4 P5 P6 P7
No Pruning or Factorization 4 - 16 64 128 1280 4352

OE Factorization 4 - 9 6 27 56 119
Orimetric Pruning (OP) 4 - 7 18 56 323 929
OE Factorization + OP 4 - 5 6 19 50 81

↑m𝐿 Factorization + OP + Learning 4 / 5 - 5 / 12 3 / 10 - - -

Fig. 13. Number of programs at each size per solving method.

P1 = {r(x, "!Conf", 𝐿), x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", x.r(x, "!Conf", 𝐿), . . . , 𝐿 ."!City", . . .}
P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), . . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿) . . .}

Fig. 14. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 75. Publication date: January 2026.
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prog(i) = o

Solution: 

75:10 Roland Meyer and Jakob Tepe

Solver Search Space Pruning / Factorization Enumeration Order (Deduction)
ESolver [2] Observational Equivalence (OE) constant (✁)
EUSolver [3] OE constant (✂)
Blaze [47] OE + Abstraction Re!nement + Automata constant (✁)

EUPhony [28] weak OE constant/o"ine learning (✂)
Probe [6] OE learning (✁)
Duet [27] OE constant (✂)
Simba [48] OE constant (✂)

DryadSynth [15] OE constant (✂)
Synthphonia [16] OE constant (✂)

Merlin OE + Abstraction Re!nement + Orimetrics learning (✂)

Fig. 8. Comparison of enumerative SyGuS solvers.

Figure 7 gives the program sets constructed in the second iteration of the re!nement loop. Note
how p has size one. With this change in size, we already !nd the solution in P4. In the last row of
Figure 6, we see the cardinalities of the sets again. On the left of the slash are the cardinalities for
the !rst iteration of the re!nement loop, and on the right the cardinalities for the second iteration.
In total, we only consider 39 programs to solve the problem.

Selecting an Orimetric. Coming up with a good orimetric is key to the success of our method.
In our example, had we de!ned an orimetric that rewards functions producing substrings of the
output and punish those that produce superstrings, we would have failed to generate the solution
using bottom-up enumeration.

To construct good orimetrics, we derive them from the semantics of the operators in the grammar.
We already discussed how concatenation needs substrings to produce the desired output while
replacement favors superstrings. In practice, we concurrently run a portfolio of solvers employing a
di#erent orimetric each. We developed three orimetrics for the string domain and four orimetrics for
the bitvector domain. In Sections 5.3 and 5.4, we introduce a principled way of designing orimetrics.

Deduction. An aspect the above example did not highlight is the use of deduction. Conceptually,
deduction accelerates the search by modifying the enumeration order, as depicted in Figure 4. Our
tool Merlin implements the deduction technique from DryadSynth [15]. To explain it, consider
the sketch r(?, ?, ?). After we found the programs "$City", 𝐿 , and r(x, "$Conference", 𝐿), we would
enumerate r(r(x, "$Conference", 𝐿), "$City", 𝐿) next, which solves the synthesis problem. Deduction
thus understands a program sketch. This relies on the inverse semantics of a sketch. If one !nds
arguments such that the sketch !lled with these arguments is a solution to the synthesis problem,
the solution will be enumerated next. This means, for any supported sketch, we only need to
!nd the correct arguments. Most orimetrics we de!ne in this paper optimize the search for viable
arguments of a sketch by approximating its inverse semantics.

r(r(!POPL$Conference!, "$Conference", 𝐿), "$City", 𝐿)
!POPL!

r(r(!Rennes$City!, "$Conference", 𝐿), "$City", 𝐿)

2.2 State-of-the-Art
We discuss to what extent the state-of-the-art SyGuS solvers [2, 3, 15, 16, 27, 28, 47, 48] can be
seen as instances of the generic solver in Figure 1. The discussion shows that rather di#erent
techniques can be understood as (i) assuming an orimetric on the search space and (ii) improving
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Solver Search Space Pruning / Factorization Enumeration Order (Deduction)
ESolver [2] Observational Equivalence (OE) constant (✁)
EUSolver [3] OE constant (✂)
Blaze [47] OE + Abstraction Re!nement + Automata constant (✁)

EUPhony [28] weak OE constant/o"ine learning (✂)
Probe [6] OE learning (✁)
Duet [27] OE constant (✂)
Simba [48] OE constant (✂)

DryadSynth [15] OE constant (✂)
Synthphonia [16] OE constant (✂)

Merlin OE + Abstraction Re!nement + Orimetrics learning (✂)

Fig. 8. Comparison of enumerative SyGuS solvers.

Figure 7 gives the program sets constructed in the second iteration of the re!nement loop. Note
how p has size one. With this change in size, we already !nd the solution in P4. In the last row of
Figure 6, we see the cardinalities of the sets again. On the left of the slash are the cardinalities for
the !rst iteration of the re!nement loop, and on the right the cardinalities for the second iteration.
In total, we only consider 39 programs to solve the problem.

Selecting an Orimetric. Coming up with a good orimetric is key to the success of our method.
In our example, had we de!ned an orimetric that rewards functions producing substrings of the
output and punish those that produce superstrings, we would have failed to generate the solution
using bottom-up enumeration.

To construct good orimetrics, we derive them from the semantics of the operators in the grammar.
We already discussed how concatenation needs substrings to produce the desired output while
replacement favors superstrings. In practice, we concurrently run a portfolio of solvers employing a
di#erent orimetric each. We developed three orimetrics for the string domain and four orimetrics for
the bitvector domain. In Sections 5.3 and 5.4, we introduce a principled way of designing orimetrics.

Deduction. An aspect the above example did not highlight is the use of deduction. Conceptually,
deduction accelerates the search by modifying the enumeration order, as depicted in Figure 4. Our
tool Merlin implements the deduction technique from DryadSynth [15]. To explain it, consider
the sketch r(?, ?, ?). After we found the programs "$City", 𝐿 , and r(x, "$Conference", 𝐿), we would
enumerate r(r(x, "$Conference", 𝐿), "$City", 𝐿) next, which solves the synthesis problem. Deduction
thus understands a program sketch. This relies on the inverse semantics of a sketch. If one !nds
arguments such that the sketch !lled with these arguments is a solution to the synthesis problem,
the solution will be enumerated next. This means, for any supported sketch, we only need to
!nd the correct arguments. Most orimetrics we de!ne in this paper optimize the search for viable
arguments of a sketch by approximating its inverse semantics.

r(r(!POPL$Conference!, "$Conference", 𝐿), "$City", 𝐿)
!POPL!

r(r(!Rennes$City!, "$Conference", 𝐿), "$City", 𝐿)

2.2 State-of-the-Art
We discuss to what extent the state-of-the-art SyGuS solvers [2, 3, 15, 16, 27, 28, 47, 48] can be
seen as instances of the generic solver in Figure 1. The discussion shows that rather di#erent
techniques can be understood as (i) assuming an orimetric on the search space and (ii) improving
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initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune(L(G),m𝐿, gt)

Search(Q,m𝐿, gt,→ ↑ (Q ↓ Q))

Factorize(P,m𝐿,→)

Refine(m𝐿, p, gt)

Learn(→, { q ↔ Q | q → p }, gt)

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 1. CEGAR loop for synthesis.

initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune

Search

Factorize

Refine

Learn

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 2. CEGAR loop for synthesis.

S ::= V | replace(S,S,S) | concat(S,S)
V ::= x | 𝐿 | "!Conf" | "!City"

Fig. 3. Example grammar G.

In Out
"POPL!Conf" "POPL"
"Rennes!City" "Rennes"
"PLDI!Conf" "PLDI"
"Seoul!City" "Seoul"

Fig. 4. Input-output examples (In,Out).
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initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune(L(G),m𝐿, gt)

Search(Q,m𝐿, gt,→ ↑ (Q ↓ Q))

Factorize(P,m𝐿,→)

Refine(m𝐿, p, gt)

Learn(→, { q ↔ Q | q → p }, gt)

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿
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✂
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initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune

Search

Factorize

Refine
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p correct?
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search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 2. CEGAR loop for synthesis.

S ::= V | replace(S,S,S) | concat(S,S)
V ::= x | 𝐿 | "!Conf" | "!City"

Fig. 3. Example grammar G.

In Out
"POPL!Conf" "POPL"
"Rennes!City" "Rennes"
"PLDI!Conf" "PLDI"
"Seoul!City" "Seoul"

Fig. 4. Input-output examples (In,Out).

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 75. Publication date: January 2026.

75:12 Roland Meyer and Jakob Tepe

speci!ed output "Rennes". We use Refine to generate a new orimetric for the next iteration. To
also take into account the second example, we set m𝐿 to m{i1,i2 } . While the approximate orimetric
and its re!nement are simple in this example, our approach can also be instantiated with predicate
abstraction as introduced in [47]. We discuss the details below.

We now use Learn to update the enumeration order for the next iteration. To do so, we use the
precise metric mIn to analyze the candidate solution p. We see that p produces a superstring of the
outputs for all examples. This means, mIn (!p", gt) < 100 and therefore the program lies within the
ball around gt. We consider p valuable and promote it in the enumeration order. Recall that the
enumeration order in our example is de!ned by the size. Function Learn rede!nes the size of p to
be 1. Then p and programs that use p as a subprogram will be considered early on.

Figure 14 gives the program sets constructed in the second iteration of the re!nement loop. Note
how p has size one. With this change in size, we already !nd the solution in P4. In the last row of
Figure 13, we see the cardinalities of the sets again. On the left of the slash are the cardinalities for
the !rst iteration of the re!nement loop, and on the right the cardinalities for the second iteration.
In total, we only consider 39 programs to solve the problem.

Selecting an Orimetric. Coming up with a good orimetric is key to the success of our method.
In our example, had we de!ned an orimetric that rewards functions producing substrings of the
output and punish those that produce superstrings, we would have failed to generate the solution
using bottom-up enumeration.

To construct good orimetrics, we derive them from the semantics of the operators in the grammar.
We already discussed how concatenation needs substrings to produce the desired output while
replacement favors superstrings. In practice, we concurrently run a portfolio of solvers employing a
di"erent orimetric each. We developed three orimetrics for the string domain and four orimetrics for
the bitvector domain. In Sections 5.3 and 5.4, we introduce a principled way of designing orimetrics.

Deduction. An aspect the above example did not highlight is the use of deduction. Conceptually,
deduction accelerates the search by modifying the enumeration order, as depicted in Figure 11. Our
tool Merlin implements the deduction technique from DryadSynth [15]. To explain it, consider the
sketch r(?, ?, ?). After we found the programs "#City", 𝐿 , and r(x, "#Conf", 𝐿), we would enumerate
r(r(x, "#Conf", 𝐿), "#City", 𝐿) next, which solves the synthesis problem. Deduction thus understands
a program sketch. This relies on the inverse semantics of a sketch. If one !nds arguments such
that the sketch !lled with these arguments is a solution to the synthesis problem, the solution
will be enumerated next. This means, for any supported sketch, we only need to !nd the correct
arguments. Most orimetrics we de!ne in this paper optimize the search for viable arguments of a
sketch by approximating its inverse semantics.

r(r(!POPL#Conf!, "#Conf", 𝐿), "#City", 𝐿)

!POPL!

!Rennes!

r(r(!Rennes#City!, "#Conf", 𝐿), "#City", 𝐿)
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speci!ed output "Rennes". We use Refine to generate a new orimetric for the next iteration. To
also take into account the second example, we set m𝐿 to m{i1,i2 } . While the approximate orimetric
and its re!nement are simple in this example, our approach can also be instantiated with predicate
abstraction as introduced in [47]. We discuss the details below.

We now use Learn to update the enumeration order for the next iteration. To do so, we use the
precise metric mIn to analyze the candidate solution p. We see that p produces a superstring of the
outputs for all examples. This means, mIn (!p", gt) < 100 and therefore the program lies within the
ball around gt. We consider p valuable and promote it in the enumeration order. Recall that the
enumeration order in our example is de!ned by the size. Function Learn rede!nes the size of p to
be 1. Then p and programs that use p as a subprogram will be considered early on.

Figure 14 gives the program sets constructed in the second iteration of the re!nement loop. Note
how p has size one. With this change in size, we already !nd the solution in P4. In the last row of
Figure 13, we see the cardinalities of the sets again. On the left of the slash are the cardinalities for
the !rst iteration of the re!nement loop, and on the right the cardinalities for the second iteration.
In total, we only consider 39 programs to solve the problem.

Selecting an Orimetric. Coming up with a good orimetric is key to the success of our method.
In our example, had we de!ned an orimetric that rewards functions producing substrings of the
output and punish those that produce superstrings, we would have failed to generate the solution
using bottom-up enumeration.

To construct good orimetrics, we derive them from the semantics of the operators in the grammar.
We already discussed how concatenation needs substrings to produce the desired output while
replacement favors superstrings. In practice, we concurrently run a portfolio of solvers employing a
di"erent orimetric each. We developed three orimetrics for the string domain and four orimetrics for
the bitvector domain. In Sections 5.3 and 5.4, we introduce a principled way of designing orimetrics.

Deduction. An aspect the above example did not highlight is the use of deduction. Conceptually,
deduction accelerates the search by modifying the enumeration order, as depicted in Figure 11. Our
tool Merlin implements the deduction technique from DryadSynth [15]. To explain it, consider the
sketch r(?, ?, ?). After we found the programs "#City", 𝐿 , and r(x, "#Conf", 𝐿), we would enumerate
r(r(x, "#Conf", 𝐿), "#City", 𝐿) next, which solves the synthesis problem. Deduction thus understands
a program sketch. This relies on the inverse semantics of a sketch. If one !nds arguments such
that the sketch !lled with these arguments is a solution to the synthesis problem, the solution
will be enumerated next. This means, for any supported sketch, we only need to !nd the correct
arguments. Most orimetrics we de!ne in this paper optimize the search for viable arguments of a
sketch by approximating its inverse semantics.

r(r(!POPL#Conf!, "#Conf", 𝐿), "#City", 𝐿)

!POPL!

!Rennes!

r(r(!Rennes#City!, "#Conf", 𝐿), "#City", 𝐿)
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P1 = {x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", 𝐿 .x, 𝐿 .𝐿, 𝐿 ."!Conf", 𝐿 ."!City",

"!Conf".x, "!Conf".𝐿, "!Conf"."!Conf",
"!Conf"."!City", "!City".x, "!City".𝐿, "!City"."!Conf",
"!City"."!City"}

P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), r(x, "!City", "!Conf"), . . . , r(x, "!Conf", 𝐿), . . .}
P5 = {. . .} P6 = {. . .} P7 = {. . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿), . . .}

Fig. 12. Example execution of a bo!om-up enumeration algorithm with highlights for OE factorization,
OE factorization with learning, orimetric pruning, partial correctness, and correctness. The concat operator
is abbreviated by an infix "." and the replace operator is abbreviated by r.

Method P1 P2 P3 P4 P5 P6 P7
No Pruning or Factorization 4 - 16 64 128 1280 4352

OE Factorization 4 - 9 6 27 56 119
Orimetric Pruning (OP) 4 - 7 18 56 323 929
OE Factorization + OP 4 - 5 6 19 50 81

↑m𝐿 Factorization + OP + Learning 4 / 5 - 5 / 12 3 / 10 - - -

Fig. 13. Number of programs at each size per solving method.

P1 = {r(x, "!Conf", 𝐿), x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", x.r(x, "!Conf", 𝐿), . . . , 𝐿 ."!City", . . .}
P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), . . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿) . . .}

Fig. 14. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 75. Publication date: January 2026.

Syntax-Guided Synthesis (SyGuS)



prog(i) = o

Solution: 

75:10 Roland Meyer and Jakob Tepe

Solver Search Space Pruning / Factorization Enumeration Order (Deduction)
ESolver [2] Observational Equivalence (OE) constant (✁)
EUSolver [3] OE constant (✂)
Blaze [47] OE + Abstraction Re!nement + Automata constant (✁)

EUPhony [28] weak OE constant/o"ine learning (✂)
Probe [6] OE learning (✁)
Duet [27] OE constant (✂)
Simba [48] OE constant (✂)

DryadSynth [15] OE constant (✂)
Synthphonia [16] OE constant (✂)

Merlin OE + Abstraction Re!nement + Orimetrics learning (✂)

Fig. 8. Comparison of enumerative SyGuS solvers.

Figure 7 gives the program sets constructed in the second iteration of the re!nement loop. Note
how p has size one. With this change in size, we already !nd the solution in P4. In the last row of
Figure 6, we see the cardinalities of the sets again. On the left of the slash are the cardinalities for
the !rst iteration of the re!nement loop, and on the right the cardinalities for the second iteration.
In total, we only consider 39 programs to solve the problem.

Selecting an Orimetric. Coming up with a good orimetric is key to the success of our method.
In our example, had we de!ned an orimetric that rewards functions producing substrings of the
output and punish those that produce superstrings, we would have failed to generate the solution
using bottom-up enumeration.

To construct good orimetrics, we derive them from the semantics of the operators in the grammar.
We already discussed how concatenation needs substrings to produce the desired output while
replacement favors superstrings. In practice, we concurrently run a portfolio of solvers employing a
di#erent orimetric each. We developed three orimetrics for the string domain and four orimetrics for
the bitvector domain. In Sections 5.3 and 5.4, we introduce a principled way of designing orimetrics.

Deduction. An aspect the above example did not highlight is the use of deduction. Conceptually,
deduction accelerates the search by modifying the enumeration order, as depicted in Figure 4. Our
tool Merlin implements the deduction technique from DryadSynth [15]. To explain it, consider
the sketch r(?, ?, ?). After we found the programs "$City", 𝐿 , and r(x, "$Conference", 𝐿), we would
enumerate r(r(x, "$Conference", 𝐿), "$City", 𝐿) next, which solves the synthesis problem. Deduction
thus understands a program sketch. This relies on the inverse semantics of a sketch. If one !nds
arguments such that the sketch !lled with these arguments is a solution to the synthesis problem,
the solution will be enumerated next. This means, for any supported sketch, we only need to
!nd the correct arguments. Most orimetrics we de!ne in this paper optimize the search for viable
arguments of a sketch by approximating its inverse semantics.

r(r(!POPL$Conference!, "$Conference", 𝐿), "$City", 𝐿)
!POPL!

r(r(!Rennes$City!, "$Conference", 𝐿), "$City", 𝐿)

2.2 State-of-the-Art
We discuss to what extent the state-of-the-art SyGuS solvers [2, 3, 15, 16, 27, 28, 47, 48] can be
seen as instances of the generic solver in Figure 1. The discussion shows that rather di#erent
techniques can be understood as (i) assuming an orimetric on the search space and (ii) improving
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Solver Search Space Pruning / Factorization Enumeration Order (Deduction)
ESolver [2] Observational Equivalence (OE) constant (✁)
EUSolver [3] OE constant (✂)
Blaze [47] OE + Abstraction Re!nement + Automata constant (✁)

EUPhony [28] weak OE constant/o"ine learning (✂)
Probe [6] OE learning (✁)
Duet [27] OE constant (✂)
Simba [48] OE constant (✂)

DryadSynth [15] OE constant (✂)
Synthphonia [16] OE constant (✂)

Merlin OE + Abstraction Re!nement + Orimetrics learning (✂)

Fig. 8. Comparison of enumerative SyGuS solvers.

Figure 7 gives the program sets constructed in the second iteration of the re!nement loop. Note
how p has size one. With this change in size, we already !nd the solution in P4. In the last row of
Figure 6, we see the cardinalities of the sets again. On the left of the slash are the cardinalities for
the !rst iteration of the re!nement loop, and on the right the cardinalities for the second iteration.
In total, we only consider 39 programs to solve the problem.

Selecting an Orimetric. Coming up with a good orimetric is key to the success of our method.
In our example, had we de!ned an orimetric that rewards functions producing substrings of the
output and punish those that produce superstrings, we would have failed to generate the solution
using bottom-up enumeration.

To construct good orimetrics, we derive them from the semantics of the operators in the grammar.
We already discussed how concatenation needs substrings to produce the desired output while
replacement favors superstrings. In practice, we concurrently run a portfolio of solvers employing a
di#erent orimetric each. We developed three orimetrics for the string domain and four orimetrics for
the bitvector domain. In Sections 5.3 and 5.4, we introduce a principled way of designing orimetrics.

Deduction. An aspect the above example did not highlight is the use of deduction. Conceptually,
deduction accelerates the search by modifying the enumeration order, as depicted in Figure 4. Our
tool Merlin implements the deduction technique from DryadSynth [15]. To explain it, consider
the sketch r(?, ?, ?). After we found the programs "$City", 𝐿 , and r(x, "$Conference", 𝐿), we would
enumerate r(r(x, "$Conference", 𝐿), "$City", 𝐿) next, which solves the synthesis problem. Deduction
thus understands a program sketch. This relies on the inverse semantics of a sketch. If one !nds
arguments such that the sketch !lled with these arguments is a solution to the synthesis problem,
the solution will be enumerated next. This means, for any supported sketch, we only need to
!nd the correct arguments. Most orimetrics we de!ne in this paper optimize the search for viable
arguments of a sketch by approximating its inverse semantics.

r(r(!POPL$Conference!, "$Conference", 𝐿), "$City", 𝐿)
!POPL!

r(r(!Rennes$City!, "$Conference", 𝐿), "$City", 𝐿)

2.2 State-of-the-Art
We discuss to what extent the state-of-the-art SyGuS solvers [2, 3, 15, 16, 27, 28, 47, 48] can be
seen as instances of the generic solver in Figure 1. The discussion shows that rather di#erent
techniques can be understood as (i) assuming an orimetric on the search space and (ii) improving
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Oriented Metrics for Bo!om-Up Enumerative Synthesis 75:7

initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune(L(G),m𝐿, gt)

Search(Q,m𝐿, gt,→ ↑ (Q ↓ Q))

Factorize(P,m𝐿,→)

Refine(m𝐿, p, gt)

Learn(→, { q ↔ Q | q → p }, gt)

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 1. CEGAR loop for synthesis.

initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune

Search

Factorize

Refine

Learn

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 2. CEGAR loop for synthesis.

S ::= V | replace(S,S,S) | concat(S,S)
V ::= x | 𝐿 | "!Conf" | "!City"

Fig. 3. Example grammar G.

In Out
"POPL!Conf" "POPL"
"Rennes!City" "Rennes"
"PLDI!Conf" "PLDI"
"Seoul!City" "Seoul"

Fig. 4. Input-output examples (In,Out).
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initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune(L(G),m𝐿, gt)

Search(Q,m𝐿, gt,→ ↑ (Q ↓ Q))

Factorize(P,m𝐿,→)

Refine(m𝐿, p, gt)

Learn(→, { q ↔ Q | q → p }, gt)

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 1. CEGAR loop for synthesis.

initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune

Search

Factorize

Refine

Learn

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 2. CEGAR loop for synthesis.

S ::= V | replace(S,S,S) | concat(S,S)
V ::= x | 𝐿 | "!Conf" | "!City"

Fig. 3. Example grammar G.

In Out
"POPL!Conf" "POPL"
"Rennes!City" "Rennes"
"PLDI!Conf" "PLDI"
"Seoul!City" "Seoul"

Fig. 4. Input-output examples (In,Out).
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speci!ed output "Rennes". We use Refine to generate a new orimetric for the next iteration. To
also take into account the second example, we set m𝐿 to m{i1,i2 } . While the approximate orimetric
and its re!nement are simple in this example, our approach can also be instantiated with predicate
abstraction as introduced in [47]. We discuss the details below.

We now use Learn to update the enumeration order for the next iteration. To do so, we use the
precise metric mIn to analyze the candidate solution p. We see that p produces a superstring of the
outputs for all examples. This means, mIn (!p", gt) < 100 and therefore the program lies within the
ball around gt. We consider p valuable and promote it in the enumeration order. Recall that the
enumeration order in our example is de!ned by the size. Function Learn rede!nes the size of p to
be 1. Then p and programs that use p as a subprogram will be considered early on.

Figure 14 gives the program sets constructed in the second iteration of the re!nement loop. Note
how p has size one. With this change in size, we already !nd the solution in P4. In the last row of
Figure 13, we see the cardinalities of the sets again. On the left of the slash are the cardinalities for
the !rst iteration of the re!nement loop, and on the right the cardinalities for the second iteration.
In total, we only consider 39 programs to solve the problem.

Selecting an Orimetric. Coming up with a good orimetric is key to the success of our method.
In our example, had we de!ned an orimetric that rewards functions producing substrings of the
output and punish those that produce superstrings, we would have failed to generate the solution
using bottom-up enumeration.

To construct good orimetrics, we derive them from the semantics of the operators in the grammar.
We already discussed how concatenation needs substrings to produce the desired output while
replacement favors superstrings. In practice, we concurrently run a portfolio of solvers employing a
di"erent orimetric each. We developed three orimetrics for the string domain and four orimetrics for
the bitvector domain. In Sections 5.3 and 5.4, we introduce a principled way of designing orimetrics.

Deduction. An aspect the above example did not highlight is the use of deduction. Conceptually,
deduction accelerates the search by modifying the enumeration order, as depicted in Figure 11. Our
tool Merlin implements the deduction technique from DryadSynth [15]. To explain it, consider the
sketch r(?, ?, ?). After we found the programs "#City", 𝐿 , and r(x, "#Conf", 𝐿), we would enumerate
r(r(x, "#Conf", 𝐿), "#City", 𝐿) next, which solves the synthesis problem. Deduction thus understands
a program sketch. This relies on the inverse semantics of a sketch. If one !nds arguments such
that the sketch !lled with these arguments is a solution to the synthesis problem, the solution
will be enumerated next. This means, for any supported sketch, we only need to !nd the correct
arguments. Most orimetrics we de!ne in this paper optimize the search for viable arguments of a
sketch by approximating its inverse semantics.

r(r(!POPL#Conf!, "#Conf", 𝐿), "#City", 𝐿)

!POPL!

!Rennes!

r(r(!Rennes#City!, "#Conf", 𝐿), "#City", 𝐿)
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speci!ed output "Rennes". We use Refine to generate a new orimetric for the next iteration. To
also take into account the second example, we set m𝐿 to m{i1,i2 } . While the approximate orimetric
and its re!nement are simple in this example, our approach can also be instantiated with predicate
abstraction as introduced in [47]. We discuss the details below.

We now use Learn to update the enumeration order for the next iteration. To do so, we use the
precise metric mIn to analyze the candidate solution p. We see that p produces a superstring of the
outputs for all examples. This means, mIn (!p", gt) < 100 and therefore the program lies within the
ball around gt. We consider p valuable and promote it in the enumeration order. Recall that the
enumeration order in our example is de!ned by the size. Function Learn rede!nes the size of p to
be 1. Then p and programs that use p as a subprogram will be considered early on.

Figure 14 gives the program sets constructed in the second iteration of the re!nement loop. Note
how p has size one. With this change in size, we already !nd the solution in P4. In the last row of
Figure 13, we see the cardinalities of the sets again. On the left of the slash are the cardinalities for
the !rst iteration of the re!nement loop, and on the right the cardinalities for the second iteration.
In total, we only consider 39 programs to solve the problem.

Selecting an Orimetric. Coming up with a good orimetric is key to the success of our method.
In our example, had we de!ned an orimetric that rewards functions producing substrings of the
output and punish those that produce superstrings, we would have failed to generate the solution
using bottom-up enumeration.

To construct good orimetrics, we derive them from the semantics of the operators in the grammar.
We already discussed how concatenation needs substrings to produce the desired output while
replacement favors superstrings. In practice, we concurrently run a portfolio of solvers employing a
di"erent orimetric each. We developed three orimetrics for the string domain and four orimetrics for
the bitvector domain. In Sections 5.3 and 5.4, we introduce a principled way of designing orimetrics.

Deduction. An aspect the above example did not highlight is the use of deduction. Conceptually,
deduction accelerates the search by modifying the enumeration order, as depicted in Figure 11. Our
tool Merlin implements the deduction technique from DryadSynth [15]. To explain it, consider the
sketch r(?, ?, ?). After we found the programs "#City", 𝐿 , and r(x, "#Conf", 𝐿), we would enumerate
r(r(x, "#Conf", 𝐿), "#City", 𝐿) next, which solves the synthesis problem. Deduction thus understands
a program sketch. This relies on the inverse semantics of a sketch. If one !nds arguments such
that the sketch !lled with these arguments is a solution to the synthesis problem, the solution
will be enumerated next. This means, for any supported sketch, we only need to !nd the correct
arguments. Most orimetrics we de!ne in this paper optimize the search for viable arguments of a
sketch by approximating its inverse semantics.

r(r(!POPL#Conf!, "#Conf", 𝐿), "#City", 𝐿)

!POPL!

!Rennes!

r(r(!Rennes#City!, "#Conf", 𝐿), "#City", 𝐿)
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P1 = {x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", 𝐿 .x, 𝐿 .𝐿, 𝐿 ."!Conf", 𝐿 ."!City",

"!Conf".x, "!Conf".𝐿, "!Conf"."!Conf",
"!Conf"."!City", "!City".x, "!City".𝐿, "!City"."!Conf",
"!City"."!City"}

P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), r(x, "!City", "!Conf"), . . . , r(x, "!Conf", 𝐿), . . .}
P5 = {. . .} P6 = {. . .} P7 = {. . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿), . . .}

Fig. 12. Example execution of a bo!om-up enumeration algorithm with highlights for OE factorization,
OE factorization with learning, orimetric pruning, partial correctness, and correctness. The concat operator
is abbreviated by an infix "." and the replace operator is abbreviated by r.

Method P1 P2 P3 P4 P5 P6 P7
No Pruning or Factorization 4 - 16 64 128 1280 4352

OE Factorization 4 - 9 6 27 56 119
Orimetric Pruning (OP) 4 - 7 18 56 323 929
OE Factorization + OP 4 - 5 6 19 50 81

↑m𝐿 Factorization + OP + Learning 4 / 5 - 5 / 12 3 / 10 - - -

Fig. 13. Number of programs at each size per solving method.

P1 = {r(x, "!Conf", 𝐿), x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", x.r(x, "!Conf", 𝐿), . . . , 𝐿 ."!City", . . .}
P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), . . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿) . . .}

Fig. 14. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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Syntax-Guided Synthesis (SyGuS)
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Solver Search Space Pruning / Factorization Enumeration Order (Deduction)
ESolver [2] Observational Equivalence (OE) constant (✁)
EUSolver [3] OE constant (✂)
Blaze [47] OE + Abstraction Re!nement + Automata constant (✁)

EUPhony [28] weak OE constant/o"ine learning (✂)
Probe [6] OE learning (✁)
Duet [27] OE constant (✂)
Simba [48] OE constant (✂)

DryadSynth [15] OE constant (✂)
Synthphonia [16] OE constant (✂)

Merlin OE + Abstraction Re!nement + Orimetrics learning (✂)

Fig. 8. Comparison of enumerative SyGuS solvers.

Figure 7 gives the program sets constructed in the second iteration of the re!nement loop. Note
how p has size one. With this change in size, we already !nd the solution in P4. In the last row of
Figure 6, we see the cardinalities of the sets again. On the left of the slash are the cardinalities for
the !rst iteration of the re!nement loop, and on the right the cardinalities for the second iteration.
In total, we only consider 39 programs to solve the problem.

Selecting an Orimetric. Coming up with a good orimetric is key to the success of our method.
In our example, had we de!ned an orimetric that rewards functions producing substrings of the
output and punish those that produce superstrings, we would have failed to generate the solution
using bottom-up enumeration.

To construct good orimetrics, we derive them from the semantics of the operators in the grammar.
We already discussed how concatenation needs substrings to produce the desired output while
replacement favors superstrings. In practice, we concurrently run a portfolio of solvers employing a
di#erent orimetric each. We developed three orimetrics for the string domain and four orimetrics for
the bitvector domain. In Sections 5.3 and 5.4, we introduce a principled way of designing orimetrics.

Deduction. An aspect the above example did not highlight is the use of deduction. Conceptually,
deduction accelerates the search by modifying the enumeration order, as depicted in Figure 4. Our
tool Merlin implements the deduction technique from DryadSynth [15]. To explain it, consider
the sketch r(?, ?, ?). After we found the programs "$City", 𝐿 , and r(x, "$Conference", 𝐿), we would
enumerate r(r(x, "$Conference", 𝐿), "$City", 𝐿) next, which solves the synthesis problem. Deduction
thus understands a program sketch. This relies on the inverse semantics of a sketch. If one !nds
arguments such that the sketch !lled with these arguments is a solution to the synthesis problem,
the solution will be enumerated next. This means, for any supported sketch, we only need to
!nd the correct arguments. Most orimetrics we de!ne in this paper optimize the search for viable
arguments of a sketch by approximating its inverse semantics.

r(r(!POPL$Conference!, "$Conference", 𝐿), "$City", 𝐿)
!POPL!

r(r(!Rennes$City!, "$Conference", 𝐿), "$City", 𝐿)

2.2 State-of-the-Art
We discuss to what extent the state-of-the-art SyGuS solvers [2, 3, 15, 16, 27, 28, 47, 48] can be
seen as instances of the generic solver in Figure 1. The discussion shows that rather di#erent
techniques can be understood as (i) assuming an orimetric on the search space and (ii) improving
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Figure 7 gives the program sets constructed in the second iteration of the re!nement loop. Note
how p has size one. With this change in size, we already !nd the solution in P4. In the last row of
Figure 6, we see the cardinalities of the sets again. On the left of the slash are the cardinalities for
the !rst iteration of the re!nement loop, and on the right the cardinalities for the second iteration.
In total, we only consider 39 programs to solve the problem.

Selecting an Orimetric. Coming up with a good orimetric is key to the success of our method.
In our example, had we de!ned an orimetric that rewards functions producing substrings of the
output and punish those that produce superstrings, we would have failed to generate the solution
using bottom-up enumeration.

To construct good orimetrics, we derive them from the semantics of the operators in the grammar.
We already discussed how concatenation needs substrings to produce the desired output while
replacement favors superstrings. In practice, we concurrently run a portfolio of solvers employing a
di"erent orimetric each. We developed three orimetrics for the string domain and four orimetrics for
the bitvector domain. In Sections 5.3 and 5.4, we introduce a principled way of designing orimetrics.

Deduction. An aspect the above example did not highlight is the use of deduction. Conceptually,
deduction accelerates the search by modifying the enumeration order, as depicted in Figure 4. Our
tool Merlin implements the deduction technique from DryadSynth [15]. To explain it, consider
the sketch r(?, ?, ?). After we found the programs "#City", 𝐿 , and r(x, "#Conference", 𝐿), we would
enumerate r(r(x, "#Conference", 𝐿), "#City", 𝐿) next, which solves the synthesis problem. Deduction
thus understands a program sketch. This relies on the inverse semantics of a sketch. If one !nds
arguments such that the sketch !lled with these arguments is a solution to the synthesis problem,
the solution will be enumerated next. This means, for any supported sketch, we only need to
!nd the correct arguments. Most orimetrics we de!ne in this paper optimize the search for viable
arguments of a sketch by approximating its inverse semantics.

r(r(!POPL#Conference!, "#Conference", 𝐿), "#City", 𝐿)
!POPL!

r(r(!Rennes#City!, "#Conference", 𝐿), "#City", 𝐿)



𝑀

𝑁

𝑂

𝑃

𝑀

𝑁

𝑂

𝑃

𝑀

𝑁

𝑂

𝑃

2.2 State-of-the-Art
We discuss to what extent the state-of-the-art SyGuS solvers [2, 3, 15, 16, 27, 28, 47, 48] can be
seen as instances of the generic solver in Figure 1. The discussion shows that rather di"erent
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Solver Search Space Pruning / Factorization Enumeration Order (Deduction)
ESolver [2] Observational Equivalence (OE) constant (✁)
EUSolver [3] OE constant (✂)
Blaze [47] OE + Abstraction Re!nement + Automata constant (✁)

EUPhony [28] weak OE constant/o"ine learning (✂)
Probe [6] OE learning (✁)
Duet [27] OE constant (✂)
Simba [48] OE constant (✂)

DryadSynth [15] OE constant (✂)
Synthphonia [16] OE constant (✂)

Merlin OE + Abstraction Re!nement + Orimetrics learning (✂)

Fig. 8. Comparison of enumerative SyGuS solvers.

Figure 7 gives the program sets constructed in the second iteration of the re!nement loop. Note
how p has size one. With this change in size, we already !nd the solution in P4. In the last row of
Figure 6, we see the cardinalities of the sets again. On the left of the slash are the cardinalities for
the !rst iteration of the re!nement loop, and on the right the cardinalities for the second iteration.
In total, we only consider 39 programs to solve the problem.

Selecting an Orimetric. Coming up with a good orimetric is key to the success of our method.
In our example, had we de!ned an orimetric that rewards functions producing substrings of the
output and punish those that produce superstrings, we would have failed to generate the solution
using bottom-up enumeration.

To construct good orimetrics, we derive them from the semantics of the operators in the grammar.
We already discussed how concatenation needs substrings to produce the desired output while
replacement favors superstrings. In practice, we concurrently run a portfolio of solvers employing a
di#erent orimetric each. We developed three orimetrics for the string domain and four orimetrics for
the bitvector domain. In Sections 5.3 and 5.4, we introduce a principled way of designing orimetrics.

Deduction. An aspect the above example did not highlight is the use of deduction. Conceptually,
deduction accelerates the search by modifying the enumeration order, as depicted in Figure 4. Our
tool Merlin implements the deduction technique from DryadSynth [15]. To explain it, consider
the sketch r(?, ?, ?). After we found the programs "$City", 𝐿 , and r(x, "$Conference", 𝐿), we would
enumerate r(r(x, "$Conference", 𝐿), "$City", 𝐿) next, which solves the synthesis problem. Deduction
thus understands a program sketch. This relies on the inverse semantics of a sketch. If one !nds
arguments such that the sketch !lled with these arguments is a solution to the synthesis problem,
the solution will be enumerated next. This means, for any supported sketch, we only need to
!nd the correct arguments. Most orimetrics we de!ne in this paper optimize the search for viable
arguments of a sketch by approximating its inverse semantics.

r(r(!POPL$Conference!, "$Conference", 𝐿), "$City", 𝐿)
!POPL!

r(r(!Rennes$City!, "$Conference", 𝐿), "$City", 𝐿)

2.2 State-of-the-Art
We discuss to what extent the state-of-the-art SyGuS solvers [2, 3, 15, 16, 27, 28, 47, 48] can be
seen as instances of the generic solver in Figure 1. The discussion shows that rather di#erent
techniques can be understood as (i) assuming an orimetric on the search space and (ii) improving
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initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune(L(G),m𝐿, gt)

Search(Q,m𝐿, gt,→ ↑ (Q ↓ Q))

Factorize(P,m𝐿,→)

Refine(m𝐿, p, gt)

Learn(→, { q ↔ Q | q → p }, gt)

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 1. CEGAR loop for synthesis.

initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune

Search

Factorize

Refine

Learn

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 2. CEGAR loop for synthesis.

S ::= V | replace(S,S,S) | concat(S,S)
V ::= x | 𝐿 | "!Conf" | "!City"

Fig. 3. Example grammar G.

In Out
"POPL!Conf" "POPL"
"Rennes!City" "Rennes"
"PLDI!Conf" "PLDI"
"Seoul!City" "Seoul"

Fig. 4. Input-output examples (In,Out).
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initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune(L(G),m𝐿, gt)

Search(Q,m𝐿, gt,→ ↑ (Q ↓ Q))

Factorize(P,m𝐿,→)

Refine(m𝐿, p, gt)

Learn(→, { q ↔ Q | q → p }, gt)

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 1. CEGAR loop for synthesis.

initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune

Search

Factorize

Refine

Learn

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 2. CEGAR loop for synthesis.

S ::= V | replace(S,S,S) | concat(S,S)
V ::= x | 𝐿 | "!Conf" | "!City"

Fig. 3. Example grammar G.

In Out
"POPL!Conf" "POPL"
"Rennes!City" "Rennes"
"PLDI!Conf" "PLDI"
"Seoul!City" "Seoul"

Fig. 4. Input-output examples (In,Out).
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speci!ed output "Rennes". We use Refine to generate a new orimetric for the next iteration. To
also take into account the second example, we set m𝐿 to m{i1,i2 } . While the approximate orimetric
and its re!nement are simple in this example, our approach can also be instantiated with predicate
abstraction as introduced in [47]. We discuss the details below.

We now use Learn to update the enumeration order for the next iteration. To do so, we use the
precise metric mIn to analyze the candidate solution p. We see that p produces a superstring of the
outputs for all examples. This means, mIn (!p", gt) < 100 and therefore the program lies within the
ball around gt. We consider p valuable and promote it in the enumeration order. Recall that the
enumeration order in our example is de!ned by the size. Function Learn rede!nes the size of p to
be 1. Then p and programs that use p as a subprogram will be considered early on.

Figure 14 gives the program sets constructed in the second iteration of the re!nement loop. Note
how p has size one. With this change in size, we already !nd the solution in P4. In the last row of
Figure 13, we see the cardinalities of the sets again. On the left of the slash are the cardinalities for
the !rst iteration of the re!nement loop, and on the right the cardinalities for the second iteration.
In total, we only consider 39 programs to solve the problem.

Selecting an Orimetric. Coming up with a good orimetric is key to the success of our method.
In our example, had we de!ned an orimetric that rewards functions producing substrings of the
output and punish those that produce superstrings, we would have failed to generate the solution
using bottom-up enumeration.

To construct good orimetrics, we derive them from the semantics of the operators in the grammar.
We already discussed how concatenation needs substrings to produce the desired output while
replacement favors superstrings. In practice, we concurrently run a portfolio of solvers employing a
di"erent orimetric each. We developed three orimetrics for the string domain and four orimetrics for
the bitvector domain. In Sections 5.3 and 5.4, we introduce a principled way of designing orimetrics.

Deduction. An aspect the above example did not highlight is the use of deduction. Conceptually,
deduction accelerates the search by modifying the enumeration order, as depicted in Figure 11. Our
tool Merlin implements the deduction technique from DryadSynth [15]. To explain it, consider the
sketch r(?, ?, ?). After we found the programs "#City", 𝐿 , and r(x, "#Conf", 𝐿), we would enumerate
r(r(x, "#Conf", 𝐿), "#City", 𝐿) next, which solves the synthesis problem. Deduction thus understands
a program sketch. This relies on the inverse semantics of a sketch. If one !nds arguments such
that the sketch !lled with these arguments is a solution to the synthesis problem, the solution
will be enumerated next. This means, for any supported sketch, we only need to !nd the correct
arguments. Most orimetrics we de!ne in this paper optimize the search for viable arguments of a
sketch by approximating its inverse semantics.

r(r(!POPL#Conf!, "#Conf", 𝐿), "#City", 𝐿)

!POPL!

!Rennes!

r(r(!Rennes#City!, "#Conf", 𝐿), "#City", 𝐿)
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speci!ed output "Rennes". We use Refine to generate a new orimetric for the next iteration. To
also take into account the second example, we set m𝐿 to m{i1,i2 } . While the approximate orimetric
and its re!nement are simple in this example, our approach can also be instantiated with predicate
abstraction as introduced in [47]. We discuss the details below.

We now use Learn to update the enumeration order for the next iteration. To do so, we use the
precise metric mIn to analyze the candidate solution p. We see that p produces a superstring of the
outputs for all examples. This means, mIn (!p", gt) < 100 and therefore the program lies within the
ball around gt. We consider p valuable and promote it in the enumeration order. Recall that the
enumeration order in our example is de!ned by the size. Function Learn rede!nes the size of p to
be 1. Then p and programs that use p as a subprogram will be considered early on.

Figure 14 gives the program sets constructed in the second iteration of the re!nement loop. Note
how p has size one. With this change in size, we already !nd the solution in P4. In the last row of
Figure 13, we see the cardinalities of the sets again. On the left of the slash are the cardinalities for
the !rst iteration of the re!nement loop, and on the right the cardinalities for the second iteration.
In total, we only consider 39 programs to solve the problem.

Selecting an Orimetric. Coming up with a good orimetric is key to the success of our method.
In our example, had we de!ned an orimetric that rewards functions producing substrings of the
output and punish those that produce superstrings, we would have failed to generate the solution
using bottom-up enumeration.

To construct good orimetrics, we derive them from the semantics of the operators in the grammar.
We already discussed how concatenation needs substrings to produce the desired output while
replacement favors superstrings. In practice, we concurrently run a portfolio of solvers employing a
di"erent orimetric each. We developed three orimetrics for the string domain and four orimetrics for
the bitvector domain. In Sections 5.3 and 5.4, we introduce a principled way of designing orimetrics.

Deduction. An aspect the above example did not highlight is the use of deduction. Conceptually,
deduction accelerates the search by modifying the enumeration order, as depicted in Figure 11. Our
tool Merlin implements the deduction technique from DryadSynth [15]. To explain it, consider the
sketch r(?, ?, ?). After we found the programs "#City", 𝐿 , and r(x, "#Conf", 𝐿), we would enumerate
r(r(x, "#Conf", 𝐿), "#City", 𝐿) next, which solves the synthesis problem. Deduction thus understands
a program sketch. This relies on the inverse semantics of a sketch. If one !nds arguments such
that the sketch !lled with these arguments is a solution to the synthesis problem, the solution
will be enumerated next. This means, for any supported sketch, we only need to !nd the correct
arguments. Most orimetrics we de!ne in this paper optimize the search for viable arguments of a
sketch by approximating its inverse semantics.

r(r(!POPL#Conf!, "#Conf", 𝐿), "#City", 𝐿)

!POPL!

!Rennes!

r(r(!Rennes#City!, "#Conf", 𝐿), "#City", 𝐿)
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P1 = {x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", 𝐿 .x, 𝐿 .𝐿, 𝐿 ."!Conf", 𝐿 ."!City",

"!Conf".x, "!Conf".𝐿, "!Conf"."!Conf",
"!Conf"."!City", "!City".x, "!City".𝐿, "!City"."!Conf",
"!City"."!City"}

P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), r(x, "!City", "!Conf"), . . . , r(x, "!Conf", 𝐿), . . .}
P5 = {. . .} P6 = {. . .} P7 = {. . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿), . . .}

Fig. 12. Example execution of a bo!om-up enumeration algorithm with highlights for OE factorization,
OE factorization with learning, orimetric pruning, partial correctness, and correctness. The concat operator
is abbreviated by an infix "." and the replace operator is abbreviated by r.

Method P1 P2 P3 P4 P5 P6 P7
No Pruning or Factorization 4 - 16 64 128 1280 4352

OE Factorization 4 - 9 6 27 56 119
Orimetric Pruning (OP) 4 - 7 18 56 323 929
OE Factorization + OP 4 - 5 6 19 50 81

↑m𝐿 Factorization + OP + Learning 4 / 5 - 5 / 12 3 / 10 - - -

Fig. 13. Number of programs at each size per solving method.

P1 = {r(x, "!Conf", 𝐿), x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", x.r(x, "!Conf", 𝐿), . . . , 𝐿 ."!City", . . .}
P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), . . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿) . . .}

Fig. 14. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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Solver Search Space Pruning / Factorization Enumeration Order (Deduction)
ESolver [2] Observational Equivalence (OE) constant (✁)
EUSolver [3] OE constant (✂)
Blaze [47] OE + Abstraction Re!nement + Automata constant (✁)

EUPhony [28] weak OE constant/o"ine learning (✂)
Probe [6] OE learning (✁)
Duet [27] OE constant (✂)
Simba [48] OE constant (✂)

DryadSynth [15] OE constant (✂)
Synthphonia [16] OE constant (✂)

Merlin OE + Abstraction Re!nement + Orimetrics learning (✂)

Fig. 8. Comparison of enumerative SyGuS solvers.

Figure 7 gives the program sets constructed in the second iteration of the re!nement loop. Note
how p has size one. With this change in size, we already !nd the solution in P4. In the last row of
Figure 6, we see the cardinalities of the sets again. On the left of the slash are the cardinalities for
the !rst iteration of the re!nement loop, and on the right the cardinalities for the second iteration.
In total, we only consider 39 programs to solve the problem.

Selecting an Orimetric. Coming up with a good orimetric is key to the success of our method.
In our example, had we de!ned an orimetric that rewards functions producing substrings of the
output and punish those that produce superstrings, we would have failed to generate the solution
using bottom-up enumeration.

To construct good orimetrics, we derive them from the semantics of the operators in the grammar.
We already discussed how concatenation needs substrings to produce the desired output while
replacement favors superstrings. In practice, we concurrently run a portfolio of solvers employing a
di#erent orimetric each. We developed three orimetrics for the string domain and four orimetrics for
the bitvector domain. In Sections 5.3 and 5.4, we introduce a principled way of designing orimetrics.

Deduction. An aspect the above example did not highlight is the use of deduction. Conceptually,
deduction accelerates the search by modifying the enumeration order, as depicted in Figure 4. Our
tool Merlin implements the deduction technique from DryadSynth [15]. To explain it, consider
the sketch r(?, ?, ?). After we found the programs "$City", 𝐿 , and r(x, "$Conference", 𝐿), we would
enumerate r(r(x, "$Conference", 𝐿), "$City", 𝐿) next, which solves the synthesis problem. Deduction
thus understands a program sketch. This relies on the inverse semantics of a sketch. If one !nds
arguments such that the sketch !lled with these arguments is a solution to the synthesis problem,
the solution will be enumerated next. This means, for any supported sketch, we only need to
!nd the correct arguments. Most orimetrics we de!ne in this paper optimize the search for viable
arguments of a sketch by approximating its inverse semantics.

r(r(!POPL$Conference!, "$Conference", 𝐿), "$City", 𝐿)
!POPL!

r(r(!Rennes$City!, "$Conference", 𝐿), "$City", 𝐿)

2.2 State-of-the-Art
We discuss to what extent the state-of-the-art SyGuS solvers [2, 3, 15, 16, 27, 28, 47, 48] can be
seen as instances of the generic solver in Figure 1. The discussion shows that rather di#erent
techniques can be understood as (i) assuming an orimetric on the search space and (ii) improving
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75:10 Roland Meyer and Jakob Tepe

Figure 7 gives the program sets constructed in the second iteration of the re!nement loop. Note
how p has size one. With this change in size, we already !nd the solution in P4. In the last row of
Figure 6, we see the cardinalities of the sets again. On the left of the slash are the cardinalities for
the !rst iteration of the re!nement loop, and on the right the cardinalities for the second iteration.
In total, we only consider 39 programs to solve the problem.

Selecting an Orimetric. Coming up with a good orimetric is key to the success of our method.
In our example, had we de!ned an orimetric that rewards functions producing substrings of the
output and punish those that produce superstrings, we would have failed to generate the solution
using bottom-up enumeration.

To construct good orimetrics, we derive them from the semantics of the operators in the grammar.
We already discussed how concatenation needs substrings to produce the desired output while
replacement favors superstrings. In practice, we concurrently run a portfolio of solvers employing a
di"erent orimetric each. We developed three orimetrics for the string domain and four orimetrics for
the bitvector domain. In Sections 5.3 and 5.4, we introduce a principled way of designing orimetrics.

Deduction. An aspect the above example did not highlight is the use of deduction. Conceptually,
deduction accelerates the search by modifying the enumeration order, as depicted in Figure 4. Our
tool Merlin implements the deduction technique from DryadSynth [15]. To explain it, consider
the sketch r(?, ?, ?). After we found the programs "#City", 𝐿 , and r(x, "#Conference", 𝐿), we would
enumerate r(r(x, "#Conference", 𝐿), "#City", 𝐿) next, which solves the synthesis problem. Deduction
thus understands a program sketch. This relies on the inverse semantics of a sketch. If one !nds
arguments such that the sketch !lled with these arguments is a solution to the synthesis problem,
the solution will be enumerated next. This means, for any supported sketch, we only need to
!nd the correct arguments. Most orimetrics we de!ne in this paper optimize the search for viable
arguments of a sketch by approximating its inverse semantics.

r(r(!POPL#Conference!, "#Conference", 𝐿), "#City", 𝐿)
!POPL!

r(r(!Rennes#City!, "#Conference", 𝐿), "#City", 𝐿)



𝑀

𝑁

𝑂

𝑃

𝑀

𝑁

𝑂

𝑃

𝑀

𝑁

𝑂

𝑃

2.2 State-of-the-Art
We discuss to what extent the state-of-the-art SyGuS solvers [2, 3, 15, 16, 27, 28, 47, 48] can be
seen as instances of the generic solver in Figure 1. The discussion shows that rather di"erent
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Solver Search Space Pruning / Factorization Enumeration Order (Deduction)
ESolver [2] Observational Equivalence (OE) constant (✁)
EUSolver [3] OE constant (✂)
Blaze [47] OE + Abstraction Re!nement + Automata constant (✁)

EUPhony [28] weak OE constant/o"ine learning (✂)
Probe [6] OE learning (✁)
Duet [27] OE constant (✂)
Simba [48] OE constant (✂)

DryadSynth [15] OE constant (✂)
Synthphonia [16] OE constant (✂)

Merlin OE + Abstraction Re!nement + Orimetrics learning (✂)

Fig. 8. Comparison of enumerative SyGuS solvers.

Figure 7 gives the program sets constructed in the second iteration of the re!nement loop. Note
how p has size one. With this change in size, we already !nd the solution in P4. In the last row of
Figure 6, we see the cardinalities of the sets again. On the left of the slash are the cardinalities for
the !rst iteration of the re!nement loop, and on the right the cardinalities for the second iteration.
In total, we only consider 39 programs to solve the problem.

Selecting an Orimetric. Coming up with a good orimetric is key to the success of our method.
In our example, had we de!ned an orimetric that rewards functions producing substrings of the
output and punish those that produce superstrings, we would have failed to generate the solution
using bottom-up enumeration.

To construct good orimetrics, we derive them from the semantics of the operators in the grammar.
We already discussed how concatenation needs substrings to produce the desired output while
replacement favors superstrings. In practice, we concurrently run a portfolio of solvers employing a
di#erent orimetric each. We developed three orimetrics for the string domain and four orimetrics for
the bitvector domain. In Sections 5.3 and 5.4, we introduce a principled way of designing orimetrics.

Deduction. An aspect the above example did not highlight is the use of deduction. Conceptually,
deduction accelerates the search by modifying the enumeration order, as depicted in Figure 4. Our
tool Merlin implements the deduction technique from DryadSynth [15]. To explain it, consider
the sketch r(?, ?, ?). After we found the programs "$City", 𝐿 , and r(x, "$Conference", 𝐿), we would
enumerate r(r(x, "$Conference", 𝐿), "$City", 𝐿) next, which solves the synthesis problem. Deduction
thus understands a program sketch. This relies on the inverse semantics of a sketch. If one !nds
arguments such that the sketch !lled with these arguments is a solution to the synthesis problem,
the solution will be enumerated next. This means, for any supported sketch, we only need to
!nd the correct arguments. Most orimetrics we de!ne in this paper optimize the search for viable
arguments of a sketch by approximating its inverse semantics.

r(r(!POPL$Conference!, "$Conference", 𝐿), "$City", 𝐿)
!POPL!

r(r(!Rennes$City!, "$Conference", 𝐿), "$City", 𝐿)

2.2 State-of-the-Art
We discuss to what extent the state-of-the-art SyGuS solvers [2, 3, 15, 16, 27, 28, 47, 48] can be
seen as instances of the generic solver in Figure 1. The discussion shows that rather di#erent
techniques can be understood as (i) assuming an orimetric on the search space and (ii) improving
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initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune(L(G),m𝐿, gt)

Search(Q,m𝐿, gt,→ ↑ (Q ↓ Q))

Factorize(P,m𝐿,→)

Refine(m𝐿, p, gt)

Learn(→, { q ↔ Q | q → p }, gt)

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 1. CEGAR loop for synthesis.

initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune

Search

Factorize

Refine

Learn

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 2. CEGAR loop for synthesis.

S ::= V | replace(S,S,S) | concat(S,S)
V ::= x | 𝐿 | "!Conf" | "!City"

Fig. 3. Example grammar G.

In Out
"POPL!Conf" "POPL"
"Rennes!City" "Rennes"
"PLDI!Conf" "PLDI"
"Seoul!City" "Seoul"

Fig. 4. Input-output examples (In,Out).
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initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune(L(G),m𝐿, gt)

Search(Q,m𝐿, gt,→ ↑ (Q ↓ Q))

Factorize(P,m𝐿,→)

Refine(m𝐿, p, gt)

Learn(→, { q ↔ Q | q → p }, gt)

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 1. CEGAR loop for synthesis.

initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune

Search

Factorize

Refine

Learn

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 2. CEGAR loop for synthesis.

S ::= V | replace(S,S,S) | concat(S,S)
V ::= x | 𝐿 | "!Conf" | "!City"

Fig. 3. Example grammar G.

In Out
"POPL!Conf" "POPL"
"Rennes!City" "Rennes"
"PLDI!Conf" "PLDI"
"Seoul!City" "Seoul"

Fig. 4. Input-output examples (In,Out).
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speci!ed output "Rennes". We use Refine to generate a new orimetric for the next iteration. To
also take into account the second example, we set m𝐿 to m{i1,i2 } . While the approximate orimetric
and its re!nement are simple in this example, our approach can also be instantiated with predicate
abstraction as introduced in [47]. We discuss the details below.

We now use Learn to update the enumeration order for the next iteration. To do so, we use the
precise metric mIn to analyze the candidate solution p. We see that p produces a superstring of the
outputs for all examples. This means, mIn (!p", gt) < 100 and therefore the program lies within the
ball around gt. We consider p valuable and promote it in the enumeration order. Recall that the
enumeration order in our example is de!ned by the size. Function Learn rede!nes the size of p to
be 1. Then p and programs that use p as a subprogram will be considered early on.

Figure 14 gives the program sets constructed in the second iteration of the re!nement loop. Note
how p has size one. With this change in size, we already !nd the solution in P4. In the last row of
Figure 13, we see the cardinalities of the sets again. On the left of the slash are the cardinalities for
the !rst iteration of the re!nement loop, and on the right the cardinalities for the second iteration.
In total, we only consider 39 programs to solve the problem.

Selecting an Orimetric. Coming up with a good orimetric is key to the success of our method.
In our example, had we de!ned an orimetric that rewards functions producing substrings of the
output and punish those that produce superstrings, we would have failed to generate the solution
using bottom-up enumeration.

To construct good orimetrics, we derive them from the semantics of the operators in the grammar.
We already discussed how concatenation needs substrings to produce the desired output while
replacement favors superstrings. In practice, we concurrently run a portfolio of solvers employing a
di"erent orimetric each. We developed three orimetrics for the string domain and four orimetrics for
the bitvector domain. In Sections 5.3 and 5.4, we introduce a principled way of designing orimetrics.

Deduction. An aspect the above example did not highlight is the use of deduction. Conceptually,
deduction accelerates the search by modifying the enumeration order, as depicted in Figure 11. Our
tool Merlin implements the deduction technique from DryadSynth [15]. To explain it, consider the
sketch r(?, ?, ?). After we found the programs "#City", 𝐿 , and r(x, "#Conf", 𝐿), we would enumerate
r(r(x, "#Conf", 𝐿), "#City", 𝐿) next, which solves the synthesis problem. Deduction thus understands
a program sketch. This relies on the inverse semantics of a sketch. If one !nds arguments such
that the sketch !lled with these arguments is a solution to the synthesis problem, the solution
will be enumerated next. This means, for any supported sketch, we only need to !nd the correct
arguments. Most orimetrics we de!ne in this paper optimize the search for viable arguments of a
sketch by approximating its inverse semantics.

r(r(!POPL#Conf!, "#Conf", 𝐿), "#City", 𝐿)

!POPL!

!Rennes!

r(r(!Rennes#City!, "#Conf", 𝐿), "#City", 𝐿)
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speci!ed output "Rennes". We use Refine to generate a new orimetric for the next iteration. To
also take into account the second example, we set m𝐿 to m{i1,i2 } . While the approximate orimetric
and its re!nement are simple in this example, our approach can also be instantiated with predicate
abstraction as introduced in [47]. We discuss the details below.

We now use Learn to update the enumeration order for the next iteration. To do so, we use the
precise metric mIn to analyze the candidate solution p. We see that p produces a superstring of the
outputs for all examples. This means, mIn (!p", gt) < 100 and therefore the program lies within the
ball around gt. We consider p valuable and promote it in the enumeration order. Recall that the
enumeration order in our example is de!ned by the size. Function Learn rede!nes the size of p to
be 1. Then p and programs that use p as a subprogram will be considered early on.

Figure 14 gives the program sets constructed in the second iteration of the re!nement loop. Note
how p has size one. With this change in size, we already !nd the solution in P4. In the last row of
Figure 13, we see the cardinalities of the sets again. On the left of the slash are the cardinalities for
the !rst iteration of the re!nement loop, and on the right the cardinalities for the second iteration.
In total, we only consider 39 programs to solve the problem.

Selecting an Orimetric. Coming up with a good orimetric is key to the success of our method.
In our example, had we de!ned an orimetric that rewards functions producing substrings of the
output and punish those that produce superstrings, we would have failed to generate the solution
using bottom-up enumeration.

To construct good orimetrics, we derive them from the semantics of the operators in the grammar.
We already discussed how concatenation needs substrings to produce the desired output while
replacement favors superstrings. In practice, we concurrently run a portfolio of solvers employing a
di"erent orimetric each. We developed three orimetrics for the string domain and four orimetrics for
the bitvector domain. In Sections 5.3 and 5.4, we introduce a principled way of designing orimetrics.

Deduction. An aspect the above example did not highlight is the use of deduction. Conceptually,
deduction accelerates the search by modifying the enumeration order, as depicted in Figure 11. Our
tool Merlin implements the deduction technique from DryadSynth [15]. To explain it, consider the
sketch r(?, ?, ?). After we found the programs "#City", 𝐿 , and r(x, "#Conf", 𝐿), we would enumerate
r(r(x, "#Conf", 𝐿), "#City", 𝐿) next, which solves the synthesis problem. Deduction thus understands
a program sketch. This relies on the inverse semantics of a sketch. If one !nds arguments such
that the sketch !lled with these arguments is a solution to the synthesis problem, the solution
will be enumerated next. This means, for any supported sketch, we only need to !nd the correct
arguments. Most orimetrics we de!ne in this paper optimize the search for viable arguments of a
sketch by approximating its inverse semantics.

r(r(!POPL#Conf!, "#Conf", 𝐿), "#City", 𝐿)

!POPL!

!Rennes!

r(r(!Rennes#City!, "#Conf", 𝐿), "#City", 𝐿)
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Oriented Metrics for Bo!om-Up Enumerative Synthesis 75:11

P1 = {x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", 𝐿 .x, 𝐿 .𝐿, 𝐿 ."!Conf", 𝐿 ."!City",

"!Conf".x, "!Conf".𝐿, "!Conf"."!Conf",
"!Conf"."!City", "!City".x, "!City".𝐿, "!City"."!Conf",
"!City"."!City"}

P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), r(x, "!City", "!Conf"), . . . , r(x, "!Conf", 𝐿), . . .}
P5 = {. . .} P6 = {. . .} P7 = {. . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿), . . .}

Fig. 12. Example execution of a bo!om-up enumeration algorithm with highlights for OE factorization,
OE factorization with learning, orimetric pruning, partial correctness, and correctness. The concat operator
is abbreviated by an infix "." and the replace operator is abbreviated by r.

Method P1 P2 P3 P4 P5 P6 P7
No Pruning or Factorization 4 - 16 64 128 1280 4352

OE Factorization 4 - 9 6 27 56 119
Orimetric Pruning (OP) 4 - 7 18 56 323 929
OE Factorization + OP 4 - 5 6 19 50 81

↑m𝐿 Factorization + OP + Learning 4 / 5 - 5 / 12 3 / 10 - - -

Fig. 13. Number of programs at each size per solving method.

P1 = {r(x, "!Conf", 𝐿), x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", x.r(x, "!Conf", 𝐿), . . . , 𝐿 ."!City", . . .}
P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), . . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿) . . .}

Fig. 14. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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Syntax-Guided Synthesis (SyGuS)



prog(i) = o

Solution: 

75:10 Roland Meyer and Jakob Tepe

Solver Search Space Pruning / Factorization Enumeration Order (Deduction)
ESolver [2] Observational Equivalence (OE) constant (✁)
EUSolver [3] OE constant (✂)
Blaze [47] OE + Abstraction Re!nement + Automata constant (✁)

EUPhony [28] weak OE constant/o"ine learning (✂)
Probe [6] OE learning (✁)
Duet [27] OE constant (✂)
Simba [48] OE constant (✂)

DryadSynth [15] OE constant (✂)
Synthphonia [16] OE constant (✂)

Merlin OE + Abstraction Re!nement + Orimetrics learning (✂)

Fig. 8. Comparison of enumerative SyGuS solvers.

Figure 7 gives the program sets constructed in the second iteration of the re!nement loop. Note
how p has size one. With this change in size, we already !nd the solution in P4. In the last row of
Figure 6, we see the cardinalities of the sets again. On the left of the slash are the cardinalities for
the !rst iteration of the re!nement loop, and on the right the cardinalities for the second iteration.
In total, we only consider 39 programs to solve the problem.

Selecting an Orimetric. Coming up with a good orimetric is key to the success of our method.
In our example, had we de!ned an orimetric that rewards functions producing substrings of the
output and punish those that produce superstrings, we would have failed to generate the solution
using bottom-up enumeration.

To construct good orimetrics, we derive them from the semantics of the operators in the grammar.
We already discussed how concatenation needs substrings to produce the desired output while
replacement favors superstrings. In practice, we concurrently run a portfolio of solvers employing a
di#erent orimetric each. We developed three orimetrics for the string domain and four orimetrics for
the bitvector domain. In Sections 5.3 and 5.4, we introduce a principled way of designing orimetrics.

Deduction. An aspect the above example did not highlight is the use of deduction. Conceptually,
deduction accelerates the search by modifying the enumeration order, as depicted in Figure 4. Our
tool Merlin implements the deduction technique from DryadSynth [15]. To explain it, consider
the sketch r(?, ?, ?). After we found the programs "$City", 𝐿 , and r(x, "$Conference", 𝐿), we would
enumerate r(r(x, "$Conference", 𝐿), "$City", 𝐿) next, which solves the synthesis problem. Deduction
thus understands a program sketch. This relies on the inverse semantics of a sketch. If one !nds
arguments such that the sketch !lled with these arguments is a solution to the synthesis problem,
the solution will be enumerated next. This means, for any supported sketch, we only need to
!nd the correct arguments. Most orimetrics we de!ne in this paper optimize the search for viable
arguments of a sketch by approximating its inverse semantics.

r(r(!POPL$Conference!, "$Conference", 𝐿), "$City", 𝐿)
!POPL!

r(r(!Rennes$City!, "$Conference", 𝐿), "$City", 𝐿)

2.2 State-of-the-Art
We discuss to what extent the state-of-the-art SyGuS solvers [2, 3, 15, 16, 27, 28, 47, 48] can be
seen as instances of the generic solver in Figure 1. The discussion shows that rather di#erent
techniques can be understood as (i) assuming an orimetric on the search space and (ii) improving
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Figure 7 gives the program sets constructed in the second iteration of the re!nement loop. Note
how p has size one. With this change in size, we already !nd the solution in P4. In the last row of
Figure 6, we see the cardinalities of the sets again. On the left of the slash are the cardinalities for
the !rst iteration of the re!nement loop, and on the right the cardinalities for the second iteration.
In total, we only consider 39 programs to solve the problem.

Selecting an Orimetric. Coming up with a good orimetric is key to the success of our method.
In our example, had we de!ned an orimetric that rewards functions producing substrings of the
output and punish those that produce superstrings, we would have failed to generate the solution
using bottom-up enumeration.

To construct good orimetrics, we derive them from the semantics of the operators in the grammar.
We already discussed how concatenation needs substrings to produce the desired output while
replacement favors superstrings. In practice, we concurrently run a portfolio of solvers employing a
di"erent orimetric each. We developed three orimetrics for the string domain and four orimetrics for
the bitvector domain. In Sections 5.3 and 5.4, we introduce a principled way of designing orimetrics.

Deduction. An aspect the above example did not highlight is the use of deduction. Conceptually,
deduction accelerates the search by modifying the enumeration order, as depicted in Figure 4. Our
tool Merlin implements the deduction technique from DryadSynth [15]. To explain it, consider
the sketch r(?, ?, ?). After we found the programs "#City", 𝐿 , and r(x, "#Conference", 𝐿), we would
enumerate r(r(x, "#Conference", 𝐿), "#City", 𝐿) next, which solves the synthesis problem. Deduction
thus understands a program sketch. This relies on the inverse semantics of a sketch. If one !nds
arguments such that the sketch !lled with these arguments is a solution to the synthesis problem,
the solution will be enumerated next. This means, for any supported sketch, we only need to
!nd the correct arguments. Most orimetrics we de!ne in this paper optimize the search for viable
arguments of a sketch by approximating its inverse semantics.

r(r(!POPL#Conference!, "#Conference", 𝐿), "#City", 𝐿)
!POPL!

r(r(!Rennes#City!, "#Conference", 𝐿), "#City", 𝐿)



𝑀

𝑁

𝑂

𝑃

𝑀

𝑁

𝑂

𝑃

𝑀

𝑁

𝑂

𝑃

2.2 State-of-the-Art
We discuss to what extent the state-of-the-art SyGuS solvers [2, 3, 15, 16, 27, 28, 47, 48] can be
seen as instances of the generic solver in Figure 1. The discussion shows that rather di"erent
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Solver Search Space Pruning / Factorization Enumeration Order (Deduction)
ESolver [2] Observational Equivalence (OE) constant (✁)
EUSolver [3] OE constant (✂)
Blaze [47] OE + Abstraction Re!nement + Automata constant (✁)

EUPhony [28] weak OE constant/o"ine learning (✂)
Probe [6] OE learning (✁)
Duet [27] OE constant (✂)
Simba [48] OE constant (✂)

DryadSynth [15] OE constant (✂)
Synthphonia [16] OE constant (✂)

Merlin OE + Abstraction Re!nement + Orimetrics learning (✂)

Fig. 8. Comparison of enumerative SyGuS solvers.

Figure 7 gives the program sets constructed in the second iteration of the re!nement loop. Note
how p has size one. With this change in size, we already !nd the solution in P4. In the last row of
Figure 6, we see the cardinalities of the sets again. On the left of the slash are the cardinalities for
the !rst iteration of the re!nement loop, and on the right the cardinalities for the second iteration.
In total, we only consider 39 programs to solve the problem.

Selecting an Orimetric. Coming up with a good orimetric is key to the success of our method.
In our example, had we de!ned an orimetric that rewards functions producing substrings of the
output and punish those that produce superstrings, we would have failed to generate the solution
using bottom-up enumeration.

To construct good orimetrics, we derive them from the semantics of the operators in the grammar.
We already discussed how concatenation needs substrings to produce the desired output while
replacement favors superstrings. In practice, we concurrently run a portfolio of solvers employing a
di#erent orimetric each. We developed three orimetrics for the string domain and four orimetrics for
the bitvector domain. In Sections 5.3 and 5.4, we introduce a principled way of designing orimetrics.

Deduction. An aspect the above example did not highlight is the use of deduction. Conceptually,
deduction accelerates the search by modifying the enumeration order, as depicted in Figure 4. Our
tool Merlin implements the deduction technique from DryadSynth [15]. To explain it, consider
the sketch r(?, ?, ?). After we found the programs "$City", 𝐿 , and r(x, "$Conference", 𝐿), we would
enumerate r(r(x, "$Conference", 𝐿), "$City", 𝐿) next, which solves the synthesis problem. Deduction
thus understands a program sketch. This relies on the inverse semantics of a sketch. If one !nds
arguments such that the sketch !lled with these arguments is a solution to the synthesis problem,
the solution will be enumerated next. This means, for any supported sketch, we only need to
!nd the correct arguments. Most orimetrics we de!ne in this paper optimize the search for viable
arguments of a sketch by approximating its inverse semantics.

r(r(!POPL$Conference!, "$Conference", 𝐿), "$City", 𝐿)
!POPL!

r(r(!Rennes$City!, "$Conference", 𝐿), "$City", 𝐿)

2.2 State-of-the-Art
We discuss to what extent the state-of-the-art SyGuS solvers [2, 3, 15, 16, 27, 28, 47, 48] can be
seen as instances of the generic solver in Figure 1. The discussion shows that rather di#erent
techniques can be understood as (i) assuming an orimetric on the search space and (ii) improving
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Figure 7 gives the program sets constructed in the second iteration of the re!nement loop. Note
how p has size one. With this change in size, we already !nd the solution in P4. In the last row of
Figure 6, we see the cardinalities of the sets again. On the left of the slash are the cardinalities for
the !rst iteration of the re!nement loop, and on the right the cardinalities for the second iteration.
In total, we only consider 39 programs to solve the problem.

Selecting an Orimetric. Coming up with a good orimetric is key to the success of our method.
In our example, had we de!ned an orimetric that rewards functions producing substrings of the
output and punish those that produce superstrings, we would have failed to generate the solution
using bottom-up enumeration.

To construct good orimetrics, we derive them from the semantics of the operators in the grammar.
We already discussed how concatenation needs substrings to produce the desired output while
replacement favors superstrings. In practice, we concurrently run a portfolio of solvers employing a
di"erent orimetric each. We developed three orimetrics for the string domain and four orimetrics for
the bitvector domain. In Sections 5.3 and 5.4, we introduce a principled way of designing orimetrics.

Deduction. An aspect the above example did not highlight is the use of deduction. Conceptually,
deduction accelerates the search by modifying the enumeration order, as depicted in Figure 4. Our
tool Merlin implements the deduction technique from DryadSynth [15]. To explain it, consider
the sketch r(?, ?, ?). After we found the programs "#City", 𝐿 , and r(x, "#Conference", 𝐿), we would
enumerate r(r(x, "#Conference", 𝐿), "#City", 𝐿) next, which solves the synthesis problem. Deduction
thus understands a program sketch. This relies on the inverse semantics of a sketch. If one !nds
arguments such that the sketch !lled with these arguments is a solution to the synthesis problem,
the solution will be enumerated next. This means, for any supported sketch, we only need to
!nd the correct arguments. Most orimetrics we de!ne in this paper optimize the search for viable
arguments of a sketch by approximating its inverse semantics.

r(r(!POPL#Conference!, "#Conference", 𝐿), "#City", 𝐿)

!POPL!

!Rennes!

r(r(!Rennes#City!, "#Conference", 𝐿), "#City", 𝐿)
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initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune(L(G),m𝐿, gt)

Search(Q,m𝐿, gt,→ ↑ (Q ↓ Q))

Factorize(P,m𝐿,→)

Refine(m𝐿, p, gt)

Learn(→, { q ↔ Q | q → p }, gt)

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 1. CEGAR loop for synthesis.

initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune

Search

Factorize

Refine

Learn

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 2. CEGAR loop for synthesis.

S ::= V | replace(S,S,S) | concat(S,S)
V ::= x | 𝐿 | "!Conf" | "!City"

Fig. 3. Example grammar G.

In Out
"POPL!Conf" "POPL"
"Rennes!City" "Rennes"
"PLDI!Conf" "PLDI"
"Seoul!City" "Seoul"

Fig. 4. Input-output examples (In,Out).
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initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune(L(G),m𝐿, gt)

Search(Q,m𝐿, gt,→ ↑ (Q ↓ Q))

Factorize(P,m𝐿,→)

Refine(m𝐿, p, gt)

Learn(→, { q ↔ Q | q → p }, gt)

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 1. CEGAR loop for synthesis.

initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune

Search

Factorize

Refine

Learn

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 2. CEGAR loop for synthesis.

S ::= V | replace(S,S,S) | concat(S,S)
V ::= x | 𝐿 | "!Conf" | "!City"

Fig. 3. Example grammar G.

In Out
"POPL!Conf" "POPL"
"Rennes!City" "Rennes"
"PLDI!Conf" "PLDI"
"Seoul!City" "Seoul"

Fig. 4. Input-output examples (In,Out).
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speci!ed output "Rennes". We use Refine to generate a new orimetric for the next iteration. To
also take into account the second example, we set m𝐿 to m{i1,i2 } . While the approximate orimetric
and its re!nement are simple in this example, our approach can also be instantiated with predicate
abstraction as introduced in [47]. We discuss the details below.

We now use Learn to update the enumeration order for the next iteration. To do so, we use the
precise metric mIn to analyze the candidate solution p. We see that p produces a superstring of the
outputs for all examples. This means, mIn (!p", gt) < 100 and therefore the program lies within the
ball around gt. We consider p valuable and promote it in the enumeration order. Recall that the
enumeration order in our example is de!ned by the size. Function Learn rede!nes the size of p to
be 1. Then p and programs that use p as a subprogram will be considered early on.

Figure 14 gives the program sets constructed in the second iteration of the re!nement loop. Note
how p has size one. With this change in size, we already !nd the solution in P4. In the last row of
Figure 13, we see the cardinalities of the sets again. On the left of the slash are the cardinalities for
the !rst iteration of the re!nement loop, and on the right the cardinalities for the second iteration.
In total, we only consider 39 programs to solve the problem.

Selecting an Orimetric. Coming up with a good orimetric is key to the success of our method.
In our example, had we de!ned an orimetric that rewards functions producing substrings of the
output and punish those that produce superstrings, we would have failed to generate the solution
using bottom-up enumeration.

To construct good orimetrics, we derive them from the semantics of the operators in the grammar.
We already discussed how concatenation needs substrings to produce the desired output while
replacement favors superstrings. In practice, we concurrently run a portfolio of solvers employing a
di"erent orimetric each. We developed three orimetrics for the string domain and four orimetrics for
the bitvector domain. In Sections 5.3 and 5.4, we introduce a principled way of designing orimetrics.

Deduction. An aspect the above example did not highlight is the use of deduction. Conceptually,
deduction accelerates the search by modifying the enumeration order, as depicted in Figure 11. Our
tool Merlin implements the deduction technique from DryadSynth [15]. To explain it, consider the
sketch r(?, ?, ?). After we found the programs "#City", 𝐿 , and r(x, "#Conf", 𝐿), we would enumerate
r(r(x, "#Conf", 𝐿), "#City", 𝐿) next, which solves the synthesis problem. Deduction thus understands
a program sketch. This relies on the inverse semantics of a sketch. If one !nds arguments such
that the sketch !lled with these arguments is a solution to the synthesis problem, the solution
will be enumerated next. This means, for any supported sketch, we only need to !nd the correct
arguments. Most orimetrics we de!ne in this paper optimize the search for viable arguments of a
sketch by approximating its inverse semantics.

r(r(!POPL#Conf!, "#Conf", 𝐿), "#City", 𝐿)

!POPL!

!Rennes!

r(r(!Rennes#City!, "#Conf", 𝐿), "#City", 𝐿)
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speci!ed output "Rennes". We use Refine to generate a new orimetric for the next iteration. To
also take into account the second example, we set m𝐿 to m{i1,i2 } . While the approximate orimetric
and its re!nement are simple in this example, our approach can also be instantiated with predicate
abstraction as introduced in [47]. We discuss the details below.

We now use Learn to update the enumeration order for the next iteration. To do so, we use the
precise metric mIn to analyze the candidate solution p. We see that p produces a superstring of the
outputs for all examples. This means, mIn (!p", gt) < 100 and therefore the program lies within the
ball around gt. We consider p valuable and promote it in the enumeration order. Recall that the
enumeration order in our example is de!ned by the size. Function Learn rede!nes the size of p to
be 1. Then p and programs that use p as a subprogram will be considered early on.

Figure 14 gives the program sets constructed in the second iteration of the re!nement loop. Note
how p has size one. With this change in size, we already !nd the solution in P4. In the last row of
Figure 13, we see the cardinalities of the sets again. On the left of the slash are the cardinalities for
the !rst iteration of the re!nement loop, and on the right the cardinalities for the second iteration.
In total, we only consider 39 programs to solve the problem.

Selecting an Orimetric. Coming up with a good orimetric is key to the success of our method.
In our example, had we de!ned an orimetric that rewards functions producing substrings of the
output and punish those that produce superstrings, we would have failed to generate the solution
using bottom-up enumeration.

To construct good orimetrics, we derive them from the semantics of the operators in the grammar.
We already discussed how concatenation needs substrings to produce the desired output while
replacement favors superstrings. In practice, we concurrently run a portfolio of solvers employing a
di"erent orimetric each. We developed three orimetrics for the string domain and four orimetrics for
the bitvector domain. In Sections 5.3 and 5.4, we introduce a principled way of designing orimetrics.

Deduction. An aspect the above example did not highlight is the use of deduction. Conceptually,
deduction accelerates the search by modifying the enumeration order, as depicted in Figure 11. Our
tool Merlin implements the deduction technique from DryadSynth [15]. To explain it, consider the
sketch r(?, ?, ?). After we found the programs "#City", 𝐿 , and r(x, "#Conf", 𝐿), we would enumerate
r(r(x, "#Conf", 𝐿), "#City", 𝐿) next, which solves the synthesis problem. Deduction thus understands
a program sketch. This relies on the inverse semantics of a sketch. If one !nds arguments such
that the sketch !lled with these arguments is a solution to the synthesis problem, the solution
will be enumerated next. This means, for any supported sketch, we only need to !nd the correct
arguments. Most orimetrics we de!ne in this paper optimize the search for viable arguments of a
sketch by approximating its inverse semantics.

r(r(!POPL#Conf!, "#Conf", 𝐿), "#City", 𝐿)

!POPL!

!Rennes!

r(r(!Rennes#City!, "#Conf", 𝐿), "#City", 𝐿)

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 75. Publication date: January 2026.

O
ri
en
te
d
M
et
ri
cs

fo
rB

o!
om

-U
p
En

um
er
at
iv
e
Sy

nt
he

si
s

75
:1
3

So
lv
er

Se
ar
ch

Sp
ac
e
Pr
un

in
g
/F

ac
to
riz

at
io
n

En
um

er
at
io
n
O
rd
er

(D
ed
uc
tio

n)
ES

ol
ve
r[
2]

O
bs
er
va
tio

na
lE

qu
iv
al
en
ce

(O
E)

co
ns
ta
nt

(✁
)

EU
So
lv
er

[3
]

O
E

co
ns
ta
nt

(✂
)

Bl
az
e
[4
7]

O
E
+
A
bs
tr
ac
tio

n
Re

!n
em

en
t+

A
ut
om

at
a

co
ns
ta
nt

(✁
)

EU
Ph

on
y
[2
8]

w
ea
k
O
E

co
ns
ta
nt
/o
"
in
e
le
ar
ni
ng

(✂
)

Pr
ob

e
[6
]

O
E

le
ar
ni
ng

(✁
)

D
ue
t[
27
]

O
E

co
ns
ta
nt

(✂
)

Si
m
ba

[4
8]

O
E

co
ns
ta
nt

(✂
)

D
ry
ad
Sy
nt
h
[1
5]

O
E

co
ns
ta
nt

(✂
)

Sy
nt
hp

ho
ni
a
[1
6]

O
E

co
ns
ta
nt

(✂
)

M
er
lin

O
E
+
A
bs
tr
ac
tio

n
Re

!n
em

en
t+

O
rim

et
ric

s
le
ar
ni
ng

(✂
)

Fi
g.
15
.
C
om

pa
ri
so
n
of

en
um

er
at
iv
e
Sy

G
uS

so
lv
er
s.

                               𝐿 𝑀 𝑁 𝑂 𝐿 𝑀 𝑁 𝑁

r
e
p
l
a
c
e
(S

1,
S 2

,𝑃
)

c
o
n
c
a
t
(S

1,
S 2

)

a
n
d
(S

1,
S 2

)

m
𝐿
(r
(x
,"
#C
o
n
f
",
𝑃)
,g
t)

=
0

m
𝐿
(r
(x
,"
#C
i
t
y
",
"#C

o
n
f
"),

x
)=

0
m

In
("#
C
i
t
y
"."
#C
i
t
y
",
gt
)>

10
0

2.
2

St
at
e-
of
-t
he

-A
rt

W
e
di
sc
us
s
to

w
ha
te

xt
en
tt
he

st
at
e-
of
-t
he
-a
rt
Sy

G
uS

so
lv
er
s
[2
,3
,1
5,
16
,2
7,
28
,4
7,
48
]
ca
n
be

se
en

as
in
st
an
ce
s
of

th
e
ge
ne
ri
c
so
lv
er

in
Fi
gu

re
1.
Th

e
di
sc
us
si
on

sh
ow

s
th
at

ra
th
er

di
$e

re
nt

te
ch
ni
qu

es
ca
n
be

un
de
rs
to
od

as
(i)

as
su
m
in
g
an

or
im

et
ri
c
on

th
e
se
ar
ch

sp
ac
e
an
d
(ii
)i
m
pr
ov
in
g

an
en
um

er
at
io
n
or
de
r
th
ro
ug

h
le
ar
ni
ng

.T
he
se

tw
o
in
gr
ed
ie
nt
sa

re
of
te
n
le
ft
im

pl
ic
it
in

th
e
re
la
te
d

w
or
k.
By

m
ak
in
g
th
em

ex
pl
ic
it
an
d
gi
vi
ng

th
em

rig
or
ou

sd
e!

ni
tio

ns
,w

e
pr
ov
id
e
a
fr
am

ew
or
k
in

w
hi
ch

Sy
G
uS

te
ch
no

lo
gy

ca
n
be

de
ve
lo
pe
d.

Th
e
di
sc
us
si
on

of
th
e
so
lv
er
s
is
su
m
m
ar
iz
ed

in
Fi
gu

re
15
.T

he
se
co
nd

co
lu
m
n
de
sc
ri
be
s
th
e

pr
un

in
g
te
ch
ni
qu

e
th
at

is
ap
pl
ie
d
to

re
du

ce
th
e
se
ar
ch

sp
ac
e.
Th

e
th
ird

co
lu
m
n
ca
te
go

ri
ze
s
th
e

en
um

er
at
io
n
or
de
ra

sc
on

st
an
to

rl
ea
rn
in
g,
an
d
in
di
ca
te
sw

he
th
er

de
du

ct
iv
e
el
em

en
ts
ar
e
us
ed
.

ES
ol
ve
r[
2]

is
th
e
ba
si
so

fe
nu

m
er
at
iv
e
Sy

G
uS

so
lv
er
s.
It
en
um

er
at
es

pr
og

ra
m
sb

y
si
ze

un
til

it
!n

ds
a
pr
og

ra
m

th
at

w
or
ks

fo
ra

ll
ex
am

pl
es
.E

So
lv
er

ap
pl
ie
so

bs
er
va
tio

na
le
qu

iv
al
en
ce

to
fa
ct
or
iz
e

Pr
oc
.A

CM
Pr
og

ra
m
.L

an
g.
,V

ol
.1
0,
N
o.

PO
PL

,A
rt
ic
le
75
.P

ub
lic
at
io
n
da
te
:J
an
ua
ry

20
26
.

75
:1
0

Ro
la
nd

M
ey
er

an
d
Ja
ko

b
Te
pe

Fi
gu

re
7
gi
ve
st
he

pr
og

ra
m

se
ts
co
ns
tr
uc
te
d
in

th
e
se
co
nd

ite
ra
tio

n
of

th
e
re
!n

em
en
tl
oo

p.
N
ot
e

ho
w
p
ha
ss

iz
e
on

e.
W
ith

th
is
ch
an
ge

in
si
ze
,w

e
al
re
ad
y
!n

d
th
e
so
lu
tio

n
in

P 4
.I
n
th
e
la
st
ro
w
of

Fi
gu

re
6,
w
e
se
e
th
e
ca
rd
in
al
iti
es

of
th
e
se
ts
ag
ai
n.

O
n
th
e
le
ft
of

th
e
sl
as
h
ar
e
th
e
ca
rd
in
al
iti
es

fo
r

th
e
!r
st
ite

ra
tio

n
of

th
e
re
!n

em
en
tl
oo

p,
an
d
on

th
e
rig

ht
th
e
ca
rd
in
al
iti
es

fo
rt
he

se
co
nd

ite
ra
tio

n.
In

to
ta
l,
w
e
on

ly
co
ns
id
er

39
pr
og

ra
m
st
o
so
lv
e
th
e
pr
ob
le
m
.

Se
le
ct
in
g
an

O
ri
m
et
ri
c.
C
om

in
g
up

w
ith

a
go

od
or
im

et
ri
c
is
ke
y
to

th
e
su
cc
es
s
of

ou
rm

et
ho

d.
In

ou
re

xa
m
pl
e,
ha
d
w
e
de
!n

ed
an

or
im

et
ri
c
th
at

re
w
ar
ds

fu
nc
tio

ns
pr
od

uc
in
g
su
bs
tr
in
gs

of
th
e

ou
tp
ut

an
d
pu

ni
sh

th
os
e
th
at

pr
od

uc
e
su
pe
rs
tr
in
gs
,w

e
w
ou

ld
ha
ve

fa
ile
d
to

ge
ne
ra
te

th
e
so
lu
tio

n
us
in
g
bo

tto
m
-u
p
en
um

er
at
io
n.

To
co
ns
tr
uc
tg

oo
d
or
im

et
ric

s,
w
ed

er
iv
et
he
m
fr
om

th
es

em
an
tic

so
ft
he

op
er
at
or
si
n
th
eg

ra
m
m
ar
.

W
e
al
re
ad
y
di
sc
us
se
d
ho

w
co
nc
at
en
at
io
n
ne
ed
s
su
bs
tr
in
gs

to
pr
od

uc
e
th
e
de
si
re
d
ou

tp
ut

w
hi
le

re
pl
ac
em

en
tf
av
or
ss

up
er
st
rin

gs
.I
n
pr
ac
tic

e,
w
e
co
nc
ur
re
nt
ly

ru
n
a
po

rt
fo
lio

of
so
lv
er
se

m
pl
oy

in
g
a

di
"e

re
nt

or
im

et
ric

ea
ch
.W

ed
ev
el
op

ed
th
re
eo

rim
et
ric

sf
or

th
es

tr
in
g
do

m
ai
n
an
d
fo
ur

or
im

et
ric

sf
or

th
e
bi
tv
ec
to
rd

om
ai
n.
In

Se
ct
io
ns

5.
3
an
d
5.
4,
w
e
in
tr
od

uc
e
a
pr
in
ci
pl
ed

w
ay

of
de
sig

ni
ng

or
im

et
ric

s.

D
ed
uc
tio

n.
A
n
as
pe
ct
th
e
ab
ov
e
ex
am

pl
e
di
d
no

th
ig
hl
ig
ht

is
th
e
us
e
of

de
du

ct
io
n.

Co
nc
ep
tu
al
ly
,

de
du

ct
io
n
ac
ce
le
ra
te
st
he

se
ar
ch

by
m
od

ify
in
g
th
e
en
um

er
at
io
n
or
de
r,
as

de
pi
ct
ed

in
Fi
gu

re
4.
O
ur

to
ol

M
er
lin

im
pl
em

en
ts
th
e
de
du

ct
io
n
te
ch
ni
qu

e
fr
om

D
ry
ad
Sy

nt
h
[1
5]
.T

o
ex
pl
ai
n
it,

co
ns
id
er

th
e
sk
et
ch

r
(?
,?
,?
).
A
fte

rw
e
fo
un

d
th
e
pr
og

ra
m
s"
#C
i
t
y
",
𝐿,
an
d
r
(x
,"
#C
o
n
f
e
r
e
n
c
e
",
𝐿)
,w

e
w
ou

ld
en
um

er
at
er

(r
(x
,"
#C
o
n
f
e
r
e
n
c
e
",
𝐿)
,"
#C
i
t
y
",
𝐿)

ne
xt
,w

hi
ch

so
lv
es

th
es

yn
th
es
is
pr
ob
le
m
.D

ed
uc
tio

n
th
us

un
de
rs
ta
nd

sa
pr
og

ra
m

sk
et
ch
.T

hi
sr

el
ie
so

n
th
e
in
ve
rs
e
se
m
an
tic

so
fa

sk
et
ch
.I
fo

ne
!n

ds
ar
gu

m
en
ts
su
ch

th
at

th
e
sk
et
ch

!l
le
d
w
ith

th
es
e
ar
gu

m
en
ts
is
a
so
lu
tio

n
to

th
e
sy
nt
he
si
sp

ro
bl
em

,
th
e
so
lu
tio

n
w
ill

be
en
um

er
at
ed

ne
xt
.T

hi
s
m
ea
ns
,f
or

an
y
su
pp

or
te
d
sk
et
ch
,w

e
on

ly
ne
ed

to
!n

d
th
e
co
rr
ec
ta

rg
um

en
ts
.M

os
to

rim
et
ric

sw
e
de
!n

e
in

th
is
pa
pe
ro

pt
im

iz
e
th
e
se
ar
ch

fo
rv

ia
bl
e

ar
gu

m
en
ts
of

a
sk
et
ch

by
ap
pr
ox
im

at
in
g
its

in
ve
rs
e
se
m
an
tic

s.

r
(r
(!
P
O
P
L
#C
o
n
f
e
r
e
n
c
e
!
,"
#C
o
n
f
e
r
e
n
c
e
",
𝐿)
,"
#C
i
t
y
",
𝐿)

!
P
O
P
L
!

r
(r
(!
R
e
n
n
e
s
#C
i
t
y
!
,"
#C
o
n
f
e
r
e
n
c
e
",
𝐿)
,"
#C
i
t
y
",
𝐿)

                                                 𝑀 𝑁 𝑂 𝑃 𝑀 𝑁 𝑂 𝑃 𝑀 𝑁 𝑂 𝑃

2.
2

St
at
e-
of
-t
he

-A
rt

W
e
di
sc
us
s
to

w
ha
te

xt
en
tt
he

st
at
e-
of
-t
he
-a
rt
Sy

G
uS

so
lv
er
s
[2
,3
,1
5,
16
,2
7,
28
,4
7,
48
]
ca
n
be

se
en

as
in
st
an
ce
s
of

th
e
ge
ne
ri
c
so
lv
er

in
Fi
gu

re
1.
Th

e
di
sc
us
si
on

sh
ow

s
th
at

ra
th
er

di
"e

re
nt

Pr
oc
.A

CM
Pr
og

ra
m
.L

an
g.
,V

ol
.1
0,
N
o.

PO
PL

,A
rt
ic
le
75
.P

ub
lic
at
io
n
da
te
:J
an
ua
ry

20
26
.

Oriented Metrics for Bo!om-Up Enumerative Synthesis 75:11

P1 = {x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", 𝐿 .x, 𝐿 .𝐿, 𝐿 ."!Conf", 𝐿 ."!City",

"!Conf".x, "!Conf".𝐿, "!Conf"."!Conf",
"!Conf"."!City", "!City".x, "!City".𝐿, "!City"."!Conf",
"!City"."!City"}

P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), r(x, "!City", "!Conf"), . . . , r(x, "!Conf", 𝐿), . . .}
P5 = {. . .} P6 = {. . .} P7 = {. . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿), . . .}

Fig. 12. Example execution of a bo!om-up enumeration algorithm with highlights for OE factorization,
OE factorization with learning, orimetric pruning, partial correctness, and correctness. The concat operator
is abbreviated by an infix "." and the replace operator is abbreviated by r.

Method P1 P2 P3 P4 P5 P6 P7
No Pruning or Factorization 4 - 16 64 128 1280 4352

OE Factorization 4 - 9 6 27 56 119
Orimetric Pruning (OP) 4 - 7 18 56 323 929
OE Factorization + OP 4 - 5 6 19 50 81

↑m𝐿 Factorization + OP + Learning 4 / 5 - 5 / 12 3 / 10 - - -

Fig. 13. Number of programs at each size per solving method.

P1 = {r(x, "!Conf", 𝐿), x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", x.r(x, "!Conf", 𝐿), . . . , 𝐿 ."!City", . . .}
P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), . . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿) . . .}

Fig. 14. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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Solver Search Space Pruning / Factorization Enumeration Order (Deduction)
ESolver [2] Observational Equivalence (OE) constant (✁)
EUSolver [3] OE constant (✂)
Blaze [47] OE + Abstraction Re!nement + Automata constant (✁)

EUPhony [28] weak OE constant/o"ine learning (✂)
Probe [6] OE learning (✁)
Duet [27] OE constant (✂)
Simba [48] OE constant (✂)

DryadSynth [15] OE constant (✂)
Synthphonia [16] OE constant (✂)

Merlin OE + Abstraction Re!nement + Orimetrics learning (✂)

Fig. 8. Comparison of enumerative SyGuS solvers.

Figure 7 gives the program sets constructed in the second iteration of the re!nement loop. Note
how p has size one. With this change in size, we already !nd the solution in P4. In the last row of
Figure 6, we see the cardinalities of the sets again. On the left of the slash are the cardinalities for
the !rst iteration of the re!nement loop, and on the right the cardinalities for the second iteration.
In total, we only consider 39 programs to solve the problem.

Selecting an Orimetric. Coming up with a good orimetric is key to the success of our method.
In our example, had we de!ned an orimetric that rewards functions producing substrings of the
output and punish those that produce superstrings, we would have failed to generate the solution
using bottom-up enumeration.

To construct good orimetrics, we derive them from the semantics of the operators in the grammar.
We already discussed how concatenation needs substrings to produce the desired output while
replacement favors superstrings. In practice, we concurrently run a portfolio of solvers employing a
di#erent orimetric each. We developed three orimetrics for the string domain and four orimetrics for
the bitvector domain. In Sections 5.3 and 5.4, we introduce a principled way of designing orimetrics.

Deduction. An aspect the above example did not highlight is the use of deduction. Conceptually,
deduction accelerates the search by modifying the enumeration order, as depicted in Figure 4. Our
tool Merlin implements the deduction technique from DryadSynth [15]. To explain it, consider
the sketch r(?, ?, ?). After we found the programs "$City", 𝐿 , and r(x, "$Conference", 𝐿), we would
enumerate r(r(x, "$Conference", 𝐿), "$City", 𝐿) next, which solves the synthesis problem. Deduction
thus understands a program sketch. This relies on the inverse semantics of a sketch. If one !nds
arguments such that the sketch !lled with these arguments is a solution to the synthesis problem,
the solution will be enumerated next. This means, for any supported sketch, we only need to
!nd the correct arguments. Most orimetrics we de!ne in this paper optimize the search for viable
arguments of a sketch by approximating its inverse semantics.

r(r(!POPL$Conference!, "$Conference", 𝐿), "$City", 𝐿)
!POPL!

r(r(!Rennes$City!, "$Conference", 𝐿), "$City", 𝐿)

2.2 State-of-the-Art
We discuss to what extent the state-of-the-art SyGuS solvers [2, 3, 15, 16, 27, 28, 47, 48] can be
seen as instances of the generic solver in Figure 1. The discussion shows that rather di#erent
techniques can be understood as (i) assuming an orimetric on the search space and (ii) improving
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Figure 7 gives the program sets constructed in the second iteration of the re!nement loop. Note
how p has size one. With this change in size, we already !nd the solution in P4. In the last row of
Figure 6, we see the cardinalities of the sets again. On the left of the slash are the cardinalities for
the !rst iteration of the re!nement loop, and on the right the cardinalities for the second iteration.
In total, we only consider 39 programs to solve the problem.

Selecting an Orimetric. Coming up with a good orimetric is key to the success of our method.
In our example, had we de!ned an orimetric that rewards functions producing substrings of the
output and punish those that produce superstrings, we would have failed to generate the solution
using bottom-up enumeration.

To construct good orimetrics, we derive them from the semantics of the operators in the grammar.
We already discussed how concatenation needs substrings to produce the desired output while
replacement favors superstrings. In practice, we concurrently run a portfolio of solvers employing a
di"erent orimetric each. We developed three orimetrics for the string domain and four orimetrics for
the bitvector domain. In Sections 5.3 and 5.4, we introduce a principled way of designing orimetrics.

Deduction. An aspect the above example did not highlight is the use of deduction. Conceptually,
deduction accelerates the search by modifying the enumeration order, as depicted in Figure 4. Our
tool Merlin implements the deduction technique from DryadSynth [15]. To explain it, consider
the sketch r(?, ?, ?). After we found the programs "#City", 𝐿 , and r(x, "#Conference", 𝐿), we would
enumerate r(r(x, "#Conference", 𝐿), "#City", 𝐿) next, which solves the synthesis problem. Deduction
thus understands a program sketch. This relies on the inverse semantics of a sketch. If one !nds
arguments such that the sketch !lled with these arguments is a solution to the synthesis problem,
the solution will be enumerated next. This means, for any supported sketch, we only need to
!nd the correct arguments. Most orimetrics we de!ne in this paper optimize the search for viable
arguments of a sketch by approximating its inverse semantics.

r(r(!POPL#Conference!, "#Conference", 𝐿), "#City", 𝐿)
!POPL!

r(r(!Rennes#City!, "#Conference", 𝐿), "#City", 𝐿)



𝑀

𝑁

𝑂

𝑃

𝑀

𝑁

𝑂

𝑃

𝑀

𝑁

𝑂

𝑃

2.2 State-of-the-Art
We discuss to what extent the state-of-the-art SyGuS solvers [2, 3, 15, 16, 27, 28, 47, 48] can be
seen as instances of the generic solver in Figure 1. The discussion shows that rather di"erent
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Solver Search Space Pruning / Factorization Enumeration Order (Deduction)
ESolver [2] Observational Equivalence (OE) constant (✁)
EUSolver [3] OE constant (✂)
Blaze [47] OE + Abstraction Re!nement + Automata constant (✁)

EUPhony [28] weak OE constant/o"ine learning (✂)
Probe [6] OE learning (✁)
Duet [27] OE constant (✂)
Simba [48] OE constant (✂)

DryadSynth [15] OE constant (✂)
Synthphonia [16] OE constant (✂)

Merlin OE + Abstraction Re!nement + Orimetrics learning (✂)

Fig. 8. Comparison of enumerative SyGuS solvers.

Figure 7 gives the program sets constructed in the second iteration of the re!nement loop. Note
how p has size one. With this change in size, we already !nd the solution in P4. In the last row of
Figure 6, we see the cardinalities of the sets again. On the left of the slash are the cardinalities for
the !rst iteration of the re!nement loop, and on the right the cardinalities for the second iteration.
In total, we only consider 39 programs to solve the problem.

Selecting an Orimetric. Coming up with a good orimetric is key to the success of our method.
In our example, had we de!ned an orimetric that rewards functions producing substrings of the
output and punish those that produce superstrings, we would have failed to generate the solution
using bottom-up enumeration.

To construct good orimetrics, we derive them from the semantics of the operators in the grammar.
We already discussed how concatenation needs substrings to produce the desired output while
replacement favors superstrings. In practice, we concurrently run a portfolio of solvers employing a
di#erent orimetric each. We developed three orimetrics for the string domain and four orimetrics for
the bitvector domain. In Sections 5.3 and 5.4, we introduce a principled way of designing orimetrics.

Deduction. An aspect the above example did not highlight is the use of deduction. Conceptually,
deduction accelerates the search by modifying the enumeration order, as depicted in Figure 4. Our
tool Merlin implements the deduction technique from DryadSynth [15]. To explain it, consider
the sketch r(?, ?, ?). After we found the programs "$City", 𝐿 , and r(x, "$Conference", 𝐿), we would
enumerate r(r(x, "$Conference", 𝐿), "$City", 𝐿) next, which solves the synthesis problem. Deduction
thus understands a program sketch. This relies on the inverse semantics of a sketch. If one !nds
arguments such that the sketch !lled with these arguments is a solution to the synthesis problem,
the solution will be enumerated next. This means, for any supported sketch, we only need to
!nd the correct arguments. Most orimetrics we de!ne in this paper optimize the search for viable
arguments of a sketch by approximating its inverse semantics.

r(r(!POPL$Conference!, "$Conference", 𝐿), "$City", 𝐿)
!POPL!

r(r(!Rennes$City!, "$Conference", 𝐿), "$City", 𝐿)

2.2 State-of-the-Art
We discuss to what extent the state-of-the-art SyGuS solvers [2, 3, 15, 16, 27, 28, 47, 48] can be
seen as instances of the generic solver in Figure 1. The discussion shows that rather di#erent
techniques can be understood as (i) assuming an orimetric on the search space and (ii) improving
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Figure 7 gives the program sets constructed in the second iteration of the re!nement loop. Note
how p has size one. With this change in size, we already !nd the solution in P4. In the last row of
Figure 6, we see the cardinalities of the sets again. On the left of the slash are the cardinalities for
the !rst iteration of the re!nement loop, and on the right the cardinalities for the second iteration.
In total, we only consider 39 programs to solve the problem.

Selecting an Orimetric. Coming up with a good orimetric is key to the success of our method.
In our example, had we de!ned an orimetric that rewards functions producing substrings of the
output and punish those that produce superstrings, we would have failed to generate the solution
using bottom-up enumeration.

To construct good orimetrics, we derive them from the semantics of the operators in the grammar.
We already discussed how concatenation needs substrings to produce the desired output while
replacement favors superstrings. In practice, we concurrently run a portfolio of solvers employing a
di"erent orimetric each. We developed three orimetrics for the string domain and four orimetrics for
the bitvector domain. In Sections 5.3 and 5.4, we introduce a principled way of designing orimetrics.

Deduction. An aspect the above example did not highlight is the use of deduction. Conceptually,
deduction accelerates the search by modifying the enumeration order, as depicted in Figure 4. Our
tool Merlin implements the deduction technique from DryadSynth [15]. To explain it, consider
the sketch r(?, ?, ?). After we found the programs "#City", 𝐿 , and r(x, "#Conference", 𝐿), we would
enumerate r(r(x, "#Conference", 𝐿), "#City", 𝐿) next, which solves the synthesis problem. Deduction
thus understands a program sketch. This relies on the inverse semantics of a sketch. If one !nds
arguments such that the sketch !lled with these arguments is a solution to the synthesis problem,
the solution will be enumerated next. This means, for any supported sketch, we only need to
!nd the correct arguments. Most orimetrics we de!ne in this paper optimize the search for viable
arguments of a sketch by approximating its inverse semantics.

r(r(!POPL#Conference!, "#Conference", 𝐿), "#City", 𝐿)

!POPL!

!Rennes!

r(r(!Rennes#City!, "#Conference", 𝐿), "#City", 𝐿)
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initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune(L(G),m𝐿, gt)

Search(Q,m𝐿, gt,→ ↑ (Q ↓ Q))

Factorize(P,m𝐿,→)

Refine(m𝐿, p, gt)

Learn(→, { q ↔ Q | q → p }, gt)

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 1. CEGAR loop for synthesis.

initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune

Search

Factorize

Refine

Learn

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 2. CEGAR loop for synthesis.

S ::= V | replace(S,S,S) | concat(S,S)
V ::= x | 𝐿 | "!Conf" | "!City"

Fig. 3. Example grammar G.

In Out
"POPL!Conf" "POPL"
"Rennes!City" "Rennes"
"PLDI!Conf" "PLDI"
"Seoul!City" "Seoul"

Fig. 4. Input-output examples (In,Out).
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initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune(L(G),m𝐿, gt)

Search(Q,m𝐿, gt,→ ↑ (Q ↓ Q))

Factorize(P,m𝐿,→)

Refine(m𝐿, p, gt)

Learn(→, { q ↔ Q | q → p }, gt)

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 1. CEGAR loop for synthesis.

initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune

Search

Factorize

Refine

Learn

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 2. CEGAR loop for synthesis.

S ::= V | replace(S,S,S) | concat(S,S)
V ::= x | 𝐿 | "!Conf" | "!City"

Fig. 3. Example grammar G.

In Out
"POPL!Conf" "POPL"
"Rennes!City" "Rennes"
"PLDI!Conf" "PLDI"
"Seoul!City" "Seoul"

Fig. 4. Input-output examples (In,Out).
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speci!ed output "Rennes". We use Refine to generate a new orimetric for the next iteration. To
also take into account the second example, we set m𝐿 to m{i1,i2 } . While the approximate orimetric
and its re!nement are simple in this example, our approach can also be instantiated with predicate
abstraction as introduced in [47]. We discuss the details below.

We now use Learn to update the enumeration order for the next iteration. To do so, we use the
precise metric mIn to analyze the candidate solution p. We see that p produces a superstring of the
outputs for all examples. This means, mIn (!p", gt) < 100 and therefore the program lies within the
ball around gt. We consider p valuable and promote it in the enumeration order. Recall that the
enumeration order in our example is de!ned by the size. Function Learn rede!nes the size of p to
be 1. Then p and programs that use p as a subprogram will be considered early on.

Figure 14 gives the program sets constructed in the second iteration of the re!nement loop. Note
how p has size one. With this change in size, we already !nd the solution in P4. In the last row of
Figure 13, we see the cardinalities of the sets again. On the left of the slash are the cardinalities for
the !rst iteration of the re!nement loop, and on the right the cardinalities for the second iteration.
In total, we only consider 39 programs to solve the problem.

Selecting an Orimetric. Coming up with a good orimetric is key to the success of our method.
In our example, had we de!ned an orimetric that rewards functions producing substrings of the
output and punish those that produce superstrings, we would have failed to generate the solution
using bottom-up enumeration.

To construct good orimetrics, we derive them from the semantics of the operators in the grammar.
We already discussed how concatenation needs substrings to produce the desired output while
replacement favors superstrings. In practice, we concurrently run a portfolio of solvers employing a
di"erent orimetric each. We developed three orimetrics for the string domain and four orimetrics for
the bitvector domain. In Sections 5.3 and 5.4, we introduce a principled way of designing orimetrics.

Deduction. An aspect the above example did not highlight is the use of deduction. Conceptually,
deduction accelerates the search by modifying the enumeration order, as depicted in Figure 11. Our
tool Merlin implements the deduction technique from DryadSynth [15]. To explain it, consider the
sketch r(?, ?, ?). After we found the programs "#City", 𝐿 , and r(x, "#Conf", 𝐿), we would enumerate
r(r(x, "#Conf", 𝐿), "#City", 𝐿) next, which solves the synthesis problem. Deduction thus understands
a program sketch. This relies on the inverse semantics of a sketch. If one !nds arguments such
that the sketch !lled with these arguments is a solution to the synthesis problem, the solution
will be enumerated next. This means, for any supported sketch, we only need to !nd the correct
arguments. Most orimetrics we de!ne in this paper optimize the search for viable arguments of a
sketch by approximating its inverse semantics.
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speci!ed output "Rennes". We use Refine to generate a new orimetric for the next iteration. To
also take into account the second example, we set m𝐿 to m{i1,i2 } . While the approximate orimetric
and its re!nement are simple in this example, our approach can also be instantiated with predicate
abstraction as introduced in [47]. We discuss the details below.

We now use Learn to update the enumeration order for the next iteration. To do so, we use the
precise metric mIn to analyze the candidate solution p. We see that p produces a superstring of the
outputs for all examples. This means, mIn (!p", gt) < 100 and therefore the program lies within the
ball around gt. We consider p valuable and promote it in the enumeration order. Recall that the
enumeration order in our example is de!ned by the size. Function Learn rede!nes the size of p to
be 1. Then p and programs that use p as a subprogram will be considered early on.

Figure 14 gives the program sets constructed in the second iteration of the re!nement loop. Note
how p has size one. With this change in size, we already !nd the solution in P4. In the last row of
Figure 13, we see the cardinalities of the sets again. On the left of the slash are the cardinalities for
the !rst iteration of the re!nement loop, and on the right the cardinalities for the second iteration.
In total, we only consider 39 programs to solve the problem.

Selecting an Orimetric. Coming up with a good orimetric is key to the success of our method.
In our example, had we de!ned an orimetric that rewards functions producing substrings of the
output and punish those that produce superstrings, we would have failed to generate the solution
using bottom-up enumeration.

To construct good orimetrics, we derive them from the semantics of the operators in the grammar.
We already discussed how concatenation needs substrings to produce the desired output while
replacement favors superstrings. In practice, we concurrently run a portfolio of solvers employing a
di"erent orimetric each. We developed three orimetrics for the string domain and four orimetrics for
the bitvector domain. In Sections 5.3 and 5.4, we introduce a principled way of designing orimetrics.

Deduction. An aspect the above example did not highlight is the use of deduction. Conceptually,
deduction accelerates the search by modifying the enumeration order, as depicted in Figure 11. Our
tool Merlin implements the deduction technique from DryadSynth [15]. To explain it, consider the
sketch r(?, ?, ?). After we found the programs "#City", 𝐿 , and r(x, "#Conf", 𝐿), we would enumerate
r(r(x, "#Conf", 𝐿), "#City", 𝐿) next, which solves the synthesis problem. Deduction thus understands
a program sketch. This relies on the inverse semantics of a sketch. If one !nds arguments such
that the sketch !lled with these arguments is a solution to the synthesis problem, the solution
will be enumerated next. This means, for any supported sketch, we only need to !nd the correct
arguments. Most orimetrics we de!ne in this paper optimize the search for viable arguments of a
sketch by approximating its inverse semantics.

r(r(!POPL#Conf!, "#Conf", 𝐿), "#City", 𝐿)
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P1 = {x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", 𝐿 .x, 𝐿 .𝐿, 𝐿 ."!Conf", 𝐿 ."!City",

"!Conf".x, "!Conf".𝐿, "!Conf"."!Conf",
"!Conf"."!City", "!City".x, "!City".𝐿, "!City"."!Conf",
"!City"."!City"}

P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), r(x, "!City", "!Conf"), . . . , r(x, "!Conf", 𝐿), . . .}
P5 = {. . .} P6 = {. . .} P7 = {. . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿), . . .}

Fig. 12. Example execution of a bo!om-up enumeration algorithm with highlights for OE factorization,
OE factorization with learning, orimetric pruning, partial correctness, and correctness. The concat operator
is abbreviated by an infix "." and the replace operator is abbreviated by r.

Method P1 P2 P3 P4 P5 P6 P7
No Pruning or Factorization 4 - 16 64 128 1280 4352

OE Factorization 4 - 9 6 27 56 119
Orimetric Pruning (OP) 4 - 7 18 56 323 929
OE Factorization + OP 4 - 5 6 19 50 81

↑m𝐿 Factorization + OP + Learning 4 / 5 - 5 / 12 3 / 10 - - -

Fig. 13. Number of programs at each size per solving method.

P1 = {r(x, "!Conf", 𝐿), x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", x.r(x, "!Conf", 𝐿), . . . , 𝐿 ."!City", . . .}
P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), . . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿) . . .}

Fig. 14. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune(L(G),m𝐿, gt)

Search(Q,m𝐿, gt,→ ↑ (Q ↓ Q))

Factorize(P,m𝐿,→)

Refine(m𝐿, p, gt)

Learn(→, { q ↔ Q | q → p }, gt)

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 1. CEGAR loop for synthesis.
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Fig. 2. CEGAR loop for synthesis.

S ::= V | replace(S,S,S) | concat(S,S)
V ::= x | 𝐿 | "!Conf" | "!City"

Fig. 3. Example grammar G.

In Out
"POPL!Conf" "POPL"
"Rennes!City" "Rennes"
"PLDI!Conf" "PLDI"
"Seoul!City" "Seoul"

Fig. 4. Input-output examples (In,Out).
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Fig. 12. Example execution of a bo!om-up enumeration algorithm with highlights for OE factorization,
OE factorization with learning, orimetric pruning, partial correctness, and correctness. The concat operator
is abbreviated by an infix "." and the replace operator is abbreviated by r.

Method P1 P2 P3 P4 P5 P6 P7
No Pruning or Factorization 4 - 16 64 128 1280 4352

OE Factorization 4 - 9 6 27 56 119
Orimetric Pruning (OP) 4 - 7 18 56 323 929
OE Factorization + OP 4 - 5 6 19 50 81

↑m𝐿 Factorization + OP + Learning 4 / 5 - 5 / 12 3 / 10 - - -

Fig. 13. Number of programs at each size per solving method.

P1 = {r(x, "!Conf", 𝐿), x, 𝐿, "!Conf", "!City"}
P2 = →
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P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), . . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿) . . .}

Fig. 14. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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Fig. 12. Example execution of a bo!om-up enumeration algorithm with highlights for OE factorization,
OE factorization with learning, orimetric pruning, partial correctness, and correctness. The concat operator
is abbreviated by an infix "." and the replace operator is abbreviated by r.

Method P1 P2 P3 P4 P5 P6 P7
No Pruning or Factorization 4 - 16 64 128 1280 4352

OE Factorization 4 - 9 6 27 56 119
Orimetric Pruning (OP) 4 - 7 18 56 323 929
OE Factorization + OP 4 - 5 6 19 50 81

↑m𝐿 Factorization + OP + Learning 4 / 5 - 5 / 12 3 / 10 - - -
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Fig. 14. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 75. Publication date: January 2026.

Oriented Metrics for Bo!om-Up Enumerative Synthesis 75:11

P1 = {x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", 𝐿 .x, 𝐿 .𝐿, 𝐿 ."!Conf", 𝐿 ."!City",

"!Conf".x, "!Conf".𝐿, "!Conf"."!Conf",
"!Conf"."!City", "!City".x, "!City".𝐿, "!City"."!Conf",
"!City"."!City"}

P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), r(x, "!City", "!Conf"), . . . , r(x, "!Conf", 𝐿), . . .}
P5 = {. . .} P6 = {. . .} P7 = {. . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿), . . .}

Fig. 12. Example execution of a bo!om-up enumeration algorithm with highlights for OE factorization,
OE factorization with learning, orimetric pruning, partial correctness, and correctness. The concat operator
is abbreviated by an infix "." and the replace operator is abbreviated by r.

Method P1 P2 P3 P4 P5 P6 P7
No Pruning or Factorization 4 - 16 64 128 1280 4352

OE Factorization 4 - 9 6 27 56 119
Orimetric Pruning (OP) 4 - 7 18 56 323 929
OE Factorization + OP 4 - 5 6 19 50 81

↑m𝐿 Factorization + OP + Learning 4 / 5 - 5 / 12 3 / 10 - - -

Fig. 13. Number of programs at each size per solving method.

P1 = {r(x, "!Conf", 𝐿), x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", x.r(x, "!Conf", 𝐿), . . . , 𝐿 ."!City", . . .}
P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), . . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿) . . .}

Fig. 14. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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"PLDI!Conf" "PLDI"
"Seoul!City" "Seoul"

Fig. 4. Input-output examples (In,Out).

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 75. Publication date: January 2026.

Oriented Metrics for Bo!om-Up Enumerative Synthesis 75:7

initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune(L(G),m𝐿, gt)

Search(Q,m𝐿, gt,→ ↑ (Q ↓ Q))

Factorize(P,m𝐿,→)

Refine(m𝐿, p, gt)

Learn(→, { q ↔ Q | q → p }, gt)

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 1. CEGAR loop for synthesis.

initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune

Search

Factorize

Refine

Learn

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 2. CEGAR loop for synthesis.

S ::= V | replace(S,S,S) | concat(S,S)
V ::= x | 𝐿 | "!Conf" | "!City"

Fig. 3. Example grammar G.

In Out
"POPL!Conf" "POPL"
"Rennes!City" "Rennes"
"PLDI!Conf" "PLDI"
"Seoul!City" "Seoul"

Fig. 4. Input-output examples (In,Out).

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 75. Publication date: January 2026.

Oriented Metrics for Bo!om-Up Enumerative Synthesis 75:11

P1 = {x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", 𝐿 .x, 𝐿 .𝐿, 𝐿 ."!Conf", 𝐿 ."!City",

"!Conf".x, "!Conf".𝐿, "!Conf"."!Conf",
"!Conf"."!City", "!City".x, "!City".𝐿, "!City"."!Conf",
"!City"."!City"}

P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), r(x, "!City", "!Conf"), . . . , r(x, "!Conf", 𝐿), . . .}
P5 = {. . .} P6 = {. . .} P7 = {. . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿), . . .}

Fig. 12. Example execution of a bo!om-up enumeration algorithm with highlights for OE factorization,
OE factorization with learning, orimetric pruning, partial correctness, and correctness. The concat operator
is abbreviated by an infix "." and the replace operator is abbreviated by r.

Method P1 P2 P3 P4 P5 P6 P7
No Pruning or Factorization 4 - 16 64 128 1280 4352

OE Factorization 4 - 9 6 27 56 119
Orimetric Pruning (OP) 4 - 7 18 56 323 929
OE Factorization + OP 4 - 5 6 19 50 81

↑m𝐿 Factorization + OP + Learning 4 / 5 - 5 / 12 3 / 10 - - -

Fig. 13. Number of programs at each size per solving method.

P1 = {r(x, "!Conf", 𝐿), x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", x.r(x, "!Conf", 𝐿), . . . , 𝐿 ."!City", . . .}
P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), . . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿) . . .}

Fig. 14. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 75. Publication date: January 2026.

Oriented Metrics for Bo!om-Up Enumerative Synthesis 75:11

P1 = {x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", 𝐿 .x, 𝐿 .𝐿, 𝐿 ."!Conf", 𝐿 ."!City",

"!Conf".x, "!Conf".𝐿, "!Conf"."!Conf", "!City"."!City",
"!Conf"."!City", "!City".x, "!City".𝐿, "!City"."!Conf"}

P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), r(x, "!City", "!Conf"), . . . , r(x, "!Conf", 𝐿), . . .}
P5 = {. . .} P6 = {. . .} P7 = {. . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿), . . .}

Fig. 12. Example execution of a bo!om-up enumeration algorithm with highlights for OE factorization,
OE factorization with learning, orimetric pruning, partial correctness, and correctness. The concat operator
is abbreviated by an infix "." and the replace operator is abbreviated by r.

Method P1 P2 P3 P4 P5 P6 P7
No Pruning or Factorization 4 - 16 64 128 1280 4352

OE Factorization 4 - 9 6 27 56 119
Orimetric Pruning (OP) 4 - 7 18 56 323 929
OE Factorization + OP 4 - 5 6 19 50 81

↑m𝐿 Factorization + OP + Learning 4 / 5 - 5 / 12 3 / 10 - - -

Fig. 13. Number of programs at each size per solving method.

P1 = {r(x, "!Conf", 𝐿), x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", x.r(x, "!Conf", 𝐿), . . . , 𝐿 ."!City", . . .}
P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), . . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿) . . .}

Fig. 14. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
speci"ed output "Rennes". We use Refine to generate a new orimetric for the next iteration. To
also take into account the second example, we set m𝐿 to m{i1,i2 } . While the approximate orimetric
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Fig. 2. CEGAR loop for synthesis.

S ::= V | replace(S,S,S) | concat(S,S)
V ::= x | 𝐿 | "!Conf" | "!City"

Fig. 3. Example grammar G.

In Out
"POPL!Conf" "POPL"
"Rennes!City" "Rennes"
"PLDI!Conf" "PLDI"
"Seoul!City" "Seoul"

Fig. 4. Input-output examples (In,Out).
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P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), r(x, "!City", "!Conf"), . . . , r(x, "!Conf", 𝐿), . . .}
P5 = {. . .} P6 = {. . .} P7 = {. . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿), . . .}

Fig. 12. Example execution of a bo!om-up enumeration algorithm with highlights for OE factorization,
OE factorization with learning, orimetric pruning, partial correctness, and correctness. The concat operator
is abbreviated by an infix "." and the replace operator is abbreviated by r.

Method P1 P2 P3 P4 P5 P6 P7
No Pruning or Factorization 4 - 16 64 128 1280 4352

OE Factorization 4 - 9 6 27 56 119
Orimetric Pruning (OP) 4 - 7 18 56 323 929
OE Factorization + OP 4 - 5 6 19 50 81

↑m𝐿 Factorization + OP + Learning 4 / 5 - 5 / 12 3 / 10 - - -

Fig. 13. Number of programs at each size per solving method.

P1 = {r(x, "!Conf", 𝐿), x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", x.r(x, "!Conf", 𝐿), . . . , 𝐿 ."!City", . . .}
P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), . . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿) . . .}

Fig. 14. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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No Pruning or Factorization 4 - 16 64 128 1280 4352

OE Factorization 4 - 9 6 27 56 119
Orimetric Pruning (OP) 4 - 7 18 56 323 929
OE Factorization + OP 4 - 5 6 19 50 81

↑m𝐿 Factorization + OP + Learning 4 / 5 - 5 / 12 3 / 10 - - -

Fig. 13. Number of programs at each size per solving method.
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P2 = →
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Fig. 14. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
speci"ed output "Rennes". We use Refine to generate a new orimetric for the next iteration. To
also take into account the second example, we set m𝐿 to m{i1,i2 } . While the approximate orimetric
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initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune(L(G),m𝐿, gt)

Search(Q,m𝐿, gt,→ ↑ (Q ↓ Q))

Factorize(P,m𝐿,→)

Refine(m𝐿, p, gt)

Learn(→, { q ↔ Q | q → p }, gt)

p correct?

CEGAR

✁

search space P
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Fig. 1. CEGAR loop for synthesis.
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Fig. 2. CEGAR loop for synthesis.

S ::= V | replace(S,S,S) | concat(S,S)
V ::= x | 𝐿 | "!Conf" | "!City"

Fig. 3. Example grammar G.

In Out
"POPL!Conf" "POPL"
"Rennes!City" "Rennes"
"PLDI!Conf" "PLDI"
"Seoul!City" "Seoul"

Fig. 4. Input-output examples (In,Out).
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P1 = {x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", 𝐿 .x, 𝐿 .𝐿, 𝐿 ."!Conf", 𝐿 ."!City",

"!Conf".x, "!Conf".𝐿, "!Conf"."!Conf",
"!Conf"."!City", "!City".x, "!City".𝐿, "!City"."!Conf",
"!City"."!City"}

P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), r(x, "!City", "!Conf"), . . . , r(x, "!Conf", 𝐿), . . .}
P5 = {. . .} P6 = {. . .} P7 = {. . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿), . . .}

Fig. 12. Example execution of a bo!om-up enumeration algorithm with highlights for OE factorization,
OE factorization with learning, orimetric pruning, partial correctness, and correctness. The concat operator
is abbreviated by an infix "." and the replace operator is abbreviated by r.

Method P1 P2 P3 P4 P5 P6 P7
No Pruning or Factorization 4 - 16 64 128 1280 4352

OE Factorization 4 - 9 6 27 56 119
Orimetric Pruning (OP) 4 - 7 18 56 323 929
OE Factorization + OP 4 - 5 6 19 50 81

↑m𝐿 Factorization + OP + Learning 4 / 5 - 5 / 12 3 / 10 - - -

Fig. 13. Number of programs at each size per solving method.

P1 = {r(x, "!Conf", 𝐿), x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", x.r(x, "!Conf", 𝐿), . . . , 𝐿 ."!City", . . .}
P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), . . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿) . . .}

Fig. 14. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
speci"ed output "Rennes". We use Refine to generate a new orimetric for the next iteration. To
also take into account the second example, we set m𝐿 to m{i1,i2 } . While the approximate orimetric
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initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune(L(G),m𝐿, gt)

Search(Q,m𝐿, gt,→ ↑ (Q ↓ Q))

Factorize(P,m𝐿,→)

Refine(m𝐿, p, gt)

Learn(→, { q ↔ Q | q → p }, gt)

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 1. CEGAR loop for synthesis.
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Fig. 2. CEGAR loop for synthesis.

S ::= V | replace(S,S,S) | concat(S,S)
V ::= x | 𝐿 | "!Conf" | "!City"

Fig. 3. Example grammar G.

In Out
"POPL!Conf" "POPL"
"Rennes!City" "Rennes"
"PLDI!Conf" "PLDI"
"Seoul!City" "Seoul"

Fig. 4. Input-output examples (In,Out).
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P1 = {x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", 𝐿 .x, 𝐿 .𝐿, 𝐿 ."!Conf", 𝐿 ."!City",

"!Conf".x, "!Conf".𝐿, "!Conf"."!Conf",
"!Conf"."!City", "!City".x, "!City".𝐿, "!City"."!Conf",
"!City"."!City"}

P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), r(x, "!City", "!Conf"), . . . , r(x, "!Conf", 𝐿), . . .}
P5 = {. . .} P6 = {. . .} P7 = {. . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿), . . .}

Fig. 12. Example execution of a bo!om-up enumeration algorithm with highlights for OE factorization,
OE factorization with learning, orimetric pruning, partial correctness, and correctness. The concat operator
is abbreviated by an infix "." and the replace operator is abbreviated by r.

Method P1 P2 P3 P4 P5 P6 P7
No Pruning or Factorization 4 - 16 64 128 1280 4352

OE Factorization 4 - 9 6 27 56 119
Orimetric Pruning (OP) 4 - 7 18 56 323 929
OE Factorization + OP 4 - 5 6 19 50 81

↑m𝐿 Factorization + OP + Learning 4 / 5 - 5 / 12 3 / 10 - - -

Fig. 13. Number of programs at each size per solving method.

P1 = {r(x, "!Conf", 𝐿), x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", x.r(x, "!Conf", 𝐿), . . . , 𝐿 ."!City", . . .}
P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), . . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿) . . .}

Fig. 14. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.
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that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
speci"ed output "Rennes". We use Refine to generate a new orimetric for the next iteration. To
also take into account the second example, we set m𝐿 to m{i1,i2 } . While the approximate orimetric
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speci"ed output "Rennes". We use Refine to generate a new orimetric for the next iteration. To
also take into account the second example, we set m𝐿 to m{i1,i2 } . While the approximate orimetric
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initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune(L(G),m𝐿, gt)

Search(Q,m𝐿, gt,→ ↑ (Q ↓ Q))

Factorize(P,m𝐿,→)

Refine(m𝐿, p, gt)

Learn(→, { q ↔ Q | q → p }, gt)

p correct?

CEGAR
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program pspurious program p
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m𝐿 ω mp
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Fig. 1. CEGAR loop for synthesis.
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Fig. 2. CEGAR loop for synthesis.

S ::= V | replace(S,S,S) | concat(S,S)
V ::= x | 𝐿 | "!Conf" | "!City"

Fig. 3. Example grammar G.

In Out
"POPL!Conf" "POPL"
"Rennes!City" "Rennes"
"PLDI!Conf" "PLDI"
"Seoul!City" "Seoul"

Fig. 4. Input-output examples (In,Out).
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P1 = {x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", 𝐿 .x, 𝐿 .𝐿, 𝐿 ."!Conf", 𝐿 ."!City",

"!Conf".x, "!Conf".𝐿, "!Conf"."!Conf",
"!Conf"."!City", "!City".x, "!City".𝐿, "!City"."!Conf",
"!City"."!City"}

P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), r(x, "!City", "!Conf"), . . . , r(x, "!Conf", 𝐿), . . .}
P5 = {. . .} P6 = {. . .} P7 = {. . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿), . . .}

Fig. 12. Example execution of a bo!om-up enumeration algorithm with highlights for OE factorization,
OE factorization with learning, orimetric pruning, partial correctness, and correctness. The concat operator
is abbreviated by an infix "." and the replace operator is abbreviated by r.

Method P1 P2 P3 P4 P5 P6 P7
No Pruning or Factorization 4 - 16 64 128 1280 4352

OE Factorization 4 - 9 6 27 56 119
Orimetric Pruning (OP) 4 - 7 18 56 323 929
OE Factorization + OP 4 - 5 6 19 50 81

↑m𝐿 Factorization + OP + Learning 4 / 5 - 5 / 12 3 / 10 - - -

Fig. 13. Number of programs at each size per solving method.

P1 = {r(x, "!Conf", 𝐿), x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", x.r(x, "!Conf", 𝐿), . . . , 𝐿 ."!City", . . .}
P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), . . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿) . . .}

Fig. 14. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.
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already have x. In Figure 11, the factorized search space is the blue area. When applying Prune
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program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
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is abbreviated by an infix "." and the replace operator is abbreviated by r.

Method P1 P2 P3 P4 P5 P6 P7
No Pruning or Factorization 4 - 16 64 128 1280 4352

OE Factorization 4 - 9 6 27 56 119
Orimetric Pruning (OP) 4 - 7 18 56 323 929
OE Factorization + OP 4 - 5 6 19 50 81

↑m𝐿 Factorization + OP + Learning 4 / 5 - 5 / 12 3 / 10 - - -

Fig. 13. Number of programs at each size per solving method.

P1 = {r(x, "!Conf", 𝐿), x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", x.r(x, "!Conf", 𝐿), . . . , 𝐿 ."!City", . . .}
P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), . . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿) . . .}

Fig. 14. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
speci"ed output "Rennes". We use Refine to generate a new orimetric for the next iteration. To
also take into account the second example, we set m𝐿 to m{i1,i2 } . While the approximate orimetric
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initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune(L(G),m𝐿, gt)

Search(Q,m𝐿, gt,→ ↑ (Q ↓ Q))

Factorize(P,m𝐿,→)
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Fig. 2. CEGAR loop for synthesis.

S ::= V | replace(S,S,S) | concat(S,S)
V ::= x | 𝐿 | "!Conf" | "!City"

Fig. 3. Example grammar G.

In Out
"POPL!Conf" "POPL"
"Rennes!City" "Rennes"
"PLDI!Conf" "PLDI"
"Seoul!City" "Seoul"

Fig. 4. Input-output examples (In,Out).
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P1 = {x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", 𝐿 .x, 𝐿 .𝐿, 𝐿 ."!Conf", 𝐿 ."!City",

"!Conf".x, "!Conf".𝐿, "!Conf"."!Conf",
"!Conf"."!City", "!City".x, "!City".𝐿, "!City"."!Conf",
"!City"."!City"}

P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), r(x, "!City", "!Conf"), . . . , r(x, "!Conf", 𝐿), . . .}
P5 = {. . .} P6 = {. . .} P7 = {. . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿), . . .}

Fig. 12. Example execution of a bo!om-up enumeration algorithm with highlights for OE factorization,
OE factorization with learning, orimetric pruning, partial correctness, and correctness. The concat operator
is abbreviated by an infix "." and the replace operator is abbreviated by r.

Method P1 P2 P3 P4 P5 P6 P7
No Pruning or Factorization 4 - 16 64 128 1280 4352

OE Factorization 4 - 9 6 27 56 119
Orimetric Pruning (OP) 4 - 7 18 56 323 929
OE Factorization + OP 4 - 5 6 19 50 81

↑m𝐿 Factorization + OP + Learning 4 / 5 - 5 / 12 3 / 10 - - -

Fig. 13. Number of programs at each size per solving method.

P1 = {r(x, "!Conf", 𝐿), x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", x.r(x, "!Conf", 𝐿), . . . , 𝐿 ."!City", . . .}
P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), . . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿) . . .}

Fig. 14. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
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this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
speci"ed output "Rennes". We use Refine to generate a new orimetric for the next iteration. To
also take into account the second example, we set m𝐿 to m{i1,i2 } . While the approximate orimetric

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 75. Publication date: January 2026.

Oriented Metrics for Bo!om-Up Enumerative Synthesis 75:11

P1 = {x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", 𝐿 .x, 𝐿 .𝐿, 𝐿 ."!Conf", 𝐿 ."!City",

"!Conf".x, "!Conf".𝐿, "!Conf"."!Conf", "!City"."!City",
"!Conf"."!City", "!City".x, "!City".𝐿, "!City"."!Conf"}

P4 = {r(x, x, "!City"), r(x, "!City", "!Conf"), r(x, "!Conf", 𝐿), . . .}
P5 = {. . .} P6 = {. . .} P7 = {. . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿), . . .}

Fig. 12. Example execution of a bo!om-up enumeration algorithm with highlights for OE factorization,
OE factorization with learning, orimetric pruning, partial correctness, and correctness. The concat operator
is abbreviated by an infix "." and the replace operator is abbreviated by r.

Method P1 P2 P3 P4 P5 P6 P7
No Pruning or Factorization 4 - 16 64 128 1280 4352

OE Factorization 4 - 9 6 27 56 119
Orimetric Pruning (OP) 4 - 7 18 56 323 929
OE Factorization + OP 4 - 5 6 19 50 81

↑m𝐿 Factorization + OP + Learning 4 / 5 - 5 / 12 3 / 10 - - -

Fig. 13. Number of programs at each size per solving method.

P1 = {r(x, "!Conf", 𝐿), x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", x.r(x, "!Conf", 𝐿), . . . , 𝐿 ."!City", . . .}
P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), . . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿) . . .}

Fig. 14. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
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initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune(L(G),m𝐿, gt)

Search(Q,m𝐿, gt,→ ↑ (Q ↓ Q))

Factorize(P,m𝐿,→)
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Fig. 1. CEGAR loop for synthesis.
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Fig. 2. CEGAR loop for synthesis.

S ::= V | replace(S,S,S) | concat(S,S)
V ::= x | 𝐿 | "!Conf" | "!City"

Fig. 3. Example grammar G.

In Out
"POPL!Conf" "POPL"
"Rennes!City" "Rennes"
"PLDI!Conf" "PLDI"
"Seoul!City" "Seoul"

Fig. 4. Input-output examples (In,Out).
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P1 = {x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", 𝐿 .x, 𝐿 .𝐿, 𝐿 ."!Conf", 𝐿 ."!City",

"!Conf".x, "!Conf".𝐿, "!Conf"."!Conf",
"!Conf"."!City", "!City".x, "!City".𝐿, "!City"."!Conf",
"!City"."!City"}

P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), r(x, "!City", "!Conf"), . . . , r(x, "!Conf", 𝐿), . . .}
P5 = {. . .} P6 = {. . .} P7 = {. . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿), . . .}

Fig. 12. Example execution of a bo!om-up enumeration algorithm with highlights for OE factorization,
OE factorization with learning, orimetric pruning, partial correctness, and correctness. The concat operator
is abbreviated by an infix "." and the replace operator is abbreviated by r.

Method P1 P2 P3 P4 P5 P6 P7
No Pruning or Factorization 4 - 16 64 128 1280 4352

OE Factorization 4 - 9 6 27 56 119
Orimetric Pruning (OP) 4 - 7 18 56 323 929
OE Factorization + OP 4 - 5 6 19 50 81

↑m𝐿 Factorization + OP + Learning 4 / 5 - 5 / 12 3 / 10 - - -

Fig. 13. Number of programs at each size per solving method.

P1 = {r(x, "!Conf", 𝐿), x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", x.r(x, "!Conf", 𝐿), . . . , 𝐿 ."!City", . . .}
P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), . . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿) . . .}

Fig. 14. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
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to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.
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For instance, on the second example the program yields "Rennes!City" which is not equal to the
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P1 = {x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", 𝐿 .x, 𝐿 .𝐿, 𝐿 ."!Conf", 𝐿 ."!City",
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P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), r(x, "!City", "!Conf"), . . . , r(x, "!Conf", 𝐿), . . .}
P5 = {. . .} P6 = {. . .} P7 = {. . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿), . . .}

Fig. 12. Example execution of a bo!om-up enumeration algorithm with highlights for OE factorization,
OE factorization with learning, orimetric pruning, partial correctness, and correctness. The concat operator
is abbreviated by an infix "." and the replace operator is abbreviated by r.

Method P1 P2 P3 P4 P5 P6 P7
No Pruning or Factorization 4 - 16 64 128 1280 4352

OE Factorization 4 - 9 6 27 56 119
Orimetric Pruning (OP) 4 - 7 18 56 323 929
OE Factorization + OP 4 - 5 6 19 50 81

↑m𝐿 Factorization + OP + Learning 4 / 5 - 5 / 12 3 / 10 - - -

Fig. 13. Number of programs at each size per solving method.

P1 = {r(x, "!Conf", 𝐿), x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", x.r(x, "!Conf", 𝐿), . . . , 𝐿 ."!City", . . .}
P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), . . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿) . . .}

Fig. 14. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
speci"ed output "Rennes". We use Refine to generate a new orimetric for the next iteration. To
also take into account the second example, we set m𝐿 to m{i1,i2 } . While the approximate orimetric

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 75. Publication date: January 2026.

Oriented Metrics for Bo!om-Up Enumerative Synthesis 75:11

P1 = {x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", 𝐿 .x, 𝐿 .𝐿, 𝐿 ."!Conf", 𝐿 ."!City",

"!Conf".x, "!Conf".𝐿, "!Conf"."!Conf", "!City"."!City",
"!Conf"."!City", "!City".x, "!City".𝐿, "!City"."!Conf"}

P4 = {r(x, x, "!City"), r(x, "!City", "!Conf"), r(x, "!Conf", 𝐿), . . .}
P5 = {. . .} P6 = {. . .} P7 = {. . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿), . . .}

Fig. 12. Example execution of a bo!om-up enumeration algorithm with highlights for OE factorization,
OE factorization with learning, orimetric pruning, partial correctness, and correctness. The concat operator
is abbreviated by an infix "." and the replace operator is abbreviated by r.
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No Pruning or Factorization 4 - 16 64 128 1280 4352

OE Factorization 4 - 9 6 27 56 119
Orimetric Pruning (OP) 4 - 7 18 56 323 929
OE Factorization + OP 4 - 5 6 19 50 81

↑m𝐿 Factorization + OP + Learning 4 / 5 - 5 / 12 3 / 10 - - -

Fig. 13. Number of programs at each size per solving method.
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P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), . . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿) . . .}

Fig. 14. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
speci"ed output "Rennes". We use Refine to generate a new orimetric for the next iteration. To
also take into account the second example, we set m𝐿 to m{i1,i2 } . While the approximate orimetric
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Method P1 P2 P3 P4 P5 P6 P7
No Pruning or Factorization 4 - 16 64 128 1280 4352

OE Factorization 4 - 9 6 27 56 119
Orimetric Pruning (OP) 4 - 7 18 56 323 929
OE Factorization + OP 4 - 5 6 19 50 81

→m𝐿 Factorization + OP + Learning 4 / 5 - 5 / 12 3 / 10 - - -

Fig. 6. Number of programs at each size per solving method.

P1 = {r(x, "!Conference", 𝐿), x, 𝐿, "!Conference", "!City"}
P2 = ↑
P3 = {x.x, x.𝐿, x."!Conference", x."!City", x.r(x, "!Conference", 𝐿), . . . , 𝐿 ."!City", . . .}
P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), . . . , r(r(x, "!Conference", 𝐿), "!City", 𝐿) . . .}

Fig. 7. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x →m𝐿 r(x, "!City", "!Conference").
The equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement
happens. When we factorize the search space along →m𝐿 , the program in blue will be eliminated
since we already have x. In Figure 4, the factorized search space is the blue area. When applying
Prune as well as Factorize, we are left with the green ball intersected with the blue area. We now
use Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
speci"ed output "Rennes". We use Refine to generate a new orimetric for the next iteration. To
also take into account the second example, we set m𝐿 to m{i1,i2 } . While the approximate orimetric
and its re"nement are simple in this example, our approach can also be instantiated with predicate
abstraction as introduced in [47]. We discuss the details below.

We now use Learn to update the enumeration order for the next iteration. To do so, we use the
precise metric mI to analyze the candidate solution p. We see that p produces a superstring of the
outputs for all examples. This means, mI (!p", gt) < 100 and therefore the program lies within the
ball around gt. We consider p valuable and promote it in the enumeration order. Recall that the
enumeration order in our example is de"ned by the size. Function Learn rede"nes the size of p to
be 1. Then p and programs that use p as a subprogram will be considered early on.

Figure 7 gives the program sets constructed in the second iteration of the re"nement loop. Note
how p has size one. With this change in size, we already "nd the solution in P4. In the last row of
Figure 6, we see the cardinalities of the sets again. On the left of the slash are the cardinalities for
the "rst iteration of the re"nement loop, and on the right the cardinalities for the second iteration.
In total, we only consider 39 programs to solve the problem.
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initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune(L(G),m𝐿, gt)

Search(Q,m𝐿, gt,→ ↑ (Q ↓ Q))

Factorize(P,m𝐿,→)

Refine(m𝐿, p, gt)

Learn(→, { q ↔ Q | q → p }, gt)

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 1. CEGAR loop for synthesis.

initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune

Search

Factorize

Refine

Learn

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 2. CEGAR loop for synthesis.

S ::= V | replace(S,S,S) | concat(S,S)
V ::= x | 𝐿 | "!Conf" | "!City"

Fig. 3. Example grammar G.

In Out
"POPL!Conf" "POPL"
"Rennes!City" "Rennes"
"PLDI!Conf" "PLDI"
"Seoul!City" "Seoul"

Fig. 4. Input-output examples (In,Out).
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Fig. 4. Input-output examples (In,Out).
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P1 = {x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", 𝐿 .x, 𝐿 .𝐿, 𝐿 ."!Conf", 𝐿 ."!City",

"!Conf".x, "!Conf".𝐿, "!Conf"."!Conf",
"!Conf"."!City", "!City".x, "!City".𝐿, "!City"."!Conf",
"!City"."!City"}

P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), r(x, "!City", "!Conf"), . . . , r(x, "!Conf", 𝐿), . . .}
P5 = {. . .} P6 = {. . .} P7 = {. . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿), . . .}

Fig. 12. Example execution of a bo!om-up enumeration algorithm with highlights for OE factorization,
OE factorization with learning, orimetric pruning, partial correctness, and correctness. The concat operator
is abbreviated by an infix "." and the replace operator is abbreviated by r.

Method P1 P2 P3 P4 P5 P6 P7
No Pruning or Factorization 4 - 16 64 128 1280 4352

OE Factorization 4 - 9 6 27 56 119
Orimetric Pruning (OP) 4 - 7 18 56 323 929
OE Factorization + OP 4 - 5 6 19 50 81

↑m𝐿 Factorization + OP + Learning 4 / 5 - 5 / 12 3 / 10 - - -

Fig. 13. Number of programs at each size per solving method.

P1 = {r(x, "!Conf", 𝐿), x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", x.r(x, "!Conf", 𝐿), . . . , 𝐿 ."!City", . . .}
P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), . . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿) . . .}

Fig. 14. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
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is abbreviated by an infix "." and the replace operator is abbreviated by r.

Method P1 P2 P3 P4 P5 P6 P7
No Pruning or Factorization 4 - 16 64 128 1280 4352

OE Factorization 4 - 9 6 27 56 119
Orimetric Pruning (OP) 4 - 7 18 56 323 929
OE Factorization + OP 4 - 5 6 19 50 81

↑m𝐿 Factorization + OP + Learning 4 / 5 - 5 / 12 3 / 10 - - -

Fig. 13. Number of programs at each size per solving method.

P1 = {r(x, "!Conf", 𝐿), x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", x.r(x, "!Conf", 𝐿), . . . , 𝐿 ."!City", . . .}
P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), . . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿) . . .}

Fig. 14. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
speci"ed output "Rennes". We use Refine to generate a new orimetric for the next iteration. To
also take into account the second example, we set m𝐿 to m{i1,i2 } . While the approximate orimetric
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S ::= Init | replace(S,S,S) | concat(S,S)
Init ::= x | 𝐿 | "!Conference" | "!City"

Fig. 2. Example grammar G.

𝑀 Input Output
1 "POPL!Conference" "POPL"
2 "Rennes!City" "Rennes"
3 "PLDI!Conference" "PLDI"
4 "Seoul!City" "Seoul"

Fig. 3. Input-output examples (I ,𝑁).

depicts a context-free grammar G and Figure 3 shows gt as four input-output examples (I ,𝑁).
The nonterminal Init can be rewritten to the input variable x or to string constants, where 𝐿 is
the empty string. The operator replace takes as arguments three strings: the "rst is the string in
which the replacement should happen, namely the "rst occurrence of the second argument, should
it exist, will be replaced by the third argument. The operator concat concatenates the strings that
are given as arguments.

gt

L(G)

Fig. 4. Search space and enumeration order.

In Figure 5, we show the set L(G) of all programs
as a collection of sets P𝐿 that contain all programs of
size 𝑂 . The set P1 contains all programs that can be
derived from Init. Programs of size greater than one
are constructed by combining programs of smaller
size. We use an enumeration order → that orders
programs by their size. Programs that have the same
size are ordered from left to right in Figure 5. The
set P7 contains the solution to the synthesis task,
highlighted in yellow. The "rst row in Figure 6 gives
the cardinality of each set P𝐿 . Note how the number
of programs grows exponentially with the size, and
so eliminating programs early on is essential. In Figure 4, the set of programs is represented by the
gray box and the enumeration order by the dashed line.

State-of-the-art bottom-up enumerative SyGuS solvers [2, 3, 15, 16, 27, 47, 48] factorize the search
space, often using observational equivalence [1, 43]. In Figure 5, programs that are pruned because
they are observationally equivalent to a program that was enumerated earlier are highlighted in
red. The cardinality of the factorized sets is given in the second row in Figure 6. In Figure 4, this
search space is represented by the red area.

Using orimetrics, we can further reduce the search space. The "rst step is to de"ne an orimetric
on programs. The orimetric is chosen based on the data and data manipulations that should
be supported. For strings with replacement, it is bene"cial to reward programs that produce
superstrings of the outputs given in the examples and punish programs that do not. We explain in
a moment how this plays together with the fact that concatenation prefers substrings. We begin by
de"ning an auxiliary quasimetric m̃ on strings:

m̃(i, o) =

{
len(i) ↑ len(o) if i is a superstring of o
100 + |len(i) ↑ len(o) | otherwise .

For example, m̃(”PO”, ”POPL”) = 102 but m̃(”POPL”, ”PO”) = 2. Note that m̃ is not symmetric in
general, but it is symmetric at distance zero. We now lift the auxiliary quasimetric m̃ on strings
to an orimetric m on functions over strings. The de"nition is as expected, we evaluate the given
functions on the inputs from all examples and sum up the distances of the output values. To make
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Fig. 12. Example execution of a bo!om-up enumeration algorithm with highlights for OE factorization,
OE factorization with learning, orimetric pruning, partial correctness, and correctness. The concat operator
is abbreviated by an infix "." and the replace operator is abbreviated by r.
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P1 = {r(x, "!Conf", 𝐿), x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", x.r(x, "!Conf", 𝐿), . . . , 𝐿 ."!City", . . .}
P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), . . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿) . . .}

Fig. 14. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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P5 = {. . .} P6 = {. . .} P7 = {. . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿), . . .}

Fig. 12. Example execution of a bo!om-up enumeration algorithm with highlights for OE factorization,
OE factorization with learning, orimetric pruning, partial correctness, and correctness. The concat operator
is abbreviated by an infix "." and the replace operator is abbreviated by r.

Method P1 P2 P3 P4 P5 P6 P7
No Pruning or Factorization 4 - 16 64 128 1280 4352

OE Factorization 4 - 9 6 27 56 119
Orimetric Pruning (OP) 4 - 7 18 56 323 929
OE Factorization + OP 4 - 5 6 19 50 81

↑m𝐿 Factorization + OP + Learning 4 / 5 - 5 / 12 3 / 10 - - -

Fig. 13. Number of programs at each size per solving method.

P1 = {r(x, "!Conf", 𝐿), x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", x.r(x, "!Conf", 𝐿), . . . , 𝐿 ."!City", . . .}
P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), . . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿) . . .}

Fig. 14. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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Fig. 14. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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Method P1 P2 P3 P4 P5 P6 P7
No Pruning or Factorization 4 - 16 64 128 1280 4352

OE Factorization 4 - 9 6 27 56 119
Orimetric Pruning (OP) 4 - 7 18 56 323 929
OE Factorization + OP 4 - 5 6 19 50 81

↑m𝐿 Factorization + OP + Learning 4 / 5 - 5 / 12 3 / 10 - - -
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Fig. 14. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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No Pruning or Factorization 4 - 16 64 128 1280 4352

OE Factorization 4 - 9 6 27 56 119
Orimetric Pruning (OP) 4 - 7 18 56 323 929
OE Factorization + OP 4 - 5 6 19 50 81

↑m𝐿 Factorization + OP + Learning 4 / 5 - 5 / 12 3 / 10 - - -
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Fig. 14. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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Fig. 14. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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P5 = {. . .} P6 = {. . .} P7 = {. . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿), . . .}

Fig. 12. Example execution of a bo!om-up enumeration algorithm with highlights for OE factorization,
OE factorization with learning, orimetric pruning, partial correctness, and correctness. The concat operator
is abbreviated by an infix "." and the replace operator is abbreviated by r.

Method P1 P2 P3 P4 P5 P6 P7
No Pruning or Factorization 4 - 16 64 128 1280 4352

OE Factorization 4 - 9 6 27 56 119
Orimetric Pruning (OP) 4 - 7 18 56 323 929
OE Factorization + OP 4 - 5 6 19 50 81

↑m𝐿 Factorization + OP + Learning 4 / 5 - 5 / 12 3 / 10 - - -

Fig. 13. Number of programs at each size per solving method.
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P3 = {x.x, x.𝐿, x."!Conf", x."!City", x.r(x, "!Conf", 𝐿), . . . , 𝐿 ."!City", . . .}
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Fig. 14. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
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this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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candidate solution, we only needed to enumerate programs of size up to 4.
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OE factorization with learning, orimetric pruning, partial correctness, and correctness. The concat operator
is abbreviated by an infix "." and the replace operator is abbreviated by r.

Method P1 P2 P3 P4 P5 P6 P7
No Pruning or Factorization 4 - 16 64 128 1280 4352

OE Factorization 4 - 9 6 27 56 119
Orimetric Pruning (OP) 4 - 7 18 56 323 929
OE Factorization + OP 4 - 5 6 19 50 81

↑m𝐿 Factorization + OP + Learning 4 / 5 - 5 / 12 3 / 10 - - -

Fig. 13. Number of programs at each size per solving method.

P1 = {r(x, "!Conf", 𝐿), x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", x.r(x, "!Conf", 𝐿), . . . , 𝐿 ."!City", . . .}
P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), . . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿) . . .}

Fig. 14. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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OE factorization with learning, orimetric pruning, partial correctness, and correctness. The concat operator
is abbreviated by an infix "." and the replace operator is abbreviated by r.
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No Pruning or Factorization 4 - 16 64 128 1280 4352

OE Factorization 4 - 9 6 27 56 119
Orimetric Pruning (OP) 4 - 7 18 56 323 929
OE Factorization + OP 4 - 5 6 19 50 81

↑m𝐿 Factorization + OP + Learning 4 / 5 - 5 / 12 3 / 10 - - -

Fig. 13. Number of programs at each size per solving method.

P1 = {r(x, "!Conf", 𝐿), x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", x.r(x, "!Conf", 𝐿), . . . , 𝐿 ."!City", . . .}
P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), . . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿) . . .}

Fig. 14. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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Fig. 12. Example execution of a bo!om-up enumeration algorithm with highlights for OE factorization,
OE factorization with learning, orimetric pruning, partial correctness, and correctness. The concat operator
is abbreviated by an infix "." and the replace operator is abbreviated by r.
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No Pruning or Factorization 4 - 16 64 128 1280 4352

OE Factorization 4 - 9 6 27 56 119
Orimetric Pruning (OP) 4 - 7 18 56 323 929
OE Factorization + OP 4 - 5 6 19 50 81

↑m𝐿 Factorization + OP + Learning 4 / 5 - 5 / 12 3 / 10 - - -

Fig. 13. Number of programs at each size per solving method.

P1 = {r(x, "!Conf", 𝐿), x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", x.r(x, "!Conf", 𝐿), . . . , 𝐿 ."!City", . . .}
P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), . . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿) . . .}

Fig. 14. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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P5 = {. . .} P6 = {. . .} P7 = {. . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿), . . .}

Fig. 12. Example execution of a bo!om-up enumeration algorithm with highlights for OE factorization,
OE factorization with learning, orimetric pruning, partial correctness, and correctness. The concat operator
is abbreviated by an infix "." and the replace operator is abbreviated by r.

Method P1 P2 P3 P4 P5 P6 P7
No Pruning or Factorization 4 - 16 64 128 1280 4352

OE Factorization 4 - 9 6 27 56 119
Orimetric Pruning (OP) 4 - 7 18 56 323 929
OE Factorization + OP 4 - 5 6 19 50 81

↑m𝐿 Factorization + OP + Learning 4 / 5 - 5 / 12 3 / 10 - - -

Fig. 13. Number of programs at each size per solving method.

P1 = {r(x, "!Conf", 𝐿), x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", x.r(x, "!Conf", 𝐿), . . . , 𝐿 ."!City", . . .}
P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), . . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿) . . .}

Fig. 14. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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Fig. 12. Example execution of a bo!om-up enumeration algorithm with highlights for OE factorization,
OE factorization with learning, orimetric pruning, partial correctness, and correctness. The concat operator
is abbreviated by an infix "." and the replace operator is abbreviated by r.

Method P1 P2 P3 P4 P5 P6 P7
No Pruning or Factorization 4 - 16 64 128 1280 4352

OE Factorization 4 - 9 6 27 56 119
Orimetric Pruning (OP) 4 - 7 18 56 323 929
OE Factorization + OP 4 - 5 6 19 50 81

↑m𝐿 Factorization + OP + Learning 4 / 5 - 5 / 12 3 / 10 - - -

Fig. 13. Number of programs at each size per solving method.

P1 = {r(x, "!Conf", 𝐿), x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", x.r(x, "!Conf", 𝐿), . . . , 𝐿 ."!City", . . .}
P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), . . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿) . . .}

Fig. 14. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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Orimetric Pruning (OP) 4 - 7 18 56 323 929
OE Factorization + OP 4 - 5 6 19 50 81
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P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), . . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿) . . .}

Fig. 14. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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Fig. 14. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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Fig. 14. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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P5 = {. . .} P6 = {. . .} P7 = {. . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿), . . .}

Fig. 12. Example execution of a bo!om-up enumeration algorithm with highlights for OE factorization,
OE factorization with learning, orimetric pruning, partial correctness, and correctness. The concat operator
is abbreviated by an infix "." and the replace operator is abbreviated by r.

Method P1 P2 P3 P4 P5 P6 P7
No Pruning or Factorization 4 - 16 64 128 1280 4352

OE Factorization 4 - 9 6 27 56 119
Orimetric Pruning (OP) 4 - 7 18 56 323 929
OE Factorization + OP 4 - 5 6 19 50 81

↑m𝐿 Factorization + OP + Learning 4 / 5 - 5 / 12 3 / 10 - - -

Fig. 13. Number of programs at each size per solving method.

P1 = {r(x, "!Conf", 𝐿), x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", x.r(x, "!Conf", 𝐿), . . . , 𝐿 ."!City", . . .}
P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), . . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿) . . .}

Fig. 14. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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Fig. 12. Example execution of a bo!om-up enumeration algorithm with highlights for OE factorization,
OE factorization with learning, orimetric pruning, partial correctness, and correctness. The concat operator
is abbreviated by an infix "." and the replace operator is abbreviated by r.

Method P1 P2 P3 P4 P5 P6 P7
No Pruning or Factorization 4 - 16 64 128 1280 4352

OE Factorization 4 - 9 6 27 56 119
Orimetric Pruning (OP) 4 - 7 18 56 323 929
OE Factorization + OP 4 - 5 6 19 50 81

↑m𝐿 Factorization + OP + Learning 4 / 5 - 5 / 12 3 / 10 - - -

Fig. 13. Number of programs at each size per solving method.

P1 = {r(x, "!Conf", 𝐿), x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", x.r(x, "!Conf", 𝐿), . . . , 𝐿 ."!City", . . .}
P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), . . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿) . . .}

Fig. 14. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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Fig. 12. Example execution of a bo!om-up enumeration algorithm with highlights for OE factorization,
OE factorization with learning, orimetric pruning, partial correctness, and correctness. The concat operator
is abbreviated by an infix "." and the replace operator is abbreviated by r.

Method P1 P2 P3 P4 P5 P6 P7
No Pruning or Factorization 4 - 16 64 128 1280 4352

OE Factorization 4 - 9 6 27 56 119
Orimetric Pruning (OP) 4 - 7 18 56 323 929
OE Factorization + OP 4 - 5 6 19 50 81

↑m𝐿 Factorization + OP + Learning 4 / 5 - 5 / 12 3 / 10 - - -

Fig. 13. Number of programs at each size per solving method.

P1 = {r(x, "!Conf", 𝐿), x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", x.r(x, "!Conf", 𝐿), . . . , 𝐿 ."!City", . . .}
P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), . . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿) . . .}

Fig. 14. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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OE factorization with learning, orimetric pruning, partial correctness, and correctness. The concat operator
is abbreviated by an infix "." and the replace operator is abbreviated by r.

Method P1 P2 P3 P4 P5 P6 P7
No Pruning or Factorization 4 - 16 64 128 1280 4352

OE Factorization 4 - 9 6 27 56 119
Orimetric Pruning (OP) 4 - 7 18 56 323 929
OE Factorization + OP 4 - 5 6 19 50 81

↑m𝐿 Factorization + OP + Learning 4 / 5 - 5 / 12 3 / 10 - - -

Fig. 13. Number of programs at each size per solving method.

P1 = {r(x, "!Conf", 𝐿), x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", x.r(x, "!Conf", 𝐿), . . . , 𝐿 ."!City", . . .}
P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), . . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿) . . .}

Fig. 14. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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Fig. 14. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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P5 = {. . .} P6 = {. . .} P7 = {. . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿), . . .}

Fig. 12. Example execution of a bo!om-up enumeration algorithm with highlights for OE factorization,
OE factorization with learning, orimetric pruning, partial correctness, and correctness. The concat operator
is abbreviated by an infix "." and the replace operator is abbreviated by r.

Method P1 P2 P3 P4 P5 P6 P7
No Pruning or Factorization 4 - 16 64 128 1280 4352

OE Factorization 4 - 9 6 27 56 119
Orimetric Pruning (OP) 4 - 7 18 56 323 929
OE Factorization + OP 4 - 5 6 19 50 81

↑m𝐿 Factorization + OP + Learning 4 / 5 - 5 / 12 3 / 10 - - -

Fig. 13. Number of programs at each size per solving method.

P1 = {r(x, "!Conf", 𝐿), x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", x.r(x, "!Conf", 𝐿), . . . , 𝐿 ."!City", . . .}
P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), . . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿) . . .}

Fig. 14. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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Fig. 14. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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Fig. 14. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
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as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
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program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
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"!Conf"."!City", "!City".x, "!City".𝐿, "!City"."!Conf",
"!City"."!City"}

P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), r(x, "!City", "!Conf"), . . . , r(x, "!Conf", 𝐿), . . .}
P5 = {. . .} P6 = {. . .} P7 = {. . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿), . . .}

Fig. 12. Example execution of a bo!om-up enumeration algorithm with highlights for OE factorization,
OE factorization with learning, orimetric pruning, partial correctness, and correctness. The concat operator
is abbreviated by an infix "." and the replace operator is abbreviated by r.

Method P1 P2 P3 P4 P5 P6 P7
No Pruning or Factorization 4 - 16 64 128 1280 4352

OE Factorization 4 - 9 6 27 56 119
Orimetric Pruning (OP) 4 - 7 18 56 323 929
OE Factorization + OP 4 - 5 6 19 50 81

↑m𝐿 Factorization + OP + Learning 4 / 5 - 5 / 12 3 / 10 - - -

Fig. 13. Number of programs at each size per solving method.

P1 = {r(x, "!Conf", 𝐿), x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", x.r(x, "!Conf", 𝐿), . . . , 𝐿 ."!City", . . .}
P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), . . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿) . . .}

Fig. 14. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
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OE Factorization 4 - 9 6 27 56 119
Orimetric Pruning (OP) 4 - 7 18 56 323 929
OE Factorization + OP 4 - 5 6 19 50 81

↑m𝐿 Factorization + OP + Learning 4 / 5 - 5 / 12 3 / 10 - - -

Fig. 13. Number of programs at each size per solving method.

P1 = {r(x, "!Conf", 𝐿), x, 𝐿, "!Conf", "!City"}
P2 = →
P3 = {x.x, x.𝐿, x."!Conf", x."!City", x.r(x, "!Conf", 𝐿), . . . , 𝐿 ."!City", . . .}
P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), . . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿) . . .}

Fig. 14. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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P5 = {. . .} P6 = {. . .} P7 = {. . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿), . . .}

Fig. 12. Example execution of a bo!om-up enumeration algorithm with highlights for OE factorization,
OE factorization with learning, orimetric pruning, partial correctness, and correctness. The concat operator
is abbreviated by an infix "." and the replace operator is abbreviated by r.
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No Pruning or Factorization 4 - 16 64 128 1280 4352

OE Factorization 4 - 9 6 27 56 119
Orimetric Pruning (OP) 4 - 7 18 56 323 929
OE Factorization + OP 4 - 5 6 19 50 81

↑m𝐿 Factorization + OP + Learning 4 / 5 - 5 / 12 3 / 10 - - -
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P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), . . . , r(r(x, "!Conf", 𝐿), "!City", 𝐿) . . .}

Fig. 14. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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Fig. 14. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x ↑m𝐿 r(x, "!City", "!Conf"). The
equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement happens.
When we factorize the search space along ↑m𝐿 , the program in blue will be eliminated since we
already have x. In Figure 11, the factorized search space is the blue area. When applying Prune

as well as Factorize, we are left with the green ball intersected with the blue area. We now use
Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
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S ::= Init | replace(S,S,S) | concat(S,S)
Init ::= x | 𝐿 | "!Conference" | "!City"

Fig. 2. Example grammar G.

𝑀 Input Output
1 "POPL!Conference" "POPL"
2 "Rennes!City" "Rennes"
3 "PLDI!Conference" "PLDI"
4 "Seoul!City" "Seoul"

Fig. 3. Input-output examples (I ,𝑁).

depicts a context-free grammar G and Figure 3 shows gt as four input-output examples (I ,𝑁).
The nonterminal Init can be rewritten to the input variable x or to string constants, where 𝐿 is
the empty string. The operator replace takes as arguments three strings: the "rst is the string in
which the replacement should happen, namely the "rst occurrence of the second argument, should
it exist, will be replaced by the third argument. The operator concat concatenates the strings that
are given as arguments.

→
gt

L(G)

Fig. 4. Search space and enumeration order.

In Figure 5, we show the set L(G) of all programs
as a collection of sets P𝐿 that contain all programs of
size 𝑂 . The set P1 contains all programs that can be
derived from Init. Programs of size greater than one
are constructed by combining programs of smaller
size. We use an enumeration order → that orders
programs by their size. Programs that have the same
size are ordered from left to right in Figure 5. The
set P7 contains the solution to the synthesis task,
highlighted in yellow. The "rst row in Figure 6 gives
the cardinality of each set P𝐿 . Note how the number
of programs grows exponentially with the size, and
so eliminating programs early on is essential. In Figure 4, the set of programs is represented by the
gray box and the enumeration order by the dashed line.

State-of-the-art bottom-up enumerative SyGuS solvers [2, 3, 15, 16, 27, 47, 48] factorize the search
space, often using observational equivalence [1, 43]. In Figure 5, programs that are pruned because
they are observationally equivalent to a program that was enumerated earlier are highlighted in
red. The cardinality of the factorized sets is given in the second row in Figure 6. In Figure 4, this
search space is represented by the red area.

Using orimetrics, we can further reduce the search space. The "rst step is to de"ne an orimetric
on programs. The orimetric is chosen based on the data and data manipulations that should
be supported. For strings with replacement, it is bene"cial to reward programs that produce
superstrings of the outputs given in the examples and punish programs that do not. We explain in
a moment how this plays together with the fact that concatenation prefers substrings. We begin by
de"ning an auxiliary quasimetric m̃ on strings:

m̃(i, o) =

{
len(i) ↑ len(o) if i is a superstring of o
100 + |len(i) ↑ len(o) | otherwise .

For example, m̃(”PO”, ”POPL”) = 102 but m̃(”POPL”, ”PO”) = 2. Note that m̃ is not symmetric in
general, but it is symmetric at distance zero. We now lift the auxiliary quasimetric m̃ on strings
to an orimetric m on functions over strings. The de"nition is as expected, we evaluate the given
functions on the inputs from all examples and sum up the distances of the output values. To make
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S ::= Init | replace(S,S,S) | concat(S,S)
Init ::= x | 𝐿 | "!Conference" | "!City"

Fig. 2. Example grammar G.

𝑀 Input Output
1 "POPL!Conference" "POPL"
2 "Rennes!City" "Rennes"
3 "PLDI!Conference" "PLDI"
4 "Seoul!City" "Seoul"

Fig. 3. Input-output examples (I ,𝑁).

depicts a context-free grammar G and Figure 3 shows gt as four input-output examples (I ,𝑁).
The nonterminal Init can be rewritten to the input variable x or to string constants, where 𝐿 is
the empty string. The operator replace takes as arguments three strings: the "rst is the string in
which the replacement should happen, namely the "rst occurrence of the second argument, should
it exist, will be replaced by the third argument. The operator concat concatenates the strings that
are given as arguments.

→
gt

L(G)

Fig. 4. Search space and enumeration order.

In Figure 5, we show the set L(G) of all programs
as a collection of sets P𝐿 that contain all programs of
size 𝑂 . The set P1 contains all programs that can be
derived from Init. Programs of size greater than one
are constructed by combining programs of smaller
size. We use an enumeration order → that orders
programs by their size. Programs that have the same
size are ordered from left to right in Figure 5. The
set P7 contains the solution to the synthesis task,
highlighted in yellow. The "rst row in Figure 6 gives
the cardinality of each set P𝐿 . Note how the number
of programs grows exponentially with the size, and
so eliminating programs early on is essential. In Figure 4, the set of programs is represented by the
gray box and the enumeration order by the dashed line.

State-of-the-art bottom-up enumerative SyGuS solvers [2, 3, 15, 16, 27, 47, 48] factorize the search
space, often using observational equivalence [1, 43]. In Figure 5, programs that are pruned because
they are observationally equivalent to a program that was enumerated earlier are highlighted in
red. The cardinality of the factorized sets is given in the second row in Figure 6. In Figure 4, this
search space is represented by the red area.

Using orimetrics, we can further reduce the search space. The "rst step is to de"ne an orimetric
on programs. The orimetric is chosen based on the data and data manipulations that should
be supported. For strings with replacement, it is bene"cial to reward programs that produce
superstrings of the outputs given in the examples and punish programs that do not. We explain in
a moment how this plays together with the fact that concatenation prefers substrings. We begin by
de"ning an auxiliary quasimetric m̃ on strings:

m̃(i, o) =

{
len(i) ↑ len(o) if i is a superstring of o
100 + |len(i) ↑ len(o) | otherwise .

For example, m̃(”PO”, ”POPL”) = 102 but m̃(”POPL”, ”PO”) = 2. Note that m̃ is not symmetric in
general, but it is symmetric at distance zero. We now lift the auxiliary quasimetric m̃ on strings
to an orimetric m on functions over strings. The de"nition is as expected, we evaluate the given
functions on the inputs from all examples and sum up the distances of the output values. To make
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State-of-the-art bottom-up enumerative SyGuS solvers [2, 3, 15, 16, 27, 47, 48] factorize the search
space, often using observational equivalence [1, 43]. In Figure 5, programs that are pruned because
they are observationally equivalent to a program that was enumerated earlier are highlighted in
red. The cardinality of the factorized sets is given in the second row in Figure 6. In Figure 4, this
search space is represented by the red area.

Using orimetrics, we can further reduce the search space. The "rst step is to de"ne an orimetric
on programs. The orimetric is chosen based on the data and data manipulations that should
be supported. For strings with replacement, it is bene"cial to reward programs that produce
superstrings of the outputs given in the examples and punish programs that do not. We explain in
a moment how this plays together with the fact that concatenation prefers substrings. We begin by
de"ning an auxiliary quasimetric m̃ on strings:

m̃(i, o) =

{
len(i) ↑ len(o) if i is a superstring of o
100 + |len(i) ↑ len(o) | otherwise .

For example, m̃(”PO”, ”POPL”) = 102 but m̃(”POPL”, ”PO”) = 2. Note that m̃ is not symmetric in
general, but it is symmetric at distance zero. We now lift the auxiliary quasimetric m̃ on strings
to an orimetric m on functions over strings. The de"nition is as expected, we evaluate the given
functions on the inputs from all examples and sum up the distances of the output values. To make
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Method P1 P2 P3 P4 P5 P6 P7
No Pruning or Factorization 4 - 16 64 128 1280 4352

OE Factorization 4 - 9 6 27 56 119
Orimetric Pruning (OP) 4 - 7 18 56 323 929
OE Factorization + OP 4 - 5 6 19 50 81

→m𝐿 Factorization + OP + Learning 4 / 5 - 5 / 12 3 / 10 - - -

Fig. 6. Number of programs at each size per solving method.

P1 = {r(x, "!Conference", 𝐿), x, 𝐿, "!Conference", "!City"}
P2 = ↑
P3 = {x.x, x.𝐿, x."!Conference", x."!City", x.r(x, "!Conference", 𝐿), . . . , 𝐿 ."!City", . . .}
P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), . . . , r(r(x, "!Conference", 𝐿), "!City", 𝐿) . . .}

Fig. 7. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x →m𝐿 r(x, "!City", "!Conference").
The equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement
happens. When we factorize the search space along →m𝐿 , the program in blue will be eliminated
since we already have x. In Figure 4, the factorized search space is the blue area. When applying
Prune as well as Factorize, we are left with the green ball intersected with the blue area. We now
use Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
speci"ed output "Rennes". We use Refine to generate a new orimetric for the next iteration. To
also take into account the second example, we set m𝐿 to m{i1,i2 } . While the approximate orimetric
and its re"nement are simple in this example, our approach can also be instantiated with predicate
abstraction as introduced in [47]. We discuss the details below.

We now use Learn to update the enumeration order for the next iteration. To do so, we use the
precise metric mI to analyze the candidate solution p. We see that p produces a superstring of the
outputs for all examples. This means, mI (!p", gt) < 100 and therefore the program lies within the
ball around gt. We consider p valuable and promote it in the enumeration order. Recall that the
enumeration order in our example is de"ned by the size. Function Learn rede"nes the size of p to
be 1. Then p and programs that use p as a subprogram will be considered early on.

Figure 7 gives the program sets constructed in the second iteration of the re"nement loop. Note
how p has size one. With this change in size, we already "nd the solution in P4. In the last row of
Figure 6, we see the cardinalities of the sets again. On the left of the slash are the cardinalities for
the "rst iteration of the re"nement loop, and on the right the cardinalities for the second iteration.
In total, we only consider 39 programs to solve the problem.
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We illustrate our algorithm by solving an example problem in the string domain. We will repeatedly
refer to Figure 9 to make the link to the conceptual development introduced above. Figure 3
depicts a context-free grammar G and Figure 4 shows gt as four input-output examples (I ,𝐿).
The nonterminal Init can be rewritten to the input variable x or to string constants, where 𝑀 is
the empty string. The operator replace takes as arguments three strings: the !rst is the string in
which the replacement should happen, namely the !rst occurrence of the second argument, should
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We illustrate our algorithm by solving an example problem in the string domain. We will repeatedly
refer to Figure 9 to make the link to the conceptual development introduced above. Figure 3
depicts a context-free grammar G and Figure 4 shows gt as four input-output examples (I ,𝐿).
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S ::= Init | replace(S,S,S) | concat(S,S)
Init ::= x | 𝐿 | "!Conference" | "!City"

Fig. 2. Example grammar G.

𝑀 Input Output
1 "POPL!Conference" "POPL"
2 "Rennes!City" "Rennes"
3 "PLDI!Conference" "PLDI"
4 "Seoul!City" "Seoul"

Fig. 3. Input-output examples (I ,𝑁).

depicts a context-free grammar G and Figure 3 shows gt as four input-output examples (I ,𝑁).
The nonterminal Init can be rewritten to the input variable x or to string constants, where 𝐿 is
the empty string. The operator replace takes as arguments three strings: the "rst is the string in
which the replacement should happen, namely the "rst occurrence of the second argument, should
it exist, will be replaced by the third argument. The operator concat concatenates the strings that
are given as arguments.

→
gt

L(G)

Fig. 4. Search space and enumeration order.

In Figure 5, we show the set L(G) of all programs
as a collection of sets P𝐿 that contain all programs of
size 𝑂 . The set P1 contains all programs that can be
derived from Init. Programs of size greater than one
are constructed by combining programs of smaller
size. We use an enumeration order → that orders
programs by their size. Programs that have the same
size are ordered from left to right in Figure 5. The
set P7 contains the solution to the synthesis task,
highlighted in yellow. The "rst row in Figure 6 gives
the cardinality of each set P𝐿 . Note how the number
of programs grows exponentially with the size, and
so eliminating programs early on is essential. In Figure 4, the set of programs is represented by the
gray box and the enumeration order by the dashed line.

State-of-the-art bottom-up enumerative SyGuS solvers [2, 3, 15, 16, 27, 47, 48] factorize the search
space, often using observational equivalence [1, 43]. In Figure 5, programs that are pruned because
they are observationally equivalent to a program that was enumerated earlier are highlighted in
red. The cardinality of the factorized sets is given in the second row in Figure 6. In Figure 4, this
search space is represented by the red area.

Using orimetrics, we can further reduce the search space. The "rst step is to de"ne an orimetric
on programs. The orimetric is chosen based on the data and data manipulations that should
be supported. For strings with replacement, it is bene"cial to reward programs that produce
superstrings of the outputs given in the examples and punish programs that do not. We explain in
a moment how this plays together with the fact that concatenation prefers substrings. We begin by
de"ning an auxiliary quasimetric m̃ on strings:

m̃(i, o) =

{
len(i) ↑ len(o) if i is a superstring of o
100 + |len(i) ↑ len(o) | otherwise .

For example, m̃(”PO”, ”POPL”) = 102 but m̃(”POPL”, ”PO”) = 2. Note that m̃ is not symmetric in
general, but it is symmetric at distance zero. We now lift the auxiliary quasimetric m̃ on strings
to an orimetric m on functions over strings. The de"nition is as expected, we evaluate the given
functions on the inputs from all examples and sum up the distances of the output values. To make
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it exist, will be replaced by the third argument. The operator concat concatenates the strings that
are given as arguments.
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In Figure 10, we show the set L(G) of all pro-
grams as a collection of sets P𝐿 that contain all pro-
grams of size 𝐿 . The set P1 contains all programs that
can be derived from Init. Programs of size greater
than one are constructed by combining programs of
smaller size. We use an enumeration order → that
orders programs by their size. Programs that have
the same size are ordered from left to right in Fig-
ure 10. The set P7 contains the solution to the syn-
thesis task, highlighted in yellow. The !rst row in
Figure 11 gives the cardinality of each set P𝐿 . Note
how the number of programs grows exponentially
with the size, and so eliminating programs early on is essential. In Figure 9, the set of programs is
represented by the gray box and the enumeration order by the dashed line.

State-of-the-art bottom-up enumerative SyGuS solvers [2, 3, 15, 16, 27, 47, 48] factorize the search
space, often using observational equivalence [1, 43]. In Figure 10, programs that are pruned because
they are observationally equivalent to a program that was enumerated earlier are highlighted in
red. The cardinality of the factorized sets is given in the second row in Figure 11. In Figure 9, this
search space is represented by the red area.

Using orimetrics, we can further reduce the search space. The !rst step is to de!ne an orimetric
on programs. The orimetric is chosen based on the data and data manipulations that should
be supported. For strings with replacement, it is bene!cial to reward programs that produce
superstrings of the outputs given in the examples and punish programs that do not. We explain in
a moment how this plays together with the fact that concatenation prefers substrings. We begin by
de!ning an auxiliary quasimetric m̃ on strings:

m̃(i, o) =

{
len(i) ↑ len(o) if i is a superstring of o
100 + |len(i) ↑ len(o) | otherwise .

For example, m̃(”PO”, ”POPL”) = 102 but m̃(”POPL”, ”PO”) = 2. Note that m̃ is not symmetric in
general, but it is symmetric at distance zero. We now lift the auxiliary quasimetric m̃ on strings
to an orimetric m on functions over strings. The de!nition is as expected, we evaluate the given
functions on the inputs from all examples and sum up the distances of the output values. To make
this formal, let J ↓ I and de!ne

mJ (𝑀 ,𝑁) =
∑
i↔J

m̃(𝑀 (i),𝑁(i)) .

mI (p, q) =
∑
i↔I

m̃(p(i), q(i)) .

Our orimetric is then m =mI . We will use other instantiations of J in a moment. Note, that the
lifting does not result in a quasimetric. If two di"erent programs p and q produce the same outputs
on the given inputs, their distance is 0. A quasimetric would require p and q to be equal. This need
not be the case. In fact, allowing p and q to have a distance of zero while being di"erent is what
enables factorization in the !rst place.

With the orimetric at hand, we restrict the search to programs in the ball Br (gt), with the radius
r set to 100. This means we only keep programs that return a superstring of the output for every
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m̃(p(i), q(i)) .

Our orimetric is then m =mI . We will use other instantiations of J in a moment. Note, that the
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2.1 Example
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Fig. 5. Search space and enumeration order.
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Fig. 6. Search space and enumeration order.

→
gt L(G)/OE#
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Fig. 7. Search space and enumeration order.

→
gt

L(G)

Fig. 8. Search space and enumeration order.
We illustrate our algorithm by solving an example problem in the string domain. We will repeatedly
refer to Figure 9 to make the link to the conceptual development introduced above. Figure 3
depicts a context-free grammar G and Figure 4 shows gt as four input-output examples (I ,𝐿).
The nonterminal Init can be rewritten to the input variable x or to string constants, where 𝑀 is
the empty string. The operator replace takes as arguments three strings: the !rst is the string in
which the replacement should happen, namely the !rst occurrence of the second argument, should
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Oriented Metrics (Orimetrics)

Oriented Metrics for Bo!om-Up Enumerative Synthesis 75:13

CEGIS. SyGuS problems that are not example based can still be solved with example-based
techniques. The idea, known as counterexample-guided inductive synthesis [41], is to let an SMT
solver generate new examples should a candidate program not yet satisfy the speci!cation. With
this argument, we focus on example-based speci!cations.

Equivalences. An equivalence → ↑ S ↓ S on a set S is a relation that is re"exive, symmetric, and
transitive. We write [a]→ = {b | b → a} for the equivalence class of a ↔ S. We just write [a] if the
equivalence relation is understood. We lift the notation to sets G ↑ S and de!ne [G] =⋃

g↔G [g].
We call this the closure of G under →. The equivalence is precise wrt. G, if the closure does not
add any elements, [G] ↑ G. Note that the reverse inclusion always holds. If the equivalence is
not precise wrt. G, it is called approximate. The equivalence is unambiguous wrt. G, if [G] = [g]
for all g ↔ G. This means all elements in G are equivalent. Let 𝐿 : S ↗ S be a transformer on S.
The equivalence is a congruence wrt. 𝐿 , if a → b implies 𝐿 (a) → 𝐿 (b). The de!nition generalizes
to functions in several arguments in the expected way. Factorizing S along → yields the set of
equivalence classes S/→ = {[a] | a ↔ S}. A representative system for S/→ is a set 𝑀 ↑ S that contains
precisely one element c ↔ 𝑁 for every class 𝑁 ↔ S/→.

4 Contribution I – Oriented Metric Search Spaces
We !rst de!ne the main object of this paper, oriented metrics, and then turn to the search space
and the enumeration order. Finally, we describe the components of our CEGAR loop in detail.

4.1 Oriented Metrics
It will be convenient to give the de!nition for arbitrary sets S.

De!nition 4.1. A function m : L(G) ↓ L(G) ↗ R↘0 is an oriented metric (orimetric) if, for all
a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation →m ↑ S ↓ S where a →m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G ↑ S, if the equivalence →m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↗ S, if this holds for →m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/→m↓ S/→m↗ R↘0 with qm ( [a], [b]) =m(a, b).

De!nition 4.2. A function m : S ↓ S ↗ R↘0 is an oriented metric (orimetric) if, for all a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation →m ↑ S ↓ S where a →m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G ↑ S, if the equivalence →m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↗ S, if this holds for →m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/→m↓ S/→m↗ R↘0 with qm ( [a], [b]) =m(a, b).

We also suggested an alternative to orimetrics.
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We consider example-based speci!cations where ω → (Vars ↑ D) ↓ D consists of a !nite set of
input-output examples. A program satis!es the speci!cation, p |= ω, if !p"(i) = o for all (i, o) ↔ ω.
The ground truth GT → F consists of all functions that satisfy the speci!cation in this sense.

CEGIS. SyGuS problems that are not example based can still be solved with example-based
techniques. The idea, known as counterexample-guided inductive synthesis [41], is to let an SMT
solver generate new examples should a candidate program not yet satisfy the speci!cation. With
this argument, we focus on example-based speci!cations.

Equivalences. An equivalence ↗ → S ↓ S on a set S is a relation that is re"exive, symmetric, and
transitive. We write [a]↗ = {b | b ↗ a} for the equivalence class of a ↔ S. We just write [a] if the
equivalence relation is understood. We lift the notation to sets G → S and de!ne [G] =⋃

g↔G [g].
We call this the closure of G under ↗. The equivalence is precise wrt. G, if the closure does not
add any elements, [G] → G. Note that the reverse inclusion always holds. If the equivalence is
not precise wrt. G, it is called approximate. The equivalence is unambiguous wrt. G, if [G] = [g]
for all g ↔ G. This means all elements in G are equivalent. Let 𝐿 : S ↑ S be a transformer on S.
The equivalence is a congruence wrt. 𝐿 , if a ↗ b implies 𝐿 (a) ↗ 𝐿 (b). The de!nition generalizes
to functions in several arguments in the expected way. Factorizing S along ↗ yields the set of
equivalence classes S/↗ = {[a] | a ↔ S}. A representative system for S/↗ is a set 𝑀 → S that contains
precisely one element c ↔ 𝑁 for every class 𝑁 ↔ S/↗.

4 Contribution I – Oriented Metric Search Spaces
We !rst de!ne the main object of this paper, oriented metrics, and then turn to the search space
and the enumeration order. Finally, we describe the components of our CEGAR loop in detail.

4.1 Oriented Metrics
It will be convenient to give the de!nition for arbitrary sets S.

De!nition 4.1. m : D ↓ D ↑ R↘0 A function m : L(G) ↓ L(G) ↑ R↘0 is an oriented metric
(orimetric) if, for all a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation ↗m → S ↓ S where a ↗m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G → S, if the equivalence ↗m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↑ S, if this holds for ↗m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/↗m↓ S/↗m↑ R↘0 with qm ( [a], [b]) =m(a, b).

De!nition 4.2. A function m : S ↓ S ↑ R↘0 is an oriented metric (orimetric) if, for all a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation ↗m → S ↓ S where a ↗m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G → S, if the equivalence ↗m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↑ S, if this holds for ↗m. We generalize
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CEGIS. SyGuS problems that are not example based can still be solved with example-based
techniques. The idea, known as counterexample-guided inductive synthesis [41], is to let an SMT
solver generate new examples should a candidate program not yet satisfy the speci!cation. With
this argument, we focus on example-based speci!cations.

Equivalences. An equivalence → ↑ S ↓ S on a set S is a relation that is re"exive, symmetric, and
transitive. We write [a]→ = {b | b → a} for the equivalence class of a ↔ S. We just write [a] if the
equivalence relation is understood. We lift the notation to sets G ↑ S and de!ne [G] =⋃

g↔G [g].
We call this the closure of G under →. The equivalence is precise wrt. G, if the closure does not
add any elements, [G] ↑ G. Note that the reverse inclusion always holds. If the equivalence is
not precise wrt. G, it is called approximate. The equivalence is unambiguous wrt. G, if [G] = [g]
for all g ↔ G. This means all elements in G are equivalent. Let 𝐿 : S ↗ S be a transformer on S.
The equivalence is a congruence wrt. 𝐿 , if a → b implies 𝐿 (a) → 𝐿 (b). The de!nition generalizes
to functions in several arguments in the expected way. Factorizing S along → yields the set of
equivalence classes S/→ = {[a] | a ↔ S}. A representative system for S/→ is a set 𝑀 ↑ S that contains
precisely one element c ↔ 𝑁 for every class 𝑁 ↔ S/→.

4 Contribution I – Oriented Metric Search Spaces
We !rst de!ne the main object of this paper, oriented metrics, and then turn to the search space
and the enumeration order. Finally, we describe the components of our CEGAR loop in detail.

4.1 Oriented Metrics
It will be convenient to give the de!nition for arbitrary sets S.

De!nition 4.1. A function m : L(G) ↓ L(G) ↗ R↘0 is an oriented metric (orimetric) if, for all
a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation →m ↑ S ↓ S where a →m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G ↑ S, if the equivalence →m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↗ S, if this holds for →m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/→m↓ S/→m↗ R↘0 with qm ( [a], [b]) =m(a, b).

De!nition 4.2. A function m : S ↓ S ↗ R↘0 is an oriented metric (orimetric) if, for all a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation →m ↑ S ↓ S where a →m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G ↑ S, if the equivalence →m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↗ S, if this holds for →m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/→m↓ S/→m↗ R↘0 with qm ( [a], [b]) =m(a, b).

We also suggested an alternative to orimetrics.
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m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

equivalence induced by m is the relation S S where a b if m a b = 0, for all a b S.
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We consider example-based speci!cations where ω → (Vars ↑ D) ↓ D consists of a !nite set of
input-output examples. A program satis!es the speci!cation, p |= ω, if !p"(i) = o for all (i, o) ↔ ω.
The ground truth GT → F consists of all functions that satisfy the speci!cation in this sense.

CEGIS. SyGuS problems that are not example based can still be solved with example-based
techniques. The idea, known as counterexample-guided inductive synthesis [41], is to let an SMT
solver generate new examples should a candidate program not yet satisfy the speci!cation. With
this argument, we focus on example-based speci!cations.

Equivalences. An equivalence ↗ → S ↓ S on a set S is a relation that is re"exive, symmetric, and
transitive. We write [a]↗ = {b | b ↗ a} for the equivalence class of a ↔ S. We just write [a] if the
equivalence relation is understood. We lift the notation to sets G → S and de!ne [G] =⋃

g↔G [g].
We call this the closure of G under ↗. The equivalence is precise wrt. G, if the closure does not
add any elements, [G] → G. Note that the reverse inclusion always holds. If the equivalence is
not precise wrt. G, it is called approximate. The equivalence is unambiguous wrt. G, if [G] = [g]
for all g ↔ G. This means all elements in G are equivalent. Let 𝐿 : S ↑ S be a transformer on S.
The equivalence is a congruence wrt. 𝐿 , if a ↗ b implies 𝐿 (a) ↗ 𝐿 (b). The de!nition generalizes
to functions in several arguments in the expected way. Factorizing S along ↗ yields the set of
equivalence classes S/↗ = {[a] | a ↔ S}. A representative system for S/↗ is a set 𝑀 → S that contains
precisely one element c ↔ 𝑁 for every class 𝑁 ↔ S/↗.

4 Contribution I – Oriented Metric Search Spaces
We !rst de!ne the main object of this paper, oriented metrics, and then turn to the search space
and the enumeration order. Finally, we describe the components of our CEGAR loop in detail.

4.1 Oriented Metrics
It will be convenient to give the de!nition for arbitrary sets S.

De!nition 4.1. m : D ↓ D ↑ R↘0 A function m : L(G) ↓ L(G) ↑ R↘0 is an oriented metric
(orimetric) if, for all a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation ↗m → S ↓ S where a ↗m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G → S, if the equivalence ↗m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↑ S, if this holds for ↗m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/↗m↓ S/↗m↑ R↘0 with qm ( [a], [b]) =m(a, b).

De!nition 4.2. A function m : S ↓ S ↑ R↘0 is an oriented metric (orimetric) if, for all a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation ↗m → S ↓ S where a ↗m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G → S, if the equivalence ↗m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↑ S, if this holds for ↗m. We generalize
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CEGIS. SyGuS problems that are not example based can still be solved with example-based
techniques. The idea, known as counterexample-guided inductive synthesis [41], is to let an SMT
solver generate new examples should a candidate program not yet satisfy the speci!cation. With
this argument, we focus on example-based speci!cations.

Equivalences. An equivalence → ↑ S ↓ S on a set S is a relation that is re"exive, symmetric, and
transitive. We write [a]→ = {b | b → a} for the equivalence class of a ↔ S. We just write [a] if the
equivalence relation is understood. We lift the notation to sets G ↑ S and de!ne [G] =⋃

g↔G [g].
We call this the closure of G under →. The equivalence is precise wrt. G, if the closure does not
add any elements, [G] ↑ G. Note that the reverse inclusion always holds. If the equivalence is
not precise wrt. G, it is called approximate. The equivalence is unambiguous wrt. G, if [G] = [g]
for all g ↔ G. This means all elements in G are equivalent. Let 𝐿 : S ↗ S be a transformer on S.
The equivalence is a congruence wrt. 𝐿 , if a → b implies 𝐿 (a) → 𝐿 (b). The de!nition generalizes
to functions in several arguments in the expected way. Factorizing S along → yields the set of
equivalence classes S/→ = {[a] | a ↔ S}. A representative system for S/→ is a set 𝑀 ↑ S that contains
precisely one element c ↔ 𝑁 for every class 𝑁 ↔ S/→.

4 Contribution I – Oriented Metric Search Spaces
We !rst de!ne the main object of this paper, oriented metrics, and then turn to the search space
and the enumeration order. Finally, we describe the components of our CEGAR loop in detail.

4.1 Oriented Metrics
It will be convenient to give the de!nition for arbitrary sets S.

De!nition 4.1. A function m : L(G) ↓ L(G) ↗ R↘0 is an oriented metric (orimetric) if, for all
a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation →m ↑ S ↓ S where a →m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G ↑ S, if the equivalence →m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↗ S, if this holds for →m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/→m↓ S/→m↗ R↘0 with qm ( [a], [b]) =m(a, b).

De!nition 4.2. A function m : S ↓ S ↗ R↘0 is an oriented metric (orimetric) if, for all a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation →m ↑ S ↓ S where a →m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G ↑ S, if the equivalence →m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↗ S, if this holds for →m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/→m↓ S/→m↗ R↘0 with qm ( [a], [b]) =m(a, b).

We also suggested an alternative to orimetrics.
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m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

equivalence induced by m is the relation S S where a b if m a b = 0, for all a b S.
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We consider example-based speci!cations where ω → (Vars ↑ D) ↓ D consists of a !nite set of
input-output examples. A program satis!es the speci!cation, p |= ω, if !p"(i) = o for all (i, o) ↔ ω.
The ground truth GT → F consists of all functions that satisfy the speci!cation in this sense.

CEGIS. SyGuS problems that are not example based can still be solved with example-based
techniques. The idea, known as counterexample-guided inductive synthesis [41], is to let an SMT
solver generate new examples should a candidate program not yet satisfy the speci!cation. With
this argument, we focus on example-based speci!cations.

Equivalences. An equivalence ↗ → S ↓ S on a set S is a relation that is re"exive, symmetric, and
transitive. We write [a]↗ = {b | b ↗ a} for the equivalence class of a ↔ S. We just write [a] if the
equivalence relation is understood. We lift the notation to sets G → S and de!ne [G] =⋃

g↔G [g].
We call this the closure of G under ↗. The equivalence is precise wrt. G, if the closure does not
add any elements, [G] → G. Note that the reverse inclusion always holds. If the equivalence is
not precise wrt. G, it is called approximate. The equivalence is unambiguous wrt. G, if [G] = [g]
for all g ↔ G. This means all elements in G are equivalent. Let 𝐿 : S ↑ S be a transformer on S.
The equivalence is a congruence wrt. 𝐿 , if a ↗ b implies 𝐿 (a) ↗ 𝐿 (b). The de!nition generalizes
to functions in several arguments in the expected way. Factorizing S along ↗ yields the set of
equivalence classes S/↗ = {[a] | a ↔ S}. A representative system for S/↗ is a set 𝑀 → S that contains
precisely one element c ↔ 𝑁 for every class 𝑁 ↔ S/↗.

4 Contribution I – Oriented Metric Search Spaces
We !rst de!ne the main object of this paper, oriented metrics, and then turn to the search space
and the enumeration order. Finally, we describe the components of our CEGAR loop in detail.

4.1 Oriented Metrics
It will be convenient to give the de!nition for arbitrary sets S.

De!nition 4.1. m : D ↓ D ↑ R↘0 A function m : L(G) ↓ L(G) ↑ R↘0 is an oriented metric
(orimetric) if, for all a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation ↗m → S ↓ S where a ↗m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G → S, if the equivalence ↗m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↑ S, if this holds for ↗m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/↗m↓ S/↗m↑ R↘0 with qm ( [a], [b]) =m(a, b).

De!nition 4.2. A function m : S ↓ S ↑ R↘0 is an oriented metric (orimetric) if, for all a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation ↗m → S ↓ S where a ↗m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G → S, if the equivalence ↗m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↑ S, if this holds for ↗m. We generalize
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CEGIS. SyGuS problems that are not example based can still be solved with example-based
techniques. The idea, known as counterexample-guided inductive synthesis [41], is to let an SMT
solver generate new examples should a candidate program not yet satisfy the speci!cation. With
this argument, we focus on example-based speci!cations.

Equivalences. An equivalence → ↑ S ↓ S on a set S is a relation that is re"exive, symmetric, and
transitive. We write [a]→ = {b | b → a} for the equivalence class of a ↔ S. We just write [a] if the
equivalence relation is understood. We lift the notation to sets G ↑ S and de!ne [G] =⋃

g↔G [g].
We call this the closure of G under →. The equivalence is precise wrt. G, if the closure does not
add any elements, [G] ↑ G. Note that the reverse inclusion always holds. If the equivalence is
not precise wrt. G, it is called approximate. The equivalence is unambiguous wrt. G, if [G] = [g]
for all g ↔ G. This means all elements in G are equivalent. Let 𝐿 : S ↗ S be a transformer on S.
The equivalence is a congruence wrt. 𝐿 , if a → b implies 𝐿 (a) → 𝐿 (b). The de!nition generalizes
to functions in several arguments in the expected way. Factorizing S along → yields the set of
equivalence classes S/→ = {[a] | a ↔ S}. A representative system for S/→ is a set 𝑀 ↑ S that contains
precisely one element c ↔ 𝑁 for every class 𝑁 ↔ S/→.

4 Contribution I – Oriented Metric Search Spaces
We !rst de!ne the main object of this paper, oriented metrics, and then turn to the search space
and the enumeration order. Finally, we describe the components of our CEGAR loop in detail.

4.1 Oriented Metrics
It will be convenient to give the de!nition for arbitrary sets S.

De!nition 4.1. A function m : L(G) ↓ L(G) ↗ R↘0 is an oriented metric (orimetric) if, for all
a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation →m ↑ S ↓ S where a →m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G ↑ S, if the equivalence →m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↗ S, if this holds for →m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/→m↓ S/→m↗ R↘0 with qm ( [a], [b]) =m(a, b).

De!nition 4.2. A function m : S ↓ S ↗ R↘0 is an oriented metric (orimetric) if, for all a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation →m ↑ S ↓ S where a →m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G ↑ S, if the equivalence →m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↗ S, if this holds for →m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/→m↓ S/→m↗ R↘0 with qm ( [a], [b]) =m(a, b).

We also suggested an alternative to orimetrics.
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m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)
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equivalence induced by m is the relation S S where a b if m a b = 0, for all a b S.
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We consider example-based speci!cations where ω → (Vars ↑ D) ↓ D consists of a !nite set of
input-output examples. A program satis!es the speci!cation, p |= ω, if !p"(i) = o for all (i, o) ↔ ω.
The ground truth GT → F consists of all functions that satisfy the speci!cation in this sense.

CEGIS. SyGuS problems that are not example based can still be solved with example-based
techniques. The idea, known as counterexample-guided inductive synthesis [41], is to let an SMT
solver generate new examples should a candidate program not yet satisfy the speci!cation. With
this argument, we focus on example-based speci!cations.

Equivalences. An equivalence ↗ → S ↓ S on a set S is a relation that is re"exive, symmetric, and
transitive. We write [a]↗ = {b | b ↗ a} for the equivalence class of a ↔ S. We just write [a] if the
equivalence relation is understood. We lift the notation to sets G → S and de!ne [G] =⋃

g↔G [g].
We call this the closure of G under ↗. The equivalence is precise wrt. G, if the closure does not
add any elements, [G] → G. Note that the reverse inclusion always holds. If the equivalence is
not precise wrt. G, it is called approximate. The equivalence is unambiguous wrt. G, if [G] = [g]
for all g ↔ G. This means all elements in G are equivalent. Let 𝐿 : S ↑ S be a transformer on S.
The equivalence is a congruence wrt. 𝐿 , if a ↗ b implies 𝐿 (a) ↗ 𝐿 (b). The de!nition generalizes
to functions in several arguments in the expected way. Factorizing S along ↗ yields the set of
equivalence classes S/↗ = {[a] | a ↔ S}. A representative system for S/↗ is a set 𝑀 → S that contains
precisely one element c ↔ 𝑁 for every class 𝑁 ↔ S/↗.

4 Contribution I – Oriented Metric Search Spaces
We !rst de!ne the main object of this paper, oriented metrics, and then turn to the search space
and the enumeration order. Finally, we describe the components of our CEGAR loop in detail.

4.1 Oriented Metrics
It will be convenient to give the de!nition for arbitrary sets S.

De!nition 4.1. m : D ↓ D ↑ R↘0 A function m : L(G) ↓ L(G) ↑ R↘0 is an oriented metric
(orimetric) if, for all a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation ↗m → S ↓ S where a ↗m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G → S, if the equivalence ↗m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↑ S, if this holds for ↗m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/↗m↓ S/↗m↑ R↘0 with qm ( [a], [b]) =m(a, b).

De!nition 4.2. A function m : S ↓ S ↑ R↘0 is an oriented metric (orimetric) if, for all a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation ↗m → S ↓ S where a ↗m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G → S, if the equivalence ↗m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↑ S, if this holds for ↗m. We generalize
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CEGIS. SyGuS problems that are not example based can still be solved with example-based
techniques. The idea, known as counterexample-guided inductive synthesis [41], is to let an SMT
solver generate new examples should a candidate program not yet satisfy the speci!cation. With
this argument, we focus on example-based speci!cations.

Equivalences. An equivalence → ↑ S ↓ S on a set S is a relation that is re"exive, symmetric, and
transitive. We write [a]→ = {b | b → a} for the equivalence class of a ↔ S. We just write [a] if the
equivalence relation is understood. We lift the notation to sets G ↑ S and de!ne [G] =⋃

g↔G [g].
We call this the closure of G under →. The equivalence is precise wrt. G, if the closure does not
add any elements, [G] ↑ G. Note that the reverse inclusion always holds. If the equivalence is
not precise wrt. G, it is called approximate. The equivalence is unambiguous wrt. G, if [G] = [g]
for all g ↔ G. This means all elements in G are equivalent. Let 𝐿 : S ↗ S be a transformer on S.
The equivalence is a congruence wrt. 𝐿 , if a → b implies 𝐿 (a) → 𝐿 (b). The de!nition generalizes
to functions in several arguments in the expected way. Factorizing S along → yields the set of
equivalence classes S/→ = {[a] | a ↔ S}. A representative system for S/→ is a set 𝑀 ↑ S that contains
precisely one element c ↔ 𝑁 for every class 𝑁 ↔ S/→.

4 Contribution I – Oriented Metric Search Spaces
We !rst de!ne the main object of this paper, oriented metrics, and then turn to the search space
and the enumeration order. Finally, we describe the components of our CEGAR loop in detail.

4.1 Oriented Metrics
It will be convenient to give the de!nition for arbitrary sets S.

De!nition 4.1. A function m : L(G) ↓ L(G) ↗ R↘0 is an oriented metric (orimetric) if, for all
a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation →m ↑ S ↓ S where a →m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G ↑ S, if the equivalence →m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↗ S, if this holds for →m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/→m↓ S/→m↗ R↘0 with qm ( [a], [b]) =m(a, b).

De!nition 4.2. A function m : S ↓ S ↗ R↘0 is an oriented metric (orimetric) if, for all a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation →m ↑ S ↓ S where a →m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G ↑ S, if the equivalence →m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↗ S, if this holds for →m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/→m↓ S/→m↗ R↘0 with qm ( [a], [b]) =m(a, b).

We also suggested an alternative to orimetrics.
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m(a, a) = 0 (re"exivity)
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equivalence induced by m is the relation S S where a b if m a b = 0, for all a b S.
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We consider example-based speci!cations where ω → (Vars ↑ D) ↓ D consists of a !nite set of
input-output examples. A program satis!es the speci!cation, p |= ω, if !p"(i) = o for all (i, o) ↔ ω.
The ground truth GT → F consists of all functions that satisfy the speci!cation in this sense.

CEGIS. SyGuS problems that are not example based can still be solved with example-based
techniques. The idea, known as counterexample-guided inductive synthesis [41], is to let an SMT
solver generate new examples should a candidate program not yet satisfy the speci!cation. With
this argument, we focus on example-based speci!cations.

Equivalences. An equivalence ↗ → S ↓ S on a set S is a relation that is re"exive, symmetric, and
transitive. We write [a]↗ = {b | b ↗ a} for the equivalence class of a ↔ S. We just write [a] if the
equivalence relation is understood. We lift the notation to sets G → S and de!ne [G] =⋃

g↔G [g].
We call this the closure of G under ↗. The equivalence is precise wrt. G, if the closure does not
add any elements, [G] → G. Note that the reverse inclusion always holds. If the equivalence is
not precise wrt. G, it is called approximate. The equivalence is unambiguous wrt. G, if [G] = [g]
for all g ↔ G. This means all elements in G are equivalent. Let 𝐿 : S ↑ S be a transformer on S.
The equivalence is a congruence wrt. 𝐿 , if a ↗ b implies 𝐿 (a) ↗ 𝐿 (b). The de!nition generalizes
to functions in several arguments in the expected way. Factorizing S along ↗ yields the set of
equivalence classes S/↗ = {[a] | a ↔ S}. A representative system for S/↗ is a set 𝑀 → S that contains
precisely one element c ↔ 𝑁 for every class 𝑁 ↔ S/↗.

4 Contribution I – Oriented Metric Search Spaces
We !rst de!ne the main object of this paper, oriented metrics, and then turn to the search space
and the enumeration order. Finally, we describe the components of our CEGAR loop in detail.

4.1 Oriented Metrics
It will be convenient to give the de!nition for arbitrary sets S.

De!nition 4.1. m : D ↓ D ↑ R↘0 A function m : L(G) ↓ L(G) ↑ R↘0 is an oriented metric
(orimetric) if, for all a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation ↗m → S ↓ S where a ↗m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G → S, if the equivalence ↗m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↑ S, if this holds for ↗m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/↗m↓ S/↗m↑ R↘0 with qm ( [a], [b]) =m(a, b).

De!nition 4.2. A function m : S ↓ S ↑ R↘0 is an oriented metric (orimetric) if, for all a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation ↗m → S ↓ S where a ↗m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G → S, if the equivalence ↗m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↑ S, if this holds for ↗m. We generalize
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CEGIS. SyGuS problems that are not example based can still be solved with example-based
techniques. The idea, known as counterexample-guided inductive synthesis [41], is to let an SMT
solver generate new examples should a candidate program not yet satisfy the speci!cation. With
this argument, we focus on example-based speci!cations.

Equivalences. An equivalence → ↑ S ↓ S on a set S is a relation that is re"exive, symmetric, and
transitive. We write [a]→ = {b | b → a} for the equivalence class of a ↔ S. We just write [a] if the
equivalence relation is understood. We lift the notation to sets G ↑ S and de!ne [G] =⋃

g↔G [g].
We call this the closure of G under →. The equivalence is precise wrt. G, if the closure does not
add any elements, [G] ↑ G. Note that the reverse inclusion always holds. If the equivalence is
not precise wrt. G, it is called approximate. The equivalence is unambiguous wrt. G, if [G] = [g]
for all g ↔ G. This means all elements in G are equivalent. Let 𝐿 : S ↗ S be a transformer on S.
The equivalence is a congruence wrt. 𝐿 , if a → b implies 𝐿 (a) → 𝐿 (b). The de!nition generalizes
to functions in several arguments in the expected way. Factorizing S along → yields the set of
equivalence classes S/→ = {[a] | a ↔ S}. A representative system for S/→ is a set 𝑀 ↑ S that contains
precisely one element c ↔ 𝑁 for every class 𝑁 ↔ S/→.

4 Contribution I – Oriented Metric Search Spaces
We !rst de!ne the main object of this paper, oriented metrics, and then turn to the search space
and the enumeration order. Finally, we describe the components of our CEGAR loop in detail.

4.1 Oriented Metrics
It will be convenient to give the de!nition for arbitrary sets S.

De!nition 4.1. A function m : L(G) ↓ L(G) ↗ R↘0 is an oriented metric (orimetric) if, for all
a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation →m ↑ S ↓ S where a →m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G ↑ S, if the equivalence →m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↗ S, if this holds for →m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/→m↓ S/→m↗ R↘0 with qm ( [a], [b]) =m(a, b).

De!nition 4.2. A function m : S ↓ S ↗ R↘0 is an oriented metric (orimetric) if, for all a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation →m ↑ S ↓ S where a →m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G ↑ S, if the equivalence →m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↗ S, if this holds for →m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/→m↓ S/→m↗ R↘0 with qm ( [a], [b]) =m(a, b).

We also suggested an alternative to orimetrics.
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We consider example-based speci!cations where ω → (Vars ↑ D) ↓ D consists of a !nite set of
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techniques. The idea, known as counterexample-guided inductive synthesis [41], is to let an SMT
solver generate new examples should a candidate program not yet satisfy the speci!cation. With
this argument, we focus on example-based speci!cations.
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to functions in several arguments in the expected way. Factorizing S along ↗ yields the set of
equivalence classes S/↗ = {[a] | a ↔ S}. A representative system for S/↗ is a set 𝑀 → S that contains
precisely one element c ↔ 𝑁 for every class 𝑁 ↔ S/↗.

4 Contribution I – Oriented Metric Search Spaces
We !rst de!ne the main object of this paper, oriented metrics, and then turn to the search space
and the enumeration order. Finally, we describe the components of our CEGAR loop in detail.
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m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation ↗m → S ↓ S where a ↗m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G → S, if the equivalence ↗m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↑ S, if this holds for ↗m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/↗m↓ S/↗m↑ R↘0 with qm ( [a], [b]) =m(a, b).

De!nition 4.2. A function m : S ↓ S ↑ R↘0 is an oriented metric (orimetric) if, for all a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation ↗m → S ↓ S where a ↗m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G → S, if the equivalence ↗m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↑ S, if this holds for ↗m. We generalize
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Solver Search Space Pruning / Factorization Enumeration Order (Deduction)
ESolver [2] Observational Equivalence (OE) constant (✁)
EUSolver [3] OE constant (✂)
Blaze [47] OE + Abstraction Re!nement + Automata constant (✁)

EUPhony [28] weak OE constant/o"ine learning (✂)
Probe [6] OE learning (✁)
Duet [27] OE constant (✂)
Simba [48] OE constant (✂)

DryadSynth [15] OE constant (✂)
Synthphonia [16] OE constant (✂)

Merlin OE + Abstraction Re!nement + Orimetrics learning (✂)

Fig. 8. Comparison of enumerative SyGuS solvers.
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replace(S1,S2, 𝑃)

concat(S1,S2)

and(S1,S2)

2.2 State-of-the-Art
We discuss to what extent the state-of-the-art SyGuS solvers [2, 3, 15, 16, 27, 28, 47, 48] can be
seen as instances of the generic solver in Figure 1. The discussion shows that rather di#erent
techniques can be understood as (i) assuming an orimetric on the search space and (ii) improving
an enumeration order through learning. These two ingredients are often left implicit in the related
work. By making them explicit and giving them rigorous de!nitions, we provide a framework in
which SyGuS technology can be developed.
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Fig. 15. Comparison of enumerative SyGuS solvers.
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m𝐿 (r(x, "#Conf", 𝑃), gt) = 0

m𝐿 (r(x, "#City", "#Conf"), x) = 0

mIn ("#City"."#City", gt) > 100

m(!POPL!, !PO!) =m(!PO!, !POPL!)
m(110, 100) =m(100, 110)

2.2 State-of-the-Art
We discuss to what extent the state-of-the-art SyGuS solvers [2, 3, 15, 16, 27, 28, 47, 48] can be
seen as instances of the generic solver in Figure 1. The discussion shows that rather di$erent
techniques can be understood as (i) assuming an orimetric on the search space and (ii) improving
an enumeration order through learning. These two ingredients are often left implicit in the related
work. By making them explicit and giving them rigorous de!nitions, we provide a framework in
which SyGuS technology can be developed.
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2.2 State-of-the-Art
We discuss to what extent the state-of-the-art SyGuS solvers [2, 3, 15, 16, 27, 28, 47, 48] can be
seen as instances of the generic solver in Figure 1. The discussion shows that rather di#erent
techniques can be understood as (i) assuming an orimetric on the search space and (ii) improving
an enumeration order through learning. These two ingredients are often left implicit in the related
work. By making them explicit and giving them rigorous de!nitions, we provide a framework in
which SyGuS technology can be developed.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 75. Publication date: January 2026.



Asymmetric Behavior: 

Symmetry requires                                                      

Oriented Metrics for Bo!om-Up Enumerative Synthesis 75:13

Solver Search Space Pruning / Factorization Enumeration Order (Deduction)
ESolver [2] Observational Equivalence (OE) constant (✁)
EUSolver [3] OE constant (✂)
Blaze [47] OE + Abstraction Re!nement + Automata constant (✁)

EUPhony [28] weak OE constant/o"ine learning (✂)
Probe [6] OE learning (✁)
Duet [27] OE constant (✂)
Simba [48] OE constant (✂)

DryadSynth [15] OE constant (✂)
Synthphonia [16] OE constant (✂)

Merlin OE + Abstraction Re!nement + Orimetrics learning (✂)

Fig. 15. Comparison of enumerative SyGuS solvers.




𝐿

𝑀

𝑁

𝑂

𝐿

𝑀

𝑁

𝑁

replace(S1,S2, 𝑃)

concat(S1,S2)

and(S1,S2)

m𝐿 (r(x, "#Conf", 𝑃), gt) = 0

m𝐿 (r(x, "#City", "#Conf"), x) = 0

mIn ("#City"."#City", gt) > 100

m(!POPL!, !PO!) =m(!PO!, !POPL!)
m(110, 100) =m(100, 110)

2.2 State-of-the-Art
We discuss to what extent the state-of-the-art SyGuS solvers [2, 3, 15, 16, 27, 28, 47, 48] can be
seen as instances of the generic solver in Figure 1. The discussion shows that rather di$erent
techniques can be understood as (i) assuming an orimetric on the search space and (ii) improving
an enumeration order through learning. These two ingredients are often left implicit in the related
work. By making them explicit and giving them rigorous de!nitions, we provide a framework in
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2.2 State-of-the-Art
We discuss to what extent the state-of-the-art SyGuS solvers [2, 3, 15, 16, 27, 28, 47, 48] can be
seen as instances of the generic solver in Figure 1. The discussion shows that rather di#erent
techniques can be understood as (i) assuming an orimetric on the search space and (ii) improving
an enumeration order through learning. These two ingredients are often left implicit in the related
work. By making them explicit and giving them rigorous de!nitions, we provide a framework in
which SyGuS technology can be developed.
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2.2 State-of-the-Art
We discuss to what extent the state-of-the-art SyGuS solvers [2, 3, 15, 16, 27, 28, 47, 48] can be
seen as instances of the generic solver in Figure 1. The discussion shows that rather di#erent
techniques can be understood as (i) assuming an orimetric on the search space and (ii) improving
an enumeration order through learning. These two ingredients are often left implicit in the related
work. By making them explicit and giving them rigorous de!nitions, we provide a framework in
which SyGuS technology can be developed.
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2.2 State-of-the-Art
We discuss to what extent the state-of-the-art SyGuS solvers [2, 3, 15, 16, 27, 28, 47, 48] can be
seen as instances of the generic solver in Figure 1. The discussion shows that rather di#erent
techniques can be understood as (i) assuming an orimetric on the search space and (ii) improving
an enumeration order through learning. These two ingredients are often left implicit in the related
work. By making them explicit and giving them rigorous de!nitions, we provide a framework in
which SyGuS technology can be developed.
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2.2 State-of-the-Art
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techniques can be understood as (i) assuming an orimetric on the search space and (ii) improving
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We discuss to what extent the state-of-the-art SyGuS solvers [2, 3, 15, 16, 27, 28, 47, 48] can be
seen as instances of the generic solver in Figure 1. The discussion shows that rather di#erent
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2.2 State-of-the-Art
We discuss to what extent the state-of-the-art SyGuS solvers [2, 3, 15, 16, 27, 28, 47, 48] can be
seen as instances of the generic solver in Figure 1. The discussion shows that rather di$erent
techniques can be understood as (i) assuming an orimetric on the search space and (ii) improving
an enumeration order through learning. These two ingredients are often left implicit in the related
work. By making them explicit and giving them rigorous de!nitions, we provide a framework in
which SyGuS technology can be developed.
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an enumeration order through learning. These two ingredients are often left implicit in the related
work. By making them explicit and giving them rigorous de!nitions, we provide a framework in
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2.2 State-of-the-Art
We discuss to what extent the state-of-the-art SyGuS solvers [2, 3, 15, 16, 27, 28, 47, 48] can be
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2.2 State-of-the-Art
We discuss to what extent the state-of-the-art SyGuS solvers [2, 3, 15, 16, 27, 28, 47, 48] can be
seen as instances of the generic solver in Figure 1. The discussion shows that rather di#erent
techniques can be understood as (i) assuming an orimetric on the search space and (ii) improving
an enumeration order through learning. These two ingredients are often left implicit in the related
work. By making them explicit and giving them rigorous de!nitions, we provide a framework in
which SyGuS technology can be developed.
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2.2 State-of-the-Art
We discuss to what extent the state-of-the-art SyGuS solvers [2, 3, 15, 16, 27, 28, 47, 48] can be
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seen as instances of the generic solver in Figure 1. The discussion shows that rather di#erent
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2.2 State-of-the-Art
We discuss to what extent the state-of-the-art SyGuS solvers [2, 3, 15, 16, 27, 28, 47, 48] can be
seen as instances of the generic solver in Figure 1. The discussion shows that rather di#erent
techniques can be understood as (i) assuming an orimetric on the search space and (ii) improving
an enumeration order through learning. These two ingredients are often left implicit in the related
work. By making them explicit and giving them rigorous de!nitions, we provide a framework in
which SyGuS technology can be developed.
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We discuss to what extent the state-of-the-art SyGuS solvers [2, 3, 15, 16, 27, 28, 47, 48] can be
seen as instances of the generic solver in Figure 1. The discussion shows that rather di#erent
techniques can be understood as (i) assuming an orimetric on the search space and (ii) improving
an enumeration order through learning. These two ingredients are often left implicit in the related
work. By making them explicit and giving them rigorous de!nitions, we provide a framework in
which SyGuS technology can be developed.
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2.2 State-of-the-Art
We discuss to what extent the state-of-the-art SyGuS solvers [2, 3, 15, 16, 27, 28, 47, 48] can be
seen as instances of the generic solver in Figure 1. The discussion shows that rather di$erent
techniques can be understood as (i) assuming an orimetric on the search space and (ii) improving
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2.2 State-of-the-Art
We discuss to what extent the state-of-the-art SyGuS solvers [2, 3, 15, 16, 27, 28, 47, 48] can be
seen as instances of the generic solver in Figure 1. The discussion shows that rather di$erent
techniques can be understood as (i) assuming an orimetric on the search space and (ii) improving
an enumeration order through learning. These two ingredients are often left implicit in the related
work. By making them explicit and giving them rigorous de!nitions, we provide a framework in
which SyGuS technology can be developed.
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2.2 State-of-the-Art
We discuss to what extent the state-of-the-art SyGuS solvers [2, 3, 15, 16, 27, 28, 47, 48] can be
seen as instances of the generic solver in Figure 1. The discussion shows that rather di$erent
techniques can be understood as (i) assuming an orimetric on the search space and (ii) improving
an enumeration order through learning. These two ingredients are often left implicit in the related
work. By making them explicit and giving them rigorous de!nitions, we provide a framework in
which SyGuS technology can be developed.
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2.2 State-of-the-Art
We discuss to what extent the state-of-the-art SyGuS solvers [2, 3, 15, 16, 27, 28, 47, 48] can be
seen as instances of the generic solver in Figure 1. The discussion shows that rather di$erent
techniques can be understood as (i) assuming an orimetric on the search space and (ii) improving
an enumeration order through learning. These two ingredients are often left implicit in the related
work. By making them explicit and giving them rigorous de!nitions, we provide a framework in
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2.2 State-of-the-Art
We discuss to what extent the state-of-the-art SyGuS solvers [2, 3, 15, 16, 27, 28, 47, 48] can be
seen as instances of the generic solver in Figure 1. The discussion shows that rather di$erent
techniques can be understood as (i) assuming an orimetric on the search space and (ii) improving
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2.2 State-of-the-Art
We discuss to what extent the state-of-the-art SyGuS solvers [2, 3, 15, 16, 27, 28, 47, 48] can be
seen as instances of the generic solver in Figure 1. The discussion shows that rather di#erent
techniques can be understood as (i) assuming an orimetric on the search space and (ii) improving
an enumeration order through learning. These two ingredients are often left implicit in the related
work. By making them explicit and giving them rigorous de!nitions, we provide a framework in
which SyGuS technology can be developed.
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2.2 State-of-the-Art
We discuss to what extent the state-of-the-art SyGuS solvers [2, 3, 15, 16, 27, 28, 47, 48] can be
seen as instances of the generic solver in Figure 1. The discussion shows that rather di$erent
techniques can be understood as (i) assuming an orimetric on the search space and (ii) improving
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work. By making them explicit and giving them rigorous de!nitions, we provide a framework in
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an enumeration order through learning. These two ingredients are often left implicit in the related
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CEGIS. SyGuS problems that are not example based can still be solved with example-based
techniques. The idea, known as counterexample-guided inductive synthesis [41], is to let an SMT
solver generate new examples should a candidate program not yet satisfy the speci!cation. With
this argument, we focus on example-based speci!cations.

Equivalences. An equivalence → ↑ S ↓ S on a set S is a relation that is re"exive, symmetric, and
transitive. We write [a]→ = {b | b → a} for the equivalence class of a ↔ S. We just write [a] if the
equivalence relation is understood. We lift the notation to sets G ↑ S and de!ne [G] =⋃

g↔G [g].
We call this the closure of G under →. The equivalence is precise wrt. G, if the closure does not
add any elements, [G] ↑ G. Note that the reverse inclusion always holds. If the equivalence is
not precise wrt. G, it is called approximate. The equivalence is unambiguous wrt. G, if [G] = [g]
for all g ↔ G. This means all elements in G are equivalent. Let 𝐿 : S ↗ S be a transformer on S.
The equivalence is a congruence wrt. 𝐿 , if a → b implies 𝐿 (a) → 𝐿 (b). The de!nition generalizes
to functions in several arguments in the expected way. Factorizing S along → yields the set of
equivalence classes S/→ = {[a] | a ↔ S}. A representative system for S/→ is a set 𝑀 ↑ S that contains
precisely one element c ↔ 𝑁 for every class 𝑁 ↔ S/→.

4 Contribution I – Oriented Metric Search Spaces
We !rst de!ne the main object of this paper, oriented metrics, and then turn to the search space
and the enumeration order. Finally, we describe the components of our CEGAR loop in detail.

4.1 Oriented Metrics
It will be convenient to give the de!nition for arbitrary sets S.

De!nition 4.1. A function m : L(G) ↓ L(G) ↗ R↘0 is an oriented metric (orimetric) if, for all
a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation →m ↑ S ↓ S where a →m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G ↑ S, if the equivalence →m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↗ S, if this holds for →m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/→m↓ S/→m↗ R↘0 with qm ( [a], [b]) =m(a, b).

De!nition 4.2. A function m : S ↓ S ↗ R↘0 is an oriented metric (orimetric) if, for all a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation →m ↑ S ↓ S where a →m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G ↑ S, if the equivalence →m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↗ S, if this holds for →m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/→m↓ S/→m↗ R↘0 with qm ( [a], [b]) =m(a, b).

We also suggested an alternative to orimetrics.
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m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

equivalence induced by m is the relation S S where a b if m a b = 0, for all a b S.

Oriented Metrics (Orimetrics)
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We consider example-based speci!cations where ω → (Vars ↑ D) ↓ D consists of a !nite set of
input-output examples. A program satis!es the speci!cation, p |= ω, if !p"(i) = o for all (i, o) ↔ ω.
The ground truth GT → F consists of all functions that satisfy the speci!cation in this sense.

CEGIS. SyGuS problems that are not example based can still be solved with example-based
techniques. The idea, known as counterexample-guided inductive synthesis [41], is to let an SMT
solver generate new examples should a candidate program not yet satisfy the speci!cation. With
this argument, we focus on example-based speci!cations.

Equivalences. An equivalence ↗ → S ↓ S on a set S is a relation that is re"exive, symmetric, and
transitive. We write [a]↗ = {b | b ↗ a} for the equivalence class of a ↔ S. We just write [a] if the
equivalence relation is understood. We lift the notation to sets G → S and de!ne [G] =⋃

g↔G [g].
We call this the closure of G under ↗. The equivalence is precise wrt. G, if the closure does not
add any elements, [G] → G. Note that the reverse inclusion always holds. If the equivalence is
not precise wrt. G, it is called approximate. The equivalence is unambiguous wrt. G, if [G] = [g]
for all g ↔ G. This means all elements in G are equivalent. Let 𝐿 : S ↑ S be a transformer on S.
The equivalence is a congruence wrt. 𝐿 , if a ↗ b implies 𝐿 (a) ↗ 𝐿 (b). The de!nition generalizes
to functions in several arguments in the expected way. Factorizing S along ↗ yields the set of
equivalence classes S/↗ = {[a] | a ↔ S}. A representative system for S/↗ is a set 𝑀 → S that contains
precisely one element c ↔ 𝑁 for every class 𝑁 ↔ S/↗.

4 Contribution I – Oriented Metric Search Spaces
We !rst de!ne the main object of this paper, oriented metrics, and then turn to the search space
and the enumeration order. Finally, we describe the components of our CEGAR loop in detail.

4.1 Oriented Metrics
It will be convenient to give the de!nition for arbitrary sets S.

De!nition 4.1. m : D ↓ D ↑ R↘0 A function m : L(G) ↓ L(G) ↑ R↘0 is an oriented metric
(orimetric) if, for all a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation ↗m → S ↓ S where a ↗m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G → S, if the equivalence ↗m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↑ S, if this holds for ↗m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/↗m↓ S/↗m↑ R↘0 with qm ( [a], [b]) =m(a, b).

De!nition 4.2. A function m : S ↓ S ↑ R↘0 is an oriented metric (orimetric) if, for all a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation ↗m → S ↓ S where a ↗m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G → S, if the equivalence ↗m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↑ S, if this holds for ↗m. We generalize
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CEGIS. SyGuS problems that are not example based can still be solved with example-based
techniques. The idea, known as counterexample-guided inductive synthesis [41], is to let an SMT
solver generate new examples should a candidate program not yet satisfy the speci!cation. With
this argument, we focus on example-based speci!cations.

Equivalences. An equivalence → ↑ S ↓ S on a set S is a relation that is re"exive, symmetric, and
transitive. We write [a]→ = {b | b → a} for the equivalence class of a ↔ S. We just write [a] if the
equivalence relation is understood. We lift the notation to sets G ↑ S and de!ne [G] =⋃

g↔G [g].
We call this the closure of G under →. The equivalence is precise wrt. G, if the closure does not
add any elements, [G] ↑ G. Note that the reverse inclusion always holds. If the equivalence is
not precise wrt. G, it is called approximate. The equivalence is unambiguous wrt. G, if [G] = [g]
for all g ↔ G. This means all elements in G are equivalent. Let 𝐿 : S ↗ S be a transformer on S.
The equivalence is a congruence wrt. 𝐿 , if a → b implies 𝐿 (a) → 𝐿 (b). The de!nition generalizes
to functions in several arguments in the expected way. Factorizing S along → yields the set of
equivalence classes S/→ = {[a] | a ↔ S}. A representative system for S/→ is a set 𝑀 ↑ S that contains
precisely one element c ↔ 𝑁 for every class 𝑁 ↔ S/→.

4 Contribution I – Oriented Metric Search Spaces
We !rst de!ne the main object of this paper, oriented metrics, and then turn to the search space
and the enumeration order. Finally, we describe the components of our CEGAR loop in detail.

4.1 Oriented Metrics
It will be convenient to give the de!nition for arbitrary sets S.

De!nition 4.1. A function m : L(G) ↓ L(G) ↗ R↘0 is an oriented metric (orimetric) if, for all
a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation →m ↑ S ↓ S where a →m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G ↑ S, if the equivalence →m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↗ S, if this holds for →m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/→m↓ S/→m↗ R↘0 with qm ( [a], [b]) =m(a, b).

De!nition 4.2. A function m : S ↓ S ↗ R↘0 is an oriented metric (orimetric) if, for all a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation →m ↑ S ↓ S where a →m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G ↑ S, if the equivalence →m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↗ S, if this holds for →m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/→m↓ S/→m↗ R↘0 with qm ( [a], [b]) =m(a, b).

We also suggested an alternative to orimetrics.
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We consider example-based speci!cations where ω → (Vars ↑ D) ↓ D consists of a !nite set of
input-output examples. A program satis!es the speci!cation, p |= ω, if !p"(i) = o for all (i, o) ↔ ω.
The ground truth GT → F consists of all functions that satisfy the speci!cation in this sense.

CEGIS. SyGuS problems that are not example based can still be solved with example-based
techniques. The idea, known as counterexample-guided inductive synthesis [41], is to let an SMT
solver generate new examples should a candidate program not yet satisfy the speci!cation. With
this argument, we focus on example-based speci!cations.

Equivalences. An equivalence ↗ → S ↓ S on a set S is a relation that is re"exive, symmetric, and
transitive. We write [a]↗ = {b | b ↗ a} for the equivalence class of a ↔ S. We just write [a] if the
equivalence relation is understood. We lift the notation to sets G → S and de!ne [G] =⋃

g↔G [g].
We call this the closure of G under ↗. The equivalence is precise wrt. G, if the closure does not
add any elements, [G] → G. Note that the reverse inclusion always holds. If the equivalence is
not precise wrt. G, it is called approximate. The equivalence is unambiguous wrt. G, if [G] = [g]
for all g ↔ G. This means all elements in G are equivalent. Let 𝐿 : S ↑ S be a transformer on S.
The equivalence is a congruence wrt. 𝐿 , if a ↗ b implies 𝐿 (a) ↗ 𝐿 (b). The de!nition generalizes
to functions in several arguments in the expected way. Factorizing S along ↗ yields the set of
equivalence classes S/↗ = {[a] | a ↔ S}. A representative system for S/↗ is a set 𝑀 → S that contains
precisely one element c ↔ 𝑁 for every class 𝑁 ↔ S/↗.

4 Contribution I – Oriented Metric Search Spaces
We !rst de!ne the main object of this paper, oriented metrics, and then turn to the search space
and the enumeration order. Finally, we describe the components of our CEGAR loop in detail.

4.1 Oriented Metrics
It will be convenient to give the de!nition for arbitrary sets S.

De!nition 4.1. m : D ↓ D ↑ R↘0 A function m : L(G) ↓ L(G) ↑ R↘0 is an oriented metric
(orimetric) if, for all a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation ↗m → S ↓ S where a ↗m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G → S, if the equivalence ↗m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↑ S, if this holds for ↗m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/↗m↓ S/↗m↑ R↘0 with qm ( [a], [b]) =m(a, b).

De!nition 4.2. A function m : S ↓ S ↑ R↘0 is an oriented metric (orimetric) if, for all a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation ↗m → S ↓ S where a ↗m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G → S, if the equivalence ↗m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↑ S, if this holds for ↗m. We generalize
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CEGIS. SyGuS problems that are not example based can still be solved with example-based
techniques. The idea, known as counterexample-guided inductive synthesis [41], is to let an SMT
solver generate new examples should a candidate program not yet satisfy the speci!cation. With
this argument, we focus on example-based speci!cations.

Equivalences. An equivalence → ↑ S ↓ S on a set S is a relation that is re"exive, symmetric, and
transitive. We write [a]→ = {b | b → a} for the equivalence class of a ↔ S. We just write [a] if the
equivalence relation is understood. We lift the notation to sets G ↑ S and de!ne [G] =⋃

g↔G [g].
We call this the closure of G under →. The equivalence is precise wrt. G, if the closure does not
add any elements, [G] ↑ G. Note that the reverse inclusion always holds. If the equivalence is
not precise wrt. G, it is called approximate. The equivalence is unambiguous wrt. G, if [G] = [g]
for all g ↔ G. This means all elements in G are equivalent. Let 𝐿 : S ↗ S be a transformer on S.
The equivalence is a congruence wrt. 𝐿 , if a → b implies 𝐿 (a) → 𝐿 (b). The de!nition generalizes
to functions in several arguments in the expected way. Factorizing S along → yields the set of
equivalence classes S/→ = {[a] | a ↔ S}. A representative system for S/→ is a set 𝑀 ↑ S that contains
precisely one element c ↔ 𝑁 for every class 𝑁 ↔ S/→.

4 Contribution I – Oriented Metric Search Spaces
We !rst de!ne the main object of this paper, oriented metrics, and then turn to the search space
and the enumeration order. Finally, we describe the components of our CEGAR loop in detail.

4.1 Oriented Metrics
It will be convenient to give the de!nition for arbitrary sets S.

De!nition 4.1. A function m : L(G) ↓ L(G) ↗ R↘0 is an oriented metric (orimetric) if, for all
a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation →m ↑ S ↓ S where a →m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G ↑ S, if the equivalence →m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↗ S, if this holds for →m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/→m↓ S/→m↗ R↘0 with qm ( [a], [b]) =m(a, b).

De!nition 4.2. A function m : S ↓ S ↗ R↘0 is an oriented metric (orimetric) if, for all a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation →m ↑ S ↓ S where a →m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G ↑ S, if the equivalence →m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↗ S, if this holds for →m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/→m↓ S/→m↗ R↘0 with qm ( [a], [b]) =m(a, b).

We also suggested an alternative to orimetrics.
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CEGIS. SyGuS problems that are not example based can still be solved with example-based
techniques. The idea, known as counterexample-guided inductive synthesis [41], is to let an SMT
solver generate new examples should a candidate program not yet satisfy the speci!cation. With
this argument, we focus on example-based speci!cations.

Equivalences. An equivalence → ↑ S ↓ S on a set S is a relation that is re"exive, symmetric, and
transitive. We write [a]→ = {b | b → a} for the equivalence class of a ↔ S. We just write [a] if the
equivalence relation is understood. We lift the notation to sets G ↑ S and de!ne [G] =⋃

g↔G [g].
We call this the closure of G under →. The equivalence is precise wrt. G, if the closure does not
add any elements, [G] ↑ G. Note that the reverse inclusion always holds. If the equivalence is
not precise wrt. G, it is called approximate. The equivalence is unambiguous wrt. G, if [G] = [g]
for all g ↔ G. This means all elements in G are equivalent. Let 𝐿 : S ↗ S be a transformer on S.
The equivalence is a congruence wrt. 𝐿 , if a → b implies 𝐿 (a) → 𝐿 (b). The de!nition generalizes
to functions in several arguments in the expected way. Factorizing S along → yields the set of
equivalence classes S/→ = {[a] | a ↔ S}. A representative system for S/→ is a set 𝑀 ↑ S that contains
precisely one element c ↔ 𝑁 for every class 𝑁 ↔ S/→.

4 Contribution I – Oriented Metric Search Spaces
We !rst de!ne the main object of this paper, oriented metrics, and then turn to the search space
and the enumeration order. Finally, we describe the components of our CEGAR loop in detail.

4.1 Oriented Metrics
It will be convenient to give the de!nition for arbitrary sets S.

De!nition 4.1. A function m : L(G) ↓ L(G) ↗ R↘0 is an oriented metric (orimetric) if, for all
a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation →m ↑ S ↓ S where a →m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G ↑ S, if the equivalence →m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↗ S, if this holds for →m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/→m↓ S/→m↗ R↘0 with qm ( [a], [b]) =m(a, b).

De!nition 4.2. A function m : S ↓ S ↗ R↘0 is an oriented metric (orimetric) if, for all a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation →m ↑ S ↓ S where a →m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G ↑ S, if the equivalence →m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↗ S, if this holds for →m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/→m↓ S/→m↗ R↘0 with qm ( [a], [b]) =m(a, b).

We also suggested an alternative to orimetrics.
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CEGIS. SyGuS problems that are not example based can still be solved with example-based
techniques. The idea, known as counterexample-guided inductive synthesis [41], is to let an SMT
solver generate new examples should a candidate program not yet satisfy the speci!cation. With
this argument, we focus on example-based speci!cations.

Equivalences. An equivalence → ↑ S ↓ S on a set S is a relation that is re"exive, symmetric, and
transitive. We write [a]→ = {b | b → a} for the equivalence class of a ↔ S. We just write [a] if the
equivalence relation is understood. We lift the notation to sets G ↑ S and de!ne [G] =⋃

g↔G [g].
We call this the closure of G under →. The equivalence is precise wrt. G, if the closure does not
add any elements, [G] ↑ G. Note that the reverse inclusion always holds. If the equivalence is
not precise wrt. G, it is called approximate. The equivalence is unambiguous wrt. G, if [G] = [g]
for all g ↔ G. This means all elements in G are equivalent. Let 𝐿 : S ↗ S be a transformer on S.
The equivalence is a congruence wrt. 𝐿 , if a → b implies 𝐿 (a) → 𝐿 (b). The de!nition generalizes
to functions in several arguments in the expected way. Factorizing S along → yields the set of
equivalence classes S/→ = {[a] | a ↔ S}. A representative system for S/→ is a set 𝑀 ↑ S that contains
precisely one element c ↔ 𝑁 for every class 𝑁 ↔ S/→.

4 Contribution I – Oriented Metric Search Spaces
We !rst de!ne the main object of this paper, oriented metrics, and then turn to the search space
and the enumeration order. Finally, we describe the components of our CEGAR loop in detail.

4.1 Oriented Metrics
It will be convenient to give the de!nition for arbitrary sets S.

De!nition 4.1. A function m : L(G) ↓ L(G) ↗ R↘0 is an oriented metric (orimetric) if, for all
a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation →m ↑ S ↓ S where a →m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G ↑ S, if the equivalence →m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↗ S, if this holds for →m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/→m↓ S/→m↗ R↘0 with qm ( [a], [b]) =m(a, b).

De!nition 4.2. A function m : S ↓ S ↗ R↘0 is an oriented metric (orimetric) if, for all a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation →m ↑ S ↓ S where a →m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G ↑ S, if the equivalence →m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↗ S, if this holds for →m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/→m↓ S/→m↗ R↘0 with qm ( [a], [b]) =m(a, b).

We also suggested an alternative to orimetrics.
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CEGIS. SyGuS problems that are not example based can still be solved with example-based
techniques. The idea, known as counterexample-guided inductive synthesis [41], is to let an SMT
solver generate new examples should a candidate program not yet satisfy the speci!cation. With
this argument, we focus on example-based speci!cations.

Equivalences. An equivalence → ↑ S ↓ S on a set S is a relation that is re"exive, symmetric, and
transitive. We write [a]→ = {b | b → a} for the equivalence class of a ↔ S. We just write [a] if the
equivalence relation is understood. We lift the notation to sets G ↑ S and de!ne [G] =⋃

g↔G [g].
We call this the closure of G under →. The equivalence is precise wrt. G, if the closure does not
add any elements, [G] ↑ G. Note that the reverse inclusion always holds. If the equivalence is
not precise wrt. G, it is called approximate. The equivalence is unambiguous wrt. G, if [G] = [g]
for all g ↔ G. This means all elements in G are equivalent. Let 𝐿 : S ↗ S be a transformer on S.
The equivalence is a congruence wrt. 𝐿 , if a → b implies 𝐿 (a) → 𝐿 (b). The de!nition generalizes
to functions in several arguments in the expected way. Factorizing S along → yields the set of
equivalence classes S/→ = {[a] | a ↔ S}. A representative system for S/→ is a set 𝑀 ↑ S that contains
precisely one element c ↔ 𝑁 for every class 𝑁 ↔ S/→.

4 Contribution I – Oriented Metric Search Spaces
We !rst de!ne the main object of this paper, oriented metrics, and then turn to the search space
and the enumeration order. Finally, we describe the components of our CEGAR loop in detail.

4.1 Oriented Metrics
It will be convenient to give the de!nition for arbitrary sets S.

De!nition 4.1. A function m : L(G) ↓ L(G) ↗ R↘0 is an oriented metric (orimetric) if, for all
a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation →m ↑ S ↓ S where a →m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G ↑ S, if the equivalence →m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↗ S, if this holds for →m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/→m↓ S/→m↗ R↘0 with qm ( [a], [b]) =m(a, b).

De!nition 4.2. A function m : S ↓ S ↗ R↘0 is an oriented metric (orimetric) if, for all a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation →m ↑ S ↓ S where a →m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G ↑ S, if the equivalence →m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↗ S, if this holds for →m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/→m↓ S/→m↗ R↘0 with qm ( [a], [b]) =m(a, b).

We also suggested an alternative to orimetrics.
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We consider example-based speci!cations where ω → (Vars ↑ D) ↓ D consists of a !nite set of
input-output examples. A program satis!es the speci!cation, p |= ω, if !p"(i) = o for all (i, o) ↔ ω.
The ground truth GT → F consists of all functions that satisfy the speci!cation in this sense.

CEGIS. SyGuS problems that are not example based can still be solved with example-based
techniques. The idea, known as counterexample-guided inductive synthesis [41], is to let an SMT
solver generate new examples should a candidate program not yet satisfy the speci!cation. With
this argument, we focus on example-based speci!cations.

Equivalences. An equivalence ↗ → S ↓ S on a set S is a relation that is re"exive, symmetric, and
transitive. We write [a]↗ = {b | b ↗ a} for the equivalence class of a ↔ S. We just write [a] if the
equivalence relation is understood. We lift the notation to sets G → S and de!ne [G] =⋃

g↔G [g].
We call this the closure of G under ↗. The equivalence is precise wrt. G, if the closure does not
add any elements, [G] → G. Note that the reverse inclusion always holds. If the equivalence is
not precise wrt. G, it is called approximate. The equivalence is unambiguous wrt. G, if [G] = [g]
for all g ↔ G. This means all elements in G are equivalent. Let 𝐿 : S ↑ S be a transformer on S.
The equivalence is a congruence wrt. 𝐿 , if a ↗ b implies 𝐿 (a) ↗ 𝐿 (b). The de!nition generalizes
to functions in several arguments in the expected way. Factorizing S along ↗ yields the set of
equivalence classes S/↗ = {[a] | a ↔ S}. A representative system for S/↗ is a set 𝑀 → S that contains
precisely one element c ↔ 𝑁 for every class 𝑁 ↔ S/↗.

4 Contribution I – Oriented Metric Search Spaces
We !rst de!ne the main object of this paper, oriented metrics, and then turn to the search space
and the enumeration order. Finally, we describe the components of our CEGAR loop in detail.

4.1 Oriented Metrics
It will be convenient to give the de!nition for arbitrary sets S.

De!nition 4.1. m : D ↓ D ↑ R↘0 A function m : L(G) ↓ L(G) ↑ R↘0 is an oriented metric
(orimetric) if, for all a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation ↗m → S ↓ S where a ↗m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G → S, if the equivalence ↗m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↑ S, if this holds for ↗m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/↗m↓ S/↗m↑ R↘0 with qm ( [a], [b]) =m(a, b).

De!nition 4.2. A function m : S ↓ S ↑ R↘0 is an oriented metric (orimetric) if, for all a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation ↗m → S ↓ S where a ↗m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G → S, if the equivalence ↗m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↑ S, if this holds for ↗m. We generalize
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CEGIS. SyGuS problems that are not example based can still be solved with example-based
techniques. The idea, known as counterexample-guided inductive synthesis [41], is to let an SMT
solver generate new examples should a candidate program not yet satisfy the speci!cation. With
this argument, we focus on example-based speci!cations.

Equivalences. An equivalence → ↑ S ↓ S on a set S is a relation that is re"exive, symmetric, and
transitive. We write [a]→ = {b | b → a} for the equivalence class of a ↔ S. We just write [a] if the
equivalence relation is understood. We lift the notation to sets G ↑ S and de!ne [G] =⋃

g↔G [g].
We call this the closure of G under →. The equivalence is precise wrt. G, if the closure does not
add any elements, [G] ↑ G. Note that the reverse inclusion always holds. If the equivalence is
not precise wrt. G, it is called approximate. The equivalence is unambiguous wrt. G, if [G] = [g]
for all g ↔ G. This means all elements in G are equivalent. Let 𝐿 : S ↗ S be a transformer on S.
The equivalence is a congruence wrt. 𝐿 , if a → b implies 𝐿 (a) → 𝐿 (b). The de!nition generalizes
to functions in several arguments in the expected way. Factorizing S along → yields the set of
equivalence classes S/→ = {[a] | a ↔ S}. A representative system for S/→ is a set 𝑀 ↑ S that contains
precisely one element c ↔ 𝑁 for every class 𝑁 ↔ S/→.

4 Contribution I – Oriented Metric Search Spaces
We !rst de!ne the main object of this paper, oriented metrics, and then turn to the search space
and the enumeration order. Finally, we describe the components of our CEGAR loop in detail.

4.1 Oriented Metrics
It will be convenient to give the de!nition for arbitrary sets S.

De!nition 4.1. A function m : L(G) ↓ L(G) ↗ R↘0 is an oriented metric (orimetric) if, for all
a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation →m ↑ S ↓ S where a →m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G ↑ S, if the equivalence →m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↗ S, if this holds for →m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/→m↓ S/→m↗ R↘0 with qm ( [a], [b]) =m(a, b).

De!nition 4.2. A function m : S ↓ S ↗ R↘0 is an oriented metric (orimetric) if, for all a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation →m ↑ S ↓ S where a →m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G ↑ S, if the equivalence →m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↗ S, if this holds for →m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/→m↓ S/→m↗ R↘0 with qm ( [a], [b]) =m(a, b).

We also suggested an alternative to orimetrics.
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CEGIS. SyGuS problems that are not example based can still be solved with example-based
techniques. The idea, known as counterexample-guided inductive synthesis [41], is to let an SMT
solver generate new examples should a candidate program not yet satisfy the speci!cation. With
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We call this the closure of G under →. The equivalence is precise wrt. G, if the closure does not
add any elements, [G] ↑ G. Note that the reverse inclusion always holds. If the equivalence is
not precise wrt. G, it is called approximate. The equivalence is unambiguous wrt. G, if [G] = [g]
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and the enumeration order. Finally, we describe the components of our CEGAR loop in detail.
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The equivalence induced by m is the relation →m ↑ S ↓ S where a →m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G ↑ S, if the equivalence →m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↗ S, if this holds for →m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/→m↓ S/→m↗ R↘0 with qm ( [a], [b]) =m(a, b).

We also suggested an alternative to orimetrics.
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CEGIS. SyGuS problems that are not example based can still be solved with example-based
techniques. The idea, known as counterexample-guided inductive synthesis [41], is to let an SMT
solver generate new examples should a candidate program not yet satisfy the speci!cation. With
this argument, we focus on example-based speci!cations.

Equivalences. An equivalence → ↑ S ↓ S on a set S is a relation that is re"exive, symmetric, and
transitive. We write [a]→ = {b | b → a} for the equivalence class of a ↔ S. We just write [a] if the
equivalence relation is understood. We lift the notation to sets G ↑ S and de!ne [G] =⋃

g↔G [g].
We call this the closure of G under →. The equivalence is precise wrt. G, if the closure does not
add any elements, [G] ↑ G. Note that the reverse inclusion always holds. If the equivalence is
not precise wrt. G, it is called approximate. The equivalence is unambiguous wrt. G, if [G] = [g]
for all g ↔ G. This means all elements in G are equivalent. Let 𝐿 : S ↗ S be a transformer on S.
The equivalence is a congruence wrt. 𝐿 , if a → b implies 𝐿 (a) → 𝐿 (b). The de!nition generalizes
to functions in several arguments in the expected way. Factorizing S along → yields the set of
equivalence classes S/→ = {[a] | a ↔ S}. A representative system for S/→ is a set 𝑀 ↑ S that contains
precisely one element c ↔ 𝑁 for every class 𝑁 ↔ S/→.

4 Contribution I – Oriented Metric Search Spaces
We !rst de!ne the main object of this paper, oriented metrics, and then turn to the search space
and the enumeration order. Finally, we describe the components of our CEGAR loop in detail.

4.1 Oriented Metrics
It will be convenient to give the de!nition for arbitrary sets S.

De!nition 4.1. A function m : L(G) ↓ L(G) ↗ R↘0 is an oriented metric (orimetric) if, for all
a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation →m ↑ S ↓ S where a →m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G ↑ S, if the equivalence →m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↗ S, if this holds for →m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/→m↓ S/→m↗ R↘0 with qm ( [a], [b]) =m(a, b).
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The equivalence induced by m is the relation →m ↑ S ↓ S where a →m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G ↑ S, if the equivalence →m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↗ S, if this holds for →m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/→m↓ S/→m↗ R↘0 with qm ( [a], [b]) =m(a, b).

We also suggested an alternative to orimetrics.
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CEGIS. SyGuS problems that are not example based can still be solved with example-based
techniques. The idea, known as counterexample-guided inductive synthesis [41], is to let an SMT
solver generate new examples should a candidate program not yet satisfy the speci!cation. With
this argument, we focus on example-based speci!cations.

Equivalences. An equivalence → ↑ S ↓ S on a set S is a relation that is re"exive, symmetric, and
transitive. We write [a]→ = {b | b → a} for the equivalence class of a ↔ S. We just write [a] if the
equivalence relation is understood. We lift the notation to sets G ↑ S and de!ne [G] =⋃

g↔G [g].
We call this the closure of G under →. The equivalence is precise wrt. G, if the closure does not
add any elements, [G] ↑ G. Note that the reverse inclusion always holds. If the equivalence is
not precise wrt. G, it is called approximate. The equivalence is unambiguous wrt. G, if [G] = [g]
for all g ↔ G. This means all elements in G are equivalent. Let 𝐿 : S ↗ S be a transformer on S.
The equivalence is a congruence wrt. 𝐿 , if a → b implies 𝐿 (a) → 𝐿 (b). The de!nition generalizes
to functions in several arguments in the expected way. Factorizing S along → yields the set of
equivalence classes S/→ = {[a] | a ↔ S}. A representative system for S/→ is a set 𝑀 ↑ S that contains
precisely one element c ↔ 𝑁 for every class 𝑁 ↔ S/→.

4 Contribution I – Oriented Metric Search Spaces
We !rst de!ne the main object of this paper, oriented metrics, and then turn to the search space
and the enumeration order. Finally, we describe the components of our CEGAR loop in detail.

4.1 Oriented Metrics
It will be convenient to give the de!nition for arbitrary sets S.

De!nition 4.1. A function m : L(G) ↓ L(G) ↗ R↘0 is an oriented metric (orimetric) if, for all
a, b, c ↔ S,
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The orimetric is precise, approximate, resp. unambiguous wrt. G ↑ S, if the equivalence →m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↗ S, if this holds for →m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
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We also suggested an alternative to orimetrics.
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m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

equivalence induced by m is the relation S S where a b if m a b = 0, for all a b S.
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We consider example-based speci!cations where ω → (Vars ↑ D) ↓ D consists of a !nite set of
input-output examples. A program satis!es the speci!cation, p |= ω, if !p"(i) = o for all (i, o) ↔ ω.
The ground truth GT → F consists of all functions that satisfy the speci!cation in this sense.

CEGIS. SyGuS problems that are not example based can still be solved with example-based
techniques. The idea, known as counterexample-guided inductive synthesis [41], is to let an SMT
solver generate new examples should a candidate program not yet satisfy the speci!cation. With
this argument, we focus on example-based speci!cations.

Equivalences. An equivalence ↗ → S ↓ S on a set S is a relation that is re"exive, symmetric, and
transitive. We write [a]↗ = {b | b ↗ a} for the equivalence class of a ↔ S. We just write [a] if the
equivalence relation is understood. We lift the notation to sets G → S and de!ne [G] =⋃

g↔G [g].
We call this the closure of G under ↗. The equivalence is precise wrt. G, if the closure does not
add any elements, [G] → G. Note that the reverse inclusion always holds. If the equivalence is
not precise wrt. G, it is called approximate. The equivalence is unambiguous wrt. G, if [G] = [g]
for all g ↔ G. This means all elements in G are equivalent. Let 𝐿 : S ↑ S be a transformer on S.
The equivalence is a congruence wrt. 𝐿 , if a ↗ b implies 𝐿 (a) ↗ 𝐿 (b). The de!nition generalizes
to functions in several arguments in the expected way. Factorizing S along ↗ yields the set of
equivalence classes S/↗ = {[a] | a ↔ S}. A representative system for S/↗ is a set 𝑀 → S that contains
precisely one element c ↔ 𝑁 for every class 𝑁 ↔ S/↗.

4 Contribution I – Oriented Metric Search Spaces
We !rst de!ne the main object of this paper, oriented metrics, and then turn to the search space
and the enumeration order. Finally, we describe the components of our CEGAR loop in detail.

4.1 Oriented Metrics
It will be convenient to give the de!nition for arbitrary sets S.

De!nition 4.1. m : D ↓ D ↑ R↘0 A function m : L(G) ↓ L(G) ↑ R↘0 is an oriented metric
(orimetric) if, for all a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation ↗m → S ↓ S where a ↗m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G → S, if the equivalence ↗m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↑ S, if this holds for ↗m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/↗m↓ S/↗m↑ R↘0 with qm ( [a], [b]) =m(a, b).

De!nition 4.2. A function m : S ↓ S ↑ R↘0 is an oriented metric (orimetric) if, for all a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation ↗m → S ↓ S where a ↗m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G → S, if the equivalence ↗m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↑ S, if this holds for ↗m. We generalize
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Solver Search Space Pruning / Factorization Enumeration Order (Deduction)
ESolver [2] Observational Equivalence (OE) constant (✁)
EUSolver [3] OE constant (✂)
Blaze [47] OE + Abstraction Re!nement + Automata constant (✁)

EUPhony [28] weak OE constant/o"ine learning (✂)
Probe [6] OE learning (✁)
Duet [27] OE constant (✂)
Simba [48] OE constant (✂)

DryadSynth [15] OE constant (✂)
Synthphonia [16] OE constant (✂)

Merlin OE + Abstraction Re!nement + Orimetrics learning (✂)

Fig. 8. Comparison of enumerative SyGuS solvers.
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2.2 State-of-the-Art
We discuss to what extent the state-of-the-art SyGuS solvers [2, 3, 15, 16, 27, 28, 47, 48] can be
seen as instances of the generic solver in Figure 1. The discussion shows that rather di#erent
techniques can be understood as (i) assuming an orimetric on the search space and (ii) improving
an enumeration order through learning. These two ingredients are often left implicit in the related
work. By making them explicit and giving them rigorous de!nitions, we provide a framework in
which SyGuS technology can be developed.
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We consider example-based speci!cations where ω → (Vars ↑ D) ↓ D consists of a !nite set of
input-output examples. A program satis!es the speci!cation, p |= ω, if !p"(i) = o for all (i, o) ↔ ω.
The ground truth GT → F consists of all functions that satisfy the speci!cation in this sense.

CEGIS. SyGuS problems that are not example based can still be solved with example-based
techniques. The idea, known as counterexample-guided inductive synthesis [41], is to let an SMT
solver generate new examples should a candidate program not yet satisfy the speci!cation. With
this argument, we focus on example-based speci!cations.

Equivalences. An equivalence ↗ → S ↓ S on a set S is a relation that is re"exive, symmetric, and
transitive. We write [a]↗ = {b | b ↗ a} for the equivalence class of a ↔ S. We just write [a] if the
equivalence relation is understood. We lift the notation to sets G → S and de!ne [G] =⋃

g↔G [g].
We call this the closure of G under ↗. The equivalence is precise wrt. G, if the closure does not
add any elements, [G] → G. Note that the reverse inclusion always holds. If the equivalence is
not precise wrt. G, it is called approximate. The equivalence is unambiguous wrt. G, if [G] = [g]
for all g ↔ G. This means all elements in G are equivalent. Let 𝐿 : S ↑ S be a transformer on S.
The equivalence is a congruence wrt. 𝐿 , if a ↗ b implies 𝐿 (a) ↗ 𝐿 (b). The de!nition generalizes
to functions in several arguments in the expected way. Factorizing S along ↗ yields the set of
equivalence classes S/↗ = {[a] | a ↔ S}. A representative system for S/↗ is a set 𝑀 → S that contains
precisely one element c ↔ 𝑁 for every class 𝑁 ↔ S/↗.

4 Contribution I – Oriented Metric Search Spaces
We !rst de!ne the main object of this paper, oriented metrics, and then turn to the search space
and the enumeration order. Finally, we describe the components of our CEGAR loop in detail.

4.1 Oriented Metrics
It will be convenient to give the de!nition for arbitrary sets S.

De!nition 4.1. m : D ↓ D ↑ R↘0 A function m : L(G) ↓ L(G) ↑ R↘0 is an oriented metric
(orimetric) if, for all a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation ↗m → S ↓ S where a ↗m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G → S, if the equivalence ↗m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↑ S, if this holds for ↗m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/↗m↓ S/↗m↑ R↘0 with qm ( [a], [b]) =m(a, b).

De!nition 4.2. A function m : S ↓ S ↑ R↘0 is an oriented metric (orimetric) if, for all a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation ↗m → S ↓ S where a ↗m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G → S, if the equivalence ↗m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↑ S, if this holds for ↗m. We generalize

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 75. Publication date: January 2026.

Reward superstrings



Oriented Metric for 

Oriented Metrics for Bo!om-Up Enumerative Synthesis 75:11

Solver Search Space Pruning / Factorization Enumeration Order (Deduction)
ESolver [2] Observational Equivalence (OE) constant (✁)
EUSolver [3] OE constant (✂)
Blaze [47] OE + Abstraction Re!nement + Automata constant (✁)

EUPhony [28] weak OE constant/o"ine learning (✂)
Probe [6] OE learning (✁)
Duet [27] OE constant (✂)
Simba [48] OE constant (✂)

DryadSynth [15] OE constant (✂)
Synthphonia [16] OE constant (✂)

Merlin OE + Abstraction Re!nement + Orimetrics learning (✂)

Fig. 8. Comparison of enumerative SyGuS solvers.




𝐿

𝑀

𝑁

𝑂

𝐿

𝑀

𝑁

𝑂

𝐿

𝑀

𝑁

𝑂

𝐿

𝑀

𝑁

𝑂

replace(S1,S2, 𝑃)

concat(S1,S2)

and(S1,S2)

2.2 State-of-the-Art
We discuss to what extent the state-of-the-art SyGuS solvers [2, 3, 15, 16, 27, 28, 47, 48] can be
seen as instances of the generic solver in Figure 1. The discussion shows that rather di#erent
techniques can be understood as (i) assuming an orimetric on the search space and (ii) improving
an enumeration order through learning. These two ingredients are often left implicit in the related
work. By making them explicit and giving them rigorous de!nitions, we provide a framework in
which SyGuS technology can be developed.
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We consider example-based speci!cations where ω → (Vars ↑ D) ↓ D consists of a !nite set of
input-output examples. A program satis!es the speci!cation, p |= ω, if !p"(i) = o for all (i, o) ↔ ω.
The ground truth GT → F consists of all functions that satisfy the speci!cation in this sense.

CEGIS. SyGuS problems that are not example based can still be solved with example-based
techniques. The idea, known as counterexample-guided inductive synthesis [41], is to let an SMT
solver generate new examples should a candidate program not yet satisfy the speci!cation. With
this argument, we focus on example-based speci!cations.

Equivalences. An equivalence ↗ → S ↓ S on a set S is a relation that is re"exive, symmetric, and
transitive. We write [a]↗ = {b | b ↗ a} for the equivalence class of a ↔ S. We just write [a] if the
equivalence relation is understood. We lift the notation to sets G → S and de!ne [G] =⋃

g↔G [g].
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equivalence classes S/↗ = {[a] | a ↔ S}. A representative system for S/↗ is a set 𝑀 → S that contains
precisely one element c ↔ 𝑁 for every class 𝑁 ↔ S/↗.
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We !rst de!ne the main object of this paper, oriented metrics, and then turn to the search space
and the enumeration order. Finally, we describe the components of our CEGAR loop in detail.
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It will be convenient to give the de!nition for arbitrary sets S.
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m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation ↗m → S ↓ S where a ↗m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G → S, if the equivalence ↗m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↑ S, if this holds for ↗m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/↗m↓ S/↗m↑ R↘0 with qm ( [a], [b]) =m(a, b).
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The equivalence induced by m is the relation ↗m → S ↓ S where a ↗m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G → S, if the equivalence ↗m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↑ S, if this holds for ↗m. We generalize

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 75. Publication date: January 2026.

Reward superstrings

1. For strings ￼, ￼ :i o



75:10 Roland Meyer and Jakob Tepe

be supported. For strings with replacement, it is bene!cial to reward programs that produce
superstrings of the outputs given in the examples and punish programs that do not. We explain in
a moment how this plays together with the fact that concatenation prefers substrings. We begin by
de!ning an auxiliary quasimetric m̃ on strings:

m(i, o) =

{
len(i) → len(o) if i is a superstring of o
100 + |len(i) → len(o) | otherwise

For example, m(”PO”, ”POPL”) = 102 but m(”POPL”, ”PO”) = 2. Note that m̃ is not symmetric in
general, but it is symmetric at distance zero. We now lift the auxiliary quasimetric m̃ on strings
to an orimetric m on functions over strings. The de!nition is as expected, we evaluate the given
functions on the inputs from all examples and sum up the distances of the output values. To make
this formal, let J ↑ In and de!ne

mJ (𝐿 ,𝑀) =
∑
i↓J

m̃(𝐿 (i),𝑀(i)) .

mIn (p, q) =
∑
i↓In

m(p(i), q(i)) .

m𝐿 (p, q) =
∑
i↓{i1 }

m̃(p(i), q(i)) .

m𝐿 (p, q) =
∑

i↓{i1,i2 }
m̃(p(i), q(i)) .

Our orimetric is then m = mIn. We will use other instantiations of J in a moment. Note, that the
lifting does not result in a quasimetric. If two di"erent programs p and q produce the same outputs
on the given inputs, their distance is 0. A quasimetric would require p and q to be equal. This need
not be the case. In fact, allowing p and q to have a distance of zero while being di"erent is what
enables factorization in the !rst place.

With the orimetric at hand, we restrict the search to programs in the ball Br (gt), with the radius
r set to 100. This means we only keep programs that return a superstring of the output for every
input example. We admit that this is discrete, and does not make use of the fact that an orimetric
yields continuous values in R↔0. In our experiments, we will see more elaborate instantiations.

Note that focusing on superstrings does not mean we are not allowed to use the concat operator.
We can still use concat, but on the programs inside the ball. The superstring ball is even closed
under concatenation: concatenating superstrings yields a superstring. One may ask how this relates
to the above argument that concat prefers substrings. This argument was made for a comparison
with the !nal value. Since we use superstrings here, it means the !nal value cannot be produced by
concatenation, and so concat will not be the topmost operator in the solution to the synthesis task.
It can, however, still be a part of it.
Coming back to Figure 12, the programs that are additionally pruned by this orimetric are

highlighted in green. Figure 11 depicts the resulting search space as the green ball around gt. The
cardinality of the program sets is shown in Figure 13. Using only pruning is not as e"ective as
factorizing along observational equivalence, but combined we are only left with 81 programs to
explore in P7. In Figure 11, this search space is the intersection of the green ball and the red area.

With approximate orimetrics m𝐿, we can reduce the search space even further. The approximate
orimetrics should be rough so that the induced equivalence ↗m𝐿 eliminates many programs. We will
later recover precision by adding a re!nement loop. In our example, we use m𝐿 =mJ with J = {i1}.
This approximate orimetric only takes into account the !rst example when comparing functions,
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2.2 State-of-the-Art
We discuss to what extent the state-of-the-art SyGuS solvers [2, 3, 15, 16, 27, 28, 47, 48] can be
seen as instances of the generic solver in Figure 1. The discussion shows that rather di#erent
techniques can be understood as (i) assuming an orimetric on the search space and (ii) improving
an enumeration order through learning. These two ingredients are often left implicit in the related
work. By making them explicit and giving them rigorous de!nitions, we provide a framework in
which SyGuS technology can be developed.
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We consider example-based speci!cations where ω → (Vars ↑ D) ↓ D consists of a !nite set of
input-output examples. A program satis!es the speci!cation, p |= ω, if !p"(i) = o for all (i, o) ↔ ω.
The ground truth GT → F consists of all functions that satisfy the speci!cation in this sense.

CEGIS. SyGuS problems that are not example based can still be solved with example-based
techniques. The idea, known as counterexample-guided inductive synthesis [41], is to let an SMT
solver generate new examples should a candidate program not yet satisfy the speci!cation. With
this argument, we focus on example-based speci!cations.

Equivalences. An equivalence ↗ → S ↓ S on a set S is a relation that is re"exive, symmetric, and
transitive. We write [a]↗ = {b | b ↗ a} for the equivalence class of a ↔ S. We just write [a] if the
equivalence relation is understood. We lift the notation to sets G → S and de!ne [G] =⋃

g↔G [g].
We call this the closure of G under ↗. The equivalence is precise wrt. G, if the closure does not
add any elements, [G] → G. Note that the reverse inclusion always holds. If the equivalence is
not precise wrt. G, it is called approximate. The equivalence is unambiguous wrt. G, if [G] = [g]
for all g ↔ G. This means all elements in G are equivalent. Let 𝐿 : S ↑ S be a transformer on S.
The equivalence is a congruence wrt. 𝐿 , if a ↗ b implies 𝐿 (a) ↗ 𝐿 (b). The de!nition generalizes
to functions in several arguments in the expected way. Factorizing S along ↗ yields the set of
equivalence classes S/↗ = {[a] | a ↔ S}. A representative system for S/↗ is a set 𝑀 → S that contains
precisely one element c ↔ 𝑁 for every class 𝑁 ↔ S/↗.

4 Contribution I – Oriented Metric Search Spaces
We !rst de!ne the main object of this paper, oriented metrics, and then turn to the search space
and the enumeration order. Finally, we describe the components of our CEGAR loop in detail.

4.1 Oriented Metrics
It will be convenient to give the de!nition for arbitrary sets S.

De!nition 4.1. m : D ↓ D ↑ R↘0 A function m : L(G) ↓ L(G) ↑ R↘0 is an oriented metric
(orimetric) if, for all a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation ↗m → S ↓ S where a ↗m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G → S, if the equivalence ↗m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↑ S, if this holds for ↗m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/↗m↓ S/↗m↑ R↘0 with qm ( [a], [b]) =m(a, b).

De!nition 4.2. A function m : S ↓ S ↑ R↘0 is an oriented metric (orimetric) if, for all a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation ↗m → S ↓ S where a ↗m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G → S, if the equivalence ↗m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↑ S, if this holds for ↗m. We generalize

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 75. Publication date: January 2026.

Reward superstrings

1. For strings ￼, ￼ :i o



75:10 Roland Meyer and Jakob Tepe

be supported. For strings with replacement, it is bene!cial to reward programs that produce
superstrings of the outputs given in the examples and punish programs that do not. We explain in
a moment how this plays together with the fact that concatenation prefers substrings. We begin by
de!ning an auxiliary quasimetric m̃ on strings:

m(i, o) =

{
len(i) → len(o) if i is a superstring of o
100 + |len(i) → len(o) | otherwise

For example, m(”PO”, ”POPL”) = 102 but m(”POPL”, ”PO”) = 2. Note that m̃ is not symmetric in
general, but it is symmetric at distance zero. We now lift the auxiliary quasimetric m̃ on strings
to an orimetric m on functions over strings. The de!nition is as expected, we evaluate the given
functions on the inputs from all examples and sum up the distances of the output values. To make
this formal, let J ↑ In and de!ne

mJ (𝐿 ,𝑀) =
∑
i↓J

m̃(𝐿 (i),𝑀(i)) .

mIn (p, q) =
∑
i↓In

m(p(i), q(i)) .

m𝐿 (p, q) =
∑
i↓{i1 }

m̃(p(i), q(i)) .

m𝐿 (p, q) =
∑

i↓{i1,i2 }
m̃(p(i), q(i)) .

Our orimetric is then m = mIn. We will use other instantiations of J in a moment. Note, that the
lifting does not result in a quasimetric. If two di"erent programs p and q produce the same outputs
on the given inputs, their distance is 0. A quasimetric would require p and q to be equal. This need
not be the case. In fact, allowing p and q to have a distance of zero while being di"erent is what
enables factorization in the !rst place.

With the orimetric at hand, we restrict the search to programs in the ball Br (gt), with the radius
r set to 100. This means we only keep programs that return a superstring of the output for every
input example. We admit that this is discrete, and does not make use of the fact that an orimetric
yields continuous values in R↔0. In our experiments, we will see more elaborate instantiations.

Note that focusing on superstrings does not mean we are not allowed to use the concat operator.
We can still use concat, but on the programs inside the ball. The superstring ball is even closed
under concatenation: concatenating superstrings yields a superstring. One may ask how this relates
to the above argument that concat prefers substrings. This argument was made for a comparison
with the !nal value. Since we use superstrings here, it means the !nal value cannot be produced by
concatenation, and so concat will not be the topmost operator in the solution to the synthesis task.
It can, however, still be a part of it.
Coming back to Figure 12, the programs that are additionally pruned by this orimetric are

highlighted in green. Figure 11 depicts the resulting search space as the green ball around gt. The
cardinality of the program sets is shown in Figure 13. Using only pruning is not as e"ective as
factorizing along observational equivalence, but combined we are only left with 81 programs to
explore in P7. In Figure 11, this search space is the intersection of the green ball and the red area.

With approximate orimetrics m𝐿, we can reduce the search space even further. The approximate
orimetrics should be rough so that the induced equivalence ↗m𝐿 eliminates many programs. We will
later recover precision by adding a re!nement loop. In our example, we use m𝐿 =mJ with J = {i1}.
This approximate orimetric only takes into account the !rst example when comparing functions,
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Our orimetric is then m = mIn. We will use other instantiations of J in a moment. Note, that the
lifting does not result in a quasimetric. If two di"erent programs p and q produce the same outputs
on the given inputs, their distance is 0. A quasimetric would require p and q to be equal. This need
not be the case. In fact, allowing p and q to have a distance of zero while being di"erent is what
enables factorization in the !rst place.

With the orimetric at hand, we restrict the search to programs in the ball Br (gt), with the radius
r set to 100. This means we only keep programs that return a superstring of the output for every
input example. We admit that this is discrete, and does not make use of the fact that an orimetric
yields continuous values in R↔0. In our experiments, we will see more elaborate instantiations.

Note that focusing on superstrings does not mean we are not allowed to use the concat operator.
We can still use concat, but on the programs inside the ball. The superstring ball is even closed
under concatenation: concatenating superstrings yields a superstring. One may ask how this relates
to the above argument that concat prefers substrings. This argument was made for a comparison
with the !nal value. Since we use superstrings here, it means the !nal value cannot be produced by
concatenation, and so concat will not be the topmost operator in the solution to the synthesis task.
It can, however, still be a part of it.
Coming back to Figure 12, the programs that are additionally pruned by this orimetric are

highlighted in green. Figure 11 depicts the resulting search space as the green ball around gt. The
cardinality of the program sets is shown in Figure 13. Using only pruning is not as e"ective as
factorizing along observational equivalence, but combined we are only left with 81 programs to
explore in P7. In Figure 11, this search space is the intersection of the green ball and the red area.

With approximate orimetrics m𝐿, we can reduce the search space even further. The approximate
orimetrics should be rough so that the induced equivalence ↗m𝐿 eliminates many programs. We will
later recover precision by adding a re!nement loop. In our example, we use m𝐿 =mJ with J = {i1}.
This approximate orimetric only takes into account the !rst example when comparing functions,
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EUPhony [28] weak OE constant/o"ine learning (✂)
Probe [6] OE learning (✁)
Duet [27] OE constant (✂)
Simba [48] OE constant (✂)

DryadSynth [15] OE constant (✂)
Synthphonia [16] OE constant (✂)

Merlin OE + Abstraction Re!nement + Orimetrics learning (✂)

Fig. 8. Comparison of enumerative SyGuS solvers.
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2.2 State-of-the-Art
We discuss to what extent the state-of-the-art SyGuS solvers [2, 3, 15, 16, 27, 28, 47, 48] can be
seen as instances of the generic solver in Figure 1. The discussion shows that rather di#erent
techniques can be understood as (i) assuming an orimetric on the search space and (ii) improving
an enumeration order through learning. These two ingredients are often left implicit in the related
work. By making them explicit and giving them rigorous de!nitions, we provide a framework in
which SyGuS technology can be developed.
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We consider example-based speci!cations where ω → (Vars ↑ D) ↓ D consists of a !nite set of
input-output examples. A program satis!es the speci!cation, p |= ω, if !p"(i) = o for all (i, o) ↔ ω.
The ground truth GT → F consists of all functions that satisfy the speci!cation in this sense.

CEGIS. SyGuS problems that are not example based can still be solved with example-based
techniques. The idea, known as counterexample-guided inductive synthesis [41], is to let an SMT
solver generate new examples should a candidate program not yet satisfy the speci!cation. With
this argument, we focus on example-based speci!cations.

Equivalences. An equivalence ↗ → S ↓ S on a set S is a relation that is re"exive, symmetric, and
transitive. We write [a]↗ = {b | b ↗ a} for the equivalence class of a ↔ S. We just write [a] if the
equivalence relation is understood. We lift the notation to sets G → S and de!ne [G] =⋃

g↔G [g].
We call this the closure of G under ↗. The equivalence is precise wrt. G, if the closure does not
add any elements, [G] → G. Note that the reverse inclusion always holds. If the equivalence is
not precise wrt. G, it is called approximate. The equivalence is unambiguous wrt. G, if [G] = [g]
for all g ↔ G. This means all elements in G are equivalent. Let 𝐿 : S ↑ S be a transformer on S.
The equivalence is a congruence wrt. 𝐿 , if a ↗ b implies 𝐿 (a) ↗ 𝐿 (b). The de!nition generalizes
to functions in several arguments in the expected way. Factorizing S along ↗ yields the set of
equivalence classes S/↗ = {[a] | a ↔ S}. A representative system for S/↗ is a set 𝑀 → S that contains
precisely one element c ↔ 𝑁 for every class 𝑁 ↔ S/↗.

4 Contribution I – Oriented Metric Search Spaces
We !rst de!ne the main object of this paper, oriented metrics, and then turn to the search space
and the enumeration order. Finally, we describe the components of our CEGAR loop in detail.

4.1 Oriented Metrics
It will be convenient to give the de!nition for arbitrary sets S.

De!nition 4.1. m : D ↓ D ↑ R↘0 A function m : L(G) ↓ L(G) ↑ R↘0 is an oriented metric
(orimetric) if, for all a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation ↗m → S ↓ S where a ↗m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G → S, if the equivalence ↗m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↑ S, if this holds for ↗m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/↗m↓ S/↗m↑ R↘0 with qm ( [a], [b]) =m(a, b).

De!nition 4.2. A function m : S ↓ S ↑ R↘0 is an oriented metric (orimetric) if, for all a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation ↗m → S ↓ S where a ↗m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G → S, if the equivalence ↗m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↑ S, if this holds for ↗m. We generalize
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be supported. For strings with replacement, it is bene!cial to reward programs that produce
superstrings of the outputs given in the examples and punish programs that do not. We explain in
a moment how this plays together with the fact that concatenation prefers substrings. We begin by
de!ning an auxiliary quasimetric m̃ on strings:

m(i, o) =

{
len(i) → len(o) if i is a superstring of o
100 + |len(i) → len(o) | otherwise

For example, m(”PO”, ”POPL”) = 102 but m(”POPL”, ”PO”) = 2. Note that m̃ is not symmetric in
general, but it is symmetric at distance zero. We now lift the auxiliary quasimetric m̃ on strings
to an orimetric m on functions over strings. The de!nition is as expected, we evaluate the given
functions on the inputs from all examples and sum up the distances of the output values. To make
this formal, let J ↑ In and de!ne

mJ (𝐿 ,𝑀) =
∑
i↓J

m̃(𝐿 (i),𝑀(i)) .

mIn (p, q) =
∑
i↓In

m(p(i), q(i)) .

m𝐿 (p, q) =
∑
i↓{i1 }

m̃(p(i), q(i)) .

m𝐿 (p, q) =
∑

i↓{i1,i2 }
m̃(p(i), q(i)) .

Our orimetric is then m = mIn. We will use other instantiations of J in a moment. Note, that the
lifting does not result in a quasimetric. If two di"erent programs p and q produce the same outputs
on the given inputs, their distance is 0. A quasimetric would require p and q to be equal. This need
not be the case. In fact, allowing p and q to have a distance of zero while being di"erent is what
enables factorization in the !rst place.

With the orimetric at hand, we restrict the search to programs in the ball Br (gt), with the radius
r set to 100. This means we only keep programs that return a superstring of the output for every
input example. We admit that this is discrete, and does not make use of the fact that an orimetric
yields continuous values in R↔0. In our experiments, we will see more elaborate instantiations.

Note that focusing on superstrings does not mean we are not allowed to use the concat operator.
We can still use concat, but on the programs inside the ball. The superstring ball is even closed
under concatenation: concatenating superstrings yields a superstring. One may ask how this relates
to the above argument that concat prefers substrings. This argument was made for a comparison
with the !nal value. Since we use superstrings here, it means the !nal value cannot be produced by
concatenation, and so concat will not be the topmost operator in the solution to the synthesis task.
It can, however, still be a part of it.
Coming back to Figure 12, the programs that are additionally pruned by this orimetric are

highlighted in green. Figure 11 depicts the resulting search space as the green ball around gt. The
cardinality of the program sets is shown in Figure 13. Using only pruning is not as e"ective as
factorizing along observational equivalence, but combined we are only left with 81 programs to
explore in P7. In Figure 11, this search space is the intersection of the green ball and the red area.

With approximate orimetrics m𝐿, we can reduce the search space even further. The approximate
orimetrics should be rough so that the induced equivalence ↗m𝐿 eliminates many programs. We will
later recover precision by adding a re!nement loop. In our example, we use m𝐿 =mJ with J = {i1}.
This approximate orimetric only takes into account the !rst example when comparing functions,
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Solver Search Space Pruning / Factorization Enumeration Order (Deduction)
ESolver [2] Observational Equivalence (OE) constant (✁)
EUSolver [3] OE constant (✂)
Blaze [47] OE + Abstraction Re!nement + Automata constant (✁)

EUPhony [28] weak OE constant/o"ine learning (✂)
Probe [6] OE learning (✁)
Duet [27] OE constant (✂)
Simba [48] OE constant (✂)

DryadSynth [15] OE constant (✂)
Synthphonia [16] OE constant (✂)

Merlin OE + Abstraction Re!nement + Orimetrics learning (✂)

Fig. 8. Comparison of enumerative SyGuS solvers.
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2.2 State-of-the-Art
We discuss to what extent the state-of-the-art SyGuS solvers [2, 3, 15, 16, 27, 28, 47, 48] can be
seen as instances of the generic solver in Figure 1. The discussion shows that rather di#erent
techniques can be understood as (i) assuming an orimetric on the search space and (ii) improving
an enumeration order through learning. These two ingredients are often left implicit in the related
work. By making them explicit and giving them rigorous de!nitions, we provide a framework in
which SyGuS technology can be developed.
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We consider example-based speci!cations where ω → (Vars ↑ D) ↓ D consists of a !nite set of
input-output examples. A program satis!es the speci!cation, p |= ω, if !p"(i) = o for all (i, o) ↔ ω.
The ground truth GT → F consists of all functions that satisfy the speci!cation in this sense.

CEGIS. SyGuS problems that are not example based can still be solved with example-based
techniques. The idea, known as counterexample-guided inductive synthesis [41], is to let an SMT
solver generate new examples should a candidate program not yet satisfy the speci!cation. With
this argument, we focus on example-based speci!cations.

Equivalences. An equivalence ↗ → S ↓ S on a set S is a relation that is re"exive, symmetric, and
transitive. We write [a]↗ = {b | b ↗ a} for the equivalence class of a ↔ S. We just write [a] if the
equivalence relation is understood. We lift the notation to sets G → S and de!ne [G] =⋃

g↔G [g].
We call this the closure of G under ↗. The equivalence is precise wrt. G, if the closure does not
add any elements, [G] → G. Note that the reverse inclusion always holds. If the equivalence is
not precise wrt. G, it is called approximate. The equivalence is unambiguous wrt. G, if [G] = [g]
for all g ↔ G. This means all elements in G are equivalent. Let 𝐿 : S ↑ S be a transformer on S.
The equivalence is a congruence wrt. 𝐿 , if a ↗ b implies 𝐿 (a) ↗ 𝐿 (b). The de!nition generalizes
to functions in several arguments in the expected way. Factorizing S along ↗ yields the set of
equivalence classes S/↗ = {[a] | a ↔ S}. A representative system for S/↗ is a set 𝑀 → S that contains
precisely one element c ↔ 𝑁 for every class 𝑁 ↔ S/↗.

4 Contribution I – Oriented Metric Search Spaces
We !rst de!ne the main object of this paper, oriented metrics, and then turn to the search space
and the enumeration order. Finally, we describe the components of our CEGAR loop in detail.

4.1 Oriented Metrics
It will be convenient to give the de!nition for arbitrary sets S.

De!nition 4.1. m : D ↓ D ↑ R↘0 A function m : L(G) ↓ L(G) ↑ R↘0 is an oriented metric
(orimetric) if, for all a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation ↗m → S ↓ S where a ↗m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G → S, if the equivalence ↗m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↑ S, if this holds for ↗m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/↗m↓ S/↗m↑ R↘0 with qm ( [a], [b]) =m(a, b).

De!nition 4.2. A function m : S ↓ S ↑ R↘0 is an oriented metric (orimetric) if, for all a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation ↗m → S ↓ S where a ↗m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G → S, if the equivalence ↗m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↑ S, if this holds for ↗m. We generalize

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 75. Publication date: January 2026.

Reward superstrings

1. For strings ￼, ￼ :i o



75:10 Roland Meyer and Jakob Tepe

be supported. For strings with replacement, it is bene!cial to reward programs that produce
superstrings of the outputs given in the examples and punish programs that do not. We explain in
a moment how this plays together with the fact that concatenation prefers substrings. We begin by
de!ning an auxiliary quasimetric m̃ on strings:

m(i, o) =

{
len(i) → len(o) if i is a superstring of o
100 + |len(i) → len(o) | otherwise

For example, m(”PO”, ”POPL”) = 102 but m(”POPL”, ”PO”) = 2. Note that m̃ is not symmetric in
general, but it is symmetric at distance zero. We now lift the auxiliary quasimetric m̃ on strings
to an orimetric m on functions over strings. The de!nition is as expected, we evaluate the given
functions on the inputs from all examples and sum up the distances of the output values. To make
this formal, let J ↑ In and de!ne

mJ (𝐿 ,𝑀) =
∑
i↓J

m̃(𝐿 (i),𝑀(i)) .

mIn (p, q) =
∑
i↓In

m(p(i), q(i)) .

m𝐿 (p, q) =
∑
i↓{i1 }

m̃(p(i), q(i)) .

m𝐿 (p, q) =
∑

i↓{i1,i2 }
m̃(p(i), q(i)) .

Our orimetric is then m = mIn. We will use other instantiations of J in a moment. Note, that the
lifting does not result in a quasimetric. If two di"erent programs p and q produce the same outputs
on the given inputs, their distance is 0. A quasimetric would require p and q to be equal. This need
not be the case. In fact, allowing p and q to have a distance of zero while being di"erent is what
enables factorization in the !rst place.

With the orimetric at hand, we restrict the search to programs in the ball Br (gt), with the radius
r set to 100. This means we only keep programs that return a superstring of the output for every
input example. We admit that this is discrete, and does not make use of the fact that an orimetric
yields continuous values in R↔0. In our experiments, we will see more elaborate instantiations.

Note that focusing on superstrings does not mean we are not allowed to use the concat operator.
We can still use concat, but on the programs inside the ball. The superstring ball is even closed
under concatenation: concatenating superstrings yields a superstring. One may ask how this relates
to the above argument that concat prefers substrings. This argument was made for a comparison
with the !nal value. Since we use superstrings here, it means the !nal value cannot be produced by
concatenation, and so concat will not be the topmost operator in the solution to the synthesis task.
It can, however, still be a part of it.
Coming back to Figure 12, the programs that are additionally pruned by this orimetric are

highlighted in green. Figure 11 depicts the resulting search space as the green ball around gt. The
cardinality of the program sets is shown in Figure 13. Using only pruning is not as e"ective as
factorizing along observational equivalence, but combined we are only left with 81 programs to
explore in P7. In Figure 11, this search space is the intersection of the green ball and the red area.

With approximate orimetrics m𝐿, we can reduce the search space even further. The approximate
orimetrics should be rough so that the induced equivalence ↗m𝐿 eliminates many programs. We will
later recover precision by adding a re!nement loop. In our example, we use m𝐿 =mJ with J = {i1}.
This approximate orimetric only takes into account the !rst example when comparing functions,
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general, but it is symmetric at distance zero. We now lift the auxiliary quasimetric m̃ on strings
to an orimetric m on functions over strings. The de!nition is as expected, we evaluate the given
functions on the inputs from all examples and sum up the distances of the output values. To make
this formal, let J ↑ In and de!ne

mJ (𝐿 ,𝑀) =
∑
i↓J

m̃(𝐿 (i),𝑀(i)) .

mIn (p, q) =
∑
i↓In

m(p(i), q(i)) .

m𝐿 (p, q) =
∑
i↓{i1 }

m̃(p(i), q(i)) .

m𝐿 (p, q) =
∑

i↓{i1,i2 }
m̃(p(i), q(i)) .

Our orimetric is then m = mIn. We will use other instantiations of J in a moment. Note, that the
lifting does not result in a quasimetric. If two di"erent programs p and q produce the same outputs
on the given inputs, their distance is 0. A quasimetric would require p and q to be equal. This need
not be the case. In fact, allowing p and q to have a distance of zero while being di"erent is what
enables factorization in the !rst place.

With the orimetric at hand, we restrict the search to programs in the ball Br (gt), with the radius
r set to 100. This means we only keep programs that return a superstring of the output for every
input example. We admit that this is discrete, and does not make use of the fact that an orimetric
yields continuous values in R↔0. In our experiments, we will see more elaborate instantiations.

Note that focusing on superstrings does not mean we are not allowed to use the concat operator.
We can still use concat, but on the programs inside the ball. The superstring ball is even closed
under concatenation: concatenating superstrings yields a superstring. One may ask how this relates
to the above argument that concat prefers substrings. This argument was made for a comparison
with the !nal value. Since we use superstrings here, it means the !nal value cannot be produced by
concatenation, and so concat will not be the topmost operator in the solution to the synthesis task.
It can, however, still be a part of it.
Coming back to Figure 12, the programs that are additionally pruned by this orimetric are

highlighted in green. Figure 11 depicts the resulting search space as the green ball around gt. The
cardinality of the program sets is shown in Figure 13. Using only pruning is not as e"ective as
factorizing along observational equivalence, but combined we are only left with 81 programs to
explore in P7. In Figure 11, this search space is the intersection of the green ball and the red area.

With approximate orimetrics m𝐿, we can reduce the search space even further. The approximate
orimetrics should be rough so that the induced equivalence ↗m𝐿 eliminates many programs. We will
later recover precision by adding a re!nement loop. In our example, we use m𝐿 =mJ with J = {i1}.
This approximate orimetric only takes into account the !rst example when comparing functions,
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Solver Search Space Pruning / Factorization Enumeration Order (Deduction)
ESolver [2] Observational Equivalence (OE) constant (✁)
EUSolver [3] OE constant (✂)
Blaze [47] OE + Abstraction Re!nement + Automata constant (✁)

EUPhony [28] weak OE constant/o"ine learning (✂)
Probe [6] OE learning (✁)
Duet [27] OE constant (✂)
Simba [48] OE constant (✂)

DryadSynth [15] OE constant (✂)
Synthphonia [16] OE constant (✂)

Merlin OE + Abstraction Re!nement + Orimetrics learning (✂)

Fig. 8. Comparison of enumerative SyGuS solvers.
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2.2 State-of-the-Art
We discuss to what extent the state-of-the-art SyGuS solvers [2, 3, 15, 16, 27, 28, 47, 48] can be
seen as instances of the generic solver in Figure 1. The discussion shows that rather di#erent
techniques can be understood as (i) assuming an orimetric on the search space and (ii) improving
an enumeration order through learning. These two ingredients are often left implicit in the related
work. By making them explicit and giving them rigorous de!nitions, we provide a framework in
which SyGuS technology can be developed.
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We consider example-based speci!cations where ω → (Vars ↑ D) ↓ D consists of a !nite set of
input-output examples. A program satis!es the speci!cation, p |= ω, if !p"(i) = o for all (i, o) ↔ ω.
The ground truth GT → F consists of all functions that satisfy the speci!cation in this sense.

CEGIS. SyGuS problems that are not example based can still be solved with example-based
techniques. The idea, known as counterexample-guided inductive synthesis [41], is to let an SMT
solver generate new examples should a candidate program not yet satisfy the speci!cation. With
this argument, we focus on example-based speci!cations.

Equivalences. An equivalence ↗ → S ↓ S on a set S is a relation that is re"exive, symmetric, and
transitive. We write [a]↗ = {b | b ↗ a} for the equivalence class of a ↔ S. We just write [a] if the
equivalence relation is understood. We lift the notation to sets G → S and de!ne [G] =⋃

g↔G [g].
We call this the closure of G under ↗. The equivalence is precise wrt. G, if the closure does not
add any elements, [G] → G. Note that the reverse inclusion always holds. If the equivalence is
not precise wrt. G, it is called approximate. The equivalence is unambiguous wrt. G, if [G] = [g]
for all g ↔ G. This means all elements in G are equivalent. Let 𝐿 : S ↑ S be a transformer on S.
The equivalence is a congruence wrt. 𝐿 , if a ↗ b implies 𝐿 (a) ↗ 𝐿 (b). The de!nition generalizes
to functions in several arguments in the expected way. Factorizing S along ↗ yields the set of
equivalence classes S/↗ = {[a] | a ↔ S}. A representative system for S/↗ is a set 𝑀 → S that contains
precisely one element c ↔ 𝑁 for every class 𝑁 ↔ S/↗.

4 Contribution I – Oriented Metric Search Spaces
We !rst de!ne the main object of this paper, oriented metrics, and then turn to the search space
and the enumeration order. Finally, we describe the components of our CEGAR loop in detail.

4.1 Oriented Metrics
It will be convenient to give the de!nition for arbitrary sets S.

De!nition 4.1. m : D ↓ D ↑ R↘0 A function m : L(G) ↓ L(G) ↑ R↘0 is an oriented metric
(orimetric) if, for all a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation ↗m → S ↓ S where a ↗m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G → S, if the equivalence ↗m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↑ S, if this holds for ↗m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/↗m↓ S/↗m↑ R↘0 with qm ( [a], [b]) =m(a, b).

De!nition 4.2. A function m : S ↓ S ↑ R↘0 is an oriented metric (orimetric) if, for all a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation ↗m → S ↓ S where a ↗m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G → S, if the equivalence ↗m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↑ S, if this holds for ↗m. We generalize
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be supported. For strings with replacement, it is bene!cial to reward programs that produce
superstrings of the outputs given in the examples and punish programs that do not. We explain in
a moment how this plays together with the fact that concatenation prefers substrings. We begin by
de!ning an auxiliary quasimetric m̃ on strings:

m(i, o) =

{
len(i) → len(o) if i is a superstring of o
100 + |len(i) → len(o) | otherwise

For example, m(”PO”, ”POPL”) = 102 but m(”POPL”, ”PO”) = 2. Note that m̃ is not symmetric in
general, but it is symmetric at distance zero. We now lift the auxiliary quasimetric m̃ on strings
to an orimetric m on functions over strings. The de!nition is as expected, we evaluate the given
functions on the inputs from all examples and sum up the distances of the output values. To make
this formal, let J ↑ In and de!ne

mJ (𝐿 ,𝑀) =
∑
i↓J

m̃(𝐿 (i),𝑀(i)) .

mIn (p, q) =
∑
i↓In

m(p(i), q(i)) .

m𝐿 (p, q) =
∑
i↓{i1 }

m̃(p(i), q(i)) .

m𝐿 (p, q) =
∑

i↓{i1,i2 }
m̃(p(i), q(i)) .

Our orimetric is then m = mIn. We will use other instantiations of J in a moment. Note, that the
lifting does not result in a quasimetric. If two di"erent programs p and q produce the same outputs
on the given inputs, their distance is 0. A quasimetric would require p and q to be equal. This need
not be the case. In fact, allowing p and q to have a distance of zero while being di"erent is what
enables factorization in the !rst place.

With the orimetric at hand, we restrict the search to programs in the ball Br (gt), with the radius
r set to 100. This means we only keep programs that return a superstring of the output for every
input example. We admit that this is discrete, and does not make use of the fact that an orimetric
yields continuous values in R↔0. In our experiments, we will see more elaborate instantiations.

Note that focusing on superstrings does not mean we are not allowed to use the concat operator.
We can still use concat, but on the programs inside the ball. The superstring ball is even closed
under concatenation: concatenating superstrings yields a superstring. One may ask how this relates
to the above argument that concat prefers substrings. This argument was made for a comparison
with the !nal value. Since we use superstrings here, it means the !nal value cannot be produced by
concatenation, and so concat will not be the topmost operator in the solution to the synthesis task.
It can, however, still be a part of it.
Coming back to Figure 12, the programs that are additionally pruned by this orimetric are

highlighted in green. Figure 11 depicts the resulting search space as the green ball around gt. The
cardinality of the program sets is shown in Figure 13. Using only pruning is not as e"ective as
factorizing along observational equivalence, but combined we are only left with 81 programs to
explore in P7. In Figure 11, this search space is the intersection of the green ball and the red area.

With approximate orimetrics m𝐿, we can reduce the search space even further. The approximate
orimetrics should be rough so that the induced equivalence ↗m𝐿 eliminates many programs. We will
later recover precision by adding a re!nement loop. In our example, we use m𝐿 =mJ with J = {i1}.
This approximate orimetric only takes into account the !rst example when comparing functions,
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under concatenation: concatenating superstrings yields a superstring. One may ask how this relates
to the above argument that concat prefers substrings. This argument was made for a comparison
with the !nal value. Since we use superstrings here, it means the !nal value cannot be produced by
concatenation, and so concat will not be the topmost operator in the solution to the synthesis task.
It can, however, still be a part of it.
Coming back to Figure 12, the programs that are additionally pruned by this orimetric are

highlighted in green. Figure 11 depicts the resulting search space as the green ball around gt. The
cardinality of the program sets is shown in Figure 13. Using only pruning is not as e"ective as
factorizing along observational equivalence, but combined we are only left with 81 programs to
explore in P7. In Figure 11, this search space is the intersection of the green ball and the red area.

With approximate orimetrics m𝐿, we can reduce the search space even further. The approximate
orimetrics should be rough so that the induced equivalence ↗m𝐿 eliminates many programs. We will
later recover precision by adding a re!nement loop. In our example, we use m𝐿 =mJ with J = {i1}.
This approximate orimetric only takes into account the !rst example when comparing functions,
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Probe [6] OE learning (✁)
Duet [27] OE constant (✂)
Simba [48] OE constant (✂)

DryadSynth [15] OE constant (✂)
Synthphonia [16] OE constant (✂)

Merlin OE + Abstraction Re!nement + Orimetrics learning (✂)

Fig. 8. Comparison of enumerative SyGuS solvers.
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replace(S1,S2, 𝑃)

concat(S1,S2)

and(S1,S2)

2.2 State-of-the-Art
We discuss to what extent the state-of-the-art SyGuS solvers [2, 3, 15, 16, 27, 28, 47, 48] can be
seen as instances of the generic solver in Figure 1. The discussion shows that rather di#erent
techniques can be understood as (i) assuming an orimetric on the search space and (ii) improving
an enumeration order through learning. These two ingredients are often left implicit in the related
work. By making them explicit and giving them rigorous de!nitions, we provide a framework in
which SyGuS technology can be developed.
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We consider example-based speci!cations where ω → (Vars ↑ D) ↓ D consists of a !nite set of
input-output examples. A program satis!es the speci!cation, p |= ω, if !p"(i) = o for all (i, o) ↔ ω.
The ground truth GT → F consists of all functions that satisfy the speci!cation in this sense.

CEGIS. SyGuS problems that are not example based can still be solved with example-based
techniques. The idea, known as counterexample-guided inductive synthesis [41], is to let an SMT
solver generate new examples should a candidate program not yet satisfy the speci!cation. With
this argument, we focus on example-based speci!cations.

Equivalences. An equivalence ↗ → S ↓ S on a set S is a relation that is re"exive, symmetric, and
transitive. We write [a]↗ = {b | b ↗ a} for the equivalence class of a ↔ S. We just write [a] if the
equivalence relation is understood. We lift the notation to sets G → S and de!ne [G] =⋃

g↔G [g].
We call this the closure of G under ↗. The equivalence is precise wrt. G, if the closure does not
add any elements, [G] → G. Note that the reverse inclusion always holds. If the equivalence is
not precise wrt. G, it is called approximate. The equivalence is unambiguous wrt. G, if [G] = [g]
for all g ↔ G. This means all elements in G are equivalent. Let 𝐿 : S ↑ S be a transformer on S.
The equivalence is a congruence wrt. 𝐿 , if a ↗ b implies 𝐿 (a) ↗ 𝐿 (b). The de!nition generalizes
to functions in several arguments in the expected way. Factorizing S along ↗ yields the set of
equivalence classes S/↗ = {[a] | a ↔ S}. A representative system for S/↗ is a set 𝑀 → S that contains
precisely one element c ↔ 𝑁 for every class 𝑁 ↔ S/↗.

4 Contribution I – Oriented Metric Search Spaces
We !rst de!ne the main object of this paper, oriented metrics, and then turn to the search space
and the enumeration order. Finally, we describe the components of our CEGAR loop in detail.

4.1 Oriented Metrics
It will be convenient to give the de!nition for arbitrary sets S.

De!nition 4.1. m : D ↓ D ↑ R↘0 A function m : L(G) ↓ L(G) ↑ R↘0 is an oriented metric
(orimetric) if, for all a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation ↗m → S ↓ S where a ↗m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G → S, if the equivalence ↗m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↑ S, if this holds for ↗m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/↗m↓ S/↗m↑ R↘0 with qm ( [a], [b]) =m(a, b).

De!nition 4.2. A function m : S ↓ S ↑ R↘0 is an oriented metric (orimetric) if, for all a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation ↗m → S ↓ S where a ↗m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G → S, if the equivalence ↗m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↑ S, if this holds for ↗m. We generalize
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be supported. For strings with replacement, it is bene!cial to reward programs that produce
superstrings of the outputs given in the examples and punish programs that do not. We explain in
a moment how this plays together with the fact that concatenation prefers substrings. We begin by
de!ning an auxiliary quasimetric m̃ on strings:

m(i, o) =

{
len(i) → len(o) if i is a superstring of o
100 + |len(i) → len(o) | otherwise .

For example, m(”PO”, ”POPL”) = 102 but m(”POPL”, ”PO”) = 2. Note that m̃ is not symmetric in
general, but it is symmetric at distance zero. We now lift the auxiliary quasimetric m̃ on strings
to an orimetric m on functions over strings. The de!nition is as expected, we evaluate the given
functions on the inputs from all examples and sum up the distances of the output values. To make
this formal, let J ↑ In and de!ne

mJ (𝐿 ,𝑀) =
∑
i↓J

m̃(𝐿 (i),𝑀(i)) .

mIn (p, q) =
∑
i↓In

m(p(i), q(i)) .

m𝐿 (p, q) =
∑
i↓{i1 }

m̃(p(i), q(i)) .

m𝐿 (p, q) =
∑

i↓{i1,i2 }
m̃(p(i), q(i)) .

Our orimetric is then m = mIn. We will use other instantiations of J in a moment. Note, that the
lifting does not result in a quasimetric. If two di"erent programs p and q produce the same outputs
on the given inputs, their distance is 0. A quasimetric would require p and q to be equal. This need
not be the case. In fact, allowing p and q to have a distance of zero while being di"erent is what
enables factorization in the !rst place.

With the orimetric at hand, we restrict the search to programs in the ball Br (gt), with the radius
r set to 100. This means we only keep programs that return a superstring of the output for every
input example. We admit that this is discrete, and does not make use of the fact that an orimetric
yields continuous values in R↔0. In our experiments, we will see more elaborate instantiations.

Note that focusing on superstrings does not mean we are not allowed to use the concat operator.
We can still use concat, but on the programs inside the ball. The superstring ball is even closed
under concatenation: concatenating superstrings yields a superstring. One may ask how this relates
to the above argument that concat prefers substrings. This argument was made for a comparison
with the !nal value. Since we use superstrings here, it means the !nal value cannot be produced by
concatenation, and so concat will not be the topmost operator in the solution to the synthesis task.
It can, however, still be a part of it.
Coming back to Figure 12, the programs that are additionally pruned by this orimetric are

highlighted in green. Figure 11 depicts the resulting search space as the green ball around gt. The
cardinality of the program sets is shown in Figure 13. Using only pruning is not as e"ective as
factorizing along observational equivalence, but combined we are only left with 81 programs to
explore in P7. In Figure 11, this search space is the intersection of the green ball and the red area.

With approximate orimetrics m𝐿, we can reduce the search space even further. The approximate
orimetrics should be rough so that the induced equivalence ↗m𝐿 eliminates many programs. We will
later recover precision by adding a re!nement loop. In our example, we use m𝐿 =mJ with J = {i1}.
This approximate orimetric only takes into account the !rst example when comparing functions,
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initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune(L(G),m𝐿, gt)

Search(Q,m𝐿, gt,→ ↑ (Q ↓ Q))

Factorize(P,m𝐿,→)

Refine(m𝐿, p, gt)

Learn(→, { q ↔ Q | q → p }, gt)

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 1. CEGAR loop for synthesis.

initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune

Search

Factorize

Refine

Learn

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 2. CEGAR loop for synthesis.

S ::= V | replace(S,S,S) | concat(S,S)
V ::= x | 𝐿 | "!Conf" | "!City"

Fig. 3. Example grammar G.

In Out
"POPL!Conf" "POPL"
"Rennes!City" "Rennes"
"PLDI!Conf" "PLDI"
"Seoul!City" "Seoul"

Fig. 4. Input-output examples (In,Out).
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be supported. For strings with replacement, it is bene!cial to reward programs that produce
superstrings of the outputs given in the examples and punish programs that do not. We explain in
a moment how this plays together with the fact that concatenation prefers substrings. We begin by
de!ning an auxiliary quasimetric m̃ on strings:

m(i, o) =

{
len(i) → len(o) if i is a superstring of o
100 + |len(i) → len(o) | otherwise

For example, m(”PO”, ”POPL”) = 102 but m(”POPL”, ”PO”) = 2. Note that m̃ is not symmetric in
general, but it is symmetric at distance zero. We now lift the auxiliary quasimetric m̃ on strings
to an orimetric m on functions over strings. The de!nition is as expected, we evaluate the given
functions on the inputs from all examples and sum up the distances of the output values. To make
this formal, let J ↑ In and de!ne

mJ (𝐿 ,𝑀) =
∑
i↓J

m̃(𝐿 (i),𝑀(i)) .

mIn (p, q) =
∑
i↓In

m(p(i), q(i)) .

m𝐿 (p, q) =
∑
i↓{i1 }

m̃(p(i), q(i)) .

m𝐿 (p, q) =
∑

i↓{i1,i2 }
m̃(p(i), q(i)) .

Our orimetric is then m = mIn. We will use other instantiations of J in a moment. Note, that the
lifting does not result in a quasimetric. If two di"erent programs p and q produce the same outputs
on the given inputs, their distance is 0. A quasimetric would require p and q to be equal. This need
not be the case. In fact, allowing p and q to have a distance of zero while being di"erent is what
enables factorization in the !rst place.

With the orimetric at hand, we restrict the search to programs in the ball Br (gt), with the radius
r set to 100. This means we only keep programs that return a superstring of the output for every
input example. We admit that this is discrete, and does not make use of the fact that an orimetric
yields continuous values in R↔0. In our experiments, we will see more elaborate instantiations.

Note that focusing on superstrings does not mean we are not allowed to use the concat operator.
We can still use concat, but on the programs inside the ball. The superstring ball is even closed
under concatenation: concatenating superstrings yields a superstring. One may ask how this relates
to the above argument that concat prefers substrings. This argument was made for a comparison
with the !nal value. Since we use superstrings here, it means the !nal value cannot be produced by
concatenation, and so concat will not be the topmost operator in the solution to the synthesis task.
It can, however, still be a part of it.
Coming back to Figure 12, the programs that are additionally pruned by this orimetric are

highlighted in green. Figure 11 depicts the resulting search space as the green ball around gt. The
cardinality of the program sets is shown in Figure 13. Using only pruning is not as e"ective as
factorizing along observational equivalence, but combined we are only left with 81 programs to
explore in P7. In Figure 11, this search space is the intersection of the green ball and the red area.

With approximate orimetrics m𝐿, we can reduce the search space even further. The approximate
orimetrics should be rough so that the induced equivalence ↗m𝐿 eliminates many programs. We will
later recover precision by adding a re!nement loop. In our example, we use m𝐿 =mJ with J = {i1}.
This approximate orimetric only takes into account the !rst example when comparing functions,

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 75. Publication date: January 2026.



Pruning with an Orimetric 

Set radius    to       .r 100

75:8 Roland Meyer and Jakob Tepe

2.1 Example

→
gt

L(G)/↑mI

L(G)/↑
m𝐿

L(G)

Fig. 5. Search space and enumeration order.

→
gt L(G)/OE

L(G)

Fig. 6. Search space and enumeration order.

→
gt L(G)/OE#

L(G)

Fig. 7. Search space and enumeration order.

→
gt

L(G)

Fig. 8. Search space and enumeration order.
We illustrate our algorithm by solving an example problem in the string domain. We will repeatedly
refer to Figure 9 to make the link to the conceptual development introduced above. Figure 3
depicts a context-free grammar G and Figure 4 shows gt as four input-output examples (I ,𝐿).
The nonterminal Init can be rewritten to the input variable x or to string constants, where 𝑀 is
the empty string. The operator replace takes as arguments three strings: the !rst is the string in
which the replacement should happen, namely the !rst occurrence of the second argument, should
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be supported. For strings with replacement, it is bene!cial to reward programs that produce
superstrings of the outputs given in the examples and punish programs that do not. We explain in
a moment how this plays together with the fact that concatenation prefers substrings. We begin by
de!ning an auxiliary quasimetric m̃ on strings:

m(i, o) =

{
len(i) → len(o) if i is a superstring of o
100 + |len(i) → len(o) | otherwise .

For example, m(”PO”, ”POPL”) = 102 but m(”POPL”, ”PO”) = 2. Note that m̃ is not symmetric in
general, but it is symmetric at distance zero. We now lift the auxiliary quasimetric m̃ on strings
to an orimetric m on functions over strings. The de!nition is as expected, we evaluate the given
functions on the inputs from all examples and sum up the distances of the output values. To make
this formal, let J ↑ In and de!ne

mJ (𝐿 ,𝑀) =
∑
i↓J

m̃(𝐿 (i),𝑀(i)) .

mIn (p, q) =
∑
i↓In

m(p(i), q(i)) .

m𝐿 (p, q) =
∑
i↓{i1 }

m̃(p(i), q(i)) .

m𝐿 (p, q) =
∑

i↓{i1,i2 }
m̃(p(i), q(i)) .

Our orimetric is then m = mIn. We will use other instantiations of J in a moment. Note, that the
lifting does not result in a quasimetric. If two di"erent programs p and q produce the same outputs
on the given inputs, their distance is 0. A quasimetric would require p and q to be equal. This need
not be the case. In fact, allowing p and q to have a distance of zero while being di"erent is what
enables factorization in the !rst place.

With the orimetric at hand, we restrict the search to programs in the ball Br (gt), with the radius
r set to 100. This means we only keep programs that return a superstring of the output for every
input example. We admit that this is discrete, and does not make use of the fact that an orimetric
yields continuous values in R↔0. In our experiments, we will see more elaborate instantiations.

Note that focusing on superstrings does not mean we are not allowed to use the concat operator.
We can still use concat, but on the programs inside the ball. The superstring ball is even closed
under concatenation: concatenating superstrings yields a superstring. One may ask how this relates
to the above argument that concat prefers substrings. This argument was made for a comparison
with the !nal value. Since we use superstrings here, it means the !nal value cannot be produced by
concatenation, and so concat will not be the topmost operator in the solution to the synthesis task.
It can, however, still be a part of it.
Coming back to Figure 12, the programs that are additionally pruned by this orimetric are

highlighted in green. Figure 11 depicts the resulting search space as the green ball around gt. The
cardinality of the program sets is shown in Figure 13. Using only pruning is not as e"ective as
factorizing along observational equivalence, but combined we are only left with 81 programs to
explore in P7. In Figure 11, this search space is the intersection of the green ball and the red area.

With approximate orimetrics m𝐿, we can reduce the search space even further. The approximate
orimetrics should be rough so that the induced equivalence ↗m𝐿 eliminates many programs. We will
later recover precision by adding a re!nement loop. In our example, we use m𝐿 =mJ with J = {i1}.
This approximate orimetric only takes into account the !rst example when comparing functions,
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Fig. 1. CEGAR loop for synthesis.
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Fig. 2. CEGAR loop for synthesis.

S ::= V | replace(S,S,S) | concat(S,S)
V ::= x | 𝐿 | "!Conf" | "!City"

Fig. 3. Example grammar G.

In Out
"POPL!Conf" "POPL"
"Rennes!City" "Rennes"
"PLDI!Conf" "PLDI"
"Seoul!City" "Seoul"

Fig. 4. Input-output examples (In,Out).
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be supported. For strings with replacement, it is bene!cial to reward programs that produce
superstrings of the outputs given in the examples and punish programs that do not. We explain in
a moment how this plays together with the fact that concatenation prefers substrings. We begin by
de!ning an auxiliary quasimetric m̃ on strings:

m(i, o) =

{
len(i) → len(o) if i is a superstring of o
100 + |len(i) → len(o) | otherwise

For example, m(”PO”, ”POPL”) = 102 but m(”POPL”, ”PO”) = 2. Note that m̃ is not symmetric in
general, but it is symmetric at distance zero. We now lift the auxiliary quasimetric m̃ on strings
to an orimetric m on functions over strings. The de!nition is as expected, we evaluate the given
functions on the inputs from all examples and sum up the distances of the output values. To make
this formal, let J ↑ In and de!ne

mJ (𝐿 ,𝑀) =
∑
i↓J

m̃(𝐿 (i),𝑀(i)) .

mIn (p, q) =
∑
i↓In

m(p(i), q(i)) .

m𝐿 (p, q) =
∑
i↓{i1 }

m̃(p(i), q(i)) .

m𝐿 (p, q) =
∑

i↓{i1,i2 }
m̃(p(i), q(i)) .

Our orimetric is then m = mIn. We will use other instantiations of J in a moment. Note, that the
lifting does not result in a quasimetric. If two di"erent programs p and q produce the same outputs
on the given inputs, their distance is 0. A quasimetric would require p and q to be equal. This need
not be the case. In fact, allowing p and q to have a distance of zero while being di"erent is what
enables factorization in the !rst place.

With the orimetric at hand, we restrict the search to programs in the ball Br (gt), with the radius
r set to 100. This means we only keep programs that return a superstring of the output for every
input example. We admit that this is discrete, and does not make use of the fact that an orimetric
yields continuous values in R↔0. In our experiments, we will see more elaborate instantiations.

Note that focusing on superstrings does not mean we are not allowed to use the concat operator.
We can still use concat, but on the programs inside the ball. The superstring ball is even closed
under concatenation: concatenating superstrings yields a superstring. One may ask how this relates
to the above argument that concat prefers substrings. This argument was made for a comparison
with the !nal value. Since we use superstrings here, it means the !nal value cannot be produced by
concatenation, and so concat will not be the topmost operator in the solution to the synthesis task.
It can, however, still be a part of it.
Coming back to Figure 12, the programs that are additionally pruned by this orimetric are

highlighted in green. Figure 11 depicts the resulting search space as the green ball around gt. The
cardinality of the program sets is shown in Figure 13. Using only pruning is not as e"ective as
factorizing along observational equivalence, but combined we are only left with 81 programs to
explore in P7. In Figure 11, this search space is the intersection of the green ball and the red area.

With approximate orimetrics m𝐿, we can reduce the search space even further. The approximate
orimetrics should be rough so that the induced equivalence ↗m𝐿 eliminates many programs. We will
later recover precision by adding a re!nement loop. In our example, we use m𝐿 =mJ with J = {i1}.
This approximate orimetric only takes into account the !rst example when comparing functions,
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Fig. 8. Search space and enumeration order.
We illustrate our algorithm by solving an example problem in the string domain. We will repeatedly
refer to Figure 9 to make the link to the conceptual development introduced above. Figure 3
depicts a context-free grammar G and Figure 4 shows gt as four input-output examples (I ,𝐿).
The nonterminal Init can be rewritten to the input variable x or to string constants, where 𝑀 is
the empty string. The operator replace takes as arguments three strings: the !rst is the string in
which the replacement should happen, namely the !rst occurrence of the second argument, should
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Solver Search Space Pruning / Factorization Enumeration Order (Deduction)
ESolver [2] Observational Equivalence (OE) constant (✁)
EUSolver [3] OE constant (✂)
Blaze [47] OE + Abstraction Re!nement + Automata constant (✁)

EUPhony [28] weak OE constant/o"ine learning (✂)
Probe [6] OE learning (✁)
Duet [27] OE constant (✂)
Simba [48] OE constant (✂)

DryadSynth [15] OE constant (✂)
Synthphonia [16] OE constant (✂)

Merlin OE + Abstraction Re!nement + Orimetrics learning (✂)

Fig. 15. Comparison of enumerative SyGuS solvers.
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replace(S1,S2, 𝑃)

concat(S1,S2)

and(S1,S2)

m𝐿 (r(x, "#Conference", 𝑃), gt) = 0

m𝐿 (r(x, "#City", "#Conference"), x) = 0

mI ("#City"."#City", gt) > 100
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be supported. For strings with replacement, it is bene!cial to reward programs that produce
superstrings of the outputs given in the examples and punish programs that do not. We explain in
a moment how this plays together with the fact that concatenation prefers substrings. We begin by
de!ning an auxiliary quasimetric m̃ on strings:

m(i, o) =

{
len(i) → len(o) if i is a superstring of o
100 + |len(i) → len(o) | otherwise .

For example, m(”PO”, ”POPL”) = 102 but m(”POPL”, ”PO”) = 2. Note that m̃ is not symmetric in
general, but it is symmetric at distance zero. We now lift the auxiliary quasimetric m̃ on strings
to an orimetric m on functions over strings. The de!nition is as expected, we evaluate the given
functions on the inputs from all examples and sum up the distances of the output values. To make
this formal, let J ↑ In and de!ne

mJ (𝐿 ,𝑀) =
∑
i↓J

m̃(𝐿 (i),𝑀(i)) .

mIn (p, q) =
∑
i↓In

m(p(i), q(i)) .

m𝐿 (p, q) =
∑
i↓{i1 }

m̃(p(i), q(i)) .

m𝐿 (p, q) =
∑

i↓{i1,i2 }
m̃(p(i), q(i)) .

Our orimetric is then m = mIn. We will use other instantiations of J in a moment. Note, that the
lifting does not result in a quasimetric. If two di"erent programs p and q produce the same outputs
on the given inputs, their distance is 0. A quasimetric would require p and q to be equal. This need
not be the case. In fact, allowing p and q to have a distance of zero while being di"erent is what
enables factorization in the !rst place.

With the orimetric at hand, we restrict the search to programs in the ball Br (gt), with the radius
r set to 100. This means we only keep programs that return a superstring of the output for every
input example. We admit that this is discrete, and does not make use of the fact that an orimetric
yields continuous values in R↔0. In our experiments, we will see more elaborate instantiations.

Note that focusing on superstrings does not mean we are not allowed to use the concat operator.
We can still use concat, but on the programs inside the ball. The superstring ball is even closed
under concatenation: concatenating superstrings yields a superstring. One may ask how this relates
to the above argument that concat prefers substrings. This argument was made for a comparison
with the !nal value. Since we use superstrings here, it means the !nal value cannot be produced by
concatenation, and so concat will not be the topmost operator in the solution to the synthesis task.
It can, however, still be a part of it.
Coming back to Figure 12, the programs that are additionally pruned by this orimetric are

highlighted in green. Figure 11 depicts the resulting search space as the green ball around gt. The
cardinality of the program sets is shown in Figure 13. Using only pruning is not as e"ective as
factorizing along observational equivalence, but combined we are only left with 81 programs to
explore in P7. In Figure 11, this search space is the intersection of the green ball and the red area.

With approximate orimetrics m𝐿, we can reduce the search space even further. The approximate
orimetrics should be rough so that the induced equivalence ↗m𝐿 eliminates many programs. We will
later recover precision by adding a re!nement loop. In our example, we use m𝐿 =mJ with J = {i1}.
This approximate orimetric only takes into account the !rst example when comparing functions,
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initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune(L(G),m𝐿, gt)

Search(Q,m𝐿, gt,→ ↑ (Q ↓ Q))

Factorize(P,m𝐿,→)

Refine(m𝐿, p, gt)

Learn(→, { q ↔ Q | q → p }, gt)

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 1. CEGAR loop for synthesis.

initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune

Search

Factorize

Refine

Learn

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 2. CEGAR loop for synthesis.

S ::= V | replace(S,S,S) | concat(S,S)
V ::= x | 𝐿 | "!Conf" | "!City"

Fig. 3. Example grammar G.

In Out
"POPL!Conf" "POPL"
"Rennes!City" "Rennes"
"PLDI!Conf" "PLDI"
"Seoul!City" "Seoul"

Fig. 4. Input-output examples (In,Out).
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be supported. For strings with replacement, it is bene!cial to reward programs that produce
superstrings of the outputs given in the examples and punish programs that do not. We explain in
a moment how this plays together with the fact that concatenation prefers substrings. We begin by
de!ning an auxiliary quasimetric m̃ on strings:

m(i, o) =

{
len(i) → len(o) if i is a superstring of o
100 + |len(i) → len(o) | otherwise

For example, m(”PO”, ”POPL”) = 102 but m(”POPL”, ”PO”) = 2. Note that m̃ is not symmetric in
general, but it is symmetric at distance zero. We now lift the auxiliary quasimetric m̃ on strings
to an orimetric m on functions over strings. The de!nition is as expected, we evaluate the given
functions on the inputs from all examples and sum up the distances of the output values. To make
this formal, let J ↑ In and de!ne

mJ (𝐿 ,𝑀) =
∑
i↓J

m̃(𝐿 (i),𝑀(i)) .

mIn (p, q) =
∑
i↓In

m(p(i), q(i)) .

m𝐿 (p, q) =
∑
i↓{i1 }

m̃(p(i), q(i)) .

m𝐿 (p, q) =
∑

i↓{i1,i2 }
m̃(p(i), q(i)) .

Our orimetric is then m = mIn. We will use other instantiations of J in a moment. Note, that the
lifting does not result in a quasimetric. If two di"erent programs p and q produce the same outputs
on the given inputs, their distance is 0. A quasimetric would require p and q to be equal. This need
not be the case. In fact, allowing p and q to have a distance of zero while being di"erent is what
enables factorization in the !rst place.

With the orimetric at hand, we restrict the search to programs in the ball Br (gt), with the radius
r set to 100. This means we only keep programs that return a superstring of the output for every
input example. We admit that this is discrete, and does not make use of the fact that an orimetric
yields continuous values in R↔0. In our experiments, we will see more elaborate instantiations.

Note that focusing on superstrings does not mean we are not allowed to use the concat operator.
We can still use concat, but on the programs inside the ball. The superstring ball is even closed
under concatenation: concatenating superstrings yields a superstring. One may ask how this relates
to the above argument that concat prefers substrings. This argument was made for a comparison
with the !nal value. Since we use superstrings here, it means the !nal value cannot be produced by
concatenation, and so concat will not be the topmost operator in the solution to the synthesis task.
It can, however, still be a part of it.
Coming back to Figure 12, the programs that are additionally pruned by this orimetric are

highlighted in green. Figure 11 depicts the resulting search space as the green ball around gt. The
cardinality of the program sets is shown in Figure 13. Using only pruning is not as e"ective as
factorizing along observational equivalence, but combined we are only left with 81 programs to
explore in P7. In Figure 11, this search space is the intersection of the green ball and the red area.

With approximate orimetrics m𝐿, we can reduce the search space even further. The approximate
orimetrics should be rough so that the induced equivalence ↗m𝐿 eliminates many programs. We will
later recover precision by adding a re!nement loop. In our example, we use m𝐿 =mJ with J = {i1}.
This approximate orimetric only takes into account the !rst example when comparing functions,
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Solver Search Space Pruning / Factorization Enumeration Order (Deduction)
ESolver [2] Observational Equivalence (OE) constant (✁)
EUSolver [3] OE constant (✂)
Blaze [47] OE + Abstraction Re!nement + Automata constant (✁)

EUPhony [28] weak OE constant/o"ine learning (✂)
Probe [6] OE learning (✁)
Duet [27] OE constant (✂)
Simba [48] OE constant (✂)

DryadSynth [15] OE constant (✂)
Synthphonia [16] OE constant (✂)

Merlin OE + Abstraction Re!nement + Orimetrics learning (✂)

Fig. 15. Comparison of enumerative SyGuS solvers.
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𝐿

𝑀

𝑁

𝑂

𝐿

𝑀

𝑁

𝑁

replace(S1,S2, 𝑃)

concat(S1,S2)

and(S1,S2)

m𝐿 (r(x, "#Conf", 𝑃), gt) = 0
m𝐿 (r(x, "#City", "#Conf"), x) = 0
mIn ("#City"."#City", gt) > 100

2.2 State-of-the-Art
We discuss to what extent the state-of-the-art SyGuS solvers [2, 3, 15, 16, 27, 28, 47, 48] can be
seen as instances of the generic solver in Figure 1. The discussion shows that rather di$erent
techniques can be understood as (i) assuming an orimetric on the search space and (ii) improving
an enumeration order through learning. These two ingredients are often left implicit in the related
work. By making them explicit and giving them rigorous de!nitions, we provide a framework in
which SyGuS technology can be developed.

The discussion of the solvers is summarized in Figure 15. The second column describes the
pruning technique that is applied to reduce the search space. The third column categorizes the
enumeration order as constant or learning, and indicates whether deductive elements are used.
ESolver [2] is the basis of enumerative SyGuS solvers. It enumerates programs by size until it

!nds a program that works for all examples. ESolver applies observational equivalence to factorize
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2.1 Example

→
gt

L(G)/↑mI

L(G)/↑
m𝐿

L(G)

Fig. 5. Search space and enumeration order.

→
gt L(G)/OE

L(G)

Fig. 6. Search space and enumeration order.

→
gt L(G)/OE#

L(G)

Fig. 7. Search space and enumeration order.

→
gt

L(G)

Fig. 8. Search space and enumeration order.
We illustrate our algorithm by solving an example problem in the string domain. We will repeatedly
refer to Figure 9 to make the link to the conceptual development introduced above. Figure 3
depicts a context-free grammar G and Figure 4 shows gt as four input-output examples (I ,𝐿).
The nonterminal Init can be rewritten to the input variable x or to string constants, where 𝑀 is
the empty string. The operator replace takes as arguments three strings: the !rst is the string in
which the replacement should happen, namely the !rst occurrence of the second argument, should
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Solver Search Space Pruning / Factorization Enumeration Order (Deduction)
ESolver [2] Observational Equivalence (OE) constant (✁)
EUSolver [3] OE constant (✂)
Blaze [47] OE + Abstraction Re!nement + Automata constant (✁)

EUPhony [28] weak OE constant/o"ine learning (✂)
Probe [6] OE learning (✁)
Duet [27] OE constant (✂)
Simba [48] OE constant (✂)

DryadSynth [15] OE constant (✂)
Synthphonia [16] OE constant (✂)

Merlin OE + Abstraction Re!nement + Orimetrics learning (✂)

Fig. 15. Comparison of enumerative SyGuS solvers.
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replace(S1,S2, 𝑃)

concat(S1,S2)

and(S1,S2)

m𝐿 (r(x, "#Conference", 𝑃), gt) = 0

m𝐿 (r(x, "#City", "#Conference"), x) = 0

mI ("#City"."#City", gt) > 100
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be supported. For strings with replacement, it is bene!cial to reward programs that produce
superstrings of the outputs given in the examples and punish programs that do not. We explain in
a moment how this plays together with the fact that concatenation prefers substrings. We begin by
de!ning an auxiliary quasimetric m̃ on strings:

m(i, o) =

{
len(i) → len(o) if i is a superstring of o
100 + |len(i) → len(o) | otherwise .

For example, m(”PO”, ”POPL”) = 102 but m(”POPL”, ”PO”) = 2. Note that m̃ is not symmetric in
general, but it is symmetric at distance zero. We now lift the auxiliary quasimetric m̃ on strings
to an orimetric m on functions over strings. The de!nition is as expected, we evaluate the given
functions on the inputs from all examples and sum up the distances of the output values. To make
this formal, let J ↑ In and de!ne

mJ (𝐿 ,𝑀) =
∑
i↓J

m̃(𝐿 (i),𝑀(i)) .

mIn (p, q) =
∑
i↓In

m(p(i), q(i)) .

m𝐿 (p, q) =
∑
i↓{i1 }

m̃(p(i), q(i)) .

m𝐿 (p, q) =
∑

i↓{i1,i2 }
m̃(p(i), q(i)) .

Our orimetric is then m = mIn. We will use other instantiations of J in a moment. Note, that the
lifting does not result in a quasimetric. If two di"erent programs p and q produce the same outputs
on the given inputs, their distance is 0. A quasimetric would require p and q to be equal. This need
not be the case. In fact, allowing p and q to have a distance of zero while being di"erent is what
enables factorization in the !rst place.

With the orimetric at hand, we restrict the search to programs in the ball Br (gt), with the radius
r set to 100. This means we only keep programs that return a superstring of the output for every
input example. We admit that this is discrete, and does not make use of the fact that an orimetric
yields continuous values in R↔0. In our experiments, we will see more elaborate instantiations.

Note that focusing on superstrings does not mean we are not allowed to use the concat operator.
We can still use concat, but on the programs inside the ball. The superstring ball is even closed
under concatenation: concatenating superstrings yields a superstring. One may ask how this relates
to the above argument that concat prefers substrings. This argument was made for a comparison
with the !nal value. Since we use superstrings here, it means the !nal value cannot be produced by
concatenation, and so concat will not be the topmost operator in the solution to the synthesis task.
It can, however, still be a part of it.
Coming back to Figure 12, the programs that are additionally pruned by this orimetric are

highlighted in green. Figure 11 depicts the resulting search space as the green ball around gt. The
cardinality of the program sets is shown in Figure 13. Using only pruning is not as e"ective as
factorizing along observational equivalence, but combined we are only left with 81 programs to
explore in P7. In Figure 11, this search space is the intersection of the green ball and the red area.

With approximate orimetrics m𝐿, we can reduce the search space even further. The approximate
orimetrics should be rough so that the induced equivalence ↗m𝐿 eliminates many programs. We will
later recover precision by adding a re!nement loop. In our example, we use m𝐿 =mJ with J = {i1}.
This approximate orimetric only takes into account the !rst example when comparing functions,
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initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune(L(G),m𝐿, gt)

Search(Q,m𝐿, gt,→ ↑ (Q ↓ Q))

Factorize(P,m𝐿,→)

Refine(m𝐿, p, gt)

Learn(→, { q ↔ Q | q → p }, gt)

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 1. CEGAR loop for synthesis.

initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune

Search

Factorize

Refine

Learn

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 2. CEGAR loop for synthesis.

S ::= V | replace(S,S,S) | concat(S,S)
V ::= x | 𝐿 | "!Conf" | "!City"

Fig. 3. Example grammar G.

In Out
"POPL!Conf" "POPL"
"Rennes!City" "Rennes"
"PLDI!Conf" "PLDI"
"Seoul!City" "Seoul"

Fig. 4. Input-output examples (In,Out).

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 75. Publication date: January 2026.

75:10 Roland Meyer and Jakob Tepe

be supported. For strings with replacement, it is bene!cial to reward programs that produce
superstrings of the outputs given in the examples and punish programs that do not. We explain in
a moment how this plays together with the fact that concatenation prefers substrings. We begin by
de!ning an auxiliary quasimetric m̃ on strings:

m(i, o) =

{
len(i) → len(o) if i is a superstring of o
100 + |len(i) → len(o) | otherwise

For example, m(”PO”, ”POPL”) = 102 but m(”POPL”, ”PO”) = 2. Note that m̃ is not symmetric in
general, but it is symmetric at distance zero. We now lift the auxiliary quasimetric m̃ on strings
to an orimetric m on functions over strings. The de!nition is as expected, we evaluate the given
functions on the inputs from all examples and sum up the distances of the output values. To make
this formal, let J ↑ In and de!ne

mJ (𝐿 ,𝑀) =
∑
i↓J

m̃(𝐿 (i),𝑀(i)) .

mIn (p, q) =
∑
i↓In

m(p(i), q(i)) .

m𝐿 (p, q) =
∑
i↓{i1 }

m̃(p(i), q(i)) .

m𝐿 (p, q) =
∑

i↓{i1,i2 }
m̃(p(i), q(i)) .

Our orimetric is then m = mIn. We will use other instantiations of J in a moment. Note, that the
lifting does not result in a quasimetric. If two di"erent programs p and q produce the same outputs
on the given inputs, their distance is 0. A quasimetric would require p and q to be equal. This need
not be the case. In fact, allowing p and q to have a distance of zero while being di"erent is what
enables factorization in the !rst place.

With the orimetric at hand, we restrict the search to programs in the ball Br (gt), with the radius
r set to 100. This means we only keep programs that return a superstring of the output for every
input example. We admit that this is discrete, and does not make use of the fact that an orimetric
yields continuous values in R↔0. In our experiments, we will see more elaborate instantiations.

Note that focusing on superstrings does not mean we are not allowed to use the concat operator.
We can still use concat, but on the programs inside the ball. The superstring ball is even closed
under concatenation: concatenating superstrings yields a superstring. One may ask how this relates
to the above argument that concat prefers substrings. This argument was made for a comparison
with the !nal value. Since we use superstrings here, it means the !nal value cannot be produced by
concatenation, and so concat will not be the topmost operator in the solution to the synthesis task.
It can, however, still be a part of it.
Coming back to Figure 12, the programs that are additionally pruned by this orimetric are

highlighted in green. Figure 11 depicts the resulting search space as the green ball around gt. The
cardinality of the program sets is shown in Figure 13. Using only pruning is not as e"ective as
factorizing along observational equivalence, but combined we are only left with 81 programs to
explore in P7. In Figure 11, this search space is the intersection of the green ball and the red area.

With approximate orimetrics m𝐿, we can reduce the search space even further. The approximate
orimetrics should be rough so that the induced equivalence ↗m𝐿 eliminates many programs. We will
later recover precision by adding a re!nement loop. In our example, we use m𝐿 =mJ with J = {i1}.
This approximate orimetric only takes into account the !rst example when comparing functions,
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2.1 Example

→
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L(G)/↑mI

L(G)/↑
m𝐿

L(G)

Fig. 5. Search space and enumeration order.

→
gt L(G)/OE

L(G)

Fig. 6. Search space and enumeration order.

→
gt L(G)/OE#

L(G)

Fig. 7. Search space and enumeration order.

→
gt

L(G)

Fig. 8. Search space and enumeration order.
We illustrate our algorithm by solving an example problem in the string domain. We will repeatedly
refer to Figure 9 to make the link to the conceptual development introduced above. Figure 3
depicts a context-free grammar G and Figure 4 shows gt as four input-output examples (I ,𝐿).
The nonterminal Init can be rewritten to the input variable x or to string constants, where 𝑀 is
the empty string. The operator replace takes as arguments three strings: the !rst is the string in
which the replacement should happen, namely the !rst occurrence of the second argument, should

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 75. Publication date: January 2026.

Oriented Metrics for Bo!om-Up Enumerative Synthesis 75:13

Solver Search Space Pruning / Factorization Enumeration Order (Deduction)
ESolver [2] Observational Equivalence (OE) constant (✁)
EUSolver [3] OE constant (✂)
Blaze [47] OE + Abstraction Re!nement + Automata constant (✁)

EUPhony [28] weak OE constant/o"ine learning (✂)
Probe [6] OE learning (✁)
Duet [27] OE constant (✂)
Simba [48] OE constant (✂)

DryadSynth [15] OE constant (✂)
Synthphonia [16] OE constant (✂)

Merlin OE + Abstraction Re!nement + Orimetrics learning (✂)

Fig. 15. Comparison of enumerative SyGuS solvers.
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replace(S1,S2, 𝑃)

concat(S1,S2)

and(S1,S2)

m𝐿 (r(x, "#Conference", 𝑃), gt) = 0

m𝐿 (r(x, "#City", "#Conference"), x) = 0

mI ("#City"."#City", gt) > 100
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be supported. For strings with replacement, it is bene!cial to reward programs that produce
superstrings of the outputs given in the examples and punish programs that do not. We explain in
a moment how this plays together with the fact that concatenation prefers substrings. We begin by
de!ning an auxiliary quasimetric m̃ on strings:

m(i, o) =

{
len(i) → len(o) if i is a superstring of o
100 + |len(i) → len(o) | otherwise .

For example, m(”PO”, ”POPL”) = 102 but m(”POPL”, ”PO”) = 2. Note that m̃ is not symmetric in
general, but it is symmetric at distance zero. We now lift the auxiliary quasimetric m̃ on strings
to an orimetric m on functions over strings. The de!nition is as expected, we evaluate the given
functions on the inputs from all examples and sum up the distances of the output values. To make
this formal, let J ↑ In and de!ne

mJ (𝐿 ,𝑀) =
∑
i↓J

m̃(𝐿 (i),𝑀(i)) .

mIn (p, q) =
∑
i↓In

m(p(i), q(i)) .

m𝐿 (p, q) =
∑
i↓{i1 }

m̃(p(i), q(i)) .

m𝐿 (p, q) =
∑

i↓{i1,i2 }
m̃(p(i), q(i)) .

Our orimetric is then m = mIn. We will use other instantiations of J in a moment. Note, that the
lifting does not result in a quasimetric. If two di"erent programs p and q produce the same outputs
on the given inputs, their distance is 0. A quasimetric would require p and q to be equal. This need
not be the case. In fact, allowing p and q to have a distance of zero while being di"erent is what
enables factorization in the !rst place.

With the orimetric at hand, we restrict the search to programs in the ball Br (gt), with the radius
r set to 100. This means we only keep programs that return a superstring of the output for every
input example. We admit that this is discrete, and does not make use of the fact that an orimetric
yields continuous values in R↔0. In our experiments, we will see more elaborate instantiations.

Note that focusing on superstrings does not mean we are not allowed to use the concat operator.
We can still use concat, but on the programs inside the ball. The superstring ball is even closed
under concatenation: concatenating superstrings yields a superstring. One may ask how this relates
to the above argument that concat prefers substrings. This argument was made for a comparison
with the !nal value. Since we use superstrings here, it means the !nal value cannot be produced by
concatenation, and so concat will not be the topmost operator in the solution to the synthesis task.
It can, however, still be a part of it.
Coming back to Figure 12, the programs that are additionally pruned by this orimetric are

highlighted in green. Figure 11 depicts the resulting search space as the green ball around gt. The
cardinality of the program sets is shown in Figure 13. Using only pruning is not as e"ective as
factorizing along observational equivalence, but combined we are only left with 81 programs to
explore in P7. In Figure 11, this search space is the intersection of the green ball and the red area.

With approximate orimetrics m𝐿, we can reduce the search space even further. The approximate
orimetrics should be rough so that the induced equivalence ↗m𝐿 eliminates many programs. We will
later recover precision by adding a re!nement loop. In our example, we use m𝐿 =mJ with J = {i1}.
This approximate orimetric only takes into account the !rst example when comparing functions,
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Solver Search Space Pruning / Factorization Enumeration Order (Deduction)
ESolver [2] Observational Equivalence (OE) constant (✁)
EUSolver [3] OE constant (✂)
Blaze [47] OE + Abstraction Re!nement + Automata constant (✁)

EUPhony [28] weak OE constant/o"ine learning (✂)
Probe [6] OE learning (✁)
Duet [27] OE constant (✂)
Simba [48] OE constant (✂)

DryadSynth [15] OE constant (✂)
Synthphonia [16] OE constant (✂)

Merlin OE + Abstraction Re!nement + Orimetrics learning (✂)

Fig. 15. Comparison of enumerative SyGuS solvers.




𝐿

𝑀

𝑁

𝑂

𝐿

𝑀

𝑁

𝑁

replace(S1,S2, 𝑃)

concat(S1,S2)

and(S1,S2)

m𝐿 (r(x, "#Conf", 𝑃), gt) = 0
m𝐿 (r(x, "#City", "#Conf"), x) = 0
mIn ("#City"."#City", gt) > 100

2.2 State-of-the-Art
We discuss to what extent the state-of-the-art SyGuS solvers [2, 3, 15, 16, 27, 28, 47, 48] can be
seen as instances of the generic solver in Figure 1. The discussion shows that rather di$erent
techniques can be understood as (i) assuming an orimetric on the search space and (ii) improving
an enumeration order through learning. These two ingredients are often left implicit in the related
work. By making them explicit and giving them rigorous de!nitions, we provide a framework in
which SyGuS technology can be developed.

The discussion of the solvers is summarized in Figure 15. The second column describes the
pruning technique that is applied to reduce the search space. The third column categorizes the
enumeration order as constant or learning, and indicates whether deductive elements are used.
ESolver [2] is the basis of enumerative SyGuS solvers. It enumerates programs by size until it

!nds a program that works for all examples. ESolver applies observational equivalence to factorize
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initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune(L(G),m𝐿, gt)

Search(Q,m𝐿, gt,→ ↑ (Q ↓ Q))

Factorize(P,m𝐿,→)

Refine(m𝐿, p, gt)

Learn(→, { q ↔ Q | q → p }, gt)

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 1. CEGAR loop for synthesis.

initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune

Search

Factorize

Refine

Learn

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 2. CEGAR loop for synthesis.

S ::= V | replace(S,S,S) | concat(S,S)
V ::= x | 𝐿 | "!Conf" | "!City"

Fig. 3. Example grammar G.

In Out
"POPL!Conf" "POPL"
"Rennes!City" "Rennes"
"PLDI!Conf" "PLDI"
"Seoul!City" "Seoul"

Fig. 4. Input-output examples (In,Out).

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 75. Publication date: January 2026.

75:10 Roland Meyer and Jakob Tepe

be supported. For strings with replacement, it is bene!cial to reward programs that produce
superstrings of the outputs given in the examples and punish programs that do not. We explain in
a moment how this plays together with the fact that concatenation prefers substrings. We begin by
de!ning an auxiliary quasimetric m̃ on strings:

m(i, o) =

{
len(i) → len(o) if i is a superstring of o
100 + |len(i) → len(o) | otherwise

For example, m(”PO”, ”POPL”) = 102 but m(”POPL”, ”PO”) = 2. Note that m̃ is not symmetric in
general, but it is symmetric at distance zero. We now lift the auxiliary quasimetric m̃ on strings
to an orimetric m on functions over strings. The de!nition is as expected, we evaluate the given
functions on the inputs from all examples and sum up the distances of the output values. To make
this formal, let J ↑ In and de!ne

mJ (𝐿 ,𝑀) =
∑
i↓J

m̃(𝐿 (i),𝑀(i)) .

mIn (p, q) =
∑
i↓In

m(p(i), q(i)) .

m𝐿 (p, q) =
∑
i↓{i1 }

m̃(p(i), q(i)) .

m𝐿 (p, q) =
∑

i↓{i1,i2 }
m̃(p(i), q(i)) .

Our orimetric is then m = mIn. We will use other instantiations of J in a moment. Note, that the
lifting does not result in a quasimetric. If two di"erent programs p and q produce the same outputs
on the given inputs, their distance is 0. A quasimetric would require p and q to be equal. This need
not be the case. In fact, allowing p and q to have a distance of zero while being di"erent is what
enables factorization in the !rst place.

With the orimetric at hand, we restrict the search to programs in the ball Br (gt), with the radius
r set to 100. This means we only keep programs that return a superstring of the output for every
input example. We admit that this is discrete, and does not make use of the fact that an orimetric
yields continuous values in R↔0. In our experiments, we will see more elaborate instantiations.

Note that focusing on superstrings does not mean we are not allowed to use the concat operator.
We can still use concat, but on the programs inside the ball. The superstring ball is even closed
under concatenation: concatenating superstrings yields a superstring. One may ask how this relates
to the above argument that concat prefers substrings. This argument was made for a comparison
with the !nal value. Since we use superstrings here, it means the !nal value cannot be produced by
concatenation, and so concat will not be the topmost operator in the solution to the synthesis task.
It can, however, still be a part of it.
Coming back to Figure 12, the programs that are additionally pruned by this orimetric are

highlighted in green. Figure 11 depicts the resulting search space as the green ball around gt. The
cardinality of the program sets is shown in Figure 13. Using only pruning is not as e"ective as
factorizing along observational equivalence, but combined we are only left with 81 programs to
explore in P7. In Figure 11, this search space is the intersection of the green ball and the red area.

With approximate orimetrics m𝐿, we can reduce the search space even further. The approximate
orimetrics should be rough so that the induced equivalence ↗m𝐿 eliminates many programs. We will
later recover precision by adding a re!nement loop. In our example, we use m𝐿 =mJ with J = {i1}.
This approximate orimetric only takes into account the !rst example when comparing functions,
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Method P1 P2 P3 P4 P5 P6 P7
No Pruning or Factorization 4 - 16 64 128 1280 4352

OE Factorization 4 - 9 6 27 56 119
Orimetric Pruning (OP) 4 - 7 18 56 323 929
OE Factorization + OP 4 - 5 6 19 50 81

→m𝐿 Factorization + OP + Learning 4 / 5 - 5 / 12 3 / 10 - - -

Fig. 6. Number of programs at each size per solving method.

P1 = {r(x, "!Conference", 𝐿), x, 𝐿, "!Conference", "!City"}
P2 = ↑
P3 = {x.x, x.𝐿, x."!Conference", x."!City", x.r(x, "!Conference", 𝐿), . . . , 𝐿 ."!City", . . .}
P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), . . . , r(r(x, "!Conference", 𝐿), "!City", 𝐿) . . .}

Fig. 7. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x →m𝐿 r(x, "!City", "!Conference").
The equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement
happens. When we factorize the search space along →m𝐿 , the program in blue will be eliminated
since we already have x. In Figure 4, the factorized search space is the blue area. When applying
Prune as well as Factorize, we are left with the green ball intersected with the blue area. We now
use Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
speci"ed output "Rennes". We use Refine to generate a new orimetric for the next iteration. To
also take into account the second example, we set m𝐿 to m{i1,i2 } . While the approximate orimetric
and its re"nement are simple in this example, our approach can also be instantiated with predicate
abstraction as introduced in [47]. We discuss the details below.

We now use Learn to update the enumeration order for the next iteration. To do so, we use the
precise metric mI to analyze the candidate solution p. We see that p produces a superstring of the
outputs for all examples. This means, mI (!p", gt) < 100 and therefore the program lies within the
ball around gt. We consider p valuable and promote it in the enumeration order. Recall that the
enumeration order in our example is de"ned by the size. Function Learn rede"nes the size of p to
be 1. Then p and programs that use p as a subprogram will be considered early on.

Figure 7 gives the program sets constructed in the second iteration of the re"nement loop. Note
how p has size one. With this change in size, we already "nd the solution in P4. In the last row of
Figure 6, we see the cardinalities of the sets again. On the left of the slash are the cardinalities for
the "rst iteration of the re"nement loop, and on the right the cardinalities for the second iteration.
In total, we only consider 39 programs to solve the problem.
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2.1 Example

→
gt

L(G)/↑mI

L(G)/↑
m𝐿

L(G)

Fig. 5. Search space and enumeration order.

→
gt L(G)/OE

L(G)

Fig. 6. Search space and enumeration order.

→
gt L(G)/OE#

L(G)

Fig. 7. Search space and enumeration order.

→
gt

L(G)

Fig. 8. Search space and enumeration order.
We illustrate our algorithm by solving an example problem in the string domain. We will repeatedly
refer to Figure 9 to make the link to the conceptual development introduced above. Figure 3
depicts a context-free grammar G and Figure 4 shows gt as four input-output examples (I ,𝐿).
The nonterminal Init can be rewritten to the input variable x or to string constants, where 𝑀 is
the empty string. The operator replace takes as arguments three strings: the !rst is the string in
which the replacement should happen, namely the !rst occurrence of the second argument, should
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be supported. For strings with replacement, it is bene!cial to reward programs that produce
superstrings of the outputs given in the examples and punish programs that do not. We explain in
a moment how this plays together with the fact that concatenation prefers substrings. We begin by
de!ning an auxiliary quasimetric m̃ on strings:

m(i, o) =

{
len(i) → len(o) if i is a superstring of o
100 + |len(i) → len(o) | otherwise .

For example, m(”PO”, ”POPL”) = 102 but m(”POPL”, ”PO”) = 2. Note that m̃ is not symmetric in
general, but it is symmetric at distance zero. We now lift the auxiliary quasimetric m̃ on strings
to an orimetric m on functions over strings. The de!nition is as expected, we evaluate the given
functions on the inputs from all examples and sum up the distances of the output values. To make
this formal, let J ↑ In and de!ne

mJ (𝐿 ,𝑀) =
∑
i↓J

m̃(𝐿 (i),𝑀(i)) .

mIn (p, q) =
∑
i↓In

m(p(i), q(i)) .

m𝐿 (p, q) =
∑
i↓{i1 }

m̃(p(i), q(i)) .

m𝐿 (p, q) =
∑

i↓{i1,i2 }
m̃(p(i), q(i)) .

Our orimetric is then m = mIn. We will use other instantiations of J in a moment. Note, that the
lifting does not result in a quasimetric. If two di"erent programs p and q produce the same outputs
on the given inputs, their distance is 0. A quasimetric would require p and q to be equal. This need
not be the case. In fact, allowing p and q to have a distance of zero while being di"erent is what
enables factorization in the !rst place.

With the orimetric at hand, we restrict the search to programs in the ball Br (gt), with the radius
r set to 100. This means we only keep programs that return a superstring of the output for every
input example. We admit that this is discrete, and does not make use of the fact that an orimetric
yields continuous values in R↔0. In our experiments, we will see more elaborate instantiations.

Note that focusing on superstrings does not mean we are not allowed to use the concat operator.
We can still use concat, but on the programs inside the ball. The superstring ball is even closed
under concatenation: concatenating superstrings yields a superstring. One may ask how this relates
to the above argument that concat prefers substrings. This argument was made for a comparison
with the !nal value. Since we use superstrings here, it means the !nal value cannot be produced by
concatenation, and so concat will not be the topmost operator in the solution to the synthesis task.
It can, however, still be a part of it.
Coming back to Figure 12, the programs that are additionally pruned by this orimetric are

highlighted in green. Figure 11 depicts the resulting search space as the green ball around gt. The
cardinality of the program sets is shown in Figure 13. Using only pruning is not as e"ective as
factorizing along observational equivalence, but combined we are only left with 81 programs to
explore in P7. In Figure 11, this search space is the intersection of the green ball and the red area.

With approximate orimetrics m𝐿, we can reduce the search space even further. The approximate
orimetrics should be rough so that the induced equivalence ↗m𝐿 eliminates many programs. We will
later recover precision by adding a re!nement loop. In our example, we use m𝐿 =mJ with J = {i1}.
This approximate orimetric only takes into account the !rst example when comparing functions,

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 75. Publication date: January 2026.

Oriented Metrics for Bo!om-Up Enumerative Synthesis 75:7

initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune(L(G),m𝐿, gt)

Search(Q,m𝐿, gt,→ ↑ (Q ↓ Q))

Factorize(P,m𝐿,→)

Refine(m𝐿, p, gt)

Learn(→, { q ↔ Q | q → p }, gt)

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 1. CEGAR loop for synthesis.

initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune

Search

Factorize

Refine

Learn

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 2. CEGAR loop for synthesis.

S ::= V | replace(S,S,S) | concat(S,S)
V ::= x | 𝐿 | "!Conf" | "!City"

Fig. 3. Example grammar G.

In Out
"POPL!Conf" "POPL"
"Rennes!City" "Rennes"
"PLDI!Conf" "PLDI"
"Seoul!City" "Seoul"

Fig. 4. Input-output examples (In,Out).
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be supported. For strings with replacement, it is bene!cial to reward programs that produce
superstrings of the outputs given in the examples and punish programs that do not. We explain in
a moment how this plays together with the fact that concatenation prefers substrings. We begin by
de!ning an auxiliary quasimetric m̃ on strings:

m(i, o) =

{
len(i) → len(o) if i is a superstring of o
100 + |len(i) → len(o) | otherwise

For example, m(”PO”, ”POPL”) = 102 but m(”POPL”, ”PO”) = 2. Note that m̃ is not symmetric in
general, but it is symmetric at distance zero. We now lift the auxiliary quasimetric m̃ on strings
to an orimetric m on functions over strings. The de!nition is as expected, we evaluate the given
functions on the inputs from all examples and sum up the distances of the output values. To make
this formal, let J ↑ In and de!ne

mJ (𝐿 ,𝑀) =
∑
i↓J

m̃(𝐿 (i),𝑀(i)) .

mIn (p, q) =
∑
i↓In

m(p(i), q(i)) .

m𝐿 (p, q) =
∑
i↓{i1 }

m̃(p(i), q(i)) .

m𝐿 (p, q) =
∑

i↓{i1,i2 }
m̃(p(i), q(i)) .

Our orimetric is then m = mIn. We will use other instantiations of J in a moment. Note, that the
lifting does not result in a quasimetric. If two di"erent programs p and q produce the same outputs
on the given inputs, their distance is 0. A quasimetric would require p and q to be equal. This need
not be the case. In fact, allowing p and q to have a distance of zero while being di"erent is what
enables factorization in the !rst place.

With the orimetric at hand, we restrict the search to programs in the ball Br (gt), with the radius
r set to 100. This means we only keep programs that return a superstring of the output for every
input example. We admit that this is discrete, and does not make use of the fact that an orimetric
yields continuous values in R↔0. In our experiments, we will see more elaborate instantiations.

Note that focusing on superstrings does not mean we are not allowed to use the concat operator.
We can still use concat, but on the programs inside the ball. The superstring ball is even closed
under concatenation: concatenating superstrings yields a superstring. One may ask how this relates
to the above argument that concat prefers substrings. This argument was made for a comparison
with the !nal value. Since we use superstrings here, it means the !nal value cannot be produced by
concatenation, and so concat will not be the topmost operator in the solution to the synthesis task.
It can, however, still be a part of it.
Coming back to Figure 12, the programs that are additionally pruned by this orimetric are

highlighted in green. Figure 11 depicts the resulting search space as the green ball around gt. The
cardinality of the program sets is shown in Figure 13. Using only pruning is not as e"ective as
factorizing along observational equivalence, but combined we are only left with 81 programs to
explore in P7. In Figure 11, this search space is the intersection of the green ball and the red area.

With approximate orimetrics m𝐿, we can reduce the search space even further. The approximate
orimetrics should be rough so that the induced equivalence ↗m𝐿 eliminates many programs. We will
later recover precision by adding a re!nement loop. In our example, we use m𝐿 =mJ with J = {i1}.
This approximate orimetric only takes into account the !rst example when comparing functions,
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Method P1 P2 P3 P4 P5 P6 P7
No Pruning or Factorization 4 - 16 64 128 1280 4352

OE Factorization 4 - 9 6 27 56 119
Orimetric Pruning (OP) 4 - 7 18 56 323 929
OE Factorization + OP 4 - 5 6 19 50 81

→m𝐿 Factorization + OP + Learning 4 / 5 - 5 / 12 3 / 10 - - -

Fig. 6. Number of programs at each size per solving method.

P1 = {r(x, "!Conference", 𝐿), x, 𝐿, "!Conference", "!City"}
P2 = ↑
P3 = {x.x, x.𝐿, x."!Conference", x."!City", x.r(x, "!Conference", 𝐿), . . . , 𝐿 ."!City", . . .}
P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), . . . , r(r(x, "!Conference", 𝐿), "!City", 𝐿) . . .}

Fig. 7. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x →m𝐿 r(x, "!City", "!Conference").
The equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement
happens. When we factorize the search space along →m𝐿 , the program in blue will be eliminated
since we already have x. In Figure 4, the factorized search space is the blue area. When applying
Prune as well as Factorize, we are left with the green ball intersected with the blue area. We now
use Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
speci"ed output "Rennes". We use Refine to generate a new orimetric for the next iteration. To
also take into account the second example, we set m𝐿 to m{i1,i2 } . While the approximate orimetric
and its re"nement are simple in this example, our approach can also be instantiated with predicate
abstraction as introduced in [47]. We discuss the details below.

We now use Learn to update the enumeration order for the next iteration. To do so, we use the
precise metric mI to analyze the candidate solution p. We see that p produces a superstring of the
outputs for all examples. This means, mI (!p", gt) < 100 and therefore the program lies within the
ball around gt. We consider p valuable and promote it in the enumeration order. Recall that the
enumeration order in our example is de"ned by the size. Function Learn rede"nes the size of p to
be 1. Then p and programs that use p as a subprogram will be considered early on.

Figure 7 gives the program sets constructed in the second iteration of the re"nement loop. Note
how p has size one. With this change in size, we already "nd the solution in P4. In the last row of
Figure 6, we see the cardinalities of the sets again. On the left of the slash are the cardinalities for
the "rst iteration of the re"nement loop, and on the right the cardinalities for the second iteration.
In total, we only consider 39 programs to solve the problem.
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be supported. For strings with replacement, it is bene!cial to reward programs that produce
superstrings of the outputs given in the examples and punish programs that do not. We explain in
a moment how this plays together with the fact that concatenation prefers substrings. We begin by
de!ning an auxiliary quasimetric m̃ on strings:

m(i, o) =

{
len(i) → len(o) if i is a superstring of o
100 + |len(i) → len(o) | otherwise .

For example, m(”PO”, ”POPL”) = 102 but m(”POPL”, ”PO”) = 2. Note that m̃ is not symmetric in
general, but it is symmetric at distance zero. We now lift the auxiliary quasimetric m̃ on strings
to an orimetric m on functions over strings. The de!nition is as expected, we evaluate the given
functions on the inputs from all examples and sum up the distances of the output values. To make
this formal, let J ↑ In and de!ne

mJ (𝐿 ,𝑀) =
∑
i↓J

m̃(𝐿 (i),𝑀(i)) .

mIn (p, q) =
∑
i↓In

m(p(i), q(i)) .

m𝐿 (p, q) =
∑
i↓{i1 }

m̃(p(i), q(i)) .

m𝐿 (p, q) =
∑

i↓{i1,i2 }
m̃(p(i), q(i)) .

Our orimetric is then m = mIn. We will use other instantiations of J in a moment. Note, that the
lifting does not result in a quasimetric. If two di"erent programs p and q produce the same outputs
on the given inputs, their distance is 0. A quasimetric would require p and q to be equal. This need
not be the case. In fact, allowing p and q to have a distance of zero while being di"erent is what
enables factorization in the !rst place.

With the orimetric at hand, we restrict the search to programs in the ball Br (gt), with the radius
r set to 100. This means we only keep programs that return a superstring of the output for every
input example. We admit that this is discrete, and does not make use of the fact that an orimetric
yields continuous values in R↔0. In our experiments, we will see more elaborate instantiations.

Note that focusing on superstrings does not mean we are not allowed to use the concat operator.
We can still use concat, but on the programs inside the ball. The superstring ball is even closed
under concatenation: concatenating superstrings yields a superstring. One may ask how this relates
to the above argument that concat prefers substrings. This argument was made for a comparison
with the !nal value. Since we use superstrings here, it means the !nal value cannot be produced by
concatenation, and so concat will not be the topmost operator in the solution to the synthesis task.
It can, however, still be a part of it.
Coming back to Figure 12, the programs that are additionally pruned by this orimetric are

highlighted in green. Figure 11 depicts the resulting search space as the green ball around gt. The
cardinality of the program sets is shown in Figure 13. Using only pruning is not as e"ective as
factorizing along observational equivalence, but combined we are only left with 81 programs to
explore in P7. In Figure 11, this search space is the intersection of the green ball and the red area.

With approximate orimetrics m𝐿, we can reduce the search space even further. The approximate
orimetrics should be rough so that the induced equivalence ↗m𝐿 eliminates many programs. We will
later recover precision by adding a re!nement loop. In our example, we use m𝐿 =mJ with J = {i1}.
This approximate orimetric only takes into account the !rst example when comparing functions,
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initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune(L(G),m𝐿, gt)

Search(Q,m𝐿, gt,→ ↑ (Q ↓ Q))

Factorize(P,m𝐿,→)

Refine(m𝐿, p, gt)

Learn(→, { q ↔ Q | q → p }, gt)

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 1. CEGAR loop for synthesis.

initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune

Search

Factorize

Refine

Learn

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 2. CEGAR loop for synthesis.

S ::= V | replace(S,S,S) | concat(S,S)
V ::= x | 𝐿 | "!Conf" | "!City"

Fig. 3. Example grammar G.

In Out
"POPL!Conf" "POPL"
"Rennes!City" "Rennes"
"PLDI!Conf" "PLDI"
"Seoul!City" "Seoul"

Fig. 4. Input-output examples (In,Out).
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2.1 Example

→
gt

L(G)/↑mI

L(G)/↑
m𝐿

L(G)

Fig. 5. Search space and enumeration order.

→
gt L(G)/OE

L(G)

Fig. 6. Search space and enumeration order.

→
gt L(G)/OE#

L(G)

Fig. 7. Search space and enumeration order.

→
gt

L(G)

Fig. 8. Search space and enumeration order.
We illustrate our algorithm by solving an example problem in the string domain. We will repeatedly
refer to Figure 9 to make the link to the conceptual development introduced above. Figure 3
depicts a context-free grammar G and Figure 4 shows gt as four input-output examples (I ,𝐿).
The nonterminal Init can be rewritten to the input variable x or to string constants, where 𝑀 is
the empty string. The operator replace takes as arguments three strings: the !rst is the string in
which the replacement should happen, namely the !rst occurrence of the second argument, should
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be supported. For strings with replacement, it is bene!cial to reward programs that produce
superstrings of the outputs given in the examples and punish programs that do not. We explain in
a moment how this plays together with the fact that concatenation prefers substrings. We begin by
de!ning an auxiliary quasimetric m̃ on strings:

m(i, o) =

{
len(i) → len(o) if i is a superstring of o
100 + |len(i) → len(o) | otherwise

For example, m(”PO”, ”POPL”) = 102 but m(”POPL”, ”PO”) = 2. Note that m̃ is not symmetric in
general, but it is symmetric at distance zero. We now lift the auxiliary quasimetric m̃ on strings
to an orimetric m on functions over strings. The de!nition is as expected, we evaluate the given
functions on the inputs from all examples and sum up the distances of the output values. To make
this formal, let J ↑ In and de!ne

mJ (𝐿 ,𝑀) =
∑
i↓J

m̃(𝐿 (i),𝑀(i)) .

mIn (p, q) =
∑
i↓In

m(p(i), q(i)) .

m𝐿 (p, q) =
∑
i↓{i1 }

m̃(p(i), q(i)) .

m𝐿 (p, q) =
∑

i↓{i1,i2 }
m̃(p(i), q(i)) .

Our orimetric is then m = mIn. We will use other instantiations of J in a moment. Note, that the
lifting does not result in a quasimetric. If two di"erent programs p and q produce the same outputs
on the given inputs, their distance is 0. A quasimetric would require p and q to be equal. This need
not be the case. In fact, allowing p and q to have a distance of zero while being di"erent is what
enables factorization in the !rst place.

With the orimetric at hand, we restrict the search to programs in the ball Br (gt), with the radius
r set to 100. This means we only keep programs that return a superstring of the output for every
input example. We admit that this is discrete, and does not make use of the fact that an orimetric
yields continuous values in R↔0. In our experiments, we will see more elaborate instantiations.

Note that focusing on superstrings does not mean we are not allowed to use the concat operator.
We can still use concat, but on the programs inside the ball. The superstring ball is even closed
under concatenation: concatenating superstrings yields a superstring. One may ask how this relates
to the above argument that concat prefers substrings. This argument was made for a comparison
with the !nal value. Since we use superstrings here, it means the !nal value cannot be produced by
concatenation, and so concat will not be the topmost operator in the solution to the synthesis task.
It can, however, still be a part of it.
Coming back to Figure 12, the programs that are additionally pruned by this orimetric are

highlighted in green. Figure 11 depicts the resulting search space as the green ball around gt. The
cardinality of the program sets is shown in Figure 13. Using only pruning is not as e"ective as
factorizing along observational equivalence, but combined we are only left with 81 programs to
explore in P7. In Figure 11, this search space is the intersection of the green ball and the red area.

With approximate orimetrics m𝐿, we can reduce the search space even further. The approximate
orimetrics should be rough so that the induced equivalence ↗m𝐿 eliminates many programs. We will
later recover precision by adding a re!nement loop. In our example, we use m𝐿 =mJ with J = {i1}.
This approximate orimetric only takes into account the !rst example when comparing functions,
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→
gt L(G)/↑mIn

L(G)

Fig. 9. Search space and enumeration order.

→
gt L(G)/↑

m𝐿

L(G)

Fig. 10. Search space and enumeration order.

→
gt L(G)/↑

m𝐿

L(G)

Fig. 11. Search space and enumeration order.

We illustrate our algorithm by solving an example
problem in the string domain. We will repeatedly
refer to Figure 11 to make the link to the conceptual
development introduced above. Figure 3 depicts a
context-free grammar G and Figure 4 shows gt as
four input-output examples (In,Out). The nontermi-
nal Init can be rewritten to the input variable x or to
string constants, where 𝐿 is the empty string. The op-
erator replace takes as arguments three strings: the
!rst is the string in which the replacement should
happen, namely the !rst occurrence of the second
argument, should it exist, will be replaced by the
third argument. The operator concat concatenates the strings that are given as arguments.
In Figure 12, we show the set L(G) of all programs as a collection of sets P𝐿 that contain all

programs of size 𝑀 . The set P1 contains all programs that can be derived from Init. Programs of size
greater than one are constructed by combining programs of smaller size. We use an enumeration
order → that orders programs by their size. Programs that have the same size are ordered from left
to right in Figure 12. The set P7 contains the solution to the synthesis task, highlighted in yellow.
The !rst row in Figure 13 gives the cardinality of each set P𝐿 . Note how the number of programs
grows exponentially with the size, and so eliminating programs early on is essential. In Figure 11,
the set of programs is represented by the gray box and the enumeration order by the dashed line.

State-of-the-art bottom-up enumerative SyGuS solvers [2, 3, 15, 16, 27, 47, 48] factorize the search
space, often using observational equivalence [1, 43]. In Figure 12, programs that are pruned because
they are observationally equivalent to a program that was enumerated earlier are highlighted in
red. The cardinality of the factorized sets is given in the second row in Figure 13. In Figure 11, this
search space is represented by the red area.

Using orimetrics, we can further reduce the search space. The !rst step is to de!ne an orimetric
on programs. The orimetric is chosen based on the data and data manipulations that should
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Method P1 P2 P3 P4 P5 P6 P7
No Pruning or Factorization 4 - 16 64 128 1280 4352

OE Factorization 4 - 9 6 27 56 119
Orimetric Pruning (OP) 4 - 7 18 56 323 929
OE Factorization + OP 4 - 5 6 19 50 81

→m𝐿 Factorization + OP + Learning 4 / 5 - 5 / 12 3 / 10 - - -

Fig. 6. Number of programs at each size per solving method.

P1 = {r(x, "!Conference", 𝐿), x, 𝐿, "!Conference", "!City"}
P2 = ↑
P3 = {x.x, x.𝐿, x."!Conference", x."!City", x.r(x, "!Conference", 𝐿), . . . , 𝐿 ."!City", . . .}
P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), . . . , r(r(x, "!Conference", 𝐿), "!City", 𝐿) . . .}

Fig. 7. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x →m𝐿 r(x, "!City", "!Conference").
The equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement
happens. When we factorize the search space along →m𝐿 , the program in blue will be eliminated
since we already have x. In Figure 4, the factorized search space is the blue area. When applying
Prune as well as Factorize, we are left with the green ball intersected with the blue area. We now
use Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
speci"ed output "Rennes". We use Refine to generate a new orimetric for the next iteration. To
also take into account the second example, we set m𝐿 to m{i1,i2 } . While the approximate orimetric
and its re"nement are simple in this example, our approach can also be instantiated with predicate
abstraction as introduced in [47]. We discuss the details below.

We now use Learn to update the enumeration order for the next iteration. To do so, we use the
precise metric mI to analyze the candidate solution p. We see that p produces a superstring of the
outputs for all examples. This means, mI (!p", gt) < 100 and therefore the program lies within the
ball around gt. We consider p valuable and promote it in the enumeration order. Recall that the
enumeration order in our example is de"ned by the size. Function Learn rede"nes the size of p to
be 1. Then p and programs that use p as a subprogram will be considered early on.

Figure 7 gives the program sets constructed in the second iteration of the re"nement loop. Note
how p has size one. With this change in size, we already "nd the solution in P4. In the last row of
Figure 6, we see the cardinalities of the sets again. On the left of the slash are the cardinalities for
the "rst iteration of the re"nement loop, and on the right the cardinalities for the second iteration.
In total, we only consider 39 programs to solve the problem.
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be supported. For strings with replacement, it is bene!cial to reward programs that produce
superstrings of the outputs given in the examples and punish programs that do not. We explain in
a moment how this plays together with the fact that concatenation prefers substrings. We begin by
de!ning an auxiliary quasimetric m̃ on strings:

m(i, o) =

{
len(i) → len(o) if i is a superstring of o
100 + |len(i) → len(o) | otherwise .

For example, m(”PO”, ”POPL”) = 102 but m(”POPL”, ”PO”) = 2. Note that m̃ is not symmetric in
general, but it is symmetric at distance zero. We now lift the auxiliary quasimetric m̃ on strings
to an orimetric m on functions over strings. The de!nition is as expected, we evaluate the given
functions on the inputs from all examples and sum up the distances of the output values. To make
this formal, let J ↑ In and de!ne

mJ (𝐿 ,𝑀) =
∑
i↓J

m̃(𝐿 (i),𝑀(i)) .

mIn (p, q) =
∑
i↓In

m(p(i), q(i)) .

m𝐿 (p, q) =
∑
i↓{i1 }

m̃(p(i), q(i)) .

m𝐿 (p, q) =
∑

i↓{i1,i2 }
m̃(p(i), q(i)) .

Our orimetric is then m = mIn. We will use other instantiations of J in a moment. Note, that the
lifting does not result in a quasimetric. If two di"erent programs p and q produce the same outputs
on the given inputs, their distance is 0. A quasimetric would require p and q to be equal. This need
not be the case. In fact, allowing p and q to have a distance of zero while being di"erent is what
enables factorization in the !rst place.

With the orimetric at hand, we restrict the search to programs in the ball Br (gt), with the radius
r set to 100. This means we only keep programs that return a superstring of the output for every
input example. We admit that this is discrete, and does not make use of the fact that an orimetric
yields continuous values in R↔0. In our experiments, we will see more elaborate instantiations.

Note that focusing on superstrings does not mean we are not allowed to use the concat operator.
We can still use concat, but on the programs inside the ball. The superstring ball is even closed
under concatenation: concatenating superstrings yields a superstring. One may ask how this relates
to the above argument that concat prefers substrings. This argument was made for a comparison
with the !nal value. Since we use superstrings here, it means the !nal value cannot be produced by
concatenation, and so concat will not be the topmost operator in the solution to the synthesis task.
It can, however, still be a part of it.
Coming back to Figure 12, the programs that are additionally pruned by this orimetric are

highlighted in green. Figure 11 depicts the resulting search space as the green ball around gt. The
cardinality of the program sets is shown in Figure 13. Using only pruning is not as e"ective as
factorizing along observational equivalence, but combined we are only left with 81 programs to
explore in P7. In Figure 11, this search space is the intersection of the green ball and the red area.

With approximate orimetrics m𝐿, we can reduce the search space even further. The approximate
orimetrics should be rough so that the induced equivalence ↗m𝐿 eliminates many programs. We will
later recover precision by adding a re!nement loop. In our example, we use m𝐿 =mJ with J = {i1}.
This approximate orimetric only takes into account the !rst example when comparing functions,
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initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune(L(G),m𝐿, gt)

Search(Q,m𝐿, gt,→ ↑ (Q ↓ Q))

Factorize(P,m𝐿,→)

Refine(m𝐿, p, gt)

Learn(→, { q ↔ Q | q → p }, gt)

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 1. CEGAR loop for synthesis.

initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune

Search

Factorize

Refine

Learn

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 2. CEGAR loop for synthesis.

S ::= V | replace(S,S,S) | concat(S,S)
V ::= x | 𝐿 | "!Conf" | "!City"

Fig. 3. Example grammar G.

In Out
"POPL!Conf" "POPL"
"Rennes!City" "Rennes"
"PLDI!Conf" "PLDI"
"Seoul!City" "Seoul"

Fig. 4. Input-output examples (In,Out).
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be supported. For strings with replacement, it is bene!cial to reward programs that produce
superstrings of the outputs given in the examples and punish programs that do not. We explain in
a moment how this plays together with the fact that concatenation prefers substrings. We begin by
de!ning an auxiliary quasimetric m̃ on strings:

m(i, o) =

{
len(i) → len(o) if i is a superstring of o
100 + |len(i) → len(o) | otherwise

For example, m(”PO”, ”POPL”) = 102 but m(”POPL”, ”PO”) = 2. Note that m̃ is not symmetric in
general, but it is symmetric at distance zero. We now lift the auxiliary quasimetric m̃ on strings
to an orimetric m on functions over strings. The de!nition is as expected, we evaluate the given
functions on the inputs from all examples and sum up the distances of the output values. To make
this formal, let J ↑ In and de!ne

mJ (𝐿 ,𝑀) =
∑
i↓J

m̃(𝐿 (i),𝑀(i)) .

mIn (p, q) =
∑
i↓In

m(p(i), q(i)) .

m𝐿 (p, q) =
∑
i↓{i1 }

m̃(p(i), q(i)) .

m𝐿 (p, q) =
∑

i↓{i1,i2 }
m̃(p(i), q(i)) .

Our orimetric is then m = mIn. We will use other instantiations of J in a moment. Note, that the
lifting does not result in a quasimetric. If two di"erent programs p and q produce the same outputs
on the given inputs, their distance is 0. A quasimetric would require p and q to be equal. This need
not be the case. In fact, allowing p and q to have a distance of zero while being di"erent is what
enables factorization in the !rst place.

With the orimetric at hand, we restrict the search to programs in the ball Br (gt), with the radius
r set to 100. This means we only keep programs that return a superstring of the output for every
input example. We admit that this is discrete, and does not make use of the fact that an orimetric
yields continuous values in R↔0. In our experiments, we will see more elaborate instantiations.

Note that focusing on superstrings does not mean we are not allowed to use the concat operator.
We can still use concat, but on the programs inside the ball. The superstring ball is even closed
under concatenation: concatenating superstrings yields a superstring. One may ask how this relates
to the above argument that concat prefers substrings. This argument was made for a comparison
with the !nal value. Since we use superstrings here, it means the !nal value cannot be produced by
concatenation, and so concat will not be the topmost operator in the solution to the synthesis task.
It can, however, still be a part of it.
Coming back to Figure 12, the programs that are additionally pruned by this orimetric are

highlighted in green. Figure 11 depicts the resulting search space as the green ball around gt. The
cardinality of the program sets is shown in Figure 13. Using only pruning is not as e"ective as
factorizing along observational equivalence, but combined we are only left with 81 programs to
explore in P7. In Figure 11, this search space is the intersection of the green ball and the red area.

With approximate orimetrics m𝐿, we can reduce the search space even further. The approximate
orimetrics should be rough so that the induced equivalence ↗m𝐿 eliminates many programs. We will
later recover precision by adding a re!nement loop. In our example, we use m𝐿 =mJ with J = {i1}.
This approximate orimetric only takes into account the !rst example when comparing functions,
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Method P1 P2 P3 P4 P5 P6 P7
No Pruning or Factorization 4 - 16 64 128 1280 4352

OE Factorization 4 - 9 6 27 56 119
Orimetric Pruning (OP) 4 - 7 18 56 323 929
OE Factorization + OP 4 - 5 6 19 50 81

→m𝐿 Factorization + OP + Learning 4 / 5 - 5 / 12 3 / 10 - - -

Fig. 6. Number of programs at each size per solving method.

P1 = {r(x, "!Conference", 𝐿), x, 𝐿, "!Conference", "!City"}
P2 = ↑
P3 = {x.x, x.𝐿, x."!Conference", x."!City", x.r(x, "!Conference", 𝐿), . . . , 𝐿 ."!City", . . .}
P4 = {. . . , r(x, x, "!City"), r(x, 𝐿, 𝐿), . . . , r(r(x, "!Conference", 𝐿), "!City", 𝐿) . . .}

Fig. 7. Example execution of the second iteration of our algorithm with highlights for OE factorization and
correctness. The concat operator is abbreviated by an infix "." and the replace operator is abbreviated by r.

m𝐿 (𝑀 ,𝑁) = m̃(𝑀 (i1),𝑁(i1)). The induced equivalence equates programs at distance zero—actually,
this is why we wanted the orimetric to be symmetric at distance zero. Here, we equate programs
that have the same output on the "rst input. To give an example, x →m𝐿 r(x, "!City", "!Conference").
The equivalence holds as "!City" does not occur in "POPL!Conference", and so no replacement
happens. When we factorize the search space along →m𝐿 , the program in blue will be eliminated
since we already have x. In Figure 4, the factorized search space is the blue area. When applying
Prune as well as Factorize, we are left with the green ball intersected with the blue area. We now
use Search to "nd a solution candidate for the synthesis problem in this search space.
Function Search enumerates the programs along the order ↓. Observe that the output of the

program p in cyan, when executed on the "rst example, is "POPL". Therefore, underm𝐿, the distance
to the ground truth is zero, and Search returns p as a candidate solution. Notably, to "nd the
candidate solution, we only needed to enumerate programs of size up to 4.

Unfortunately, program p does not work on some of the other examples: the solution is spurious.
For instance, on the second example the program yields "Rennes!City" which is not equal to the
speci"ed output "Rennes". We use Refine to generate a new orimetric for the next iteration. To
also take into account the second example, we set m𝐿 to m{i1,i2 } . While the approximate orimetric
and its re"nement are simple in this example, our approach can also be instantiated with predicate
abstraction as introduced in [47]. We discuss the details below.

We now use Learn to update the enumeration order for the next iteration. To do so, we use the
precise metric mI to analyze the candidate solution p. We see that p produces a superstring of the
outputs for all examples. This means, mI (!p", gt) < 100 and therefore the program lies within the
ball around gt. We consider p valuable and promote it in the enumeration order. Recall that the
enumeration order in our example is de"ned by the size. Function Learn rede"nes the size of p to
be 1. Then p and programs that use p as a subprogram will be considered early on.

Figure 7 gives the program sets constructed in the second iteration of the re"nement loop. Note
how p has size one. With this change in size, we already "nd the solution in P4. In the last row of
Figure 6, we see the cardinalities of the sets again. On the left of the slash are the cardinalities for
the "rst iteration of the re"nement loop, and on the right the cardinalities for the second iteration.
In total, we only consider 39 programs to solve the problem.
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be supported. For strings with replacement, it is bene!cial to reward programs that produce
superstrings of the outputs given in the examples and punish programs that do not. We explain in
a moment how this plays together with the fact that concatenation prefers substrings. We begin by
de!ning an auxiliary quasimetric m̃ on strings:

m(i, o) =

{
len(i) → len(o) if i is a superstring of o
100 + |len(i) → len(o) | otherwise .

For example, m(”PO”, ”POPL”) = 102 but m(”POPL”, ”PO”) = 2. Note that m̃ is not symmetric in
general, but it is symmetric at distance zero. We now lift the auxiliary quasimetric m̃ on strings
to an orimetric m on functions over strings. The de!nition is as expected, we evaluate the given
functions on the inputs from all examples and sum up the distances of the output values. To make
this formal, let J ↑ In and de!ne

mJ (𝐿 ,𝑀) =
∑
i↓J

m̃(𝐿 (i),𝑀(i)) .

mIn (p, q) =
∑
i↓In

m(p(i), q(i)) .

m𝐿 (p, q) =
∑
i↓{i1 }

m̃(p(i), q(i)) .

m𝐿 (p, q) =
∑

i↓{i1,i2 }
m̃(p(i), q(i)) .

Our orimetric is then m = mIn. We will use other instantiations of J in a moment. Note, that the
lifting does not result in a quasimetric. If two di"erent programs p and q produce the same outputs
on the given inputs, their distance is 0. A quasimetric would require p and q to be equal. This need
not be the case. In fact, allowing p and q to have a distance of zero while being di"erent is what
enables factorization in the !rst place.

With the orimetric at hand, we restrict the search to programs in the ball Br (gt), with the radius
r set to 100. This means we only keep programs that return a superstring of the output for every
input example. We admit that this is discrete, and does not make use of the fact that an orimetric
yields continuous values in R↔0. In our experiments, we will see more elaborate instantiations.

Note that focusing on superstrings does not mean we are not allowed to use the concat operator.
We can still use concat, but on the programs inside the ball. The superstring ball is even closed
under concatenation: concatenating superstrings yields a superstring. One may ask how this relates
to the above argument that concat prefers substrings. This argument was made for a comparison
with the !nal value. Since we use superstrings here, it means the !nal value cannot be produced by
concatenation, and so concat will not be the topmost operator in the solution to the synthesis task.
It can, however, still be a part of it.
Coming back to Figure 12, the programs that are additionally pruned by this orimetric are

highlighted in green. Figure 11 depicts the resulting search space as the green ball around gt. The
cardinality of the program sets is shown in Figure 13. Using only pruning is not as e"ective as
factorizing along observational equivalence, but combined we are only left with 81 programs to
explore in P7. In Figure 11, this search space is the intersection of the green ball and the red area.

With approximate orimetrics m𝐿, we can reduce the search space even further. The approximate
orimetrics should be rough so that the induced equivalence ↗m𝐿 eliminates many programs. We will
later recover precision by adding a re!nement loop. In our example, we use m𝐿 =mJ with J = {i1}.
This approximate orimetric only takes into account the !rst example when comparing functions,
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Search(Q,m𝐿, gt,→ ↑ (Q ↓ Q))

Factorize(P,m𝐿,→)

Refine(m𝐿, p, gt)

Learn(→, { q ↔ Q | q → p }, gt)

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 1. CEGAR loop for synthesis.
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Fig. 2. CEGAR loop for synthesis.

S ::= V | replace(S,S,S) | concat(S,S)
V ::= x | 𝐿 | "!Conf" | "!City"

Fig. 3. Example grammar G.

In Out
"POPL!Conf" "POPL"
"Rennes!City" "Rennes"
"PLDI!Conf" "PLDI"
"Seoul!City" "Seoul"

Fig. 4. Input-output examples (In,Out).
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Fig. 11. Search space and enumeration order.

We illustrate our algorithm by solving an example
problem in the string domain. We will repeatedly
refer to Figure 11 to make the link to the conceptual
development introduced above. Figure 3 depicts a
context-free grammar G and Figure 4 shows gt as
four input-output examples (In,Out). The nontermi-
nal Init can be rewritten to the input variable x or to
string constants, where 𝐿 is the empty string. The op-
erator replace takes as arguments three strings: the
!rst is the string in which the replacement should
happen, namely the !rst occurrence of the second
argument, should it exist, will be replaced by the
third argument. The operator concat concatenates the strings that are given as arguments.
In Figure 12, we show the set L(G) of all programs as a collection of sets P𝐿 that contain all

programs of size 𝑀 . The set P1 contains all programs that can be derived from Init. Programs of size
greater than one are constructed by combining programs of smaller size. We use an enumeration
order → that orders programs by their size. Programs that have the same size are ordered from left
to right in Figure 12. The set P7 contains the solution to the synthesis task, highlighted in yellow.
The !rst row in Figure 13 gives the cardinality of each set P𝐿 . Note how the number of programs
grows exponentially with the size, and so eliminating programs early on is essential. In Figure 11,
the set of programs is represented by the gray box and the enumeration order by the dashed line.

State-of-the-art bottom-up enumerative SyGuS solvers [2, 3, 15, 16, 27, 47, 48] factorize the search
space, often using observational equivalence [1, 43]. In Figure 12, programs that are pruned because
they are observationally equivalent to a program that was enumerated earlier are highlighted in
red. The cardinality of the factorized sets is given in the second row in Figure 13. In Figure 11, this
search space is represented by the red area.

Using orimetrics, we can further reduce the search space. The !rst step is to de!ne an orimetric
on programs. The orimetric is chosen based on the data and data manipulations that should
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be supported. For strings with replacement, it is bene!cial to reward programs that produce
superstrings of the outputs given in the examples and punish programs that do not. We explain in
a moment how this plays together with the fact that concatenation prefers substrings. We begin by
de!ning an auxiliary quasimetric m̃ on strings:
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{
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100 + |len(i) → len(o) | otherwise

For example, m(”PO”, ”POPL”) = 102 but m(”POPL”, ”PO”) = 2. Note that m̃ is not symmetric in
general, but it is symmetric at distance zero. We now lift the auxiliary quasimetric m̃ on strings
to an orimetric m on functions over strings. The de!nition is as expected, we evaluate the given
functions on the inputs from all examples and sum up the distances of the output values. To make
this formal, let J ↑ In and de!ne

mJ (𝐿 ,𝑀) =
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Our orimetric is then m = mIn. We will use other instantiations of J in a moment. Note, that the
lifting does not result in a quasimetric. If two di"erent programs p and q produce the same outputs
on the given inputs, their distance is 0. A quasimetric would require p and q to be equal. This need
not be the case. In fact, allowing p and q to have a distance of zero while being di"erent is what
enables factorization in the !rst place.

With the orimetric at hand, we restrict the search to programs in the ball Br (gt), with the radius
r set to 100. This means we only keep programs that return a superstring of the output for every
input example. We admit that this is discrete, and does not make use of the fact that an orimetric
yields continuous values in R↔0. In our experiments, we will see more elaborate instantiations.

Note that focusing on superstrings does not mean we are not allowed to use the concat operator.
We can still use concat, but on the programs inside the ball. The superstring ball is even closed
under concatenation: concatenating superstrings yields a superstring. One may ask how this relates
to the above argument that concat prefers substrings. This argument was made for a comparison
with the !nal value. Since we use superstrings here, it means the !nal value cannot be produced by
concatenation, and so concat will not be the topmost operator in the solution to the synthesis task.
It can, however, still be a part of it.
Coming back to Figure 12, the programs that are additionally pruned by this orimetric are

highlighted in green. Figure 11 depicts the resulting search space as the green ball around gt. The
cardinality of the program sets is shown in Figure 13. Using only pruning is not as e"ective as
factorizing along observational equivalence, but combined we are only left with 81 programs to
explore in P7. In Figure 11, this search space is the intersection of the green ball and the red area.

With approximate orimetrics m𝐿, we can reduce the search space even further. The approximate
orimetrics should be rough so that the induced equivalence ↗m𝐿 eliminates many programs. We will
later recover precision by adding a re!nement loop. In our example, we use m𝐿 =mJ with J = {i1}.
This approximate orimetric only takes into account the !rst example when comparing functions,

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 75. Publication date: January 2026.



Oriented Metrics for Bo!om-Up Enumerative Synthesis 75:7

initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune(L(G),m𝐿, gt)

Search(Q,m𝐿, gt,→ ↑ (Q ↓ Q))

Factorize(P,m𝐿,→)

Refine(m𝐿, p, gt)

Learn(→, { q ↔ Q | q → p }, gt)

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 1. CEGAR loop for synthesis.

initial enumeration order →, initial orimetric m grammar G, ground truth gt

synthesized program p

Prune

Enumerate

Factorize

Refine

Learn

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m

program pspurious program p
✂

m ω mp

→

Fig. 2. CEGAR loop for synthesis.

S ::= V | replace(S,S,S) | concat(S,S)
V ::= x | 𝐿 | "!Conf" | "!City"

Fig. 3. Example grammar G.

In Out
"POPL!Conf" "POPL"
"Rennes!City" "Rennes"
"PLDI!Conf" "PLDI"
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Fig. 4. Input-output examples (In,Out).
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We illustrate our algorithm by solving an example
problem in the string domain. We will repeatedly
refer to Figure 11 to make the link to the conceptual
development introduced above. Figure 3 depicts a
context-free grammar G and Figure 4 shows gt as
four input-output examples (In,Out). The nontermi-
nal Init can be rewritten to the input variable x or to
string constants, where 𝐿 is the empty string. The op-
erator replace takes as arguments three strings: the
!rst is the string in which the replacement should
happen, namely the !rst occurrence of the second
argument, should it exist, will be replaced by the
third argument. The operator concat concatenates the strings that are given as arguments.
In Figure 12, we show the set L(G) of all programs as a collection of sets P𝐿 that contain all

programs of size 𝑀 . The set P1 contains all programs that can be derived from Init. Programs of size
greater than one are constructed by combining programs of smaller size. We use an enumeration
order → that orders programs by their size. Programs that have the same size are ordered from left
to right in Figure 12. The set P7 contains the solution to the synthesis task, highlighted in yellow.
The !rst row in Figure 13 gives the cardinality of each set P𝐿 . Note how the number of programs
grows exponentially with the size, and so eliminating programs early on is essential. In Figure 11,
the set of programs is represented by the gray box and the enumeration order by the dashed line.

State-of-the-art bottom-up enumerative SyGuS solvers [2, 3, 15, 16, 27, 47, 48] factorize the search
space, often using observational equivalence [1, 43]. In Figure 12, programs that are pruned because
they are observationally equivalent to a program that was enumerated earlier are highlighted in
red. The cardinality of the factorized sets is given in the second row in Figure 13. In Figure 11, this
search space is represented by the red area.

Using orimetrics, we can further reduce the search space. The !rst step is to de!ne an orimetric
on programs. The orimetric is chosen based on the data and data manipulations that should
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CEGIS. SyGuS problems that are not example based can still be solved with example-based
techniques. The idea, known as counterexample-guided inductive synthesis [41], is to let an SMT
solver generate new examples should a candidate program not yet satisfy the speci!cation. With
this argument, we focus on example-based speci!cations.

Equivalences. An equivalence → ↑ S ↓ S on a set S is a relation that is re"exive, symmetric, and
transitive. We write [a]→ = {b | b → a} for the equivalence class of a ↔ S. We just write [a] if the
equivalence relation is understood. We lift the notation to sets G ↑ S and de!ne [G] =⋃

g↔G [g].
We call this the closure of G under →. The equivalence is precise wrt. G, if the closure does not
add any elements, [G] ↑ G. Note that the reverse inclusion always holds. If the equivalence is
not precise wrt. G, it is called approximate. The equivalence is unambiguous wrt. G, if [G] = [g]
for all g ↔ G. This means all elements in G are equivalent. Let 𝐿 : S ↗ S be a transformer on S.
The equivalence is a congruence wrt. 𝐿 , if a → b implies 𝐿 (a) → 𝐿 (b). The de!nition generalizes
to functions in several arguments in the expected way. Factorizing S along → yields the set of
equivalence classes S/→ = {[a] | a ↔ S}. A representative system for S/→ is a set 𝑀 ↑ S that contains
precisely one element c ↔ 𝑁 for every class 𝑁 ↔ S/→.

4 Contribution I – Oriented Metric Search Spaces
We !rst de!ne the main object of this paper, oriented metrics, and then turn to the search space
and the enumeration order. Finally, we describe the components of our CEGAR loop in detail.

4.1 Oriented Metrics
It will be convenient to give the de!nition for arbitrary sets S.

De!nition 4.1. A function m : L(G) ↓ L(G) ↗ R↘0 is an oriented metric (orimetric) if, for all
a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation →m ↑ S ↓ S where a →m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G ↑ S, if the equivalence →m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↗ S, if this holds for →m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/→m↓ S/→m↗ R↘0 with qm ( [a], [b]) =m(a, b).

De!nition 4.2. A function m : S ↓ S ↗ R↘0 is an oriented metric (orimetric) if, for all a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation →m ↑ S ↓ S where a →m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G ↑ S, if the equivalence →m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↗ S, if this holds for →m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/→m↓ S/→m↗ R↘0 with qm ( [a], [b]) =m(a, b).

We also suggested an alternative to orimetrics.
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We !rst de!ne the main object of this paper, oriented metrics, and then turn to the search space
and the enumeration order. Finally, we describe the components of our CEGAR loop in detail.

4.1 Oriented Metrics
It will be convenient to give the de!nition for arbitrary sets S.

De!nition 4.1. A function m : L(G) ↓ L(G) ↗ R↘0 is an oriented metric (orimetric) if, for all
a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation →m ↑ S ↓ S where a →m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G ↑ S, if the equivalence →m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↗ S, if this holds for →m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/→m↓ S/→m↗ R↘0 with qm ( [a], [b]) =m(a, b).

De!nition 4.2. A function m : S ↓ S ↗ R↘0 is an oriented metric (orimetric) if, for all a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation →m ↑ S ↓ S where a →m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G ↑ S, if the equivalence →m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↗ S, if this holds for →m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/→m↓ S/→m↗ R↘0 with qm ( [a], [b]) =m(a, b).

We also suggested an alternative to orimetrics.
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→
gt L(G)/↑mIn

L(G)

Fig. 9. Search space and enumeration order.

→
gt L(G)/↑

m𝐿

L(G)

Fig. 10. Search space and enumeration order.

→
gt L(G)/↑

m𝐿

L(G)

Fig. 11. Search space and enumeration order.

We illustrate our algorithm by solving an example
problem in the string domain. We will repeatedly
refer to Figure 11 to make the link to the conceptual
development introduced above. Figure 3 depicts a
context-free grammar G and Figure 4 shows gt as
four input-output examples (In,Out). The nontermi-
nal Init can be rewritten to the input variable x or to
string constants, where 𝐿 is the empty string. The op-
erator replace takes as arguments three strings: the
!rst is the string in which the replacement should
happen, namely the !rst occurrence of the second
argument, should it exist, will be replaced by the
third argument. The operator concat concatenates the strings that are given as arguments.
In Figure 12, we show the set L(G) of all programs as a collection of sets P𝐿 that contain all

programs of size 𝑀 . The set P1 contains all programs that can be derived from Init. Programs of size
greater than one are constructed by combining programs of smaller size. We use an enumeration
order → that orders programs by their size. Programs that have the same size are ordered from left
to right in Figure 12. The set P7 contains the solution to the synthesis task, highlighted in yellow.
The !rst row in Figure 13 gives the cardinality of each set P𝐿 . Note how the number of programs
grows exponentially with the size, and so eliminating programs early on is essential. In Figure 11,
the set of programs is represented by the gray box and the enumeration order by the dashed line.

State-of-the-art bottom-up enumerative SyGuS solvers [2, 3, 15, 16, 27, 47, 48] factorize the search
space, often using observational equivalence [1, 43]. In Figure 12, programs that are pruned because
they are observationally equivalent to a program that was enumerated earlier are highlighted in
red. The cardinality of the factorized sets is given in the second row in Figure 13. In Figure 11, this
search space is represented by the red area.

Using orimetrics, we can further reduce the search space. The !rst step is to de!ne an orimetric
on programs. The orimetric is chosen based on the data and data manipulations that should
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initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune(L(G),m𝐿, gt)

Search(Q,m𝐿, gt,→ ↑ (Q ↓ Q))

Factorize(P,m𝐿,→)

Refine(m𝐿, p, gt)

Learn(→, { q ↔ Q | q → p }, gt)

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 1. CEGAR loop for synthesis.

initial enumeration order →, initial orimetric m grammar G, ground truth gt

synthesized program p

Prune

Enumerate

Factorize

Refine

Learn

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m

program pspurious program p
✂

m ω mp

→

Fig. 2. CEGAR loop for synthesis.

S ::= V | replace(S,S,S) | concat(S,S)
V ::= x | 𝐿 | "!Conf" | "!City"

Fig. 3. Example grammar G.

In Out
"POPL!Conf" "POPL"
"Rennes!City" "Rennes"
"PLDI!Conf" "PLDI"
"Seoul!City" "Seoul"

Fig. 4. Input-output examples (In,Out).
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CEGIS. SyGuS problems that are not example based can still be solved with example-based
techniques. The idea, known as counterexample-guided inductive synthesis [41], is to let an SMT
solver generate new examples should a candidate program not yet satisfy the speci!cation. With
this argument, we focus on example-based speci!cations.

Equivalences. An equivalence → ↑ S ↓ S on a set S is a relation that is re"exive, symmetric, and
transitive. We write [a]→ = {b | b → a} for the equivalence class of a ↔ S. We just write [a] if the
equivalence relation is understood. We lift the notation to sets G ↑ S and de!ne [G] =⋃

g↔G [g].
We call this the closure of G under →. The equivalence is precise wrt. G, if the closure does not
add any elements, [G] ↑ G. Note that the reverse inclusion always holds. If the equivalence is
not precise wrt. G, it is called approximate. The equivalence is unambiguous wrt. G, if [G] = [g]
for all g ↔ G. This means all elements in G are equivalent. Let 𝐿 : S ↗ S be a transformer on S.
The equivalence is a congruence wrt. 𝐿 , if a → b implies 𝐿 (a) → 𝐿 (b). The de!nition generalizes
to functions in several arguments in the expected way. Factorizing S along → yields the set of
equivalence classes S/→ = {[a] | a ↔ S}. A representative system for S/→ is a set 𝑀 ↑ S that contains
precisely one element c ↔ 𝑁 for every class 𝑁 ↔ S/→.

4 Contribution I – Oriented Metric Search Spaces
We !rst de!ne the main object of this paper, oriented metrics, and then turn to the search space
and the enumeration order. Finally, we describe the components of our CEGAR loop in detail.

4.1 Oriented Metrics
It will be convenient to give the de!nition for arbitrary sets S.

De!nition 4.1. A function m : L(G) ↓ L(G) ↗ R↘0 is an oriented metric (orimetric) if, for all
a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation →m ↑ S ↓ S where a →m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G ↑ S, if the equivalence →m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↗ S, if this holds for →m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/→m↓ S/→m↗ R↘0 with qm ( [a], [b]) =m(a, b).

De!nition 4.2. A function m : S ↓ S ↗ R↘0 is an oriented metric (orimetric) if, for all a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation →m ↑ S ↓ S where a →m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G ↑ S, if the equivalence →m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↗ S, if this holds for →m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/→m↓ S/→m↗ R↘0 with qm ( [a], [b]) =m(a, b).

We also suggested an alternative to orimetrics.
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CEGIS. SyGuS problems that are not example based can still be solved with example-based
techniques. The idea, known as counterexample-guided inductive synthesis [41], is to let an SMT
solver generate new examples should a candidate program not yet satisfy the speci!cation. With
this argument, we focus on example-based speci!cations.

Equivalences. An equivalence → ↑ S ↓ S on a set S is a relation that is re"exive, symmetric, and
transitive. We write [a]→ = {b | b → a} for the equivalence class of a ↔ S. We just write [a] if the
equivalence relation is understood. We lift the notation to sets G ↑ S and de!ne [G] =⋃

g↔G [g].
We call this the closure of G under →. The equivalence is precise wrt. G, if the closure does not
add any elements, [G] ↑ G. Note that the reverse inclusion always holds. If the equivalence is
not precise wrt. G, it is called approximate. The equivalence is unambiguous wrt. G, if [G] = [g]
for all g ↔ G. This means all elements in G are equivalent. Let 𝐿 : S ↗ S be a transformer on S.
The equivalence is a congruence wrt. 𝐿 , if a → b implies 𝐿 (a) → 𝐿 (b). The de!nition generalizes
to functions in several arguments in the expected way. Factorizing S along → yields the set of
equivalence classes S/→ = {[a] | a ↔ S}. A representative system for S/→ is a set 𝑀 ↑ S that contains
precisely one element c ↔ 𝑁 for every class 𝑁 ↔ S/→.

4 Contribution I – Oriented Metric Search Spaces
We !rst de!ne the main object of this paper, oriented metrics, and then turn to the search space
and the enumeration order. Finally, we describe the components of our CEGAR loop in detail.

4.1 Oriented Metrics
It will be convenient to give the de!nition for arbitrary sets S.

De!nition 4.1. A function m : L(G) ↓ L(G) ↗ R↘0 is an oriented metric (orimetric) if, for all
a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation →m ↑ S ↓ S where a →m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G ↑ S, if the equivalence →m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↗ S, if this holds for →m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/→m↓ S/→m↗ R↘0 with qm ( [a], [b]) =m(a, b).

De!nition 4.2. A function m : S ↓ S ↗ R↘0 is an oriented metric (orimetric) if, for all a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation →m ↑ S ↓ S where a →m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G ↑ S, if the equivalence →m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↗ S, if this holds for →m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/→m↓ S/→m↗ R↘0 with qm ( [a], [b]) =m(a, b).

We also suggested an alternative to orimetrics.
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→
gt L(G)/↑mIn

L(G)

Fig. 9. Search space and enumeration order.

→
gt L(G)/↑

m𝐿

L(G)

Fig. 10. Search space and enumeration order.

→
gt L(G)/↑

m𝐿

L(G)

Fig. 11. Search space and enumeration order.

We illustrate our algorithm by solving an example
problem in the string domain. We will repeatedly
refer to Figure 11 to make the link to the conceptual
development introduced above. Figure 3 depicts a
context-free grammar G and Figure 4 shows gt as
four input-output examples (In,Out). The nontermi-
nal Init can be rewritten to the input variable x or to
string constants, where 𝐿 is the empty string. The op-
erator replace takes as arguments three strings: the
!rst is the string in which the replacement should
happen, namely the !rst occurrence of the second
argument, should it exist, will be replaced by the
third argument. The operator concat concatenates the strings that are given as arguments.
In Figure 12, we show the set L(G) of all programs as a collection of sets P𝐿 that contain all

programs of size 𝑀 . The set P1 contains all programs that can be derived from Init. Programs of size
greater than one are constructed by combining programs of smaller size. We use an enumeration
order → that orders programs by their size. Programs that have the same size are ordered from left
to right in Figure 12. The set P7 contains the solution to the synthesis task, highlighted in yellow.
The !rst row in Figure 13 gives the cardinality of each set P𝐿 . Note how the number of programs
grows exponentially with the size, and so eliminating programs early on is essential. In Figure 11,
the set of programs is represented by the gray box and the enumeration order by the dashed line.

State-of-the-art bottom-up enumerative SyGuS solvers [2, 3, 15, 16, 27, 47, 48] factorize the search
space, often using observational equivalence [1, 43]. In Figure 12, programs that are pruned because
they are observationally equivalent to a program that was enumerated earlier are highlighted in
red. The cardinality of the factorized sets is given in the second row in Figure 13. In Figure 11, this
search space is represented by the red area.

Using orimetrics, we can further reduce the search space. The !rst step is to de!ne an orimetric
on programs. The orimetric is chosen based on the data and data manipulations that should
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initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune(L(G),m𝐿, gt)

Search(Q,m𝐿, gt,→ ↑ (Q ↓ Q))

Factorize(P,m𝐿,→)

Refine(m𝐿, p, gt)

Learn(→, { q ↔ Q | q → p }, gt)

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 1. CEGAR loop for synthesis.

initial enumeration order →, initial orimetric m grammar G, ground truth gt

synthesized program p

Prune

Enumerate

Factorize

Refine

Learn

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m

program pspurious program p
✂

m ω mp

→

Fig. 2. CEGAR loop for synthesis.

S ::= V | replace(S,S,S) | concat(S,S)
V ::= x | 𝐿 | "!Conf" | "!City"

Fig. 3. Example grammar G.

In Out
"POPL!Conf" "POPL"
"Rennes!City" "Rennes"
"PLDI!Conf" "PLDI"
"Seoul!City" "Seoul"

Fig. 4. Input-output examples (In,Out).
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CEGIS. SyGuS problems that are not example based can still be solved with example-based
techniques. The idea, known as counterexample-guided inductive synthesis [41], is to let an SMT
solver generate new examples should a candidate program not yet satisfy the speci!cation. With
this argument, we focus on example-based speci!cations.

Equivalences. An equivalence → ↑ S ↓ S on a set S is a relation that is re"exive, symmetric, and
transitive. We write [a]→ = {b | b → a} for the equivalence class of a ↔ S. We just write [a] if the
equivalence relation is understood. We lift the notation to sets G ↑ S and de!ne [G] =⋃

g↔G [g].
We call this the closure of G under →. The equivalence is precise wrt. G, if the closure does not
add any elements, [G] ↑ G. Note that the reverse inclusion always holds. If the equivalence is
not precise wrt. G, it is called approximate. The equivalence is unambiguous wrt. G, if [G] = [g]
for all g ↔ G. This means all elements in G are equivalent. Let 𝐿 : S ↗ S be a transformer on S.
The equivalence is a congruence wrt. 𝐿 , if a → b implies 𝐿 (a) → 𝐿 (b). The de!nition generalizes
to functions in several arguments in the expected way. Factorizing S along → yields the set of
equivalence classes S/→ = {[a] | a ↔ S}. A representative system for S/→ is a set 𝑀 ↑ S that contains
precisely one element c ↔ 𝑁 for every class 𝑁 ↔ S/→.

4 Contribution I – Oriented Metric Search Spaces
We !rst de!ne the main object of this paper, oriented metrics, and then turn to the search space
and the enumeration order. Finally, we describe the components of our CEGAR loop in detail.

4.1 Oriented Metrics
It will be convenient to give the de!nition for arbitrary sets S.

De!nition 4.1. A function m : L(G) ↓ L(G) ↗ R↘0 is an oriented metric (orimetric) if, for all
a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation →m ↑ S ↓ S where a →m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G ↑ S, if the equivalence →m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↗ S, if this holds for →m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/→m↓ S/→m↗ R↘0 with qm ( [a], [b]) =m(a, b).

De!nition 4.2. A function m : S ↓ S ↗ R↘0 is an oriented metric (orimetric) if, for all a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation →m ↑ S ↓ S where a →m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G ↑ S, if the equivalence →m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↗ S, if this holds for →m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/→m↓ S/→m↗ R↘0 with qm ( [a], [b]) =m(a, b).

We also suggested an alternative to orimetrics.
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CEGIS. SyGuS problems that are not example based can still be solved with example-based
techniques. The idea, known as counterexample-guided inductive synthesis [41], is to let an SMT
solver generate new examples should a candidate program not yet satisfy the speci!cation. With
this argument, we focus on example-based speci!cations.

Equivalences. An equivalence → ↑ S ↓ S on a set S is a relation that is re"exive, symmetric, and
transitive. We write [a]→ = {b | b → a} for the equivalence class of a ↔ S. We just write [a] if the
equivalence relation is understood. We lift the notation to sets G ↑ S and de!ne [G] =⋃

g↔G [g].
We call this the closure of G under →. The equivalence is precise wrt. G, if the closure does not
add any elements, [G] ↑ G. Note that the reverse inclusion always holds. If the equivalence is
not precise wrt. G, it is called approximate. The equivalence is unambiguous wrt. G, if [G] = [g]
for all g ↔ G. This means all elements in G are equivalent. Let 𝐿 : S ↗ S be a transformer on S.
The equivalence is a congruence wrt. 𝐿 , if a → b implies 𝐿 (a) → 𝐿 (b). The de!nition generalizes
to functions in several arguments in the expected way. Factorizing S along → yields the set of
equivalence classes S/→ = {[a] | a ↔ S}. A representative system for S/→ is a set 𝑀 ↑ S that contains
precisely one element c ↔ 𝑁 for every class 𝑁 ↔ S/→.

4 Contribution I – Oriented Metric Search Spaces
We !rst de!ne the main object of this paper, oriented metrics, and then turn to the search space
and the enumeration order. Finally, we describe the components of our CEGAR loop in detail.

4.1 Oriented Metrics
It will be convenient to give the de!nition for arbitrary sets S.

De!nition 4.1. A function m : L(G) ↓ L(G) ↗ R↘0 is an oriented metric (orimetric) if, for all
a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation →m ↑ S ↓ S where a →m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G ↑ S, if the equivalence →m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↗ S, if this holds for →m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/→m↓ S/→m↗ R↘0 with qm ( [a], [b]) =m(a, b).

De!nition 4.2. A function m : S ↓ S ↗ R↘0 is an oriented metric (orimetric) if, for all a, b, c ↔ S,

m(a, a) = 0 (re"exivity)
m(b, a) = 0 ≃ m(a, b) = 0 (symmetry at zero)

m(a, c) ⇐ m(a, b) + m(b, c) . (⇒-inequality)

The equivalence induced by m is the relation →m ↑ S ↓ S where a →m b if m(a, b) = 0, for all a, b ↔ S.
The orimetric is precise, approximate, resp. unambiguous wrt. G ↑ S, if the equivalence →m has
these properties. The orimetric is a congruence wrt. 𝐿 : S ↗ S, if this holds for →m. We generalize
the congruence requirement to functions in several arguments where needed. The quasimetric
induced by m is qm : S/→m↓ S/→m↗ R↘0 with qm ( [a], [b]) =m(a, b).

We also suggested an alternative to orimetrics.
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Fig. 10. Search space and enumeration order.
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Fig. 11. Search space and enumeration order.

We illustrate our algorithm by solving an example
problem in the string domain. We will repeatedly
refer to Figure 11 to make the link to the conceptual
development introduced above. Figure 3 depicts a
context-free grammar G and Figure 4 shows gt as
four input-output examples (In,Out). The nontermi-
nal Init can be rewritten to the input variable x or to
string constants, where 𝐿 is the empty string. The op-
erator replace takes as arguments three strings: the
!rst is the string in which the replacement should
happen, namely the !rst occurrence of the second
argument, should it exist, will be replaced by the
third argument. The operator concat concatenates the strings that are given as arguments.
In Figure 12, we show the set L(G) of all programs as a collection of sets P𝐿 that contain all

programs of size 𝑀 . The set P1 contains all programs that can be derived from Init. Programs of size
greater than one are constructed by combining programs of smaller size. We use an enumeration
order → that orders programs by their size. Programs that have the same size are ordered from left
to right in Figure 12. The set P7 contains the solution to the synthesis task, highlighted in yellow.
The !rst row in Figure 13 gives the cardinality of each set P𝐿 . Note how the number of programs
grows exponentially with the size, and so eliminating programs early on is essential. In Figure 11,
the set of programs is represented by the gray box and the enumeration order by the dashed line.

State-of-the-art bottom-up enumerative SyGuS solvers [2, 3, 15, 16, 27, 47, 48] factorize the search
space, often using observational equivalence [1, 43]. In Figure 12, programs that are pruned because
they are observationally equivalent to a program that was enumerated earlier are highlighted in
red. The cardinality of the factorized sets is given in the second row in Figure 13. In Figure 11, this
search space is represented by the red area.

Using orimetrics, we can further reduce the search space. The !rst step is to de!ne an orimetric
on programs. The orimetric is chosen based on the data and data manipulations that should
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initial enumeration order →, initial approximate orimetric m𝐿 grammar G, ground truth gt

synthesized program p

Prune(L(G),m𝐿, gt)

Search(Q,m𝐿, gt,→ ↑ (Q ↓ Q))

Factorize(P,m𝐿,→)

Refine(m𝐿, p, gt)

Learn(→, { q ↔ Q | q → p }, gt)

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m𝐿

program pspurious program p
✂

m𝐿 ω mp
𝐿

→

Fig. 1. CEGAR loop for synthesis.

initial enumeration order →, initial orimetric m grammar G, ground truth gt

synthesized program p

Prune

Enumerate

Factorize

Refine

Learn

p correct?

CEGAR

✁

search space P

search space Q ω P/↗m

program pspurious program p
✂

m ω mp

→

Fig. 2. CEGAR loop for synthesis.

S ::= V | replace(S,S,S) | concat(S,S)
V ::= x | 𝐿 | "!Conf" | "!City"

Fig. 3. Example grammar G.

In Out
"POPL!Conf" "POPL"
"Rennes!City" "Rennes"
"PLDI!Conf" "PLDI"
"Seoul!City" "Seoul"

Fig. 4. Input-output examples (In,Out).
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