Making Programs Memory Safe

Through Program Synthesis

Roland Meyer, Jakob Tepe, Sebastian Wolff, 01.03.2024

Making Programs Memory Safe

Through{(Program Synthesis

Roland Meyer, Jakob Tepe, Sebastian Wolff, 01.03.2024

Program Synthesis

F \prey prog {post}

N\

€ Progs

Program Synthesis
= {pre} prog {post}

€ Progs

Progs given as a Sketch:

Program Synthesis
E {pre} prog {post}

€ Progs

N;

X++;

Progs given as a Sketch: N

y=1, + y=2
M;

Program Synthesis

= {pre} prog {post} N e vt | ymo
M = | M;M
e Progs y++ TV
N;
X++;
Progs given as a Sketch: N
y = 1, - y=2,

M

Two Problems:

1: Is synthesis possible?

Verification - Realizability Logic

Two Problems:

1: Is synthesis possible?

Verification - Realizability Logic

2: What does the solution look like?

Synthesis - Realization Logic

Realizability Logic

Realizability Logic

X++;

Realizability Logic

N :: X=1Ix=2

X++;

Realizability Logic

X=1Ix=2

Jprog ¢ ‘® , U -
X4+

F {true}prog{x =2}

Realizability Logic

{true}

Elproged =1 N -
X++;

F {true}progi{x = 2} W =2;

X=1Ix=2

Realizability Logic

{true}

“ X=1;
3prog & { {x—l} N:= x=1Ix=2

F {true}progi{x = 2} . {x—2}

Realizability Logic

{true}

Jprog ¢ ‘® , U -
X4+

F {true}progi{x = 2} W =2;

X=1Ix=2

Realizability Logic

(true)

Jprog € “ N -

X++;

= {true}prog{x = 2} (x = 2)

X=1Ix=2

Realizability Logic

(true)

HPFOQEH{ (x_lx_2> N

X++;

X=1Ix=2

F {true}progi{x = 2} . (xr=2)

Realizability Logic

(true)

ElprOged X—1X—2> N ::
X++

F {true}progi{x = 2} . (r=2,x=3)

X=1Ix=2

Realizability Logic

= X=1Ix=2

=1; = 2;
e VRS \
X++;

F {true}prog{x =2}

Realizability Logic

= X=1Ix=2

=1; = 2;
HprOg = d { X v+ X N
X++,

F {true}prog{x =2}

Realizability Logic

X=1Ix=2

4prog & d { . N -

F {true}prog{x =2}

Realizability Logic

X=1Ix=2

4prog & “ { . N -

F {true}prog{x = 2} x

Realizability Logic

X=1Ix=2

Jprog ¢ ‘® W) -
X++

.+ SKIp;
F {true}prog{x =2}

Realizability Logic

X=1Ix=2

Jprog ¢ ‘® W) -
X++

;_+ sKip;

F {true}prog{x =2}

Realizability Logic

X=1Ix=2

4prog & d { N -

+; F sKip;
F {true}prog{x = 2} 2 M

Realizability Logic

(true)

dprog € ‘{ (x—lx—Z) N:= x=1Ix=2

X++; + SKIp;

F{true}prog{x—Z} x x=1lvx=2,x=2Vvx=23)

Realizability Logic

= X++ | skip

=1, =2,
HprOged { X + X .
N;

F {true}prog{x =2}

Realizability Logic

= X++ | skip

X =1, + Xx=2;
apmgeﬂ{ v N
N;

F {true}prog{x =2}

Realizability Logic

= X++ | skip

Jprog { -5 .

F {true}progi{x =2} 2 v

Realizability Logic

(true)

“ X =1, + XxX=2;
dprog € { (x—lv)c—Z) N := Xx++ | skip

= {true}prog{x_Z} x (x—2v)c=3;x=1v)c=2)

Realizability Logic

- M ::= =1lx=2
Elproged { M; X X
N;

N := X++ | skip

F {true}prog{x =2}

Realizability Logic

- M ::= =1lx=2
Elproged { M; - X X
N;

N := X++ | skip

F {true}prog{x =2}

Realizability Logic

(tme)

“ M= x=11Ix=2
dprog € { (x—lx—Z)

N := X++ | skip

F {true}prog{x = 2} x_l X =2, x=3)

Realizability Logic

(true)

M; M: = xX=1lx=2
apmgeﬂ{ M
N;

N := X++ | skip
F {true}prog{x = 2} (x=1,x=2,x=23)

Realizability Logic

(tme)

~ M:= x=1I1x=2
dprog € { (x—lx—Z)

N := X++ | skip
F {true}progi{x = 2} . x_l x=2,x=3)

N\

What semantics?

Realizability Logic

Set of predicates

I\

F_(R)sketch(S) =

Realizability Logic

Set of predicates

I\

F_(R)sketch(S) &

I=a<true> M;N <X=1,X=2,x=3> M:= x=1Ix=2

N = X++ | skip

Realizability Logic

Set of predicates

LN e

F_(R)sketch(S) &

I=a<true> M;N <X=1,X=2,x=3> M:= x=1Ix=2

N = X++ | skip

Realizability Logic

Set of predicates

E (R)sketch{S) ., VsIElS3reR. prog € dri(sketch).

Fa(true) M;N <X=1,X=2,x=3> M:= x=1Ix=2

N := X++ | skip

Realizability Logic

Set of predicates

1 \ Vs e §S.dr e R.dprog € drv(sketch).
F_(R)sketch(S) = - {7} prog (s}

Fa(true) M;N <X=1,X=2,x=3> M:= x=1Ix=2

N = X++ | skip

Realizability Logic

Set of predicates

1 \ Vs e §S.dr e R.dprog € drv(sketch).
F_(R)sketch(S) = - {7} prog (s}

\

demonic (standard Hoare)

I=a<true> M;N <X=1,X=2,x=3> M:= x=1Ix=2

N = X++ | skip

Realizability Logic

Set of predicates

1 \ Vs e §S.dr e R.dprog € drv(sketch).
I:C;\(R)sketch(S) = - {7} prog (s}
angelic \

demonic (standard Hoare)

I=a<true> M;N <X=1,X=2,x=3> M:= x=1Ix=2

N = X++ | skip

Realizability Logic

N

X++; + SKIp;

N:= x=1Ilx=2

Realizability Logic

(COM)

Fq (true)x = 1;{(x =1)

N

X++; + SKIp;

N:= x=1Ilx=2

16

Realizability Logic

(COM)

Fq (true)x = 1;{(x =1)
Fq (true) N {(x = 1)

(ANG)

N

X++; + SKIp;

N:= x=1Ilx=2

16

Realizability Logic

(COM) (COM)
Fq (true)x = 1;{(x =1) Fq (true)x = 2;{(x = 2)

Fq (true) N {(x = 1)

(ANG)

N

X++; + SKIp;

N:= x=1Ilx=2

16

Realizability Logic

(COM) (COM)
Fq (true)x = 1;{(x =1) Fq (true)x = 2;{(x = 2)
(ANG) (ANG)

Fq (true) N (x = 1) Fq (true) N (x = 2)

N

X++; + SKIp;

N:= x=1Ilx=2

16

Realizability Logic

(COM) (COM)
Fq (true)x = 1;{(x =1) Fq (true)x = 2;{(x = 2)
(ANG) (ANG)

Fq (true) N (xx = 1) Fq (true) N (x = 2)

N

X++; + SKIp;

N:= x=1Ilx=2

16

Realizability Logic

(COM) (COM)
Fq (true)x = 1;{(x =1) Fq (true)x = 2;{(x = 2)
(ANG) (ANG)

GATHER Fq (true) N (xx = 1) Fq (true) N (x = 2) Q
o (true) N (x =1, x = 2)

N

X4+; + sKip;
N'= x=1I|x=2

16

Realizability Logic

N

X++; 4 sKip;

N:= x=1Ilx=2

Realizability Logic

(COM)
Fq (= 1)x++; (x = 2)

N

X4+; + sKip;
N'= x=1I|x=2

16

Realizability Logic

(COM) . (COM)
F, (x = 1)x++; {x = 2) Fo {(x =1)skip;{(x =1)

N

X++; T+ sKip;
N:= x=1Ix=2

16

Realizability Logic

(COM) . (COM)
F, (x = 1)x++; {x = 2) Fo {(x =1)skip;{(x =1)

(DEM)
Fq (x = 1)x++; 4 skip;{x =1V x =2) Q

N

X++; T+ sKip;
N:= x=1|x=2

16

Realizability Logic

N

X++; 4 sKip;

N:= x=1Ilx=2

Realizability Logic

N

(COM)
Fq {(x = 2)x++;(x = 3)

X4+; + sKip;
N'= x=1I|x=2

16

Realizability Logic

N

(COM) . (COM)
Fq (o = 2)x++; (x = 3) Fq {(x = 2)skip;{x = 2)

X4+; + sKip;
N'= x=1I|x=2

16

Realizability Logic

N

(COM) . (COM)
Fq (o = 2)x++; (x = 3) Fq {(x = 2)skip;{x = 2)

DEM) X++; + skip;

Fq (x = 2)x++; + skip;{(x =2V x=3)

N:= x=1Ilx=2

16

Realizability Logic

N

X++; 4 sKip;

N:= x=1Ilx=2

Realizability Logic

(DEM)
Fa (x = 1)x++; 4+ skip;{(x =1V x=2) N

X++; T+ sKip;

N:= x=1|x=2

16

Realizability Logic

(DEM)
Fa (x = 1)x++; 4+ skip;{(x =1V x=2) N

(DEM)

Fa (x = 2)x++; 4+ skip;{(x =2V x = 3) X++, + Sk'p;

N:= x=1|x=2

16

Realizability Logic

(DEM)
Fq (= 1)x++; 4+ skip;{(x =1V x=2) Q N

X++; T+ sKip;

(DEM)

Fqg (c = 2)x++; + skip;{x =2V x = 3) Q

—

N:= x=1|x=2

16

Realizability Logic

DEM [rue
(PEM Fq (0 = 1)x++; 4 skip;{(x =1V x = 2) <N)
x=1,x=2)
(DEM Fq (x = 2)x++; + skip;{(x =2V x =3) X++, T Sklp;

(GATHER) @

Fe (X =1L x =2)x++; + skip;(x=1Vx=2 x=2Vx=3) N

= X=1Ilx=2

16

Realizability Logic

N

X++; 4 sKip;

N:= x=1Ilx=2

Realizability Logic

(GATHER) @

o (true) N (x =1, x = 2)

N

X4+; + sKip;
N'= x=1I|x=2

16

Realizability Logic

(GATHER) T
Fo (true) N (x = 1, x = 2) .

N

X4+; + sKip;

(GATHER) . a
Fo (X = 1Lx = 2)x++; + sklp;(x:1Vx:2&x:2\/x:3). N

= X=1Ilx=2

16

Realizability Logic

(GATHER) @

o (true) N (x =1, x = 2)

N

X++; + SKIp;
V V

(GATHER) . a
Fo (X = 1Lx = 2)x++; + sklp;(x:1Vx:2&x:2\/x:3). N

Fa (true) N ; (x++; 4 skip;){(x =1V x=2, x =2V x = 3)

= X=1Ilx=2

(SEQ)

16

Contribution 1:
Realizability Logic
-, (R)sketch(S) < [, (R)sketch(S)

Contribution 1:
Realizability Logic
-, (R)sketch(S) < [, (R)sketch(S)

But what makes this efficient?

Realizability Logic - Secret Sauce

N :: X++ | X--

Realizability Logic - Secret Sauce

N :: X++ | X--

Realizability Logic - Secret Sauce

N :: X++ | X--

Realizability Logic - Secret Sauce

N :: X++ | X--

Realizability Logic - Secret Sauce

N :: X++ | X--

N; 8 Programs vs. 4 Predicates

Realizability Logic - Secret Sauce

N = X++ | X--
N;
N; 8 Programs vs. 4 Predicates
e

Problem: We forgot the program!

Solution:
Realization Logic

Rewrite proof to derive program

X++ | X--

Realization Logic N :

Realization Logic N = x| xe-

(x=0)

N;
x=1Lx=-1)

N;
x=2,x=0,x=-2)

=, (R)sketch(S)

—

Realization Logic

Vs e S. o

r € R. =

prog € drv(sketch).

N :: X++ | X--

=4 {r}prog{s} .

Realization Logic N = x| xe-

—, (R)sketch(S) & Vs € S. dr € R. dprog € drv(sketch). 4 {r}prog{s} .

20

Realization Logic N = x| xe-

x=2,x=0,x=-2) (x=0)
N; N;
x=3,x=1L,x=-1,x=-3) x=Lx=-1)
N;
~ x=2,x=0,x=-2)
N;

—, (R)sketch(S) & Vs € S. dr € R. dprog € drv(sketch). 4 {r}prog{s} .

20

Realization Logic

N;
x=3,x=Lx=-1,x=-3)
I~
x=2,x=0,x=-2)

N;

(x=1)

=, (R)sketch(S) = Vs e S. =

r € R. =

prog € drv(sketch).

N ::= X++ 1| X--

=4 {r}prog{s} .

Realization Logic

N;
x=3,x=Lx=-1,x=-3)
I~
x=2,x=0,x=-2)

N;

(x=1)

=, (R)sketch(S) = Vs e S. =

r € R. =
21

prog € drv(sketch).

N ::= X++ 1| X--

=4 {r}prog{s} .

=, (R)sketch(S)

—

Realization Logic

Vs e S. o

r € R. =
22

prog € drv(sketch).

N :: X++ | X--

=4 {r}prog{s} .

=, (R)sketch(S)

—

Realization Logic

Vs e S. o

r € R. =

22

prog € drv(sketch).

N :: X++ | X--

=4 {r}prog{s} .

=, (R)sketch(S)

—

Realization Logic

Vs e S. o

r € R. =

22

prog € drv(sketch).

N :: X++ | X--

=4 {r}prog{s} .

=, (R)sketch(S)

—

Realization Logic

Vs e S. o

r € R. =

23

prog € drv(sketch).

N :: X++ | X--

=4 {r}prog{s} .

=, (R)sketch(S)

—

Realization Logic

Vs e S. o

r € R. =

24

prog € drv(sketch).

N :: X++ | X--

=4 {r}prog{s} .

X++;

=, (R)sketch(S)

—

Realization Logic

Vs e S. o

r € R. =

24

prog € drv(sketch).

N :: X++ | X--

=4 {r}prog{s} .

X++;

X++;

=, (R)sketch(S)

Realization Logic

Vs e S. o

r € R. =

24

prog € drv(sketch).

N :: X++ | X--

=4 {r}prog{s} .

X++;

X++;

=, (R)sketch(S)

Realization Logic

Vs e S. o

r € R. =

25

prog € drv(sketch).

N :: X++ | X--

=4 {r}prog{s} .

=, (R)sketch(S)

—

Realization Logic

Vs e S. o

r € R. =

26

prog € drv(sketch).

N :: X++ | X--

=4 {r}prog{s} .

=, (R)sketch(S)

—

Realization Logic

Vs e S. o

r € R. =

26

prog € drv(sketch).

N :: X++ | X--

=4 {r}prog{s} .

=, (R)sketch(S)

—

Realization Logic

Vs e S. o

r € R. =

26

prog € drv(sketch).

N :: X++ | X--

=4 {r}prog{s} .

=, (R)sketch(S)

—

Realization Logic

Vs e S. o

r € R. =

X++;

X++;

prog € drv(sketch).

N :: X++ | X--

=4 {r}prog{s} .

X++;

=, (R)sketch(S)

—

Realization Logic

Vs e S. o

r € R. =

X++;

X++;

prog € drv(sketch).

N :: X++ | X--

=4 {r}prog{s} .

X++;

X++;

=, (R)sketch(S)

Realization Logic

Vs e S. o

r € R. =

X++;

X++;

prog € drv(sketch).

N :: X++ | X--

=4 {r}prog{s} .

X++;

X++;

=, (R)sketch(S)

Realization Logic

Vs e S. o

r € R. =

28

X++;

X++;

prog € drv(sketch).

N :: X++ | X--

=4 {r}prog{s} .

=, (R)sketch(S)

—

Realization Logic

Vs e S. o

r € R. =

29

X++;

X++;

prog € drv(sketch).

N :: X++ | X--

=4 {r}prog{s} .

=, (R)sketch(S)

—

Realization Logic

Vs e S. o

r € R. =

29

X++;

X++;

prog € drv(sketch).

N :: X++ | X--

=4 {r}prog{s} .

=, (R)sketch(S)

—

Realization Logic

Vs e S. o

r € R. =

29

X++;

X++;

prog € drv(sketch).

N :: X++ | X--

=4 {r}prog{s} .

=, (R)sketch(S)

—

Realization Logic

Vs e S. o

r € R. =

30

X++;

X++;

prog € drv(sketch).

N :: X++ | X--

=4 {r}prog{s} .

Contribution 2:
Realization Logic

Fa (RYPO(S) A (R)po(S) b (R')po’(S")
— 4 (R')po’(S")

Sound

Contribution 2:
Realization Logic

Fa (RYPO(S) A (R)po(S) b (R')po’(S")
— 4 (R')po’(S")

Sound and Complete

Fa {RYPO(S) A ko (R)PO’(S) A (R)po(S) <, (R')po’(S")
— (R)po(S) k (R")po’(S")

Memory Reclamation

data . TOS

top = TOS;

next = top.next;
CAS(TOS, top, next);
free(top);

data

32

Memory Reclamation

top

top = TOS;

next = top.next;
CAS(TOS, top, next);
free(top);

33

data

data

TOS

Memory Reclamation

top

top = TOS;

next = top.next;
CAS(TOS, top, next);
free(top);

data
<

TOS

Memory Reclamation

top

top = TOS;

next = top.next; Unsafe Dereference
CAS(TOS, top, next);

free(top);

35

data
<

TOS

Memory Reclamation

data . TOS

top = TOS;

next = top.next;
CAS(TOS, top, next);
free(top);

data

36

Memory Reclamation

top

top = TOS;

next = top.next;
CAS(TOS, top, next);
free(top);

37

data

data

TOS

Memory Reclamation

top - TOS

top = TOS;

next = top.next;
CAS(TOS, top, next);
free(top);

data
>

next

38

Memory Reclamation

top

top = TOS;

next = top.next;
CAS(TOS, top, next);
free(top);

next - R TOS

39

Memory Reclamation

top

top = TOS;

next = top.next; '
CAS(TOS, top, next); - TOS
free(top);

data
>

next

40

Memory Reclamation

top - TOS

top = TOS;

next = top.next;
CAS(TOS, top, next);
free(top);

data

data
>

next

41

Memory Reclamation

data

top

top = TOS;

next = top.next;
CAS(TOS, top, next);
free(top);

data

next - R TOS

42

Memory Reclamation

top = TOS;

next = top.next; ¥ '7
CAS(TOS, top, next); ABA . 4

free(top);

next - TOS

43

Safe Memory Reclamation (SMR)

Safe Memory Reclamation (SMR)

 Manual Memory Reclamation - very hard

Safe Memory Reclamation (SMR)

 Manual Memory Reclamation - very hard

« SMR Algorithms: e.g. Hazard Pointer, Epoch Based Reclamation

44

Safe Memory Reclamation (SMR)

 Manual Memory Reclamation - very hard

« SMR Algorithms: e.g. Hazard Pointer, Epoch Based Reclamation

free(-)

44

Safe Memory Reclamation (SMR)

 Manual Memory Reclamation - very hard

« SMR Algorithms: e.g. Hazard Pointer, Epoch Based Reclamation

tree(—)

45

Safe Memory Reclamation (SMR)

 Manual Memory Reclamation - very hard

« SMR Algorithms: e.g. Hazard Pointer, Epoch Based Reclamation

free(—) > retire(-) protect(-) unprotect(-)

45

Safe Memory Reclamation (SMR)

 Manual Memory Reclamation - very hard

« SMR Algorithms: e.g. Hazard Pointer, Epoch Based Reclamation

free(—) > retire(-) protect(-) unprotect(-)

* Type system to verify memory safety with SMR [Meyer, Wolff POPL'19 '20]

45

Safe Memory Reclamation (SMR)

 Manual Memory Reclamation - very hard

« SMR Algorithms: e.g. Hazard Pointer, Epoch Based Reclamation

free(—) > retire(-) protect(-) unprotect(-)

* Type system to verify memory safety with SMR [Meyer, Wolff POPL'19 '20]

@inv active(-)

45

Safe Memory Reclamation (SMR)

 Manual Memory Reclamation - very hard

« SMR Algorithms: e.g. Hazard Pointer, Epoch Based Reclamation

free(—) > retire(-) protect(-) unprotect(-)

* Type system to verify memory safety with SMR [Meyer, Wolff POPL'19 '20]

@inv active(-) Predicates Vars — T

45

Safe Memory Reclamation (SMR)

 Manual Memory Reclamation - very hard

« SMR Algorithms: e.g. Hazard Pointer, Epoch Based Reclamation

free(—) > retire(-) protect(-) unprotect(-)

* Type system to verify memory safety with SMR [Meyer, Wolff POPL'19 '20]

@inv active(-) Predicates Vars — T

Hazard Pointer: 5 base types

45

Memory Reclamation

top = TOS;

next = top.next; ¥ '7
CAS(TOS, top, next); ABA . 4

free(top);

next - TOS

46

Memory Reclamation

N;

top = TOS; top
N;

next = top.next; v
N; data
CAS(TOS, top, next); ABA !?
N;
retire(top); v
N; next - TOS

N ::= protect(top) | @inv active (TOS) | skip

47

Memory Reclamation

N;

top = TOS;

N;

next = top.next;

N;

CAS(TOS, top, next);
N;

retire(top);

N;

N ::= protect(top) | @inv active (TOS) | skip

47

Instantiation on SMR Setting

Contribution 3:

Treiber’s Treiber’s Michael Michael
Data and Scott’s | and Scott’s | ORVYY Set | ORVYY Set
Stack Stack
Structure Queue Queue Add Remove
Pop Push
Enqueue Dequeue
SMR HP1 HP1 HP1 HP2 HP2 HP2
Alaorithm (5 Base (5 Base (5 Base (8 Base (8 Base (8 Base
9 Types) Types) Types) Types) Types) Types)
Time
(PO + <0.1s <0.1s <0.1s < 7.5s < 0.9s <0.4s
Synth)
Max/Avg | 5,44 6/1.7 5/1.4 90/ 1.4 28 /1.7 30/1.3

R

48

Conclusion

Conclusion

Summary
 1: Realizability Logic Fa (R)sketch(S) & |4 (R)sketch(S)

Fa {RYPO(S) A (RYpo(S) ~ (R")po’(S")
— 4 (R')po’(S")

o 2: Realization Logic

* 3: Made Programs Memory Safe

49

Conclusion

Summary
 1: Realizability Logic Fa (R)sketch(S) & |4 (R)sketch(S)

Fa {RYPO(S) A (RYpo(S) ~ (R")po’(S")
— 4 (R')po’(S")

o 2: Realization Logic

* 3: Made Programs Memory Safe

Future Work
e SyGuS benchmarks

* Assertion Language

49

Conclusion

Summary
 1: Realizability Logic Fa (R)sketch(S) & |4 (R)sketch(S)

Fa {RYPO(S) A (RYpo(S) ~ (R")po’(S")
— 4 (R')po’(S")

o 2: Realization Logic

* 3: Made Programs Memory Safe

Future Work
e SyGuS benchmarks

* Assertion Language x=0Ay=0,x=0Ay=1)

49

Conclusion

Summary
 1: Realizability Logic Fa (R)sketch(S) & |4 (R)sketch(S)

Fa {RYPO(S) A (RYpo(S) ~ (R")po’(S")
— 4 (R')po’(S")

o 2: Realization Logic

* 3: Made Programs Memory Safe

Future Work
e SyGuS benchmarks

* Assertion Language x=0Ay=0,x=0Ay=1)

x=0A{y=0,y=1})

49

Conclusion Thanks for your attention!

Summary
 1: Realizability Logic Fa (R)sketch(S) & |4 (R)sketch(S)

Fa {RYPO(S) A (RYpo(S) ~ (R")po’(S")
— 4 (R')po’(S")

o 2: Realization Logic

* 3: Made Programs Memory Safe

Future Work
e SyGuS benchmarks

* Assertion Language x=0Ay=0,x=0Ay=1)

x=0A{y=0,y=1})

49

