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(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)

`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [ R2isketchhS1 [ S2i

(COM)

»x = 1;…(true) �3 G = 1
`0 h{true}ix = 1;h{G = 1}i
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»x = 2;…(true) �3 G = 2
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(ANG)
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`0 htruei hG = 1i

`0 htrueix = 2;hG = 2i (COM)
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Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.
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`0 htruei hG = 1, G = 2i
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⟨x = 1, x = 2⟩

2⃣

3⃣

2⃣ 3⃣
4⃣

(DEM)

(COM)
`0 hG = 1ix++;hG = 2i `0

` hG = 1ix++; skip;

1 2i `0 hG = 1iskip;hG = 1i (COM)
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(DEM)

(COM)
`0 hG = 2ix++;hG = 3i `0

` hG = 2ix++; skip;

2 3i `0 hG = 2iskip;hG = 2i (COM)

2 x++; skip;hG = 2 _ G = 3i

N ::=    x = 1 | x = 2

1⃣N
N N
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1 `0 htrueix = 2;hG = 2i (COM)
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`0 htruei hG = 2i (ANG)
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`0 hG = 1ix++;hG = 2i `0 hG = 1iskip;hG = 1i
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(DEM)
`0 hG = 2ix++;hG = 3i `0 hG = 2iskip;hG = 2i

`0 hG = 2ix++; skip;hG = 2 _ G = 3i

(GATHER)
`0 hG = 1, G = 2ix++; skip;hG = 1 _ G = 2, G = 2 _ G = 3i
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(COM)

»com…(r) �3 s

`0 h{r}icomh{s}i

(SEQ)

`0 hRisketch1hSi
`0 hSisketch2hTi

`0 hRisketch1; sketch2hTi

(LOOP)

R = {r}
`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)

R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)

R = {r}
`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)

N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi
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`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [ R2isketchhS1 [ S2i

(COM)

»x = 1;…(true) �3 G = 1
`0 h{true}ix = 1;h{G = 1}i
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»x = 2;…(true) �3 G = 2
`0 h{true}ix = 2;h{G = 2}i
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`0 hG = 2ix++; skip;hG = 2_G = 3i

(GATHER)
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(SEQ)
`0 htruei ;(x++; skip;)hG = 1_G = 2, G = 2_G = 3i
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1 htruei N(x = 0 | x = 1); hG = 0,G = 1i
2 (assert(x==0) + assert(x==1))

3 hfaili

Fig. 4. Demonic choice.

(SHARE)
`0 h) iNh* i `0 hRisketch[N/h) ih* i ]hSi

`0 hRisketchhSi

Fig. 5. Subproof sharing.

Having more predicates available makes a selection more versatile and having less predicates makes
a selection less versatile. It is also possible to have a more versatile selection with less predicates if
they are more precise. With this, ; is the least versatile and {;} is the most versatile selection.

The rules are sound and, together with a rule for the edge case of an empty precondition that we
give in the appendix, also complete.

T������ 3.1 (S�����A���C�������). `0 hRisketchhSi , |=0 hRisketchhSi .
P����. Soundness holds by an induction on the height of the proof tree. We argue for complete-

ness and consider |=0 hRisketchhSi. By the de�nition of validity, this means for every predicate
s 2 S there is a predicate r 2 R and a program prog 2 drv(sketch) so that |=3 {r}prog{s} holds. We
invoke the completeness of Hoare logic and obtain `3 {r}prog{s}. The derivation can be mimicked
in realizability logic and yields `0 hriproghsi. Since the program has been derived from sketch,
we can also obtain `0 hrisketchhsi with �nitely many applications of (ANG). Rule (GATHER) allows
us to join the triples hrisketchhsi and obtain the desired `0 hRisketchhSi. ⇤

3.3 Discussion
On SemGuS. The synthesis tasks we consider have the following input: the states, the commands,

and the semantics (States, COM, »�…) of the programming language, the non-terminals with their
production rules (N , prod), and the realizability triple hRisketchhSi of interest. In its original
formulation [23], SemGuS would be more liberal and allow the user to also de�ne the operators
(their syntax and their semantics) from which programs can be built. We �x those operators to
concatenation, choice, and Kleene star, instead. This allows us to work with an extension of Hoare
logic. To lift our approach to the more general setting, the user would have to specify the proof rules
that are sound for the new operators, which would be in-line with the approach in unrealizability
logic [22].

The reader may also note that we have not made assumptions about the correctness speci�cation.
In synthesis, it is common to work with sets of examples. The work on unrealizability logic has
shown that such sets can be captured by so-called vector assertions [22]. Vector assertions are
predicates of a particular form, and our construction of selections readily applies to them.

On search-based synthesis. Realizability logic is formulated such that it can be readily combined
with search-based synthesis. The point is that Rule (ANG) does not force us to consider all programs
a non-terminal can be rewritten to. Instead, we can consider a set of programs that appear most
promising, as can be judged from a probabilistic grammar [20].

On the implementation of non-terminals. A non-terminal may occur multiple times in a proof in
realizability logic, it may even occur recursively. Rather than duplicating the subproofs for this
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1 htruei N(x = 0 | x = 1); hG = 0,G = 1i
2 (assert(x==0) + assert(x==1))

3 hfaili

Fig. 4. Demonic choice.

(SHARE)
`0 h) iNh* i `0 hRisketch[N/h) ih* i ]hSi

`0 hRisketchhSi

Fig. 5. Subproof sharing.

Having more predicates available makes a selection more versatile and having less predicates makes
a selection less versatile. It is also possible to have a more versatile selection with less predicates if
they are more precise. With this, ; is the least versatile and {;} is the most versatile selection.

The rules are sound and, together with a rule for the edge case of an empty precondition that we
give in the appendix, also complete.

T������ 3.1 (S�����A���C�������). `0 hRisketchhSi , |=0 hRisketchhSi .
P����. Soundness holds by an induction on the height of the proof tree. We argue for complete-

ness and consider |=0 hRisketchhSi. By the de�nition of validity, this means for every predicate
s 2 S there is a predicate r 2 R and a program prog 2 drv(sketch) so that |=3 {r}prog{s} holds. We
invoke the completeness of Hoare logic and obtain `3 {r}prog{s}. The derivation can be mimicked
in realizability logic and yields `0 hriproghsi. Since the program has been derived from sketch,
we can also obtain `0 hrisketchhsi with �nitely many applications of (ANG). Rule (GATHER) allows
us to join the triples hrisketchhsi and obtain the desired `0 hRisketchhSi. ⇤

3.3 Discussion
On SemGuS. The synthesis tasks we consider have the following input: the states, the commands,

and the semantics (States, COM, »�…) of the programming language, the non-terminals with their
production rules (N , prod), and the realizability triple hRisketchhSi of interest. In its original
formulation [23], SemGuS would be more liberal and allow the user to also de�ne the operators
(their syntax and their semantics) from which programs can be built. We �x those operators to
concatenation, choice, and Kleene star, instead. This allows us to work with an extension of Hoare
logic. To lift our approach to the more general setting, the user would have to specify the proof rules
that are sound for the new operators, which would be in-line with the approach in unrealizability
logic [22].

The reader may also note that we have not made assumptions about the correctness speci�cation.
In synthesis, it is common to work with sets of examples. The work on unrealizability logic has
shown that such sets can be captured by so-called vector assertions [22]. Vector assertions are
predicates of a particular form, and our construction of selections readily applies to them.

On search-based synthesis. Realizability logic is formulated such that it can be readily combined
with search-based synthesis. The point is that Rule (ANG) does not force us to consider all programs
a non-terminal can be rewritten to. Instead, we can consider a set of programs that appear most
promising, as can be judged from a probabilistic grammar [20].

On the implementation of non-terminals. A non-terminal may occur multiple times in a proof in
realizability logic, it may even occur recursively. Rather than duplicating the subproofs for this
non-terminal, we would like to share them in the various places the non-terminal is used. This is
made possible by Rule (SHARE) given in Figure 5. If we have already derived the triple h) iNh* i,
then we can eliminate the non-terminal from a program sketch and replace it by the pair h) ih* i.
The pair stands for the fact that we can synthesize a program that transforms) to* . Rule (SHARE) is
readily checked to be sound. However, it is a derived rule whose application can easily be mimicked

9

But what makes this efficient?
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Rewrite proof to derive program
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Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

1 htruei N(x = 0 | x = 1); hG = 0,G = 1i
2 (assert(x==0) + assert(x==1))

3 hfaili

Fig. 4. Demonic choice.

(SHARE)
`0 h) iNh* i `0 hRisketch[N/h) ih* i ]hSi

`0 hRisketchhSi

Fig. 5. Subproof sharing.

To lift the semantics from programs to sketches, we let the function drv determine all programs
(without non-terminals) that can be derived from a sketch by rewriting the non-terminals. For
example, with N ::= com1 | com2 we have drv(N; com) = {com1; com, com2; com}. Formally, we see the
sketch as a sentential form in a context-free grammar and take the language.

3.2 Realizability Logic
Realizability logic reasons over correctness speci�cation of the form hRisketchhSi. Here, R, S are
so-called selections from the set Selections = P�n (Predicates). A selection is a �nite set of predicates
as we have de�ned them above. The idea is this. When we encounter a non-terminal in a sketch,
we do not yet determine how to resolve it to a program with the function drv. Instead, we collect
in a selection the predicates that these programs may justify as a postcondition. Since also the
precondition is a selection, we can not only choose the program but also the precondition to justify
the postcondition. We thus de�ne validity of realizability triples via validity in Hoare logic:

|=0 hRisketchhSi , 8s 2 S. 9r 2 R. 9prog 2 drv(sketch). |=3 {r}prog{s} .

To derive valid realizability triples, we use the proof rules in Figure 3. We write `0 hRisketchhSi
if the realizability triple can be derived with the help of these rules. Rule (COM) checks whether
the e�ect of a command com on a predicate r is captured by s. The rule allows us to derive the
realizability triple h{r}icomh{s}i in which the selections are singleton sets. The rule plays together
with (GATHER): if we can also derive h{r0}icomh{s0}i for another pre- and postcondition, then we
can join the selections and obtain h{r, r0}icomh{s, s0}i. Rule (GATHER) is also important to join the
pre- and postconditions for the various programs that can be derived from a non-terminal. To
obtain a realizability triple hRiNhSi, Rule (ANG) unwinds the non-terminal to a sketch sketch that
is given by a production and then proves hRisketchhSi. Note that the sketch may again contain N,
and may contain more than one occurrence. We explain at the end of the section how to avoid the
repetition of proof trees and handle non-terminals in an e�cient way.
Rule (DEM) looks like the standard rule for choice operators in Hoare logic. In realizability

logic, the precondition has to be a singleton selection, and the rule is unsound without this side

7
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2 (assert(x==0) + assert(x==1))

3 hfaili

Fig. 4. Demonic choice.

(SHARE)
`0 h) iNh* i `0 hRisketch[N/h) ih* i ]hSi

`0 hRisketchhSi

Fig. 5. Subproof sharing.

To lift the semantics from programs to sketches, we let the function drv determine all programs
(without non-terminals) that can be derived from a sketch by rewriting the non-terminals. For
example, with N ::= com1 | com2 we have drv(N; com) = {com1; com, com2; com}. Formally, we see the
sketch as a sentential form in a context-free grammar and take the language.

3.2 Realizability Logic
Realizability logic reasons over correctness speci�cation of the form hRisketchhSi. Here, R, S are
so-called selections from the set Selections = P�n (Predicates). A selection is a �nite set of predicates
as we have de�ned them above. The idea is this. When we encounter a non-terminal in a sketch,
we do not yet determine how to resolve it to a program with the function drv. Instead, we collect
in a selection the predicates that these programs may justify as a postcondition. Since also the
precondition is a selection, we can not only choose the program but also the precondition to justify
the postcondition. We thus de�ne validity of realizability triples via validity in Hoare logic:

|=0 hRisketchhSi , 8s 2 S. 9r 2 R. 9prog 2 drv(sketch). |=3 {r}prog{s} .

To derive valid realizability triples, we use the proof rules in Figure 3. We write `0 hRisketchhSi
if the realizability triple can be derived with the help of these rules. Rule (COM) checks whether
the e�ect of a command com on a predicate r is captured by s. The rule allows us to derive the
realizability triple h{r}icomh{s}i in which the selections are singleton sets. The rule plays together
with (GATHER): if we can also derive h{r0}icomh{s0}i for another pre- and postcondition, then we
can join the selections and obtain h{r, r0}icomh{s, s0}i. Rule (GATHER) is also important to join the
pre- and postconditions for the various programs that can be derived from a non-terminal. To
obtain a realizability triple hRiNhSi, Rule (ANG) unwinds the non-terminal to a sketch sketch that
is given by a production and then proves hRisketchhSi. Note that the sketch may again contain N,
and may contain more than one occurrence. We explain at the end of the section how to avoid the
repetition of proof trees and handle non-terminals in an e�cient way.
Rule (DEM) looks like the standard rule for choice operators in Hoare logic. In realizability

logic, the precondition has to be a singleton selection, and the rule is unsound without this side
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1 htruei
2 M(htrueix = 0hx = 0i |
3 htrueix = 1hx = 1i);
4 hx = 0, x = 1i
5 N(hx = 0, x = 1iy = 0hx = 0 ^ y = 0, x = 1 ^ y = 0i |
6 hx = 0, x = 1iy = 1hx = 0 ^ y = 1, x = 1 ^ y = 1i);
7 hG = 0 ^ y = 0, . . . , x = 1 ^ y = 1i
8 assert(x = 1 ^ y = 1)
9 hx = 1 ^ y = 1, faili

Fig. 1. Proof outline in realizability logic.

1 htruei
2 M(htrueix = 0hx = 0i |
3 htrueix = 1hx = 1i);
4 hx = 1i
5 N(hx = 0, x = 1iy = 0hx = 1 ^ y = 1i |
6 hx = 1iy = 1hx = 1 ^ y = 1i);
7 hx = 1 ^ y = 1i
8 assert(x = 1 ^ y = 1)
9 hx = 1 ^ y = 1i

Fig. 2. Proof outline derived from Figure 1.

from N. This yields four synthesis alternatives, namely x=0 ^ y=0 to x=1 ^ y=1. Only the last of
these alternatives passes the assertion, the others lead to a failure of the execution.
A �rst point of criticism one may have about realizability logic is that the alternation between

angelic and demonic choice will explode too quickly. In the end, all we have done is to replace the
choice of a program by a powerset construction over predicates, a technique pioneered in automata
theory [36]. This merely translates a complex search into complex assertions. We argue that, for
SemGuS where validity checks are expensive, the assertions may be the right place to keep the
complexity. Formal methods has developed expressive logical languages and abstract domains that
can denote complex sets of states with very concise assertions. In our experiments, we have worked
with Cartesian abstraction [8, Chapter 9].

A more severe point of criticism is that our realizability triples hRiPhSi drop the relationship
between the single programs prog 2 P and the pre- and postconditions r 2 R and s 2 S that this
program can achieve. Hence, when we have given a proof in realizability logic, like the one in
Figure 1, all we know is that the program sketch M; N; assert(x = 1 ^ y = 1) can be completed to a
program that passes the assertion, but we do not know the program. What we have, however, is a
proof outline in realizability logic that annotates the program with intermediary assertions. The
idea is to use this proof outline as guidance of how to instantiate the non-terminals.
Our second contribution is realization logic, a program logic to derive rewriting steps po p⇠ po

0

between proof outlines in realizability logic. The guarantee given by realization logic is that valid
proof outlines are rewritten to valid proof outlines. The rewriting process will not only eliminate
alternatives from the de�nition of non-terminals until a program that satis�es the speci�cation
has been found. An equally important step is to eliminate predicates that will not be helpful to
satisfy the desired postcondition, or may even fail in the future. The elimination of predicates is
done backwards, starting from the postcondition, and we illustrate it on our example:

hx = 0 ^ y = 0, . . . , x = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1, faili (1)
p⇠hx = 0 ^ y = 0, . . . , x = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1i (2)
p⇠hx = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1i .

hG = 1, G = 2ix++;hG = 2, G = 3i p⇠ hG = 1, G = 2ix++;hG = 2i
hG = 1, G = 2ix++;hG = 2i p⇠ hG = 1ix++;hG = 2i

hG = 0ix = 1; x = 2;hG = 1i p⇠ hG = 0ix = 1hG = 1i
The �rst step drops the alternative fail. As there are less synthesis options to choose from, this
weakens the postcondition and the step is thus sound by the standard rule of consequence in Hoare
logic. The second step propagates this elimination backwards by weakening the precondition, which
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(COM)
»com…(r ) �3 s

`0 h{r }icomh{s}i

(SEQ)
`0 hRisketch1hSi
`0 hSisketch2hT i

`0 hRisketch1; sketch2hT i

(LOOP)
R = {r }

`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)
R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)
R = {r }

`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)
N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)
`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [ R2isketchhS1 [ S2i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

1 htruei N(x = 0 | x = 1); hG = 0,G = 1i
2 (assert(x==0) + assert(x==1))

3 hfaili

Fig. 4. Demonic choice.

(SHARE)
`0 h) iNh* i `0 hRisketch[N/h) ih* i ]hSi

`0 hRisketchhSi

Fig. 5. Subproof sharing.

To lift the semantics from programs to sketches, we let the function drv determine all programs
(without non-terminals) that can be derived from a sketch by rewriting the non-terminals. For
example, with N ::= com1 | com2 we have drv(N; com) = {com1; com, com2; com}. Formally, we see the
sketch as a sentential form in a context-free grammar and take the language.

3.2 Realizability Logic
Realizability logic reasons over correctness speci�cation of the form hRisketchhSi. Here, R, S are
so-called selections from the set Selections = P�n (Predicates). A selection is a �nite set of predicates
as we have de�ned them above. The idea is this. When we encounter a non-terminal in a sketch,
we do not yet determine how to resolve it to a program with the function drv. Instead, we collect
in a selection the predicates that these programs may justify as a postcondition. Since also the
precondition is a selection, we can not only choose the program but also the precondition to justify
the postcondition. We thus de�ne validity of realizability triples via validity in Hoare logic:

|=0 hRisketchhSi , 8s 2 S. 9r 2 R. 9prog 2 drv(sketch). |=3 {r}prog{s} .

To derive valid realizability triples, we use the proof rules in Figure 3. We write `0 hRisketchhSi
if the realizability triple can be derived with the help of these rules. Rule (COM) checks whether
the e�ect of a command com on a predicate r is captured by s. The rule allows us to derive the
realizability triple h{r}icomh{s}i in which the selections are singleton sets. The rule plays together
with (GATHER): if we can also derive h{r0}icomh{s0}i for another pre- and postcondition, then we
can join the selections and obtain h{r, r0}icomh{s, s0}i. Rule (GATHER) is also important to join the
pre- and postconditions for the various programs that can be derived from a non-terminal. To
obtain a realizability triple hRiNhSi, Rule (ANG) unwinds the non-terminal to a sketch sketch that
is given by a production and then proves hRisketchhSi. Note that the sketch may again contain N,
and may contain more than one occurrence. We explain at the end of the section how to avoid the
repetition of proof trees and handle non-terminals in an e�cient way.
Rule (DEM) looks like the standard rule for choice operators in Hoare logic. In realizability

logic, the precondition has to be a singleton selection, and the rule is unsound without this side
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1 htruei
2 M(htrueix = 0hx = 0i |
3 htrueix = 1hx = 1i);
4 hx = 0, x = 1i
5 N(hx = 0, x = 1iy = 0hx = 0 ^ y = 0, x = 1 ^ y = 0i |
6 hx = 0, x = 1iy = 1hx = 0 ^ y = 1, x = 1 ^ y = 1i);
7 hG = 0 ^ y = 0, . . . , x = 1 ^ y = 1i
8 assert(x = 1 ^ y = 1)
9 hx = 1 ^ y = 1, faili

Fig. 1. Proof outline in realizability logic.

1 htruei
2 M(htrueix = 0hx = 0i |
3 htrueix = 1hx = 1i);
4 hx = 1i
5 N(hx = 0, x = 1iy = 0hx = 1 ^ y = 1i |
6 hx = 1iy = 1hx = 1 ^ y = 1i);
7 hx = 1 ^ y = 1i
8 assert(x = 1 ^ y = 1)
9 hx = 1 ^ y = 1i

Fig. 2. Proof outline derived from Figure 1.

from N. This yields four synthesis alternatives, namely x=0 ^ y=0 to x=1 ^ y=1. Only the last of
these alternatives passes the assertion, the others lead to a failure of the execution.
A �rst point of criticism one may have about realizability logic is that the alternation between

angelic and demonic choice will explode too quickly. In the end, all we have done is to replace the
choice of a program by a powerset construction over predicates, a technique pioneered in automata
theory [36]. This merely translates a complex search into complex assertions. We argue that, for
SemGuS where validity checks are expensive, the assertions may be the right place to keep the
complexity. Formal methods has developed expressive logical languages and abstract domains that
can denote complex sets of states with very concise assertions. In our experiments, we have worked
with Cartesian abstraction [8, Chapter 9].

A more severe point of criticism is that our realizability triples hRiPhSi drop the relationship
between the single programs prog 2 P and the pre- and postconditions r 2 R and s 2 S that this
program can achieve. Hence, when we have given a proof in realizability logic, like the one in
Figure 1, all we know is that the program sketch M; N; assert(x = 1 ^ y = 1) can be completed to a
program that passes the assertion, but we do not know the program. What we have, however, is a
proof outline in realizability logic that annotates the program with intermediary assertions. The
idea is to use this proof outline as guidance of how to instantiate the non-terminals.
Our second contribution is realization logic, a program logic to derive rewriting steps po p⇠ po

0

between proof outlines in realizability logic. The guarantee given by realization logic is that valid
proof outlines are rewritten to valid proof outlines. The rewriting process will not only eliminate
alternatives from the de�nition of non-terminals until a program that satis�es the speci�cation
has been found. An equally important step is to eliminate predicates that will not be helpful to
satisfy the desired postcondition, or may even fail in the future. The elimination of predicates is
done backwards, starting from the postcondition, and we illustrate it on our example:

hx = 0 ^ y = 0, . . . , x = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1, faili (1)
p⇠hx = 0 ^ y = 0, . . . , x = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1i (2)
p⇠hx = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1i .

hG = 1, G = 2ix++;hG = 2, G = 3i p⇠ hG = 1, G = 2ix++;hG = 2i
hG = 1, G = 2ix++;hG = 2i p⇠ hG = 1ix++;hG = 2i

hG = 0ix = 1; x = 2;hG = 1i p⇠ hG = 0ix = 1hG = 1i
The �rst step drops the alternative fail. As there are less synthesis options to choose from, this
weakens the postcondition and the step is thus sound by the standard rule of consequence in Hoare
logic. The second step propagates this elimination backwards by weakening the precondition, which
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(COM)
»com…(r ) �3 s

`0 h{r }icomh{s}i

(SEQ)
`0 hRisketch1hSi
`0 hSisketch2hT i

`0 hRisketch1; sketch2hT i

(LOOP)
R = {r }

`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)
R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)
R = {r }

`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)
N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)
`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [ R2isketchhS1 [ S2i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

1 htruei N(x = 0 | x = 1); hG = 0,G = 1i
2 (assert(x==0) + assert(x==1))

3 hfaili

Fig. 4. Demonic choice.

(SHARE)
`0 h) iNh* i `0 hRisketch[N/h) ih* i ]hSi

`0 hRisketchhSi

Fig. 5. Subproof sharing.

To lift the semantics from programs to sketches, we let the function drv determine all programs
(without non-terminals) that can be derived from a sketch by rewriting the non-terminals. For
example, with N ::= com1 | com2 we have drv(N; com) = {com1; com, com2; com}. Formally, we see the
sketch as a sentential form in a context-free grammar and take the language.

3.2 Realizability Logic
Realizability logic reasons over correctness speci�cation of the form hRisketchhSi. Here, R, S are
so-called selections from the set Selections = P�n (Predicates). A selection is a �nite set of predicates
as we have de�ned them above. The idea is this. When we encounter a non-terminal in a sketch,
we do not yet determine how to resolve it to a program with the function drv. Instead, we collect
in a selection the predicates that these programs may justify as a postcondition. Since also the
precondition is a selection, we can not only choose the program but also the precondition to justify
the postcondition. We thus de�ne validity of realizability triples via validity in Hoare logic:

|=0 hRisketchhSi , 8s 2 S. 9r 2 R. 9prog 2 drv(sketch). |=3 {r}prog{s} .

To derive valid realizability triples, we use the proof rules in Figure 3. We write `0 hRisketchhSi
if the realizability triple can be derived with the help of these rules. Rule (COM) checks whether
the e�ect of a command com on a predicate r is captured by s. The rule allows us to derive the
realizability triple h{r}icomh{s}i in which the selections are singleton sets. The rule plays together
with (GATHER): if we can also derive h{r0}icomh{s0}i for another pre- and postcondition, then we
can join the selections and obtain h{r, r0}icomh{s, s0}i. Rule (GATHER) is also important to join the
pre- and postconditions for the various programs that can be derived from a non-terminal. To
obtain a realizability triple hRiNhSi, Rule (ANG) unwinds the non-terminal to a sketch sketch that
is given by a production and then proves hRisketchhSi. Note that the sketch may again contain N,
and may contain more than one occurrence. We explain at the end of the section how to avoid the
repetition of proof trees and handle non-terminals in an e�cient way.
Rule (DEM) looks like the standard rule for choice operators in Hoare logic. In realizability

logic, the precondition has to be a singleton selection, and the rule is unsound without this side
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1 htruei
2 M(htrueix = 0hx = 0i |
3 htrueix = 1hx = 1i);
4 hx = 0, x = 1i
5 N(hx = 0, x = 1iy = 0hx = 0 ^ y = 0, x = 1 ^ y = 0i |
6 hx = 0, x = 1iy = 1hx = 0 ^ y = 1, x = 1 ^ y = 1i);
7 hG = 0 ^ y = 0, . . . , x = 1 ^ y = 1i
8 assert(x = 1 ^ y = 1)
9 hx = 1 ^ y = 1, faili

Fig. 1. Proof outline in realizability logic.

1 htruei
2 M(htrueix = 0hx = 0i |
3 htrueix = 1hx = 1i);
4 hx = 1i
5 N(hx = 0, x = 1iy = 0hx = 1 ^ y = 1i |
6 hx = 1iy = 1hx = 1 ^ y = 1i);
7 hx = 1 ^ y = 1i
8 assert(x = 1 ^ y = 1)
9 hx = 1 ^ y = 1i

Fig. 2. Proof outline derived from Figure 1.

from N. This yields four synthesis alternatives, namely x=0 ^ y=0 to x=1 ^ y=1. Only the last of
these alternatives passes the assertion, the others lead to a failure of the execution.
A �rst point of criticism one may have about realizability logic is that the alternation between

angelic and demonic choice will explode too quickly. In the end, all we have done is to replace the
choice of a program by a powerset construction over predicates, a technique pioneered in automata
theory [36]. This merely translates a complex search into complex assertions. We argue that, for
SemGuS where validity checks are expensive, the assertions may be the right place to keep the
complexity. Formal methods has developed expressive logical languages and abstract domains that
can denote complex sets of states with very concise assertions. In our experiments, we have worked
with Cartesian abstraction [8, Chapter 9].

A more severe point of criticism is that our realizability triples hRiPhSi drop the relationship
between the single programs prog 2 P and the pre- and postconditions r 2 R and s 2 S that this
program can achieve. Hence, when we have given a proof in realizability logic, like the one in
Figure 1, all we know is that the program sketch M; N; assert(x = 1 ^ y = 1) can be completed to a
program that passes the assertion, but we do not know the program. What we have, however, is a
proof outline in realizability logic that annotates the program with intermediary assertions. The
idea is to use this proof outline as guidance of how to instantiate the non-terminals.
Our second contribution is realization logic, a program logic to derive rewriting steps po p⇠ po

0

between proof outlines in realizability logic. The guarantee given by realization logic is that valid
proof outlines are rewritten to valid proof outlines. The rewriting process will not only eliminate
alternatives from the de�nition of non-terminals until a program that satis�es the speci�cation
has been found. An equally important step is to eliminate predicates that will not be helpful to
satisfy the desired postcondition, or may even fail in the future. The elimination of predicates is
done backwards, starting from the postcondition, and we illustrate it on our example:

hx = 0 ^ y = 0, . . . , x = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1, faili (1)
p⇠hx = 0 ^ y = 0, . . . , x = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1i (2)
p⇠hx = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1i .

hG = 1, G = 2ix++;hG = 2, G = 3i p⇠ hG = 1, G = 2ix++;hG = 2i
hG = 1, G = 2ix++;hG = 2i p⇠ hG = 1ix++;hG = 2i

hG = 0ix = 1; x = 2;hG = 1i p⇠ hG = 0ix = 1hG = 1i
The �rst step drops the alternative fail. As there are less synthesis options to choose from, this
weakens the postcondition and the step is thus sound by the standard rule of consequence in Hoare
logic. The second step propagates this elimination backwards by weakening the precondition, which
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`0 h{r }icomh{s}i
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`0 hRisketch1hSi
`0 hSisketch2hT i

`0 hRisketch1; sketch2hT i

(LOOP)
R = {r }

`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)
R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)
R = {r }

`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)
N ::= sketch | . . .
`0 hRisketchhSi
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Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

1 htruei N(x = 0 | x = 1); hG = 0,G = 1i
2 (assert(x==0) + assert(x==1))

3 hfaili

Fig. 4. Demonic choice.
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To lift the semantics from programs to sketches, we let the function drv determine all programs
(without non-terminals) that can be derived from a sketch by rewriting the non-terminals. For
example, with N ::= com1 | com2 we have drv(N; com) = {com1; com, com2; com}. Formally, we see the
sketch as a sentential form in a context-free grammar and take the language.

3.2 Realizability Logic
Realizability logic reasons over correctness speci�cation of the form hRisketchhSi. Here, R, S are
so-called selections from the set Selections = P�n (Predicates). A selection is a �nite set of predicates
as we have de�ned them above. The idea is this. When we encounter a non-terminal in a sketch,
we do not yet determine how to resolve it to a program with the function drv. Instead, we collect
in a selection the predicates that these programs may justify as a postcondition. Since also the
precondition is a selection, we can not only choose the program but also the precondition to justify
the postcondition. We thus de�ne validity of realizability triples via validity in Hoare logic:

|=0 hRisketchhSi , 8s 2 S. 9r 2 R. 9prog 2 drv(sketch). |=3 {r}prog{s} .

To derive valid realizability triples, we use the proof rules in Figure 3. We write `0 hRisketchhSi
if the realizability triple can be derived with the help of these rules. Rule (COM) checks whether
the e�ect of a command com on a predicate r is captured by s. The rule allows us to derive the
realizability triple h{r}icomh{s}i in which the selections are singleton sets. The rule plays together
with (GATHER): if we can also derive h{r0}icomh{s0}i for another pre- and postcondition, then we
can join the selections and obtain h{r, r0}icomh{s, s0}i. Rule (GATHER) is also important to join the
pre- and postconditions for the various programs that can be derived from a non-terminal. To
obtain a realizability triple hRiNhSi, Rule (ANG) unwinds the non-terminal to a sketch sketch that
is given by a production and then proves hRisketchhSi. Note that the sketch may again contain N,
and may contain more than one occurrence. We explain at the end of the section how to avoid the
repetition of proof trees and handle non-terminals in an e�cient way.
Rule (DEM) looks like the standard rule for choice operators in Hoare logic. In realizability

logic, the precondition has to be a singleton selection, and the rule is unsound without this side
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we do not yet determine how to resolve it to a program with the function drv. Instead, we collect
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To derive valid realizability triples, we use the proof rules in Figure 3. We write `0 hRisketchhSi
if the realizability triple can be derived with the help of these rules. Rule (COM) checks whether
the e�ect of a command com on a predicate r is captured by s. The rule allows us to derive the
realizability triple h{r}icomh{s}i in which the selections are singleton sets. The rule plays together
with (GATHER): if we can also derive h{r0}icomh{s0}i for another pre- and postcondition, then we
can join the selections and obtain h{r, r0}icomh{s, s0}i. Rule (GATHER) is also important to join the
pre- and postconditions for the various programs that can be derived from a non-terminal. To
obtain a realizability triple hRiNhSi, Rule (ANG) unwinds the non-terminal to a sketch sketch that
is given by a production and then proves hRisketchhSi. Note that the sketch may again contain N,
and may contain more than one occurrence. We explain at the end of the section how to avoid the
repetition of proof trees and handle non-terminals in an e�cient way.
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To lift the semantics from programs to sketches, we let the function drv determine all programs
(without non-terminals) that can be derived from a sketch by rewriting the non-terminals. For
example, with N ::= com1 | com2 we have drv(N; com) = {com1; com, com2; com}. Formally, we see the
sketch as a sentential form in a context-free grammar and take the language.

3.2 Realizability Logic
Realizability logic reasons over correctness speci�cation of the form hRisketchhSi. Here, R, S are
so-called selections from the set Selections = P�n (Predicates). A selection is a �nite set of predicates
as we have de�ned them above. The idea is this. When we encounter a non-terminal in a sketch,
we do not yet determine how to resolve it to a program with the function drv. Instead, we collect
in a selection the predicates that these programs may justify as a postcondition. Since also the
precondition is a selection, we can not only choose the program but also the precondition to justify
the postcondition. We thus de�ne validity of realizability triples via validity in Hoare logic:

|=0 hRisketchhSi , 8s 2 S. 9r 2 R. 9prog 2 drv(sketch). |=3 {r}prog{s} .

To derive valid realizability triples, we use the proof rules in Figure 3. We write `0 hRisketchhSi
if the realizability triple can be derived with the help of these rules. Rule (COM) checks whether
the e�ect of a command com on a predicate r is captured by s. The rule allows us to derive the
realizability triple h{r}icomh{s}i in which the selections are singleton sets. The rule plays together
with (GATHER): if we can also derive h{r0}icomh{s0}i for another pre- and postcondition, then we
can join the selections and obtain h{r, r0}icomh{s, s0}i. Rule (GATHER) is also important to join the
pre- and postconditions for the various programs that can be derived from a non-terminal. To
obtain a realizability triple hRiNhSi, Rule (ANG) unwinds the non-terminal to a sketch sketch that
is given by a production and then proves hRisketchhSi. Note that the sketch may again contain N,
and may contain more than one occurrence. We explain at the end of the section how to avoid the
repetition of proof trees and handle non-terminals in an e�cient way.
Rule (DEM) looks like the standard rule for choice operators in Hoare logic. In realizability

logic, the precondition has to be a singleton selection, and the rule is unsound without this side
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1 htruei
2 M(htrueix = 0hx = 0i |
3 htrueix = 1hx = 1i);
4 hx = 0, x = 1i
5 N(hx = 0, x = 1iy = 0hx = 0 ^ y = 0, x = 1 ^ y = 0i |
6 hx = 0, x = 1iy = 1hx = 0 ^ y = 1, x = 1 ^ y = 1i);
7 hG = 0 ^ y = 0, . . . , x = 1 ^ y = 1i
8 assert(x = 1 ^ y = 1)
9 hx = 1 ^ y = 1, faili

Fig. 1. Proof outline in realizability logic.

1 htruei
2 M(htrueix = 0hx = 0i |
3 htrueix = 1hx = 1i);
4 hx = 1i
5 N(hx = 0, x = 1iy = 0hx = 1 ^ y = 1i |
6 hx = 1iy = 1hx = 1 ^ y = 1i);
7 hx = 1 ^ y = 1i
8 assert(x = 1 ^ y = 1)
9 hx = 1 ^ y = 1i

Fig. 2. Proof outline derived from Figure 1.

from N. This yields four synthesis alternatives, namely x=0 ^ y=0 to x=1 ^ y=1. Only the last of
these alternatives passes the assertion, the others lead to a failure of the execution.
A �rst point of criticism one may have about realizability logic is that the alternation between

angelic and demonic choice will explode too quickly. In the end, all we have done is to replace the
choice of a program by a powerset construction over predicates, a technique pioneered in automata
theory [36]. This merely translates a complex search into complex assertions. We argue that, for
SemGuS where validity checks are expensive, the assertions may be the right place to keep the
complexity. Formal methods has developed expressive logical languages and abstract domains that
can denote complex sets of states with very concise assertions. In our experiments, we have worked
with Cartesian abstraction [8, Chapter 9].

A more severe point of criticism is that our realizability triples hRiPhSi drop the relationship
between the single programs prog 2 P and the pre- and postconditions r 2 R and s 2 S that this
program can achieve. Hence, when we have given a proof in realizability logic, like the one in
Figure 1, all we know is that the program sketch M; N; assert(x = 1 ^ y = 1) can be completed to a
program that passes the assertion, but we do not know the program. What we have, however, is a
proof outline in realizability logic that annotates the program with intermediary assertions. The
idea is to use this proof outline as guidance of how to instantiate the non-terminals.
Our second contribution is realization logic, a program logic to derive rewriting steps po p⇠ po

0

between proof outlines in realizability logic. The guarantee given by realization logic is that valid
proof outlines are rewritten to valid proof outlines. The rewriting process will not only eliminate
alternatives from the de�nition of non-terminals until a program that satis�es the speci�cation
has been found. An equally important step is to eliminate predicates that will not be helpful to
satisfy the desired postcondition, or may even fail in the future. The elimination of predicates is
done backwards, starting from the postcondition, and we illustrate it on our example:

hx = 0 ^ y = 0, . . . , x = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1, faili (1)
p⇠hx = 0 ^ y = 0, . . . , x = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1i (2)
p⇠hx = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1i .

hG = 1, G = 2ix++;hG = 2, G = 3i p⇠ hG = 1, G = 2ix++;hG = 2i
hG = 1, G = 2ix++;hG = 2i p⇠ hG = 1ix++;hG = 2i

hG = 0ix = 1; x = 2;hG = 1i p⇠ hG = 0ix = 1hG = 1i
The �rst step drops the alternative fail. As there are less synthesis options to choose from, this
weakens the postcondition and the step is thus sound by the standard rule of consequence in Hoare
logic. The second step propagates this elimination backwards by weakening the precondition, which

3
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To lift the semantics from programs to sketches, we let the function drv determine all programs
(without non-terminals) that can be derived from a sketch by rewriting the non-terminals. For
example, with N ::= com1 | com2 we have drv(N; com) = {com1; com, com2; com}. Formally, we see the
sketch as a sentential form in a context-free grammar and take the language.

3.2 Realizability Logic
Realizability logic reasons over correctness speci�cation of the form hRisketchhSi. Here, R, S are
so-called selections from the set Selections = P�n (Predicates). A selection is a �nite set of predicates
as we have de�ned them above. The idea is this. When we encounter a non-terminal in a sketch,
we do not yet determine how to resolve it to a program with the function drv. Instead, we collect
in a selection the predicates that these programs may justify as a postcondition. Since also the
precondition is a selection, we can not only choose the program but also the precondition to justify
the postcondition. We thus de�ne validity of realizability triples via validity in Hoare logic:

|=0 hRisketchhSi , 8s 2 S. 9r 2 R. 9prog 2 drv(sketch). |=3 {r}prog{s} .

To derive valid realizability triples, we use the proof rules in Figure 3. We write `0 hRisketchhSi
if the realizability triple can be derived with the help of these rules. Rule (COM) checks whether
the e�ect of a command com on a predicate r is captured by s. The rule allows us to derive the
realizability triple h{r}icomh{s}i in which the selections are singleton sets. The rule plays together
with (GATHER): if we can also derive h{r0}icomh{s0}i for another pre- and postcondition, then we
can join the selections and obtain h{r, r0}icomh{s, s0}i. Rule (GATHER) is also important to join the
pre- and postconditions for the various programs that can be derived from a non-terminal. To
obtain a realizability triple hRiNhSi, Rule (ANG) unwinds the non-terminal to a sketch sketch that
is given by a production and then proves hRisketchhSi. Note that the sketch may again contain N,
and may contain more than one occurrence. We explain at the end of the section how to avoid the
repetition of proof trees and handle non-terminals in an e�cient way.
Rule (DEM) looks like the standard rule for choice operators in Hoare logic. In realizability

logic, the precondition has to be a singleton selection, and the rule is unsound without this side
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from N. This yields four synthesis alternatives, namely x=0 ^ y=0 to x=1 ^ y=1. Only the last of
these alternatives passes the assertion, the others lead to a failure of the execution.
A �rst point of criticism one may have about realizability logic is that the alternation between

angelic and demonic choice will explode too quickly. In the end, all we have done is to replace the
choice of a program by a powerset construction over predicates, a technique pioneered in automata
theory [36]. This merely translates a complex search into complex assertions. We argue that, for
SemGuS where validity checks are expensive, the assertions may be the right place to keep the
complexity. Formal methods has developed expressive logical languages and abstract domains that
can denote complex sets of states with very concise assertions. In our experiments, we have worked
with Cartesian abstraction [8, Chapter 9].

A more severe point of criticism is that our realizability triples hRiPhSi drop the relationship
between the single programs prog 2 P and the pre- and postconditions r 2 R and s 2 S that this
program can achieve. Hence, when we have given a proof in realizability logic, like the one in
Figure 1, all we know is that the program sketch M; N; assert(x = 1 ^ y = 1) can be completed to a
program that passes the assertion, but we do not know the program. What we have, however, is a
proof outline in realizability logic that annotates the program with intermediary assertions. The
idea is to use this proof outline as guidance of how to instantiate the non-terminals.
Our second contribution is realization logic, a program logic to derive rewriting steps po p⇠ po
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between proof outlines in realizability logic. The guarantee given by realization logic is that valid
proof outlines are rewritten to valid proof outlines. The rewriting process will not only eliminate
alternatives from the de�nition of non-terminals until a program that satis�es the speci�cation
has been found. An equally important step is to eliminate predicates that will not be helpful to
satisfy the desired postcondition, or may even fail in the future. The elimination of predicates is
done backwards, starting from the postcondition, and we illustrate it on our example:

hx = 0 ^ y = 0, . . . , x = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1, faili (1)
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hG = 1, G = 2ix++;hG = 2i p⇠ hG = 1ix++;hG = 2i
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The �rst step drops the alternative fail. As there are less synthesis options to choose from, this
weakens the postcondition and the step is thus sound by the standard rule of consequence in Hoare
logic. The second step propagates this elimination backwards by weakening the precondition, which
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To lift the semantics from programs to sketches, we let the function drv determine all programs
(without non-terminals) that can be derived from a sketch by rewriting the non-terminals. For
example, with N ::= com1 | com2 we have drv(N; com) = {com1; com, com2; com}. Formally, we see the
sketch as a sentential form in a context-free grammar and take the language.

3.2 Realizability Logic
Realizability logic reasons over correctness speci�cation of the form hRisketchhSi. Here, R, S are
so-called selections from the set Selections = P�n (Predicates). A selection is a �nite set of predicates
as we have de�ned them above. The idea is this. When we encounter a non-terminal in a sketch,
we do not yet determine how to resolve it to a program with the function drv. Instead, we collect
in a selection the predicates that these programs may justify as a postcondition. Since also the
precondition is a selection, we can not only choose the program but also the precondition to justify
the postcondition. We thus de�ne validity of realizability triples via validity in Hoare logic:

|=0 hRisketchhSi , 8s 2 S. 9r 2 R. 9prog 2 drv(sketch). |=3 {r}prog{s} .

To derive valid realizability triples, we use the proof rules in Figure 3. We write `0 hRisketchhSi
if the realizability triple can be derived with the help of these rules. Rule (COM) checks whether
the e�ect of a command com on a predicate r is captured by s. The rule allows us to derive the
realizability triple h{r}icomh{s}i in which the selections are singleton sets. The rule plays together
with (GATHER): if we can also derive h{r0}icomh{s0}i for another pre- and postcondition, then we
can join the selections and obtain h{r, r0}icomh{s, s0}i. Rule (GATHER) is also important to join the
pre- and postconditions for the various programs that can be derived from a non-terminal. To
obtain a realizability triple hRiNhSi, Rule (ANG) unwinds the non-terminal to a sketch sketch that
is given by a production and then proves hRisketchhSi. Note that the sketch may again contain N,
and may contain more than one occurrence. We explain at the end of the section how to avoid the
repetition of proof trees and handle non-terminals in an e�cient way.
Rule (DEM) looks like the standard rule for choice operators in Hoare logic. In realizability

logic, the precondition has to be a singleton selection, and the rule is unsound without this side
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To lift the semantics from programs to sketches, we let the function drv determine all programs
(without non-terminals) that can be derived from a sketch by rewriting the non-terminals. For
example, with N ::= com1 | com2 we have drv(N; com) = {com1; com, com2; com}. Formally, we see the
sketch as a sentential form in a context-free grammar and take the language.

3.2 Realizability Logic
Realizability logic reasons over correctness speci�cation of the form hRisketchhSi. Here, R, S are
so-called selections from the set Selections = P�n (Predicates). A selection is a �nite set of predicates
as we have de�ned them above. The idea is this. When we encounter a non-terminal in a sketch,
we do not yet determine how to resolve it to a program with the function drv. Instead, we collect
in a selection the predicates that these programs may justify as a postcondition. Since also the
precondition is a selection, we can not only choose the program but also the precondition to justify
the postcondition. We thus de�ne validity of realizability triples via validity in Hoare logic:

|=0 hRisketchhSi , 8s 2 S. 9r 2 R. 9prog 2 drv(sketch). |=3 {r}prog{s} .

To derive valid realizability triples, we use the proof rules in Figure 3. We write `0 hRisketchhSi
if the realizability triple can be derived with the help of these rules. Rule (COM) checks whether
the e�ect of a command com on a predicate r is captured by s. The rule allows us to derive the
realizability triple h{r}icomh{s}i in which the selections are singleton sets. The rule plays together
with (GATHER): if we can also derive h{r0}icomh{s0}i for another pre- and postcondition, then we
can join the selections and obtain h{r, r0}icomh{s, s0}i. Rule (GATHER) is also important to join the
pre- and postconditions for the various programs that can be derived from a non-terminal. To
obtain a realizability triple hRiNhSi, Rule (ANG) unwinds the non-terminal to a sketch sketch that
is given by a production and then proves hRisketchhSi. Note that the sketch may again contain N,
and may contain more than one occurrence. We explain at the end of the section how to avoid the
repetition of proof trees and handle non-terminals in an e�cient way.
Rule (DEM) looks like the standard rule for choice operators in Hoare logic. In realizability

logic, the precondition has to be a singleton selection, and the rule is unsound without this side

7



Realization Logic

￼24

N;

N;

x++;

⟨x = 1, x = − 1⟩

⟨x = 0⟩

⟨x = 2, x = 0, x = − 2⟩

⟨x = 1⟩

N ::=    x++ | x--

⟨x = 2, x = 0, x = − 2⟩
x++;

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Realizability in Semantics-Guided Synthesis Done Eagerly

(COM)
»com…(r ) �3 s

`0 h{r }icomh{s}i

(SEQ)
`0 hRisketch1hSi
`0 hSisketch2hT i

`0 hRisketch1; sketch2hT i

(LOOP)
R = {r }

`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)
R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)
R = {r }

`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)
N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)
`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [ R2isketchhS1 [ S2i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

1 htruei N(x = 0 | x = 1); hG = 0,G = 1i
2 (assert(x==0) + assert(x==1))

3 hfaili

Fig. 4. Demonic choice.

(SHARE)
`0 h) iNh* i `0 hRisketch[N/h) ih* i ]hSi

`0 hRisketchhSi

Fig. 5. Subproof sharing.

To lift the semantics from programs to sketches, we let the function drv determine all programs
(without non-terminals) that can be derived from a sketch by rewriting the non-terminals. For
example, with N ::= com1 | com2 we have drv(N; com) = {com1; com, com2; com}. Formally, we see the
sketch as a sentential form in a context-free grammar and take the language.

3.2 Realizability Logic
Realizability logic reasons over correctness speci�cation of the form hRisketchhSi. Here, R, S are
so-called selections from the set Selections = P�n (Predicates). A selection is a �nite set of predicates
as we have de�ned them above. The idea is this. When we encounter a non-terminal in a sketch,
we do not yet determine how to resolve it to a program with the function drv. Instead, we collect
in a selection the predicates that these programs may justify as a postcondition. Since also the
precondition is a selection, we can not only choose the program but also the precondition to justify
the postcondition. We thus de�ne validity of realizability triples via validity in Hoare logic:

|=0 hRisketchhSi , 8s 2 S. 9r 2 R. 9prog 2 drv(sketch). |=3 {r}prog{s} .

To derive valid realizability triples, we use the proof rules in Figure 3. We write `0 hRisketchhSi
if the realizability triple can be derived with the help of these rules. Rule (COM) checks whether
the e�ect of a command com on a predicate r is captured by s. The rule allows us to derive the
realizability triple h{r}icomh{s}i in which the selections are singleton sets. The rule plays together
with (GATHER): if we can also derive h{r0}icomh{s0}i for another pre- and postcondition, then we
can join the selections and obtain h{r, r0}icomh{s, s0}i. Rule (GATHER) is also important to join the
pre- and postconditions for the various programs that can be derived from a non-terminal. To
obtain a realizability triple hRiNhSi, Rule (ANG) unwinds the non-terminal to a sketch sketch that
is given by a production and then proves hRisketchhSi. Note that the sketch may again contain N,
and may contain more than one occurrence. We explain at the end of the section how to avoid the
repetition of proof trees and handle non-terminals in an e�cient way.
Rule (DEM) looks like the standard rule for choice operators in Hoare logic. In realizability

logic, the precondition has to be a singleton selection, and the rule is unsound without this side
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1 htruei
2 M(htrueix = 0hx = 0i |
3 htrueix = 1hx = 1i);
4 hx = 0, x = 1i
5 N(hx = 0, x = 1iy = 0hx = 0 ^ y = 0, x = 1 ^ y = 0i |
6 hx = 0, x = 1iy = 1hx = 0 ^ y = 1, x = 1 ^ y = 1i);
7 hG = 0 ^ y = 0, . . . , x = 1 ^ y = 1i
8 assert(x = 1 ^ y = 1)
9 hx = 1 ^ y = 1, faili

Fig. 1. Proof outline in realizability logic.

1 htruei
2 M(htrueix = 0hx = 0i |
3 htrueix = 1hx = 1i);
4 hx = 1i
5 N(hx = 0, x = 1iy = 0hx = 1 ^ y = 1i |
6 hx = 1iy = 1hx = 1 ^ y = 1i);
7 hx = 1 ^ y = 1i
8 assert(x = 1 ^ y = 1)
9 hx = 1 ^ y = 1i

Fig. 2. Proof outline derived from Figure 1.

from N. This yields four synthesis alternatives, namely x=0 ^ y=0 to x=1 ^ y=1. Only the last of
these alternatives passes the assertion, the others lead to a failure of the execution.
A �rst point of criticism one may have about realizability logic is that the alternation between

angelic and demonic choice will explode too quickly. In the end, all we have done is to replace the
choice of a program by a powerset construction over predicates, a technique pioneered in automata
theory [36]. This merely translates a complex search into complex assertions. We argue that, for
SemGuS where validity checks are expensive, the assertions may be the right place to keep the
complexity. Formal methods has developed expressive logical languages and abstract domains that
can denote complex sets of states with very concise assertions. In our experiments, we have worked
with Cartesian abstraction [8, Chapter 9].

A more severe point of criticism is that our realizability triples hRiPhSi drop the relationship
between the single programs prog 2 P and the pre- and postconditions r 2 R and s 2 S that this
program can achieve. Hence, when we have given a proof in realizability logic, like the one in
Figure 1, all we know is that the program sketch M; N; assert(x = 1 ^ y = 1) can be completed to a
program that passes the assertion, but we do not know the program. What we have, however, is a
proof outline in realizability logic that annotates the program with intermediary assertions. The
idea is to use this proof outline as guidance of how to instantiate the non-terminals.
Our second contribution is realization logic, a program logic to derive rewriting steps po p⇠ po

0

between proof outlines in realizability logic. The guarantee given by realization logic is that valid
proof outlines are rewritten to valid proof outlines. The rewriting process will not only eliminate
alternatives from the de�nition of non-terminals until a program that satis�es the speci�cation
has been found. An equally important step is to eliminate predicates that will not be helpful to
satisfy the desired postcondition, or may even fail in the future. The elimination of predicates is
done backwards, starting from the postcondition, and we illustrate it on our example:

hx = 0 ^ y = 0, . . . , x = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1, faili (1)
p⇠hx = 0 ^ y = 0, . . . , x = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1i (2)
p⇠hx = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1i .

hG = 1, G = 2ix++;hG = 2, G = 3i p⇠ hG = 1, G = 2ix++;hG = 2i
hG = 1, G = 2ix++;hG = 2i p⇠ hG = 1ix++;hG = 2i

hG = 0ix = 1; x = 2;hG = 1i p⇠ hG = 0ix = 1hG = 1i
The �rst step drops the alternative fail. As there are less synthesis options to choose from, this
weakens the postcondition and the step is thus sound by the standard rule of consequence in Hoare
logic. The second step propagates this elimination backwards by weakening the precondition, which
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Fig. 4. Demonic choice.
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To lift the semantics from programs to sketches, we let the function drv determine all programs
(without non-terminals) that can be derived from a sketch by rewriting the non-terminals. For
example, with N ::= com1 | com2 we have drv(N; com) = {com1; com, com2; com}. Formally, we see the
sketch as a sentential form in a context-free grammar and take the language.

3.2 Realizability Logic
Realizability logic reasons over correctness speci�cation of the form hRisketchhSi. Here, R, S are
so-called selections from the set Selections = P�n (Predicates). A selection is a �nite set of predicates
as we have de�ned them above. The idea is this. When we encounter a non-terminal in a sketch,
we do not yet determine how to resolve it to a program with the function drv. Instead, we collect
in a selection the predicates that these programs may justify as a postcondition. Since also the
precondition is a selection, we can not only choose the program but also the precondition to justify
the postcondition. We thus de�ne validity of realizability triples via validity in Hoare logic:

|=0 hRisketchhSi , 8s 2 S. 9r 2 R. 9prog 2 drv(sketch). |=3 {r}prog{s} .

To derive valid realizability triples, we use the proof rules in Figure 3. We write `0 hRisketchhSi
if the realizability triple can be derived with the help of these rules. Rule (COM) checks whether
the e�ect of a command com on a predicate r is captured by s. The rule allows us to derive the
realizability triple h{r}icomh{s}i in which the selections are singleton sets. The rule plays together
with (GATHER): if we can also derive h{r0}icomh{s0}i for another pre- and postcondition, then we
can join the selections and obtain h{r, r0}icomh{s, s0}i. Rule (GATHER) is also important to join the
pre- and postconditions for the various programs that can be derived from a non-terminal. To
obtain a realizability triple hRiNhSi, Rule (ANG) unwinds the non-terminal to a sketch sketch that
is given by a production and then proves hRisketchhSi. Note that the sketch may again contain N,
and may contain more than one occurrence. We explain at the end of the section how to avoid the
repetition of proof trees and handle non-terminals in an e�cient way.
Rule (DEM) looks like the standard rule for choice operators in Hoare logic. In realizability

logic, the precondition has to be a singleton selection, and the rule is unsound without this side
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from N. This yields four synthesis alternatives, namely x=0 ^ y=0 to x=1 ^ y=1. Only the last of
these alternatives passes the assertion, the others lead to a failure of the execution.
A �rst point of criticism one may have about realizability logic is that the alternation between

angelic and demonic choice will explode too quickly. In the end, all we have done is to replace the
choice of a program by a powerset construction over predicates, a technique pioneered in automata
theory [36]. This merely translates a complex search into complex assertions. We argue that, for
SemGuS where validity checks are expensive, the assertions may be the right place to keep the
complexity. Formal methods has developed expressive logical languages and abstract domains that
can denote complex sets of states with very concise assertions. In our experiments, we have worked
with Cartesian abstraction [8, Chapter 9].

A more severe point of criticism is that our realizability triples hRiPhSi drop the relationship
between the single programs prog 2 P and the pre- and postconditions r 2 R and s 2 S that this
program can achieve. Hence, when we have given a proof in realizability logic, like the one in
Figure 1, all we know is that the program sketch M; N; assert(x = 1 ^ y = 1) can be completed to a
program that passes the assertion, but we do not know the program. What we have, however, is a
proof outline in realizability logic that annotates the program with intermediary assertions. The
idea is to use this proof outline as guidance of how to instantiate the non-terminals.
Our second contribution is realization logic, a program logic to derive rewriting steps po p⇠ po

0

between proof outlines in realizability logic. The guarantee given by realization logic is that valid
proof outlines are rewritten to valid proof outlines. The rewriting process will not only eliminate
alternatives from the de�nition of non-terminals until a program that satis�es the speci�cation
has been found. An equally important step is to eliminate predicates that will not be helpful to
satisfy the desired postcondition, or may even fail in the future. The elimination of predicates is
done backwards, starting from the postcondition, and we illustrate it on our example:

hx = 0 ^ y = 0, . . . , x = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1, faili (1)
p⇠hx = 0 ^ y = 0, . . . , x = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1i (2)
p⇠hx = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1i .

hG = 1, G = 2ix++;hG = 2, G = 3i p⇠ hG = 1, G = 2ix++;hG = 2i
hG = 1, G = 2ix++;hG = 2i p⇠ hG = 1ix++;hG = 2i

hG = 0ix = 1; x = 2;hG = 1i p⇠ hG = 0ix = 1hG = 1i
The �rst step drops the alternative fail. As there are less synthesis options to choose from, this
weakens the postcondition and the step is thus sound by the standard rule of consequence in Hoare
logic. The second step propagates this elimination backwards by weakening the precondition, which
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Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

1 htruei N(x = 0 | x = 1); hG = 0,G = 1i
2 (assert(x==0) + assert(x==1))

3 hfaili

Fig. 4. Demonic choice.
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Fig. 5. Subproof sharing.

To lift the semantics from programs to sketches, we let the function drv determine all programs
(without non-terminals) that can be derived from a sketch by rewriting the non-terminals. For
example, with N ::= com1 | com2 we have drv(N; com) = {com1; com, com2; com}. Formally, we see the
sketch as a sentential form in a context-free grammar and take the language.

3.2 Realizability Logic
Realizability logic reasons over correctness speci�cation of the form hRisketchhSi. Here, R, S are
so-called selections from the set Selections = P�n (Predicates). A selection is a �nite set of predicates
as we have de�ned them above. The idea is this. When we encounter a non-terminal in a sketch,
we do not yet determine how to resolve it to a program with the function drv. Instead, we collect
in a selection the predicates that these programs may justify as a postcondition. Since also the
precondition is a selection, we can not only choose the program but also the precondition to justify
the postcondition. We thus de�ne validity of realizability triples via validity in Hoare logic:

|=0 hRisketchhSi , 8s 2 S. 9r 2 R. 9prog 2 drv(sketch). |=3 {r}prog{s} .

To derive valid realizability triples, we use the proof rules in Figure 3. We write `0 hRisketchhSi
if the realizability triple can be derived with the help of these rules. Rule (COM) checks whether
the e�ect of a command com on a predicate r is captured by s. The rule allows us to derive the
realizability triple h{r}icomh{s}i in which the selections are singleton sets. The rule plays together
with (GATHER): if we can also derive h{r0}icomh{s0}i for another pre- and postcondition, then we
can join the selections and obtain h{r, r0}icomh{s, s0}i. Rule (GATHER) is also important to join the
pre- and postconditions for the various programs that can be derived from a non-terminal. To
obtain a realizability triple hRiNhSi, Rule (ANG) unwinds the non-terminal to a sketch sketch that
is given by a production and then proves hRisketchhSi. Note that the sketch may again contain N,
and may contain more than one occurrence. We explain at the end of the section how to avoid the
repetition of proof trees and handle non-terminals in an e�cient way.
Rule (DEM) looks like the standard rule for choice operators in Hoare logic. In realizability

logic, the precondition has to be a singleton selection, and the rule is unsound without this side
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To lift the semantics from programs to sketches, we let the function drv determine all programs
(without non-terminals) that can be derived from a sketch by rewriting the non-terminals. For
example, with N ::= com1 | com2 we have drv(N; com) = {com1; com, com2; com}. Formally, we see the
sketch as a sentential form in a context-free grammar and take the language.

3.2 Realizability Logic
Realizability logic reasons over correctness speci�cation of the form hRisketchhSi. Here, R, S are
so-called selections from the set Selections = P�n (Predicates). A selection is a �nite set of predicates
as we have de�ned them above. The idea is this. When we encounter a non-terminal in a sketch,
we do not yet determine how to resolve it to a program with the function drv. Instead, we collect
in a selection the predicates that these programs may justify as a postcondition. Since also the
precondition is a selection, we can not only choose the program but also the precondition to justify
the postcondition. We thus de�ne validity of realizability triples via validity in Hoare logic:

|=0 hRisketchhSi , 8s 2 S. 9r 2 R. 9prog 2 drv(sketch). |=3 {r}prog{s} .

To derive valid realizability triples, we use the proof rules in Figure 3. We write `0 hRisketchhSi
if the realizability triple can be derived with the help of these rules. Rule (COM) checks whether
the e�ect of a command com on a predicate r is captured by s. The rule allows us to derive the
realizability triple h{r}icomh{s}i in which the selections are singleton sets. The rule plays together
with (GATHER): if we can also derive h{r0}icomh{s0}i for another pre- and postcondition, then we
can join the selections and obtain h{r, r0}icomh{s, s0}i. Rule (GATHER) is also important to join the
pre- and postconditions for the various programs that can be derived from a non-terminal. To
obtain a realizability triple hRiNhSi, Rule (ANG) unwinds the non-terminal to a sketch sketch that
is given by a production and then proves hRisketchhSi. Note that the sketch may again contain N,
and may contain more than one occurrence. We explain at the end of the section how to avoid the
repetition of proof trees and handle non-terminals in an e�cient way.
Rule (DEM) looks like the standard rule for choice operators in Hoare logic. In realizability

logic, the precondition has to be a singleton selection, and the rule is unsound without this side
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(SHARE)
`0 h) iNh* i `0 hRisketch[N/h) ih* i ]hSi

`0 hRisketchhSi

Fig. 5. Subproof sharing.

To lift the semantics from programs to sketches, we let the function drv determine all programs
(without non-terminals) that can be derived from a sketch by rewriting the non-terminals. For
example, with N ::= com1 | com2 we have drv(N; com) = {com1; com, com2; com}. Formally, we see the
sketch as a sentential form in a context-free grammar and take the language.

3.2 Realizability Logic
Realizability logic reasons over correctness speci�cation of the form hRisketchhSi. Here, R, S are
so-called selections from the set Selections = P�n (Predicates). A selection is a �nite set of predicates
as we have de�ned them above. The idea is this. When we encounter a non-terminal in a sketch,
we do not yet determine how to resolve it to a program with the function drv. Instead, we collect
in a selection the predicates that these programs may justify as a postcondition. Since also the
precondition is a selection, we can not only choose the program but also the precondition to justify
the postcondition. We thus de�ne validity of realizability triples via validity in Hoare logic:

|=0 hRisketchhSi , 8s 2 S. 9r 2 R. 9prog 2 drv(sketch). |=3 {r}prog{s} .

To derive valid realizability triples, we use the proof rules in Figure 3. We write `0 hRisketchhSi
if the realizability triple can be derived with the help of these rules. Rule (COM) checks whether
the e�ect of a command com on a predicate r is captured by s. The rule allows us to derive the
realizability triple h{r}icomh{s}i in which the selections are singleton sets. The rule plays together
with (GATHER): if we can also derive h{r0}icomh{s0}i for another pre- and postcondition, then we
can join the selections and obtain h{r, r0}icomh{s, s0}i. Rule (GATHER) is also important to join the
pre- and postconditions for the various programs that can be derived from a non-terminal. To
obtain a realizability triple hRiNhSi, Rule (ANG) unwinds the non-terminal to a sketch sketch that
is given by a production and then proves hRisketchhSi. Note that the sketch may again contain N,
and may contain more than one occurrence. We explain at the end of the section how to avoid the
repetition of proof trees and handle non-terminals in an e�cient way.
Rule (DEM) looks like the standard rule for choice operators in Hoare logic. In realizability

logic, the precondition has to be a singleton selection, and the rule is unsound without this side
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1 htruei
2 M(htrueix = 0hx = 0i |
3 htrueix = 1hx = 1i);
4 hx = 0, x = 1i
5 N(hx = 0, x = 1iy = 0hx = 0 ^ y = 0, x = 1 ^ y = 0i |
6 hx = 0, x = 1iy = 1hx = 0 ^ y = 1, x = 1 ^ y = 1i);
7 hG = 0 ^ y = 0, . . . , x = 1 ^ y = 1i
8 assert(x = 1 ^ y = 1)
9 hx = 1 ^ y = 1, faili

Fig. 1. Proof outline in realizability logic.

1 htruei
2 M(htrueix = 0hx = 0i |
3 htrueix = 1hx = 1i);
4 hx = 1i
5 N(hx = 0, x = 1iy = 0hx = 1 ^ y = 1i |
6 hx = 1iy = 1hx = 1 ^ y = 1i);
7 hx = 1 ^ y = 1i
8 assert(x = 1 ^ y = 1)
9 hx = 1 ^ y = 1i

Fig. 2. Proof outline derived from Figure 1.

from N. This yields four synthesis alternatives, namely x=0 ^ y=0 to x=1 ^ y=1. Only the last of
these alternatives passes the assertion, the others lead to a failure of the execution.
A �rst point of criticism one may have about realizability logic is that the alternation between

angelic and demonic choice will explode too quickly. In the end, all we have done is to replace the
choice of a program by a powerset construction over predicates, a technique pioneered in automata
theory [36]. This merely translates a complex search into complex assertions. We argue that, for
SemGuS where validity checks are expensive, the assertions may be the right place to keep the
complexity. Formal methods has developed expressive logical languages and abstract domains that
can denote complex sets of states with very concise assertions. In our experiments, we have worked
with Cartesian abstraction [8, Chapter 9].

A more severe point of criticism is that our realizability triples hRiPhSi drop the relationship
between the single programs prog 2 P and the pre- and postconditions r 2 R and s 2 S that this
program can achieve. Hence, when we have given a proof in realizability logic, like the one in
Figure 1, all we know is that the program sketch M; N; assert(x = 1 ^ y = 1) can be completed to a
program that passes the assertion, but we do not know the program. What we have, however, is a
proof outline in realizability logic that annotates the program with intermediary assertions. The
idea is to use this proof outline as guidance of how to instantiate the non-terminals.
Our second contribution is realization logic, a program logic to derive rewriting steps po p⇠ po

0

between proof outlines in realizability logic. The guarantee given by realization logic is that valid
proof outlines are rewritten to valid proof outlines. The rewriting process will not only eliminate
alternatives from the de�nition of non-terminals until a program that satis�es the speci�cation
has been found. An equally important step is to eliminate predicates that will not be helpful to
satisfy the desired postcondition, or may even fail in the future. The elimination of predicates is
done backwards, starting from the postcondition, and we illustrate it on our example:

hx = 0 ^ y = 0, . . . , x = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1, faili (1)
p⇠hx = 0 ^ y = 0, . . . , x = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1i (2)
p⇠hx = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1i .

hG = 1, G = 2ix++;hG = 2, G = 3i p⇠ hG = 1, G = 2ix++;hG = 2i
hG = 1, G = 2ix++;hG = 2i p⇠ hG = 1ix++;hG = 2i

hG = 0ix = 1; x = 2;hG = 1i p⇠ hG = 0ix = 1hG = 1i
The �rst step drops the alternative fail. As there are less synthesis options to choose from, this
weakens the postcondition and the step is thus sound by the standard rule of consequence in Hoare
logic. The second step propagates this elimination backwards by weakening the precondition, which

3
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Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

1 htruei N(x = 0 | x = 1); hG = 0,G = 1i
2 (assert(x==0) + assert(x==1))

3 hfaili

Fig. 4. Demonic choice.
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Fig. 5. Subproof sharing.

To lift the semantics from programs to sketches, we let the function drv determine all programs
(without non-terminals) that can be derived from a sketch by rewriting the non-terminals. For
example, with N ::= com1 | com2 we have drv(N; com) = {com1; com, com2; com}. Formally, we see the
sketch as a sentential form in a context-free grammar and take the language.

3.2 Realizability Logic
Realizability logic reasons over correctness speci�cation of the form hRisketchhSi. Here, R, S are
so-called selections from the set Selections = P�n (Predicates). A selection is a �nite set of predicates
as we have de�ned them above. The idea is this. When we encounter a non-terminal in a sketch,
we do not yet determine how to resolve it to a program with the function drv. Instead, we collect
in a selection the predicates that these programs may justify as a postcondition. Since also the
precondition is a selection, we can not only choose the program but also the precondition to justify
the postcondition. We thus de�ne validity of realizability triples via validity in Hoare logic:

|=0 hRisketchhSi , 8s 2 S. 9r 2 R. 9prog 2 drv(sketch). |=3 {r}prog{s} .

To derive valid realizability triples, we use the proof rules in Figure 3. We write `0 hRisketchhSi
if the realizability triple can be derived with the help of these rules. Rule (COM) checks whether
the e�ect of a command com on a predicate r is captured by s. The rule allows us to derive the
realizability triple h{r}icomh{s}i in which the selections are singleton sets. The rule plays together
with (GATHER): if we can also derive h{r0}icomh{s0}i for another pre- and postcondition, then we
can join the selections and obtain h{r, r0}icomh{s, s0}i. Rule (GATHER) is also important to join the
pre- and postconditions for the various programs that can be derived from a non-terminal. To
obtain a realizability triple hRiNhSi, Rule (ANG) unwinds the non-terminal to a sketch sketch that
is given by a production and then proves hRisketchhSi. Note that the sketch may again contain N,
and may contain more than one occurrence. We explain at the end of the section how to avoid the
repetition of proof trees and handle non-terminals in an e�cient way.
Rule (DEM) looks like the standard rule for choice operators in Hoare logic. In realizability

logic, the precondition has to be a singleton selection, and the rule is unsound without this side
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Fig. 4. Demonic choice.
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To lift the semantics from programs to sketches, we let the function drv determine all programs
(without non-terminals) that can be derived from a sketch by rewriting the non-terminals. For
example, with N ::= com1 | com2 we have drv(N; com) = {com1; com, com2; com}. Formally, we see the
sketch as a sentential form in a context-free grammar and take the language.

3.2 Realizability Logic
Realizability logic reasons over correctness speci�cation of the form hRisketchhSi. Here, R, S are
so-called selections from the set Selections = P�n (Predicates). A selection is a �nite set of predicates
as we have de�ned them above. The idea is this. When we encounter a non-terminal in a sketch,
we do not yet determine how to resolve it to a program with the function drv. Instead, we collect
in a selection the predicates that these programs may justify as a postcondition. Since also the
precondition is a selection, we can not only choose the program but also the precondition to justify
the postcondition. We thus de�ne validity of realizability triples via validity in Hoare logic:

|=0 hRisketchhSi , 8s 2 S. 9r 2 R. 9prog 2 drv(sketch). |=3 {r}prog{s} .

To derive valid realizability triples, we use the proof rules in Figure 3. We write `0 hRisketchhSi
if the realizability triple can be derived with the help of these rules. Rule (COM) checks whether
the e�ect of a command com on a predicate r is captured by s. The rule allows us to derive the
realizability triple h{r}icomh{s}i in which the selections are singleton sets. The rule plays together
with (GATHER): if we can also derive h{r0}icomh{s0}i for another pre- and postcondition, then we
can join the selections and obtain h{r, r0}icomh{s, s0}i. Rule (GATHER) is also important to join the
pre- and postconditions for the various programs that can be derived from a non-terminal. To
obtain a realizability triple hRiNhSi, Rule (ANG) unwinds the non-terminal to a sketch sketch that
is given by a production and then proves hRisketchhSi. Note that the sketch may again contain N,
and may contain more than one occurrence. We explain at the end of the section how to avoid the
repetition of proof trees and handle non-terminals in an e�cient way.
Rule (DEM) looks like the standard rule for choice operators in Hoare logic. In realizability

logic, the precondition has to be a singleton selection, and the rule is unsound without this side
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`0 hRisketch1 + sketch2hSi

(ANG)
N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)
`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [ R2isketchhS1 [ S2i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

1 htruei N(x = 0 | x = 1); hG = 0,G = 1i
2 (assert(x==0) + assert(x==1))

3 hfaili

Fig. 4. Demonic choice.

(SHARE)
`0 h) iNh* i `0 hRisketch[N/h) ih* i ]hSi

`0 hRisketchhSi

Fig. 5. Subproof sharing.

To lift the semantics from programs to sketches, we let the function drv determine all programs
(without non-terminals) that can be derived from a sketch by rewriting the non-terminals. For
example, with N ::= com1 | com2 we have drv(N; com) = {com1; com, com2; com}. Formally, we see the
sketch as a sentential form in a context-free grammar and take the language.

3.2 Realizability Logic
Realizability logic reasons over correctness speci�cation of the form hRisketchhSi. Here, R, S are
so-called selections from the set Selections = P�n (Predicates). A selection is a �nite set of predicates
as we have de�ned them above. The idea is this. When we encounter a non-terminal in a sketch,
we do not yet determine how to resolve it to a program with the function drv. Instead, we collect
in a selection the predicates that these programs may justify as a postcondition. Since also the
precondition is a selection, we can not only choose the program but also the precondition to justify
the postcondition. We thus de�ne validity of realizability triples via validity in Hoare logic:

|=0 hRisketchhSi , 8s 2 S. 9r 2 R. 9prog 2 drv(sketch). |=3 {r}prog{s} .

To derive valid realizability triples, we use the proof rules in Figure 3. We write `0 hRisketchhSi
if the realizability triple can be derived with the help of these rules. Rule (COM) checks whether
the e�ect of a command com on a predicate r is captured by s. The rule allows us to derive the
realizability triple h{r}icomh{s}i in which the selections are singleton sets. The rule plays together
with (GATHER): if we can also derive h{r0}icomh{s0}i for another pre- and postcondition, then we
can join the selections and obtain h{r, r0}icomh{s, s0}i. Rule (GATHER) is also important to join the
pre- and postconditions for the various programs that can be derived from a non-terminal. To
obtain a realizability triple hRiNhSi, Rule (ANG) unwinds the non-terminal to a sketch sketch that
is given by a production and then proves hRisketchhSi. Note that the sketch may again contain N,
and may contain more than one occurrence. We explain at the end of the section how to avoid the
repetition of proof trees and handle non-terminals in an e�cient way.
Rule (DEM) looks like the standard rule for choice operators in Hoare logic. In realizability

logic, the precondition has to be a singleton selection, and the rule is unsound without this side
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1 htruei
2 M(htrueix = 0hx = 0i |
3 htrueix = 1hx = 1i);
4 hx = 0, x = 1i
5 N(hx = 0, x = 1iy = 0hx = 0 ^ y = 0, x = 1 ^ y = 0i |
6 hx = 0, x = 1iy = 1hx = 0 ^ y = 1, x = 1 ^ y = 1i);
7 hG = 0 ^ y = 0, . . . , x = 1 ^ y = 1i
8 assert(x = 1 ^ y = 1)
9 hx = 1 ^ y = 1, faili

Fig. 1. Proof outline in realizability logic.

1 htruei
2 M(htrueix = 0hx = 0i |
3 htrueix = 1hx = 1i);
4 hx = 1i
5 N(hx = 0, x = 1iy = 0hx = 1 ^ y = 1i |
6 hx = 1iy = 1hx = 1 ^ y = 1i);
7 hx = 1 ^ y = 1i
8 assert(x = 1 ^ y = 1)
9 hx = 1 ^ y = 1i

Fig. 2. Proof outline derived from Figure 1.

from N. This yields four synthesis alternatives, namely x=0 ^ y=0 to x=1 ^ y=1. Only the last of
these alternatives passes the assertion, the others lead to a failure of the execution.
A �rst point of criticism one may have about realizability logic is that the alternation between

angelic and demonic choice will explode too quickly. In the end, all we have done is to replace the
choice of a program by a powerset construction over predicates, a technique pioneered in automata
theory [36]. This merely translates a complex search into complex assertions. We argue that, for
SemGuS where validity checks are expensive, the assertions may be the right place to keep the
complexity. Formal methods has developed expressive logical languages and abstract domains that
can denote complex sets of states with very concise assertions. In our experiments, we have worked
with Cartesian abstraction [8, Chapter 9].

A more severe point of criticism is that our realizability triples hRiPhSi drop the relationship
between the single programs prog 2 P and the pre- and postconditions r 2 R and s 2 S that this
program can achieve. Hence, when we have given a proof in realizability logic, like the one in
Figure 1, all we know is that the program sketch M; N; assert(x = 1 ^ y = 1) can be completed to a
program that passes the assertion, but we do not know the program. What we have, however, is a
proof outline in realizability logic that annotates the program with intermediary assertions. The
idea is to use this proof outline as guidance of how to instantiate the non-terminals.
Our second contribution is realization logic, a program logic to derive rewriting steps po p⇠ po

0

between proof outlines in realizability logic. The guarantee given by realization logic is that valid
proof outlines are rewritten to valid proof outlines. The rewriting process will not only eliminate
alternatives from the de�nition of non-terminals until a program that satis�es the speci�cation
has been found. An equally important step is to eliminate predicates that will not be helpful to
satisfy the desired postcondition, or may even fail in the future. The elimination of predicates is
done backwards, starting from the postcondition, and we illustrate it on our example:

hx = 0 ^ y = 0, . . . , x = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1, faili (1)
p⇠hx = 0 ^ y = 0, . . . , x = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1i (2)
p⇠hx = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1i .

hG = 1, G = 2ix++;hG = 2, G = 3i p⇠ hG = 1, G = 2ix++;hG = 2i
hG = 1, G = 2ix++;hG = 2i p⇠ hG = 1ix++;hG = 2i

hG = 0ix = 1; x = 2;hG = 1i p⇠ hG = 0ix = 1hG = 1i
The �rst step drops the alternative fail. As there are less synthesis options to choose from, this
weakens the postcondition and the step is thus sound by the standard rule of consequence in Hoare
logic. The second step propagates this elimination backwards by weakening the precondition, which
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Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

1 htruei N(x = 0 | x = 1); hG = 0,G = 1i
2 (assert(x==0) + assert(x==1))

3 hfaili

Fig. 4. Demonic choice.
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Fig. 5. Subproof sharing.

To lift the semantics from programs to sketches, we let the function drv determine all programs
(without non-terminals) that can be derived from a sketch by rewriting the non-terminals. For
example, with N ::= com1 | com2 we have drv(N; com) = {com1; com, com2; com}. Formally, we see the
sketch as a sentential form in a context-free grammar and take the language.

3.2 Realizability Logic
Realizability logic reasons over correctness speci�cation of the form hRisketchhSi. Here, R, S are
so-called selections from the set Selections = P�n (Predicates). A selection is a �nite set of predicates
as we have de�ned them above. The idea is this. When we encounter a non-terminal in a sketch,
we do not yet determine how to resolve it to a program with the function drv. Instead, we collect
in a selection the predicates that these programs may justify as a postcondition. Since also the
precondition is a selection, we can not only choose the program but also the precondition to justify
the postcondition. We thus de�ne validity of realizability triples via validity in Hoare logic:

|=0 hRisketchhSi , 8s 2 S. 9r 2 R. 9prog 2 drv(sketch). |=3 {r}prog{s} .

To derive valid realizability triples, we use the proof rules in Figure 3. We write `0 hRisketchhSi
if the realizability triple can be derived with the help of these rules. Rule (COM) checks whether
the e�ect of a command com on a predicate r is captured by s. The rule allows us to derive the
realizability triple h{r}icomh{s}i in which the selections are singleton sets. The rule plays together
with (GATHER): if we can also derive h{r0}icomh{s0}i for another pre- and postcondition, then we
can join the selections and obtain h{r, r0}icomh{s, s0}i. Rule (GATHER) is also important to join the
pre- and postconditions for the various programs that can be derived from a non-terminal. To
obtain a realizability triple hRiNhSi, Rule (ANG) unwinds the non-terminal to a sketch sketch that
is given by a production and then proves hRisketchhSi. Note that the sketch may again contain N,
and may contain more than one occurrence. We explain at the end of the section how to avoid the
repetition of proof trees and handle non-terminals in an e�cient way.
Rule (DEM) looks like the standard rule for choice operators in Hoare logic. In realizability

logic, the precondition has to be a singleton selection, and the rule is unsound without this side
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1 htruei
2 M(htrueix = 0hx = 0i |
3 htrueix = 1hx = 1i);
4 hx = 0, x = 1i
5 N(hx = 0, x = 1iy = 0hx = 0 ^ y = 0, x = 1 ^ y = 0i |
6 hx = 0, x = 1iy = 1hx = 0 ^ y = 1, x = 1 ^ y = 1i);
7 hG = 0 ^ y = 0, . . . , x = 1 ^ y = 1i
8 assert(x = 1 ^ y = 1)
9 hx = 1 ^ y = 1, faili

Fig. 1. Proof outline in realizability logic.

1 htruei
2 M(htrueix = 0hx = 0i |
3 htrueix = 1hx = 1i);
4 hx = 1i
5 N(hx = 0, x = 1iy = 0hx = 1 ^ y = 1i |
6 hx = 1iy = 1hx = 1 ^ y = 1i);
7 hx = 1 ^ y = 1i
8 assert(x = 1 ^ y = 1)
9 hx = 1 ^ y = 1i

Fig. 2. Proof outline derived from Figure 1.

from N. This yields four synthesis alternatives, namely x=0 ^ y=0 to x=1 ^ y=1. Only the last of
these alternatives passes the assertion, the others lead to a failure of the execution.
A �rst point of criticism one may have about realizability logic is that the alternation between

angelic and demonic choice will explode too quickly. In the end, all we have done is to replace the
choice of a program by a powerset construction over predicates, a technique pioneered in automata
theory [36]. This merely translates a complex search into complex assertions. We argue that, for
SemGuS where validity checks are expensive, the assertions may be the right place to keep the
complexity. Formal methods has developed expressive logical languages and abstract domains that
can denote complex sets of states with very concise assertions. In our experiments, we have worked
with Cartesian abstraction [8, Chapter 9].

A more severe point of criticism is that our realizability triples hRiPhSi drop the relationship
between the single programs prog 2 P and the pre- and postconditions r 2 R and s 2 S that this
program can achieve. Hence, when we have given a proof in realizability logic, like the one in
Figure 1, all we know is that the program sketch M; N; assert(x = 1 ^ y = 1) can be completed to a
program that passes the assertion, but we do not know the program. What we have, however, is a
proof outline in realizability logic that annotates the program with intermediary assertions. The
idea is to use this proof outline as guidance of how to instantiate the non-terminals.
Our second contribution is realization logic, a program logic to derive rewriting steps po p⇠ po

0

between proof outlines in realizability logic. The guarantee given by realization logic is that valid
proof outlines are rewritten to valid proof outlines. The rewriting process will not only eliminate
alternatives from the de�nition of non-terminals until a program that satis�es the speci�cation
has been found. An equally important step is to eliminate predicates that will not be helpful to
satisfy the desired postcondition, or may even fail in the future. The elimination of predicates is
done backwards, starting from the postcondition, and we illustrate it on our example:

hx = 0 ^ y = 0, . . . , x = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1, faili (1)
p⇠hx = 0 ^ y = 0, . . . , x = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1i (2)
p⇠hx = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1i .

hG = 1, G = 2ix++;hG = 2, G = 3i p⇠ hG = 1, G = 2ix++;hG = 2i
hG = 1, G = 2ix++;hG = 2i p⇠ hG = 1ix++;hG = 2i

hG = 0ix = 1; x = 2;hG = 1i p⇠ hG = 0ix = 1hG = 1i
The �rst step drops the alternative fail. As there are less synthesis options to choose from, this
weakens the postcondition and the step is thus sound by the standard rule of consequence in Hoare
logic. The second step propagates this elimination backwards by weakening the precondition, which
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`0 hRiNhSi
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`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [ R2isketchhS1 [ S2i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

1 htruei N(x = 0 | x = 1); hG = 0,G = 1i
2 (assert(x==0) + assert(x==1))

3 hfaili

Fig. 4. Demonic choice.

(SHARE)
`0 h) iNh* i `0 hRisketch[N/h) ih* i ]hSi

`0 hRisketchhSi

Fig. 5. Subproof sharing.

To lift the semantics from programs to sketches, we let the function drv determine all programs
(without non-terminals) that can be derived from a sketch by rewriting the non-terminals. For
example, with N ::= com1 | com2 we have drv(N; com) = {com1; com, com2; com}. Formally, we see the
sketch as a sentential form in a context-free grammar and take the language.

3.2 Realizability Logic
Realizability logic reasons over correctness speci�cation of the form hRisketchhSi. Here, R, S are
so-called selections from the set Selections = P�n (Predicates). A selection is a �nite set of predicates
as we have de�ned them above. The idea is this. When we encounter a non-terminal in a sketch,
we do not yet determine how to resolve it to a program with the function drv. Instead, we collect
in a selection the predicates that these programs may justify as a postcondition. Since also the
precondition is a selection, we can not only choose the program but also the precondition to justify
the postcondition. We thus de�ne validity of realizability triples via validity in Hoare logic:

|=0 hRisketchhSi , 8s 2 S. 9r 2 R. 9prog 2 drv(sketch). |=3 {r}prog{s} .

To derive valid realizability triples, we use the proof rules in Figure 3. We write `0 hRisketchhSi
if the realizability triple can be derived with the help of these rules. Rule (COM) checks whether
the e�ect of a command com on a predicate r is captured by s. The rule allows us to derive the
realizability triple h{r}icomh{s}i in which the selections are singleton sets. The rule plays together
with (GATHER): if we can also derive h{r0}icomh{s0}i for another pre- and postcondition, then we
can join the selections and obtain h{r, r0}icomh{s, s0}i. Rule (GATHER) is also important to join the
pre- and postconditions for the various programs that can be derived from a non-terminal. To
obtain a realizability triple hRiNhSi, Rule (ANG) unwinds the non-terminal to a sketch sketch that
is given by a production and then proves hRisketchhSi. Note that the sketch may again contain N,
and may contain more than one occurrence. We explain at the end of the section how to avoid the
repetition of proof trees and handle non-terminals in an e�cient way.
Rule (DEM) looks like the standard rule for choice operators in Hoare logic. In realizability

logic, the precondition has to be a singleton selection, and the rule is unsound without this side
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Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

1 htruei N(x = 0 | x = 1); hG = 0,G = 1i
2 (assert(x==0) + assert(x==1))

3 hfaili

Fig. 4. Demonic choice.
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To lift the semantics from programs to sketches, we let the function drv determine all programs
(without non-terminals) that can be derived from a sketch by rewriting the non-terminals. For
example, with N ::= com1 | com2 we have drv(N; com) = {com1; com, com2; com}. Formally, we see the
sketch as a sentential form in a context-free grammar and take the language.

3.2 Realizability Logic
Realizability logic reasons over correctness speci�cation of the form hRisketchhSi. Here, R, S are
so-called selections from the set Selections = P�n (Predicates). A selection is a �nite set of predicates
as we have de�ned them above. The idea is this. When we encounter a non-terminal in a sketch,
we do not yet determine how to resolve it to a program with the function drv. Instead, we collect
in a selection the predicates that these programs may justify as a postcondition. Since also the
precondition is a selection, we can not only choose the program but also the precondition to justify
the postcondition. We thus de�ne validity of realizability triples via validity in Hoare logic:

|=0 hRisketchhSi , 8s 2 S. 9r 2 R. 9prog 2 drv(sketch). |=3 {r}prog{s} .

To derive valid realizability triples, we use the proof rules in Figure 3. We write `0 hRisketchhSi
if the realizability triple can be derived with the help of these rules. Rule (COM) checks whether
the e�ect of a command com on a predicate r is captured by s. The rule allows us to derive the
realizability triple h{r}icomh{s}i in which the selections are singleton sets. The rule plays together
with (GATHER): if we can also derive h{r0}icomh{s0}i for another pre- and postcondition, then we
can join the selections and obtain h{r, r0}icomh{s, s0}i. Rule (GATHER) is also important to join the
pre- and postconditions for the various programs that can be derived from a non-terminal. To
obtain a realizability triple hRiNhSi, Rule (ANG) unwinds the non-terminal to a sketch sketch that
is given by a production and then proves hRisketchhSi. Note that the sketch may again contain N,
and may contain more than one occurrence. We explain at the end of the section how to avoid the
repetition of proof trees and handle non-terminals in an e�cient way.
Rule (DEM) looks like the standard rule for choice operators in Hoare logic. In realizability

logic, the precondition has to be a singleton selection, and the rule is unsound without this side
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`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [ R2isketchhS1 [ S2i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

1 htruei N(x = 0 | x = 1); hG = 0,G = 1i
2 (assert(x==0) + assert(x==1))

3 hfaili

Fig. 4. Demonic choice.

(SHARE)
`0 h) iNh* i `0 hRisketch[N/h) ih* i ]hSi

`0 hRisketchhSi

Fig. 5. Subproof sharing.

To lift the semantics from programs to sketches, we let the function drv determine all programs
(without non-terminals) that can be derived from a sketch by rewriting the non-terminals. For
example, with N ::= com1 | com2 we have drv(N; com) = {com1; com, com2; com}. Formally, we see the
sketch as a sentential form in a context-free grammar and take the language.

3.2 Realizability Logic
Realizability logic reasons over correctness speci�cation of the form hRisketchhSi. Here, R, S are
so-called selections from the set Selections = P�n (Predicates). A selection is a �nite set of predicates
as we have de�ned them above. The idea is this. When we encounter a non-terminal in a sketch,
we do not yet determine how to resolve it to a program with the function drv. Instead, we collect
in a selection the predicates that these programs may justify as a postcondition. Since also the
precondition is a selection, we can not only choose the program but also the precondition to justify
the postcondition. We thus de�ne validity of realizability triples via validity in Hoare logic:

|=0 hRisketchhSi , 8s 2 S. 9r 2 R. 9prog 2 drv(sketch). |=3 {r}prog{s} .

To derive valid realizability triples, we use the proof rules in Figure 3. We write `0 hRisketchhSi
if the realizability triple can be derived with the help of these rules. Rule (COM) checks whether
the e�ect of a command com on a predicate r is captured by s. The rule allows us to derive the
realizability triple h{r}icomh{s}i in which the selections are singleton sets. The rule plays together
with (GATHER): if we can also derive h{r0}icomh{s0}i for another pre- and postcondition, then we
can join the selections and obtain h{r, r0}icomh{s, s0}i. Rule (GATHER) is also important to join the
pre- and postconditions for the various programs that can be derived from a non-terminal. To
obtain a realizability triple hRiNhSi, Rule (ANG) unwinds the non-terminal to a sketch sketch that
is given by a production and then proves hRisketchhSi. Note that the sketch may again contain N,
and may contain more than one occurrence. We explain at the end of the section how to avoid the
repetition of proof trees and handle non-terminals in an e�cient way.
Rule (DEM) looks like the standard rule for choice operators in Hoare logic. In realizability

logic, the precondition has to be a singleton selection, and the rule is unsound without this side
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1 htruei
2 M(htrueix = 0hx = 0i |
3 htrueix = 1hx = 1i);
4 hx = 0, x = 1i
5 N(hx = 0, x = 1iy = 0hx = 0 ^ y = 0, x = 1 ^ y = 0i |
6 hx = 0, x = 1iy = 1hx = 0 ^ y = 1, x = 1 ^ y = 1i);
7 hG = 0 ^ y = 0, . . . , x = 1 ^ y = 1i
8 assert(x = 1 ^ y = 1)
9 hx = 1 ^ y = 1, faili

Fig. 1. Proof outline in realizability logic.

1 htruei
2 M(htrueix = 0hx = 0i |
3 htrueix = 1hx = 1i);
4 hx = 1i
5 N(hx = 0, x = 1iy = 0hx = 1 ^ y = 1i |
6 hx = 1iy = 1hx = 1 ^ y = 1i);
7 hx = 1 ^ y = 1i
8 assert(x = 1 ^ y = 1)
9 hx = 1 ^ y = 1i

Fig. 2. Proof outline derived from Figure 1.

from N. This yields four synthesis alternatives, namely x=0 ^ y=0 to x=1 ^ y=1. Only the last of
these alternatives passes the assertion, the others lead to a failure of the execution.
A �rst point of criticism one may have about realizability logic is that the alternation between

angelic and demonic choice will explode too quickly. In the end, all we have done is to replace the
choice of a program by a powerset construction over predicates, a technique pioneered in automata
theory [36]. This merely translates a complex search into complex assertions. We argue that, for
SemGuS where validity checks are expensive, the assertions may be the right place to keep the
complexity. Formal methods has developed expressive logical languages and abstract domains that
can denote complex sets of states with very concise assertions. In our experiments, we have worked
with Cartesian abstraction [8, Chapter 9].

A more severe point of criticism is that our realizability triples hRiPhSi drop the relationship
between the single programs prog 2 P and the pre- and postconditions r 2 R and s 2 S that this
program can achieve. Hence, when we have given a proof in realizability logic, like the one in
Figure 1, all we know is that the program sketch M; N; assert(x = 1 ^ y = 1) can be completed to a
program that passes the assertion, but we do not know the program. What we have, however, is a
proof outline in realizability logic that annotates the program with intermediary assertions. The
idea is to use this proof outline as guidance of how to instantiate the non-terminals.
Our second contribution is realization logic, a program logic to derive rewriting steps po p⇠ po

0

between proof outlines in realizability logic. The guarantee given by realization logic is that valid
proof outlines are rewritten to valid proof outlines. The rewriting process will not only eliminate
alternatives from the de�nition of non-terminals until a program that satis�es the speci�cation
has been found. An equally important step is to eliminate predicates that will not be helpful to
satisfy the desired postcondition, or may even fail in the future. The elimination of predicates is
done backwards, starting from the postcondition, and we illustrate it on our example:

hx = 0 ^ y = 0, . . . , x = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1, faili (1)
p⇠hx = 0 ^ y = 0, . . . , x = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1i (2)
p⇠hx = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1i .

hG = 1, G = 2ix++;hG = 2, G = 3i p⇠ hG = 1, G = 2ix++;hG = 2i
hG = 1, G = 2ix++;hG = 2i p⇠ hG = 1ix++;hG = 2i

hG = 0ix = 1; x = 2;hG = 1i p⇠ hG = 0ix = 1hG = 1i
The �rst step drops the alternative fail. As there are less synthesis options to choose from, this
weakens the postcondition and the step is thus sound by the standard rule of consequence in Hoare
logic. The second step propagates this elimination backwards by weakening the precondition, which
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(COM)
»com…(r ) �3 s

`0 h{r }icomh{s}i

(SEQ)
`0 hRisketch1hSi
`0 hSisketch2hT i

`0 hRisketch1; sketch2hT i

(LOOP)
R = {r }

`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)
R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)
R = {r }

`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)
N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)
`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [ R2isketchhS1 [ S2i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

1 htruei N(x = 0 | x = 1); hG = 0,G = 1i
2 (assert(x==0) + assert(x==1))

3 hfaili

Fig. 4. Demonic choice.

(SHARE)
`0 h) iNh* i `0 hRisketch[N/h) ih* i ]hSi

`0 hRisketchhSi

Fig. 5. Subproof sharing.

To lift the semantics from programs to sketches, we let the function drv determine all programs
(without non-terminals) that can be derived from a sketch by rewriting the non-terminals. For
example, with N ::= com1 | com2 we have drv(N; com) = {com1; com, com2; com}. Formally, we see the
sketch as a sentential form in a context-free grammar and take the language.

3.2 Realizability Logic
Realizability logic reasons over correctness speci�cation of the form hRisketchhSi. Here, R, S are
so-called selections from the set Selections = P�n (Predicates). A selection is a �nite set of predicates
as we have de�ned them above. The idea is this. When we encounter a non-terminal in a sketch,
we do not yet determine how to resolve it to a program with the function drv. Instead, we collect
in a selection the predicates that these programs may justify as a postcondition. Since also the
precondition is a selection, we can not only choose the program but also the precondition to justify
the postcondition. We thus de�ne validity of realizability triples via validity in Hoare logic:

|=0 hRisketchhSi , 8s 2 S. 9r 2 R. 9prog 2 drv(sketch). |=3 {r}prog{s} .

To derive valid realizability triples, we use the proof rules in Figure 3. We write `0 hRisketchhSi
if the realizability triple can be derived with the help of these rules. Rule (COM) checks whether
the e�ect of a command com on a predicate r is captured by s. The rule allows us to derive the
realizability triple h{r}icomh{s}i in which the selections are singleton sets. The rule plays together
with (GATHER): if we can also derive h{r0}icomh{s0}i for another pre- and postcondition, then we
can join the selections and obtain h{r, r0}icomh{s, s0}i. Rule (GATHER) is also important to join the
pre- and postconditions for the various programs that can be derived from a non-terminal. To
obtain a realizability triple hRiNhSi, Rule (ANG) unwinds the non-terminal to a sketch sketch that
is given by a production and then proves hRisketchhSi. Note that the sketch may again contain N,
and may contain more than one occurrence. We explain at the end of the section how to avoid the
repetition of proof trees and handle non-terminals in an e�cient way.
Rule (DEM) looks like the standard rule for choice operators in Hoare logic. In realizability

logic, the precondition has to be a singleton selection, and the rule is unsound without this side
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1 htruei
2 M(htrueix = 0hx = 0i |
3 htrueix = 1hx = 1i);
4 hx = 0, x = 1i
5 N(hx = 0, x = 1iy = 0hx = 0 ^ y = 0, x = 1 ^ y = 0i |
6 hx = 0, x = 1iy = 1hx = 0 ^ y = 1, x = 1 ^ y = 1i);
7 hG = 0 ^ y = 0, . . . , x = 1 ^ y = 1i
8 assert(x = 1 ^ y = 1)
9 hx = 1 ^ y = 1, faili

Fig. 1. Proof outline in realizability logic.

1 htruei
2 M(htrueix = 0hx = 0i |
3 htrueix = 1hx = 1i);
4 hx = 1i
5 N(hx = 0, x = 1iy = 0hx = 1 ^ y = 1i |
6 hx = 1iy = 1hx = 1 ^ y = 1i);
7 hx = 1 ^ y = 1i
8 assert(x = 1 ^ y = 1)
9 hx = 1 ^ y = 1i

Fig. 2. Proof outline derived from Figure 1.

from N. This yields four synthesis alternatives, namely x=0 ^ y=0 to x=1 ^ y=1. Only the last of
these alternatives passes the assertion, the others lead to a failure of the execution.
A �rst point of criticism one may have about realizability logic is that the alternation between

angelic and demonic choice will explode too quickly. In the end, all we have done is to replace the
choice of a program by a powerset construction over predicates, a technique pioneered in automata
theory [36]. This merely translates a complex search into complex assertions. We argue that, for
SemGuS where validity checks are expensive, the assertions may be the right place to keep the
complexity. Formal methods has developed expressive logical languages and abstract domains that
can denote complex sets of states with very concise assertions. In our experiments, we have worked
with Cartesian abstraction [8, Chapter 9].

A more severe point of criticism is that our realizability triples hRiPhSi drop the relationship
between the single programs prog 2 P and the pre- and postconditions r 2 R and s 2 S that this
program can achieve. Hence, when we have given a proof in realizability logic, like the one in
Figure 1, all we know is that the program sketch M; N; assert(x = 1 ^ y = 1) can be completed to a
program that passes the assertion, but we do not know the program. What we have, however, is a
proof outline in realizability logic that annotates the program with intermediary assertions. The
idea is to use this proof outline as guidance of how to instantiate the non-terminals.
Our second contribution is realization logic, a program logic to derive rewriting steps po p⇠ po

0

between proof outlines in realizability logic. The guarantee given by realization logic is that valid
proof outlines are rewritten to valid proof outlines. The rewriting process will not only eliminate
alternatives from the de�nition of non-terminals until a program that satis�es the speci�cation
has been found. An equally important step is to eliminate predicates that will not be helpful to
satisfy the desired postcondition, or may even fail in the future. The elimination of predicates is
done backwards, starting from the postcondition, and we illustrate it on our example:

hx = 0 ^ y = 0, . . . , x = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1, faili (1)
p⇠hx = 0 ^ y = 0, . . . , x = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1i (2)
p⇠hx = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1i .

hG = 1, G = 2ix++;hG = 2, G = 3i p⇠ hG = 1, G = 2ix++;hG = 2i
hG = 1, G = 2ix++;hG = 2i p⇠ hG = 1ix++;hG = 2i

hG = 0ix = 1; x = 2;hG = 1i p⇠ hG = 0ix = 1hG = 1i
The �rst step drops the alternative fail. As there are less synthesis options to choose from, this
weakens the postcondition and the step is thus sound by the standard rule of consequence in Hoare
logic. The second step propagates this elimination backwards by weakening the precondition, which
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(COM)
»com…(r ) �3 s

`0 h{r }icomh{s}i

(SEQ)
`0 hRisketch1hSi
`0 hSisketch2hT i

`0 hRisketch1; sketch2hT i

(LOOP)
R = {r }

`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)
R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)
R = {r }

`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)
N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)
`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [ R2isketchhS1 [ S2i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

1 htruei N(x = 0 | x = 1); hG = 0,G = 1i
2 (assert(x==0) + assert(x==1))

3 hfaili

Fig. 4. Demonic choice.

(SHARE)
`0 h) iNh* i `0 hRisketch[N/h) ih* i ]hSi

`0 hRisketchhSi

Fig. 5. Subproof sharing.

To lift the semantics from programs to sketches, we let the function drv determine all programs
(without non-terminals) that can be derived from a sketch by rewriting the non-terminals. For
example, with N ::= com1 | com2 we have drv(N; com) = {com1; com, com2; com}. Formally, we see the
sketch as a sentential form in a context-free grammar and take the language.

3.2 Realizability Logic
Realizability logic reasons over correctness speci�cation of the form hRisketchhSi. Here, R, S are
so-called selections from the set Selections = P�n (Predicates). A selection is a �nite set of predicates
as we have de�ned them above. The idea is this. When we encounter a non-terminal in a sketch,
we do not yet determine how to resolve it to a program with the function drv. Instead, we collect
in a selection the predicates that these programs may justify as a postcondition. Since also the
precondition is a selection, we can not only choose the program but also the precondition to justify
the postcondition. We thus de�ne validity of realizability triples via validity in Hoare logic:

|=0 hRisketchhSi , 8s 2 S. 9r 2 R. 9prog 2 drv(sketch). |=3 {r}prog{s} .

To derive valid realizability triples, we use the proof rules in Figure 3. We write `0 hRisketchhSi
if the realizability triple can be derived with the help of these rules. Rule (COM) checks whether
the e�ect of a command com on a predicate r is captured by s. The rule allows us to derive the
realizability triple h{r}icomh{s}i in which the selections are singleton sets. The rule plays together
with (GATHER): if we can also derive h{r0}icomh{s0}i for another pre- and postcondition, then we
can join the selections and obtain h{r, r0}icomh{s, s0}i. Rule (GATHER) is also important to join the
pre- and postconditions for the various programs that can be derived from a non-terminal. To
obtain a realizability triple hRiNhSi, Rule (ANG) unwinds the non-terminal to a sketch sketch that
is given by a production and then proves hRisketchhSi. Note that the sketch may again contain N,
and may contain more than one occurrence. We explain at the end of the section how to avoid the
repetition of proof trees and handle non-terminals in an e�cient way.
Rule (DEM) looks like the standard rule for choice operators in Hoare logic. In realizability

logic, the precondition has to be a singleton selection, and the rule is unsound without this side
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1 htruei
2 M(htrueix = 0hx = 0i |
3 htrueix = 1hx = 1i);
4 hx = 0, x = 1i
5 N(hx = 0, x = 1iy = 0hx = 0 ^ y = 0, x = 1 ^ y = 0i |
6 hx = 0, x = 1iy = 1hx = 0 ^ y = 1, x = 1 ^ y = 1i);
7 hG = 0 ^ y = 0, . . . , x = 1 ^ y = 1i
8 assert(x = 1 ^ y = 1)
9 hx = 1 ^ y = 1, faili

Fig. 1. Proof outline in realizability logic.

1 htruei
2 M(htrueix = 0hx = 0i |
3 htrueix = 1hx = 1i);
4 hx = 1i
5 N(hx = 0, x = 1iy = 0hx = 1 ^ y = 1i |
6 hx = 1iy = 1hx = 1 ^ y = 1i);
7 hx = 1 ^ y = 1i
8 assert(x = 1 ^ y = 1)
9 hx = 1 ^ y = 1i

Fig. 2. Proof outline derived from Figure 1.

from N. This yields four synthesis alternatives, namely x=0 ^ y=0 to x=1 ^ y=1. Only the last of
these alternatives passes the assertion, the others lead to a failure of the execution.
A �rst point of criticism one may have about realizability logic is that the alternation between

angelic and demonic choice will explode too quickly. In the end, all we have done is to replace the
choice of a program by a powerset construction over predicates, a technique pioneered in automata
theory [36]. This merely translates a complex search into complex assertions. We argue that, for
SemGuS where validity checks are expensive, the assertions may be the right place to keep the
complexity. Formal methods has developed expressive logical languages and abstract domains that
can denote complex sets of states with very concise assertions. In our experiments, we have worked
with Cartesian abstraction [8, Chapter 9].

A more severe point of criticism is that our realizability triples hRiPhSi drop the relationship
between the single programs prog 2 P and the pre- and postconditions r 2 R and s 2 S that this
program can achieve. Hence, when we have given a proof in realizability logic, like the one in
Figure 1, all we know is that the program sketch M; N; assert(x = 1 ^ y = 1) can be completed to a
program that passes the assertion, but we do not know the program. What we have, however, is a
proof outline in realizability logic that annotates the program with intermediary assertions. The
idea is to use this proof outline as guidance of how to instantiate the non-terminals.
Our second contribution is realization logic, a program logic to derive rewriting steps po p⇠ po

0

between proof outlines in realizability logic. The guarantee given by realization logic is that valid
proof outlines are rewritten to valid proof outlines. The rewriting process will not only eliminate
alternatives from the de�nition of non-terminals until a program that satis�es the speci�cation
has been found. An equally important step is to eliminate predicates that will not be helpful to
satisfy the desired postcondition, or may even fail in the future. The elimination of predicates is
done backwards, starting from the postcondition, and we illustrate it on our example:

hx = 0 ^ y = 0, . . . , x = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1, faili (1)
p⇠hx = 0 ^ y = 0, . . . , x = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1i (2)
p⇠hx = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1i .

hG = 1, G = 2ix++;hG = 2, G = 3i p⇠ hG = 1, G = 2ix++;hG = 2i
hG = 1, G = 2ix++;hG = 2i p⇠ hG = 1ix++;hG = 2i

hG = 0ix = 1; x = 2;hG = 1i p⇠ hG = 0ix = 1hG = 1i
The �rst step drops the alternative fail. As there are less synthesis options to choose from, this
weakens the postcondition and the step is thus sound by the standard rule of consequence in Hoare
logic. The second step propagates this elimination backwards by weakening the precondition, which
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»com…(r ) �3 s

`0 h{r }icomh{s}i
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`0 hRisketch1hSi
`0 hSisketch2hT i

`0 hRisketch1; sketch2hT i
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`0 hRisketchhRi
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`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)
R = {r }

`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)
N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)
`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [ R2isketchhS1 [ S2i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

1 htruei N(x = 0 | x = 1); hG = 0,G = 1i
2 (assert(x==0) + assert(x==1))

3 hfaili

Fig. 4. Demonic choice.

(SHARE)
`0 h) iNh* i `0 hRisketch[N/h) ih* i ]hSi

`0 hRisketchhSi

Fig. 5. Subproof sharing.

To lift the semantics from programs to sketches, we let the function drv determine all programs
(without non-terminals) that can be derived from a sketch by rewriting the non-terminals. For
example, with N ::= com1 | com2 we have drv(N; com) = {com1; com, com2; com}. Formally, we see the
sketch as a sentential form in a context-free grammar and take the language.

3.2 Realizability Logic
Realizability logic reasons over correctness speci�cation of the form hRisketchhSi. Here, R, S are
so-called selections from the set Selections = P�n (Predicates). A selection is a �nite set of predicates
as we have de�ned them above. The idea is this. When we encounter a non-terminal in a sketch,
we do not yet determine how to resolve it to a program with the function drv. Instead, we collect
in a selection the predicates that these programs may justify as a postcondition. Since also the
precondition is a selection, we can not only choose the program but also the precondition to justify
the postcondition. We thus de�ne validity of realizability triples via validity in Hoare logic:

|=0 hRisketchhSi , 8s 2 S. 9r 2 R. 9prog 2 drv(sketch). |=3 {r}prog{s} .

To derive valid realizability triples, we use the proof rules in Figure 3. We write `0 hRisketchhSi
if the realizability triple can be derived with the help of these rules. Rule (COM) checks whether
the e�ect of a command com on a predicate r is captured by s. The rule allows us to derive the
realizability triple h{r}icomh{s}i in which the selections are singleton sets. The rule plays together
with (GATHER): if we can also derive h{r0}icomh{s0}i for another pre- and postcondition, then we
can join the selections and obtain h{r, r0}icomh{s, s0}i. Rule (GATHER) is also important to join the
pre- and postconditions for the various programs that can be derived from a non-terminal. To
obtain a realizability triple hRiNhSi, Rule (ANG) unwinds the non-terminal to a sketch sketch that
is given by a production and then proves hRisketchhSi. Note that the sketch may again contain N,
and may contain more than one occurrence. We explain at the end of the section how to avoid the
repetition of proof trees and handle non-terminals in an e�cient way.
Rule (DEM) looks like the standard rule for choice operators in Hoare logic. In realizability

logic, the precondition has to be a singleton selection, and the rule is unsound without this side
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non-terminal, we would like to share them in the various places the non-terminal is used. This is
made possible by Rule (SHARE) given in Figure 5. If we have already derived the triple h) iNh* i,
then we can eliminate the non-terminal from a program sketch and replace it by the pair h) ih* i.
The pair stands for the fact that we can synthesize a program that transforms) to* . Rule (SHARE) is
readily checked to be sound. However, it is a derived rule whose application can easily be mimicked
by Rule (ANG), at the cost of blowing-up the proof. An implementation would re�ne the rule so
that di�erent occurrences of the non-terminal can be replaced in di�erent ways. Moreover, one
would maintain a pointer to the subproof that should be inserted, to be able to derive the program
with the technique given next.

4 REALIZATION LOGIC
We de�ne realization logic, a program logic to derive programs from sketches. The key insight
is that a proof outline in realizability logic for the sketch of interest is helpful guidance to �nd a
program that solves the synthesis task. To make use of this guidance, realization logic rewrites the
given proof outline until a suitable program is found. Realization logic thus reasons over rewriting
steps of the form po p⇠ po

0 between proof outlines. The strategy behind the rewriting is to propagate
information about failed synthesis attempts backwards, and thereby iteratively eliminate predicates
from selections and productions from the de�nition of non-terminals.

As we need a precise understanding of proof outlines, we give the de�nition:

po ::= hRicomhSi | po; po | po + po | po⇤ | N(po) | (po | po) .
We write `0 po to indicate that the proof outline has been derived with realizability logic. The
assertions we track are the ones that have been used in the application of (SEQ), (LOOP), and (ANG).
The formal de�nition is in the appendix. We abuse the notation a bit and write hRipohSi to indicate
that R is the precondition and S is the postcondition of the proof outline po. This is well-de�ned,
because `0 po1 + po2 implies that po1 and po2 have the same pre- and postcondition.

The proof rules of realization logic are listed in Figure 6, we discuss them below. The rules give
the following soundness guarantee: if we start from a proof outline in realizability logic and rewrite
it to another proof outline, then also this proof outline can be derived with realizability logic.

T������ 4.1 (S��������). `0 po and po p⇠ po
0 together imply `0 po

0.

T������ 4.2 (S��������).

`0 hRipohSi ^ hRipohSi p⇠ hR0ipo0hS0i =) `0 hR0ipo0hS0i
This allows us to invoke the soundness of realizability logic from Theorem 3.1 and obtain the
desired semantic guarantee for the program we have derived.

A feature all rules share is that they are guided by the original proof outline: the selections in the
proof outline that results from rewriting are limited to the selections in the original proof outline.
To ease the notation, we use Rw to denote a selection that is known to be less versatile than R,
meaning R �0 Rw holds. This may be used repeatedly, so R �0 Rw �0 Rww.
The rules in Figure 6 rewrite the given proof outline in a compositional fashion. The base case

(RCOM) allows us to pick a pre- and postcondition from a selection. This is the moment we realize
that predicates from the precondition can be dropped because they are not needed to obtain the
postcondition, as shown in the introduction. We have to explicitly check the over-approximation
because realizability triples do not maintain the interplay between the predicates in the pre- and in
the postcondition. Using (RANG), we can rewrite proofs for the right-hand sides of non-terminals.
The heart of the calculus is (RSELECT), which allows us to replace non-terminals by their right-
hand sides. The Rules (RSEQL) and (RSEQR) rewrite the left resp. the right part of a sequence. In
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non-terminal, we would like to share them in the various places the non-terminal is used. This is
made possible by Rule (SHARE) given in Figure 5. If we have already derived the triple h) iNh* i,
then we can eliminate the non-terminal from a program sketch and replace it by the pair h) ih* i.
The pair stands for the fact that we can synthesize a program that transforms) to* . Rule (SHARE) is
readily checked to be sound. However, it is a derived rule whose application can easily be mimicked
by Rule (ANG), at the cost of blowing-up the proof. An implementation would re�ne the rule so
that di�erent occurrences of the non-terminal can be replaced in di�erent ways. Moreover, one
would maintain a pointer to the subproof that should be inserted, to be able to derive the program
with the technique given next.

4 REALIZATION LOGIC
We de�ne realization logic, a program logic to derive programs from sketches. The key insight
is that a proof outline in realizability logic for the sketch of interest is helpful guidance to �nd a
program that solves the synthesis task. To make use of this guidance, realization logic rewrites the
given proof outline until a suitable program is found. Realization logic thus reasons over rewriting
steps of the form po p⇠ po

0 between proof outlines. The strategy behind the rewriting is to propagate
information about failed synthesis attempts backwards, and thereby iteratively eliminate predicates
from selections and productions from the de�nition of non-terminals.

As we need a precise understanding of proof outlines, we give the de�nition:

po ::= hRicomhSi | po; po | po + po | po⇤ | N(po) | (po | po) .
We write `0 po to indicate that the proof outline has been derived with realizability logic. The
assertions we track are the ones that have been used in the application of (SEQ), (LOOP), and (ANG).
The formal de�nition is in the appendix. We abuse the notation a bit and write hRipohSi to indicate
that R is the precondition and S is the postcondition of the proof outline po. This is well-de�ned,
because `0 po1 + po2 implies that po1 and po2 have the same pre- and postcondition.

The proof rules of realization logic are listed in Figure 6, we discuss them below. The rules give
the following soundness guarantee: if we start from a proof outline in realizability logic and rewrite
it to another proof outline, then also this proof outline can be derived with realizability logic.

T������ 4.1 (S��������). `0 po and po p⇠ po
0 together imply `0 po

0.

T������ 4.2 (S��������).

`0 hRipohSi ^ hRipohSi p⇠ hR0ipo0hS0i =) `0 hR0ipo0hS0i
This allows us to invoke the soundness of realizability logic from Theorem 3.1 and obtain the
desired semantic guarantee for the program we have derived.

A feature all rules share is that they are guided by the original proof outline: the selections in the
proof outline that results from rewriting are limited to the selections in the original proof outline.
To ease the notation, we use Rw to denote a selection that is known to be less versatile than R,
meaning R �0 Rw holds. This may be used repeatedly, so R �0 Rw �0 Rww.
The rules in Figure 6 rewrite the given proof outline in a compositional fashion. The base case

(RCOM) allows us to pick a pre- and postcondition from a selection. This is the moment we realize
that predicates from the precondition can be dropped because they are not needed to obtain the
postcondition, as shown in the introduction. We have to explicitly check the over-approximation
because realizability triples do not maintain the interplay between the predicates in the pre- and in
the postcondition. Using (RANG), we can rewrite proofs for the right-hand sides of non-terminals.
The heart of the calculus is (RSELECT), which allows us to replace non-terminals by their right-
hand sides. The Rules (RSEQL) and (RSEQR) rewrite the left resp. the right part of a sequence. In
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1 htruei
2 M(htrueix = 0hx = 0i |
3 htrueix = 1hx = 1i);
4 hx = 0, x = 1i
5 N(hx = 0, x = 1iy = 0hx = 0 ^ y = 0, x = 1 ^ y = 0i |
6 hx = 0, x = 1iy = 1hx = 0 ^ y = 1, x = 1 ^ y = 1i);
7 hG = 0 ^ y = 0, . . . , x = 1 ^ y = 1i
8 assert(x = 1 ^ y = 1)
9 hx = 1 ^ y = 1, faili

Fig. 1. Proof outline in realizability logic.

1 htruei
2 M(htrueix = 0hx = 0i |
3 htrueix = 1hx = 1i);
4 hx = 1i
5 N(hx = 0, x = 1iy = 0hx = 1 ^ y = 1i |
6 hx = 1iy = 1hx = 1 ^ y = 1i);
7 hx = 1 ^ y = 1i
8 assert(x = 1 ^ y = 1)
9 hx = 1 ^ y = 1i

Fig. 2. Proof outline derived from Figure 1.

from N. This yields four synthesis alternatives, namely x=0 ^ y=0 to x=1 ^ y=1. Only the last of
these alternatives passes the assertion, the others lead to a failure of the execution.
A �rst point of criticism one may have about realizability logic is that the alternation between

angelic and demonic choice will explode too quickly. In the end, all we have done is to replace the
choice of a program by a powerset construction over predicates, a technique pioneered in automata
theory [36]. This merely translates a complex search into complex assertions. We argue that, for
SemGuS where validity checks are expensive, the assertions may be the right place to keep the
complexity. Formal methods has developed expressive logical languages and abstract domains that
can denote complex sets of states with very concise assertions. In our experiments, we have worked
with Cartesian abstraction [8, Chapter 9].

A more severe point of criticism is that our realizability triples hRiPhSi drop the relationship
between the single programs prog 2 P and the pre- and postconditions r 2 R and s 2 S that this
program can achieve. Hence, when we have given a proof in realizability logic, like the one in
Figure 1, all we know is that the program sketch M; N; assert(x = 1 ^ y = 1) can be completed to a
program that passes the assertion, but we do not know the program. What we have, however, is a
proof outline in realizability logic that annotates the program with intermediary assertions. The
idea is to use this proof outline as guidance of how to instantiate the non-terminals.
Our second contribution is realization logic, a program logic to derive rewriting steps po p⇠ po

0

between proof outlines in realizability logic. The guarantee given by realization logic is that valid
proof outlines are rewritten to valid proof outlines. The rewriting process will not only eliminate
alternatives from the de�nition of non-terminals until a program that satis�es the speci�cation
has been found. An equally important step is to eliminate predicates that will not be helpful to
satisfy the desired postcondition, or may even fail in the future. The elimination of predicates is
done backwards, starting from the postcondition, and we illustrate it on our example:

hx = 0 ^ y = 0, . . . , x = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1, faili (1)
p⇠hx = 0 ^ y = 0, . . . , x = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1i (2)
p⇠hx = 1 ^ y = 1iassert(x = 1 ^ y = 1)hx = 1 ^ y = 1i .

hG = 1, G = 2ix++;hG = 2, G = 3i p⇠ hG = 1, G = 2ix++;hG = 2i
hG = 1, G = 2ix++;hG = 2i p⇠ hG = 1ix++;hG = 2i

hG = 0ix = 1; x = 2;hG = 1i p⇠ hG = 0ix = 1hG = 1i
The �rst step drops the alternative fail. As there are less synthesis options to choose from, this
weakens the postcondition and the step is thus sound by the standard rule of consequence in Hoare
logic. The second step propagates this elimination backwards by weakening the precondition, which
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(COM)
»com…(r ) �3 s

`0 h{r }icomh{s}i

(SEQ)
`0 hRisketch1hSi
`0 hSisketch2hT i

`0 hRisketch1; sketch2hT i

(LOOP)
R = {r }

`0 hRisketchhRi
`0 hRisketch⇤hRi

(CSQ)
R �0 R0 S0 �0 S
`0 hR0isketchhS0i
`0 hRisketchhSi

(DEM)
R = {r }

`0 hRisketch1hSi
`0 hRisketch2hSi

`0 hRisketch1 + sketch2hSi

(ANG)
N ::= sketch | . . .
`0 hRisketchhSi

`0 hRiNhSi

(GATHER)
`0 hR1isketchhS1i
`0 hR2isketchhS2i

`0 hR1 [ R2isketchhS1 [ S2i

Fig. 3. Rules of realizability logic. Extensions of Hoare logic are highlighted in blue.

1 htruei N(x = 0 | x = 1); hG = 0,G = 1i
2 (assert(x==0) + assert(x==1))

3 hfaili

Fig. 4. Demonic choice.

(SHARE)
`0 h) iNh* i `0 hRisketch[N/h) ih* i ]hSi

`0 hRisketchhSi

Fig. 5. Subproof sharing.

To lift the semantics from programs to sketches, we let the function drv determine all programs
(without non-terminals) that can be derived from a sketch by rewriting the non-terminals. For
example, with N ::= com1 | com2 we have drv(N; com) = {com1; com, com2; com}. Formally, we see the
sketch as a sentential form in a context-free grammar and take the language.

3.2 Realizability Logic
Realizability logic reasons over correctness speci�cation of the form hRisketchhSi. Here, R, S are
so-called selections from the set Selections = P�n (Predicates). A selection is a �nite set of predicates
as we have de�ned them above. The idea is this. When we encounter a non-terminal in a sketch,
we do not yet determine how to resolve it to a program with the function drv. Instead, we collect
in a selection the predicates that these programs may justify as a postcondition. Since also the
precondition is a selection, we can not only choose the program but also the precondition to justify
the postcondition. We thus de�ne validity of realizability triples via validity in Hoare logic:

|=0 hRisketchhSi , 8s 2 S. 9r 2 R. 9prog 2 drv(sketch). |=3 {r}prog{s} .

To derive valid realizability triples, we use the proof rules in Figure 3. We write `0 hRisketchhSi
if the realizability triple can be derived with the help of these rules. Rule (COM) checks whether
the e�ect of a command com on a predicate r is captured by s. The rule allows us to derive the
realizability triple h{r}icomh{s}i in which the selections are singleton sets. The rule plays together
with (GATHER): if we can also derive h{r0}icomh{s0}i for another pre- and postcondition, then we
can join the selections and obtain h{r, r0}icomh{s, s0}i. Rule (GATHER) is also important to join the
pre- and postconditions for the various programs that can be derived from a non-terminal. To
obtain a realizability triple hRiNhSi, Rule (ANG) unwinds the non-terminal to a sketch sketch that
is given by a production and then proves hRisketchhSi. Note that the sketch may again contain N,
and may contain more than one occurrence. We explain at the end of the section how to avoid the
repetition of proof trees and handle non-terminals in an e�cient way.
Rule (DEM) looks like the standard rule for choice operators in Hoare logic. In realizability

logic, the precondition has to be a singleton selection, and the rule is unsound without this side
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non-terminal, we would like to share them in the various places the non-terminal is used. This is
made possible by Rule (SHARE) given in Figure 5. If we have already derived the triple h) iNh* i,
then we can eliminate the non-terminal from a program sketch and replace it by the pair h) ih* i.
The pair stands for the fact that we can synthesize a program that transforms) to* . Rule (SHARE) is
readily checked to be sound. However, it is a derived rule whose application can easily be mimicked
by Rule (ANG), at the cost of blowing-up the proof. An implementation would re�ne the rule so
that di�erent occurrences of the non-terminal can be replaced in di�erent ways. Moreover, one
would maintain a pointer to the subproof that should be inserted, to be able to derive the program
with the technique given next.

4 REALIZATION LOGIC
We de�ne realization logic, a program logic to derive programs from sketches. The key insight
is that a proof outline in realizability logic for the sketch of interest is helpful guidance to �nd a
program that solves the synthesis task. To make use of this guidance, realization logic rewrites the
given proof outline until a suitable program is found. Realization logic thus reasons over rewriting
steps of the form po p⇠ po

0 between proof outlines. The strategy behind the rewriting is to propagate
information about failed synthesis attempts backwards, and thereby iteratively eliminate predicates
from selections and productions from the de�nition of non-terminals.

As we need a precise understanding of proof outlines, we give the de�nition:

po ::= hRicomhSi | po; po | po + po | po⇤ | N(po) | (po | po) .
We write `0 po to indicate that the proof outline has been derived with realizability logic. The
assertions we track are the ones that have been used in the application of (SEQ), (LOOP), and (ANG).
The formal de�nition is in the appendix. We abuse the notation a bit and write hRipohSi to indicate
that R is the precondition and S is the postcondition of the proof outline po. This is well-de�ned,
because `0 po1 + po2 implies that po1 and po2 have the same pre- and postcondition.

The proof rules of realization logic are listed in Figure 6, we discuss them below. The rules give
the following soundness guarantee: if we start from a proof outline in realizability logic and rewrite
it to another proof outline, then also this proof outline can be derived with realizability logic.

T������ 4.1 (S��������). `0 po and po p⇠ po
0 together imply `0 po

0.

T������ 4.2 (S��������).

`0 hRipohSi ^ hRipohSi p⇠ hR0ipo0hS0i =) `0 hR0ipo0hS0i
This allows us to invoke the soundness of realizability logic from Theorem 3.1 and obtain the
desired semantic guarantee for the program we have derived.

A feature all rules share is that they are guided by the original proof outline: the selections in the
proof outline that results from rewriting are limited to the selections in the original proof outline.
To ease the notation, we use Rw to denote a selection that is known to be less versatile than R,
meaning R �0 Rw holds. This may be used repeatedly, so R �0 Rw �0 Rww.
The rules in Figure 6 rewrite the given proof outline in a compositional fashion. The base case

(RCOM) allows us to pick a pre- and postcondition from a selection. This is the moment we realize
that predicates from the precondition can be dropped because they are not needed to obtain the
postcondition, as shown in the introduction. We have to explicitly check the over-approximation
because realizability triples do not maintain the interplay between the predicates in the pre- and in
the postcondition. Using (RANG), we can rewrite proofs for the right-hand sides of non-terminals.
The heart of the calculus is (RSELECT), which allows us to replace non-terminals by their right-
hand sides. The Rules (RSEQL) and (RSEQR) rewrite the left resp. the right part of a sequence. In
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(RCOM)
»com…(r ) �3 s R �0 {r } S �0 {s}

hRicomhSi p⇠ h{r }icomh{s}i

(RANG)
po p⇠ po

0

N(po1 | po | po2 ) p⇠ N(po1 | po0 | po2 )

(RSELECT)

N(po1 | po | po2 ) p⇠ po

(RSEQL)
hRipo1hSi p⇠ hRwipo01hSi

hRipo1hSi; po2 p⇠ hRwipo01hSi; po2

(RSEQR)
hSipo2hT i p⇠ hSwipo02hTwi

hRipo1hSi; hSipo2hT i p⇠ hRipo1hSwi; hSwipo02hTwi

(RDEM)
Rw = {r } hRipo8 hSi p⇠ hRwipo08 hSwi for 8 = 1, 2

hRipo1hSi + hRipo2hSi p⇠ hRwipo01hSwi + hRwipo02hSwi

(RLOOP)
h� ipoh� i p⇠ h�wipo0h�wi �w = {8 }

h� ipo⇤h� i p⇠ h�wipo⇤h�wi

(RTRANS)
po1 p⇠ po2
po2 p⇠ po3

po1 p⇠ po3

(RCSQ)
hRipohSi p⇠ hRwwipo0hSwi
hRipohSi p⇠ hRwipo0hSwwi

(RGATHER)
R �0 (R1 [ R2 ) S �0 (S1 [ S2 ) sketch(po01 ) = sketch(po02 )

hRipohSi p⇠ hR1ipo01hS1i hRipohSi p⇠ hR2ipo02hS2i
hRipohSi p⇠ hR1 [ R2igather (po01, po02 ) hS1 [ S2i

Fig. 6. Rules of realization logic.

(RSEQL), it is important that the new intermediary assertion matches the original intermediary
assertion. This does not have to be the case in (RSEQR), which uses the rule of consequence to
automatically weaken the postcondition on the left. As in realizability logic, Rule (RDEM) forces
us to commit to a predicate when reasoning about demonic choices. It also produces the same
postcondition (w in both branches. Rule (RLOOP) for rewriting loop bodies has a similar behavior.
The rule of consequence (RCSQ) is used like in realizability logic. The same is true for (RGATHER),
which uses function gather to recursively join the intermediary assertions in the proof outlines.
The de�nition is in the appendix. The need for this function stems from the fact that (RDEM) can
only work with single predicates. Rule (TRANS) is the transitivity of rewriting. This rule is needed
to combine rewrites, for example when rewriting the left and the right part of a sequence.

Realization logic always rewrites a proof outline into one that is weaker in the sense that it has
less synthesis options or, phrased di�erently, is closer to a program.

L���� 4.3. po p⇠ po
0 implies po �? po

0 .

The ordering po �? po
0 states that po0 has less versatile assertions than po and a sketch or even

program that can be derived from the sketch in po. The de�nition is by induction on the structure of
proof outlines. The base case is hRicomhSi �? hRwicomhSwi. The step cases are similar to the one
for choice: po1 + po2 �? po

0
1 + po

0
2 if po1 �? po

0
1 and po2 �? po

0
2. Non-terminals are an exception,

where we use N(po1 | po | po2) �? N(po1 | po0 | po2) if po �? po
0 . A proof outline over a

non-terminal is also stronger than a proof outline over a derivative, N(po1 | po | po2) �? po.
Realization logic also has a completeness property: proof outlines can be rewritten into all weaker

proof outlines that are derivable in realizability logic.

T������ 4.4 (C�����������). `0 po and `0 po
0 and po �? po

0 together imply po p⇠ po
0.

T������ 4.5 (C�����������).

`0 hRipohSi ^ `0 hR0ipo0hSi ^ hRipohSi �? hR0ipo0hS0i =) hRipohSi p⇠ hR0ipo0hS0i
A �nal guarantee that is interesting from an algorithmic point of view is that realization logic

provably does not need backtracking: from every proof outline and for every predicate in the
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non-terminal, we would like to share them in the various places the non-terminal is used. This is
made possible by Rule (SHARE) given in Figure 5. If we have already derived the triple h) iNh* i,
then we can eliminate the non-terminal from a program sketch and replace it by the pair h) ih* i.
The pair stands for the fact that we can synthesize a program that transforms) to* . Rule (SHARE) is
readily checked to be sound. However, it is a derived rule whose application can easily be mimicked
by Rule (ANG), at the cost of blowing-up the proof. An implementation would re�ne the rule so
that di�erent occurrences of the non-terminal can be replaced in di�erent ways. Moreover, one
would maintain a pointer to the subproof that should be inserted, to be able to derive the program
with the technique given next.

4 REALIZATION LOGIC
We de�ne realization logic, a program logic to derive programs from sketches. The key insight
is that a proof outline in realizability logic for the sketch of interest is helpful guidance to �nd a
program that solves the synthesis task. To make use of this guidance, realization logic rewrites the
given proof outline until a suitable program is found. Realization logic thus reasons over rewriting
steps of the form po p⇠ po

0 between proof outlines. The strategy behind the rewriting is to propagate
information about failed synthesis attempts backwards, and thereby iteratively eliminate predicates
from selections and productions from the de�nition of non-terminals.

As we need a precise understanding of proof outlines, we give the de�nition:

po ::= hRicomhSi | po; po | po + po | po⇤ | N(po) | (po | po) .
We write `0 po to indicate that the proof outline has been derived with realizability logic. The
assertions we track are the ones that have been used in the application of (SEQ), (LOOP), and (ANG).
The formal de�nition is in the appendix. We abuse the notation a bit and write hRipohSi to indicate
that R is the precondition and S is the postcondition of the proof outline po. This is well-de�ned,
because `0 po1 + po2 implies that po1 and po2 have the same pre- and postcondition.

The proof rules of realization logic are listed in Figure 6, we discuss them below. The rules give
the following soundness guarantee: if we start from a proof outline in realizability logic and rewrite
it to another proof outline, then also this proof outline can be derived with realizability logic.

T������ 4.1 (S��������). `0 po and po p⇠ po
0 together imply `0 po

0.

T������ 4.2 (S��������).

`0 hRipohSi ^ hRipohSi p⇠ hR0ipo0hS0i =) `0 hR0ipo0hS0i
This allows us to invoke the soundness of realizability logic from Theorem 3.1 and obtain the
desired semantic guarantee for the program we have derived.

A feature all rules share is that they are guided by the original proof outline: the selections in the
proof outline that results from rewriting are limited to the selections in the original proof outline.
To ease the notation, we use Rw to denote a selection that is known to be less versatile than R,
meaning R �0 Rw holds. This may be used repeatedly, so R �0 Rw �0 Rww.
The rules in Figure 6 rewrite the given proof outline in a compositional fashion. The base case

(RCOM) allows us to pick a pre- and postcondition from a selection. This is the moment we realize
that predicates from the precondition can be dropped because they are not needed to obtain the
postcondition, as shown in the introduction. We have to explicitly check the over-approximation
because realizability triples do not maintain the interplay between the predicates in the pre- and in
the postcondition. Using (RANG), we can rewrite proofs for the right-hand sides of non-terminals.
The heart of the calculus is (RSELECT), which allows us to replace non-terminals by their right-
hand sides. The Rules (RSEQL) and (RSEQR) rewrite the left resp. the right part of a sequence. In
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(RCOM)
»com…(r ) �3 s R �0 {r } S �0 {s}

hRicomhSi p⇠ h{r }icomh{s}i

(RANG)
po p⇠ po

0

N(po1 | po | po2 ) p⇠ N(po1 | po0 | po2 )

(RSELECT)

N(po1 | po | po2 ) p⇠ po

(RSEQL)
hRipo1hSi p⇠ hRwipo01hSi

hRipo1hSi; po2 p⇠ hRwipo01hSi; po2

(RSEQR)
hSipo2hT i p⇠ hSwipo02hTwi

hRipo1hSi; hSipo2hT i p⇠ hRipo1hSwi; hSwipo02hTwi

(RDEM)
Rw = {r } hRipo8 hSi p⇠ hRwipo08 hSwi for 8 = 1, 2

hRipo1hSi + hRipo2hSi p⇠ hRwipo01hSwi + hRwipo02hSwi

(RLOOP)
h� ipoh� i p⇠ h�wipo0h�wi �w = {8 }

h� ipo⇤h� i p⇠ h�wipo⇤h�wi

(RTRANS)
po1 p⇠ po2
po2 p⇠ po3

po1 p⇠ po3

(RCSQ)
hRipohSi p⇠ hRwwipo0hSwi
hRipohSi p⇠ hRwipo0hSwwi

(RGATHER)
R �0 (R1 [ R2 ) S �0 (S1 [ S2 ) sketch(po01 ) = sketch(po02 )

hRipohSi p⇠ hR1ipo01hS1i hRipohSi p⇠ hR2ipo02hS2i
hRipohSi p⇠ hR1 [ R2igather (po01, po02 ) hS1 [ S2i

Fig. 6. Rules of realization logic.

us to commit to a predicate when reasoning about demonic choices. It also produces the same
postcondition (w in both branches. Rule (RLOOP) for rewriting loop bodies has a similar behavior.
The rule of consequence (RCSQ) is used like in realizability logic. The same is true for (RGATHER),
which uses function gather to recursively join the intermediary assertions in the proof outlines.
The de�nition is in the appendix. The need for this function stems from the fact that (RDEM) can
only work with single predicates. Rule (TRANS) is the transitivity of rewriting. This rule is needed
to combine rewrites, for example when rewriting the left and the right part of a sequence.

Realization logic always rewrites a proof outline into one that is weaker in the sense that it has
less synthesis options or, phrased di�erently, is closer to a program.

L���� 4.2. po p⇠ po
0 implies po �? po

0 .

The ordering po �? po
0 states that po0 has less versatile assertions than po and a sketch or even

program that can be derived from the sketch in po. The de�nition is by induction on the structure of
proof outlines. The base case is hRicomhSi �? hRwicomhSwi. The step cases are similar to the one
for choice: po1 + po2 �? po

0
1 + po

0
2 if po1 �? po

0
1 and po2 �? po

0
2. Non-terminals are an exception,

where we use N(po1 | po | po2) �? N(po1 | po0 | po2) if po �? po
0 . A proof outline over a

non-terminal is also stronger than a proof outline over a derivative, N(po1 | po | po2) �? po.
Realization logic also has a completeness property: proof outlines can be rewritten into all weaker

proof outlines that are derivable in realizability logic.

T������ 4.3 (C�����������). `0 po and `0 po
0 and po �? po

0 together imply po p⇠ po
0.

T������ 4.4 (C�����������).

`0 hRipohSi `0 hR0ipo0hSi ^ hRipohSi �? hR0ipo0hS0i =) hRipohSi p⇠ hR0ipo0hS0i
A �nal guarantee that is interesting from an algorithmic point of view is that realization logic

provably does not need backtracking: from every proof outline and for every predicate in the
postcondition, one can derive a program that satis�es this postcondition. By Theorem 4.1, the
guarantee continues to hold after a rewriting step (that should not remove the predicate of interest),
hence the name.
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• Type system to verify memory safety with SMR [Meyer, Wolff POPL'19 '20]

free( - ) retire( - ) protect( - ) unprotect( - )

@inv active( - ) Predicates = Vars → 𝕋

Hazard Pointer: 5 base types 
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Contribution 3:
Instantiation on SMR Setting

Data 
Structure

Treiber’s 
Stack 
Pop

Treiber’s 
Stack 
Push

Michael 
and Scott’s 

Queue 
Enqueue

Michael 
and Scott’s 

Queue 
Dequeue

ORVYY Set 
Add

ORVYY Set 
Remove

SMR 
Algorithm

HP1  
(5 Base 
Types)

HP1  
(5 Base 
Types)

HP1  
(5 Base 
Types)

HP2  
(8 Base 
Types)

HP2  
(8 Base 
Types)

HP2  
(8 Base 
Types)

Time 
(PO + 
Synth)

< 0.1s < 0.1s < 0.1s < 7.5s < 0.9s < 0.4s

Max / Avg 
|R| 6 / 1.4 6 / 1.7 5 / 1.4 90 / 1.4 28 / 1.7 30 / 1.3
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1 htruei N(x = 0 | x = 1); hG = 0,G = 1i
2 (assert(x==0) + assert(x==1))

3 hfaili

Fig. 4. Demonic choice.

(SHARE)
`0 h) iNh* i `0 hRisketch[N/h) ih* i ]hSi

`0 hRisketchhSi

Fig. 5. Subproof sharing.

Having more predicates available makes a selection more versatile and having less predicates makes
a selection less versatile. It is also possible to have a more versatile selection with less predicates if
they are more precise. With this, ; is the least versatile and {;} is the most versatile selection.

The rules are sound and, together with a rule for the edge case of an empty precondition that we
give in the appendix, also complete.

T������ 3.1 (S�����A���C�������). `0 hRisketchhSi , |=0 hRisketchhSi .
P����. Soundness holds by an induction on the height of the proof tree. We argue for complete-

ness and consider |=0 hRisketchhSi. By the de�nition of validity, this means for every predicate
s 2 S there is a predicate r 2 R and a program prog 2 drv(sketch) so that |=3 {r}prog{s} holds. We
invoke the completeness of Hoare logic and obtain `3 {r}prog{s}. The derivation can be mimicked
in realizability logic and yields `0 hriproghsi. Since the program has been derived from sketch,
we can also obtain `0 hrisketchhsi with �nitely many applications of (ANG). Rule (GATHER) allows
us to join the triples hrisketchhsi and obtain the desired `0 hRisketchhSi. ⇤

3.3 Discussion
On SemGuS. The synthesis tasks we consider have the following input: the states, the commands,

and the semantics (States, COM, »�…) of the programming language, the non-terminals with their
production rules (N , prod), and the realizability triple hRisketchhSi of interest. In its original
formulation [23], SemGuS would be more liberal and allow the user to also de�ne the operators
(their syntax and their semantics) from which programs can be built. We �x those operators to
concatenation, choice, and Kleene star, instead. This allows us to work with an extension of Hoare
logic. To lift our approach to the more general setting, the user would have to specify the proof rules
that are sound for the new operators, which would be in-line with the approach in unrealizability
logic [22].

The reader may also note that we have not made assumptions about the correctness speci�cation.
In synthesis, it is common to work with sets of examples. The work on unrealizability logic has
shown that such sets can be captured by so-called vector assertions [22]. Vector assertions are
predicates of a particular form, and our construction of selections readily applies to them.

On search-based synthesis. Realizability logic is formulated such that it can be readily combined
with search-based synthesis. The point is that Rule (ANG) does not force us to consider all programs
a non-terminal can be rewritten to. Instead, we can consider a set of programs that appear most
promising, as can be judged from a probabilistic grammar [20].

On the implementation of non-terminals. A non-terminal may occur multiple times in a proof in
realizability logic, it may even occur recursively. Rather than duplicating the subproofs for this
non-terminal, we would like to share them in the various places the non-terminal is used. This is
made possible by Rule (SHARE) given in Figure 5. If we have already derived the triple h) iNh* i,
then we can eliminate the non-terminal from a program sketch and replace it by the pair h) ih* i.
The pair stands for the fact that we can synthesize a program that transforms) to* . Rule (SHARE) is
readily checked to be sound. However, it is a derived rule whose application can easily be mimicked
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non-terminal, we would like to share them in the various places the non-terminal is used. This is
made possible by Rule (SHARE) given in Figure 5. If we have already derived the triple h) iNh* i,
then we can eliminate the non-terminal from a program sketch and replace it by the pair h) ih* i.
The pair stands for the fact that we can synthesize a program that transforms) to* . Rule (SHARE) is
readily checked to be sound. However, it is a derived rule whose application can easily be mimicked
by Rule (ANG), at the cost of blowing-up the proof. An implementation would re�ne the rule so
that di�erent occurrences of the non-terminal can be replaced in di�erent ways. Moreover, one
would maintain a pointer to the subproof that should be inserted, to be able to derive the program
with the technique given next.

4 REALIZATION LOGIC
We de�ne realization logic, a program logic to derive programs from sketches. The key insight
is that a proof outline in realizability logic for the sketch of interest is helpful guidance to �nd a
program that solves the synthesis task. To make use of this guidance, realization logic rewrites the
given proof outline until a suitable program is found. Realization logic thus reasons over rewriting
steps of the form po p⇠ po

0 between proof outlines. The strategy behind the rewriting is to propagate
information about failed synthesis attempts backwards, and thereby iteratively eliminate predicates
from selections and productions from the de�nition of non-terminals.

As we need a precise understanding of proof outlines, we give the de�nition:

po ::= hRicomhSi | po; po | po + po | po⇤ | N(po) | (po | po) .
We write `0 po to indicate that the proof outline has been derived with realizability logic. The
assertions we track are the ones that have been used in the application of (SEQ), (LOOP), and (ANG).
The formal de�nition is in the appendix. We abuse the notation a bit and write hRipohSi to indicate
that R is the precondition and S is the postcondition of the proof outline po. This is well-de�ned,
because `0 po1 + po2 implies that po1 and po2 have the same pre- and postcondition.

The proof rules of realization logic are listed in Figure 6, we discuss them below. The rules give
the following soundness guarantee: if we start from a proof outline in realizability logic and rewrite
it to another proof outline, then also this proof outline can be derived with realizability logic.

T������ 4.1 (S��������). `0 po and po p⇠ po
0 together imply `0 po

0.

T������ 4.2 (S��������).

`0 hRipohSi ^ hRipohSi p⇠ hR0ipo0hS0i =) `0 hR0ipo0hS0i
This allows us to invoke the soundness of realizability logic from Theorem 3.1 and obtain the
desired semantic guarantee for the program we have derived.

A feature all rules share is that they are guided by the original proof outline: the selections in the
proof outline that results from rewriting are limited to the selections in the original proof outline.
To ease the notation, we use Rw to denote a selection that is known to be less versatile than R,
meaning R �0 Rw holds. This may be used repeatedly, so R �0 Rw �0 Rww.
The rules in Figure 6 rewrite the given proof outline in a compositional fashion. The base case

(RCOM) allows us to pick a pre- and postcondition from a selection. This is the moment we realize
that predicates from the precondition can be dropped because they are not needed to obtain the
postcondition, as shown in the introduction. We have to explicitly check the over-approximation
because realizability triples do not maintain the interplay between the predicates in the pre- and in
the postcondition. Using (RANG), we can rewrite proofs for the right-hand sides of non-terminals.
The heart of the calculus is (RSELECT), which allows us to replace non-terminals by their right-
hand sides. The Rules (RSEQL) and (RSEQR) rewrite the left resp. the right part of a sequence. In

10

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

Anon.

non-terminal, we would like to share them in the various places the non-terminal is used. This is
made possible by Rule (SHARE) given in Figure 5. If we have already derived the triple h) iNh* i,
then we can eliminate the non-terminal from a program sketch and replace it by the pair h) ih* i.
The pair stands for the fact that we can synthesize a program that transforms) to* . Rule (SHARE) is
readily checked to be sound. However, it is a derived rule whose application can easily be mimicked
by Rule (ANG), at the cost of blowing-up the proof. An implementation would re�ne the rule so
that di�erent occurrences of the non-terminal can be replaced in di�erent ways. Moreover, one
would maintain a pointer to the subproof that should be inserted, to be able to derive the program
with the technique given next.

4 REALIZATION LOGIC
We de�ne realization logic, a program logic to derive programs from sketches. The key insight
is that a proof outline in realizability logic for the sketch of interest is helpful guidance to �nd a
program that solves the synthesis task. To make use of this guidance, realization logic rewrites the
given proof outline until a suitable program is found. Realization logic thus reasons over rewriting
steps of the form po p⇠ po

0 between proof outlines. The strategy behind the rewriting is to propagate
information about failed synthesis attempts backwards, and thereby iteratively eliminate predicates
from selections and productions from the de�nition of non-terminals.

As we need a precise understanding of proof outlines, we give the de�nition:

po ::= hRicomhSi | po; po | po + po | po⇤ | N(po) | (po | po) .
We write `0 po to indicate that the proof outline has been derived with realizability logic. The
assertions we track are the ones that have been used in the application of (SEQ), (LOOP), and (ANG).
The formal de�nition is in the appendix. We abuse the notation a bit and write hRipohSi to indicate
that R is the precondition and S is the postcondition of the proof outline po. This is well-de�ned,
because `0 po1 + po2 implies that po1 and po2 have the same pre- and postcondition.

The proof rules of realization logic are listed in Figure 6, we discuss them below. The rules give
the following soundness guarantee: if we start from a proof outline in realizability logic and rewrite
it to another proof outline, then also this proof outline can be derived with realizability logic.

T������ 4.1 (S��������). `0 po and po p⇠ po
0 together imply `0 po

0.

T������ 4.2 (S��������).

`0 hRipohSi ^ hRipohSi p⇠ hR0ipo0hS0i =) `0 hR0ipo0hS0i
This allows us to invoke the soundness of realizability logic from Theorem 3.1 and obtain the
desired semantic guarantee for the program we have derived.

A feature all rules share is that they are guided by the original proof outline: the selections in the
proof outline that results from rewriting are limited to the selections in the original proof outline.
To ease the notation, we use Rw to denote a selection that is known to be less versatile than R,
meaning R �0 Rw holds. This may be used repeatedly, so R �0 Rw �0 Rww.
The rules in Figure 6 rewrite the given proof outline in a compositional fashion. The base case

(RCOM) allows us to pick a pre- and postcondition from a selection. This is the moment we realize
that predicates from the precondition can be dropped because they are not needed to obtain the
postcondition, as shown in the introduction. We have to explicitly check the over-approximation
because realizability triples do not maintain the interplay between the predicates in the pre- and in
the postcondition. Using (RANG), we can rewrite proofs for the right-hand sides of non-terminals.
The heart of the calculus is (RSELECT), which allows us to replace non-terminals by their right-
hand sides. The Rules (RSEQL) and (RSEQR) rewrite the left resp. the right part of a sequence. In
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Realizability in Semantics-Guided Synthesis Done Eagerly

1 htruei N(x = 0 | x = 1); hG = 0,G = 1i
2 (assert(x==0) + assert(x==1))

3 hfaili

Fig. 4. Demonic choice.

(SHARE)
`0 h) iNh* i `0 hRisketch[N/h) ih* i ]hSi

`0 hRisketchhSi

Fig. 5. Subproof sharing.

Having more predicates available makes a selection more versatile and having less predicates makes
a selection less versatile. It is also possible to have a more versatile selection with less predicates if
they are more precise. With this, ; is the least versatile and {;} is the most versatile selection.

The rules are sound and, together with a rule for the edge case of an empty precondition that we
give in the appendix, also complete.

T������ 3.1 (S�����A���C�������). `0 hRisketchhSi , |=0 hRisketchhSi .
P����. Soundness holds by an induction on the height of the proof tree. We argue for complete-

ness and consider |=0 hRisketchhSi. By the de�nition of validity, this means for every predicate
s 2 S there is a predicate r 2 R and a program prog 2 drv(sketch) so that |=3 {r}prog{s} holds. We
invoke the completeness of Hoare logic and obtain `3 {r}prog{s}. The derivation can be mimicked
in realizability logic and yields `0 hriproghsi. Since the program has been derived from sketch,
we can also obtain `0 hrisketchhsi with �nitely many applications of (ANG). Rule (GATHER) allows
us to join the triples hrisketchhsi and obtain the desired `0 hRisketchhSi. ⇤

3.3 Discussion
On SemGuS. The synthesis tasks we consider have the following input: the states, the commands,

and the semantics (States, COM, »�…) of the programming language, the non-terminals with their
production rules (N , prod), and the realizability triple hRisketchhSi of interest. In its original
formulation [23], SemGuS would be more liberal and allow the user to also de�ne the operators
(their syntax and their semantics) from which programs can be built. We �x those operators to
concatenation, choice, and Kleene star, instead. This allows us to work with an extension of Hoare
logic. To lift our approach to the more general setting, the user would have to specify the proof rules
that are sound for the new operators, which would be in-line with the approach in unrealizability
logic [22].

The reader may also note that we have not made assumptions about the correctness speci�cation.
In synthesis, it is common to work with sets of examples. The work on unrealizability logic has
shown that such sets can be captured by so-called vector assertions [22]. Vector assertions are
predicates of a particular form, and our construction of selections readily applies to them.

On search-based synthesis. Realizability logic is formulated such that it can be readily combined
with search-based synthesis. The point is that Rule (ANG) does not force us to consider all programs
a non-terminal can be rewritten to. Instead, we can consider a set of programs that appear most
promising, as can be judged from a probabilistic grammar [20].

On the implementation of non-terminals. A non-terminal may occur multiple times in a proof in
realizability logic, it may even occur recursively. Rather than duplicating the subproofs for this
non-terminal, we would like to share them in the various places the non-terminal is used. This is
made possible by Rule (SHARE) given in Figure 5. If we have already derived the triple h) iNh* i,
then we can eliminate the non-terminal from a program sketch and replace it by the pair h) ih* i.
The pair stands for the fact that we can synthesize a program that transforms) to* . Rule (SHARE) is
readily checked to be sound. However, it is a derived rule whose application can easily be mimicked
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non-terminal, we would like to share them in the various places the non-terminal is used. This is
made possible by Rule (SHARE) given in Figure 5. If we have already derived the triple h) iNh* i,
then we can eliminate the non-terminal from a program sketch and replace it by the pair h) ih* i.
The pair stands for the fact that we can synthesize a program that transforms) to* . Rule (SHARE) is
readily checked to be sound. However, it is a derived rule whose application can easily be mimicked
by Rule (ANG), at the cost of blowing-up the proof. An implementation would re�ne the rule so
that di�erent occurrences of the non-terminal can be replaced in di�erent ways. Moreover, one
would maintain a pointer to the subproof that should be inserted, to be able to derive the program
with the technique given next.

4 REALIZATION LOGIC
We de�ne realization logic, a program logic to derive programs from sketches. The key insight
is that a proof outline in realizability logic for the sketch of interest is helpful guidance to �nd a
program that solves the synthesis task. To make use of this guidance, realization logic rewrites the
given proof outline until a suitable program is found. Realization logic thus reasons over rewriting
steps of the form po p⇠ po

0 between proof outlines. The strategy behind the rewriting is to propagate
information about failed synthesis attempts backwards, and thereby iteratively eliminate predicates
from selections and productions from the de�nition of non-terminals.

As we need a precise understanding of proof outlines, we give the de�nition:

po ::= hRicomhSi | po; po | po + po | po⇤ | N(po) | (po | po) .
We write `0 po to indicate that the proof outline has been derived with realizability logic. The
assertions we track are the ones that have been used in the application of (SEQ), (LOOP), and (ANG).
The formal de�nition is in the appendix. We abuse the notation a bit and write hRipohSi to indicate
that R is the precondition and S is the postcondition of the proof outline po. This is well-de�ned,
because `0 po1 + po2 implies that po1 and po2 have the same pre- and postcondition.

The proof rules of realization logic are listed in Figure 6, we discuss them below. The rules give
the following soundness guarantee: if we start from a proof outline in realizability logic and rewrite
it to another proof outline, then also this proof outline can be derived with realizability logic.

T������ 4.1 (S��������). `0 po and po p⇠ po
0 together imply `0 po

0.

T������ 4.2 (S��������).

`0 hRipohSi ^ hRipohSi p⇠ hR0ipo0hS0i =) `0 hR0ipo0hS0i
This allows us to invoke the soundness of realizability logic from Theorem 3.1 and obtain the
desired semantic guarantee for the program we have derived.

A feature all rules share is that they are guided by the original proof outline: the selections in the
proof outline that results from rewriting are limited to the selections in the original proof outline.
To ease the notation, we use Rw to denote a selection that is known to be less versatile than R,
meaning R �0 Rw holds. This may be used repeatedly, so R �0 Rw �0 Rww.
The rules in Figure 6 rewrite the given proof outline in a compositional fashion. The base case

(RCOM) allows us to pick a pre- and postcondition from a selection. This is the moment we realize
that predicates from the precondition can be dropped because they are not needed to obtain the
postcondition, as shown in the introduction. We have to explicitly check the over-approximation
because realizability triples do not maintain the interplay between the predicates in the pre- and in
the postcondition. Using (RANG), we can rewrite proofs for the right-hand sides of non-terminals.
The heart of the calculus is (RSELECT), which allows us to replace non-terminals by their right-
hand sides. The Rules (RSEQL) and (RSEQR) rewrite the left resp. the right part of a sequence. In
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non-terminal, we would like to share them in the various places the non-terminal is used. This is
made possible by Rule (SHARE) given in Figure 5. If we have already derived the triple h) iNh* i,
then we can eliminate the non-terminal from a program sketch and replace it by the pair h) ih* i.
The pair stands for the fact that we can synthesize a program that transforms) to* . Rule (SHARE) is
readily checked to be sound. However, it is a derived rule whose application can easily be mimicked
by Rule (ANG), at the cost of blowing-up the proof. An implementation would re�ne the rule so
that di�erent occurrences of the non-terminal can be replaced in di�erent ways. Moreover, one
would maintain a pointer to the subproof that should be inserted, to be able to derive the program
with the technique given next.

4 REALIZATION LOGIC
We de�ne realization logic, a program logic to derive programs from sketches. The key insight
is that a proof outline in realizability logic for the sketch of interest is helpful guidance to �nd a
program that solves the synthesis task. To make use of this guidance, realization logic rewrites the
given proof outline until a suitable program is found. Realization logic thus reasons over rewriting
steps of the form po p⇠ po

0 between proof outlines. The strategy behind the rewriting is to propagate
information about failed synthesis attempts backwards, and thereby iteratively eliminate predicates
from selections and productions from the de�nition of non-terminals.

As we need a precise understanding of proof outlines, we give the de�nition:

po ::= hRicomhSi | po; po | po + po | po⇤ | N(po) | (po | po) .
We write `0 po to indicate that the proof outline has been derived with realizability logic. The
assertions we track are the ones that have been used in the application of (SEQ), (LOOP), and (ANG).
The formal de�nition is in the appendix. We abuse the notation a bit and write hRipohSi to indicate
that R is the precondition and S is the postcondition of the proof outline po. This is well-de�ned,
because `0 po1 + po2 implies that po1 and po2 have the same pre- and postcondition.

The proof rules of realization logic are listed in Figure 6, we discuss them below. The rules give
the following soundness guarantee: if we start from a proof outline in realizability logic and rewrite
it to another proof outline, then also this proof outline can be derived with realizability logic.

T������ 4.1 (S��������). `0 po and po p⇠ po
0 together imply `0 po

0.

T������ 4.2 (S��������).

`0 hRipohSi ^ hRipohSi p⇠ hR0ipo0hS0i =) `0 hR0ipo0hS0i
This allows us to invoke the soundness of realizability logic from Theorem 3.1 and obtain the
desired semantic guarantee for the program we have derived.

A feature all rules share is that they are guided by the original proof outline: the selections in the
proof outline that results from rewriting are limited to the selections in the original proof outline.
To ease the notation, we use Rw to denote a selection that is known to be less versatile than R,
meaning R �0 Rw holds. This may be used repeatedly, so R �0 Rw �0 Rww.
The rules in Figure 6 rewrite the given proof outline in a compositional fashion. The base case

(RCOM) allows us to pick a pre- and postcondition from a selection. This is the moment we realize
that predicates from the precondition can be dropped because they are not needed to obtain the
postcondition, as shown in the introduction. We have to explicitly check the over-approximation
because realizability triples do not maintain the interplay between the predicates in the pre- and in
the postcondition. Using (RANG), we can rewrite proofs for the right-hand sides of non-terminals.
The heart of the calculus is (RSELECT), which allows us to replace non-terminals by their right-
hand sides. The Rules (RSEQL) and (RSEQR) rewrite the left resp. the right part of a sequence. In
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Realizability in Semantics-Guided Synthesis Done Eagerly

1 htruei N(x = 0 | x = 1); hG = 0,G = 1i
2 (assert(x==0) + assert(x==1))

3 hfaili

Fig. 4. Demonic choice.

(SHARE)
`0 h) iNh* i `0 hRisketch[N/h) ih* i ]hSi

`0 hRisketchhSi

Fig. 5. Subproof sharing.

Having more predicates available makes a selection more versatile and having less predicates makes
a selection less versatile. It is also possible to have a more versatile selection with less predicates if
they are more precise. With this, ; is the least versatile and {;} is the most versatile selection.

The rules are sound and, together with a rule for the edge case of an empty precondition that we
give in the appendix, also complete.

T������ 3.1 (S�����A���C�������). `0 hRisketchhSi , |=0 hRisketchhSi .
P����. Soundness holds by an induction on the height of the proof tree. We argue for complete-

ness and consider |=0 hRisketchhSi. By the de�nition of validity, this means for every predicate
s 2 S there is a predicate r 2 R and a program prog 2 drv(sketch) so that |=3 {r}prog{s} holds. We
invoke the completeness of Hoare logic and obtain `3 {r}prog{s}. The derivation can be mimicked
in realizability logic and yields `0 hriproghsi. Since the program has been derived from sketch,
we can also obtain `0 hrisketchhsi with �nitely many applications of (ANG). Rule (GATHER) allows
us to join the triples hrisketchhsi and obtain the desired `0 hRisketchhSi. ⇤

3.3 Discussion
On SemGuS. The synthesis tasks we consider have the following input: the states, the commands,

and the semantics (States, COM, »�…) of the programming language, the non-terminals with their
production rules (N , prod), and the realizability triple hRisketchhSi of interest. In its original
formulation [23], SemGuS would be more liberal and allow the user to also de�ne the operators
(their syntax and their semantics) from which programs can be built. We �x those operators to
concatenation, choice, and Kleene star, instead. This allows us to work with an extension of Hoare
logic. To lift our approach to the more general setting, the user would have to specify the proof rules
that are sound for the new operators, which would be in-line with the approach in unrealizability
logic [22].

The reader may also note that we have not made assumptions about the correctness speci�cation.
In synthesis, it is common to work with sets of examples. The work on unrealizability logic has
shown that such sets can be captured by so-called vector assertions [22]. Vector assertions are
predicates of a particular form, and our construction of selections readily applies to them.

On search-based synthesis. Realizability logic is formulated such that it can be readily combined
with search-based synthesis. The point is that Rule (ANG) does not force us to consider all programs
a non-terminal can be rewritten to. Instead, we can consider a set of programs that appear most
promising, as can be judged from a probabilistic grammar [20].

On the implementation of non-terminals. A non-terminal may occur multiple times in a proof in
realizability logic, it may even occur recursively. Rather than duplicating the subproofs for this
non-terminal, we would like to share them in the various places the non-terminal is used. This is
made possible by Rule (SHARE) given in Figure 5. If we have already derived the triple h) iNh* i,
then we can eliminate the non-terminal from a program sketch and replace it by the pair h) ih* i.
The pair stands for the fact that we can synthesize a program that transforms) to* . Rule (SHARE) is
readily checked to be sound. However, it is a derived rule whose application can easily be mimicked
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non-terminal, we would like to share them in the various places the non-terminal is used. This is
made possible by Rule (SHARE) given in Figure 5. If we have already derived the triple h) iNh* i,
then we can eliminate the non-terminal from a program sketch and replace it by the pair h) ih* i.
The pair stands for the fact that we can synthesize a program that transforms) to* . Rule (SHARE) is
readily checked to be sound. However, it is a derived rule whose application can easily be mimicked
by Rule (ANG), at the cost of blowing-up the proof. An implementation would re�ne the rule so
that di�erent occurrences of the non-terminal can be replaced in di�erent ways. Moreover, one
would maintain a pointer to the subproof that should be inserted, to be able to derive the program
with the technique given next.

4 REALIZATION LOGIC
We de�ne realization logic, a program logic to derive programs from sketches. The key insight
is that a proof outline in realizability logic for the sketch of interest is helpful guidance to �nd a
program that solves the synthesis task. To make use of this guidance, realization logic rewrites the
given proof outline until a suitable program is found. Realization logic thus reasons over rewriting
steps of the form po p⇠ po

0 between proof outlines. The strategy behind the rewriting is to propagate
information about failed synthesis attempts backwards, and thereby iteratively eliminate predicates
from selections and productions from the de�nition of non-terminals.

As we need a precise understanding of proof outlines, we give the de�nition:

po ::= hRicomhSi | po; po | po + po | po⇤ | N(po) | (po | po) .
We write `0 po to indicate that the proof outline has been derived with realizability logic. The
assertions we track are the ones that have been used in the application of (SEQ), (LOOP), and (ANG).
The formal de�nition is in the appendix. We abuse the notation a bit and write hRipohSi to indicate
that R is the precondition and S is the postcondition of the proof outline po. This is well-de�ned,
because `0 po1 + po2 implies that po1 and po2 have the same pre- and postcondition.

The proof rules of realization logic are listed in Figure 6, we discuss them below. The rules give
the following soundness guarantee: if we start from a proof outline in realizability logic and rewrite
it to another proof outline, then also this proof outline can be derived with realizability logic.

T������ 4.1 (S��������). `0 po and po p⇠ po
0 together imply `0 po

0.

T������ 4.2 (S��������).

`0 hRipohSi ^ hRipohSi p⇠ hR0ipo0hS0i =) `0 hR0ipo0hS0i
This allows us to invoke the soundness of realizability logic from Theorem 3.1 and obtain the
desired semantic guarantee for the program we have derived.

A feature all rules share is that they are guided by the original proof outline: the selections in the
proof outline that results from rewriting are limited to the selections in the original proof outline.
To ease the notation, we use Rw to denote a selection that is known to be less versatile than R,
meaning R �0 Rw holds. This may be used repeatedly, so R �0 Rw �0 Rww.
The rules in Figure 6 rewrite the given proof outline in a compositional fashion. The base case

(RCOM) allows us to pick a pre- and postcondition from a selection. This is the moment we realize
that predicates from the precondition can be dropped because they are not needed to obtain the
postcondition, as shown in the introduction. We have to explicitly check the over-approximation
because realizability triples do not maintain the interplay between the predicates in the pre- and in
the postcondition. Using (RANG), we can rewrite proofs for the right-hand sides of non-terminals.
The heart of the calculus is (RSELECT), which allows us to replace non-terminals by their right-
hand sides. The Rules (RSEQL) and (RSEQR) rewrite the left resp. the right part of a sequence. In
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non-terminal, we would like to share them in the various places the non-terminal is used. This is
made possible by Rule (SHARE) given in Figure 5. If we have already derived the triple h) iNh* i,
then we can eliminate the non-terminal from a program sketch and replace it by the pair h) ih* i.
The pair stands for the fact that we can synthesize a program that transforms) to* . Rule (SHARE) is
readily checked to be sound. However, it is a derived rule whose application can easily be mimicked
by Rule (ANG), at the cost of blowing-up the proof. An implementation would re�ne the rule so
that di�erent occurrences of the non-terminal can be replaced in di�erent ways. Moreover, one
would maintain a pointer to the subproof that should be inserted, to be able to derive the program
with the technique given next.

4 REALIZATION LOGIC
We de�ne realization logic, a program logic to derive programs from sketches. The key insight
is that a proof outline in realizability logic for the sketch of interest is helpful guidance to �nd a
program that solves the synthesis task. To make use of this guidance, realization logic rewrites the
given proof outline until a suitable program is found. Realization logic thus reasons over rewriting
steps of the form po p⇠ po

0 between proof outlines. The strategy behind the rewriting is to propagate
information about failed synthesis attempts backwards, and thereby iteratively eliminate predicates
from selections and productions from the de�nition of non-terminals.

As we need a precise understanding of proof outlines, we give the de�nition:

po ::= hRicomhSi | po; po | po + po | po⇤ | N(po) | (po | po) .
We write `0 po to indicate that the proof outline has been derived with realizability logic. The
assertions we track are the ones that have been used in the application of (SEQ), (LOOP), and (ANG).
The formal de�nition is in the appendix. We abuse the notation a bit and write hRipohSi to indicate
that R is the precondition and S is the postcondition of the proof outline po. This is well-de�ned,
because `0 po1 + po2 implies that po1 and po2 have the same pre- and postcondition.

The proof rules of realization logic are listed in Figure 6, we discuss them below. The rules give
the following soundness guarantee: if we start from a proof outline in realizability logic and rewrite
it to another proof outline, then also this proof outline can be derived with realizability logic.

T������ 4.1 (S��������). `0 po and po p⇠ po
0 together imply `0 po

0.

T������ 4.2 (S��������).

`0 hRipohSi ^ hRipohSi p⇠ hR0ipo0hS0i =) `0 hR0ipo0hS0i
This allows us to invoke the soundness of realizability logic from Theorem 3.1 and obtain the
desired semantic guarantee for the program we have derived.

A feature all rules share is that they are guided by the original proof outline: the selections in the
proof outline that results from rewriting are limited to the selections in the original proof outline.
To ease the notation, we use Rw to denote a selection that is known to be less versatile than R,
meaning R �0 Rw holds. This may be used repeatedly, so R �0 Rw �0 Rww.
The rules in Figure 6 rewrite the given proof outline in a compositional fashion. The base case

(RCOM) allows us to pick a pre- and postcondition from a selection. This is the moment we realize
that predicates from the precondition can be dropped because they are not needed to obtain the
postcondition, as shown in the introduction. We have to explicitly check the over-approximation
because realizability triples do not maintain the interplay between the predicates in the pre- and in
the postcondition. Using (RANG), we can rewrite proofs for the right-hand sides of non-terminals.
The heart of the calculus is (RSELECT), which allows us to replace non-terminals by their right-
hand sides. The Rules (RSEQL) and (RSEQR) rewrite the left resp. the right part of a sequence. In
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Realizability in Semantics-Guided Synthesis Done Eagerly

1 htruei N(x = 0 | x = 1); hG = 0,G = 1i
2 (assert(x==0) + assert(x==1))

3 hfaili

Fig. 4. Demonic choice.

(SHARE)
`0 h) iNh* i `0 hRisketch[N/h) ih* i ]hSi

`0 hRisketchhSi

Fig. 5. Subproof sharing.

Having more predicates available makes a selection more versatile and having less predicates makes
a selection less versatile. It is also possible to have a more versatile selection with less predicates if
they are more precise. With this, ; is the least versatile and {;} is the most versatile selection.

The rules are sound and, together with a rule for the edge case of an empty precondition that we
give in the appendix, also complete.

T������ 3.1 (S�����A���C�������). `0 hRisketchhSi , |=0 hRisketchhSi .
P����. Soundness holds by an induction on the height of the proof tree. We argue for complete-

ness and consider |=0 hRisketchhSi. By the de�nition of validity, this means for every predicate
s 2 S there is a predicate r 2 R and a program prog 2 drv(sketch) so that |=3 {r}prog{s} holds. We
invoke the completeness of Hoare logic and obtain `3 {r}prog{s}. The derivation can be mimicked
in realizability logic and yields `0 hriproghsi. Since the program has been derived from sketch,
we can also obtain `0 hrisketchhsi with �nitely many applications of (ANG). Rule (GATHER) allows
us to join the triples hrisketchhsi and obtain the desired `0 hRisketchhSi. ⇤

3.3 Discussion
On SemGuS. The synthesis tasks we consider have the following input: the states, the commands,

and the semantics (States, COM, »�…) of the programming language, the non-terminals with their
production rules (N , prod), and the realizability triple hRisketchhSi of interest. In its original
formulation [23], SemGuS would be more liberal and allow the user to also de�ne the operators
(their syntax and their semantics) from which programs can be built. We �x those operators to
concatenation, choice, and Kleene star, instead. This allows us to work with an extension of Hoare
logic. To lift our approach to the more general setting, the user would have to specify the proof rules
that are sound for the new operators, which would be in-line with the approach in unrealizability
logic [22].

The reader may also note that we have not made assumptions about the correctness speci�cation.
In synthesis, it is common to work with sets of examples. The work on unrealizability logic has
shown that such sets can be captured by so-called vector assertions [22]. Vector assertions are
predicates of a particular form, and our construction of selections readily applies to them.

On search-based synthesis. Realizability logic is formulated such that it can be readily combined
with search-based synthesis. The point is that Rule (ANG) does not force us to consider all programs
a non-terminal can be rewritten to. Instead, we can consider a set of programs that appear most
promising, as can be judged from a probabilistic grammar [20].

On the implementation of non-terminals. A non-terminal may occur multiple times in a proof in
realizability logic, it may even occur recursively. Rather than duplicating the subproofs for this
non-terminal, we would like to share them in the various places the non-terminal is used. This is
made possible by Rule (SHARE) given in Figure 5. If we have already derived the triple h) iNh* i,
then we can eliminate the non-terminal from a program sketch and replace it by the pair h) ih* i.
The pair stands for the fact that we can synthesize a program that transforms) to* . Rule (SHARE) is
readily checked to be sound. However, it is a derived rule whose application can easily be mimicked
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non-terminal, we would like to share them in the various places the non-terminal is used. This is
made possible by Rule (SHARE) given in Figure 5. If we have already derived the triple h) iNh* i,
then we can eliminate the non-terminal from a program sketch and replace it by the pair h) ih* i.
The pair stands for the fact that we can synthesize a program that transforms) to* . Rule (SHARE) is
readily checked to be sound. However, it is a derived rule whose application can easily be mimicked
by Rule (ANG), at the cost of blowing-up the proof. An implementation would re�ne the rule so
that di�erent occurrences of the non-terminal can be replaced in di�erent ways. Moreover, one
would maintain a pointer to the subproof that should be inserted, to be able to derive the program
with the technique given next.

4 REALIZATION LOGIC
We de�ne realization logic, a program logic to derive programs from sketches. The key insight
is that a proof outline in realizability logic for the sketch of interest is helpful guidance to �nd a
program that solves the synthesis task. To make use of this guidance, realization logic rewrites the
given proof outline until a suitable program is found. Realization logic thus reasons over rewriting
steps of the form po p⇠ po

0 between proof outlines. The strategy behind the rewriting is to propagate
information about failed synthesis attempts backwards, and thereby iteratively eliminate predicates
from selections and productions from the de�nition of non-terminals.

As we need a precise understanding of proof outlines, we give the de�nition:

po ::= hRicomhSi | po; po | po + po | po⇤ | N(po) | (po | po) .
We write `0 po to indicate that the proof outline has been derived with realizability logic. The
assertions we track are the ones that have been used in the application of (SEQ), (LOOP), and (ANG).
The formal de�nition is in the appendix. We abuse the notation a bit and write hRipohSi to indicate
that R is the precondition and S is the postcondition of the proof outline po. This is well-de�ned,
because `0 po1 + po2 implies that po1 and po2 have the same pre- and postcondition.

The proof rules of realization logic are listed in Figure 6, we discuss them below. The rules give
the following soundness guarantee: if we start from a proof outline in realizability logic and rewrite
it to another proof outline, then also this proof outline can be derived with realizability logic.

T������ 4.1 (S��������). `0 po and po p⇠ po
0 together imply `0 po

0.

T������ 4.2 (S��������).

`0 hRipohSi ^ hRipohSi p⇠ hR0ipo0hS0i =) `0 hR0ipo0hS0i
This allows us to invoke the soundness of realizability logic from Theorem 3.1 and obtain the
desired semantic guarantee for the program we have derived.

A feature all rules share is that they are guided by the original proof outline: the selections in the
proof outline that results from rewriting are limited to the selections in the original proof outline.
To ease the notation, we use Rw to denote a selection that is known to be less versatile than R,
meaning R �0 Rw holds. This may be used repeatedly, so R �0 Rw �0 Rww.
The rules in Figure 6 rewrite the given proof outline in a compositional fashion. The base case

(RCOM) allows us to pick a pre- and postcondition from a selection. This is the moment we realize
that predicates from the precondition can be dropped because they are not needed to obtain the
postcondition, as shown in the introduction. We have to explicitly check the over-approximation
because realizability triples do not maintain the interplay between the predicates in the pre- and in
the postcondition. Using (RANG), we can rewrite proofs for the right-hand sides of non-terminals.
The heart of the calculus is (RSELECT), which allows us to replace non-terminals by their right-
hand sides. The Rules (RSEQL) and (RSEQR) rewrite the left resp. the right part of a sequence. In
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non-terminal, we would like to share them in the various places the non-terminal is used. This is
made possible by Rule (SHARE) given in Figure 5. If we have already derived the triple h) iNh* i,
then we can eliminate the non-terminal from a program sketch and replace it by the pair h) ih* i.
The pair stands for the fact that we can synthesize a program that transforms) to* . Rule (SHARE) is
readily checked to be sound. However, it is a derived rule whose application can easily be mimicked
by Rule (ANG), at the cost of blowing-up the proof. An implementation would re�ne the rule so
that di�erent occurrences of the non-terminal can be replaced in di�erent ways. Moreover, one
would maintain a pointer to the subproof that should be inserted, to be able to derive the program
with the technique given next.

4 REALIZATION LOGIC
We de�ne realization logic, a program logic to derive programs from sketches. The key insight
is that a proof outline in realizability logic for the sketch of interest is helpful guidance to �nd a
program that solves the synthesis task. To make use of this guidance, realization logic rewrites the
given proof outline until a suitable program is found. Realization logic thus reasons over rewriting
steps of the form po p⇠ po

0 between proof outlines. The strategy behind the rewriting is to propagate
information about failed synthesis attempts backwards, and thereby iteratively eliminate predicates
from selections and productions from the de�nition of non-terminals.

As we need a precise understanding of proof outlines, we give the de�nition:

po ::= hRicomhSi | po; po | po + po | po⇤ | N(po) | (po | po) .
We write `0 po to indicate that the proof outline has been derived with realizability logic. The
assertions we track are the ones that have been used in the application of (SEQ), (LOOP), and (ANG).
The formal de�nition is in the appendix. We abuse the notation a bit and write hRipohSi to indicate
that R is the precondition and S is the postcondition of the proof outline po. This is well-de�ned,
because `0 po1 + po2 implies that po1 and po2 have the same pre- and postcondition.

The proof rules of realization logic are listed in Figure 6, we discuss them below. The rules give
the following soundness guarantee: if we start from a proof outline in realizability logic and rewrite
it to another proof outline, then also this proof outline can be derived with realizability logic.

T������ 4.1 (S��������). `0 po and po p⇠ po
0 together imply `0 po

0.

T������ 4.2 (S��������).

`0 hRipohSi ^ hRipohSi p⇠ hR0ipo0hS0i =) `0 hR0ipo0hS0i
This allows us to invoke the soundness of realizability logic from Theorem 3.1 and obtain the
desired semantic guarantee for the program we have derived.

A feature all rules share is that they are guided by the original proof outline: the selections in the
proof outline that results from rewriting are limited to the selections in the original proof outline.
To ease the notation, we use Rw to denote a selection that is known to be less versatile than R,
meaning R �0 Rw holds. This may be used repeatedly, so R �0 Rw �0 Rww.
The rules in Figure 6 rewrite the given proof outline in a compositional fashion. The base case

(RCOM) allows us to pick a pre- and postcondition from a selection. This is the moment we realize
that predicates from the precondition can be dropped because they are not needed to obtain the
postcondition, as shown in the introduction. We have to explicitly check the over-approximation
because realizability triples do not maintain the interplay between the predicates in the pre- and in
the postcondition. Using (RANG), we can rewrite proofs for the right-hand sides of non-terminals.
The heart of the calculus is (RSELECT), which allows us to replace non-terminals by their right-
hand sides. The Rules (RSEQL) and (RSEQR) rewrite the left resp. the right part of a sequence. In
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Realizability in Semantics-Guided Synthesis Done Eagerly

1 htruei N(x = 0 | x = 1); hG = 0,G = 1i
2 (assert(x==0) + assert(x==1))

3 hfaili

Fig. 4. Demonic choice.

(SHARE)
`0 h) iNh* i `0 hRisketch[N/h) ih* i ]hSi

`0 hRisketchhSi

Fig. 5. Subproof sharing.

Having more predicates available makes a selection more versatile and having less predicates makes
a selection less versatile. It is also possible to have a more versatile selection with less predicates if
they are more precise. With this, ; is the least versatile and {;} is the most versatile selection.

The rules are sound and, together with a rule for the edge case of an empty precondition that we
give in the appendix, also complete.

T������ 3.1 (S�����A���C�������). `0 hRisketchhSi , |=0 hRisketchhSi .
P����. Soundness holds by an induction on the height of the proof tree. We argue for complete-

ness and consider |=0 hRisketchhSi. By the de�nition of validity, this means for every predicate
s 2 S there is a predicate r 2 R and a program prog 2 drv(sketch) so that |=3 {r}prog{s} holds. We
invoke the completeness of Hoare logic and obtain `3 {r}prog{s}. The derivation can be mimicked
in realizability logic and yields `0 hriproghsi. Since the program has been derived from sketch,
we can also obtain `0 hrisketchhsi with �nitely many applications of (ANG). Rule (GATHER) allows
us to join the triples hrisketchhsi and obtain the desired `0 hRisketchhSi. ⇤

3.3 Discussion
On SemGuS. The synthesis tasks we consider have the following input: the states, the commands,

and the semantics (States, COM, »�…) of the programming language, the non-terminals with their
production rules (N , prod), and the realizability triple hRisketchhSi of interest. In its original
formulation [23], SemGuS would be more liberal and allow the user to also de�ne the operators
(their syntax and their semantics) from which programs can be built. We �x those operators to
concatenation, choice, and Kleene star, instead. This allows us to work with an extension of Hoare
logic. To lift our approach to the more general setting, the user would have to specify the proof rules
that are sound for the new operators, which would be in-line with the approach in unrealizability
logic [22].

The reader may also note that we have not made assumptions about the correctness speci�cation.
In synthesis, it is common to work with sets of examples. The work on unrealizability logic has
shown that such sets can be captured by so-called vector assertions [22]. Vector assertions are
predicates of a particular form, and our construction of selections readily applies to them.

On search-based synthesis. Realizability logic is formulated such that it can be readily combined
with search-based synthesis. The point is that Rule (ANG) does not force us to consider all programs
a non-terminal can be rewritten to. Instead, we can consider a set of programs that appear most
promising, as can be judged from a probabilistic grammar [20].

On the implementation of non-terminals. A non-terminal may occur multiple times in a proof in
realizability logic, it may even occur recursively. Rather than duplicating the subproofs for this
non-terminal, we would like to share them in the various places the non-terminal is used. This is
made possible by Rule (SHARE) given in Figure 5. If we have already derived the triple h) iNh* i,
then we can eliminate the non-terminal from a program sketch and replace it by the pair h) ih* i.
The pair stands for the fact that we can synthesize a program that transforms) to* . Rule (SHARE) is
readily checked to be sound. However, it is a derived rule whose application can easily be mimicked
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non-terminal, we would like to share them in the various places the non-terminal is used. This is
made possible by Rule (SHARE) given in Figure 5. If we have already derived the triple h) iNh* i,
then we can eliminate the non-terminal from a program sketch and replace it by the pair h) ih* i.
The pair stands for the fact that we can synthesize a program that transforms) to* . Rule (SHARE) is
readily checked to be sound. However, it is a derived rule whose application can easily be mimicked
by Rule (ANG), at the cost of blowing-up the proof. An implementation would re�ne the rule so
that di�erent occurrences of the non-terminal can be replaced in di�erent ways. Moreover, one
would maintain a pointer to the subproof that should be inserted, to be able to derive the program
with the technique given next.

4 REALIZATION LOGIC
We de�ne realization logic, a program logic to derive programs from sketches. The key insight
is that a proof outline in realizability logic for the sketch of interest is helpful guidance to �nd a
program that solves the synthesis task. To make use of this guidance, realization logic rewrites the
given proof outline until a suitable program is found. Realization logic thus reasons over rewriting
steps of the form po p⇠ po

0 between proof outlines. The strategy behind the rewriting is to propagate
information about failed synthesis attempts backwards, and thereby iteratively eliminate predicates
from selections and productions from the de�nition of non-terminals.

As we need a precise understanding of proof outlines, we give the de�nition:

po ::= hRicomhSi | po; po | po + po | po⇤ | N(po) | (po | po) .
We write `0 po to indicate that the proof outline has been derived with realizability logic. The
assertions we track are the ones that have been used in the application of (SEQ), (LOOP), and (ANG).
The formal de�nition is in the appendix. We abuse the notation a bit and write hRipohSi to indicate
that R is the precondition and S is the postcondition of the proof outline po. This is well-de�ned,
because `0 po1 + po2 implies that po1 and po2 have the same pre- and postcondition.

The proof rules of realization logic are listed in Figure 6, we discuss them below. The rules give
the following soundness guarantee: if we start from a proof outline in realizability logic and rewrite
it to another proof outline, then also this proof outline can be derived with realizability logic.

T������ 4.1 (S��������). `0 po and po p⇠ po
0 together imply `0 po

0.

T������ 4.2 (S��������).

`0 hRipohSi ^ hRipohSi p⇠ hR0ipo0hS0i =) `0 hR0ipo0hS0i
This allows us to invoke the soundness of realizability logic from Theorem 3.1 and obtain the
desired semantic guarantee for the program we have derived.

A feature all rules share is that they are guided by the original proof outline: the selections in the
proof outline that results from rewriting are limited to the selections in the original proof outline.
To ease the notation, we use Rw to denote a selection that is known to be less versatile than R,
meaning R �0 Rw holds. This may be used repeatedly, so R �0 Rw �0 Rww.
The rules in Figure 6 rewrite the given proof outline in a compositional fashion. The base case

(RCOM) allows us to pick a pre- and postcondition from a selection. This is the moment we realize
that predicates from the precondition can be dropped because they are not needed to obtain the
postcondition, as shown in the introduction. We have to explicitly check the over-approximation
because realizability triples do not maintain the interplay between the predicates in the pre- and in
the postcondition. Using (RANG), we can rewrite proofs for the right-hand sides of non-terminals.
The heart of the calculus is (RSELECT), which allows us to replace non-terminals by their right-
hand sides. The Rules (RSEQL) and (RSEQR) rewrite the left resp. the right part of a sequence. In
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non-terminal, we would like to share them in the various places the non-terminal is used. This is
made possible by Rule (SHARE) given in Figure 5. If we have already derived the triple h) iNh* i,
then we can eliminate the non-terminal from a program sketch and replace it by the pair h) ih* i.
The pair stands for the fact that we can synthesize a program that transforms) to* . Rule (SHARE) is
readily checked to be sound. However, it is a derived rule whose application can easily be mimicked
by Rule (ANG), at the cost of blowing-up the proof. An implementation would re�ne the rule so
that di�erent occurrences of the non-terminal can be replaced in di�erent ways. Moreover, one
would maintain a pointer to the subproof that should be inserted, to be able to derive the program
with the technique given next.

4 REALIZATION LOGIC
We de�ne realization logic, a program logic to derive programs from sketches. The key insight
is that a proof outline in realizability logic for the sketch of interest is helpful guidance to �nd a
program that solves the synthesis task. To make use of this guidance, realization logic rewrites the
given proof outline until a suitable program is found. Realization logic thus reasons over rewriting
steps of the form po p⇠ po

0 between proof outlines. The strategy behind the rewriting is to propagate
information about failed synthesis attempts backwards, and thereby iteratively eliminate predicates
from selections and productions from the de�nition of non-terminals.

As we need a precise understanding of proof outlines, we give the de�nition:

po ::= hRicomhSi | po; po | po + po | po⇤ | N(po) | (po | po) .
We write `0 po to indicate that the proof outline has been derived with realizability logic. The
assertions we track are the ones that have been used in the application of (SEQ), (LOOP), and (ANG).
The formal de�nition is in the appendix. We abuse the notation a bit and write hRipohSi to indicate
that R is the precondition and S is the postcondition of the proof outline po. This is well-de�ned,
because `0 po1 + po2 implies that po1 and po2 have the same pre- and postcondition.

The proof rules of realization logic are listed in Figure 6, we discuss them below. The rules give
the following soundness guarantee: if we start from a proof outline in realizability logic and rewrite
it to another proof outline, then also this proof outline can be derived with realizability logic.

T������ 4.1 (S��������). `0 po and po p⇠ po
0 together imply `0 po

0.

T������ 4.2 (S��������).

`0 hRipohSi ^ hRipohSi p⇠ hR0ipo0hS0i =) `0 hR0ipo0hS0i
This allows us to invoke the soundness of realizability logic from Theorem 3.1 and obtain the
desired semantic guarantee for the program we have derived.

A feature all rules share is that they are guided by the original proof outline: the selections in the
proof outline that results from rewriting are limited to the selections in the original proof outline.
To ease the notation, we use Rw to denote a selection that is known to be less versatile than R,
meaning R �0 Rw holds. This may be used repeatedly, so R �0 Rw �0 Rww.
The rules in Figure 6 rewrite the given proof outline in a compositional fashion. The base case

(RCOM) allows us to pick a pre- and postcondition from a selection. This is the moment we realize
that predicates from the precondition can be dropped because they are not needed to obtain the
postcondition, as shown in the introduction. We have to explicitly check the over-approximation
because realizability triples do not maintain the interplay between the predicates in the pre- and in
the postcondition. Using (RANG), we can rewrite proofs for the right-hand sides of non-terminals.
The heart of the calculus is (RSELECT), which allows us to replace non-terminals by their right-
hand sides. The Rules (RSEQL) and (RSEQR) rewrite the left resp. the right part of a sequence. In

10

⟨x = 0 ∧ y = 0, x = 0 ∧ y = 1⟩

⟨x = 0 ∧ {y = 0, y = 1}⟩


