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top = TOS;
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next = top.next;

N;

CAS(TOS, top, next);
N;

retire(top);

N;
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Instantiation on SMR Setting

Contribution 3:

Treiber’s Treiber’s Michael Michael
Data and Scott’s | and Scott’s | ORVYY Set | ORVYY Set
Stack Stack
Structure Queue Queue Add Remove
Pop Push
Enqueue Dequeue
SMR HP1 HP1 HP1 HP2 HP2 HP2
Alaorithm (5 Base (5 Base (5 Base (8 Base (8 Base (8 Base
9 Types) Types) Types) Types) Types) Types)
Time
(PO + <0.1s <0.1s <0.1s < 7.5s < 0.9s <0.4s
Synth)
Max/Avg | 5,44 6/1.7 5/1.4 90/ 1.4 28 /1.7 30/1.3

R
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