
Roland Meyer, Jakob Tepe, Sebastian Wolff, 01.03.2024

Making Programs Memory Safe
Through Program Synthesis

￼1

Roland Meyer, Jakob Tepe, Sebastian Wolff, 01.03.2024

Making Programs Memory Safe
Through Program Synthesis

￼1

Program Synthesis

￼2

∈ Progs

{pre} {post}⊧ prog

Program Synthesis

￼3

∈ Progs

{pre} {post}⊧ prog

given as a Sketch: Progs

Program Synthesis

￼3

∈ Progs

{pre} {post}⊧ prog

given as a Sketch:

N;
x++;
N;
y = 1; + y = 2;
M;

Progs

Program Synthesis

￼3

∈ Progs

{pre} {post}⊧ prog

given as a Sketch:

N;
x++;
N;
y = 1; + y = 2;
M;

Progs

N ::= x = 1 | x = 2

M ::= y++ | M;M

⊧
Program Synthesis

￼4

∈ Progs

{pre} {post}prog

given as a Sketch:

x = 0;
N;
x++;
y = 1; + y = 2;
M;

Progs

N ::= x = 1 | x = 2

M ::= y++ | M

Verifi

 Problems:
1: Is synthesis possible?

Verification - Realizability Logic

⊧
Program Synthesis

￼4

∈ Progs

{pre} {post}prog

given as a Sketch:

x = 0;
N;
x++;
y = 1; + y = 2;
M;

Progs

N ::= x = 1 | x = 2

M ::= y++ | M

Verifi

 Problems:
1: Is synthesis possible?

Verification - Realizability Logic

2: What does the solution look like?
Synthesis - Realization Logic

Realizability Logic

￼5

{true}

{x = 2}

Realizability Logic

￼5

N;

x++;

{true}

{x = 2}

Realizability Logic

￼5

N;

x++;

{true}

{x = 2}

N ::= x = 1 | x = 2

Realizability Logic

￼5

N;

x++;

{true}

{x = 2}

∃prog ∈ { N ::= x = 1 | x = 2

⊧ {true}prog{x = 2}

Realizability Logic

￼6

x = 1;

x++;

{true}

{x = 2}

∃prog ∈ {
✅

N ::= x = 1 | x = 2

⊧ {true}prog{x = 2}

Realizability Logic

￼6

x = 1;

x++;

{true}

{x = 2}

∃prog ∈ {
✅

N ::= x = 1 | x = 2{x = 1}

⊧ {true}prog{x = 2}

Realizability Logic

￼7

N;

x++;

{true}

{x = 2}

∃prog ∈ { N ::= x = 1 | x = 2

✅⊧ {true}prog{x = 2}

Realizability Logic

￼8

N;

x++;

⟨true⟩

⟨x = 2⟩

∃prog ∈ { N ::= x = 1 | x = 2

✅⊧ {true}prog{x = 2}

Realizability Logic

￼8

N;

x++;

⟨true⟩

⟨x = 2⟩

∃prog ∈ { N ::= x = 1 | x = 2⟨x = 1, x = 2⟩

✅⊧ {true}prog{x = 2}

Realizability Logic

￼9

N;

x++;

⟨true⟩

⟨x = 2, x = 3⟩

∃prog ∈ { N ::= x = 1 | x = 2⟨x = 1, x = 2⟩

✅⊧ {true}prog{x = 2}

Realizability Logic

￼10

x = 1; + x = 2;

x++;
N ::= x = 1 | x = 2∃prog ∈ {

⟨true⟩

⊧ {true}prog{x = 2}

Realizability Logic

￼10

x = 1; + x = 2;

x++;
N ::= x = 1 | x = 2∃prog ∈ { ⟨x = 1 ∨ x = 2⟩

⟨true⟩

⊧ {true}prog{x = 2}

Realizability Logic

￼11

x = 1; + x = 2;

x++;
N ::= x = 1 | x = 2∃prog ∈ { ⟨x = 1 ∨ x = 2⟩

⟨true⟩

⟨x = 2 ∨ x = 3⟩⊧ {true}prog{x = 2}

Realizability Logic

￼11

x = 1; + x = 2;

x++;
N ::= x = 1 | x = 2∃prog ∈ { ⟨x = 1 ∨ x = 2⟩

⟨true⟩

⟨x = 2 ∨ x = 3⟩❌⊧ {true}prog{x = 2}

Realizability Logic

￼12

N;

x++; + skip;
N ::= x = 1 | x = 2∃prog ∈ {

⟨true⟩

⊧ {true}prog{x = 2}

Realizability Logic

￼12

N;

x++; + skip;
N ::= x = 1 | x = 2∃prog ∈ { ⟨x = 1, x = 2⟩

⟨true⟩

⊧ {true}prog{x = 2}

Realizability Logic

￼12

N;

x++; + skip;
N ::= x = 1 | x = 2∃prog ∈ { ⟨x = 1, x = 2⟩

⟨true⟩

⟨x = 1 ∨ x = 2, x = 2 ∨ x = 3⟩⊧ {true}prog{x = 2}

Realizability Logic

￼12

N;

x++; + skip;
N ::= x = 1 | x = 2∃prog ∈ { ⟨x = 1, x = 2⟩

⟨true⟩

⟨x = 1 ∨ x = 2, x = 2 ∨ x = 3⟩❌⊧ {true}prog{x = 2}

Realizability Logic

￼13

x = 1; + x = 2;

N;
N ::= x++ | skip∃prog ∈ {

⟨true⟩

⊧ {true}prog{x = 2}

Realizability Logic

￼13

x = 1; + x = 2;

N;
N ::= x++ | skip∃prog ∈ { ⟨x = 1 ∨ x = 2⟩

⟨true⟩

⊧ {true}prog{x = 2}

Realizability Logic

￼13

x = 1; + x = 2;

N;
N ::= x++ | skip∃prog ∈ { ⟨x = 1 ∨ x = 2⟩

⟨true⟩

⟨x = 2 ∨ x = 3, x = 1 ∨ x = 2⟩⊧ {true}prog{x = 2}

Realizability Logic

￼13

x = 1; + x = 2;

N;
N ::= x++ | skip∃prog ∈ { ⟨x = 1 ∨ x = 2⟩

⟨true⟩

⟨x = 2 ∨ x = 3, x = 1 ∨ x = 2⟩❌⊧ {true}prog{x = 2}

Realizability Logic

￼14

M;

N; N ::= x++ | skip
∃prog ∈ {

⟨true⟩

⊧ {true}prog{x = 2}

M ::= x = 1 | x = 2

Realizability Logic

￼14

M;

N; N ::= x++ | skip
∃prog ∈ { ⟨x = 1, x = 2⟩

⟨true⟩

⊧ {true}prog{x = 2}

M ::= x = 1 | x = 2

Realizability Logic

￼14

M;

N; N ::= x++ | skip
∃prog ∈ { ⟨x = 1, x = 2⟩

⟨true⟩

⟨x = 1, x = 2, x = 3⟩⊧ {true}prog{x = 2}

M ::= x = 1 | x = 2

Realizability Logic

￼14

M;

N; N ::= x++ | skip
∃prog ∈ { ⟨x = 1, x = 2⟩

⟨true⟩

⟨x = 1, x = 2, x = 3⟩⊧ {true}prog{x = 2}

M ::= x = 1 | x = 2

✅

Realizability Logic

￼14

M;

N; N ::= x++ | skip
∃prog ∈ { ⟨x = 1, x = 2⟩

⟨true⟩

⟨x = 1, x = 2, x = 3⟩⊧ {true}prog{x = 2}

M ::= x = 1 | x = 2

✅

What semantics?

Realizability Logic

￼15

⊧a ⟨R⟩sketch⟨S⟩ ⇔

Set of predicates

Realizability Logic

￼15

⊧a ⟨R⟩sketch⟨S⟩ ⇔

Set of predicates

⊧a ⟨true⟩ ⟨x = 1, x = 2, x = 3⟩M;N

N ::= x++ | skip

M ::= x = 1 | x = 2

Realizability Logic

￼15

⊧a ⟨R⟩sketch⟨S⟩ ⇔

Set of predicates

∀s ∈ S .

⊧a ⟨true⟩ ⟨x = 1, x = 2, x = 3⟩M;N

N ::= x++ | skip

M ::= x = 1 | x = 2

Realizability Logic

￼15

⊧a ⟨R⟩sketch⟨S⟩ ⇔

Set of predicates

∀s ∈ S .∃r ∈ R . ∃prog ∈ drv(sketch) .

⊧a ⟨true⟩ ⟨x = 1, x = 2, x = 3⟩M;N

N ::= x++ | skip

M ::= x = 1 | x = 2

Realizability Logic

￼15

⊧a ⟨R⟩sketch⟨S⟩ ⇔

Set of predicates

∀s ∈ S .∃r ∈ R . ∃prog ∈ drv(sketch) .
⊧d {r}prog{s}

⊧a ⟨true⟩ ⟨x = 1, x = 2, x = 3⟩M;N

N ::= x++ | skip

M ::= x = 1 | x = 2

Realizability Logic

￼15

⊧a ⟨R⟩sketch⟨S⟩ ⇔

Set of predicates

∀s ∈ S .∃r ∈ R . ∃prog ∈ drv(sketch) .
⊧d {r}prog{s}

⊧a ⟨true⟩ ⟨x = 1, x = 2, x = 3⟩M;N

N ::= x++ | skip

M ::= x = 1 | x = 2
demonic (standard Hoare)

Realizability Logic

￼15

⊧a ⟨R⟩sketch⟨S⟩ ⇔

Set of predicates

∀s ∈ S .∃r ∈ R . ∃prog ∈ drv(sketch) .
⊧d {r}prog{s}

⊧a ⟨true⟩ ⟨x = 1, x = 2, x = 3⟩M;N

N ::= x++ | skip

M ::= x = 1 | x = 2

angelic
demonic (standard Hoare)

Realizability Logic

￼16

N

x++; + skip;

⟨true⟩

N ::= x = 1 | x = 2

Realizability Logic

￼16

N

x++; + skip;

⟨true⟩

N ::= x = 1 | x = 2

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(true) �3 G = 1
`0 h{true}ix = 1;h{G = 1}i

(COM)

»x = 2;…(true) �3 G = 2
`0 h{true}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

(GATHER)

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

`0 htruei hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1_G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2_G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1_G = 2, G = 2_G = 3i

(SEQ)
`0 htruei ;(x++; skip;)hG = 1_G = 2, G = 2_G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

8

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(true) �3 G = 1
`0 h{true}ix = 1;h{G = 1}i

(COM)

»x = 2;…(true) �3 G = 2
`0 h{true}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

(GATHER)

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

`0 htruei hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1_G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2_G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1_G = 2, G = 2_G = 3i

(SEQ)
`0 htruei ;(x++; skip;)hG = 1_G = 2, G = 2_G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

8

Realizability Logic

￼16

N

x++; + skip;

⟨true⟩

N ::= x = 1 | x = 2

N

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(true) �3 G = 1
`0 h{true}ix = 1;h{G = 1}i

(COM)

»x = 2;…(true) �3 G = 2
`0 h{true}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

(GATHER)

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

`0 htruei hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1_G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2_G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1_G = 2, G = 2_G = 3i

(SEQ)
`0 htruei ;(x++; skip;)hG = 1_G = 2, G = 2_G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

8

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(true) �3 G = 1
`0 h{true}ix = 1;h{G = 1}i

(COM)

»x = 2;…(true) �3 G = 2
`0 h{true}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

(GATHER)

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

`0 htruei hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1_G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2_G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1_G = 2, G = 2_G = 3i

(SEQ)
`0 htruei ;(x++; skip;)hG = 1_G = 2, G = 2_G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

8

Realizability Logic

￼16

N

x++; + skip;

⟨true⟩

N ::= x = 1 | x = 2

N

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(true) �3 G = 1
`0 h{true}ix = 1;h{G = 1}i

(COM)

»x = 2;…(true) �3 G = 2
`0 h{true}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

(GATHER)

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

`0 htruei hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1_G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2_G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1_G = 2, G = 2_G = 3i

(SEQ)
`0 htruei ;(x++; skip;)hG = 1_G = 2, G = 2_G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

8

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(true) �3 G = 1
`0 h{true}ix = 1;h{G = 1}i

(COM)

»x = 2;…(true) �3 G = 2
`0 h{true}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

(GATHER)

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

`0 htruei hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1_G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2_G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1_G = 2, G = 2_G = 3i

(SEQ)
`0 htruei ;(x++; skip;)hG = 1_G = 2, G = 2_G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

8

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(true) �3 G = 1
`0 h{true}ix = 1;h{G = 1}i

(COM)

»x = 2;…(true) �3 G = 2
`0 h{true}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

(GATHER)

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

`0 htruei hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1_G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2_G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1_G = 2, G = 2_G = 3i

(SEQ)
`0 htruei ;(x++; skip;)hG = 1_G = 2, G = 2_G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

8

Realizability Logic

￼16

N

x++; + skip;

⟨true⟩

N ::= x = 1 | x = 2

N N

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(true) �3 G = 1
`0 h{true}ix = 1;h{G = 1}i

(COM)

»x = 2;…(true) �3 G = 2
`0 h{true}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

(GATHER)

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

`0 htruei hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1_G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2_G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1_G = 2, G = 2_G = 3i

(SEQ)
`0 htruei ;(x++; skip;)hG = 1_G = 2, G = 2_G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

8

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(true) �3 G = 1
`0 h{true}ix = 1;h{G = 1}i

(COM)

»x = 2;…(true) �3 G = 2
`0 h{true}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

(GATHER)

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

`0 htruei hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1_G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2_G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1_G = 2, G = 2_G = 3i

(SEQ)
`0 htruei ;(x++; skip;)hG = 1_G = 2, G = 2_G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

8

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(true) �3 G = 1
`0 h{true}ix = 1;h{G = 1}i

(COM)

»x = 2;…(true) �3 G = 2
`0 h{true}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

(GATHER)

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

`0 htruei hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1_G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2_G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1_G = 2, G = 2_G = 3i

(SEQ)
`0 htruei ;(x++; skip;)hG = 1_G = 2, G = 2_G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

8

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(true) �3 G = 1
`0 h{true}ix = 1;h{G = 1}i

(COM)

»x = 2;…(true) �3 G = 2
`0 h{true}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

(GATHER)

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

`0 htruei hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1_G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2_G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1_G = 2, G = 2_G = 3i

(SEQ)
`0 htruei ;(x++; skip;)hG = 1_G = 2, G = 2_G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

8

Realizability Logic

￼16

N

x++; + skip;

⟨true⟩

N ::= x = 1 | x = 2

N N

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(true) �3 G = 1
`0 h{true}ix = 1;h{G = 1}i

(COM)

»x = 2;…(true) �3 G = 2
`0 h{true}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

(GATHER)

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

`0 htruei hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1_G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2_G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1_G = 2, G = 2_G = 3i

(SEQ)
`0 htruei ;(x++; skip;)hG = 1_G = 2, G = 2_G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

8

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(true) �3 G = 1
`0 h{true}ix = 1;h{G = 1}i

(COM)

»x = 2;…(true) �3 G = 2
`0 h{true}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

(GATHER)

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

`0 htruei hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1_G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2_G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1_G = 2, G = 2_G = 3i

(SEQ)
`0 htruei ;(x++; skip;)hG = 1_G = 2, G = 2_G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

8

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(true) �3 G = 1
`0 h{true}ix = 1;h{G = 1}i

(COM)

»x = 2;…(true) �3 G = 2
`0 h{true}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

(GATHER)

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

`0 htruei hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1_G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2_G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1_G = 2, G = 2_G = 3i

(SEQ)
`0 htruei ;(x++; skip;)hG = 1_G = 2, G = 2_G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

8

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(true) �3 G = 1
`0 h{true}ix = 1;h{G = 1}i

(COM)

»x = 2;…(true) �3 G = 2
`0 h{true}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

(GATHER)

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

`0 htruei hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1_G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2_G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1_G = 2, G = 2_G = 3i

(SEQ)
`0 htruei ;(x++; skip;)hG = 1_G = 2, G = 2_G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

8

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(true) �3 G = 1
`0 h{true}ix = 1;h{G = 1}i

(COM)

»x = 2;…(true) �3 G = 2
`0 h{true}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

(GATHER)

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

`0 htruei hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1_G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2_G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1_G = 2, G = 2_G = 3i

(SEQ)
`0 htruei ;(x++; skip;)hG = 1_G = 2, G = 2_G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

8

Realizability Logic

￼16

N

x++; + skip;

⟨true⟩

⟨x = 1, x = 2⟩

N ::= x = 1 | x = 2

1⃣N
N N

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(true) �3 G = 1
`0 h{true}ix = 1;h{G = 1}i

(COM)

»x = 2;…(true) �3 G = 2
`0 h{true}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

(GATHER)

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

`0 htruei hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1_G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2_G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1_G = 2, G = 2_G = 3i

(SEQ)
`0 htruei ;(x++; skip;)hG = 1_G = 2, G = 2_G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

8

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(true) �3 G = 1
`0 h{true}ix = 1;h{G = 1}i

(COM)

»x = 2;…(true) �3 G = 2
`0 h{true}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

(GATHER)

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

`0 htruei hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1_G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2_G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1_G = 2, G = 2_G = 3i

(SEQ)
`0 htruei ;(x++; skip;)hG = 1_G = 2, G = 2_G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

8

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(true) �3 G = 1
`0 h{true}ix = 1;h{G = 1}i

(COM)

»x = 2;…(true) �3 G = 2
`0 h{true}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

(GATHER)

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

`0 htruei hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1_G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2_G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1_G = 2, G = 2_G = 3i

(SEQ)
`0 htruei ;(x++; skip;)hG = 1_G = 2, G = 2_G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

8

368

369

370

(GATHER)
`0 htruei hG = 1i `0 htruei hG = 2i

`0 htruei hG = 1, G = 2i

362

363

364

(ANG)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

Realizability Logic

￼16

N

x++; + skip;

⟨true⟩

⟨x = 1, x = 2⟩

N ::= x = 1 | x = 2

1⃣N
N N

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
` htruei hG = 1i

1 `0 htrueix = 2;hG = 2i (COM)

` htruei hG = 2i (ANG
1 `0 htrueix = 2;hG = 2i

`0 htruei hG = 2i (ANG)

368

369

370

(GATHER)
`0 htruei hG = 1i `0 htruei hG = 2i

`0 htruei hG = 1, G = 2i

362

363

364

(ANG)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

Realizability Logic

￼16

N

x++; + skip;

⟨true⟩

⟨x = 1, x = 2⟩

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(G = 0) �3 G = 1
`0 h{G = 0}ix = 1;h{G = 1}i

(COM)

»x = 2;…(G = 0) �3 G = 2
`0 h{G = 0}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 hG = 0ix = 1;hG = 1i `0 hG = 0ix = 2;hG = 2i (COM)

`0 hG = 0ix = 1; x = 2;hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2 _ G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1 _ G = 2, G = 2 _ G = 3i

(SEQ)
`0 hG = 0i(x = 1; x = 2;); (x++; skip;)hG = 1 _ G = 2, G = 2 _ G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

It remains to discuss (CSQ). The rule of consequence needs an ordering on selections. We say
that selection R is more versatile than selection S, if for every predicate in S there is a more precise

8

N ::= x = 1 | x = 2

1⃣N
N N

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
` htruei hG = 1i

1 `0 htrueix = 2;hG = 2i (COM)

` htruei hG = 2i (ANG
1 `0 htrueix = 2;hG = 2i

`0 htruei hG = 2i (ANG)

368

369

370

(GATHER)
`0 htruei hG = 1i `0 htruei hG = 2i

`0 htruei hG = 1, G = 2i

362

363

364

(ANG)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

Realizability Logic

￼16

N

x++; + skip;

⟨true⟩

⟨x = 1, x = 2⟩

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(G = 0) �3 G = 1
`0 h{G = 0}ix = 1;h{G = 1}i

(COM)

»x = 2;…(G = 0) �3 G = 2
`0 h{G = 0}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 hG = 0ix = 1;hG = 1i `0 hG = 0ix = 2;hG = 2i (COM)

`0 hG = 0ix = 1; x = 2;hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2 _ G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1 _ G = 2, G = 2 _ G = 3i

(SEQ)
`0 hG = 0i(x = 1; x = 2;); (x++; skip;)hG = 1 _ G = 2, G = 2 _ G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

It remains to discuss (CSQ). The rule of consequence needs an ordering on selections. We say
that selection R is more versatile than selection S, if for every predicate in S there is a more precise

8

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(G = 0) �3 G = 1
`0 h{G = 0}ix = 1;h{G = 1}i

(COM)

»x = 2;…(G = 0) �3 G = 2
`0 h{G = 0}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 hG = 0ix = 1;hG = 1i `0 hG = 0ix = 2;hG = 2i (COM)

`0 hG = 0ix = 1; x = 2;hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2 _ G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1 _ G = 2, G = 2 _ G = 3i

(SEQ)
`0 hG = 0i(x = 1; x = 2;); (x++; skip;)hG = 1 _ G = 2, G = 2 _ G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

It remains to discuss (CSQ). The rule of consequence needs an ordering on selections. We say
that selection R is more versatile than selection S, if for every predicate in S there is a more precise

8

N ::= x = 1 | x = 2

1⃣N
N N

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
` htruei hG = 1i

1 `0 htrueix = 2;hG = 2i (COM)

` htruei hG = 2i (ANG
1 `0 htrueix = 2;hG = 2i

`0 htruei hG = 2i (ANG)

368

369

370

(GATHER)
`0 htruei hG = 1i `0 htruei hG = 2i

`0 htruei hG = 1, G = 2i

362

363

364

(ANG)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

Realizability Logic

￼16

N

x++; + skip;

⟨true⟩

⟨x = 1, x = 2⟩

2⃣

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(G = 0) �3 G = 1
`0 h{G = 0}ix = 1;h{G = 1}i

(COM)

»x = 2;…(G = 0) �3 G = 2
`0 h{G = 0}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 hG = 0ix = 1;hG = 1i `0 hG = 0ix = 2;hG = 2i (COM)

`0 hG = 0ix = 1; x = 2;hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2 _ G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1 _ G = 2, G = 2 _ G = 3i

(SEQ)
`0 hG = 0i(x = 1; x = 2;); (x++; skip;)hG = 1 _ G = 2, G = 2 _ G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

It remains to discuss (CSQ). The rule of consequence needs an ordering on selections. We say
that selection R is more versatile than selection S, if for every predicate in S there is a more precise

8

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(G = 0) �3 G = 1
`0 h{G = 0}ix = 1;h{G = 1}i

(COM)

»x = 2;…(G = 0) �3 G = 2
`0 h{G = 0}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 hG = 0ix = 1;hG = 1i `0 hG = 0ix = 2;hG = 2i (COM)

`0 hG = 0ix = 1; x = 2;hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2 _ G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1 _ G = 2, G = 2 _ G = 3i

(SEQ)
`0 hG = 0i(x = 1; x = 2;); (x++; skip;)hG = 1 _ G = 2, G = 2 _ G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

It remains to discuss (CSQ). The rule of consequence needs an ordering on selections. We say
that selection R is more versatile than selection S, if for every predicate in S there is a more precise

8

N ::= x = 1 | x = 2

1⃣N
N N

+

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
` htruei hG = 1i

1 `0 htrueix = 2;hG = 2i (COM)

` htruei hG = 2i (ANG
1 `0 htrueix = 2;hG = 2i

`0 htruei hG = 2i (ANG)

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(true) �3 G = 1
`0 h{true}ix = 1;h{G = 1}i

(COM)

»x = 2;…(true) �3 G = 2
`0 h{true}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

(GATHER)

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

`0 htruei hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2 _ G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1 _ G = 2, G = 2 _ G = 3i

(SEQ)
`0 htruei ;(x++; skip;)hG = 1 _ G = 2, G = 2 _ G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

8

368

369

370

(GATHER)
`0 htruei hG = 1i `0 htruei hG = 2i

`0 htruei hG = 1, G = 2i

362

363

364

(ANG)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

Realizability Logic

￼16

N

x++; + skip;

⟨true⟩

⟨x = 1, x = 2⟩

2⃣(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0

` hG = 1ix++; skip;

1 2i `0 hG = 1iskip;hG = 1i (COM)

1 x++; skip;hG = 1 _ G = 2i

N ::= x = 1 | x = 2

1⃣N
N N

+

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
` htruei hG = 1i

1 `0 htrueix = 2;hG = 2i (COM)

` htruei hG = 2i (ANG
1 `0 htrueix = 2;hG = 2i

`0 htruei hG = 2i (ANG)

(DEM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

368

369

370

(GATHER)
`0 htruei hG = 1i `0 htruei hG = 2i

`0 htruei hG = 1, G = 2i

362

363

364

(ANG)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

Realizability Logic

￼16

N

x++; + skip;

⟨true⟩

⟨x = 1, x = 2⟩

2⃣(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0

` hG = 1ix++; skip;

1 2i `0 hG = 1iskip;hG = 1i (COM)

1 x++; skip;hG = 1 _ G = 2i

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(G = 0) �3 G = 1
`0 h{G = 0}ix = 1;h{G = 1}i

(COM)

»x = 2;…(G = 0) �3 G = 2
`0 h{G = 0}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 hG = 0ix = 1;hG = 1i `0 hG = 0ix = 2;hG = 2i (COM)

`0 hG = 0ix = 1; x = 2;hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2 _ G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1 _ G = 2, G = 2 _ G = 3i

(SEQ)
`0 hG = 0i(x = 1; x = 2;); (x++; skip;)hG = 1 _ G = 2, G = 2 _ G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

It remains to discuss (CSQ). The rule of consequence needs an ordering on selections. We say
that selection R is more versatile than selection S, if for every predicate in S there is a more precise

8

N ::= x = 1 | x = 2

1⃣N
N N

+

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
` htruei hG = 1i

1 `0 htrueix = 2;hG = 2i (COM)

` htruei hG = 2i (ANG
1 `0 htrueix = 2;hG = 2i

`0 htruei hG = 2i (ANG)

(DEM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

368

369

370

(GATHER)
`0 htruei hG = 1i `0 htruei hG = 2i

`0 htruei hG = 1, G = 2i

362

363

364

(ANG)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

Realizability Logic

￼16

N

x++; + skip;

⟨true⟩

⟨x = 1, x = 2⟩

2⃣(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0

` hG = 1ix++; skip;

1 2i `0 hG = 1iskip;hG = 1i (COM)

1 x++; skip;hG = 1 _ G = 2i

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(G = 0) �3 G = 1
`0 h{G = 0}ix = 1;h{G = 1}i

(COM)

»x = 2;…(G = 0) �3 G = 2
`0 h{G = 0}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 hG = 0ix = 1;hG = 1i `0 hG = 0ix = 2;hG = 2i (COM)

`0 hG = 0ix = 1; x = 2;hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2 _ G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1 _ G = 2, G = 2 _ G = 3i

(SEQ)
`0 hG = 0i(x = 1; x = 2;); (x++; skip;)hG = 1 _ G = 2, G = 2 _ G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

It remains to discuss (CSQ). The rule of consequence needs an ordering on selections. We say
that selection R is more versatile than selection S, if for every predicate in S there is a more precise

8

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(G = 0) �3 G = 1
`0 h{G = 0}ix = 1;h{G = 1}i

(COM)

»x = 2;…(G = 0) �3 G = 2
`0 h{G = 0}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 hG = 0ix = 1;hG = 1i `0 hG = 0ix = 2;hG = 2i (COM)

`0 hG = 0ix = 1; x = 2;hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2 _ G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1 _ G = 2, G = 2 _ G = 3i

(SEQ)
`0 hG = 0i(x = 1; x = 2;); (x++; skip;)hG = 1 _ G = 2, G = 2 _ G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

It remains to discuss (CSQ). The rule of consequence needs an ordering on selections. We say
that selection R is more versatile than selection S, if for every predicate in S there is a more precise

8

N ::= x = 1 | x = 2

1⃣N
N N

+

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
` htruei hG = 1i

1 `0 htrueix = 2;hG = 2i (COM)

` htruei hG = 2i (ANG
1 `0 htrueix = 2;hG = 2i

`0 htruei hG = 2i (ANG)

(DEM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

368

369

370

(GATHER)
`0 htruei hG = 1i `0 htruei hG = 2i

`0 htruei hG = 1, G = 2i

362

363

364

(ANG)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

Realizability Logic

￼16

N

x++; + skip;

⟨true⟩

⟨x = 1, x = 2⟩

2⃣

3⃣

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0

` hG = 1ix++; skip;

1 2i `0 hG = 1iskip;hG = 1i (COM)

1 x++; skip;hG = 1 _ G = 2i

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(G = 0) �3 G = 1
`0 h{G = 0}ix = 1;h{G = 1}i

(COM)

»x = 2;…(G = 0) �3 G = 2
`0 h{G = 0}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 hG = 0ix = 1;hG = 1i `0 hG = 0ix = 2;hG = 2i (COM)

`0 hG = 0ix = 1; x = 2;hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2 _ G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1 _ G = 2, G = 2 _ G = 3i

(SEQ)
`0 hG = 0i(x = 1; x = 2;); (x++; skip;)hG = 1 _ G = 2, G = 2 _ G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

It remains to discuss (CSQ). The rule of consequence needs an ordering on selections. We say
that selection R is more versatile than selection S, if for every predicate in S there is a more precise

8

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(G = 0) �3 G = 1
`0 h{G = 0}ix = 1;h{G = 1}i

(COM)

»x = 2;…(G = 0) �3 G = 2
`0 h{G = 0}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 hG = 0ix = 1;hG = 1i `0 hG = 0ix = 2;hG = 2i (COM)

`0 hG = 0ix = 1; x = 2;hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2 _ G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1 _ G = 2, G = 2 _ G = 3i

(SEQ)
`0 hG = 0i(x = 1; x = 2;); (x++; skip;)hG = 1 _ G = 2, G = 2 _ G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

It remains to discuss (CSQ). The rule of consequence needs an ordering on selections. We say
that selection R is more versatile than selection S, if for every predicate in S there is a more precise

8

N ::= x = 1 | x = 2

1⃣N
N N

+

+

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
` htruei hG = 1i

1 `0 htrueix = 2;hG = 2i (COM)

` htruei hG = 2i (ANG
1 `0 htrueix = 2;hG = 2i

`0 htruei hG = 2i (ANG)

(DEM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(true) �3 G = 1
`0 h{true}ix = 1;h{G = 1}i

(COM)

»x = 2;…(true) �3 G = 2
`0 h{true}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

(GATHER)

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

`0 htruei hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2 _ G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1 _ G = 2, G = 2 _ G = 3i

(SEQ)
`0 htruei ;(x++; skip;)hG = 1 _ G = 2, G = 2 _ G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

8

368

369

370

(GATHER)
`0 htruei hG = 1i `0 htruei hG = 2i

`0 htruei hG = 1, G = 2i

362

363

364

(ANG)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

Realizability Logic

￼16

N

x++; + skip;

⟨true⟩

⟨x = 1, x = 2⟩

2⃣

3⃣

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0

` hG = 1ix++; skip;

1 2i `0 hG = 1iskip;hG = 1i (COM)

1 x++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0

` hG = 2ix++; skip;

2 3i `0 hG = 2iskip;hG = 2i (COM)

2 x++; skip;hG = 2 _ G = 3i

N ::= x = 1 | x = 2

1⃣N
N N

+

+

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
` htruei hG = 1i

1 `0 htrueix = 2;hG = 2i (COM)

` htruei hG = 2i (ANG
1 `0 htrueix = 2;hG = 2i

`0 htruei hG = 2i (ANG)

(DEM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

(DEM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i

`0 hG = 2ix++; skip;hG = 2 _ G = 3i

368

369

370

(GATHER)
`0 htruei hG = 1i `0 htruei hG = 2i

`0 htruei hG = 1, G = 2i

362

363

364

(ANG)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

Realizability Logic

￼16

N

x++; + skip;

⟨true⟩

⟨x = 1, x = 2⟩

2⃣

3⃣

2⃣

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0

` hG = 1ix++; skip;

1 2i `0 hG = 1iskip;hG = 1i (COM)

1 x++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0

` hG = 2ix++; skip;

2 3i `0 hG = 2iskip;hG = 2i (COM)

2 x++; skip;hG = 2 _ G = 3i

N ::= x = 1 | x = 2

1⃣N
N N

+

+

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
` htruei hG = 1i

1 `0 htrueix = 2;hG = 2i (COM)

` htruei hG = 2i (ANG
1 `0 htrueix = 2;hG = 2i

`0 htruei hG = 2i (ANG)

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(true) �3 G = 1
`0 h{true}ix = 1;h{G = 1}i

(COM)

»x = 2;…(true) �3 G = 2
`0 h{true}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

(GATHER)

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

`0 htruei hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2 _ G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1 _ G = 2, G = 2 _ G = 3i

(SEQ)
`0 htruei ;(x++; skip;)hG = 1 _ G = 2, G = 2 _ G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

8

(DEM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i

`0 hG = 2ix++; skip;hG = 2 _ G = 3i

368

369

370

(GATHER)
`0 htruei hG = 1i `0 htruei hG = 2i

`0 htruei hG = 1, G = 2i

362

363

364

(ANG)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

Realizability Logic

￼16

N

x++; + skip;

⟨true⟩

⟨x = 1, x = 2⟩

2⃣

3⃣

2⃣ 3⃣

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0

` hG = 1ix++; skip;

1 2i `0 hG = 1iskip;hG = 1i (COM)

1 x++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0

` hG = 2ix++; skip;

2 3i `0 hG = 2iskip;hG = 2i (COM)

2 x++; skip;hG = 2 _ G = 3i

N ::= x = 1 | x = 2

1⃣N
N N

+

+

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
` htruei hG = 1i

1 `0 htrueix = 2;hG = 2i (COM)

` htruei hG = 2i (ANG
1 `0 htrueix = 2;hG = 2i

`0 htruei hG = 2i (ANG)

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(true) �3 G = 1
`0 h{true}ix = 1;h{G = 1}i

(COM)

»x = 2;…(true) �3 G = 2
`0 h{true}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

(GATHER)

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

`0 htruei hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2 _ G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1 _ G = 2, G = 2 _ G = 3i

(SEQ)
`0 htruei ;(x++; skip;)hG = 1 _ G = 2, G = 2 _ G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

8

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(true) �3 G = 1
`0 h{true}ix = 1;h{G = 1}i

(COM)

»x = 2;…(true) �3 G = 2
`0 h{true}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

(GATHER)

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

`0 htruei hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2 _ G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1 _ G = 2, G = 2 _ G = 3i

(SEQ)
`0 htruei ;(x++; skip;)hG = 1 _ G = 2, G = 2 _ G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

8

368

369

370

(GATHER)
`0 htruei hG = 1i `0 htruei hG = 2i

`0 htruei hG = 1, G = 2i

362

363

364

(ANG)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

Realizability Logic

￼16

N

x++; + skip;

⟨true⟩

⟨x = 1, x = 2⟩

2⃣

3⃣

2⃣ 3⃣

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0

` hG = 1ix++; skip;

1 2i `0 hG = 1iskip;hG = 1i (COM)

1 x++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0

` hG = 2ix++; skip;

2 3i `0 hG = 2iskip;hG = 2i (COM)

2 x++; skip;hG = 2 _ G = 3i

N ::= x = 1 | x = 2

1⃣N
N N

+

+

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
` htruei hG = 1i

1 `0 htrueix = 2;hG = 2i (COM)

` htruei hG = 2i (ANG
1 `0 htrueix = 2;hG = 2i

`0 htruei hG = 2i (ANG)

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(true) �3 G = 1
`0 h{true}ix = 1;h{G = 1}i

(COM)

»x = 2;…(true) �3 G = 2
`0 h{true}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

(GATHER)

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

`0 htruei hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2 _ G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1 _ G = 2, G = 2 _ G = 3i

(SEQ)
`0 htruei ;(x++; skip;)hG = 1 _ G = 2, G = 2 _ G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

8

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(true) �3 G = 1
`0 h{true}ix = 1;h{G = 1}i

(COM)

»x = 2;…(true) �3 G = 2
`0 h{true}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

(GATHER)

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

`0 htruei hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2 _ G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1 _ G = 2, G = 2 _ G = 3i

(SEQ)
`0 htruei ;(x++; skip;)hG = 1 _ G = 2, G = 2 _ G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

8

368

369

370

(GATHER)
`0 htruei hG = 1i `0 htruei hG = 2i

`0 htruei hG = 1, G = 2i

362

363

364

(ANG)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

Realizability Logic

￼16

N

x++; + skip;

⟨true⟩

⟨x = 1, x = 2⟩

2⃣

3⃣

2⃣ 3⃣
4⃣

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0

` hG = 1ix++; skip;

1 2i `0 hG = 1iskip;hG = 1i (COM)

1 x++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0

` hG = 2ix++; skip;

2 3i `0 hG = 2iskip;hG = 2i (COM)

2 x++; skip;hG = 2 _ G = 3i

N ::= x = 1 | x = 2

1⃣N
N N

+

+

+

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
` htruei hG = 1i

1 `0 htrueix = 2;hG = 2i (COM)

` htruei hG = 2i (ANG
1 `0 htrueix = 2;hG = 2i

`0 htruei hG = 2i (ANG)

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(true) �3 G = 1
`0 h{true}ix = 1;h{G = 1}i

(COM)

»x = 2;…(true) �3 G = 2
`0 h{true}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

(GATHER)

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

`0 htruei hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2 _ G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1 _ G = 2, G = 2 _ G = 3i

(SEQ)
`0 htruei ;(x++; skip;)hG = 1 _ G = 2, G = 2 _ G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

8

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(true) �3 G = 1
`0 h{true}ix = 1;h{G = 1}i

(COM)

»x = 2;…(true) �3 G = 2
`0 h{true}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

(GATHER)

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

`0 htruei hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2 _ G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1 _ G = 2, G = 2 _ G = 3i

(SEQ)
`0 htruei ;(x++; skip;)hG = 1 _ G = 2, G = 2 _ G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

8

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(true) �3 G = 1
`0 h{true}ix = 1;h{G = 1}i

(COM)

»x = 2;…(true) �3 G = 2
`0 h{true}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

(GATHER)

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

`0 htruei hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2 _ G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1 _ G = 2, G = 2 _ G = 3i

(SEQ)
`0 htruei ;(x++; skip;)hG = 1 _ G = 2, G = 2 _ G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

8

368

369

370

(GATHER)
`0 htruei hG = 1i `0 htruei hG = 2i

`0 htruei hG = 1, G = 2i

362

363

364

(ANG)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

Realizability Logic

￼16

N

x++; + skip;

⟨true⟩

⟨x = 1, x = 2⟩

2⃣

3⃣

2⃣ 3⃣
4⃣

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0

` hG = 1ix++; skip;

1 2i `0 hG = 1iskip;hG = 1i (COM)

1 x++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0

` hG = 2ix++; skip;

2 3i `0 hG = 2iskip;hG = 2i (COM)

2 x++; skip;hG = 2 _ G = 3i

N ::= x = 1 | x = 2

1⃣N
N N

+

+

+

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
` htruei hG = 1i

1 `0 htrueix = 2;hG = 2i (COM)

` htruei hG = 2i (ANG
1 `0 htrueix = 2;hG = 2i

`0 htruei hG = 2i (ANG)

(DEM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

(DEM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i

`0 hG = 2ix++; skip;hG = 2 _ G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1 _ G = 2, G = 2 _ G = 3i

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(true) �3 G = 1
`0 h{true}ix = 1;h{G = 1}i

(COM)

»x = 2;…(true) �3 G = 2
`0 h{true}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

(GATHER)

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

`0 htruei hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1_G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2_G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1_G = 2, G = 2_G = 3i

(SEQ)
`0 htruei ;(x++; skip;)hG = 1_G = 2, G = 2_G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

8

362

363

364

(ANG)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

Realizability Logic

￼16

N

x++; + skip;

⟨true⟩

⟨x = 1, x = 2⟩

2⃣

3⃣

2⃣ 3⃣
4⃣

1⃣

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0

` hG = 1ix++; skip;

1 2i `0 hG = 1iskip;hG = 1i (COM)

1 x++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0

` hG = 2ix++; skip;

2 3i `0 hG = 2iskip;hG = 2i (COM)

2 x++; skip;hG = 2 _ G = 3i

N ::= x = 1 | x = 2

1⃣N
N N

+

+

+

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
` htruei hG = 1i

1 `0 htrueix = 2;hG = 2i (COM)

` htruei hG = 2i (ANG
1 `0 htrueix = 2;hG = 2i

`0 htruei hG = 2i (ANG)

(DEM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

(DEM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i

`0 hG = 2ix++; skip;hG = 2 _ G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1 _ G = 2, G = 2 _ G = 3i

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(true) �3 G = 1
`0 h{true}ix = 1;h{G = 1}i

(COM)

»x = 2;…(true) �3 G = 2
`0 h{true}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

(GATHER)

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

`0 htruei hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1_G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2_G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1_G = 2, G = 2_G = 3i

(SEQ)
`0 htruei ;(x++; skip;)hG = 1_G = 2, G = 2_G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

8

362

363

364

(ANG)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

Realizability Logic

￼16

N

x++; + skip;

⟨true⟩

⟨x = 1, x = 2⟩

2⃣

3⃣

2⃣ 3⃣
4⃣

1⃣ 4⃣

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0

` hG = 1ix++; skip;

1 2i `0 hG = 1iskip;hG = 1i (COM)

1 x++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0

` hG = 2ix++; skip;

2 3i `0 hG = 2iskip;hG = 2i (COM)

2 x++; skip;hG = 2 _ G = 3i

N ::= x = 1 | x = 2

1⃣N
N N

+

+

+

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
` htruei hG = 1i

1 `0 htrueix = 2;hG = 2i (COM)

` htruei hG = 2i (ANG
1 `0 htrueix = 2;hG = 2i

`0 htruei hG = 2i (ANG)

(DEM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

(DEM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i

`0 hG = 2ix++; skip;hG = 2 _ G = 3i

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(true) �3 G = 1
`0 h{true}ix = 1;h{G = 1}i

(COM)

»x = 2;…(true) �3 G = 2
`0 h{true}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

(GATHER)

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

`0 htruei hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2 _ G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1 _ G = 2, G = 2 _ G = 3i

(SEQ)
`0 htruei ;(x++; skip;)hG = 1 _ G = 2, G = 2 _ G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

8

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(true) �3 G = 1
`0 h{true}ix = 1;h{G = 1}i

(COM)

»x = 2;…(true) �3 G = 2
`0 h{true}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

(GATHER)

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

`0 htruei hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1_G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2_G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1_G = 2, G = 2_G = 3i

(SEQ)
`0 htruei ;(x++; skip;)hG = 1_G = 2, G = 2_G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

8

362

363

364

(ANG)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

Realizability Logic

￼16

N

x++; + skip;

⟨true⟩

⟨x = 1, x = 2⟩

⟨x = 1 ∨ x = 2, x = 2 ∨ x = 3⟩

2⃣

3⃣

2⃣ 3⃣
4⃣

1⃣ 4⃣

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0

` hG = 1ix++; skip;

1 2i `0 hG = 1iskip;hG = 1i (COM)

1 x++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0

` hG = 2ix++; skip;

2 3i `0 hG = 2iskip;hG = 2i (COM)

2 x++; skip;hG = 2 _ G = 3i

N ::= x = 1 | x = 2

1⃣N
N N

+

+

+

+

N

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
` htruei hG = 1i

1 `0 htrueix = 2;hG = 2i (COM)

` htruei hG = 2i (ANG
1 `0 htrueix = 2;hG = 2i

`0 htruei hG = 2i (ANG)

(DEM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

(DEM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i

`0 hG = 2ix++; skip;hG = 2 _ G = 3i

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(true) �3 G = 1
`0 h{true}ix = 1;h{G = 1}i

(COM)

»x = 2;…(true) �3 G = 2
`0 h{true}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

(GATHER)

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

`0 htruei hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2 _ G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1 _ G = 2, G = 2 _ G = 3i

(SEQ)
`0 htruei ;(x++; skip;)hG = 1 _ G = 2, G = 2 _ G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

8

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(true) �3 G = 1
`0 h{true}ix = 1;h{G = 1}i

(COM)

»x = 2;…(true) �3 G = 2
`0 h{true}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

(GATHER)

(ANG)

(COM)
`0 htrueix = 1;hG = 1i
`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)

`0 htruei hG = 2i (ANG)

`0 htruei hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2 _ G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1 _ G = 2, G = 2 _ G = 3i

(SEQ)
`0 htruei ;(x++; skip;)hG = 1 _ G = 2, G = 2 _ G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

8

Realizability Logic

￼17

N

x++; + skip;

⟨x = 0⟩

⟨x = 1, x = 2⟩

⟨x = 1 ∨ x = 2, x = 2 ∨ x = 3⟩

2⃣

3⃣

2⃣ 3⃣
4⃣

1⃣ 4⃣

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(G = 0) �3 G = 1
`0 h{G = 0}ix = 1;h{G = 1}i

(COM)

»x = 2;…(G = 0) �3 G = 2
`0 h{G = 0}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 hG = 0ix = 1;hG = 1i `0 hG = 0ix = 2;hG = 2i (COM)

`0 hG = 0ix = 1; x = 2;hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2 _ G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1 _ G = 2, G = 2 _ G = 3i

(SEQ)
`0 hG = 0i(x = 1; x = 2;); (x++; skip;)hG = 1 _ G = 2, G = 2 _ G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

It remains to discuss (CSQ). The rule of consequence needs an ordering on selections. We say
that selection R is more versatile than selection S, if for every predicate in S there is a more precise

8

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(G = 0) �3 G = 1
`0 h{G = 0}ix = 1;h{G = 1}i

(COM)

»x = 2;…(G = 0) �3 G = 2
`0 h{G = 0}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 hG = 0ix = 1;hG = 1i `0 hG = 0ix = 2;hG = 2i (COM)

`0 hG = 0ix = 1; x = 2;hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2 _ G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1 _ G = 2, G = 2 _ G = 3i

(SEQ)
`0 hG = 0i(x = 1; x = 2;); (x++; skip;)hG = 1 _ G = 2, G = 2 _ G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

It remains to discuss (CSQ). The rule of consequence needs an ordering on selections. We say
that selection R is more versatile than selection S, if for every predicate in S there is a more precise

8

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(G = 0) �3 G = 1
`0 h{G = 0}ix = 1;h{G = 1}i

(COM)

»x = 2;…(G = 0) �3 G = 2
`0 h{G = 0}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 hG = 0ix = 1;hG = 1i `0 hG = 0ix = 2;hG = 2i (COM)

`0 hG = 0ix = 1; x = 2;hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2 _ G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1 _ G = 2, G = 2 _ G = 3i

(SEQ)
`0 hG = 0i(x = 1; x = 2;); (x++; skip;)hG = 1 _ G = 2, G = 2 _ G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

It remains to discuss (CSQ). The rule of consequence needs an ordering on selections. We say
that selection R is more versatile than selection S, if for every predicate in S there is a more precise

8

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(G = 0) �3 G = 1
`0 h{G = 0}ix = 1;h{G = 1}i

(COM)

»x = 2;…(G = 0) �3 G = 2
`0 h{G = 0}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 hG = 0ix = 1;hG = 1i `0 hG = 0ix = 2;hG = 2i (COM)

`0 hG = 0ix = 1; x = 2;hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2 _ G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1 _ G = 2, G = 2 _ G = 3i

(SEQ)
`0 hG = 0i(x = 1; x = 2;); (x++; skip;)hG = 1 _ G = 2, G = 2 _ G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

It remains to discuss (CSQ). The rule of consequence needs an ordering on selections. We say
that selection R is more versatile than selection S, if for every predicate in S there is a more precise

8

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(G = 0) �3 G = 1
`0 h{G = 0}ix = 1;h{G = 1}i

(COM)

»x = 2;…(G = 0) �3 G = 2
`0 h{G = 0}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 hG = 0ix = 1;hG = 1i `0 hG = 0ix = 2;hG = 2i (COM)

`0 hG = 0ix = 1; x = 2;hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2 _ G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1 _ G = 2, G = 2 _ G = 3i

(SEQ)
`0 hG = 0i(x = 1; x = 2;); (x++; skip;)hG = 1 _ G = 2, G = 2 _ G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

It remains to discuss (CSQ). The rule of consequence needs an ordering on selections. We say
that selection R is more versatile than selection S, if for every predicate in S there is a more precise

8

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(G = 0) �3 G = 1
`0 h{G = 0}ix = 1;h{G = 1}i

(COM)

»x = 2;…(G = 0) �3 G = 2
`0 h{G = 0}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 hG = 0ix = 1;hG = 1i `0 hG = 0ix = 2;hG = 2i (COM)

`0 hG = 0ix = 1; x = 2;hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2 _ G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1 _ G = 2, G = 2 _ G = 3i

(SEQ)
`0 hG = 0i(x = 1; x = 2;); (x++; skip;)hG = 1 _ G = 2, G = 2 _ G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

It remains to discuss (CSQ). The rule of consequence needs an ordering on selections. We say
that selection R is more versatile than selection S, if for every predicate in S there is a more precise

8

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(G = 0) �3 G = 1
`0 h{G = 0}ix = 1;h{G = 1}i

(COM)

»x = 2;…(G = 0) �3 G = 2
`0 h{G = 0}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 hG = 0ix = 1;hG = 1i `0 hG = 0ix = 2;hG = 2i (COM)

`0 hG = 0ix = 1; x = 2;hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2 _ G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1 _ G = 2, G = 2 _ G = 3i

(SEQ)
`0 hG = 0i(x = 1; x = 2;); (x++; skip;)hG = 1 _ G = 2, G = 2 _ G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

It remains to discuss (CSQ). The rule of consequence needs an ordering on selections. We say
that selection R is more versatile than selection S, if for every predicate in S there is a more precise

8

N ::= x = 1 | x = 2

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(G = 0) �3 G = 1
`0 h{G = 0}ix = 1;h{G = 1}i

(COM)

»x = 2;…(G = 0) �3 G = 2
`0 h{G = 0}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 hG = 0ix = 1;hG = 1i
`0 hG = 0i hG = 1i

`0 hG = 0ix = 2;hG = 2i (COM)

`0 hG = 0i hG = 2i (ANG)

(GATHER)

(ANG)

(COM)
`0 hG = 0ix = 1;hG = 1i
`0 hG = 0i hG = 1i

`0 hG = 0ix = 2;hG = 2i (COM)

`0 hG = 0i hG = 2i (ANG)

`0 hG = 0i hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2 _ G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1 _ G = 2, G = 2 _ G = 3i

(SEQ)
`0 hG = 0i(x = 1; x = 2;); (x++; skip;)hG = 1 _ G = 2, G = 2 _ G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.
8

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(G = 0) �3 G = 1
`0 h{G = 0}ix = 1;h{G = 1}i

(COM)

»x = 2;…(G = 0) �3 G = 2
`0 h{G = 0}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 hG = 0ix = 1;hG = 1i
`0 hG = 0i hG = 1i

`0 hG = 0ix = 2;hG = 2i (COM)

`0 hG = 0i hG = 2i (ANG)

(GATHER)

(ANG)

(COM)
`0 hG = 0ix = 1;hG = 1i
`0 hG = 0i hG = 1i

`0 hG = 0ix = 2;hG = 2i (COM)

`0 hG = 0i hG = 2i (ANG)

`0 hG = 0i hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2 _ G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1 _ G = 2, G = 2 _ G = 3i

(SEQ)
`0 hG = 0i(x = 1; x = 2;); (x++; skip;)hG = 1 _ G = 2, G = 2 _ G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.
8

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(G = 0) �3 G = 1
`0 h{G = 0}ix = 1;h{G = 1}i

(COM)

»x = 2;…(G = 0) �3 G = 2
`0 h{G = 0}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 hG = 0ix = 1;hG = 1i
`0 hG = 0i hG = 1i

`0 hG = 0ix = 2;hG = 2i (COM)

`0 hG = 0i hG = 2i (ANG)

(GATHER)

(ANG)

(COM)
`0 hG = 0ix = 1;hG = 1i
`0 hG = 0i hG = 1i

`0 hG = 0ix = 2;hG = 2i (COM)

`0 hG = 0i hG = 2i (ANG)

`0 hG = 0i hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2 _ G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1 _ G = 2, G = 2 _ G = 3i

(SEQ)
`0 hG = 0i(x = 1; x = 2;); (x++; skip;)hG = 1 _ G = 2, G = 2 _ G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.
8

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(G = 0) �3 G = 1
`0 h{G = 0}ix = 1;h{G = 1}i

(COM)

»x = 2;…(G = 0) �3 G = 2
`0 h{G = 0}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 hG = 0ix = 1;hG = 1i
`0 hG = 0i hG = 1i

`0 hG = 0ix = 2;hG = 2i (COM)

`0 hG = 0i hG = 2i (ANG)

(GATHER)

(ANG)

(COM)
`0 hG = 0ix = 1;hG = 1i
`0 hG = 0i hG = 1i

`0 hG = 0ix = 2;hG = 2i (COM)

`0 hG = 0i hG = 2i (ANG)

`0 hG = 0i hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2 _ G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1 _ G = 2, G = 2 _ G = 3i

(SEQ)
`0 hG = 0i(x = 1; x = 2;); (x++; skip;)hG = 1 _ G = 2, G = 2 _ G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.
8

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(G = 0) �3 G = 1
`0 h{G = 0}ix = 1;h{G = 1}i

(COM)

»x = 2;…(G = 0) �3 G = 2
`0 h{G = 0}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 hG = 0ix = 1;hG = 1i
`0 hG = 0i hG = 1i

`0 hG = 0ix = 2;hG = 2i (COM)

`0 hG = 0i hG = 2i (ANG)

(GATHER)

(ANG)

(COM)
`0 hG = 0ix = 1;hG = 1i
`0 hG = 0i hG = 1i

`0 hG = 0ix = 2;hG = 2i (COM)

`0 hG = 0i hG = 2i (ANG)

`0 hG = 0i hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2 _ G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1 _ G = 2, G = 2 _ G = 3i

(SEQ)
`0 hG = 0i(x = 1; x = 2;); (x++; skip;)hG = 1 _ G = 2, G = 2 _ G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.
8

1⃣N
N N

+

+

+

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(G = 0) �3 G = 1
`0 h{G = 0}ix = 1;h{G = 1}i

(COM)

»x = 2;…(G = 0) �3 G = 2
`0 h{G = 0}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 hG = 0ix = 1;hG = 1i
`0 hG = 0i hG = 1i

`0 hG = 0ix = 2;hG = 2i (COM)

`0 hG = 0i hG = 2i (ANG)

(GATHER)

(ANG)

(COM)
`0 hG = 0ix = 1;hG = 1i
`0 hG = 0i hG = 1i

`0 hG = 0ix = 2;hG = 2i (COM)

`0 hG = 0i hG = 2i (ANG)

`0 hG = 0i hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2 _ G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1 _ G = 2, G = 2 _ G = 3i

(SEQ)
`0 hG = 0i ;(x++; skip;)hG = 1 _ G = 2, G = 2 _ G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.
8

+

N

Contribution 1:
Realizability Logic

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Realizability in Semantics-Guided Synthesis Done Eagerly

1 htruei N(x = 0 | x = 1); hG = 0,G = 1i
2 (assert(x==0) + assert(x==1))

3 hfaili

Fig. 4. Demonic choice.

(SHARE)
`0 h) iNh* i `0 hRisketch[N/h) ih* i]hSi

`0 hRisketchhSi

Fig. 5. Subproof sharing.

Having more predicates available makes a selection more versatile and having less predicates makes
a selection less versatile. It is also possible to have a more versatile selection with less predicates if
they are more precise. With this, ; is the least versatile and {;} is the most versatile selection.

The rules are sound and, together with a rule for the edge case of an empty precondition that we
give in the appendix, also complete.

T������ 3.1 (S�����A���C�������). `0 hRisketchhSi , |=0 hRisketchhSi .
P����. Soundness holds by an induction on the height of the proof tree. We argue for complete-

ness and consider |=0 hRisketchhSi. By the de�nition of validity, this means for every predicate
s 2 S there is a predicate r 2 R and a program prog 2 drv(sketch) so that |=3 {r}prog{s} holds. We
invoke the completeness of Hoare logic and obtain `3 {r}prog{s}. The derivation can be mimicked
in realizability logic and yields `0 hriproghsi. Since the program has been derived from sketch,
we can also obtain `0 hrisketchhsi with �nitely many applications of (ANG). Rule (GATHER) allows
us to join the triples hrisketchhsi and obtain the desired `0 hRisketchhSi. ⇤

3.3 Discussion
On SemGuS. The synthesis tasks we consider have the following input: the states, the commands,

and the semantics (States, COM, »�…) of the programming language, the non-terminals with their
production rules (N , prod), and the realizability triple hRisketchhSi of interest. In its original
formulation [23], SemGuS would be more liberal and allow the user to also de�ne the operators
(their syntax and their semantics) from which programs can be built. We �x those operators to
concatenation, choice, and Kleene star, instead. This allows us to work with an extension of Hoare
logic. To lift our approach to the more general setting, the user would have to specify the proof rules
that are sound for the new operators, which would be in-line with the approach in unrealizability
logic [22].

The reader may also note that we have not made assumptions about the correctness speci�cation.
In synthesis, it is common to work with sets of examples. The work on unrealizability logic has
shown that such sets can be captured by so-called vector assertions [22]. Vector assertions are
predicates of a particular form, and our construction of selections readily applies to them.

On search-based synthesis. Realizability logic is formulated such that it can be readily combined
with search-based synthesis. The point is that Rule (ANG) does not force us to consider all programs
a non-terminal can be rewritten to. Instead, we can consider a set of programs that appear most
promising, as can be judged from a probabilistic grammar [20].

On the implementation of non-terminals. A non-terminal may occur multiple times in a proof in
realizability logic, it may even occur recursively. Rather than duplicating the subproofs for this
non-terminal, we would like to share them in the various places the non-terminal is used. This is
made possible by Rule (SHARE) given in Figure 5. If we have already derived the triple h) iNh* i,
then we can eliminate the non-terminal from a program sketch and replace it by the pair h) ih* i.
The pair stands for the fact that we can synthesize a program that transforms) to* . Rule (SHARE) is
readily checked to be sound. However, it is a derived rule whose application can easily be mimicked

9

Realizability Logic

￼17

N

x++; + skip;

⟨x = 0⟩

⟨x = 1, x = 2⟩

⟨x = 1 ∨ x = 2, x = 2 ∨ x = 3⟩

2⃣

3⃣

2⃣ 3⃣
4⃣

1⃣ 4⃣

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(G = 0) �3 G = 1
`0 h{G = 0}ix = 1;h{G = 1}i

(COM)

»x = 2;…(G = 0) �3 G = 2
`0 h{G = 0}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 hG = 0ix = 1;hG = 1i `0 hG = 0ix = 2;hG = 2i (COM)

`0 hG = 0ix = 1; x = 2;hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2 _ G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1 _ G = 2, G = 2 _ G = 3i

(SEQ)
`0 hG = 0i(x = 1; x = 2;); (x++; skip;)hG = 1 _ G = 2, G = 2 _ G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

It remains to discuss (CSQ). The rule of consequence needs an ordering on selections. We say
that selection R is more versatile than selection S, if for every predicate in S there is a more precise

8

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(G = 0) �3 G = 1
`0 h{G = 0}ix = 1;h{G = 1}i

(COM)

»x = 2;…(G = 0) �3 G = 2
`0 h{G = 0}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 hG = 0ix = 1;hG = 1i `0 hG = 0ix = 2;hG = 2i (COM)

`0 hG = 0ix = 1; x = 2;hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2 _ G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1 _ G = 2, G = 2 _ G = 3i

(SEQ)
`0 hG = 0i(x = 1; x = 2;); (x++; skip;)hG = 1 _ G = 2, G = 2 _ G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

It remains to discuss (CSQ). The rule of consequence needs an ordering on selections. We say
that selection R is more versatile than selection S, if for every predicate in S there is a more precise

8

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(G = 0) �3 G = 1
`0 h{G = 0}ix = 1;h{G = 1}i

(COM)

»x = 2;…(G = 0) �3 G = 2
`0 h{G = 0}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 hG = 0ix = 1;hG = 1i `0 hG = 0ix = 2;hG = 2i (COM)

`0 hG = 0ix = 1; x = 2;hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2 _ G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1 _ G = 2, G = 2 _ G = 3i

(SEQ)
`0 hG = 0i(x = 1; x = 2;); (x++; skip;)hG = 1 _ G = 2, G = 2 _ G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

It remains to discuss (CSQ). The rule of consequence needs an ordering on selections. We say
that selection R is more versatile than selection S, if for every predicate in S there is a more precise

8

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(G = 0) �3 G = 1
`0 h{G = 0}ix = 1;h{G = 1}i

(COM)

»x = 2;…(G = 0) �3 G = 2
`0 h{G = 0}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 hG = 0ix = 1;hG = 1i `0 hG = 0ix = 2;hG = 2i (COM)

`0 hG = 0ix = 1; x = 2;hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2 _ G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1 _ G = 2, G = 2 _ G = 3i

(SEQ)
`0 hG = 0i(x = 1; x = 2;); (x++; skip;)hG = 1 _ G = 2, G = 2 _ G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

It remains to discuss (CSQ). The rule of consequence needs an ordering on selections. We say
that selection R is more versatile than selection S, if for every predicate in S there is a more precise

8

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(G = 0) �3 G = 1
`0 h{G = 0}ix = 1;h{G = 1}i

(COM)

»x = 2;…(G = 0) �3 G = 2
`0 h{G = 0}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 hG = 0ix = 1;hG = 1i `0 hG = 0ix = 2;hG = 2i (COM)

`0 hG = 0ix = 1; x = 2;hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2 _ G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1 _ G = 2, G = 2 _ G = 3i

(SEQ)
`0 hG = 0i(x = 1; x = 2;); (x++; skip;)hG = 1 _ G = 2, G = 2 _ G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

It remains to discuss (CSQ). The rule of consequence needs an ordering on selections. We say
that selection R is more versatile than selection S, if for every predicate in S there is a more precise

8

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(G = 0) �3 G = 1
`0 h{G = 0}ix = 1;h{G = 1}i

(COM)

»x = 2;…(G = 0) �3 G = 2
`0 h{G = 0}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 hG = 0ix = 1;hG = 1i `0 hG = 0ix = 2;hG = 2i (COM)

`0 hG = 0ix = 1; x = 2;hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2 _ G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1 _ G = 2, G = 2 _ G = 3i

(SEQ)
`0 hG = 0i(x = 1; x = 2;); (x++; skip;)hG = 1 _ G = 2, G = 2 _ G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

It remains to discuss (CSQ). The rule of consequence needs an ordering on selections. We say
that selection R is more versatile than selection S, if for every predicate in S there is a more precise

8

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(G = 0) �3 G = 1
`0 h{G = 0}ix = 1;h{G = 1}i

(COM)

»x = 2;…(G = 0) �3 G = 2
`0 h{G = 0}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 hG = 0ix = 1;hG = 1i `0 hG = 0ix = 2;hG = 2i (COM)

`0 hG = 0ix = 1; x = 2;hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2 _ G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1 _ G = 2, G = 2 _ G = 3i

(SEQ)
`0 hG = 0i(x = 1; x = 2;); (x++; skip;)hG = 1 _ G = 2, G = 2 _ G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

It remains to discuss (CSQ). The rule of consequence needs an ordering on selections. We say
that selection R is more versatile than selection S, if for every predicate in S there is a more precise

8

N ::= x = 1 | x = 2

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(G = 0) �3 G = 1
`0 h{G = 0}ix = 1;h{G = 1}i

(COM)

»x = 2;…(G = 0) �3 G = 2
`0 h{G = 0}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 hG = 0ix = 1;hG = 1i
`0 hG = 0i hG = 1i

`0 hG = 0ix = 2;hG = 2i (COM)

`0 hG = 0i hG = 2i (ANG)

(GATHER)

(ANG)

(COM)
`0 hG = 0ix = 1;hG = 1i
`0 hG = 0i hG = 1i

`0 hG = 0ix = 2;hG = 2i (COM)

`0 hG = 0i hG = 2i (ANG)

`0 hG = 0i hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2 _ G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1 _ G = 2, G = 2 _ G = 3i

(SEQ)
`0 hG = 0i(x = 1; x = 2;); (x++; skip;)hG = 1 _ G = 2, G = 2 _ G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.
8

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(G = 0) �3 G = 1
`0 h{G = 0}ix = 1;h{G = 1}i

(COM)

»x = 2;…(G = 0) �3 G = 2
`0 h{G = 0}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 hG = 0ix = 1;hG = 1i
`0 hG = 0i hG = 1i

`0 hG = 0ix = 2;hG = 2i (COM)

`0 hG = 0i hG = 2i (ANG)

(GATHER)

(ANG)

(COM)
`0 hG = 0ix = 1;hG = 1i
`0 hG = 0i hG = 1i

`0 hG = 0ix = 2;hG = 2i (COM)

`0 hG = 0i hG = 2i (ANG)

`0 hG = 0i hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2 _ G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1 _ G = 2, G = 2 _ G = 3i

(SEQ)
`0 hG = 0i(x = 1; x = 2;); (x++; skip;)hG = 1 _ G = 2, G = 2 _ G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.
8

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(G = 0) �3 G = 1
`0 h{G = 0}ix = 1;h{G = 1}i

(COM)

»x = 2;…(G = 0) �3 G = 2
`0 h{G = 0}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 hG = 0ix = 1;hG = 1i
`0 hG = 0i hG = 1i

`0 hG = 0ix = 2;hG = 2i (COM)

`0 hG = 0i hG = 2i (ANG)

(GATHER)

(ANG)

(COM)
`0 hG = 0ix = 1;hG = 1i
`0 hG = 0i hG = 1i

`0 hG = 0ix = 2;hG = 2i (COM)

`0 hG = 0i hG = 2i (ANG)

`0 hG = 0i hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2 _ G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1 _ G = 2, G = 2 _ G = 3i

(SEQ)
`0 hG = 0i(x = 1; x = 2;); (x++; skip;)hG = 1 _ G = 2, G = 2 _ G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.
8

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(G = 0) �3 G = 1
`0 h{G = 0}ix = 1;h{G = 1}i

(COM)

»x = 2;…(G = 0) �3 G = 2
`0 h{G = 0}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 hG = 0ix = 1;hG = 1i
`0 hG = 0i hG = 1i

`0 hG = 0ix = 2;hG = 2i (COM)

`0 hG = 0i hG = 2i (ANG)

(GATHER)

(ANG)

(COM)
`0 hG = 0ix = 1;hG = 1i
`0 hG = 0i hG = 1i

`0 hG = 0ix = 2;hG = 2i (COM)

`0 hG = 0i hG = 2i (ANG)

`0 hG = 0i hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2 _ G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1 _ G = 2, G = 2 _ G = 3i

(SEQ)
`0 hG = 0i(x = 1; x = 2;); (x++; skip;)hG = 1 _ G = 2, G = 2 _ G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.
8

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(G = 0) �3 G = 1
`0 h{G = 0}ix = 1;h{G = 1}i

(COM)

»x = 2;…(G = 0) �3 G = 2
`0 h{G = 0}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 hG = 0ix = 1;hG = 1i
`0 hG = 0i hG = 1i

`0 hG = 0ix = 2;hG = 2i (COM)

`0 hG = 0i hG = 2i (ANG)

(GATHER)

(ANG)

(COM)
`0 hG = 0ix = 1;hG = 1i
`0 hG = 0i hG = 1i

`0 hG = 0ix = 2;hG = 2i (COM)

`0 hG = 0i hG = 2i (ANG)

`0 hG = 0i hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2 _ G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1 _ G = 2, G = 2 _ G = 3i

(SEQ)
`0 hG = 0i(x = 1; x = 2;); (x++; skip;)hG = 1 _ G = 2, G = 2 _ G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.
8

1⃣N
N N

+

+

+

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Anon.

(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

(COM)

»x = 1;…(G = 0) �3 G = 1
`0 h{G = 0}ix = 1;h{G = 1}i

(COM)

»x = 2;…(G = 0) �3 G = 2
`0 h{G = 0}ix = 2;h{G = 2}i

(ANG)

(COM)
`0 hG = 0ix = 1;hG = 1i
`0 hG = 0i hG = 1i

`0 hG = 0ix = 2;hG = 2i (COM)

`0 hG = 0i hG = 2i (ANG)

(GATHER)

(ANG)

(COM)
`0 hG = 0ix = 1;hG = 1i
`0 hG = 0i hG = 1i

`0 hG = 0ix = 2;hG = 2i (COM)

`0 hG = 0i hG = 2i (ANG)

`0 hG = 0i hG = 1, G = 2i

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i (COM)

`0 hG = 1ix++; skip;hG = 1 _ G = 2i

(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i (COM)

`0 hG = 2ix++; skip;hG = 2 _ G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1 _ G = 2, G = 2 _ G = 3i

(SEQ)
`0 hG = 0i ;(x++; skip;)hG = 1 _ G = 2, G = 2 _ G = 3i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.
8

+

N

Contribution 1:
Realizability Logic

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Realizability in Semantics-Guided Synthesis Done Eagerly

1 htruei N(x = 0 | x = 1); hG = 0,G = 1i
2 (assert(x==0) + assert(x==1))

3 hfaili

Fig. 4. Demonic choice.

(SHARE)
`0 h) iNh* i `0 hRisketch[N/h) ih* i]hSi

`0 hRisketchhSi

Fig. 5. Subproof sharing.

Having more predicates available makes a selection more versatile and having less predicates makes
a selection less versatile. It is also possible to have a more versatile selection with less predicates if
they are more precise. With this, ; is the least versatile and {;} is the most versatile selection.

The rules are sound and, together with a rule for the edge case of an empty precondition that we
give in the appendix, also complete.

T������ 3.1 (S�����A���C�������). `0 hRisketchhSi , |=0 hRisketchhSi .
P����. Soundness holds by an induction on the height of the proof tree. We argue for complete-

ness and consider |=0 hRisketchhSi. By the de�nition of validity, this means for every predicate
s 2 S there is a predicate r 2 R and a program prog 2 drv(sketch) so that |=3 {r}prog{s} holds. We
invoke the completeness of Hoare logic and obtain `3 {r}prog{s}. The derivation can be mimicked
in realizability logic and yields `0 hriproghsi. Since the program has been derived from sketch,
we can also obtain `0 hrisketchhsi with �nitely many applications of (ANG). Rule (GATHER) allows
us to join the triples hrisketchhsi and obtain the desired `0 hRisketchhSi. ⇤

3.3 Discussion
On SemGuS. The synthesis tasks we consider have the following input: the states, the commands,

and the semantics (States, COM, »�…) of the programming language, the non-terminals with their
production rules (N , prod), and the realizability triple hRisketchhSi of interest. In its original
formulation [23], SemGuS would be more liberal and allow the user to also de�ne the operators
(their syntax and their semantics) from which programs can be built. We �x those operators to
concatenation, choice, and Kleene star, instead. This allows us to work with an extension of Hoare
logic. To lift our approach to the more general setting, the user would have to specify the proof rules
that are sound for the new operators, which would be in-line with the approach in unrealizability
logic [22].

The reader may also note that we have not made assumptions about the correctness speci�cation.
In synthesis, it is common to work with sets of examples. The work on unrealizability logic has
shown that such sets can be captured by so-called vector assertions [22]. Vector assertions are
predicates of a particular form, and our construction of selections readily applies to them.

On search-based synthesis. Realizability logic is formulated such that it can be readily combined
with search-based synthesis. The point is that Rule (ANG) does not force us to consider all programs
a non-terminal can be rewritten to. Instead, we can consider a set of programs that appear most
promising, as can be judged from a probabilistic grammar [20].

On the implementation of non-terminals. A non-terminal may occur multiple times in a proof in
realizability logic, it may even occur recursively. Rather than duplicating the subproofs for this
non-terminal, we would like to share them in the various places the non-terminal is used. This is
made possible by Rule (SHARE) given in Figure 5. If we have already derived the triple h) iNh* i,
then we can eliminate the non-terminal from a program sketch and replace it by the pair h) ih* i.
The pair stands for the fact that we can synthesize a program that transforms) to* . Rule (SHARE) is
readily checked to be sound. However, it is a derived rule whose application can easily be mimicked

9

But what makes this efficient?

Realizability Logic - Secret Sauce

￼18

N ::= x++ | x--
N;

N;

N;

⟨x = 0⟩

Realizability Logic - Secret Sauce

￼18

N ::= x++ | x--
N;

N;

N;

⟨x = 1, x = − 1⟩

⟨x = 0⟩

Realizability Logic - Secret Sauce

￼18

N ::= x++ | x--
N;

N;

N;

⟨x = 1, x = − 1⟩

⟨x = 0⟩

⟨x = 2, x = 0, x = − 2⟩

Realizability Logic - Secret Sauce

￼18

N ::= x++ | x--
N;

N;

N;

⟨x = 1, x = − 1⟩

⟨x = 0⟩

⟨x = 2, x = 0, x = − 2⟩

⟨x = 3, x = 1, x = − 1, x = − 3⟩

Realizability Logic - Secret Sauce

￼18

N ::= x++ | x--
N;

N;

N;

⟨x = 1, x = − 1⟩

⟨x = 0⟩

⟨x = 2, x = 0, x = − 2⟩

⟨x = 3, x = 1, x = − 1, x = − 3⟩

8 Programs vs. 4 Predicates

Realizability Logic - Secret Sauce

￼18

N ::= x++ | x--
N;

N;

N;

⟨x = 1, x = − 1⟩

⟨x = 0⟩

⟨x = 2, x = 0, x = − 2⟩

⟨x = 3, x = 1, x = − 1, x = − 3⟩

Problem: We forgot the program!

8 Programs vs. 4 Predicates

Realizability Logic - Secret Sauce

￼19

N ::= x++ | x--
N;

N;

N;

⟨x = 1, x = − 1⟩

⟨x = 0⟩

⟨x = 2, x = 0, x = − 2⟩

⟨x = 3, x = 1, x = − 1, x = − 3⟩

Problem: We forgot the program!

8 Programs vs. 4 Predicates

Solution:
Realization Logic

Rewrite proof to derive program

Realization Logic

￼20

N;

N;

N;

⟨x = 1, x = − 1⟩

⟨x = 0⟩

⟨x = 2, x = 0, x = − 2⟩

⟨x = 3, x = 1, x = − 1, x = − 3⟩

N ::= x++ | x--

Realization Logic

￼20

N;

N;

N;

⟨x = 1, x = − 1⟩

⟨x = 0⟩

⟨x = 2, x = 0, x = − 2⟩

⟨x = 3, x = 1, x = − 1, x = − 3⟩

N ::= x++ | x--

Realization Logic

￼20

N;

N;

N;

⟨x = 1, x = − 1⟩

⟨x = 0⟩

⟨x = 2, x = 0, x = − 2⟩

⟨x = 3, x = 1, x = − 1, x = − 3⟩

N ::= x++ | x--

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Realizability in Semantics-Guided Synthesis Done Eagerly

(COM)
»com…(r) �3 s

`0 h{r }icomh{s}i

(SEQ)
`0 hRisketch1hSi
`0 hSisketch2hT i

`0 hRisketch1; sketch2hT i

(LOOP)
R = {r }

`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)
R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)
R = {r }

`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)
N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)
`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

1 htruei N(x = 0 | x = 1); hG = 0,G = 1i
2 (assert(x==0) + assert(x==1))

3 hfaili

Fig. 4. Demonic choice.

(SHARE)
`0 h) iNh* i `0 hRisketch[N/h) ih* i]hSi

`0 hRisketchhSi

Fig. 5. Subproof sharing.

To lift the semantics from programs to sketches, we let the function drv determine all programs
(without non-terminals) that can be derived from a sketch by rewriting the non-terminals. For
example, with N ::= com1 | com2 we have drv(N; com) = {com1; com, com2; com}. Formally, we see the
sketch as a sentential form in a context-free grammar and take the language.

3.2 Realizability Logic
Realizability logic reasons over correctness speci�cation of the form hRisketchhSi. Here, R, S are
so-called selections from the set Selections = P�n (Predicates). A selection is a �nite set of predicates
as we have de�ned them above. The idea is this. When we encounter a non-terminal in a sketch,
we do not yet determine how to resolve it to a program with the function drv. Instead, we collect
in a selection the predicates that these programs may justify as a postcondition. Since also the
precondition is a selection, we can not only choose the program but also the precondition to justify
the postcondition. We thus de�ne validity of realizability triples via validity in Hoare logic:

|=0 hRisketchhSi , 8s 2 S. 9r 2 R. 9prog 2 drv(sketch). |=3 {r}prog{s} .

To derive valid realizability triples, we use the proof rules in Figure 3. We write `0 hRisketchhSi
if the realizability triple can be derived with the help of these rules. Rule (COM) checks whether
the e�ect of a command com on a predicate r is captured by s. The rule allows us to derive the
realizability triple h{r}icomh{s}i in which the selections are singleton sets. The rule plays together
with (GATHER): if we can also derive h{r0}icomh{s0}i for another pre- and postcondition, then we
can join the selections and obtain h{r, r0}icomh{s, s0}i. Rule (GATHER) is also important to join the
pre- and postconditions for the various programs that can be derived from a non-terminal. To
obtain a realizability triple hRiNhSi, Rule (ANG) unwinds the non-terminal to a sketch sketch that
is given by a production and then proves hRisketchhSi. Note that the sketch may again contain N,
and may contain more than one occurrence. We explain at the end of the section how to avoid the
repetition of proof trees and handle non-terminals in an e�cient way.
Rule (DEM) looks like the standard rule for choice operators in Hoare logic. In realizability

logic, the precondition has to be a singleton selection, and the rule is unsound without this side

7

Realization Logic

￼20

N;

N;

N;

⟨x = 1, x = − 1⟩

⟨x = 0⟩

⟨x = 2, x = 0, x = − 2⟩

⟨x = 3, x = 1, x = − 1, x = − 3⟩

N ::= x++ | x--

⟨x = 2, x = 0, x = − 2⟩
N;

⟨x = 3, x = 1, x = − 1, x = − 3⟩

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Realizability in Semantics-Guided Synthesis Done Eagerly

(COM)
»com…(r) �3 s

`0 h{r }icomh{s}i

(SEQ)
`0 hRisketch1hSi
`0 hSisketch2hT i

`0 hRisketch1; sketch2hT i

(LOOP)
R = {r }

`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)
R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)
R = {r }

`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)
N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)
`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

1 htruei N(x = 0 | x = 1); hG = 0,G = 1i
2 (assert(x==0) + assert(x==1))

3 hfaili

Fig. 4. Demonic choice.

(SHARE)
`0 h) iNh* i `0 hRisketch[N/h) ih* i]hSi

`0 hRisketchhSi

Fig. 5. Subproof sharing.

To lift the semantics from programs to sketches, we let the function drv determine all programs
(without non-terminals) that can be derived from a sketch by rewriting the non-terminals. For
example, with N ::= com1 | com2 we have drv(N; com) = {com1; com, com2; com}. Formally, we see the
sketch as a sentential form in a context-free grammar and take the language.

3.2 Realizability Logic
Realizability logic reasons over correctness speci�cation of the form hRisketchhSi. Here, R, S are
so-called selections from the set Selections = P�n (Predicates). A selection is a �nite set of predicates
as we have de�ned them above. The idea is this. When we encounter a non-terminal in a sketch,
we do not yet determine how to resolve it to a program with the function drv. Instead, we collect
in a selection the predicates that these programs may justify as a postcondition. Since also the
precondition is a selection, we can not only choose the program but also the precondition to justify
the postcondition. We thus de�ne validity of realizability triples via validity in Hoare logic:

|=0 hRisketchhSi , 8s 2 S. 9r 2 R. 9prog 2 drv(sketch). |=3 {r}prog{s} .

To derive valid realizability triples, we use the proof rules in Figure 3. We write `0 hRisketchhSi
if the realizability triple can be derived with the help of these rules. Rule (COM) checks whether
the e�ect of a command com on a predicate r is captured by s. The rule allows us to derive the
realizability triple h{r}icomh{s}i in which the selections are singleton sets. The rule plays together
with (GATHER): if we can also derive h{r0}icomh{s0}i for another pre- and postcondition, then we
can join the selections and obtain h{r, r0}icomh{s, s0}i. Rule (GATHER) is also important to join the
pre- and postconditions for the various programs that can be derived from a non-terminal. To
obtain a realizability triple hRiNhSi, Rule (ANG) unwinds the non-terminal to a sketch sketch that
is given by a production and then proves hRisketchhSi. Note that the sketch may again contain N,
and may contain more than one occurrence. We explain at the end of the section how to avoid the
repetition of proof trees and handle non-terminals in an e�cient way.
Rule (DEM) looks like the standard rule for choice operators in Hoare logic. In realizability

logic, the precondition has to be a singleton selection, and the rule is unsound without this side

7

Realization Logic

￼20

N;

N;

N;

⟨x = 1, x = − 1⟩

⟨x = 0⟩

⟨x = 2, x = 0, x = − 2⟩

⟨x = 3, x = 1, x = − 1, x = − 3⟩

N ::= x++ | x--

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Realizability in Semantics-Guided Synthesis Done Eagerly

1 htruei
2 M(htrueix = 0hx = 0i |
3 htrueix = 1hx = 1i);
4 hx = 0, x = 1i
5 N(hx = 0, x = 1iy = 0hx = 0 ^ y = 0, x = 1 ^ y = 0i |
6 hx = 0, x = 1iy = 1hx = 0 ^ y = 1, x = 1 ^ y = 1i);
7 hG = 0 ^ y = 0, . . . , x = 1 ^ y = 1i
8 assert(x = 1 ^ y = 1)
9 hx = 1 ^ y = 1, faili

Fig. 1. Proof outline in realizability logic.

1 htruei
2 M(htrueix = 0hx = 0i |
3 htrueix = 1hx = 1i);
4 hx = 1i
5 N(hx = 0, x = 1iy = 0hx = 1 ^ y = 1i |
6 hx = 1iy = 1hx = 1 ^ y = 1i);
7 hx = 1 ^ y = 1i
8 assert(x = 1 ^ y = 1)
9 hx = 1 ^ y = 1i

Fig. 2. Proof outline derived from Figure 1.

from N. This yields four synthesis alternatives, namely x=0 ^ y=0 to x=1 ^ y=1. Only the last of
these alternatives passes the assertion, the others lead to a failure of the execution.
A �rst point of criticism one may have about realizability logic is that the alternation between

angelic and demonic choice will explode too quickly. In the end, all we have done is to replace the
choice of a program by a powerset construction over predicates, a technique pioneered in automata
theory [36]. This merely translates a complex search into complex assertions. We argue that, for
SemGuS where validity checks are expensive, the assertions may be the right place to keep the
complexity. Formal methods has developed expressive logical languages and abstract domains that
can denote complex sets of states with very concise assertions. In our experiments, we have worked
with Cartesian abstraction [8, Chapter 9].

A more severe point of criticism is that our realizability triples hRiPhSi drop the relationship
between the single programs prog 2 P and the pre- and postconditions r 2 R and s 2 S that this
program can achieve. Hence, when we have given a proof in realizability logic, like the one in
Figure 1, all we know is that the program sketch M; N; assert(x = 1 ^ y = 1) can be completed to a
program that passes the assertion, but we do not know the program. What we have, however, is a
proof outline in realizability logic that annotates the program with intermediary assertions. The
idea is to use this proof outline as guidance of how to instantiate the non-terminals.
Our second contribution is realization logic, a program logic to derive rewriting steps po p⇠ po

0

between proof outlines in realizability logic. The guarantee given by realization logic is that valid
proof outlines are rewritten to valid proof outlines. The rewriting process will not only eliminate
alternatives from the de�nition of non-terminals until a program that satis�es the speci�cation
has been found. An equally important step is to eliminate predicates that will not be helpful to
satisfy the desired postcondition, or may even fail in the future. The elimination of predicates is
done backwards, starting from the postcondition, and we illustrate it on our example:

hx = 0 ^ y = 0, . . . , x = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1, faili (1)
p⇠hx = 0 ^ y = 0, . . . , x = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1i (2)
p⇠hx = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1i .

hG = 1, G = 2ix++;hG = 2, G = 3i p⇠ hG = 1, G = 2ix++;hG = 2i
hG = 1, G = 2ix++;hG = 2i p⇠ hG = 1ix++;hG = 2i

hG = 0ix = 1; x = 2;hG = 1i p⇠ hG = 0ix = 1hG = 1i
The �rst step drops the alternative fail. As there are less synthesis options to choose from, this
weakens the postcondition and the step is thus sound by the standard rule of consequence in Hoare
logic. The second step propagates this elimination backwards by weakening the precondition, which

3

⟨x = 2, x = 0, x = − 2⟩
N;

⟨x = 3, x = 1, x = − 1, x = − 3⟩

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Realizability in Semantics-Guided Synthesis Done Eagerly

(COM)
»com…(r) �3 s

`0 h{r }icomh{s}i

(SEQ)
`0 hRisketch1hSi
`0 hSisketch2hT i

`0 hRisketch1; sketch2hT i

(LOOP)
R = {r }

`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)
R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)
R = {r }

`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)
N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)
`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

1 htruei N(x = 0 | x = 1); hG = 0,G = 1i
2 (assert(x==0) + assert(x==1))

3 hfaili

Fig. 4. Demonic choice.

(SHARE)
`0 h) iNh* i `0 hRisketch[N/h) ih* i]hSi

`0 hRisketchhSi

Fig. 5. Subproof sharing.

To lift the semantics from programs to sketches, we let the function drv determine all programs
(without non-terminals) that can be derived from a sketch by rewriting the non-terminals. For
example, with N ::= com1 | com2 we have drv(N; com) = {com1; com, com2; com}. Formally, we see the
sketch as a sentential form in a context-free grammar and take the language.

3.2 Realizability Logic
Realizability logic reasons over correctness speci�cation of the form hRisketchhSi. Here, R, S are
so-called selections from the set Selections = P�n (Predicates). A selection is a �nite set of predicates
as we have de�ned them above. The idea is this. When we encounter a non-terminal in a sketch,
we do not yet determine how to resolve it to a program with the function drv. Instead, we collect
in a selection the predicates that these programs may justify as a postcondition. Since also the
precondition is a selection, we can not only choose the program but also the precondition to justify
the postcondition. We thus de�ne validity of realizability triples via validity in Hoare logic:

|=0 hRisketchhSi , 8s 2 S. 9r 2 R. 9prog 2 drv(sketch). |=3 {r}prog{s} .

To derive valid realizability triples, we use the proof rules in Figure 3. We write `0 hRisketchhSi
if the realizability triple can be derived with the help of these rules. Rule (COM) checks whether
the e�ect of a command com on a predicate r is captured by s. The rule allows us to derive the
realizability triple h{r}icomh{s}i in which the selections are singleton sets. The rule plays together
with (GATHER): if we can also derive h{r0}icomh{s0}i for another pre- and postcondition, then we
can join the selections and obtain h{r, r0}icomh{s, s0}i. Rule (GATHER) is also important to join the
pre- and postconditions for the various programs that can be derived from a non-terminal. To
obtain a realizability triple hRiNhSi, Rule (ANG) unwinds the non-terminal to a sketch sketch that
is given by a production and then proves hRisketchhSi. Note that the sketch may again contain N,
and may contain more than one occurrence. We explain at the end of the section how to avoid the
repetition of proof trees and handle non-terminals in an e�cient way.
Rule (DEM) looks like the standard rule for choice operators in Hoare logic. In realizability

logic, the precondition has to be a singleton selection, and the rule is unsound without this side

7

Realization Logic

￼20

N;

N;

N;

⟨x = 1, x = − 1⟩

⟨x = 0⟩

⟨x = 2, x = 0, x = − 2⟩

⟨x = 3, x = 1, x = − 1, x = − 3⟩

N ::= x++ | x--

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Realizability in Semantics-Guided Synthesis Done Eagerly

1 htruei
2 M(htrueix = 0hx = 0i |
3 htrueix = 1hx = 1i);
4 hx = 0, x = 1i
5 N(hx = 0, x = 1iy = 0hx = 0 ^ y = 0, x = 1 ^ y = 0i |
6 hx = 0, x = 1iy = 1hx = 0 ^ y = 1, x = 1 ^ y = 1i);
7 hG = 0 ^ y = 0, . . . , x = 1 ^ y = 1i
8 assert(x = 1 ^ y = 1)
9 hx = 1 ^ y = 1, faili

Fig. 1. Proof outline in realizability logic.

1 htruei
2 M(htrueix = 0hx = 0i |
3 htrueix = 1hx = 1i);
4 hx = 1i
5 N(hx = 0, x = 1iy = 0hx = 1 ^ y = 1i |
6 hx = 1iy = 1hx = 1 ^ y = 1i);
7 hx = 1 ^ y = 1i
8 assert(x = 1 ^ y = 1)
9 hx = 1 ^ y = 1i

Fig. 2. Proof outline derived from Figure 1.

from N. This yields four synthesis alternatives, namely x=0 ^ y=0 to x=1 ^ y=1. Only the last of
these alternatives passes the assertion, the others lead to a failure of the execution.
A �rst point of criticism one may have about realizability logic is that the alternation between

angelic and demonic choice will explode too quickly. In the end, all we have done is to replace the
choice of a program by a powerset construction over predicates, a technique pioneered in automata
theory [36]. This merely translates a complex search into complex assertions. We argue that, for
SemGuS where validity checks are expensive, the assertions may be the right place to keep the
complexity. Formal methods has developed expressive logical languages and abstract domains that
can denote complex sets of states with very concise assertions. In our experiments, we have worked
with Cartesian abstraction [8, Chapter 9].

A more severe point of criticism is that our realizability triples hRiPhSi drop the relationship
between the single programs prog 2 P and the pre- and postconditions r 2 R and s 2 S that this
program can achieve. Hence, when we have given a proof in realizability logic, like the one in
Figure 1, all we know is that the program sketch M; N; assert(x = 1 ^ y = 1) can be completed to a
program that passes the assertion, but we do not know the program. What we have, however, is a
proof outline in realizability logic that annotates the program with intermediary assertions. The
idea is to use this proof outline as guidance of how to instantiate the non-terminals.
Our second contribution is realization logic, a program logic to derive rewriting steps po p⇠ po

0

between proof outlines in realizability logic. The guarantee given by realization logic is that valid
proof outlines are rewritten to valid proof outlines. The rewriting process will not only eliminate
alternatives from the de�nition of non-terminals until a program that satis�es the speci�cation
has been found. An equally important step is to eliminate predicates that will not be helpful to
satisfy the desired postcondition, or may even fail in the future. The elimination of predicates is
done backwards, starting from the postcondition, and we illustrate it on our example:

hx = 0 ^ y = 0, . . . , x = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1, faili (1)
p⇠hx = 0 ^ y = 0, . . . , x = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1i (2)
p⇠hx = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1i .

hG = 1, G = 2ix++;hG = 2, G = 3i p⇠ hG = 1, G = 2ix++;hG = 2i
hG = 1, G = 2ix++;hG = 2i p⇠ hG = 1ix++;hG = 2i

hG = 0ix = 1; x = 2;hG = 1i p⇠ hG = 0ix = 1hG = 1i
The �rst step drops the alternative fail. As there are less synthesis options to choose from, this
weakens the postcondition and the step is thus sound by the standard rule of consequence in Hoare
logic. The second step propagates this elimination backwards by weakening the precondition, which

3

⟨x = 2, x = 0, x = − 2⟩
N;

⟨x = 3, x = 1, x = − 1, x = − 3⟩

⟨x = 2, x = 0, x = − 2⟩
N;

⟨x = 1⟩

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Realizability in Semantics-Guided Synthesis Done Eagerly

(COM)
»com…(r) �3 s

`0 h{r }icomh{s}i

(SEQ)
`0 hRisketch1hSi
`0 hSisketch2hT i

`0 hRisketch1; sketch2hT i

(LOOP)
R = {r }

`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)
R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)
R = {r }

`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)
N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)
`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

1 htruei N(x = 0 | x = 1); hG = 0,G = 1i
2 (assert(x==0) + assert(x==1))

3 hfaili

Fig. 4. Demonic choice.

(SHARE)
`0 h) iNh* i `0 hRisketch[N/h) ih* i]hSi

`0 hRisketchhSi

Fig. 5. Subproof sharing.

To lift the semantics from programs to sketches, we let the function drv determine all programs
(without non-terminals) that can be derived from a sketch by rewriting the non-terminals. For
example, with N ::= com1 | com2 we have drv(N; com) = {com1; com, com2; com}. Formally, we see the
sketch as a sentential form in a context-free grammar and take the language.

3.2 Realizability Logic
Realizability logic reasons over correctness speci�cation of the form hRisketchhSi. Here, R, S are
so-called selections from the set Selections = P�n (Predicates). A selection is a �nite set of predicates
as we have de�ned them above. The idea is this. When we encounter a non-terminal in a sketch,
we do not yet determine how to resolve it to a program with the function drv. Instead, we collect
in a selection the predicates that these programs may justify as a postcondition. Since also the
precondition is a selection, we can not only choose the program but also the precondition to justify
the postcondition. We thus de�ne validity of realizability triples via validity in Hoare logic:

|=0 hRisketchhSi , 8s 2 S. 9r 2 R. 9prog 2 drv(sketch). |=3 {r}prog{s} .

To derive valid realizability triples, we use the proof rules in Figure 3. We write `0 hRisketchhSi
if the realizability triple can be derived with the help of these rules. Rule (COM) checks whether
the e�ect of a command com on a predicate r is captured by s. The rule allows us to derive the
realizability triple h{r}icomh{s}i in which the selections are singleton sets. The rule plays together
with (GATHER): if we can also derive h{r0}icomh{s0}i for another pre- and postcondition, then we
can join the selections and obtain h{r, r0}icomh{s, s0}i. Rule (GATHER) is also important to join the
pre- and postconditions for the various programs that can be derived from a non-terminal. To
obtain a realizability triple hRiNhSi, Rule (ANG) unwinds the non-terminal to a sketch sketch that
is given by a production and then proves hRisketchhSi. Note that the sketch may again contain N,
and may contain more than one occurrence. We explain at the end of the section how to avoid the
repetition of proof trees and handle non-terminals in an e�cient way.
Rule (DEM) looks like the standard rule for choice operators in Hoare logic. In realizability

logic, the precondition has to be a singleton selection, and the rule is unsound without this side

7

Realization Logic

￼21

N;

N;

N;

⟨x = 1, x = − 1⟩

⟨x = 0⟩

⟨x = 2, x = 0, x = − 2⟩

⟨x = 1⟩

N ::= x++ | x--

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Realizability in Semantics-Guided Synthesis Done Eagerly

1 htruei
2 M(htrueix = 0hx = 0i |
3 htrueix = 1hx = 1i);
4 hx = 0, x = 1i
5 N(hx = 0, x = 1iy = 0hx = 0 ^ y = 0, x = 1 ^ y = 0i |
6 hx = 0, x = 1iy = 1hx = 0 ^ y = 1, x = 1 ^ y = 1i);
7 hG = 0 ^ y = 0, . . . , x = 1 ^ y = 1i
8 assert(x = 1 ^ y = 1)
9 hx = 1 ^ y = 1, faili

Fig. 1. Proof outline in realizability logic.

1 htruei
2 M(htrueix = 0hx = 0i |
3 htrueix = 1hx = 1i);
4 hx = 1i
5 N(hx = 0, x = 1iy = 0hx = 1 ^ y = 1i |
6 hx = 1iy = 1hx = 1 ^ y = 1i);
7 hx = 1 ^ y = 1i
8 assert(x = 1 ^ y = 1)
9 hx = 1 ^ y = 1i

Fig. 2. Proof outline derived from Figure 1.

from N. This yields four synthesis alternatives, namely x=0 ^ y=0 to x=1 ^ y=1. Only the last of
these alternatives passes the assertion, the others lead to a failure of the execution.
A �rst point of criticism one may have about realizability logic is that the alternation between

angelic and demonic choice will explode too quickly. In the end, all we have done is to replace the
choice of a program by a powerset construction over predicates, a technique pioneered in automata
theory [36]. This merely translates a complex search into complex assertions. We argue that, for
SemGuS where validity checks are expensive, the assertions may be the right place to keep the
complexity. Formal methods has developed expressive logical languages and abstract domains that
can denote complex sets of states with very concise assertions. In our experiments, we have worked
with Cartesian abstraction [8, Chapter 9].

A more severe point of criticism is that our realizability triples hRiPhSi drop the relationship
between the single programs prog 2 P and the pre- and postconditions r 2 R and s 2 S that this
program can achieve. Hence, when we have given a proof in realizability logic, like the one in
Figure 1, all we know is that the program sketch M; N; assert(x = 1 ^ y = 1) can be completed to a
program that passes the assertion, but we do not know the program. What we have, however, is a
proof outline in realizability logic that annotates the program with intermediary assertions. The
idea is to use this proof outline as guidance of how to instantiate the non-terminals.
Our second contribution is realization logic, a program logic to derive rewriting steps po p⇠ po

0

between proof outlines in realizability logic. The guarantee given by realization logic is that valid
proof outlines are rewritten to valid proof outlines. The rewriting process will not only eliminate
alternatives from the de�nition of non-terminals until a program that satis�es the speci�cation
has been found. An equally important step is to eliminate predicates that will not be helpful to
satisfy the desired postcondition, or may even fail in the future. The elimination of predicates is
done backwards, starting from the postcondition, and we illustrate it on our example:

hx = 0 ^ y = 0, . . . , x = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1, faili (1)
p⇠hx = 0 ^ y = 0, . . . , x = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1i (2)
p⇠hx = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1i .

hG = 1, G = 2ix++;hG = 2, G = 3i p⇠ hG = 1, G = 2ix++;hG = 2i
hG = 1, G = 2ix++;hG = 2i p⇠ hG = 1ix++;hG = 2i

hG = 0ix = 1; x = 2;hG = 1i p⇠ hG = 0ix = 1hG = 1i
The �rst step drops the alternative fail. As there are less synthesis options to choose from, this
weakens the postcondition and the step is thus sound by the standard rule of consequence in Hoare
logic. The second step propagates this elimination backwards by weakening the precondition, which

3

⟨x = 2, x = 0, x = − 2⟩
N;

⟨x = 3, x = 1, x = − 1, x = − 3⟩

⟨x = 2, x = 0, x = − 2⟩
N;

⟨x = 1⟩

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Realizability in Semantics-Guided Synthesis Done Eagerly

(COM)
»com…(r) �3 s

`0 h{r }icomh{s}i

(SEQ)
`0 hRisketch1hSi
`0 hSisketch2hT i

`0 hRisketch1; sketch2hT i

(LOOP)
R = {r }

`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)
R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)
R = {r }

`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)
N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)
`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

1 htruei N(x = 0 | x = 1); hG = 0,G = 1i
2 (assert(x==0) + assert(x==1))

3 hfaili

Fig. 4. Demonic choice.

(SHARE)
`0 h) iNh* i `0 hRisketch[N/h) ih* i]hSi

`0 hRisketchhSi

Fig. 5. Subproof sharing.

To lift the semantics from programs to sketches, we let the function drv determine all programs
(without non-terminals) that can be derived from a sketch by rewriting the non-terminals. For
example, with N ::= com1 | com2 we have drv(N; com) = {com1; com, com2; com}. Formally, we see the
sketch as a sentential form in a context-free grammar and take the language.

3.2 Realizability Logic
Realizability logic reasons over correctness speci�cation of the form hRisketchhSi. Here, R, S are
so-called selections from the set Selections = P�n (Predicates). A selection is a �nite set of predicates
as we have de�ned them above. The idea is this. When we encounter a non-terminal in a sketch,
we do not yet determine how to resolve it to a program with the function drv. Instead, we collect
in a selection the predicates that these programs may justify as a postcondition. Since also the
precondition is a selection, we can not only choose the program but also the precondition to justify
the postcondition. We thus de�ne validity of realizability triples via validity in Hoare logic:

|=0 hRisketchhSi , 8s 2 S. 9r 2 R. 9prog 2 drv(sketch). |=3 {r}prog{s} .

To derive valid realizability triples, we use the proof rules in Figure 3. We write `0 hRisketchhSi
if the realizability triple can be derived with the help of these rules. Rule (COM) checks whether
the e�ect of a command com on a predicate r is captured by s. The rule allows us to derive the
realizability triple h{r}icomh{s}i in which the selections are singleton sets. The rule plays together
with (GATHER): if we can also derive h{r0}icomh{s0}i for another pre- and postcondition, then we
can join the selections and obtain h{r, r0}icomh{s, s0}i. Rule (GATHER) is also important to join the
pre- and postconditions for the various programs that can be derived from a non-terminal. To
obtain a realizability triple hRiNhSi, Rule (ANG) unwinds the non-terminal to a sketch sketch that
is given by a production and then proves hRisketchhSi. Note that the sketch may again contain N,
and may contain more than one occurrence. We explain at the end of the section how to avoid the
repetition of proof trees and handle non-terminals in an e�cient way.
Rule (DEM) looks like the standard rule for choice operators in Hoare logic. In realizability

logic, the precondition has to be a singleton selection, and the rule is unsound without this side

7

Realization Logic

￼22

N;

N;

N;

⟨x = 1, x = − 1⟩

⟨x = 0⟩

⟨x = 2, x = 0, x = − 2⟩

⟨x = 1⟩

N ::= x++ | x--

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Realizability in Semantics-Guided Synthesis Done Eagerly

(COM)
»com…(r) �3 s

`0 h{r }icomh{s}i

(SEQ)
`0 hRisketch1hSi
`0 hSisketch2hT i

`0 hRisketch1; sketch2hT i

(LOOP)
R = {r }

`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)
R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)
R = {r }

`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)
N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)
`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

1 htruei N(x = 0 | x = 1); hG = 0,G = 1i
2 (assert(x==0) + assert(x==1))

3 hfaili

Fig. 4. Demonic choice.

(SHARE)
`0 h) iNh* i `0 hRisketch[N/h) ih* i]hSi

`0 hRisketchhSi

Fig. 5. Subproof sharing.

To lift the semantics from programs to sketches, we let the function drv determine all programs
(without non-terminals) that can be derived from a sketch by rewriting the non-terminals. For
example, with N ::= com1 | com2 we have drv(N; com) = {com1; com, com2; com}. Formally, we see the
sketch as a sentential form in a context-free grammar and take the language.

3.2 Realizability Logic
Realizability logic reasons over correctness speci�cation of the form hRisketchhSi. Here, R, S are
so-called selections from the set Selections = P�n (Predicates). A selection is a �nite set of predicates
as we have de�ned them above. The idea is this. When we encounter a non-terminal in a sketch,
we do not yet determine how to resolve it to a program with the function drv. Instead, we collect
in a selection the predicates that these programs may justify as a postcondition. Since also the
precondition is a selection, we can not only choose the program but also the precondition to justify
the postcondition. We thus de�ne validity of realizability triples via validity in Hoare logic:

|=0 hRisketchhSi , 8s 2 S. 9r 2 R. 9prog 2 drv(sketch). |=3 {r}prog{s} .

To derive valid realizability triples, we use the proof rules in Figure 3. We write `0 hRisketchhSi
if the realizability triple can be derived with the help of these rules. Rule (COM) checks whether
the e�ect of a command com on a predicate r is captured by s. The rule allows us to derive the
realizability triple h{r}icomh{s}i in which the selections are singleton sets. The rule plays together
with (GATHER): if we can also derive h{r0}icomh{s0}i for another pre- and postcondition, then we
can join the selections and obtain h{r, r0}icomh{s, s0}i. Rule (GATHER) is also important to join the
pre- and postconditions for the various programs that can be derived from a non-terminal. To
obtain a realizability triple hRiNhSi, Rule (ANG) unwinds the non-terminal to a sketch sketch that
is given by a production and then proves hRisketchhSi. Note that the sketch may again contain N,
and may contain more than one occurrence. We explain at the end of the section how to avoid the
repetition of proof trees and handle non-terminals in an e�cient way.
Rule (DEM) looks like the standard rule for choice operators in Hoare logic. In realizability

logic, the precondition has to be a singleton selection, and the rule is unsound without this side

7

Realization Logic

￼22

N;

N;

N;

⟨x = 1, x = − 1⟩

⟨x = 0⟩

⟨x = 2, x = 0, x = − 2⟩

⟨x = 1⟩

N ::= x++ | x--

⟨x = 2, x = 0, x = − 2⟩
N;

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Realizability in Semantics-Guided Synthesis Done Eagerly

(COM)
»com…(r) �3 s

`0 h{r }icomh{s}i

(SEQ)
`0 hRisketch1hSi
`0 hSisketch2hT i

`0 hRisketch1; sketch2hT i

(LOOP)
R = {r }

`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)
R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)
R = {r }

`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)
N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)
`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

1 htruei N(x = 0 | x = 1); hG = 0,G = 1i
2 (assert(x==0) + assert(x==1))

3 hfaili

Fig. 4. Demonic choice.

(SHARE)
`0 h) iNh* i `0 hRisketch[N/h) ih* i]hSi

`0 hRisketchhSi

Fig. 5. Subproof sharing.

To lift the semantics from programs to sketches, we let the function drv determine all programs
(without non-terminals) that can be derived from a sketch by rewriting the non-terminals. For
example, with N ::= com1 | com2 we have drv(N; com) = {com1; com, com2; com}. Formally, we see the
sketch as a sentential form in a context-free grammar and take the language.

3.2 Realizability Logic
Realizability logic reasons over correctness speci�cation of the form hRisketchhSi. Here, R, S are
so-called selections from the set Selections = P�n (Predicates). A selection is a �nite set of predicates
as we have de�ned them above. The idea is this. When we encounter a non-terminal in a sketch,
we do not yet determine how to resolve it to a program with the function drv. Instead, we collect
in a selection the predicates that these programs may justify as a postcondition. Since also the
precondition is a selection, we can not only choose the program but also the precondition to justify
the postcondition. We thus de�ne validity of realizability triples via validity in Hoare logic:

|=0 hRisketchhSi , 8s 2 S. 9r 2 R. 9prog 2 drv(sketch). |=3 {r}prog{s} .

To derive valid realizability triples, we use the proof rules in Figure 3. We write `0 hRisketchhSi
if the realizability triple can be derived with the help of these rules. Rule (COM) checks whether
the e�ect of a command com on a predicate r is captured by s. The rule allows us to derive the
realizability triple h{r}icomh{s}i in which the selections are singleton sets. The rule plays together
with (GATHER): if we can also derive h{r0}icomh{s0}i for another pre- and postcondition, then we
can join the selections and obtain h{r, r0}icomh{s, s0}i. Rule (GATHER) is also important to join the
pre- and postconditions for the various programs that can be derived from a non-terminal. To
obtain a realizability triple hRiNhSi, Rule (ANG) unwinds the non-terminal to a sketch sketch that
is given by a production and then proves hRisketchhSi. Note that the sketch may again contain N,
and may contain more than one occurrence. We explain at the end of the section how to avoid the
repetition of proof trees and handle non-terminals in an e�cient way.
Rule (DEM) looks like the standard rule for choice operators in Hoare logic. In realizability

logic, the precondition has to be a singleton selection, and the rule is unsound without this side

7

⟨x = 1⟩

Realization Logic

￼22

N;

N;

N;

⟨x = 1, x = − 1⟩

⟨x = 0⟩

⟨x = 2, x = 0, x = − 2⟩

⟨x = 1⟩

N ::= x++ | x--

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Realizability in Semantics-Guided Synthesis Done Eagerly

1 htruei
2 M(htrueix = 0hx = 0i |
3 htrueix = 1hx = 1i);
4 hx = 0, x = 1i
5 N(hx = 0, x = 1iy = 0hx = 0 ^ y = 0, x = 1 ^ y = 0i |
6 hx = 0, x = 1iy = 1hx = 0 ^ y = 1, x = 1 ^ y = 1i);
7 hG = 0 ^ y = 0, . . . , x = 1 ^ y = 1i
8 assert(x = 1 ^ y = 1)
9 hx = 1 ^ y = 1, faili

Fig. 1. Proof outline in realizability logic.

1 htruei
2 M(htrueix = 0hx = 0i |
3 htrueix = 1hx = 1i);
4 hx = 1i
5 N(hx = 0, x = 1iy = 0hx = 1 ^ y = 1i |
6 hx = 1iy = 1hx = 1 ^ y = 1i);
7 hx = 1 ^ y = 1i
8 assert(x = 1 ^ y = 1)
9 hx = 1 ^ y = 1i

Fig. 2. Proof outline derived from Figure 1.

from N. This yields four synthesis alternatives, namely x=0 ^ y=0 to x=1 ^ y=1. Only the last of
these alternatives passes the assertion, the others lead to a failure of the execution.
A �rst point of criticism one may have about realizability logic is that the alternation between

angelic and demonic choice will explode too quickly. In the end, all we have done is to replace the
choice of a program by a powerset construction over predicates, a technique pioneered in automata
theory [36]. This merely translates a complex search into complex assertions. We argue that, for
SemGuS where validity checks are expensive, the assertions may be the right place to keep the
complexity. Formal methods has developed expressive logical languages and abstract domains that
can denote complex sets of states with very concise assertions. In our experiments, we have worked
with Cartesian abstraction [8, Chapter 9].

A more severe point of criticism is that our realizability triples hRiPhSi drop the relationship
between the single programs prog 2 P and the pre- and postconditions r 2 R and s 2 S that this
program can achieve. Hence, when we have given a proof in realizability logic, like the one in
Figure 1, all we know is that the program sketch M; N; assert(x = 1 ^ y = 1) can be completed to a
program that passes the assertion, but we do not know the program. What we have, however, is a
proof outline in realizability logic that annotates the program with intermediary assertions. The
idea is to use this proof outline as guidance of how to instantiate the non-terminals.
Our second contribution is realization logic, a program logic to derive rewriting steps po p⇠ po

0

between proof outlines in realizability logic. The guarantee given by realization logic is that valid
proof outlines are rewritten to valid proof outlines. The rewriting process will not only eliminate
alternatives from the de�nition of non-terminals until a program that satis�es the speci�cation
has been found. An equally important step is to eliminate predicates that will not be helpful to
satisfy the desired postcondition, or may even fail in the future. The elimination of predicates is
done backwards, starting from the postcondition, and we illustrate it on our example:

hx = 0 ^ y = 0, . . . , x = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1, faili (1)
p⇠hx = 0 ^ y = 0, . . . , x = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1i (2)
p⇠hx = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1i .

hG = 1, G = 2ix++;hG = 2, G = 3i p⇠ hG = 1, G = 2ix++;hG = 2i
hG = 1, G = 2ix++;hG = 2i p⇠ hG = 1ix++;hG = 2i

hG = 0ix = 1; x = 2;hG = 1i p⇠ hG = 0ix = 1hG = 1i
The �rst step drops the alternative fail. As there are less synthesis options to choose from, this
weakens the postcondition and the step is thus sound by the standard rule of consequence in Hoare
logic. The second step propagates this elimination backwards by weakening the precondition, which

3

⟨x = 2, x = 0, x = − 2⟩
N;

⟨x = 2, x = 0, x = − 2⟩
x++;

⟨x = 1⟩

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Realizability in Semantics-Guided Synthesis Done Eagerly

(COM)
»com…(r) �3 s

`0 h{r }icomh{s}i

(SEQ)
`0 hRisketch1hSi
`0 hSisketch2hT i

`0 hRisketch1; sketch2hT i

(LOOP)
R = {r }

`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)
R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)
R = {r }

`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)
N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)
`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

1 htruei N(x = 0 | x = 1); hG = 0,G = 1i
2 (assert(x==0) + assert(x==1))

3 hfaili

Fig. 4. Demonic choice.

(SHARE)
`0 h) iNh* i `0 hRisketch[N/h) ih* i]hSi

`0 hRisketchhSi

Fig. 5. Subproof sharing.

To lift the semantics from programs to sketches, we let the function drv determine all programs
(without non-terminals) that can be derived from a sketch by rewriting the non-terminals. For
example, with N ::= com1 | com2 we have drv(N; com) = {com1; com, com2; com}. Formally, we see the
sketch as a sentential form in a context-free grammar and take the language.

3.2 Realizability Logic
Realizability logic reasons over correctness speci�cation of the form hRisketchhSi. Here, R, S are
so-called selections from the set Selections = P�n (Predicates). A selection is a �nite set of predicates
as we have de�ned them above. The idea is this. When we encounter a non-terminal in a sketch,
we do not yet determine how to resolve it to a program with the function drv. Instead, we collect
in a selection the predicates that these programs may justify as a postcondition. Since also the
precondition is a selection, we can not only choose the program but also the precondition to justify
the postcondition. We thus de�ne validity of realizability triples via validity in Hoare logic:

|=0 hRisketchhSi , 8s 2 S. 9r 2 R. 9prog 2 drv(sketch). |=3 {r}prog{s} .

To derive valid realizability triples, we use the proof rules in Figure 3. We write `0 hRisketchhSi
if the realizability triple can be derived with the help of these rules. Rule (COM) checks whether
the e�ect of a command com on a predicate r is captured by s. The rule allows us to derive the
realizability triple h{r}icomh{s}i in which the selections are singleton sets. The rule plays together
with (GATHER): if we can also derive h{r0}icomh{s0}i for another pre- and postcondition, then we
can join the selections and obtain h{r, r0}icomh{s, s0}i. Rule (GATHER) is also important to join the
pre- and postconditions for the various programs that can be derived from a non-terminal. To
obtain a realizability triple hRiNhSi, Rule (ANG) unwinds the non-terminal to a sketch sketch that
is given by a production and then proves hRisketchhSi. Note that the sketch may again contain N,
and may contain more than one occurrence. We explain at the end of the section how to avoid the
repetition of proof trees and handle non-terminals in an e�cient way.
Rule (DEM) looks like the standard rule for choice operators in Hoare logic. In realizability

logic, the precondition has to be a singleton selection, and the rule is unsound without this side

7

⟨x = 1⟩

Realization Logic

￼23

N;

N;

x++;

⟨x = 1, x = − 1⟩

⟨x = 0⟩

⟨x = 2, x = 0, x = − 2⟩

⟨x = 1⟩

N ::= x++ | x--

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Realizability in Semantics-Guided Synthesis Done Eagerly

1 htruei
2 M(htrueix = 0hx = 0i |
3 htrueix = 1hx = 1i);
4 hx = 0, x = 1i
5 N(hx = 0, x = 1iy = 0hx = 0 ^ y = 0, x = 1 ^ y = 0i |
6 hx = 0, x = 1iy = 1hx = 0 ^ y = 1, x = 1 ^ y = 1i);
7 hG = 0 ^ y = 0, . . . , x = 1 ^ y = 1i
8 assert(x = 1 ^ y = 1)
9 hx = 1 ^ y = 1, faili

Fig. 1. Proof outline in realizability logic.

1 htruei
2 M(htrueix = 0hx = 0i |
3 htrueix = 1hx = 1i);
4 hx = 1i
5 N(hx = 0, x = 1iy = 0hx = 1 ^ y = 1i |
6 hx = 1iy = 1hx = 1 ^ y = 1i);
7 hx = 1 ^ y = 1i
8 assert(x = 1 ^ y = 1)
9 hx = 1 ^ y = 1i

Fig. 2. Proof outline derived from Figure 1.

from N. This yields four synthesis alternatives, namely x=0 ^ y=0 to x=1 ^ y=1. Only the last of
these alternatives passes the assertion, the others lead to a failure of the execution.
A �rst point of criticism one may have about realizability logic is that the alternation between

angelic and demonic choice will explode too quickly. In the end, all we have done is to replace the
choice of a program by a powerset construction over predicates, a technique pioneered in automata
theory [36]. This merely translates a complex search into complex assertions. We argue that, for
SemGuS where validity checks are expensive, the assertions may be the right place to keep the
complexity. Formal methods has developed expressive logical languages and abstract domains that
can denote complex sets of states with very concise assertions. In our experiments, we have worked
with Cartesian abstraction [8, Chapter 9].

A more severe point of criticism is that our realizability triples hRiPhSi drop the relationship
between the single programs prog 2 P and the pre- and postconditions r 2 R and s 2 S that this
program can achieve. Hence, when we have given a proof in realizability logic, like the one in
Figure 1, all we know is that the program sketch M; N; assert(x = 1 ^ y = 1) can be completed to a
program that passes the assertion, but we do not know the program. What we have, however, is a
proof outline in realizability logic that annotates the program with intermediary assertions. The
idea is to use this proof outline as guidance of how to instantiate the non-terminals.
Our second contribution is realization logic, a program logic to derive rewriting steps po p⇠ po

0

between proof outlines in realizability logic. The guarantee given by realization logic is that valid
proof outlines are rewritten to valid proof outlines. The rewriting process will not only eliminate
alternatives from the de�nition of non-terminals until a program that satis�es the speci�cation
has been found. An equally important step is to eliminate predicates that will not be helpful to
satisfy the desired postcondition, or may even fail in the future. The elimination of predicates is
done backwards, starting from the postcondition, and we illustrate it on our example:

hx = 0 ^ y = 0, . . . , x = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1, faili (1)
p⇠hx = 0 ^ y = 0, . . . , x = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1i (2)
p⇠hx = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1i .

hG = 1, G = 2ix++;hG = 2, G = 3i p⇠ hG = 1, G = 2ix++;hG = 2i
hG = 1, G = 2ix++;hG = 2i p⇠ hG = 1ix++;hG = 2i

hG = 0ix = 1; x = 2;hG = 1i p⇠ hG = 0ix = 1hG = 1i
The �rst step drops the alternative fail. As there are less synthesis options to choose from, this
weakens the postcondition and the step is thus sound by the standard rule of consequence in Hoare
logic. The second step propagates this elimination backwards by weakening the precondition, which

3

⟨x = 2, x = 0, x = − 2⟩
N;

⟨x = 2, x = 0, x = − 2⟩
x++;

⟨x = 1⟩

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Realizability in Semantics-Guided Synthesis Done Eagerly

(COM)
»com…(r) �3 s

`0 h{r }icomh{s}i

(SEQ)
`0 hRisketch1hSi
`0 hSisketch2hT i

`0 hRisketch1; sketch2hT i

(LOOP)
R = {r }

`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)
R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)
R = {r }

`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)
N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)
`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

1 htruei N(x = 0 | x = 1); hG = 0,G = 1i
2 (assert(x==0) + assert(x==1))

3 hfaili

Fig. 4. Demonic choice.

(SHARE)
`0 h) iNh* i `0 hRisketch[N/h) ih* i]hSi

`0 hRisketchhSi

Fig. 5. Subproof sharing.

To lift the semantics from programs to sketches, we let the function drv determine all programs
(without non-terminals) that can be derived from a sketch by rewriting the non-terminals. For
example, with N ::= com1 | com2 we have drv(N; com) = {com1; com, com2; com}. Formally, we see the
sketch as a sentential form in a context-free grammar and take the language.

3.2 Realizability Logic
Realizability logic reasons over correctness speci�cation of the form hRisketchhSi. Here, R, S are
so-called selections from the set Selections = P�n (Predicates). A selection is a �nite set of predicates
as we have de�ned them above. The idea is this. When we encounter a non-terminal in a sketch,
we do not yet determine how to resolve it to a program with the function drv. Instead, we collect
in a selection the predicates that these programs may justify as a postcondition. Since also the
precondition is a selection, we can not only choose the program but also the precondition to justify
the postcondition. We thus de�ne validity of realizability triples via validity in Hoare logic:

|=0 hRisketchhSi , 8s 2 S. 9r 2 R. 9prog 2 drv(sketch). |=3 {r}prog{s} .

To derive valid realizability triples, we use the proof rules in Figure 3. We write `0 hRisketchhSi
if the realizability triple can be derived with the help of these rules. Rule (COM) checks whether
the e�ect of a command com on a predicate r is captured by s. The rule allows us to derive the
realizability triple h{r}icomh{s}i in which the selections are singleton sets. The rule plays together
with (GATHER): if we can also derive h{r0}icomh{s0}i for another pre- and postcondition, then we
can join the selections and obtain h{r, r0}icomh{s, s0}i. Rule (GATHER) is also important to join the
pre- and postconditions for the various programs that can be derived from a non-terminal. To
obtain a realizability triple hRiNhSi, Rule (ANG) unwinds the non-terminal to a sketch sketch that
is given by a production and then proves hRisketchhSi. Note that the sketch may again contain N,
and may contain more than one occurrence. We explain at the end of the section how to avoid the
repetition of proof trees and handle non-terminals in an e�cient way.
Rule (DEM) looks like the standard rule for choice operators in Hoare logic. In realizability

logic, the precondition has to be a singleton selection, and the rule is unsound without this side

7

⟨x = 1⟩

Realization Logic

￼24

N;

N;

x++;

⟨x = 1, x = − 1⟩

⟨x = 0⟩

⟨x = 2, x = 0, x = − 2⟩

⟨x = 1⟩

N ::= x++ | x--

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Realizability in Semantics-Guided Synthesis Done Eagerly

(COM)
»com…(r) �3 s

`0 h{r }icomh{s}i

(SEQ)
`0 hRisketch1hSi
`0 hSisketch2hT i

`0 hRisketch1; sketch2hT i

(LOOP)
R = {r }

`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)
R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)
R = {r }

`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)
N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)
`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

1 htruei N(x = 0 | x = 1); hG = 0,G = 1i
2 (assert(x==0) + assert(x==1))

3 hfaili

Fig. 4. Demonic choice.

(SHARE)
`0 h) iNh* i `0 hRisketch[N/h) ih* i]hSi

`0 hRisketchhSi

Fig. 5. Subproof sharing.

To lift the semantics from programs to sketches, we let the function drv determine all programs
(without non-terminals) that can be derived from a sketch by rewriting the non-terminals. For
example, with N ::= com1 | com2 we have drv(N; com) = {com1; com, com2; com}. Formally, we see the
sketch as a sentential form in a context-free grammar and take the language.

3.2 Realizability Logic
Realizability logic reasons over correctness speci�cation of the form hRisketchhSi. Here, R, S are
so-called selections from the set Selections = P�n (Predicates). A selection is a �nite set of predicates
as we have de�ned them above. The idea is this. When we encounter a non-terminal in a sketch,
we do not yet determine how to resolve it to a program with the function drv. Instead, we collect
in a selection the predicates that these programs may justify as a postcondition. Since also the
precondition is a selection, we can not only choose the program but also the precondition to justify
the postcondition. We thus de�ne validity of realizability triples via validity in Hoare logic:

|=0 hRisketchhSi , 8s 2 S. 9r 2 R. 9prog 2 drv(sketch). |=3 {r}prog{s} .

To derive valid realizability triples, we use the proof rules in Figure 3. We write `0 hRisketchhSi
if the realizability triple can be derived with the help of these rules. Rule (COM) checks whether
the e�ect of a command com on a predicate r is captured by s. The rule allows us to derive the
realizability triple h{r}icomh{s}i in which the selections are singleton sets. The rule plays together
with (GATHER): if we can also derive h{r0}icomh{s0}i for another pre- and postcondition, then we
can join the selections and obtain h{r, r0}icomh{s, s0}i. Rule (GATHER) is also important to join the
pre- and postconditions for the various programs that can be derived from a non-terminal. To
obtain a realizability triple hRiNhSi, Rule (ANG) unwinds the non-terminal to a sketch sketch that
is given by a production and then proves hRisketchhSi. Note that the sketch may again contain N,
and may contain more than one occurrence. We explain at the end of the section how to avoid the
repetition of proof trees and handle non-terminals in an e�cient way.
Rule (DEM) looks like the standard rule for choice operators in Hoare logic. In realizability

logic, the precondition has to be a singleton selection, and the rule is unsound without this side

7

Realization Logic

￼24

N;

N;

x++;

⟨x = 1, x = − 1⟩

⟨x = 0⟩

⟨x = 2, x = 0, x = − 2⟩

⟨x = 1⟩

N ::= x++ | x--

⟨x = 2, x = 0, x = − 2⟩
x++;

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Realizability in Semantics-Guided Synthesis Done Eagerly

(COM)
»com…(r) �3 s

`0 h{r }icomh{s}i

(SEQ)
`0 hRisketch1hSi
`0 hSisketch2hT i

`0 hRisketch1; sketch2hT i

(LOOP)
R = {r }

`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)
R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)
R = {r }

`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)
N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)
`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

1 htruei N(x = 0 | x = 1); hG = 0,G = 1i
2 (assert(x==0) + assert(x==1))

3 hfaili

Fig. 4. Demonic choice.

(SHARE)
`0 h) iNh* i `0 hRisketch[N/h) ih* i]hSi

`0 hRisketchhSi

Fig. 5. Subproof sharing.

To lift the semantics from programs to sketches, we let the function drv determine all programs
(without non-terminals) that can be derived from a sketch by rewriting the non-terminals. For
example, with N ::= com1 | com2 we have drv(N; com) = {com1; com, com2; com}. Formally, we see the
sketch as a sentential form in a context-free grammar and take the language.

3.2 Realizability Logic
Realizability logic reasons over correctness speci�cation of the form hRisketchhSi. Here, R, S are
so-called selections from the set Selections = P�n (Predicates). A selection is a �nite set of predicates
as we have de�ned them above. The idea is this. When we encounter a non-terminal in a sketch,
we do not yet determine how to resolve it to a program with the function drv. Instead, we collect
in a selection the predicates that these programs may justify as a postcondition. Since also the
precondition is a selection, we can not only choose the program but also the precondition to justify
the postcondition. We thus de�ne validity of realizability triples via validity in Hoare logic:

|=0 hRisketchhSi , 8s 2 S. 9r 2 R. 9prog 2 drv(sketch). |=3 {r}prog{s} .

To derive valid realizability triples, we use the proof rules in Figure 3. We write `0 hRisketchhSi
if the realizability triple can be derived with the help of these rules. Rule (COM) checks whether
the e�ect of a command com on a predicate r is captured by s. The rule allows us to derive the
realizability triple h{r}icomh{s}i in which the selections are singleton sets. The rule plays together
with (GATHER): if we can also derive h{r0}icomh{s0}i for another pre- and postcondition, then we
can join the selections and obtain h{r, r0}icomh{s, s0}i. Rule (GATHER) is also important to join the
pre- and postconditions for the various programs that can be derived from a non-terminal. To
obtain a realizability triple hRiNhSi, Rule (ANG) unwinds the non-terminal to a sketch sketch that
is given by a production and then proves hRisketchhSi. Note that the sketch may again contain N,
and may contain more than one occurrence. We explain at the end of the section how to avoid the
repetition of proof trees and handle non-terminals in an e�cient way.
Rule (DEM) looks like the standard rule for choice operators in Hoare logic. In realizability

logic, the precondition has to be a singleton selection, and the rule is unsound without this side

7

⟨x = 1⟩

Realization Logic

￼24

N;

N;

x++;

⟨x = 1, x = − 1⟩

⟨x = 0⟩

⟨x = 2, x = 0, x = − 2⟩

⟨x = 1⟩

N ::= x++ | x--

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Realizability in Semantics-Guided Synthesis Done Eagerly

1 htruei
2 M(htrueix = 0hx = 0i |
3 htrueix = 1hx = 1i);
4 hx = 0, x = 1i
5 N(hx = 0, x = 1iy = 0hx = 0 ^ y = 0, x = 1 ^ y = 0i |
6 hx = 0, x = 1iy = 1hx = 0 ^ y = 1, x = 1 ^ y = 1i);
7 hG = 0 ^ y = 0, . . . , x = 1 ^ y = 1i
8 assert(x = 1 ^ y = 1)
9 hx = 1 ^ y = 1, faili

Fig. 1. Proof outline in realizability logic.

1 htruei
2 M(htrueix = 0hx = 0i |
3 htrueix = 1hx = 1i);
4 hx = 1i
5 N(hx = 0, x = 1iy = 0hx = 1 ^ y = 1i |
6 hx = 1iy = 1hx = 1 ^ y = 1i);
7 hx = 1 ^ y = 1i
8 assert(x = 1 ^ y = 1)
9 hx = 1 ^ y = 1i

Fig. 2. Proof outline derived from Figure 1.

from N. This yields four synthesis alternatives, namely x=0 ^ y=0 to x=1 ^ y=1. Only the last of
these alternatives passes the assertion, the others lead to a failure of the execution.
A �rst point of criticism one may have about realizability logic is that the alternation between

angelic and demonic choice will explode too quickly. In the end, all we have done is to replace the
choice of a program by a powerset construction over predicates, a technique pioneered in automata
theory [36]. This merely translates a complex search into complex assertions. We argue that, for
SemGuS where validity checks are expensive, the assertions may be the right place to keep the
complexity. Formal methods has developed expressive logical languages and abstract domains that
can denote complex sets of states with very concise assertions. In our experiments, we have worked
with Cartesian abstraction [8, Chapter 9].

A more severe point of criticism is that our realizability triples hRiPhSi drop the relationship
between the single programs prog 2 P and the pre- and postconditions r 2 R and s 2 S that this
program can achieve. Hence, when we have given a proof in realizability logic, like the one in
Figure 1, all we know is that the program sketch M; N; assert(x = 1 ^ y = 1) can be completed to a
program that passes the assertion, but we do not know the program. What we have, however, is a
proof outline in realizability logic that annotates the program with intermediary assertions. The
idea is to use this proof outline as guidance of how to instantiate the non-terminals.
Our second contribution is realization logic, a program logic to derive rewriting steps po p⇠ po

0

between proof outlines in realizability logic. The guarantee given by realization logic is that valid
proof outlines are rewritten to valid proof outlines. The rewriting process will not only eliminate
alternatives from the de�nition of non-terminals until a program that satis�es the speci�cation
has been found. An equally important step is to eliminate predicates that will not be helpful to
satisfy the desired postcondition, or may even fail in the future. The elimination of predicates is
done backwards, starting from the postcondition, and we illustrate it on our example:

hx = 0 ^ y = 0, . . . , x = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1, faili (1)
p⇠hx = 0 ^ y = 0, . . . , x = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1i (2)
p⇠hx = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1i .

hG = 1, G = 2ix++;hG = 2, G = 3i p⇠ hG = 1, G = 2ix++;hG = 2i
hG = 1, G = 2ix++;hG = 2i p⇠ hG = 1ix++;hG = 2i

hG = 0ix = 1; x = 2;hG = 1i p⇠ hG = 0ix = 1hG = 1i
The �rst step drops the alternative fail. As there are less synthesis options to choose from, this
weakens the postcondition and the step is thus sound by the standard rule of consequence in Hoare
logic. The second step propagates this elimination backwards by weakening the precondition, which

3

⟨x = 2, x = 0, x = − 2⟩
x++;

⟨x = 0⟩
x++;

⟨x = 1⟩

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Realizability in Semantics-Guided Synthesis Done Eagerly

(COM)
»com…(r) �3 s

`0 h{r }icomh{s}i

(SEQ)
`0 hRisketch1hSi
`0 hSisketch2hT i

`0 hRisketch1; sketch2hT i

(LOOP)
R = {r }

`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)
R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)
R = {r }

`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)
N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)
`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

1 htruei N(x = 0 | x = 1); hG = 0,G = 1i
2 (assert(x==0) + assert(x==1))

3 hfaili

Fig. 4. Demonic choice.

(SHARE)
`0 h) iNh* i `0 hRisketch[N/h) ih* i]hSi

`0 hRisketchhSi

Fig. 5. Subproof sharing.

To lift the semantics from programs to sketches, we let the function drv determine all programs
(without non-terminals) that can be derived from a sketch by rewriting the non-terminals. For
example, with N ::= com1 | com2 we have drv(N; com) = {com1; com, com2; com}. Formally, we see the
sketch as a sentential form in a context-free grammar and take the language.

3.2 Realizability Logic
Realizability logic reasons over correctness speci�cation of the form hRisketchhSi. Here, R, S are
so-called selections from the set Selections = P�n (Predicates). A selection is a �nite set of predicates
as we have de�ned them above. The idea is this. When we encounter a non-terminal in a sketch,
we do not yet determine how to resolve it to a program with the function drv. Instead, we collect
in a selection the predicates that these programs may justify as a postcondition. Since also the
precondition is a selection, we can not only choose the program but also the precondition to justify
the postcondition. We thus de�ne validity of realizability triples via validity in Hoare logic:

|=0 hRisketchhSi , 8s 2 S. 9r 2 R. 9prog 2 drv(sketch). |=3 {r}prog{s} .

To derive valid realizability triples, we use the proof rules in Figure 3. We write `0 hRisketchhSi
if the realizability triple can be derived with the help of these rules. Rule (COM) checks whether
the e�ect of a command com on a predicate r is captured by s. The rule allows us to derive the
realizability triple h{r}icomh{s}i in which the selections are singleton sets. The rule plays together
with (GATHER): if we can also derive h{r0}icomh{s0}i for another pre- and postcondition, then we
can join the selections and obtain h{r, r0}icomh{s, s0}i. Rule (GATHER) is also important to join the
pre- and postconditions for the various programs that can be derived from a non-terminal. To
obtain a realizability triple hRiNhSi, Rule (ANG) unwinds the non-terminal to a sketch sketch that
is given by a production and then proves hRisketchhSi. Note that the sketch may again contain N,
and may contain more than one occurrence. We explain at the end of the section how to avoid the
repetition of proof trees and handle non-terminals in an e�cient way.
Rule (DEM) looks like the standard rule for choice operators in Hoare logic. In realizability

logic, the precondition has to be a singleton selection, and the rule is unsound without this side

7

⟨x = 1⟩

Realization Logic

￼25

N;

N;

x++;

⟨x = 1, x = − 1⟩

⟨x = 0⟩

⟨x = 0⟩

⟨x = 1⟩

N ::= x++ | x--

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Realizability in Semantics-Guided Synthesis Done Eagerly

1 htruei
2 M(htrueix = 0hx = 0i |
3 htrueix = 1hx = 1i);
4 hx = 0, x = 1i
5 N(hx = 0, x = 1iy = 0hx = 0 ^ y = 0, x = 1 ^ y = 0i |
6 hx = 0, x = 1iy = 1hx = 0 ^ y = 1, x = 1 ^ y = 1i);
7 hG = 0 ^ y = 0, . . . , x = 1 ^ y = 1i
8 assert(x = 1 ^ y = 1)
9 hx = 1 ^ y = 1, faili

Fig. 1. Proof outline in realizability logic.

1 htruei
2 M(htrueix = 0hx = 0i |
3 htrueix = 1hx = 1i);
4 hx = 1i
5 N(hx = 0, x = 1iy = 0hx = 1 ^ y = 1i |
6 hx = 1iy = 1hx = 1 ^ y = 1i);
7 hx = 1 ^ y = 1i
8 assert(x = 1 ^ y = 1)
9 hx = 1 ^ y = 1i

Fig. 2. Proof outline derived from Figure 1.

from N. This yields four synthesis alternatives, namely x=0 ^ y=0 to x=1 ^ y=1. Only the last of
these alternatives passes the assertion, the others lead to a failure of the execution.
A �rst point of criticism one may have about realizability logic is that the alternation between

angelic and demonic choice will explode too quickly. In the end, all we have done is to replace the
choice of a program by a powerset construction over predicates, a technique pioneered in automata
theory [36]. This merely translates a complex search into complex assertions. We argue that, for
SemGuS where validity checks are expensive, the assertions may be the right place to keep the
complexity. Formal methods has developed expressive logical languages and abstract domains that
can denote complex sets of states with very concise assertions. In our experiments, we have worked
with Cartesian abstraction [8, Chapter 9].

A more severe point of criticism is that our realizability triples hRiPhSi drop the relationship
between the single programs prog 2 P and the pre- and postconditions r 2 R and s 2 S that this
program can achieve. Hence, when we have given a proof in realizability logic, like the one in
Figure 1, all we know is that the program sketch M; N; assert(x = 1 ^ y = 1) can be completed to a
program that passes the assertion, but we do not know the program. What we have, however, is a
proof outline in realizability logic that annotates the program with intermediary assertions. The
idea is to use this proof outline as guidance of how to instantiate the non-terminals.
Our second contribution is realization logic, a program logic to derive rewriting steps po p⇠ po

0

between proof outlines in realizability logic. The guarantee given by realization logic is that valid
proof outlines are rewritten to valid proof outlines. The rewriting process will not only eliminate
alternatives from the de�nition of non-terminals until a program that satis�es the speci�cation
has been found. An equally important step is to eliminate predicates that will not be helpful to
satisfy the desired postcondition, or may even fail in the future. The elimination of predicates is
done backwards, starting from the postcondition, and we illustrate it on our example:

hx = 0 ^ y = 0, . . . , x = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1, faili (1)
p⇠hx = 0 ^ y = 0, . . . , x = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1i (2)
p⇠hx = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1i .

hG = 1, G = 2ix++;hG = 2, G = 3i p⇠ hG = 1, G = 2ix++;hG = 2i
hG = 1, G = 2ix++;hG = 2i p⇠ hG = 1ix++;hG = 2i

hG = 0ix = 1; x = 2;hG = 1i p⇠ hG = 0ix = 1hG = 1i
The �rst step drops the alternative fail. As there are less synthesis options to choose from, this
weakens the postcondition and the step is thus sound by the standard rule of consequence in Hoare
logic. The second step propagates this elimination backwards by weakening the precondition, which

3

⟨x = 2, x = 0, x = − 2⟩
x++;

⟨x = 0⟩
x++;

⟨x = 1⟩

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Realizability in Semantics-Guided Synthesis Done Eagerly

(COM)
»com…(r) �3 s

`0 h{r }icomh{s}i

(SEQ)
`0 hRisketch1hSi
`0 hSisketch2hT i

`0 hRisketch1; sketch2hT i

(LOOP)
R = {r }

`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)
R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)
R = {r }

`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)
N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)
`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

1 htruei N(x = 0 | x = 1); hG = 0,G = 1i
2 (assert(x==0) + assert(x==1))

3 hfaili

Fig. 4. Demonic choice.

(SHARE)
`0 h) iNh* i `0 hRisketch[N/h) ih* i]hSi

`0 hRisketchhSi

Fig. 5. Subproof sharing.

To lift the semantics from programs to sketches, we let the function drv determine all programs
(without non-terminals) that can be derived from a sketch by rewriting the non-terminals. For
example, with N ::= com1 | com2 we have drv(N; com) = {com1; com, com2; com}. Formally, we see the
sketch as a sentential form in a context-free grammar and take the language.

3.2 Realizability Logic
Realizability logic reasons over correctness speci�cation of the form hRisketchhSi. Here, R, S are
so-called selections from the set Selections = P�n (Predicates). A selection is a �nite set of predicates
as we have de�ned them above. The idea is this. When we encounter a non-terminal in a sketch,
we do not yet determine how to resolve it to a program with the function drv. Instead, we collect
in a selection the predicates that these programs may justify as a postcondition. Since also the
precondition is a selection, we can not only choose the program but also the precondition to justify
the postcondition. We thus de�ne validity of realizability triples via validity in Hoare logic:

|=0 hRisketchhSi , 8s 2 S. 9r 2 R. 9prog 2 drv(sketch). |=3 {r}prog{s} .

To derive valid realizability triples, we use the proof rules in Figure 3. We write `0 hRisketchhSi
if the realizability triple can be derived with the help of these rules. Rule (COM) checks whether
the e�ect of a command com on a predicate r is captured by s. The rule allows us to derive the
realizability triple h{r}icomh{s}i in which the selections are singleton sets. The rule plays together
with (GATHER): if we can also derive h{r0}icomh{s0}i for another pre- and postcondition, then we
can join the selections and obtain h{r, r0}icomh{s, s0}i. Rule (GATHER) is also important to join the
pre- and postconditions for the various programs that can be derived from a non-terminal. To
obtain a realizability triple hRiNhSi, Rule (ANG) unwinds the non-terminal to a sketch sketch that
is given by a production and then proves hRisketchhSi. Note that the sketch may again contain N,
and may contain more than one occurrence. We explain at the end of the section how to avoid the
repetition of proof trees and handle non-terminals in an e�cient way.
Rule (DEM) looks like the standard rule for choice operators in Hoare logic. In realizability

logic, the precondition has to be a singleton selection, and the rule is unsound without this side

7

⟨x = 1⟩

Realization Logic

￼26

N;

N;

x++;

⟨x = 1, x = − 1⟩

⟨x = 0⟩

⟨x = 0⟩

⟨x = 1⟩

N ::= x++ | x--

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Realizability in Semantics-Guided Synthesis Done Eagerly

(COM)
»com…(r) �3 s

`0 h{r }icomh{s}i

(SEQ)
`0 hRisketch1hSi
`0 hSisketch2hT i

`0 hRisketch1; sketch2hT i

(LOOP)
R = {r }

`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)
R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)
R = {r }

`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)
N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)
`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

1 htruei N(x = 0 | x = 1); hG = 0,G = 1i
2 (assert(x==0) + assert(x==1))

3 hfaili

Fig. 4. Demonic choice.

(SHARE)
`0 h) iNh* i `0 hRisketch[N/h) ih* i]hSi

`0 hRisketchhSi

Fig. 5. Subproof sharing.

To lift the semantics from programs to sketches, we let the function drv determine all programs
(without non-terminals) that can be derived from a sketch by rewriting the non-terminals. For
example, with N ::= com1 | com2 we have drv(N; com) = {com1; com, com2; com}. Formally, we see the
sketch as a sentential form in a context-free grammar and take the language.

3.2 Realizability Logic
Realizability logic reasons over correctness speci�cation of the form hRisketchhSi. Here, R, S are
so-called selections from the set Selections = P�n (Predicates). A selection is a �nite set of predicates
as we have de�ned them above. The idea is this. When we encounter a non-terminal in a sketch,
we do not yet determine how to resolve it to a program with the function drv. Instead, we collect
in a selection the predicates that these programs may justify as a postcondition. Since also the
precondition is a selection, we can not only choose the program but also the precondition to justify
the postcondition. We thus de�ne validity of realizability triples via validity in Hoare logic:

|=0 hRisketchhSi , 8s 2 S. 9r 2 R. 9prog 2 drv(sketch). |=3 {r}prog{s} .

To derive valid realizability triples, we use the proof rules in Figure 3. We write `0 hRisketchhSi
if the realizability triple can be derived with the help of these rules. Rule (COM) checks whether
the e�ect of a command com on a predicate r is captured by s. The rule allows us to derive the
realizability triple h{r}icomh{s}i in which the selections are singleton sets. The rule plays together
with (GATHER): if we can also derive h{r0}icomh{s0}i for another pre- and postcondition, then we
can join the selections and obtain h{r, r0}icomh{s, s0}i. Rule (GATHER) is also important to join the
pre- and postconditions for the various programs that can be derived from a non-terminal. To
obtain a realizability triple hRiNhSi, Rule (ANG) unwinds the non-terminal to a sketch sketch that
is given by a production and then proves hRisketchhSi. Note that the sketch may again contain N,
and may contain more than one occurrence. We explain at the end of the section how to avoid the
repetition of proof trees and handle non-terminals in an e�cient way.
Rule (DEM) looks like the standard rule for choice operators in Hoare logic. In realizability

logic, the precondition has to be a singleton selection, and the rule is unsound without this side

7

Realization Logic

￼26

N;

N;

x++;

⟨x = 1, x = − 1⟩

⟨x = 0⟩

⟨x = 0⟩

⟨x = 1⟩

N ::= x++ | x--

⟨x = 1, x = − 1⟩
N;

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Realizability in Semantics-Guided Synthesis Done Eagerly

(COM)
»com…(r) �3 s

`0 h{r }icomh{s}i

(SEQ)
`0 hRisketch1hSi
`0 hSisketch2hT i

`0 hRisketch1; sketch2hT i

(LOOP)
R = {r }

`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)
R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)
R = {r }

`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)
N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)
`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

1 htruei N(x = 0 | x = 1); hG = 0,G = 1i
2 (assert(x==0) + assert(x==1))

3 hfaili

Fig. 4. Demonic choice.

(SHARE)
`0 h) iNh* i `0 hRisketch[N/h) ih* i]hSi

`0 hRisketchhSi

Fig. 5. Subproof sharing.

To lift the semantics from programs to sketches, we let the function drv determine all programs
(without non-terminals) that can be derived from a sketch by rewriting the non-terminals. For
example, with N ::= com1 | com2 we have drv(N; com) = {com1; com, com2; com}. Formally, we see the
sketch as a sentential form in a context-free grammar and take the language.

3.2 Realizability Logic
Realizability logic reasons over correctness speci�cation of the form hRisketchhSi. Here, R, S are
so-called selections from the set Selections = P�n (Predicates). A selection is a �nite set of predicates
as we have de�ned them above. The idea is this. When we encounter a non-terminal in a sketch,
we do not yet determine how to resolve it to a program with the function drv. Instead, we collect
in a selection the predicates that these programs may justify as a postcondition. Since also the
precondition is a selection, we can not only choose the program but also the precondition to justify
the postcondition. We thus de�ne validity of realizability triples via validity in Hoare logic:

|=0 hRisketchhSi , 8s 2 S. 9r 2 R. 9prog 2 drv(sketch). |=3 {r}prog{s} .

To derive valid realizability triples, we use the proof rules in Figure 3. We write `0 hRisketchhSi
if the realizability triple can be derived with the help of these rules. Rule (COM) checks whether
the e�ect of a command com on a predicate r is captured by s. The rule allows us to derive the
realizability triple h{r}icomh{s}i in which the selections are singleton sets. The rule plays together
with (GATHER): if we can also derive h{r0}icomh{s0}i for another pre- and postcondition, then we
can join the selections and obtain h{r, r0}icomh{s, s0}i. Rule (GATHER) is also important to join the
pre- and postconditions for the various programs that can be derived from a non-terminal. To
obtain a realizability triple hRiNhSi, Rule (ANG) unwinds the non-terminal to a sketch sketch that
is given by a production and then proves hRisketchhSi. Note that the sketch may again contain N,
and may contain more than one occurrence. We explain at the end of the section how to avoid the
repetition of proof trees and handle non-terminals in an e�cient way.
Rule (DEM) looks like the standard rule for choice operators in Hoare logic. In realizability

logic, the precondition has to be a singleton selection, and the rule is unsound without this side

7

⟨x = 0⟩

Realization Logic

￼26

N;

N;

x++;

⟨x = 1, x = − 1⟩

⟨x = 0⟩

⟨x = 0⟩

⟨x = 1⟩

N ::= x++ | x--

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Realizability in Semantics-Guided Synthesis Done Eagerly

1 htruei
2 M(htrueix = 0hx = 0i |
3 htrueix = 1hx = 1i);
4 hx = 0, x = 1i
5 N(hx = 0, x = 1iy = 0hx = 0 ^ y = 0, x = 1 ^ y = 0i |
6 hx = 0, x = 1iy = 1hx = 0 ^ y = 1, x = 1 ^ y = 1i);
7 hG = 0 ^ y = 0, . . . , x = 1 ^ y = 1i
8 assert(x = 1 ^ y = 1)
9 hx = 1 ^ y = 1, faili

Fig. 1. Proof outline in realizability logic.

1 htruei
2 M(htrueix = 0hx = 0i |
3 htrueix = 1hx = 1i);
4 hx = 1i
5 N(hx = 0, x = 1iy = 0hx = 1 ^ y = 1i |
6 hx = 1iy = 1hx = 1 ^ y = 1i);
7 hx = 1 ^ y = 1i
8 assert(x = 1 ^ y = 1)
9 hx = 1 ^ y = 1i

Fig. 2. Proof outline derived from Figure 1.

from N. This yields four synthesis alternatives, namely x=0 ^ y=0 to x=1 ^ y=1. Only the last of
these alternatives passes the assertion, the others lead to a failure of the execution.
A �rst point of criticism one may have about realizability logic is that the alternation between

angelic and demonic choice will explode too quickly. In the end, all we have done is to replace the
choice of a program by a powerset construction over predicates, a technique pioneered in automata
theory [36]. This merely translates a complex search into complex assertions. We argue that, for
SemGuS where validity checks are expensive, the assertions may be the right place to keep the
complexity. Formal methods has developed expressive logical languages and abstract domains that
can denote complex sets of states with very concise assertions. In our experiments, we have worked
with Cartesian abstraction [8, Chapter 9].

A more severe point of criticism is that our realizability triples hRiPhSi drop the relationship
between the single programs prog 2 P and the pre- and postconditions r 2 R and s 2 S that this
program can achieve. Hence, when we have given a proof in realizability logic, like the one in
Figure 1, all we know is that the program sketch M; N; assert(x = 1 ^ y = 1) can be completed to a
program that passes the assertion, but we do not know the program. What we have, however, is a
proof outline in realizability logic that annotates the program with intermediary assertions. The
idea is to use this proof outline as guidance of how to instantiate the non-terminals.
Our second contribution is realization logic, a program logic to derive rewriting steps po p⇠ po

0

between proof outlines in realizability logic. The guarantee given by realization logic is that valid
proof outlines are rewritten to valid proof outlines. The rewriting process will not only eliminate
alternatives from the de�nition of non-terminals until a program that satis�es the speci�cation
has been found. An equally important step is to eliminate predicates that will not be helpful to
satisfy the desired postcondition, or may even fail in the future. The elimination of predicates is
done backwards, starting from the postcondition, and we illustrate it on our example:

hx = 0 ^ y = 0, . . . , x = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1, faili (1)
p⇠hx = 0 ^ y = 0, . . . , x = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1i (2)
p⇠hx = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1i .

hG = 1, G = 2ix++;hG = 2, G = 3i p⇠ hG = 1, G = 2ix++;hG = 2i
hG = 1, G = 2ix++;hG = 2i p⇠ hG = 1ix++;hG = 2i

hG = 0ix = 1; x = 2;hG = 1i p⇠ hG = 0ix = 1hG = 1i
The �rst step drops the alternative fail. As there are less synthesis options to choose from, this
weakens the postcondition and the step is thus sound by the standard rule of consequence in Hoare
logic. The second step propagates this elimination backwards by weakening the precondition, which

3

⟨x = 1, x = − 1⟩
N;

⟨x = 1, x = − 1⟩
x++;

⟨x = 0⟩

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Realizability in Semantics-Guided Synthesis Done Eagerly

(COM)
»com…(r) �3 s

`0 h{r }icomh{s}i

(SEQ)
`0 hRisketch1hSi
`0 hSisketch2hT i

`0 hRisketch1; sketch2hT i

(LOOP)
R = {r }

`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)
R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)
R = {r }

`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)
N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)
`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

1 htruei N(x = 0 | x = 1); hG = 0,G = 1i
2 (assert(x==0) + assert(x==1))

3 hfaili

Fig. 4. Demonic choice.

(SHARE)
`0 h) iNh* i `0 hRisketch[N/h) ih* i]hSi

`0 hRisketchhSi

Fig. 5. Subproof sharing.

To lift the semantics from programs to sketches, we let the function drv determine all programs
(without non-terminals) that can be derived from a sketch by rewriting the non-terminals. For
example, with N ::= com1 | com2 we have drv(N; com) = {com1; com, com2; com}. Formally, we see the
sketch as a sentential form in a context-free grammar and take the language.

3.2 Realizability Logic
Realizability logic reasons over correctness speci�cation of the form hRisketchhSi. Here, R, S are
so-called selections from the set Selections = P�n (Predicates). A selection is a �nite set of predicates
as we have de�ned them above. The idea is this. When we encounter a non-terminal in a sketch,
we do not yet determine how to resolve it to a program with the function drv. Instead, we collect
in a selection the predicates that these programs may justify as a postcondition. Since also the
precondition is a selection, we can not only choose the program but also the precondition to justify
the postcondition. We thus de�ne validity of realizability triples via validity in Hoare logic:

|=0 hRisketchhSi , 8s 2 S. 9r 2 R. 9prog 2 drv(sketch). |=3 {r}prog{s} .

To derive valid realizability triples, we use the proof rules in Figure 3. We write `0 hRisketchhSi
if the realizability triple can be derived with the help of these rules. Rule (COM) checks whether
the e�ect of a command com on a predicate r is captured by s. The rule allows us to derive the
realizability triple h{r}icomh{s}i in which the selections are singleton sets. The rule plays together
with (GATHER): if we can also derive h{r0}icomh{s0}i for another pre- and postcondition, then we
can join the selections and obtain h{r, r0}icomh{s, s0}i. Rule (GATHER) is also important to join the
pre- and postconditions for the various programs that can be derived from a non-terminal. To
obtain a realizability triple hRiNhSi, Rule (ANG) unwinds the non-terminal to a sketch sketch that
is given by a production and then proves hRisketchhSi. Note that the sketch may again contain N,
and may contain more than one occurrence. We explain at the end of the section how to avoid the
repetition of proof trees and handle non-terminals in an e�cient way.
Rule (DEM) looks like the standard rule for choice operators in Hoare logic. In realizability

logic, the precondition has to be a singleton selection, and the rule is unsound without this side

7

⟨x = 0⟩

Realization Logic

￼27

N;

x++;

x++;

⟨x = 1, x = − 1⟩

⟨x = 0⟩

⟨x = 0⟩

⟨x = 1⟩

N ::= x++ | x--

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Realizability in Semantics-Guided Synthesis Done Eagerly

(COM)
»com…(r) �3 s

`0 h{r }icomh{s}i

(SEQ)
`0 hRisketch1hSi
`0 hSisketch2hT i

`0 hRisketch1; sketch2hT i

(LOOP)
R = {r }

`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)
R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)
R = {r }

`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)
N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)
`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

1 htruei N(x = 0 | x = 1); hG = 0,G = 1i
2 (assert(x==0) + assert(x==1))

3 hfaili

Fig. 4. Demonic choice.

(SHARE)
`0 h) iNh* i `0 hRisketch[N/h) ih* i]hSi

`0 hRisketchhSi

Fig. 5. Subproof sharing.

To lift the semantics from programs to sketches, we let the function drv determine all programs
(without non-terminals) that can be derived from a sketch by rewriting the non-terminals. For
example, with N ::= com1 | com2 we have drv(N; com) = {com1; com, com2; com}. Formally, we see the
sketch as a sentential form in a context-free grammar and take the language.

3.2 Realizability Logic
Realizability logic reasons over correctness speci�cation of the form hRisketchhSi. Here, R, S are
so-called selections from the set Selections = P�n (Predicates). A selection is a �nite set of predicates
as we have de�ned them above. The idea is this. When we encounter a non-terminal in a sketch,
we do not yet determine how to resolve it to a program with the function drv. Instead, we collect
in a selection the predicates that these programs may justify as a postcondition. Since also the
precondition is a selection, we can not only choose the program but also the precondition to justify
the postcondition. We thus de�ne validity of realizability triples via validity in Hoare logic:

|=0 hRisketchhSi , 8s 2 S. 9r 2 R. 9prog 2 drv(sketch). |=3 {r}prog{s} .

To derive valid realizability triples, we use the proof rules in Figure 3. We write `0 hRisketchhSi
if the realizability triple can be derived with the help of these rules. Rule (COM) checks whether
the e�ect of a command com on a predicate r is captured by s. The rule allows us to derive the
realizability triple h{r}icomh{s}i in which the selections are singleton sets. The rule plays together
with (GATHER): if we can also derive h{r0}icomh{s0}i for another pre- and postcondition, then we
can join the selections and obtain h{r, r0}icomh{s, s0}i. Rule (GATHER) is also important to join the
pre- and postconditions for the various programs that can be derived from a non-terminal. To
obtain a realizability triple hRiNhSi, Rule (ANG) unwinds the non-terminal to a sketch sketch that
is given by a production and then proves hRisketchhSi. Note that the sketch may again contain N,
and may contain more than one occurrence. We explain at the end of the section how to avoid the
repetition of proof trees and handle non-terminals in an e�cient way.
Rule (DEM) looks like the standard rule for choice operators in Hoare logic. In realizability

logic, the precondition has to be a singleton selection, and the rule is unsound without this side

7

Realization Logic

￼27

N;

x++;

x++;

⟨x = 1, x = − 1⟩

⟨x = 0⟩

⟨x = 0⟩

⟨x = 1⟩

N ::= x++ | x--

⟨x = 1, x = − 1⟩
x++;

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Realizability in Semantics-Guided Synthesis Done Eagerly

(COM)
»com…(r) �3 s

`0 h{r }icomh{s}i

(SEQ)
`0 hRisketch1hSi
`0 hSisketch2hT i

`0 hRisketch1; sketch2hT i

(LOOP)
R = {r }

`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)
R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)
R = {r }

`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)
N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)
`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

1 htruei N(x = 0 | x = 1); hG = 0,G = 1i
2 (assert(x==0) + assert(x==1))

3 hfaili

Fig. 4. Demonic choice.

(SHARE)
`0 h) iNh* i `0 hRisketch[N/h) ih* i]hSi

`0 hRisketchhSi

Fig. 5. Subproof sharing.

To lift the semantics from programs to sketches, we let the function drv determine all programs
(without non-terminals) that can be derived from a sketch by rewriting the non-terminals. For
example, with N ::= com1 | com2 we have drv(N; com) = {com1; com, com2; com}. Formally, we see the
sketch as a sentential form in a context-free grammar and take the language.

3.2 Realizability Logic
Realizability logic reasons over correctness speci�cation of the form hRisketchhSi. Here, R, S are
so-called selections from the set Selections = P�n (Predicates). A selection is a �nite set of predicates
as we have de�ned them above. The idea is this. When we encounter a non-terminal in a sketch,
we do not yet determine how to resolve it to a program with the function drv. Instead, we collect
in a selection the predicates that these programs may justify as a postcondition. Since also the
precondition is a selection, we can not only choose the program but also the precondition to justify
the postcondition. We thus de�ne validity of realizability triples via validity in Hoare logic:

|=0 hRisketchhSi , 8s 2 S. 9r 2 R. 9prog 2 drv(sketch). |=3 {r}prog{s} .

To derive valid realizability triples, we use the proof rules in Figure 3. We write `0 hRisketchhSi
if the realizability triple can be derived with the help of these rules. Rule (COM) checks whether
the e�ect of a command com on a predicate r is captured by s. The rule allows us to derive the
realizability triple h{r}icomh{s}i in which the selections are singleton sets. The rule plays together
with (GATHER): if we can also derive h{r0}icomh{s0}i for another pre- and postcondition, then we
can join the selections and obtain h{r, r0}icomh{s, s0}i. Rule (GATHER) is also important to join the
pre- and postconditions for the various programs that can be derived from a non-terminal. To
obtain a realizability triple hRiNhSi, Rule (ANG) unwinds the non-terminal to a sketch sketch that
is given by a production and then proves hRisketchhSi. Note that the sketch may again contain N,
and may contain more than one occurrence. We explain at the end of the section how to avoid the
repetition of proof trees and handle non-terminals in an e�cient way.
Rule (DEM) looks like the standard rule for choice operators in Hoare logic. In realizability

logic, the precondition has to be a singleton selection, and the rule is unsound without this side

7

⟨x = 0⟩

Realization Logic

￼27

N;

x++;

x++;

⟨x = 1, x = − 1⟩

⟨x = 0⟩

⟨x = 0⟩

⟨x = 1⟩

N ::= x++ | x--

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Realizability in Semantics-Guided Synthesis Done Eagerly

1 htruei
2 M(htrueix = 0hx = 0i |
3 htrueix = 1hx = 1i);
4 hx = 0, x = 1i
5 N(hx = 0, x = 1iy = 0hx = 0 ^ y = 0, x = 1 ^ y = 0i |
6 hx = 0, x = 1iy = 1hx = 0 ^ y = 1, x = 1 ^ y = 1i);
7 hG = 0 ^ y = 0, . . . , x = 1 ^ y = 1i
8 assert(x = 1 ^ y = 1)
9 hx = 1 ^ y = 1, faili

Fig. 1. Proof outline in realizability logic.

1 htruei
2 M(htrueix = 0hx = 0i |
3 htrueix = 1hx = 1i);
4 hx = 1i
5 N(hx = 0, x = 1iy = 0hx = 1 ^ y = 1i |
6 hx = 1iy = 1hx = 1 ^ y = 1i);
7 hx = 1 ^ y = 1i
8 assert(x = 1 ^ y = 1)
9 hx = 1 ^ y = 1i

Fig. 2. Proof outline derived from Figure 1.

from N. This yields four synthesis alternatives, namely x=0 ^ y=0 to x=1 ^ y=1. Only the last of
these alternatives passes the assertion, the others lead to a failure of the execution.
A �rst point of criticism one may have about realizability logic is that the alternation between

angelic and demonic choice will explode too quickly. In the end, all we have done is to replace the
choice of a program by a powerset construction over predicates, a technique pioneered in automata
theory [36]. This merely translates a complex search into complex assertions. We argue that, for
SemGuS where validity checks are expensive, the assertions may be the right place to keep the
complexity. Formal methods has developed expressive logical languages and abstract domains that
can denote complex sets of states with very concise assertions. In our experiments, we have worked
with Cartesian abstraction [8, Chapter 9].

A more severe point of criticism is that our realizability triples hRiPhSi drop the relationship
between the single programs prog 2 P and the pre- and postconditions r 2 R and s 2 S that this
program can achieve. Hence, when we have given a proof in realizability logic, like the one in
Figure 1, all we know is that the program sketch M; N; assert(x = 1 ^ y = 1) can be completed to a
program that passes the assertion, but we do not know the program. What we have, however, is a
proof outline in realizability logic that annotates the program with intermediary assertions. The
idea is to use this proof outline as guidance of how to instantiate the non-terminals.
Our second contribution is realization logic, a program logic to derive rewriting steps po p⇠ po

0

between proof outlines in realizability logic. The guarantee given by realization logic is that valid
proof outlines are rewritten to valid proof outlines. The rewriting process will not only eliminate
alternatives from the de�nition of non-terminals until a program that satis�es the speci�cation
has been found. An equally important step is to eliminate predicates that will not be helpful to
satisfy the desired postcondition, or may even fail in the future. The elimination of predicates is
done backwards, starting from the postcondition, and we illustrate it on our example:

hx = 0 ^ y = 0, . . . , x = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1, faili (1)
p⇠hx = 0 ^ y = 0, . . . , x = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1i (2)
p⇠hx = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1i .

hG = 1, G = 2ix++;hG = 2, G = 3i p⇠ hG = 1, G = 2ix++;hG = 2i
hG = 1, G = 2ix++;hG = 2i p⇠ hG = 1ix++;hG = 2i

hG = 0ix = 1; x = 2;hG = 1i p⇠ hG = 0ix = 1hG = 1i
The �rst step drops the alternative fail. As there are less synthesis options to choose from, this
weakens the postcondition and the step is thus sound by the standard rule of consequence in Hoare
logic. The second step propagates this elimination backwards by weakening the precondition, which

3

⟨x = 1, x = − 1⟩
x++;

⟨x = − 1⟩
x++;

⟨x = 0⟩

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Realizability in Semantics-Guided Synthesis Done Eagerly

(COM)
»com…(r) �3 s

`0 h{r }icomh{s}i

(SEQ)
`0 hRisketch1hSi
`0 hSisketch2hT i

`0 hRisketch1; sketch2hT i

(LOOP)
R = {r }

`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)
R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)
R = {r }

`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)
N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)
`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

1 htruei N(x = 0 | x = 1); hG = 0,G = 1i
2 (assert(x==0) + assert(x==1))

3 hfaili

Fig. 4. Demonic choice.

(SHARE)
`0 h) iNh* i `0 hRisketch[N/h) ih* i]hSi

`0 hRisketchhSi

Fig. 5. Subproof sharing.

To lift the semantics from programs to sketches, we let the function drv determine all programs
(without non-terminals) that can be derived from a sketch by rewriting the non-terminals. For
example, with N ::= com1 | com2 we have drv(N; com) = {com1; com, com2; com}. Formally, we see the
sketch as a sentential form in a context-free grammar and take the language.

3.2 Realizability Logic
Realizability logic reasons over correctness speci�cation of the form hRisketchhSi. Here, R, S are
so-called selections from the set Selections = P�n (Predicates). A selection is a �nite set of predicates
as we have de�ned them above. The idea is this. When we encounter a non-terminal in a sketch,
we do not yet determine how to resolve it to a program with the function drv. Instead, we collect
in a selection the predicates that these programs may justify as a postcondition. Since also the
precondition is a selection, we can not only choose the program but also the precondition to justify
the postcondition. We thus de�ne validity of realizability triples via validity in Hoare logic:

|=0 hRisketchhSi , 8s 2 S. 9r 2 R. 9prog 2 drv(sketch). |=3 {r}prog{s} .

To derive valid realizability triples, we use the proof rules in Figure 3. We write `0 hRisketchhSi
if the realizability triple can be derived with the help of these rules. Rule (COM) checks whether
the e�ect of a command com on a predicate r is captured by s. The rule allows us to derive the
realizability triple h{r}icomh{s}i in which the selections are singleton sets. The rule plays together
with (GATHER): if we can also derive h{r0}icomh{s0}i for another pre- and postcondition, then we
can join the selections and obtain h{r, r0}icomh{s, s0}i. Rule (GATHER) is also important to join the
pre- and postconditions for the various programs that can be derived from a non-terminal. To
obtain a realizability triple hRiNhSi, Rule (ANG) unwinds the non-terminal to a sketch sketch that
is given by a production and then proves hRisketchhSi. Note that the sketch may again contain N,
and may contain more than one occurrence. We explain at the end of the section how to avoid the
repetition of proof trees and handle non-terminals in an e�cient way.
Rule (DEM) looks like the standard rule for choice operators in Hoare logic. In realizability

logic, the precondition has to be a singleton selection, and the rule is unsound without this side

7

⟨x = 0⟩

Realization Logic

￼28

N;

x++;

x++;

⟨x = − 1⟩

⟨x = 0⟩

⟨x = 0⟩

⟨x = 1⟩

N ::= x++ | x--

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Realizability in Semantics-Guided Synthesis Done Eagerly

1 htruei
2 M(htrueix = 0hx = 0i |
3 htrueix = 1hx = 1i);
4 hx = 0, x = 1i
5 N(hx = 0, x = 1iy = 0hx = 0 ^ y = 0, x = 1 ^ y = 0i |
6 hx = 0, x = 1iy = 1hx = 0 ^ y = 1, x = 1 ^ y = 1i);
7 hG = 0 ^ y = 0, . . . , x = 1 ^ y = 1i
8 assert(x = 1 ^ y = 1)
9 hx = 1 ^ y = 1, faili

Fig. 1. Proof outline in realizability logic.

1 htruei
2 M(htrueix = 0hx = 0i |
3 htrueix = 1hx = 1i);
4 hx = 1i
5 N(hx = 0, x = 1iy = 0hx = 1 ^ y = 1i |
6 hx = 1iy = 1hx = 1 ^ y = 1i);
7 hx = 1 ^ y = 1i
8 assert(x = 1 ^ y = 1)
9 hx = 1 ^ y = 1i

Fig. 2. Proof outline derived from Figure 1.

from N. This yields four synthesis alternatives, namely x=0 ^ y=0 to x=1 ^ y=1. Only the last of
these alternatives passes the assertion, the others lead to a failure of the execution.
A �rst point of criticism one may have about realizability logic is that the alternation between

angelic and demonic choice will explode too quickly. In the end, all we have done is to replace the
choice of a program by a powerset construction over predicates, a technique pioneered in automata
theory [36]. This merely translates a complex search into complex assertions. We argue that, for
SemGuS where validity checks are expensive, the assertions may be the right place to keep the
complexity. Formal methods has developed expressive logical languages and abstract domains that
can denote complex sets of states with very concise assertions. In our experiments, we have worked
with Cartesian abstraction [8, Chapter 9].

A more severe point of criticism is that our realizability triples hRiPhSi drop the relationship
between the single programs prog 2 P and the pre- and postconditions r 2 R and s 2 S that this
program can achieve. Hence, when we have given a proof in realizability logic, like the one in
Figure 1, all we know is that the program sketch M; N; assert(x = 1 ^ y = 1) can be completed to a
program that passes the assertion, but we do not know the program. What we have, however, is a
proof outline in realizability logic that annotates the program with intermediary assertions. The
idea is to use this proof outline as guidance of how to instantiate the non-terminals.
Our second contribution is realization logic, a program logic to derive rewriting steps po p⇠ po

0

between proof outlines in realizability logic. The guarantee given by realization logic is that valid
proof outlines are rewritten to valid proof outlines. The rewriting process will not only eliminate
alternatives from the de�nition of non-terminals until a program that satis�es the speci�cation
has been found. An equally important step is to eliminate predicates that will not be helpful to
satisfy the desired postcondition, or may even fail in the future. The elimination of predicates is
done backwards, starting from the postcondition, and we illustrate it on our example:

hx = 0 ^ y = 0, . . . , x = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1, faili (1)
p⇠hx = 0 ^ y = 0, . . . , x = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1i (2)
p⇠hx = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1i .

hG = 1, G = 2ix++;hG = 2, G = 3i p⇠ hG = 1, G = 2ix++;hG = 2i
hG = 1, G = 2ix++;hG = 2i p⇠ hG = 1ix++;hG = 2i

hG = 0ix = 1; x = 2;hG = 1i p⇠ hG = 0ix = 1hG = 1i
The �rst step drops the alternative fail. As there are less synthesis options to choose from, this
weakens the postcondition and the step is thus sound by the standard rule of consequence in Hoare
logic. The second step propagates this elimination backwards by weakening the precondition, which

3

⟨x = 1, x = − 1⟩
x++;

⟨x = − 1⟩
x++;

⟨x = 0⟩

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Realizability in Semantics-Guided Synthesis Done Eagerly

(COM)
»com…(r) �3 s

`0 h{r }icomh{s}i

(SEQ)
`0 hRisketch1hSi
`0 hSisketch2hT i

`0 hRisketch1; sketch2hT i

(LOOP)
R = {r }

`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)
R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)
R = {r }

`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)
N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)
`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

1 htruei N(x = 0 | x = 1); hG = 0,G = 1i
2 (assert(x==0) + assert(x==1))

3 hfaili

Fig. 4. Demonic choice.

(SHARE)
`0 h) iNh* i `0 hRisketch[N/h) ih* i]hSi

`0 hRisketchhSi

Fig. 5. Subproof sharing.

To lift the semantics from programs to sketches, we let the function drv determine all programs
(without non-terminals) that can be derived from a sketch by rewriting the non-terminals. For
example, with N ::= com1 | com2 we have drv(N; com) = {com1; com, com2; com}. Formally, we see the
sketch as a sentential form in a context-free grammar and take the language.

3.2 Realizability Logic
Realizability logic reasons over correctness speci�cation of the form hRisketchhSi. Here, R, S are
so-called selections from the set Selections = P�n (Predicates). A selection is a �nite set of predicates
as we have de�ned them above. The idea is this. When we encounter a non-terminal in a sketch,
we do not yet determine how to resolve it to a program with the function drv. Instead, we collect
in a selection the predicates that these programs may justify as a postcondition. Since also the
precondition is a selection, we can not only choose the program but also the precondition to justify
the postcondition. We thus de�ne validity of realizability triples via validity in Hoare logic:

|=0 hRisketchhSi , 8s 2 S. 9r 2 R. 9prog 2 drv(sketch). |=3 {r}prog{s} .

To derive valid realizability triples, we use the proof rules in Figure 3. We write `0 hRisketchhSi
if the realizability triple can be derived with the help of these rules. Rule (COM) checks whether
the e�ect of a command com on a predicate r is captured by s. The rule allows us to derive the
realizability triple h{r}icomh{s}i in which the selections are singleton sets. The rule plays together
with (GATHER): if we can also derive h{r0}icomh{s0}i for another pre- and postcondition, then we
can join the selections and obtain h{r, r0}icomh{s, s0}i. Rule (GATHER) is also important to join the
pre- and postconditions for the various programs that can be derived from a non-terminal. To
obtain a realizability triple hRiNhSi, Rule (ANG) unwinds the non-terminal to a sketch sketch that
is given by a production and then proves hRisketchhSi. Note that the sketch may again contain N,
and may contain more than one occurrence. We explain at the end of the section how to avoid the
repetition of proof trees and handle non-terminals in an e�cient way.
Rule (DEM) looks like the standard rule for choice operators in Hoare logic. In realizability

logic, the precondition has to be a singleton selection, and the rule is unsound without this side

7

⟨x = 0⟩

Realization Logic

￼29

N;

x++;

x++;

⟨x = − 1⟩

⟨x = 0⟩

⟨x = 0⟩

⟨x = 1⟩

N ::= x++ | x--

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Realizability in Semantics-Guided Synthesis Done Eagerly

(COM)
»com…(r) �3 s

`0 h{r }icomh{s}i

(SEQ)
`0 hRisketch1hSi
`0 hSisketch2hT i

`0 hRisketch1; sketch2hT i

(LOOP)
R = {r }

`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)
R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)
R = {r }

`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)
N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)
`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

1 htruei N(x = 0 | x = 1); hG = 0,G = 1i
2 (assert(x==0) + assert(x==1))

3 hfaili

Fig. 4. Demonic choice.

(SHARE)
`0 h) iNh* i `0 hRisketch[N/h) ih* i]hSi

`0 hRisketchhSi

Fig. 5. Subproof sharing.

To lift the semantics from programs to sketches, we let the function drv determine all programs
(without non-terminals) that can be derived from a sketch by rewriting the non-terminals. For
example, with N ::= com1 | com2 we have drv(N; com) = {com1; com, com2; com}. Formally, we see the
sketch as a sentential form in a context-free grammar and take the language.

3.2 Realizability Logic
Realizability logic reasons over correctness speci�cation of the form hRisketchhSi. Here, R, S are
so-called selections from the set Selections = P�n (Predicates). A selection is a �nite set of predicates
as we have de�ned them above. The idea is this. When we encounter a non-terminal in a sketch,
we do not yet determine how to resolve it to a program with the function drv. Instead, we collect
in a selection the predicates that these programs may justify as a postcondition. Since also the
precondition is a selection, we can not only choose the program but also the precondition to justify
the postcondition. We thus de�ne validity of realizability triples via validity in Hoare logic:

|=0 hRisketchhSi , 8s 2 S. 9r 2 R. 9prog 2 drv(sketch). |=3 {r}prog{s} .

To derive valid realizability triples, we use the proof rules in Figure 3. We write `0 hRisketchhSi
if the realizability triple can be derived with the help of these rules. Rule (COM) checks whether
the e�ect of a command com on a predicate r is captured by s. The rule allows us to derive the
realizability triple h{r}icomh{s}i in which the selections are singleton sets. The rule plays together
with (GATHER): if we can also derive h{r0}icomh{s0}i for another pre- and postcondition, then we
can join the selections and obtain h{r, r0}icomh{s, s0}i. Rule (GATHER) is also important to join the
pre- and postconditions for the various programs that can be derived from a non-terminal. To
obtain a realizability triple hRiNhSi, Rule (ANG) unwinds the non-terminal to a sketch sketch that
is given by a production and then proves hRisketchhSi. Note that the sketch may again contain N,
and may contain more than one occurrence. We explain at the end of the section how to avoid the
repetition of proof trees and handle non-terminals in an e�cient way.
Rule (DEM) looks like the standard rule for choice operators in Hoare logic. In realizability

logic, the precondition has to be a singleton selection, and the rule is unsound without this side

7

Realization Logic

￼29

N;

x++;

x++;

⟨x = − 1⟩

⟨x = 0⟩

⟨x = 0⟩

⟨x = 1⟩

N ::= x++ | x--

⟨x = 0⟩
N;

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Realizability in Semantics-Guided Synthesis Done Eagerly

(COM)
»com…(r) �3 s

`0 h{r }icomh{s}i

(SEQ)
`0 hRisketch1hSi
`0 hSisketch2hT i

`0 hRisketch1; sketch2hT i

(LOOP)
R = {r }

`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)
R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)
R = {r }

`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)
N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)
`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

1 htruei N(x = 0 | x = 1); hG = 0,G = 1i
2 (assert(x==0) + assert(x==1))

3 hfaili

Fig. 4. Demonic choice.

(SHARE)
`0 h) iNh* i `0 hRisketch[N/h) ih* i]hSi

`0 hRisketchhSi

Fig. 5. Subproof sharing.

To lift the semantics from programs to sketches, we let the function drv determine all programs
(without non-terminals) that can be derived from a sketch by rewriting the non-terminals. For
example, with N ::= com1 | com2 we have drv(N; com) = {com1; com, com2; com}. Formally, we see the
sketch as a sentential form in a context-free grammar and take the language.

3.2 Realizability Logic
Realizability logic reasons over correctness speci�cation of the form hRisketchhSi. Here, R, S are
so-called selections from the set Selections = P�n (Predicates). A selection is a �nite set of predicates
as we have de�ned them above. The idea is this. When we encounter a non-terminal in a sketch,
we do not yet determine how to resolve it to a program with the function drv. Instead, we collect
in a selection the predicates that these programs may justify as a postcondition. Since also the
precondition is a selection, we can not only choose the program but also the precondition to justify
the postcondition. We thus de�ne validity of realizability triples via validity in Hoare logic:

|=0 hRisketchhSi , 8s 2 S. 9r 2 R. 9prog 2 drv(sketch). |=3 {r}prog{s} .

To derive valid realizability triples, we use the proof rules in Figure 3. We write `0 hRisketchhSi
if the realizability triple can be derived with the help of these rules. Rule (COM) checks whether
the e�ect of a command com on a predicate r is captured by s. The rule allows us to derive the
realizability triple h{r}icomh{s}i in which the selections are singleton sets. The rule plays together
with (GATHER): if we can also derive h{r0}icomh{s0}i for another pre- and postcondition, then we
can join the selections and obtain h{r, r0}icomh{s, s0}i. Rule (GATHER) is also important to join the
pre- and postconditions for the various programs that can be derived from a non-terminal. To
obtain a realizability triple hRiNhSi, Rule (ANG) unwinds the non-terminal to a sketch sketch that
is given by a production and then proves hRisketchhSi. Note that the sketch may again contain N,
and may contain more than one occurrence. We explain at the end of the section how to avoid the
repetition of proof trees and handle non-terminals in an e�cient way.
Rule (DEM) looks like the standard rule for choice operators in Hoare logic. In realizability

logic, the precondition has to be a singleton selection, and the rule is unsound without this side

7

⟨x = − 1⟩

Realization Logic

￼29

N;

x++;

x++;

⟨x = − 1⟩

⟨x = 0⟩

⟨x = 0⟩

⟨x = 1⟩

N ::= x++ | x--

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Realizability in Semantics-Guided Synthesis Done Eagerly

1 htruei
2 M(htrueix = 0hx = 0i |
3 htrueix = 1hx = 1i);
4 hx = 0, x = 1i
5 N(hx = 0, x = 1iy = 0hx = 0 ^ y = 0, x = 1 ^ y = 0i |
6 hx = 0, x = 1iy = 1hx = 0 ^ y = 1, x = 1 ^ y = 1i);
7 hG = 0 ^ y = 0, . . . , x = 1 ^ y = 1i
8 assert(x = 1 ^ y = 1)
9 hx = 1 ^ y = 1, faili

Fig. 1. Proof outline in realizability logic.

1 htruei
2 M(htrueix = 0hx = 0i |
3 htrueix = 1hx = 1i);
4 hx = 1i
5 N(hx = 0, x = 1iy = 0hx = 1 ^ y = 1i |
6 hx = 1iy = 1hx = 1 ^ y = 1i);
7 hx = 1 ^ y = 1i
8 assert(x = 1 ^ y = 1)
9 hx = 1 ^ y = 1i

Fig. 2. Proof outline derived from Figure 1.

from N. This yields four synthesis alternatives, namely x=0 ^ y=0 to x=1 ^ y=1. Only the last of
these alternatives passes the assertion, the others lead to a failure of the execution.
A �rst point of criticism one may have about realizability logic is that the alternation between

angelic and demonic choice will explode too quickly. In the end, all we have done is to replace the
choice of a program by a powerset construction over predicates, a technique pioneered in automata
theory [36]. This merely translates a complex search into complex assertions. We argue that, for
SemGuS where validity checks are expensive, the assertions may be the right place to keep the
complexity. Formal methods has developed expressive logical languages and abstract domains that
can denote complex sets of states with very concise assertions. In our experiments, we have worked
with Cartesian abstraction [8, Chapter 9].

A more severe point of criticism is that our realizability triples hRiPhSi drop the relationship
between the single programs prog 2 P and the pre- and postconditions r 2 R and s 2 S that this
program can achieve. Hence, when we have given a proof in realizability logic, like the one in
Figure 1, all we know is that the program sketch M; N; assert(x = 1 ^ y = 1) can be completed to a
program that passes the assertion, but we do not know the program. What we have, however, is a
proof outline in realizability logic that annotates the program with intermediary assertions. The
idea is to use this proof outline as guidance of how to instantiate the non-terminals.
Our second contribution is realization logic, a program logic to derive rewriting steps po p⇠ po

0

between proof outlines in realizability logic. The guarantee given by realization logic is that valid
proof outlines are rewritten to valid proof outlines. The rewriting process will not only eliminate
alternatives from the de�nition of non-terminals until a program that satis�es the speci�cation
has been found. An equally important step is to eliminate predicates that will not be helpful to
satisfy the desired postcondition, or may even fail in the future. The elimination of predicates is
done backwards, starting from the postcondition, and we illustrate it on our example:

hx = 0 ^ y = 0, . . . , x = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1, faili (1)
p⇠hx = 0 ^ y = 0, . . . , x = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1i (2)
p⇠hx = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1i .

hG = 1, G = 2ix++;hG = 2, G = 3i p⇠ hG = 1, G = 2ix++;hG = 2i
hG = 1, G = 2ix++;hG = 2i p⇠ hG = 1ix++;hG = 2i

hG = 0ix = 1; x = 2;hG = 1i p⇠ hG = 0ix = 1hG = 1i
The �rst step drops the alternative fail. As there are less synthesis options to choose from, this
weakens the postcondition and the step is thus sound by the standard rule of consequence in Hoare
logic. The second step propagates this elimination backwards by weakening the precondition, which

3

⟨x = 0⟩
N;

⟨x = 0⟩
x--;

⟨x = − 1⟩

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Realizability in Semantics-Guided Synthesis Done Eagerly

(COM)
»com…(r) �3 s

`0 h{r }icomh{s}i

(SEQ)
`0 hRisketch1hSi
`0 hSisketch2hT i

`0 hRisketch1; sketch2hT i

(LOOP)
R = {r }

`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)
R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)
R = {r }

`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)
N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)
`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

1 htruei N(x = 0 | x = 1); hG = 0,G = 1i
2 (assert(x==0) + assert(x==1))

3 hfaili

Fig. 4. Demonic choice.

(SHARE)
`0 h) iNh* i `0 hRisketch[N/h) ih* i]hSi

`0 hRisketchhSi

Fig. 5. Subproof sharing.

To lift the semantics from programs to sketches, we let the function drv determine all programs
(without non-terminals) that can be derived from a sketch by rewriting the non-terminals. For
example, with N ::= com1 | com2 we have drv(N; com) = {com1; com, com2; com}. Formally, we see the
sketch as a sentential form in a context-free grammar and take the language.

3.2 Realizability Logic
Realizability logic reasons over correctness speci�cation of the form hRisketchhSi. Here, R, S are
so-called selections from the set Selections = P�n (Predicates). A selection is a �nite set of predicates
as we have de�ned them above. The idea is this. When we encounter a non-terminal in a sketch,
we do not yet determine how to resolve it to a program with the function drv. Instead, we collect
in a selection the predicates that these programs may justify as a postcondition. Since also the
precondition is a selection, we can not only choose the program but also the precondition to justify
the postcondition. We thus de�ne validity of realizability triples via validity in Hoare logic:

|=0 hRisketchhSi , 8s 2 S. 9r 2 R. 9prog 2 drv(sketch). |=3 {r}prog{s} .

To derive valid realizability triples, we use the proof rules in Figure 3. We write `0 hRisketchhSi
if the realizability triple can be derived with the help of these rules. Rule (COM) checks whether
the e�ect of a command com on a predicate r is captured by s. The rule allows us to derive the
realizability triple h{r}icomh{s}i in which the selections are singleton sets. The rule plays together
with (GATHER): if we can also derive h{r0}icomh{s0}i for another pre- and postcondition, then we
can join the selections and obtain h{r, r0}icomh{s, s0}i. Rule (GATHER) is also important to join the
pre- and postconditions for the various programs that can be derived from a non-terminal. To
obtain a realizability triple hRiNhSi, Rule (ANG) unwinds the non-terminal to a sketch sketch that
is given by a production and then proves hRisketchhSi. Note that the sketch may again contain N,
and may contain more than one occurrence. We explain at the end of the section how to avoid the
repetition of proof trees and handle non-terminals in an e�cient way.
Rule (DEM) looks like the standard rule for choice operators in Hoare logic. In realizability

logic, the precondition has to be a singleton selection, and the rule is unsound without this side

7

⟨x = − 1⟩

Realization Logic

￼30

x--;

x++;

x++;

⟨x = − 1⟩

⟨x = 0⟩

⟨x = 0⟩

⟨x = 1⟩

N ::= x++ | x--

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Realizability in Semantics-Guided Synthesis Done Eagerly

1 htruei
2 M(htrueix = 0hx = 0i |
3 htrueix = 1hx = 1i);
4 hx = 0, x = 1i
5 N(hx = 0, x = 1iy = 0hx = 0 ^ y = 0, x = 1 ^ y = 0i |
6 hx = 0, x = 1iy = 1hx = 0 ^ y = 1, x = 1 ^ y = 1i);
7 hG = 0 ^ y = 0, . . . , x = 1 ^ y = 1i
8 assert(x = 1 ^ y = 1)
9 hx = 1 ^ y = 1, faili

Fig. 1. Proof outline in realizability logic.

1 htruei
2 M(htrueix = 0hx = 0i |
3 htrueix = 1hx = 1i);
4 hx = 1i
5 N(hx = 0, x = 1iy = 0hx = 1 ^ y = 1i |
6 hx = 1iy = 1hx = 1 ^ y = 1i);
7 hx = 1 ^ y = 1i
8 assert(x = 1 ^ y = 1)
9 hx = 1 ^ y = 1i

Fig. 2. Proof outline derived from Figure 1.

from N. This yields four synthesis alternatives, namely x=0 ^ y=0 to x=1 ^ y=1. Only the last of
these alternatives passes the assertion, the others lead to a failure of the execution.
A �rst point of criticism one may have about realizability logic is that the alternation between

angelic and demonic choice will explode too quickly. In the end, all we have done is to replace the
choice of a program by a powerset construction over predicates, a technique pioneered in automata
theory [36]. This merely translates a complex search into complex assertions. We argue that, for
SemGuS where validity checks are expensive, the assertions may be the right place to keep the
complexity. Formal methods has developed expressive logical languages and abstract domains that
can denote complex sets of states with very concise assertions. In our experiments, we have worked
with Cartesian abstraction [8, Chapter 9].

A more severe point of criticism is that our realizability triples hRiPhSi drop the relationship
between the single programs prog 2 P and the pre- and postconditions r 2 R and s 2 S that this
program can achieve. Hence, when we have given a proof in realizability logic, like the one in
Figure 1, all we know is that the program sketch M; N; assert(x = 1 ^ y = 1) can be completed to a
program that passes the assertion, but we do not know the program. What we have, however, is a
proof outline in realizability logic that annotates the program with intermediary assertions. The
idea is to use this proof outline as guidance of how to instantiate the non-terminals.
Our second contribution is realization logic, a program logic to derive rewriting steps po p⇠ po

0

between proof outlines in realizability logic. The guarantee given by realization logic is that valid
proof outlines are rewritten to valid proof outlines. The rewriting process will not only eliminate
alternatives from the de�nition of non-terminals until a program that satis�es the speci�cation
has been found. An equally important step is to eliminate predicates that will not be helpful to
satisfy the desired postcondition, or may even fail in the future. The elimination of predicates is
done backwards, starting from the postcondition, and we illustrate it on our example:

hx = 0 ^ y = 0, . . . , x = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1, faili (1)
p⇠hx = 0 ^ y = 0, . . . , x = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1i (2)
p⇠hx = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1i .

hG = 1, G = 2ix++;hG = 2, G = 3i p⇠ hG = 1, G = 2ix++;hG = 2i
hG = 1, G = 2ix++;hG = 2i p⇠ hG = 1ix++;hG = 2i

hG = 0ix = 1; x = 2;hG = 1i p⇠ hG = 0ix = 1hG = 1i
The �rst step drops the alternative fail. As there are less synthesis options to choose from, this
weakens the postcondition and the step is thus sound by the standard rule of consequence in Hoare
logic. The second step propagates this elimination backwards by weakening the precondition, which

3

⟨x = 0⟩
N;

⟨x = 0⟩
x--;

⟨x = − 1⟩

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Realizability in Semantics-Guided Synthesis Done Eagerly

(COM)
»com…(r) �3 s

`0 h{r }icomh{s}i

(SEQ)
`0 hRisketch1hSi
`0 hSisketch2hT i

`0 hRisketch1; sketch2hT i

(LOOP)
R = {r }

`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)
R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)
R = {r }

`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)
N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)
`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

1 htruei N(x = 0 | x = 1); hG = 0,G = 1i
2 (assert(x==0) + assert(x==1))

3 hfaili

Fig. 4. Demonic choice.

(SHARE)
`0 h) iNh* i `0 hRisketch[N/h) ih* i]hSi

`0 hRisketchhSi

Fig. 5. Subproof sharing.

To lift the semantics from programs to sketches, we let the function drv determine all programs
(without non-terminals) that can be derived from a sketch by rewriting the non-terminals. For
example, with N ::= com1 | com2 we have drv(N; com) = {com1; com, com2; com}. Formally, we see the
sketch as a sentential form in a context-free grammar and take the language.

3.2 Realizability Logic
Realizability logic reasons over correctness speci�cation of the form hRisketchhSi. Here, R, S are
so-called selections from the set Selections = P�n (Predicates). A selection is a �nite set of predicates
as we have de�ned them above. The idea is this. When we encounter a non-terminal in a sketch,
we do not yet determine how to resolve it to a program with the function drv. Instead, we collect
in a selection the predicates that these programs may justify as a postcondition. Since also the
precondition is a selection, we can not only choose the program but also the precondition to justify
the postcondition. We thus de�ne validity of realizability triples via validity in Hoare logic:

|=0 hRisketchhSi , 8s 2 S. 9r 2 R. 9prog 2 drv(sketch). |=3 {r}prog{s} .

To derive valid realizability triples, we use the proof rules in Figure 3. We write `0 hRisketchhSi
if the realizability triple can be derived with the help of these rules. Rule (COM) checks whether
the e�ect of a command com on a predicate r is captured by s. The rule allows us to derive the
realizability triple h{r}icomh{s}i in which the selections are singleton sets. The rule plays together
with (GATHER): if we can also derive h{r0}icomh{s0}i for another pre- and postcondition, then we
can join the selections and obtain h{r, r0}icomh{s, s0}i. Rule (GATHER) is also important to join the
pre- and postconditions for the various programs that can be derived from a non-terminal. To
obtain a realizability triple hRiNhSi, Rule (ANG) unwinds the non-terminal to a sketch sketch that
is given by a production and then proves hRisketchhSi. Note that the sketch may again contain N,
and may contain more than one occurrence. We explain at the end of the section how to avoid the
repetition of proof trees and handle non-terminals in an e�cient way.
Rule (DEM) looks like the standard rule for choice operators in Hoare logic. In realizability

logic, the precondition has to be a singleton selection, and the rule is unsound without this side

7

⟨x = − 1⟩

Realization Logic

￼31

x--;

x++;

x++;

⟨x = − 1⟩

⟨x = 0⟩

⟨x = 0⟩

⟨x = 1⟩

N ::= x++ | x--

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Realizability in Semantics-Guided Synthesis Done Eagerly

1 htruei
2 M(htrueix = 0hx = 0i |
3 htrueix = 1hx = 1i);
4 hx = 0, x = 1i
5 N(hx = 0, x = 1iy = 0hx = 0 ^ y = 0, x = 1 ^ y = 0i |
6 hx = 0, x = 1iy = 1hx = 0 ^ y = 1, x = 1 ^ y = 1i);
7 hG = 0 ^ y = 0, . . . , x = 1 ^ y = 1i
8 assert(x = 1 ^ y = 1)
9 hx = 1 ^ y = 1, faili

Fig. 1. Proof outline in realizability logic.

1 htruei
2 M(htrueix = 0hx = 0i |
3 htrueix = 1hx = 1i);
4 hx = 1i
5 N(hx = 0, x = 1iy = 0hx = 1 ^ y = 1i |
6 hx = 1iy = 1hx = 1 ^ y = 1i);
7 hx = 1 ^ y = 1i
8 assert(x = 1 ^ y = 1)
9 hx = 1 ^ y = 1i

Fig. 2. Proof outline derived from Figure 1.

from N. This yields four synthesis alternatives, namely x=0 ^ y=0 to x=1 ^ y=1. Only the last of
these alternatives passes the assertion, the others lead to a failure of the execution.
A �rst point of criticism one may have about realizability logic is that the alternation between

angelic and demonic choice will explode too quickly. In the end, all we have done is to replace the
choice of a program by a powerset construction over predicates, a technique pioneered in automata
theory [36]. This merely translates a complex search into complex assertions. We argue that, for
SemGuS where validity checks are expensive, the assertions may be the right place to keep the
complexity. Formal methods has developed expressive logical languages and abstract domains that
can denote complex sets of states with very concise assertions. In our experiments, we have worked
with Cartesian abstraction [8, Chapter 9].

A more severe point of criticism is that our realizability triples hRiPhSi drop the relationship
between the single programs prog 2 P and the pre- and postconditions r 2 R and s 2 S that this
program can achieve. Hence, when we have given a proof in realizability logic, like the one in
Figure 1, all we know is that the program sketch M; N; assert(x = 1 ^ y = 1) can be completed to a
program that passes the assertion, but we do not know the program. What we have, however, is a
proof outline in realizability logic that annotates the program with intermediary assertions. The
idea is to use this proof outline as guidance of how to instantiate the non-terminals.
Our second contribution is realization logic, a program logic to derive rewriting steps po p⇠ po

0

between proof outlines in realizability logic. The guarantee given by realization logic is that valid
proof outlines are rewritten to valid proof outlines. The rewriting process will not only eliminate
alternatives from the de�nition of non-terminals until a program that satis�es the speci�cation
has been found. An equally important step is to eliminate predicates that will not be helpful to
satisfy the desired postcondition, or may even fail in the future. The elimination of predicates is
done backwards, starting from the postcondition, and we illustrate it on our example:

hx = 0 ^ y = 0, . . . , x = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1, faili (1)
p⇠hx = 0 ^ y = 0, . . . , x = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1i (2)
p⇠hx = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1i .

hG = 1, G = 2ix++;hG = 2, G = 3i p⇠ hG = 1, G = 2ix++;hG = 2i
hG = 1, G = 2ix++;hG = 2i p⇠ hG = 1ix++;hG = 2i

hG = 0ix = 1; x = 2;hG = 1i p⇠ hG = 0ix = 1hG = 1i
The �rst step drops the alternative fail. As there are less synthesis options to choose from, this
weakens the postcondition and the step is thus sound by the standard rule of consequence in Hoare
logic. The second step propagates this elimination backwards by weakening the precondition, which

3

⟨x = 0⟩
N;

⟨x = 0⟩
x--;

⟨x = − 1⟩

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Realizability in Semantics-Guided Synthesis Done Eagerly

(COM)
»com…(r) �3 s

`0 h{r }icomh{s}i

(SEQ)
`0 hRisketch1hSi
`0 hSisketch2hT i

`0 hRisketch1; sketch2hT i

(LOOP)
R = {r }

`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)
R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)
R = {r }

`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)
N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)
`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

1 htruei N(x = 0 | x = 1); hG = 0,G = 1i
2 (assert(x==0) + assert(x==1))

3 hfaili

Fig. 4. Demonic choice.

(SHARE)
`0 h) iNh* i `0 hRisketch[N/h) ih* i]hSi

`0 hRisketchhSi

Fig. 5. Subproof sharing.

To lift the semantics from programs to sketches, we let the function drv determine all programs
(without non-terminals) that can be derived from a sketch by rewriting the non-terminals. For
example, with N ::= com1 | com2 we have drv(N; com) = {com1; com, com2; com}. Formally, we see the
sketch as a sentential form in a context-free grammar and take the language.

3.2 Realizability Logic
Realizability logic reasons over correctness speci�cation of the form hRisketchhSi. Here, R, S are
so-called selections from the set Selections = P�n (Predicates). A selection is a �nite set of predicates
as we have de�ned them above. The idea is this. When we encounter a non-terminal in a sketch,
we do not yet determine how to resolve it to a program with the function drv. Instead, we collect
in a selection the predicates that these programs may justify as a postcondition. Since also the
precondition is a selection, we can not only choose the program but also the precondition to justify
the postcondition. We thus de�ne validity of realizability triples via validity in Hoare logic:

|=0 hRisketchhSi , 8s 2 S. 9r 2 R. 9prog 2 drv(sketch). |=3 {r}prog{s} .

To derive valid realizability triples, we use the proof rules in Figure 3. We write `0 hRisketchhSi
if the realizability triple can be derived with the help of these rules. Rule (COM) checks whether
the e�ect of a command com on a predicate r is captured by s. The rule allows us to derive the
realizability triple h{r}icomh{s}i in which the selections are singleton sets. The rule plays together
with (GATHER): if we can also derive h{r0}icomh{s0}i for another pre- and postcondition, then we
can join the selections and obtain h{r, r0}icomh{s, s0}i. Rule (GATHER) is also important to join the
pre- and postconditions for the various programs that can be derived from a non-terminal. To
obtain a realizability triple hRiNhSi, Rule (ANG) unwinds the non-terminal to a sketch sketch that
is given by a production and then proves hRisketchhSi. Note that the sketch may again contain N,
and may contain more than one occurrence. We explain at the end of the section how to avoid the
repetition of proof trees and handle non-terminals in an e�cient way.
Rule (DEM) looks like the standard rule for choice operators in Hoare logic. In realizability

logic, the precondition has to be a singleton selection, and the rule is unsound without this side

7

⟨x = − 1⟩

Contribution 2:
Realization Logic

Sound

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

Anon.

non-terminal, we would like to share them in the various places the non-terminal is used. This is
made possible by Rule (SHARE) given in Figure 5. If we have already derived the triple h) iNh* i,
then we can eliminate the non-terminal from a program sketch and replace it by the pair h) ih* i.
The pair stands for the fact that we can synthesize a program that transforms) to* . Rule (SHARE) is
readily checked to be sound. However, it is a derived rule whose application can easily be mimicked
by Rule (ANG), at the cost of blowing-up the proof. An implementation would re�ne the rule so
that di�erent occurrences of the non-terminal can be replaced in di�erent ways. Moreover, one
would maintain a pointer to the subproof that should be inserted, to be able to derive the program
with the technique given next.

4 REALIZATION LOGIC
We de�ne realization logic, a program logic to derive programs from sketches. The key insight
is that a proof outline in realizability logic for the sketch of interest is helpful guidance to �nd a
program that solves the synthesis task. To make use of this guidance, realization logic rewrites the
given proof outline until a suitable program is found. Realization logic thus reasons over rewriting
steps of the form po p⇠ po

0 between proof outlines. The strategy behind the rewriting is to propagate
information about failed synthesis attempts backwards, and thereby iteratively eliminate predicates
from selections and productions from the de�nition of non-terminals.

As we need a precise understanding of proof outlines, we give the de�nition:

po ::= hRicomhSi | po; po | po + po | po⇤ | N(po) | (po | po) .
We write `0 po to indicate that the proof outline has been derived with realizability logic. The
assertions we track are the ones that have been used in the application of (SEQ), (LOOP), and (ANG).
The formal de�nition is in the appendix. We abuse the notation a bit and write hRipohSi to indicate
that R is the precondition and S is the postcondition of the proof outline po. This is well-de�ned,
because `0 po1 + po2 implies that po1 and po2 have the same pre- and postcondition.

The proof rules of realization logic are listed in Figure 6, we discuss them below. The rules give
the following soundness guarantee: if we start from a proof outline in realizability logic and rewrite
it to another proof outline, then also this proof outline can be derived with realizability logic.

T������ 4.1 (S��������). `0 po and po p⇠ po
0 together imply `0 po

0.

T������ 4.2 (S��������).

`0 hRipohSi ^ hRipohSi p⇠ hR0ipo0hS0i =) `0 hR0ipo0hS0i
This allows us to invoke the soundness of realizability logic from Theorem 3.1 and obtain the
desired semantic guarantee for the program we have derived.

A feature all rules share is that they are guided by the original proof outline: the selections in the
proof outline that results from rewriting are limited to the selections in the original proof outline.
To ease the notation, we use Rw to denote a selection that is known to be less versatile than R,
meaning R �0 Rw holds. This may be used repeatedly, so R �0 Rw �0 Rww.
The rules in Figure 6 rewrite the given proof outline in a compositional fashion. The base case

(RCOM) allows us to pick a pre- and postcondition from a selection. This is the moment we realize
that predicates from the precondition can be dropped because they are not needed to obtain the
postcondition, as shown in the introduction. We have to explicitly check the over-approximation
because realizability triples do not maintain the interplay between the predicates in the pre- and in
the postcondition. Using (RANG), we can rewrite proofs for the right-hand sides of non-terminals.
The heart of the calculus is (RSELECT), which allows us to replace non-terminals by their right-
hand sides. The Rules (RSEQL) and (RSEQR) rewrite the left resp. the right part of a sequence. In

10

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

Anon.

non-terminal, we would like to share them in the various places the non-terminal is used. This is
made possible by Rule (SHARE) given in Figure 5. If we have already derived the triple h) iNh* i,
then we can eliminate the non-terminal from a program sketch and replace it by the pair h) ih* i.
The pair stands for the fact that we can synthesize a program that transforms) to* . Rule (SHARE) is
readily checked to be sound. However, it is a derived rule whose application can easily be mimicked
by Rule (ANG), at the cost of blowing-up the proof. An implementation would re�ne the rule so
that di�erent occurrences of the non-terminal can be replaced in di�erent ways. Moreover, one
would maintain a pointer to the subproof that should be inserted, to be able to derive the program
with the technique given next.

4 REALIZATION LOGIC
We de�ne realization logic, a program logic to derive programs from sketches. The key insight
is that a proof outline in realizability logic for the sketch of interest is helpful guidance to �nd a
program that solves the synthesis task. To make use of this guidance, realization logic rewrites the
given proof outline until a suitable program is found. Realization logic thus reasons over rewriting
steps of the form po p⇠ po

0 between proof outlines. The strategy behind the rewriting is to propagate
information about failed synthesis attempts backwards, and thereby iteratively eliminate predicates
from selections and productions from the de�nition of non-terminals.

As we need a precise understanding of proof outlines, we give the de�nition:

po ::= hRicomhSi | po; po | po + po | po⇤ | N(po) | (po | po) .
We write `0 po to indicate that the proof outline has been derived with realizability logic. The
assertions we track are the ones that have been used in the application of (SEQ), (LOOP), and (ANG).
The formal de�nition is in the appendix. We abuse the notation a bit and write hRipohSi to indicate
that R is the precondition and S is the postcondition of the proof outline po. This is well-de�ned,
because `0 po1 + po2 implies that po1 and po2 have the same pre- and postcondition.

The proof rules of realization logic are listed in Figure 6, we discuss them below. The rules give
the following soundness guarantee: if we start from a proof outline in realizability logic and rewrite
it to another proof outline, then also this proof outline can be derived with realizability logic.

T������ 4.1 (S��������). `0 po and po p⇠ po
0 together imply `0 po

0.

T������ 4.2 (S��������).

`0 hRipohSi ^ hRipohSi p⇠ hR0ipo0hS0i =) `0 hR0ipo0hS0i
This allows us to invoke the soundness of realizability logic from Theorem 3.1 and obtain the
desired semantic guarantee for the program we have derived.

A feature all rules share is that they are guided by the original proof outline: the selections in the
proof outline that results from rewriting are limited to the selections in the original proof outline.
To ease the notation, we use Rw to denote a selection that is known to be less versatile than R,
meaning R �0 Rw holds. This may be used repeatedly, so R �0 Rw �0 Rww.
The rules in Figure 6 rewrite the given proof outline in a compositional fashion. The base case

(RCOM) allows us to pick a pre- and postcondition from a selection. This is the moment we realize
that predicates from the precondition can be dropped because they are not needed to obtain the
postcondition, as shown in the introduction. We have to explicitly check the over-approximation
because realizability triples do not maintain the interplay between the predicates in the pre- and in
the postcondition. Using (RANG), we can rewrite proofs for the right-hand sides of non-terminals.
The heart of the calculus is (RSELECT), which allows us to replace non-terminals by their right-
hand sides. The Rules (RSEQL) and (RSEQR) rewrite the left resp. the right part of a sequence. In

10

Realization Logic

￼31

x--;

x++;

x++;

⟨x = − 1⟩

⟨x = 0⟩

⟨x = 0⟩

⟨x = 1⟩

N ::= x++ | x--

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Realizability in Semantics-Guided Synthesis Done Eagerly

1 htruei
2 M(htrueix = 0hx = 0i |
3 htrueix = 1hx = 1i);
4 hx = 0, x = 1i
5 N(hx = 0, x = 1iy = 0hx = 0 ^ y = 0, x = 1 ^ y = 0i |
6 hx = 0, x = 1iy = 1hx = 0 ^ y = 1, x = 1 ^ y = 1i);
7 hG = 0 ^ y = 0, . . . , x = 1 ^ y = 1i
8 assert(x = 1 ^ y = 1)
9 hx = 1 ^ y = 1, faili

Fig. 1. Proof outline in realizability logic.

1 htruei
2 M(htrueix = 0hx = 0i |
3 htrueix = 1hx = 1i);
4 hx = 1i
5 N(hx = 0, x = 1iy = 0hx = 1 ^ y = 1i |
6 hx = 1iy = 1hx = 1 ^ y = 1i);
7 hx = 1 ^ y = 1i
8 assert(x = 1 ^ y = 1)
9 hx = 1 ^ y = 1i

Fig. 2. Proof outline derived from Figure 1.

from N. This yields four synthesis alternatives, namely x=0 ^ y=0 to x=1 ^ y=1. Only the last of
these alternatives passes the assertion, the others lead to a failure of the execution.
A �rst point of criticism one may have about realizability logic is that the alternation between

angelic and demonic choice will explode too quickly. In the end, all we have done is to replace the
choice of a program by a powerset construction over predicates, a technique pioneered in automata
theory [36]. This merely translates a complex search into complex assertions. We argue that, for
SemGuS where validity checks are expensive, the assertions may be the right place to keep the
complexity. Formal methods has developed expressive logical languages and abstract domains that
can denote complex sets of states with very concise assertions. In our experiments, we have worked
with Cartesian abstraction [8, Chapter 9].

A more severe point of criticism is that our realizability triples hRiPhSi drop the relationship
between the single programs prog 2 P and the pre- and postconditions r 2 R and s 2 S that this
program can achieve. Hence, when we have given a proof in realizability logic, like the one in
Figure 1, all we know is that the program sketch M; N; assert(x = 1 ^ y = 1) can be completed to a
program that passes the assertion, but we do not know the program. What we have, however, is a
proof outline in realizability logic that annotates the program with intermediary assertions. The
idea is to use this proof outline as guidance of how to instantiate the non-terminals.
Our second contribution is realization logic, a program logic to derive rewriting steps po p⇠ po

0

between proof outlines in realizability logic. The guarantee given by realization logic is that valid
proof outlines are rewritten to valid proof outlines. The rewriting process will not only eliminate
alternatives from the de�nition of non-terminals until a program that satis�es the speci�cation
has been found. An equally important step is to eliminate predicates that will not be helpful to
satisfy the desired postcondition, or may even fail in the future. The elimination of predicates is
done backwards, starting from the postcondition, and we illustrate it on our example:

hx = 0 ^ y = 0, . . . , x = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1, faili (1)
p⇠hx = 0 ^ y = 0, . . . , x = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1i (2)
p⇠hx = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1i .

hG = 1, G = 2ix++;hG = 2, G = 3i p⇠ hG = 1, G = 2ix++;hG = 2i
hG = 1, G = 2ix++;hG = 2i p⇠ hG = 1ix++;hG = 2i

hG = 0ix = 1; x = 2;hG = 1i p⇠ hG = 0ix = 1hG = 1i
The �rst step drops the alternative fail. As there are less synthesis options to choose from, this
weakens the postcondition and the step is thus sound by the standard rule of consequence in Hoare
logic. The second step propagates this elimination backwards by weakening the precondition, which

3

⟨x = 0⟩
N;

⟨x = 0⟩
x--;

⟨x = − 1⟩

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Realizability in Semantics-Guided Synthesis Done Eagerly

(COM)
»com…(r) �3 s

`0 h{r }icomh{s}i

(SEQ)
`0 hRisketch1hSi
`0 hSisketch2hT i

`0 hRisketch1; sketch2hT i

(LOOP)
R = {r }

`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)
R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)
R = {r }

`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)
N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)
`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [R2isketchhS1 [S2i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

1 htruei N(x = 0 | x = 1); hG = 0,G = 1i
2 (assert(x==0) + assert(x==1))

3 hfaili

Fig. 4. Demonic choice.

(SHARE)
`0 h) iNh* i `0 hRisketch[N/h) ih* i]hSi

`0 hRisketchhSi

Fig. 5. Subproof sharing.

To lift the semantics from programs to sketches, we let the function drv determine all programs
(without non-terminals) that can be derived from a sketch by rewriting the non-terminals. For
example, with N ::= com1 | com2 we have drv(N; com) = {com1; com, com2; com}. Formally, we see the
sketch as a sentential form in a context-free grammar and take the language.

3.2 Realizability Logic
Realizability logic reasons over correctness speci�cation of the form hRisketchhSi. Here, R, S are
so-called selections from the set Selections = P�n (Predicates). A selection is a �nite set of predicates
as we have de�ned them above. The idea is this. When we encounter a non-terminal in a sketch,
we do not yet determine how to resolve it to a program with the function drv. Instead, we collect
in a selection the predicates that these programs may justify as a postcondition. Since also the
precondition is a selection, we can not only choose the program but also the precondition to justify
the postcondition. We thus de�ne validity of realizability triples via validity in Hoare logic:

|=0 hRisketchhSi , 8s 2 S. 9r 2 R. 9prog 2 drv(sketch). |=3 {r}prog{s} .

To derive valid realizability triples, we use the proof rules in Figure 3. We write `0 hRisketchhSi
if the realizability triple can be derived with the help of these rules. Rule (COM) checks whether
the e�ect of a command com on a predicate r is captured by s. The rule allows us to derive the
realizability triple h{r}icomh{s}i in which the selections are singleton sets. The rule plays together
with (GATHER): if we can also derive h{r0}icomh{s0}i for another pre- and postcondition, then we
can join the selections and obtain h{r, r0}icomh{s, s0}i. Rule (GATHER) is also important to join the
pre- and postconditions for the various programs that can be derived from a non-terminal. To
obtain a realizability triple hRiNhSi, Rule (ANG) unwinds the non-terminal to a sketch sketch that
is given by a production and then proves hRisketchhSi. Note that the sketch may again contain N,
and may contain more than one occurrence. We explain at the end of the section how to avoid the
repetition of proof trees and handle non-terminals in an e�cient way.
Rule (DEM) looks like the standard rule for choice operators in Hoare logic. In realizability

logic, the precondition has to be a singleton selection, and the rule is unsound without this side

7

⟨x = − 1⟩

Contribution 2:
Realization Logic

Sound

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

Anon.

non-terminal, we would like to share them in the various places the non-terminal is used. This is
made possible by Rule (SHARE) given in Figure 5. If we have already derived the triple h) iNh* i,
then we can eliminate the non-terminal from a program sketch and replace it by the pair h) ih* i.
The pair stands for the fact that we can synthesize a program that transforms) to* . Rule (SHARE) is
readily checked to be sound. However, it is a derived rule whose application can easily be mimicked
by Rule (ANG), at the cost of blowing-up the proof. An implementation would re�ne the rule so
that di�erent occurrences of the non-terminal can be replaced in di�erent ways. Moreover, one
would maintain a pointer to the subproof that should be inserted, to be able to derive the program
with the technique given next.

4 REALIZATION LOGIC
We de�ne realization logic, a program logic to derive programs from sketches. The key insight
is that a proof outline in realizability logic for the sketch of interest is helpful guidance to �nd a
program that solves the synthesis task. To make use of this guidance, realization logic rewrites the
given proof outline until a suitable program is found. Realization logic thus reasons over rewriting
steps of the form po p⇠ po

0 between proof outlines. The strategy behind the rewriting is to propagate
information about failed synthesis attempts backwards, and thereby iteratively eliminate predicates
from selections and productions from the de�nition of non-terminals.

As we need a precise understanding of proof outlines, we give the de�nition:

po ::= hRicomhSi | po; po | po + po | po⇤ | N(po) | (po | po) .
We write `0 po to indicate that the proof outline has been derived with realizability logic. The
assertions we track are the ones that have been used in the application of (SEQ), (LOOP), and (ANG).
The formal de�nition is in the appendix. We abuse the notation a bit and write hRipohSi to indicate
that R is the precondition and S is the postcondition of the proof outline po. This is well-de�ned,
because `0 po1 + po2 implies that po1 and po2 have the same pre- and postcondition.

The proof rules of realization logic are listed in Figure 6, we discuss them below. The rules give
the following soundness guarantee: if we start from a proof outline in realizability logic and rewrite
it to another proof outline, then also this proof outline can be derived with realizability logic.

T������ 4.1 (S��������). `0 po and po p⇠ po
0 together imply `0 po

0.

T������ 4.2 (S��������).

`0 hRipohSi ^ hRipohSi p⇠ hR0ipo0hS0i =) `0 hR0ipo0hS0i
This allows us to invoke the soundness of realizability logic from Theorem 3.1 and obtain the
desired semantic guarantee for the program we have derived.

A feature all rules share is that they are guided by the original proof outline: the selections in the
proof outline that results from rewriting are limited to the selections in the original proof outline.
To ease the notation, we use Rw to denote a selection that is known to be less versatile than R,
meaning R �0 Rw holds. This may be used repeatedly, so R �0 Rw �0 Rww.
The rules in Figure 6 rewrite the given proof outline in a compositional fashion. The base case

(RCOM) allows us to pick a pre- and postcondition from a selection. This is the moment we realize
that predicates from the precondition can be dropped because they are not needed to obtain the
postcondition, as shown in the introduction. We have to explicitly check the over-approximation
because realizability triples do not maintain the interplay between the predicates in the pre- and in
the postcondition. Using (RANG), we can rewrite proofs for the right-hand sides of non-terminals.
The heart of the calculus is (RSELECT), which allows us to replace non-terminals by their right-
hand sides. The Rules (RSEQL) and (RSEQR) rewrite the left resp. the right part of a sequence. In

10

and Complete

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Realizability in Semantics-Guided Synthesis Done Eagerly

(RCOM)
»com…(r) �3 s R �0 {r } S �0 {s}

hRicomhSi p⇠ h{r }icomh{s}i

(RANG)
po p⇠ po

0

N(po1 | po | po2) p⇠ N(po1 | po0 | po2)

(RSELECT)

N(po1 | po | po2) p⇠ po

(RSEQL)
hRipo1hSi p⇠ hRwipo01hSi

hRipo1hSi; po2 p⇠ hRwipo01hSi; po2

(RSEQR)
hSipo2hT i p⇠ hSwipo02hTwi

hRipo1hSi; hSipo2hT i p⇠ hRipo1hSwi; hSwipo02hTwi

(RDEM)
Rw = {r } hRipo8 hSi p⇠ hRwipo08 hSwi for 8 = 1, 2

hRipo1hSi + hRipo2hSi p⇠ hRwipo01hSwi + hRwipo02hSwi

(RLOOP)
h� ipoh� i p⇠ h�wipo0h�wi �w = {8 }

h� ipo⇤h� i p⇠ h�wipo⇤h�wi

(RTRANS)
po1 p⇠ po2
po2 p⇠ po3

po1 p⇠ po3

(RCSQ)
hRipohSi p⇠ hRwwipo0hSwi
hRipohSi p⇠ hRwipo0hSwwi

(RGATHER)
R �0 (R1 [R2) S �0 (S1 [S2) sketch(po01) = sketch(po02)

hRipohSi p⇠ hR1ipo01hS1i hRipohSi p⇠ hR2ipo02hS2i
hRipohSi p⇠ hR1 [R2igather (po01, po02) hS1 [S2i

Fig. 6. Rules of realization logic.

(RSEQL), it is important that the new intermediary assertion matches the original intermediary
assertion. This does not have to be the case in (RSEQR), which uses the rule of consequence to
automatically weaken the postcondition on the left. As in realizability logic, Rule (RDEM) forces
us to commit to a predicate when reasoning about demonic choices. It also produces the same
postcondition (w in both branches. Rule (RLOOP) for rewriting loop bodies has a similar behavior.
The rule of consequence (RCSQ) is used like in realizability logic. The same is true for (RGATHER),
which uses function gather to recursively join the intermediary assertions in the proof outlines.
The de�nition is in the appendix. The need for this function stems from the fact that (RDEM) can
only work with single predicates. Rule (TRANS) is the transitivity of rewriting. This rule is needed
to combine rewrites, for example when rewriting the left and the right part of a sequence.

Realization logic always rewrites a proof outline into one that is weaker in the sense that it has
less synthesis options or, phrased di�erently, is closer to a program.

L���� 4.3. po p⇠ po
0 implies po �? po

0 .

The ordering po �? po
0 states that po0 has less versatile assertions than po and a sketch or even

program that can be derived from the sketch in po. The de�nition is by induction on the structure of
proof outlines. The base case is hRicomhSi �? hRwicomhSwi. The step cases are similar to the one
for choice: po1 + po2 �? po

0
1 + po

0
2 if po1 �? po

0
1 and po2 �? po

0
2. Non-terminals are an exception,

where we use N(po1 | po | po2) �? N(po1 | po0 | po2) if po �? po
0 . A proof outline over a

non-terminal is also stronger than a proof outline over a derivative, N(po1 | po | po2) �? po.
Realization logic also has a completeness property: proof outlines can be rewritten into all weaker

proof outlines that are derivable in realizability logic.

T������ 4.4 (C�����������). `0 po and `0 po
0 and po �? po

0 together imply po p⇠ po
0.

T������ 4.5 (C�����������).

`0 hRipohSi ^ `0 hR0ipo0hSi ^ hRipohSi �? hR0ipo0hS0i =) hRipohSi p⇠ hR0ipo0hS0i
A �nal guarantee that is interesting from an algorithmic point of view is that realization logic

provably does not need backtracking: from every proof outline and for every predicate in the

11

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

Anon.

non-terminal, we would like to share them in the various places the non-terminal is used. This is
made possible by Rule (SHARE) given in Figure 5. If we have already derived the triple h) iNh* i,
then we can eliminate the non-terminal from a program sketch and replace it by the pair h) ih* i.
The pair stands for the fact that we can synthesize a program that transforms) to* . Rule (SHARE) is
readily checked to be sound. However, it is a derived rule whose application can easily be mimicked
by Rule (ANG), at the cost of blowing-up the proof. An implementation would re�ne the rule so
that di�erent occurrences of the non-terminal can be replaced in di�erent ways. Moreover, one
would maintain a pointer to the subproof that should be inserted, to be able to derive the program
with the technique given next.

4 REALIZATION LOGIC
We de�ne realization logic, a program logic to derive programs from sketches. The key insight
is that a proof outline in realizability logic for the sketch of interest is helpful guidance to �nd a
program that solves the synthesis task. To make use of this guidance, realization logic rewrites the
given proof outline until a suitable program is found. Realization logic thus reasons over rewriting
steps of the form po p⇠ po

0 between proof outlines. The strategy behind the rewriting is to propagate
information about failed synthesis attempts backwards, and thereby iteratively eliminate predicates
from selections and productions from the de�nition of non-terminals.

As we need a precise understanding of proof outlines, we give the de�nition:

po ::= hRicomhSi | po; po | po + po | po⇤ | N(po) | (po | po) .
We write `0 po to indicate that the proof outline has been derived with realizability logic. The
assertions we track are the ones that have been used in the application of (SEQ), (LOOP), and (ANG).
The formal de�nition is in the appendix. We abuse the notation a bit and write hRipohSi to indicate
that R is the precondition and S is the postcondition of the proof outline po. This is well-de�ned,
because `0 po1 + po2 implies that po1 and po2 have the same pre- and postcondition.

The proof rules of realization logic are listed in Figure 6, we discuss them below. The rules give
the following soundness guarantee: if we start from a proof outline in realizability logic and rewrite
it to another proof outline, then also this proof outline can be derived with realizability logic.

T������ 4.1 (S��������). `0 po and po p⇠ po
0 together imply `0 po

0.

T������ 4.2 (S��������).

`0 hRipohSi ^ hRipohSi p⇠ hR0ipo0hS0i =) `0 hR0ipo0hS0i
This allows us to invoke the soundness of realizability logic from Theorem 3.1 and obtain the
desired semantic guarantee for the program we have derived.

A feature all rules share is that they are guided by the original proof outline: the selections in the
proof outline that results from rewriting are limited to the selections in the original proof outline.
To ease the notation, we use Rw to denote a selection that is known to be less versatile than R,
meaning R �0 Rw holds. This may be used repeatedly, so R �0 Rw �0 Rww.
The rules in Figure 6 rewrite the given proof outline in a compositional fashion. The base case

(RCOM) allows us to pick a pre- and postcondition from a selection. This is the moment we realize
that predicates from the precondition can be dropped because they are not needed to obtain the
postcondition, as shown in the introduction. We have to explicitly check the over-approximation
because realizability triples do not maintain the interplay between the predicates in the pre- and in
the postcondition. Using (RANG), we can rewrite proofs for the right-hand sides of non-terminals.
The heart of the calculus is (RSELECT), which allows us to replace non-terminals by their right-
hand sides. The Rules (RSEQL) and (RSEQR) rewrite the left resp. the right part of a sequence. In

10

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Realizability in Semantics-Guided Synthesis Done Eagerly

(RCOM)
»com…(r) �3 s R �0 {r } S �0 {s}

hRicomhSi p⇠ h{r }icomh{s}i

(RANG)
po p⇠ po

0

N(po1 | po | po2) p⇠ N(po1 | po0 | po2)

(RSELECT)

N(po1 | po | po2) p⇠ po

(RSEQL)
hRipo1hSi p⇠ hRwipo01hSi

hRipo1hSi; po2 p⇠ hRwipo01hSi; po2

(RSEQR)
hSipo2hT i p⇠ hSwipo02hTwi

hRipo1hSi; hSipo2hT i p⇠ hRipo1hSwi; hSwipo02hTwi

(RDEM)
Rw = {r } hRipo8 hSi p⇠ hRwipo08 hSwi for 8 = 1, 2

hRipo1hSi + hRipo2hSi p⇠ hRwipo01hSwi + hRwipo02hSwi

(RLOOP)
h� ipoh� i p⇠ h�wipo0h�wi �w = {8 }

h� ipo⇤h� i p⇠ h�wipo⇤h�wi

(RTRANS)
po1 p⇠ po2
po2 p⇠ po3

po1 p⇠ po3

(RCSQ)
hRipohSi p⇠ hRwwipo0hSwi
hRipohSi p⇠ hRwipo0hSwwi

(RGATHER)
R �0 (R1 [R2) S �0 (S1 [S2) sketch(po01) = sketch(po02)

hRipohSi p⇠ hR1ipo01hS1i hRipohSi p⇠ hR2ipo02hS2i
hRipohSi p⇠ hR1 [R2igather (po01, po02) hS1 [S2i

Fig. 6. Rules of realization logic.

us to commit to a predicate when reasoning about demonic choices. It also produces the same
postcondition (w in both branches. Rule (RLOOP) for rewriting loop bodies has a similar behavior.
The rule of consequence (RCSQ) is used like in realizability logic. The same is true for (RGATHER),
which uses function gather to recursively join the intermediary assertions in the proof outlines.
The de�nition is in the appendix. The need for this function stems from the fact that (RDEM) can
only work with single predicates. Rule (TRANS) is the transitivity of rewriting. This rule is needed
to combine rewrites, for example when rewriting the left and the right part of a sequence.

Realization logic always rewrites a proof outline into one that is weaker in the sense that it has
less synthesis options or, phrased di�erently, is closer to a program.

L���� 4.2. po p⇠ po
0 implies po �? po

0 .

The ordering po �? po
0 states that po0 has less versatile assertions than po and a sketch or even

program that can be derived from the sketch in po. The de�nition is by induction on the structure of
proof outlines. The base case is hRicomhSi �? hRwicomhSwi. The step cases are similar to the one
for choice: po1 + po2 �? po

0
1 + po

0
2 if po1 �? po

0
1 and po2 �? po

0
2. Non-terminals are an exception,

where we use N(po1 | po | po2) �? N(po1 | po0 | po2) if po �? po
0 . A proof outline over a

non-terminal is also stronger than a proof outline over a derivative, N(po1 | po | po2) �? po.
Realization logic also has a completeness property: proof outlines can be rewritten into all weaker

proof outlines that are derivable in realizability logic.

T������ 4.3 (C�����������). `0 po and `0 po
0 and po �? po

0 together imply po p⇠ po
0.

T������ 4.4 (C�����������).

`0 hRipohSi `0 hR0ipo0hSi ^ hRipohSi �? hR0ipo0hS0i =) hRipohSi p⇠ hR0ipo0hS0i
A �nal guarantee that is interesting from an algorithmic point of view is that realization logic

provably does not need backtracking: from every proof outline and for every predicate in the
postcondition, one can derive a program that satis�es this postcondition. By Theorem 4.1, the
guarantee continues to hold after a rewriting step (that should not remove the predicate of interest),
hence the name.

11

Memory Reclamation

￼32

top = TOS;
next = top.next;
CAS(TOS, top, next);
free(top);

data TOS

data

Memory Reclamation

￼33

top = TOS;
next = top.next;
CAS(TOS, top, next);
free(top);

data TOS

data

top

Memory Reclamation

￼34

top = TOS;
next = top.next;
CAS(TOS, top, next);
free(top);

data

TOSdata

top ❌

Memory Reclamation

￼35

top = TOS;
next = top.next;
CAS(TOS, top, next);
free(top);

data

TOSdata

top ❌

Unsafe Dereference

Memory Reclamation

￼36

top = TOS;
next = top.next;
CAS(TOS, top, next);
free(top);

data TOS

data

Memory Reclamation

￼37

top = TOS;
next = top.next;
CAS(TOS, top, next);
free(top);

data TOS

data

top

Memory Reclamation

￼38

top = TOS;
next = top.next;
CAS(TOS, top, next);
free(top);

data TOS

data

top

next

Memory Reclamation

￼39

top = TOS;
next = top.next;
CAS(TOS, top, next);
free(top);

data

TOSdata

top

next

❌

Memory Reclamation

￼40

top = TOS;
next = top.next;
CAS(TOS, top, next);
free(top);

data

data

top

next

❌

TOSdata

Memory Reclamation

￼41

top = TOS;
next = top.next;
CAS(TOS, top, next);
free(top);

data

data

top

next

data

TOS

Memory Reclamation

￼42

top = TOS;
next = top.next;
CAS(TOS, top, next);
free(top);

data

data

top

next

data

TOS

Memory Reclamation

￼43

top = TOS;
next = top.next;
CAS(TOS, top, next);
free(top);

data

data

top

next

data

TOS

⁉

❌

ABA

Safe Memory Reclamation (SMR)

￼44

Safe Memory Reclamation (SMR)

• Manual Memory Reclamation - very hard

￼44

Safe Memory Reclamation (SMR)

• Manual Memory Reclamation - very hard

• SMR Algorithms: e.g. Hazard Pointer, Epoch Based Reclamation

￼44

Safe Memory Reclamation (SMR)

• Manual Memory Reclamation - very hard

• SMR Algorithms: e.g. Hazard Pointer, Epoch Based Reclamation

￼44

free(-)

Safe Memory Reclamation (SMR)

• Manual Memory Reclamation - very hard

• SMR Algorithms: e.g. Hazard Pointer, Epoch Based Reclamation

￼45

free(-)

Safe Memory Reclamation (SMR)

• Manual Memory Reclamation - very hard

• SMR Algorithms: e.g. Hazard Pointer, Epoch Based Reclamation

￼45

free(-) retire(-) protect(-) unprotect(-)

Safe Memory Reclamation (SMR)

• Manual Memory Reclamation - very hard

• SMR Algorithms: e.g. Hazard Pointer, Epoch Based Reclamation

￼45

• Type system to verify memory safety with SMR [Meyer, Wolff POPL'19 '20]

free(-) retire(-) protect(-) unprotect(-)

Safe Memory Reclamation (SMR)

• Manual Memory Reclamation - very hard

• SMR Algorithms: e.g. Hazard Pointer, Epoch Based Reclamation

￼45

• Type system to verify memory safety with SMR [Meyer, Wolff POPL'19 '20]

free(-) retire(-) protect(-) unprotect(-)

@inv active(-)

Safe Memory Reclamation (SMR)

• Manual Memory Reclamation - very hard

• SMR Algorithms: e.g. Hazard Pointer, Epoch Based Reclamation

￼45

• Type system to verify memory safety with SMR [Meyer, Wolff POPL'19 '20]

free(-) retire(-) protect(-) unprotect(-)

@inv active(-) Predicates = Vars → 𝕋

Safe Memory Reclamation (SMR)

• Manual Memory Reclamation - very hard

• SMR Algorithms: e.g. Hazard Pointer, Epoch Based Reclamation

￼45

• Type system to verify memory safety with SMR [Meyer, Wolff POPL'19 '20]

free(-) retire(-) protect(-) unprotect(-)

@inv active(-) Predicates = Vars → 𝕋

Hazard Pointer: 5 base types

Memory Reclamation

￼46

top = TOS;
next = top.next;
CAS(TOS, top, next);
free(top);

data

data

top

next

data

TOS

⁉

❌

ABA

Memory Reclamation

￼47

N;
top = TOS;
N;
next = top.next;
N;
CAS(TOS, top, next);
N;
retire(top);
N;

data

data

top

next

data

TOS

⁉

❌

ABA

N ::= protect(top) | @inv active (TOS) | skip

Memory Reclamation

￼47

N;
top = TOS;
N;
next = top.next;
N;
CAS(TOS, top, next);
N;
retire(top);
N;

data

data

top

next

data

TOS

⁉

❌

N ::= protect(top) | @inv active (TOS) | skip

￼48

Contribution 3:
Instantiation on SMR Setting

Data
Structure

Treiber’s
Stack
Pop

Treiber’s
Stack
Push

Michael
and Scott’s

Queue
Enqueue

Michael
and Scott’s

Queue
Dequeue

ORVYY Set
Add

ORVYY Set
Remove

SMR
Algorithm

HP1  
(5 Base
Types)

HP1  
(5 Base
Types)

HP1  
(5 Base
Types)

HP2  
(8 Base
Types)

HP2  
(8 Base
Types)

HP2  
(8 Base
Types)

Time
(PO +
Synth)

< 0.1s < 0.1s < 0.1s < 7.5s < 0.9s < 0.4s

Max / Avg 
|R| 6 / 1.4 6 / 1.7 5 / 1.4 90 / 1.4 28 / 1.7 30 / 1.3

Conclusion

￼49

Conclusion
Summary
• 1: Realizability Logic

• 2: Realization Logic

• 3: Made Programs Memory Safe

￼49

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Realizability in Semantics-Guided Synthesis Done Eagerly

1 htruei N(x = 0 | x = 1); hG = 0,G = 1i
2 (assert(x==0) + assert(x==1))

3 hfaili

Fig. 4. Demonic choice.

(SHARE)
`0 h) iNh* i `0 hRisketch[N/h) ih* i]hSi

`0 hRisketchhSi

Fig. 5. Subproof sharing.

Having more predicates available makes a selection more versatile and having less predicates makes
a selection less versatile. It is also possible to have a more versatile selection with less predicates if
they are more precise. With this, ; is the least versatile and {;} is the most versatile selection.

The rules are sound and, together with a rule for the edge case of an empty precondition that we
give in the appendix, also complete.

T������ 3.1 (S�����A���C�������). `0 hRisketchhSi , |=0 hRisketchhSi .
P����. Soundness holds by an induction on the height of the proof tree. We argue for complete-

ness and consider |=0 hRisketchhSi. By the de�nition of validity, this means for every predicate
s 2 S there is a predicate r 2 R and a program prog 2 drv(sketch) so that |=3 {r}prog{s} holds. We
invoke the completeness of Hoare logic and obtain `3 {r}prog{s}. The derivation can be mimicked
in realizability logic and yields `0 hriproghsi. Since the program has been derived from sketch,
we can also obtain `0 hrisketchhsi with �nitely many applications of (ANG). Rule (GATHER) allows
us to join the triples hrisketchhsi and obtain the desired `0 hRisketchhSi. ⇤

3.3 Discussion
On SemGuS. The synthesis tasks we consider have the following input: the states, the commands,

and the semantics (States, COM, »�…) of the programming language, the non-terminals with their
production rules (N , prod), and the realizability triple hRisketchhSi of interest. In its original
formulation [23], SemGuS would be more liberal and allow the user to also de�ne the operators
(their syntax and their semantics) from which programs can be built. We �x those operators to
concatenation, choice, and Kleene star, instead. This allows us to work with an extension of Hoare
logic. To lift our approach to the more general setting, the user would have to specify the proof rules
that are sound for the new operators, which would be in-line with the approach in unrealizability
logic [22].

The reader may also note that we have not made assumptions about the correctness speci�cation.
In synthesis, it is common to work with sets of examples. The work on unrealizability logic has
shown that such sets can be captured by so-called vector assertions [22]. Vector assertions are
predicates of a particular form, and our construction of selections readily applies to them.

On search-based synthesis. Realizability logic is formulated such that it can be readily combined
with search-based synthesis. The point is that Rule (ANG) does not force us to consider all programs
a non-terminal can be rewritten to. Instead, we can consider a set of programs that appear most
promising, as can be judged from a probabilistic grammar [20].

On the implementation of non-terminals. A non-terminal may occur multiple times in a proof in
realizability logic, it may even occur recursively. Rather than duplicating the subproofs for this
non-terminal, we would like to share them in the various places the non-terminal is used. This is
made possible by Rule (SHARE) given in Figure 5. If we have already derived the triple h) iNh* i,
then we can eliminate the non-terminal from a program sketch and replace it by the pair h) ih* i.
The pair stands for the fact that we can synthesize a program that transforms) to* . Rule (SHARE) is
readily checked to be sound. However, it is a derived rule whose application can easily be mimicked

9

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

Anon.

non-terminal, we would like to share them in the various places the non-terminal is used. This is
made possible by Rule (SHARE) given in Figure 5. If we have already derived the triple h) iNh* i,
then we can eliminate the non-terminal from a program sketch and replace it by the pair h) ih* i.
The pair stands for the fact that we can synthesize a program that transforms) to* . Rule (SHARE) is
readily checked to be sound. However, it is a derived rule whose application can easily be mimicked
by Rule (ANG), at the cost of blowing-up the proof. An implementation would re�ne the rule so
that di�erent occurrences of the non-terminal can be replaced in di�erent ways. Moreover, one
would maintain a pointer to the subproof that should be inserted, to be able to derive the program
with the technique given next.

4 REALIZATION LOGIC
We de�ne realization logic, a program logic to derive programs from sketches. The key insight
is that a proof outline in realizability logic for the sketch of interest is helpful guidance to �nd a
program that solves the synthesis task. To make use of this guidance, realization logic rewrites the
given proof outline until a suitable program is found. Realization logic thus reasons over rewriting
steps of the form po p⇠ po

0 between proof outlines. The strategy behind the rewriting is to propagate
information about failed synthesis attempts backwards, and thereby iteratively eliminate predicates
from selections and productions from the de�nition of non-terminals.

As we need a precise understanding of proof outlines, we give the de�nition:

po ::= hRicomhSi | po; po | po + po | po⇤ | N(po) | (po | po) .
We write `0 po to indicate that the proof outline has been derived with realizability logic. The
assertions we track are the ones that have been used in the application of (SEQ), (LOOP), and (ANG).
The formal de�nition is in the appendix. We abuse the notation a bit and write hRipohSi to indicate
that R is the precondition and S is the postcondition of the proof outline po. This is well-de�ned,
because `0 po1 + po2 implies that po1 and po2 have the same pre- and postcondition.

The proof rules of realization logic are listed in Figure 6, we discuss them below. The rules give
the following soundness guarantee: if we start from a proof outline in realizability logic and rewrite
it to another proof outline, then also this proof outline can be derived with realizability logic.

T������ 4.1 (S��������). `0 po and po p⇠ po
0 together imply `0 po

0.

T������ 4.2 (S��������).

`0 hRipohSi ^ hRipohSi p⇠ hR0ipo0hS0i =) `0 hR0ipo0hS0i
This allows us to invoke the soundness of realizability logic from Theorem 3.1 and obtain the
desired semantic guarantee for the program we have derived.

A feature all rules share is that they are guided by the original proof outline: the selections in the
proof outline that results from rewriting are limited to the selections in the original proof outline.
To ease the notation, we use Rw to denote a selection that is known to be less versatile than R,
meaning R �0 Rw holds. This may be used repeatedly, so R �0 Rw �0 Rww.
The rules in Figure 6 rewrite the given proof outline in a compositional fashion. The base case

(RCOM) allows us to pick a pre- and postcondition from a selection. This is the moment we realize
that predicates from the precondition can be dropped because they are not needed to obtain the
postcondition, as shown in the introduction. We have to explicitly check the over-approximation
because realizability triples do not maintain the interplay between the predicates in the pre- and in
the postcondition. Using (RANG), we can rewrite proofs for the right-hand sides of non-terminals.
The heart of the calculus is (RSELECT), which allows us to replace non-terminals by their right-
hand sides. The Rules (RSEQL) and (RSEQR) rewrite the left resp. the right part of a sequence. In

10

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

Anon.

non-terminal, we would like to share them in the various places the non-terminal is used. This is
made possible by Rule (SHARE) given in Figure 5. If we have already derived the triple h) iNh* i,
then we can eliminate the non-terminal from a program sketch and replace it by the pair h) ih* i.
The pair stands for the fact that we can synthesize a program that transforms) to* . Rule (SHARE) is
readily checked to be sound. However, it is a derived rule whose application can easily be mimicked
by Rule (ANG), at the cost of blowing-up the proof. An implementation would re�ne the rule so
that di�erent occurrences of the non-terminal can be replaced in di�erent ways. Moreover, one
would maintain a pointer to the subproof that should be inserted, to be able to derive the program
with the technique given next.

4 REALIZATION LOGIC
We de�ne realization logic, a program logic to derive programs from sketches. The key insight
is that a proof outline in realizability logic for the sketch of interest is helpful guidance to �nd a
program that solves the synthesis task. To make use of this guidance, realization logic rewrites the
given proof outline until a suitable program is found. Realization logic thus reasons over rewriting
steps of the form po p⇠ po

0 between proof outlines. The strategy behind the rewriting is to propagate
information about failed synthesis attempts backwards, and thereby iteratively eliminate predicates
from selections and productions from the de�nition of non-terminals.

As we need a precise understanding of proof outlines, we give the de�nition:

po ::= hRicomhSi | po; po | po + po | po⇤ | N(po) | (po | po) .
We write `0 po to indicate that the proof outline has been derived with realizability logic. The
assertions we track are the ones that have been used in the application of (SEQ), (LOOP), and (ANG).
The formal de�nition is in the appendix. We abuse the notation a bit and write hRipohSi to indicate
that R is the precondition and S is the postcondition of the proof outline po. This is well-de�ned,
because `0 po1 + po2 implies that po1 and po2 have the same pre- and postcondition.

The proof rules of realization logic are listed in Figure 6, we discuss them below. The rules give
the following soundness guarantee: if we start from a proof outline in realizability logic and rewrite
it to another proof outline, then also this proof outline can be derived with realizability logic.

T������ 4.1 (S��������). `0 po and po p⇠ po
0 together imply `0 po

0.

T������ 4.2 (S��������).

`0 hRipohSi ^ hRipohSi p⇠ hR0ipo0hS0i =) `0 hR0ipo0hS0i
This allows us to invoke the soundness of realizability logic from Theorem 3.1 and obtain the
desired semantic guarantee for the program we have derived.

A feature all rules share is that they are guided by the original proof outline: the selections in the
proof outline that results from rewriting are limited to the selections in the original proof outline.
To ease the notation, we use Rw to denote a selection that is known to be less versatile than R,
meaning R �0 Rw holds. This may be used repeatedly, so R �0 Rw �0 Rww.
The rules in Figure 6 rewrite the given proof outline in a compositional fashion. The base case

(RCOM) allows us to pick a pre- and postcondition from a selection. This is the moment we realize
that predicates from the precondition can be dropped because they are not needed to obtain the
postcondition, as shown in the introduction. We have to explicitly check the over-approximation
because realizability triples do not maintain the interplay between the predicates in the pre- and in
the postcondition. Using (RANG), we can rewrite proofs for the right-hand sides of non-terminals.
The heart of the calculus is (RSELECT), which allows us to replace non-terminals by their right-
hand sides. The Rules (RSEQL) and (RSEQR) rewrite the left resp. the right part of a sequence. In

10

Conclusion
Summary
• 1: Realizability Logic

• 2: Realization Logic

• 3: Made Programs Memory Safe

￼49

Future Work
• SyGuS benchmarks

• Assertion Language

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Realizability in Semantics-Guided Synthesis Done Eagerly

1 htruei N(x = 0 | x = 1); hG = 0,G = 1i
2 (assert(x==0) + assert(x==1))

3 hfaili

Fig. 4. Demonic choice.

(SHARE)
`0 h) iNh* i `0 hRisketch[N/h) ih* i]hSi

`0 hRisketchhSi

Fig. 5. Subproof sharing.

Having more predicates available makes a selection more versatile and having less predicates makes
a selection less versatile. It is also possible to have a more versatile selection with less predicates if
they are more precise. With this, ; is the least versatile and {;} is the most versatile selection.

The rules are sound and, together with a rule for the edge case of an empty precondition that we
give in the appendix, also complete.

T������ 3.1 (S�����A���C�������). `0 hRisketchhSi , |=0 hRisketchhSi .
P����. Soundness holds by an induction on the height of the proof tree. We argue for complete-

ness and consider |=0 hRisketchhSi. By the de�nition of validity, this means for every predicate
s 2 S there is a predicate r 2 R and a program prog 2 drv(sketch) so that |=3 {r}prog{s} holds. We
invoke the completeness of Hoare logic and obtain `3 {r}prog{s}. The derivation can be mimicked
in realizability logic and yields `0 hriproghsi. Since the program has been derived from sketch,
we can also obtain `0 hrisketchhsi with �nitely many applications of (ANG). Rule (GATHER) allows
us to join the triples hrisketchhsi and obtain the desired `0 hRisketchhSi. ⇤

3.3 Discussion
On SemGuS. The synthesis tasks we consider have the following input: the states, the commands,

and the semantics (States, COM, »�…) of the programming language, the non-terminals with their
production rules (N , prod), and the realizability triple hRisketchhSi of interest. In its original
formulation [23], SemGuS would be more liberal and allow the user to also de�ne the operators
(their syntax and their semantics) from which programs can be built. We �x those operators to
concatenation, choice, and Kleene star, instead. This allows us to work with an extension of Hoare
logic. To lift our approach to the more general setting, the user would have to specify the proof rules
that are sound for the new operators, which would be in-line with the approach in unrealizability
logic [22].

The reader may also note that we have not made assumptions about the correctness speci�cation.
In synthesis, it is common to work with sets of examples. The work on unrealizability logic has
shown that such sets can be captured by so-called vector assertions [22]. Vector assertions are
predicates of a particular form, and our construction of selections readily applies to them.

On search-based synthesis. Realizability logic is formulated such that it can be readily combined
with search-based synthesis. The point is that Rule (ANG) does not force us to consider all programs
a non-terminal can be rewritten to. Instead, we can consider a set of programs that appear most
promising, as can be judged from a probabilistic grammar [20].

On the implementation of non-terminals. A non-terminal may occur multiple times in a proof in
realizability logic, it may even occur recursively. Rather than duplicating the subproofs for this
non-terminal, we would like to share them in the various places the non-terminal is used. This is
made possible by Rule (SHARE) given in Figure 5. If we have already derived the triple h) iNh* i,
then we can eliminate the non-terminal from a program sketch and replace it by the pair h) ih* i.
The pair stands for the fact that we can synthesize a program that transforms) to* . Rule (SHARE) is
readily checked to be sound. However, it is a derived rule whose application can easily be mimicked

9

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

Anon.

non-terminal, we would like to share them in the various places the non-terminal is used. This is
made possible by Rule (SHARE) given in Figure 5. If we have already derived the triple h) iNh* i,
then we can eliminate the non-terminal from a program sketch and replace it by the pair h) ih* i.
The pair stands for the fact that we can synthesize a program that transforms) to* . Rule (SHARE) is
readily checked to be sound. However, it is a derived rule whose application can easily be mimicked
by Rule (ANG), at the cost of blowing-up the proof. An implementation would re�ne the rule so
that di�erent occurrences of the non-terminal can be replaced in di�erent ways. Moreover, one
would maintain a pointer to the subproof that should be inserted, to be able to derive the program
with the technique given next.

4 REALIZATION LOGIC
We de�ne realization logic, a program logic to derive programs from sketches. The key insight
is that a proof outline in realizability logic for the sketch of interest is helpful guidance to �nd a
program that solves the synthesis task. To make use of this guidance, realization logic rewrites the
given proof outline until a suitable program is found. Realization logic thus reasons over rewriting
steps of the form po p⇠ po

0 between proof outlines. The strategy behind the rewriting is to propagate
information about failed synthesis attempts backwards, and thereby iteratively eliminate predicates
from selections and productions from the de�nition of non-terminals.

As we need a precise understanding of proof outlines, we give the de�nition:

po ::= hRicomhSi | po; po | po + po | po⇤ | N(po) | (po | po) .
We write `0 po to indicate that the proof outline has been derived with realizability logic. The
assertions we track are the ones that have been used in the application of (SEQ), (LOOP), and (ANG).
The formal de�nition is in the appendix. We abuse the notation a bit and write hRipohSi to indicate
that R is the precondition and S is the postcondition of the proof outline po. This is well-de�ned,
because `0 po1 + po2 implies that po1 and po2 have the same pre- and postcondition.

The proof rules of realization logic are listed in Figure 6, we discuss them below. The rules give
the following soundness guarantee: if we start from a proof outline in realizability logic and rewrite
it to another proof outline, then also this proof outline can be derived with realizability logic.

T������ 4.1 (S��������). `0 po and po p⇠ po
0 together imply `0 po

0.

T������ 4.2 (S��������).

`0 hRipohSi ^ hRipohSi p⇠ hR0ipo0hS0i =) `0 hR0ipo0hS0i
This allows us to invoke the soundness of realizability logic from Theorem 3.1 and obtain the
desired semantic guarantee for the program we have derived.

A feature all rules share is that they are guided by the original proof outline: the selections in the
proof outline that results from rewriting are limited to the selections in the original proof outline.
To ease the notation, we use Rw to denote a selection that is known to be less versatile than R,
meaning R �0 Rw holds. This may be used repeatedly, so R �0 Rw �0 Rww.
The rules in Figure 6 rewrite the given proof outline in a compositional fashion. The base case

(RCOM) allows us to pick a pre- and postcondition from a selection. This is the moment we realize
that predicates from the precondition can be dropped because they are not needed to obtain the
postcondition, as shown in the introduction. We have to explicitly check the over-approximation
because realizability triples do not maintain the interplay between the predicates in the pre- and in
the postcondition. Using (RANG), we can rewrite proofs for the right-hand sides of non-terminals.
The heart of the calculus is (RSELECT), which allows us to replace non-terminals by their right-
hand sides. The Rules (RSEQL) and (RSEQR) rewrite the left resp. the right part of a sequence. In

10

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

Anon.

non-terminal, we would like to share them in the various places the non-terminal is used. This is
made possible by Rule (SHARE) given in Figure 5. If we have already derived the triple h) iNh* i,
then we can eliminate the non-terminal from a program sketch and replace it by the pair h) ih* i.
The pair stands for the fact that we can synthesize a program that transforms) to* . Rule (SHARE) is
readily checked to be sound. However, it is a derived rule whose application can easily be mimicked
by Rule (ANG), at the cost of blowing-up the proof. An implementation would re�ne the rule so
that di�erent occurrences of the non-terminal can be replaced in di�erent ways. Moreover, one
would maintain a pointer to the subproof that should be inserted, to be able to derive the program
with the technique given next.

4 REALIZATION LOGIC
We de�ne realization logic, a program logic to derive programs from sketches. The key insight
is that a proof outline in realizability logic for the sketch of interest is helpful guidance to �nd a
program that solves the synthesis task. To make use of this guidance, realization logic rewrites the
given proof outline until a suitable program is found. Realization logic thus reasons over rewriting
steps of the form po p⇠ po

0 between proof outlines. The strategy behind the rewriting is to propagate
information about failed synthesis attempts backwards, and thereby iteratively eliminate predicates
from selections and productions from the de�nition of non-terminals.

As we need a precise understanding of proof outlines, we give the de�nition:

po ::= hRicomhSi | po; po | po + po | po⇤ | N(po) | (po | po) .
We write `0 po to indicate that the proof outline has been derived with realizability logic. The
assertions we track are the ones that have been used in the application of (SEQ), (LOOP), and (ANG).
The formal de�nition is in the appendix. We abuse the notation a bit and write hRipohSi to indicate
that R is the precondition and S is the postcondition of the proof outline po. This is well-de�ned,
because `0 po1 + po2 implies that po1 and po2 have the same pre- and postcondition.

The proof rules of realization logic are listed in Figure 6, we discuss them below. The rules give
the following soundness guarantee: if we start from a proof outline in realizability logic and rewrite
it to another proof outline, then also this proof outline can be derived with realizability logic.

T������ 4.1 (S��������). `0 po and po p⇠ po
0 together imply `0 po

0.

T������ 4.2 (S��������).

`0 hRipohSi ^ hRipohSi p⇠ hR0ipo0hS0i =) `0 hR0ipo0hS0i
This allows us to invoke the soundness of realizability logic from Theorem 3.1 and obtain the
desired semantic guarantee for the program we have derived.

A feature all rules share is that they are guided by the original proof outline: the selections in the
proof outline that results from rewriting are limited to the selections in the original proof outline.
To ease the notation, we use Rw to denote a selection that is known to be less versatile than R,
meaning R �0 Rw holds. This may be used repeatedly, so R �0 Rw �0 Rww.
The rules in Figure 6 rewrite the given proof outline in a compositional fashion. The base case

(RCOM) allows us to pick a pre- and postcondition from a selection. This is the moment we realize
that predicates from the precondition can be dropped because they are not needed to obtain the
postcondition, as shown in the introduction. We have to explicitly check the over-approximation
because realizability triples do not maintain the interplay between the predicates in the pre- and in
the postcondition. Using (RANG), we can rewrite proofs for the right-hand sides of non-terminals.
The heart of the calculus is (RSELECT), which allows us to replace non-terminals by their right-
hand sides. The Rules (RSEQL) and (RSEQR) rewrite the left resp. the right part of a sequence. In

10

Conclusion
Summary
• 1: Realizability Logic

• 2: Realization Logic

• 3: Made Programs Memory Safe

￼49

Future Work
• SyGuS benchmarks

• Assertion Language

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Realizability in Semantics-Guided Synthesis Done Eagerly

1 htruei N(x = 0 | x = 1); hG = 0,G = 1i
2 (assert(x==0) + assert(x==1))

3 hfaili

Fig. 4. Demonic choice.

(SHARE)
`0 h) iNh* i `0 hRisketch[N/h) ih* i]hSi

`0 hRisketchhSi

Fig. 5. Subproof sharing.

Having more predicates available makes a selection more versatile and having less predicates makes
a selection less versatile. It is also possible to have a more versatile selection with less predicates if
they are more precise. With this, ; is the least versatile and {;} is the most versatile selection.

The rules are sound and, together with a rule for the edge case of an empty precondition that we
give in the appendix, also complete.

T������ 3.1 (S�����A���C�������). `0 hRisketchhSi , |=0 hRisketchhSi .
P����. Soundness holds by an induction on the height of the proof tree. We argue for complete-

ness and consider |=0 hRisketchhSi. By the de�nition of validity, this means for every predicate
s 2 S there is a predicate r 2 R and a program prog 2 drv(sketch) so that |=3 {r}prog{s} holds. We
invoke the completeness of Hoare logic and obtain `3 {r}prog{s}. The derivation can be mimicked
in realizability logic and yields `0 hriproghsi. Since the program has been derived from sketch,
we can also obtain `0 hrisketchhsi with �nitely many applications of (ANG). Rule (GATHER) allows
us to join the triples hrisketchhsi and obtain the desired `0 hRisketchhSi. ⇤

3.3 Discussion
On SemGuS. The synthesis tasks we consider have the following input: the states, the commands,

and the semantics (States, COM, »�…) of the programming language, the non-terminals with their
production rules (N , prod), and the realizability triple hRisketchhSi of interest. In its original
formulation [23], SemGuS would be more liberal and allow the user to also de�ne the operators
(their syntax and their semantics) from which programs can be built. We �x those operators to
concatenation, choice, and Kleene star, instead. This allows us to work with an extension of Hoare
logic. To lift our approach to the more general setting, the user would have to specify the proof rules
that are sound for the new operators, which would be in-line with the approach in unrealizability
logic [22].

The reader may also note that we have not made assumptions about the correctness speci�cation.
In synthesis, it is common to work with sets of examples. The work on unrealizability logic has
shown that such sets can be captured by so-called vector assertions [22]. Vector assertions are
predicates of a particular form, and our construction of selections readily applies to them.

On search-based synthesis. Realizability logic is formulated such that it can be readily combined
with search-based synthesis. The point is that Rule (ANG) does not force us to consider all programs
a non-terminal can be rewritten to. Instead, we can consider a set of programs that appear most
promising, as can be judged from a probabilistic grammar [20].

On the implementation of non-terminals. A non-terminal may occur multiple times in a proof in
realizability logic, it may even occur recursively. Rather than duplicating the subproofs for this
non-terminal, we would like to share them in the various places the non-terminal is used. This is
made possible by Rule (SHARE) given in Figure 5. If we have already derived the triple h) iNh* i,
then we can eliminate the non-terminal from a program sketch and replace it by the pair h) ih* i.
The pair stands for the fact that we can synthesize a program that transforms) to* . Rule (SHARE) is
readily checked to be sound. However, it is a derived rule whose application can easily be mimicked

9

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

Anon.

non-terminal, we would like to share them in the various places the non-terminal is used. This is
made possible by Rule (SHARE) given in Figure 5. If we have already derived the triple h) iNh* i,
then we can eliminate the non-terminal from a program sketch and replace it by the pair h) ih* i.
The pair stands for the fact that we can synthesize a program that transforms) to* . Rule (SHARE) is
readily checked to be sound. However, it is a derived rule whose application can easily be mimicked
by Rule (ANG), at the cost of blowing-up the proof. An implementation would re�ne the rule so
that di�erent occurrences of the non-terminal can be replaced in di�erent ways. Moreover, one
would maintain a pointer to the subproof that should be inserted, to be able to derive the program
with the technique given next.

4 REALIZATION LOGIC
We de�ne realization logic, a program logic to derive programs from sketches. The key insight
is that a proof outline in realizability logic for the sketch of interest is helpful guidance to �nd a
program that solves the synthesis task. To make use of this guidance, realization logic rewrites the
given proof outline until a suitable program is found. Realization logic thus reasons over rewriting
steps of the form po p⇠ po

0 between proof outlines. The strategy behind the rewriting is to propagate
information about failed synthesis attempts backwards, and thereby iteratively eliminate predicates
from selections and productions from the de�nition of non-terminals.

As we need a precise understanding of proof outlines, we give the de�nition:

po ::= hRicomhSi | po; po | po + po | po⇤ | N(po) | (po | po) .
We write `0 po to indicate that the proof outline has been derived with realizability logic. The
assertions we track are the ones that have been used in the application of (SEQ), (LOOP), and (ANG).
The formal de�nition is in the appendix. We abuse the notation a bit and write hRipohSi to indicate
that R is the precondition and S is the postcondition of the proof outline po. This is well-de�ned,
because `0 po1 + po2 implies that po1 and po2 have the same pre- and postcondition.

The proof rules of realization logic are listed in Figure 6, we discuss them below. The rules give
the following soundness guarantee: if we start from a proof outline in realizability logic and rewrite
it to another proof outline, then also this proof outline can be derived with realizability logic.

T������ 4.1 (S��������). `0 po and po p⇠ po
0 together imply `0 po

0.

T������ 4.2 (S��������).

`0 hRipohSi ^ hRipohSi p⇠ hR0ipo0hS0i =) `0 hR0ipo0hS0i
This allows us to invoke the soundness of realizability logic from Theorem 3.1 and obtain the
desired semantic guarantee for the program we have derived.

A feature all rules share is that they are guided by the original proof outline: the selections in the
proof outline that results from rewriting are limited to the selections in the original proof outline.
To ease the notation, we use Rw to denote a selection that is known to be less versatile than R,
meaning R �0 Rw holds. This may be used repeatedly, so R �0 Rw �0 Rww.
The rules in Figure 6 rewrite the given proof outline in a compositional fashion. The base case

(RCOM) allows us to pick a pre- and postcondition from a selection. This is the moment we realize
that predicates from the precondition can be dropped because they are not needed to obtain the
postcondition, as shown in the introduction. We have to explicitly check the over-approximation
because realizability triples do not maintain the interplay between the predicates in the pre- and in
the postcondition. Using (RANG), we can rewrite proofs for the right-hand sides of non-terminals.
The heart of the calculus is (RSELECT), which allows us to replace non-terminals by their right-
hand sides. The Rules (RSEQL) and (RSEQR) rewrite the left resp. the right part of a sequence. In

10

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

Anon.

non-terminal, we would like to share them in the various places the non-terminal is used. This is
made possible by Rule (SHARE) given in Figure 5. If we have already derived the triple h) iNh* i,
then we can eliminate the non-terminal from a program sketch and replace it by the pair h) ih* i.
The pair stands for the fact that we can synthesize a program that transforms) to* . Rule (SHARE) is
readily checked to be sound. However, it is a derived rule whose application can easily be mimicked
by Rule (ANG), at the cost of blowing-up the proof. An implementation would re�ne the rule so
that di�erent occurrences of the non-terminal can be replaced in di�erent ways. Moreover, one
would maintain a pointer to the subproof that should be inserted, to be able to derive the program
with the technique given next.

4 REALIZATION LOGIC
We de�ne realization logic, a program logic to derive programs from sketches. The key insight
is that a proof outline in realizability logic for the sketch of interest is helpful guidance to �nd a
program that solves the synthesis task. To make use of this guidance, realization logic rewrites the
given proof outline until a suitable program is found. Realization logic thus reasons over rewriting
steps of the form po p⇠ po

0 between proof outlines. The strategy behind the rewriting is to propagate
information about failed synthesis attempts backwards, and thereby iteratively eliminate predicates
from selections and productions from the de�nition of non-terminals.

As we need a precise understanding of proof outlines, we give the de�nition:

po ::= hRicomhSi | po; po | po + po | po⇤ | N(po) | (po | po) .
We write `0 po to indicate that the proof outline has been derived with realizability logic. The
assertions we track are the ones that have been used in the application of (SEQ), (LOOP), and (ANG).
The formal de�nition is in the appendix. We abuse the notation a bit and write hRipohSi to indicate
that R is the precondition and S is the postcondition of the proof outline po. This is well-de�ned,
because `0 po1 + po2 implies that po1 and po2 have the same pre- and postcondition.

The proof rules of realization logic are listed in Figure 6, we discuss them below. The rules give
the following soundness guarantee: if we start from a proof outline in realizability logic and rewrite
it to another proof outline, then also this proof outline can be derived with realizability logic.

T������ 4.1 (S��������). `0 po and po p⇠ po
0 together imply `0 po

0.

T������ 4.2 (S��������).

`0 hRipohSi ^ hRipohSi p⇠ hR0ipo0hS0i =) `0 hR0ipo0hS0i
This allows us to invoke the soundness of realizability logic from Theorem 3.1 and obtain the
desired semantic guarantee for the program we have derived.

A feature all rules share is that they are guided by the original proof outline: the selections in the
proof outline that results from rewriting are limited to the selections in the original proof outline.
To ease the notation, we use Rw to denote a selection that is known to be less versatile than R,
meaning R �0 Rw holds. This may be used repeatedly, so R �0 Rw �0 Rww.
The rules in Figure 6 rewrite the given proof outline in a compositional fashion. The base case

(RCOM) allows us to pick a pre- and postcondition from a selection. This is the moment we realize
that predicates from the precondition can be dropped because they are not needed to obtain the
postcondition, as shown in the introduction. We have to explicitly check the over-approximation
because realizability triples do not maintain the interplay between the predicates in the pre- and in
the postcondition. Using (RANG), we can rewrite proofs for the right-hand sides of non-terminals.
The heart of the calculus is (RSELECT), which allows us to replace non-terminals by their right-
hand sides. The Rules (RSEQL) and (RSEQR) rewrite the left resp. the right part of a sequence. In

10

⟨x = 0 ∧ y = 0, x = 0 ∧ y = 1⟩

Conclusion
Summary
• 1: Realizability Logic

• 2: Realization Logic

• 3: Made Programs Memory Safe

￼49

Future Work
• SyGuS benchmarks

• Assertion Language

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Realizability in Semantics-Guided Synthesis Done Eagerly

1 htruei N(x = 0 | x = 1); hG = 0,G = 1i
2 (assert(x==0) + assert(x==1))

3 hfaili

Fig. 4. Demonic choice.

(SHARE)
`0 h) iNh* i `0 hRisketch[N/h) ih* i]hSi

`0 hRisketchhSi

Fig. 5. Subproof sharing.

Having more predicates available makes a selection more versatile and having less predicates makes
a selection less versatile. It is also possible to have a more versatile selection with less predicates if
they are more precise. With this, ; is the least versatile and {;} is the most versatile selection.

The rules are sound and, together with a rule for the edge case of an empty precondition that we
give in the appendix, also complete.

T������ 3.1 (S�����A���C�������). `0 hRisketchhSi , |=0 hRisketchhSi .
P����. Soundness holds by an induction on the height of the proof tree. We argue for complete-

ness and consider |=0 hRisketchhSi. By the de�nition of validity, this means for every predicate
s 2 S there is a predicate r 2 R and a program prog 2 drv(sketch) so that |=3 {r}prog{s} holds. We
invoke the completeness of Hoare logic and obtain `3 {r}prog{s}. The derivation can be mimicked
in realizability logic and yields `0 hriproghsi. Since the program has been derived from sketch,
we can also obtain `0 hrisketchhsi with �nitely many applications of (ANG). Rule (GATHER) allows
us to join the triples hrisketchhsi and obtain the desired `0 hRisketchhSi. ⇤

3.3 Discussion
On SemGuS. The synthesis tasks we consider have the following input: the states, the commands,

and the semantics (States, COM, »�…) of the programming language, the non-terminals with their
production rules (N , prod), and the realizability triple hRisketchhSi of interest. In its original
formulation [23], SemGuS would be more liberal and allow the user to also de�ne the operators
(their syntax and their semantics) from which programs can be built. We �x those operators to
concatenation, choice, and Kleene star, instead. This allows us to work with an extension of Hoare
logic. To lift our approach to the more general setting, the user would have to specify the proof rules
that are sound for the new operators, which would be in-line with the approach in unrealizability
logic [22].

The reader may also note that we have not made assumptions about the correctness speci�cation.
In synthesis, it is common to work with sets of examples. The work on unrealizability logic has
shown that such sets can be captured by so-called vector assertions [22]. Vector assertions are
predicates of a particular form, and our construction of selections readily applies to them.

On search-based synthesis. Realizability logic is formulated such that it can be readily combined
with search-based synthesis. The point is that Rule (ANG) does not force us to consider all programs
a non-terminal can be rewritten to. Instead, we can consider a set of programs that appear most
promising, as can be judged from a probabilistic grammar [20].

On the implementation of non-terminals. A non-terminal may occur multiple times in a proof in
realizability logic, it may even occur recursively. Rather than duplicating the subproofs for this
non-terminal, we would like to share them in the various places the non-terminal is used. This is
made possible by Rule (SHARE) given in Figure 5. If we have already derived the triple h) iNh* i,
then we can eliminate the non-terminal from a program sketch and replace it by the pair h) ih* i.
The pair stands for the fact that we can synthesize a program that transforms) to* . Rule (SHARE) is
readily checked to be sound. However, it is a derived rule whose application can easily be mimicked

9

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

Anon.

non-terminal, we would like to share them in the various places the non-terminal is used. This is
made possible by Rule (SHARE) given in Figure 5. If we have already derived the triple h) iNh* i,
then we can eliminate the non-terminal from a program sketch and replace it by the pair h) ih* i.
The pair stands for the fact that we can synthesize a program that transforms) to* . Rule (SHARE) is
readily checked to be sound. However, it is a derived rule whose application can easily be mimicked
by Rule (ANG), at the cost of blowing-up the proof. An implementation would re�ne the rule so
that di�erent occurrences of the non-terminal can be replaced in di�erent ways. Moreover, one
would maintain a pointer to the subproof that should be inserted, to be able to derive the program
with the technique given next.

4 REALIZATION LOGIC
We de�ne realization logic, a program logic to derive programs from sketches. The key insight
is that a proof outline in realizability logic for the sketch of interest is helpful guidance to �nd a
program that solves the synthesis task. To make use of this guidance, realization logic rewrites the
given proof outline until a suitable program is found. Realization logic thus reasons over rewriting
steps of the form po p⇠ po

0 between proof outlines. The strategy behind the rewriting is to propagate
information about failed synthesis attempts backwards, and thereby iteratively eliminate predicates
from selections and productions from the de�nition of non-terminals.

As we need a precise understanding of proof outlines, we give the de�nition:

po ::= hRicomhSi | po; po | po + po | po⇤ | N(po) | (po | po) .
We write `0 po to indicate that the proof outline has been derived with realizability logic. The
assertions we track are the ones that have been used in the application of (SEQ), (LOOP), and (ANG).
The formal de�nition is in the appendix. We abuse the notation a bit and write hRipohSi to indicate
that R is the precondition and S is the postcondition of the proof outline po. This is well-de�ned,
because `0 po1 + po2 implies that po1 and po2 have the same pre- and postcondition.

The proof rules of realization logic are listed in Figure 6, we discuss them below. The rules give
the following soundness guarantee: if we start from a proof outline in realizability logic and rewrite
it to another proof outline, then also this proof outline can be derived with realizability logic.

T������ 4.1 (S��������). `0 po and po p⇠ po
0 together imply `0 po

0.

T������ 4.2 (S��������).

`0 hRipohSi ^ hRipohSi p⇠ hR0ipo0hS0i =) `0 hR0ipo0hS0i
This allows us to invoke the soundness of realizability logic from Theorem 3.1 and obtain the
desired semantic guarantee for the program we have derived.

A feature all rules share is that they are guided by the original proof outline: the selections in the
proof outline that results from rewriting are limited to the selections in the original proof outline.
To ease the notation, we use Rw to denote a selection that is known to be less versatile than R,
meaning R �0 Rw holds. This may be used repeatedly, so R �0 Rw �0 Rww.
The rules in Figure 6 rewrite the given proof outline in a compositional fashion. The base case

(RCOM) allows us to pick a pre- and postcondition from a selection. This is the moment we realize
that predicates from the precondition can be dropped because they are not needed to obtain the
postcondition, as shown in the introduction. We have to explicitly check the over-approximation
because realizability triples do not maintain the interplay between the predicates in the pre- and in
the postcondition. Using (RANG), we can rewrite proofs for the right-hand sides of non-terminals.
The heart of the calculus is (RSELECT), which allows us to replace non-terminals by their right-
hand sides. The Rules (RSEQL) and (RSEQR) rewrite the left resp. the right part of a sequence. In

10

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

Anon.

non-terminal, we would like to share them in the various places the non-terminal is used. This is
made possible by Rule (SHARE) given in Figure 5. If we have already derived the triple h) iNh* i,
then we can eliminate the non-terminal from a program sketch and replace it by the pair h) ih* i.
The pair stands for the fact that we can synthesize a program that transforms) to* . Rule (SHARE) is
readily checked to be sound. However, it is a derived rule whose application can easily be mimicked
by Rule (ANG), at the cost of blowing-up the proof. An implementation would re�ne the rule so
that di�erent occurrences of the non-terminal can be replaced in di�erent ways. Moreover, one
would maintain a pointer to the subproof that should be inserted, to be able to derive the program
with the technique given next.

4 REALIZATION LOGIC
We de�ne realization logic, a program logic to derive programs from sketches. The key insight
is that a proof outline in realizability logic for the sketch of interest is helpful guidance to �nd a
program that solves the synthesis task. To make use of this guidance, realization logic rewrites the
given proof outline until a suitable program is found. Realization logic thus reasons over rewriting
steps of the form po p⇠ po

0 between proof outlines. The strategy behind the rewriting is to propagate
information about failed synthesis attempts backwards, and thereby iteratively eliminate predicates
from selections and productions from the de�nition of non-terminals.

As we need a precise understanding of proof outlines, we give the de�nition:

po ::= hRicomhSi | po; po | po + po | po⇤ | N(po) | (po | po) .
We write `0 po to indicate that the proof outline has been derived with realizability logic. The
assertions we track are the ones that have been used in the application of (SEQ), (LOOP), and (ANG).
The formal de�nition is in the appendix. We abuse the notation a bit and write hRipohSi to indicate
that R is the precondition and S is the postcondition of the proof outline po. This is well-de�ned,
because `0 po1 + po2 implies that po1 and po2 have the same pre- and postcondition.

The proof rules of realization logic are listed in Figure 6, we discuss them below. The rules give
the following soundness guarantee: if we start from a proof outline in realizability logic and rewrite
it to another proof outline, then also this proof outline can be derived with realizability logic.

T������ 4.1 (S��������). `0 po and po p⇠ po
0 together imply `0 po

0.

T������ 4.2 (S��������).

`0 hRipohSi ^ hRipohSi p⇠ hR0ipo0hS0i =) `0 hR0ipo0hS0i
This allows us to invoke the soundness of realizability logic from Theorem 3.1 and obtain the
desired semantic guarantee for the program we have derived.

A feature all rules share is that they are guided by the original proof outline: the selections in the
proof outline that results from rewriting are limited to the selections in the original proof outline.
To ease the notation, we use Rw to denote a selection that is known to be less versatile than R,
meaning R �0 Rw holds. This may be used repeatedly, so R �0 Rw �0 Rww.
The rules in Figure 6 rewrite the given proof outline in a compositional fashion. The base case

(RCOM) allows us to pick a pre- and postcondition from a selection. This is the moment we realize
that predicates from the precondition can be dropped because they are not needed to obtain the
postcondition, as shown in the introduction. We have to explicitly check the over-approximation
because realizability triples do not maintain the interplay between the predicates in the pre- and in
the postcondition. Using (RANG), we can rewrite proofs for the right-hand sides of non-terminals.
The heart of the calculus is (RSELECT), which allows us to replace non-terminals by their right-
hand sides. The Rules (RSEQL) and (RSEQR) rewrite the left resp. the right part of a sequence. In

10

⟨x = 0 ∧ y = 0, x = 0 ∧ y = 1⟩

⟨x = 0 ∧ {y = 0, y = 1}⟩

Conclusion
Summary
• 1: Realizability Logic

• 2: Realization Logic

• 3: Made Programs Memory Safe

￼49

Future Work
• SyGuS benchmarks

• Assertion Language

Thanks for your attention!

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Realizability in Semantics-Guided Synthesis Done Eagerly

1 htruei N(x = 0 | x = 1); hG = 0,G = 1i
2 (assert(x==0) + assert(x==1))

3 hfaili

Fig. 4. Demonic choice.

(SHARE)
`0 h) iNh* i `0 hRisketch[N/h) ih* i]hSi

`0 hRisketchhSi

Fig. 5. Subproof sharing.

Having more predicates available makes a selection more versatile and having less predicates makes
a selection less versatile. It is also possible to have a more versatile selection with less predicates if
they are more precise. With this, ; is the least versatile and {;} is the most versatile selection.

The rules are sound and, together with a rule for the edge case of an empty precondition that we
give in the appendix, also complete.

T������ 3.1 (S�����A���C�������). `0 hRisketchhSi , |=0 hRisketchhSi .
P����. Soundness holds by an induction on the height of the proof tree. We argue for complete-

ness and consider |=0 hRisketchhSi. By the de�nition of validity, this means for every predicate
s 2 S there is a predicate r 2 R and a program prog 2 drv(sketch) so that |=3 {r}prog{s} holds. We
invoke the completeness of Hoare logic and obtain `3 {r}prog{s}. The derivation can be mimicked
in realizability logic and yields `0 hriproghsi. Since the program has been derived from sketch,
we can also obtain `0 hrisketchhsi with �nitely many applications of (ANG). Rule (GATHER) allows
us to join the triples hrisketchhsi and obtain the desired `0 hRisketchhSi. ⇤

3.3 Discussion
On SemGuS. The synthesis tasks we consider have the following input: the states, the commands,

and the semantics (States, COM, »�…) of the programming language, the non-terminals with their
production rules (N , prod), and the realizability triple hRisketchhSi of interest. In its original
formulation [23], SemGuS would be more liberal and allow the user to also de�ne the operators
(their syntax and their semantics) from which programs can be built. We �x those operators to
concatenation, choice, and Kleene star, instead. This allows us to work with an extension of Hoare
logic. To lift our approach to the more general setting, the user would have to specify the proof rules
that are sound for the new operators, which would be in-line with the approach in unrealizability
logic [22].

The reader may also note that we have not made assumptions about the correctness speci�cation.
In synthesis, it is common to work with sets of examples. The work on unrealizability logic has
shown that such sets can be captured by so-called vector assertions [22]. Vector assertions are
predicates of a particular form, and our construction of selections readily applies to them.

On search-based synthesis. Realizability logic is formulated such that it can be readily combined
with search-based synthesis. The point is that Rule (ANG) does not force us to consider all programs
a non-terminal can be rewritten to. Instead, we can consider a set of programs that appear most
promising, as can be judged from a probabilistic grammar [20].

On the implementation of non-terminals. A non-terminal may occur multiple times in a proof in
realizability logic, it may even occur recursively. Rather than duplicating the subproofs for this
non-terminal, we would like to share them in the various places the non-terminal is used. This is
made possible by Rule (SHARE) given in Figure 5. If we have already derived the triple h) iNh* i,
then we can eliminate the non-terminal from a program sketch and replace it by the pair h) ih* i.
The pair stands for the fact that we can synthesize a program that transforms) to* . Rule (SHARE) is
readily checked to be sound. However, it is a derived rule whose application can easily be mimicked

9

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

Anon.

non-terminal, we would like to share them in the various places the non-terminal is used. This is
made possible by Rule (SHARE) given in Figure 5. If we have already derived the triple h) iNh* i,
then we can eliminate the non-terminal from a program sketch and replace it by the pair h) ih* i.
The pair stands for the fact that we can synthesize a program that transforms) to* . Rule (SHARE) is
readily checked to be sound. However, it is a derived rule whose application can easily be mimicked
by Rule (ANG), at the cost of blowing-up the proof. An implementation would re�ne the rule so
that di�erent occurrences of the non-terminal can be replaced in di�erent ways. Moreover, one
would maintain a pointer to the subproof that should be inserted, to be able to derive the program
with the technique given next.

4 REALIZATION LOGIC
We de�ne realization logic, a program logic to derive programs from sketches. The key insight
is that a proof outline in realizability logic for the sketch of interest is helpful guidance to �nd a
program that solves the synthesis task. To make use of this guidance, realization logic rewrites the
given proof outline until a suitable program is found. Realization logic thus reasons over rewriting
steps of the form po p⇠ po

0 between proof outlines. The strategy behind the rewriting is to propagate
information about failed synthesis attempts backwards, and thereby iteratively eliminate predicates
from selections and productions from the de�nition of non-terminals.

As we need a precise understanding of proof outlines, we give the de�nition:

po ::= hRicomhSi | po; po | po + po | po⇤ | N(po) | (po | po) .
We write `0 po to indicate that the proof outline has been derived with realizability logic. The
assertions we track are the ones that have been used in the application of (SEQ), (LOOP), and (ANG).
The formal de�nition is in the appendix. We abuse the notation a bit and write hRipohSi to indicate
that R is the precondition and S is the postcondition of the proof outline po. This is well-de�ned,
because `0 po1 + po2 implies that po1 and po2 have the same pre- and postcondition.

The proof rules of realization logic are listed in Figure 6, we discuss them below. The rules give
the following soundness guarantee: if we start from a proof outline in realizability logic and rewrite
it to another proof outline, then also this proof outline can be derived with realizability logic.

T������ 4.1 (S��������). `0 po and po p⇠ po
0 together imply `0 po

0.

T������ 4.2 (S��������).

`0 hRipohSi ^ hRipohSi p⇠ hR0ipo0hS0i =) `0 hR0ipo0hS0i
This allows us to invoke the soundness of realizability logic from Theorem 3.1 and obtain the
desired semantic guarantee for the program we have derived.

A feature all rules share is that they are guided by the original proof outline: the selections in the
proof outline that results from rewriting are limited to the selections in the original proof outline.
To ease the notation, we use Rw to denote a selection that is known to be less versatile than R,
meaning R �0 Rw holds. This may be used repeatedly, so R �0 Rw �0 Rww.
The rules in Figure 6 rewrite the given proof outline in a compositional fashion. The base case

(RCOM) allows us to pick a pre- and postcondition from a selection. This is the moment we realize
that predicates from the precondition can be dropped because they are not needed to obtain the
postcondition, as shown in the introduction. We have to explicitly check the over-approximation
because realizability triples do not maintain the interplay between the predicates in the pre- and in
the postcondition. Using (RANG), we can rewrite proofs for the right-hand sides of non-terminals.
The heart of the calculus is (RSELECT), which allows us to replace non-terminals by their right-
hand sides. The Rules (RSEQL) and (RSEQR) rewrite the left resp. the right part of a sequence. In

10

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

Anon.

non-terminal, we would like to share them in the various places the non-terminal is used. This is
made possible by Rule (SHARE) given in Figure 5. If we have already derived the triple h) iNh* i,
then we can eliminate the non-terminal from a program sketch and replace it by the pair h) ih* i.
The pair stands for the fact that we can synthesize a program that transforms) to* . Rule (SHARE) is
readily checked to be sound. However, it is a derived rule whose application can easily be mimicked
by Rule (ANG), at the cost of blowing-up the proof. An implementation would re�ne the rule so
that di�erent occurrences of the non-terminal can be replaced in di�erent ways. Moreover, one
would maintain a pointer to the subproof that should be inserted, to be able to derive the program
with the technique given next.

4 REALIZATION LOGIC
We de�ne realization logic, a program logic to derive programs from sketches. The key insight
is that a proof outline in realizability logic for the sketch of interest is helpful guidance to �nd a
program that solves the synthesis task. To make use of this guidance, realization logic rewrites the
given proof outline until a suitable program is found. Realization logic thus reasons over rewriting
steps of the form po p⇠ po

0 between proof outlines. The strategy behind the rewriting is to propagate
information about failed synthesis attempts backwards, and thereby iteratively eliminate predicates
from selections and productions from the de�nition of non-terminals.

As we need a precise understanding of proof outlines, we give the de�nition:

po ::= hRicomhSi | po; po | po + po | po⇤ | N(po) | (po | po) .
We write `0 po to indicate that the proof outline has been derived with realizability logic. The
assertions we track are the ones that have been used in the application of (SEQ), (LOOP), and (ANG).
The formal de�nition is in the appendix. We abuse the notation a bit and write hRipohSi to indicate
that R is the precondition and S is the postcondition of the proof outline po. This is well-de�ned,
because `0 po1 + po2 implies that po1 and po2 have the same pre- and postcondition.

The proof rules of realization logic are listed in Figure 6, we discuss them below. The rules give
the following soundness guarantee: if we start from a proof outline in realizability logic and rewrite
it to another proof outline, then also this proof outline can be derived with realizability logic.

T������ 4.1 (S��������). `0 po and po p⇠ po
0 together imply `0 po

0.

T������ 4.2 (S��������).

`0 hRipohSi ^ hRipohSi p⇠ hR0ipo0hS0i =) `0 hR0ipo0hS0i
This allows us to invoke the soundness of realizability logic from Theorem 3.1 and obtain the
desired semantic guarantee for the program we have derived.

A feature all rules share is that they are guided by the original proof outline: the selections in the
proof outline that results from rewriting are limited to the selections in the original proof outline.
To ease the notation, we use Rw to denote a selection that is known to be less versatile than R,
meaning R �0 Rw holds. This may be used repeatedly, so R �0 Rw �0 Rww.
The rules in Figure 6 rewrite the given proof outline in a compositional fashion. The base case

(RCOM) allows us to pick a pre- and postcondition from a selection. This is the moment we realize
that predicates from the precondition can be dropped because they are not needed to obtain the
postcondition, as shown in the introduction. We have to explicitly check the over-approximation
because realizability triples do not maintain the interplay between the predicates in the pre- and in
the postcondition. Using (RANG), we can rewrite proofs for the right-hand sides of non-terminals.
The heart of the calculus is (RSELECT), which allows us to replace non-terminals by their right-
hand sides. The Rules (RSEQL) and (RSEQR) rewrite the left resp. the right part of a sequence. In

10

⟨x = 0 ∧ y = 0, x = 0 ∧ y = 1⟩

⟨x = 0 ∧ {y = 0, y = 1}⟩

