
Regular Separability of

VASS Reachability Languages
Eren Keskin and Roland Meyer

TU Braunschweig

1. Regular Separability

.

-REGSEP: 
Given: Initialized VASS and over . 
Question: Does hold?

: 
 regular.  

Write . 

𝕏 ∈ {ℤ, ℕ}

𝕏
V1 V2 Σ

L𝕏(V1) ∣ L𝕏(V2)

L1 ∣ L2
∃R ⊆ Σ* L1 ⊆ R ∧ R ∩ L2 = ∅ .

R : L1 ∣ L2

Regular Separability

vs.

Reachability languages.

Regular Separability
Example: 
1.

Yes! Separator: Even.Even Odd.Odd.

2.

No! Assume and has states. 
Consider

Discussion: 
Separability tries to understand the gap between languages.

Insight: 
Modulo seems to play an important role!

{an . bn ∣ n ∈ ℕ} ∣ {an . bn+1 ∣ n ∈ ℕ} .

∪

{an . b≤n ∣ n ∈ ℕ} ∤ {an . b>n ∣ n ∈ ℕ} .

A : L1 ∣ L2 A m
am+1 . bm+1 ∈ L1 ⊆ L(A) .

Regular Separability
Known: 
 
Theorem [Lorenzo, Wojtek, Slawek, Charles, ICALP’17]: 

-REGSEP is decidable.

Goal:

Theorem: 
-REGSEP is decidable.

ℤ

ℕ

2. Transducer Trick
 [Lorenzo, Wojtek, Slawek, Charles, ICALP’17] 

[Wojtek and Georg, LICS’20]

Transducer Trick

Goal: 
Take only one language as input.

Lemma:  
L(V) ∣ L(U) ⇔ L(V) ∣ TU(Dn)

⇔ T−1
U (L(V)) ∣ Dn

⇔ L(V′￼) ∣ Dn .

Visible VAS: leads to an
increment of counter .

ai
i

over Σn := {ai, āi ∣ i ∈ dy := [1,n]}

3. Intermezzo: Reachability

Deciding Reachability
Approximations:

Coverability graphs: 
Good: Can keep counters non-negative. 
Bad: Cannot guarantee precise counter values.

Marking Equation: 
Good: Can guarantee precise counter values. 
Bad: Cannot keep counters non-negative.

Solution: 
Combine the two.

Deciding Reachability

Challenge: 
Coverability graphs need pumping to guarantee non-negativity.  
Pumping has to respect the marking equation.

Solution:  
Only pump where the solution space is unbounded.

(0,0) (0,1) (0,ω)
σ ⇒ with x[e] e ∈ σ

 with j = 2x[j]
have to be unbounded 
in the solution space.

Deciding Reachability
Lemma: 
Consider over and variable x[i].

x[i] is unbounded in  

Support = the set of unbounded variables.

Support solution =  
 giving a positive value to all variables in the support.

Note: Homogeneous solutions are stable under addition.

A ⋅ x = b ℕk

sol(A ⋅ x = b)
⇔ ∃s ∈ sol(A ⋅ x = 0) . s(x[i]) > 0.

s ∈ sol(A ⋅ x = 0)

Deciding Reachability

So far: 
Pumping where the solution space is unbounded  
 = pumping should yield a support solution.

Problem: 
 may not match a support solution .

Idea: 
Turn into a path.

σ s

s − ψ(σ)

(0,0) (0,1) (0,ω)
σ ⇒ with x[e] e ∈ σ

 with j = 2x[j]
have to be unbounded 
in the solution space.

Parikh image.

Deciding Reachability
Lemma (Euler-Kirchhoff): 
Let be a strongly connected directed graph. 
Let satisfy

Then there is a cycle in with . 
Also write .

G = (V, E)
x : ℕE

∑
e=(−,v)

x[e] = ∑
e=(v,−)

x[e] ∀v ∈ V

x ≥ 1

c G ψ(c) = x
c = ⟨x⟩

Realization.

Definition: 
A precovering graph (PG) is a strongly connected VASS:

• The nodes are decorated by gen. markings, like in coverability graphs.

• These markings agree on where to put .

• The PG has a root with decoration c.

• There are gen. entry/exit markings , with .

ω

(vroot, c)

(vroot, c1) (vroot, c2) c1, c2 ⊑ω c

Deciding Reachability
Decorated SCCG

(vroot, c1) (vroot, c2)

(vroot, c)

Specialization:  
Preserve concrete values,  

may concretize . ω

Definition: 
A PG is perfect, if

• all edge variables are in the support,

• all variables decorated in the entry and exit markings are in the support,

• : 
 

 = cycle in exec. from increasing the counters in . 
 = cycle in G bw exec. from decreasing .

ω

Up(G) ≠ ∅ ≠ Down(G)

u ∈ Up(G) G c1 Ω(c)∖Ω(c1)
v ∈ Down(G) c2 Ω(c)∖Ω(c2)

Deciding Reachability

Pumping should yield a support solution:

Let be a support solution with

By the Euler-Kirchhoff Lemma, the difference can be realized by a cycle

 .

Now and we say they match.

s

d := s − ψ(u) − ψ(v) ≥ 1 .

w = ⟨d⟩

ψ(u) + ψ(w) + ψ(v) = s

Deciding Reachability

This is why we have connectivity
and all edges

should be in the support!

Deciding Reachability
Insight:

 has a strictly negative effect on the counters  
 must have a strictly positive effect.

Pumping:

 and match and match.

With

least number of needed to execute w . 
k + least number of further needed to execute

the sequence becomes an -run/executable.

v ω
⇒ u . w

u, w, v s ⇒ uc . wc . vc c ⋅ s

k := u . w
c := u uk . wk

ℕ

Lambert’s Iteration Lemma [TCS’92]: 
For large enough, one can even fit in a -cycle  
that reaches the exit from the entry marking:

Since pumping happens in a support solution, this still solves reachability. 
Notably, it stays non-negative.

Note: 
This works for all -runs, and all choices of  
that match a support solution.

c ℤ

uc . ρ . wc . vc .

ℤ (u, w, v)

Deciding Reachability
Trick 1: 

Add this slack to Lambert’s Iteration Lemma.

Problem: Precovering graphs may not be perfect.

Solution: Decompose them into sequences of precovering graphs, MGTS:

Deciding Reachability

…
MGTS

Deciding Reachability
Deciding Reachability:

As long as perfectness fails, decomposition is guaranteed to succeed.

It yields finite sets of MGTS that are smaller in a well-founded order.

Hence, perfectness will eventually hold.

For perfect MGTS,

-reachability holds -reachability holds. ℕ ⇔ ℤ

Acceptance on MGTS:

Counters that have to stay non-negative.

Preorder to compare markings at red nodes for acceptance.

The -runs for reachability satisfy .

C :=

≤ :=

AccC,≤(U) :=

IAccC,≤(U) :=

ℤ IAccℤ,⊑ω

Deciding Reachability

…

…

4. DMGTS

Doubly-Marked MGTS :

MGTS over with counters with visible.

.

 
Strategy:  
Define language and . 
Use perfectness to achieve

W = (U, μ)

U = Σn sj ⊎ dy dy

μ ≥ 1

Lsj(W) Ldy(W)

Lsj(W) ∣ Dn ⇔ Lℤ,sj(W) ∣ Lℤ,dy(W) .

DMGTS

Trick 2: 
Defining two languages on a single DMGTS.

Acceptance:

DMGTS
Keep counters non-negative. dy

Specialization only makes
requirements on .dy

Trick 3:

Intersection.

Trick 4:

Modulo-

Specialization.
μ

(I)Accℤ,dy(W) := (I)Accℤ,⊑ω[dy](W)
IAccsj(W) := IAccsj,⊑ω[sj](W) ∩ IAccdy,⊑μ

ω[dy](W)
IAccℤ,sj(W) := IAccℤ,⊑ω[sj](W) ∩ IAccℤ,⊑μ

ω[dy](W)

(I)Accdy(W) := (I)Accdy,⊑ω[dy](W)

Modulo- Specialization:

 , if or .

Lemma (Monotonicity of Modulo- Intermediate Acceptance):

μ

x ⊑μ
ω k k = ω x ≡ k mod μ

μ

ρ ∈ IAccℤ,⊑μ
ω[dy](W) ⇒ ρ+μ ∈ IAccℤ,⊑μ

ω[dy](W) .

DMGTS

Trick 5:

Monotonicity.

Increase the Dyck counters
in all configurations by .μ

Thanks to this, we could
have replaced

 by in .dy ℤ IAccsj(W)

Languages:

DMGTS
Trick 6:

Use of . λ♯

…

 puts here
 instead of a.

λ♯(ρ)
(a, ♯)

Lsd(W) := {λ(ρ) ∣ ρ ∈ IAccsd(W)}
Lℤ,sd(W) := {λ♯(ρ) ∣ ρ ∈ IAccℤ,sd(W)}

Zero-Reaching:

Faithfulness: Zero-reaching +

W . cin[dy] = 0 = W . cout[dy] .

Accℤ,dy(W) ∩ IAccℤ,⊑μ
ω[dy](W) ⊆ IAccℤ,dy(W) .

DMGTS Trick 7:

Faithfulness.

Faithful: 
Intermediate acceptance modulo-  

ordinary intermediate acceptance,

provided we fix initial and final values.

μ ⇔

Perfectness:  
W is perfect, if it is faithful and for all :

 .

G ∈ W

Up(G) ≠ ∅ ≠ Down(G)

∀e ∈ G . E . e ∈ supp(Charsj(W)) ∧ e ∈ supp(Chardy(W)) .

∀j ∈ sd . G . cio[j] = ω ⇒ x[G, io, j] ∈ supp(Charsd(W)) .

DMGTS
Trick 8:

Share and between and .  
Make sure the edges are in the support of both sides.

Up(G) Down(G) sj dy

5. Deciding Regular Separability
Theorem: Let be an initialized VASS over .

Then is decidable.

U Σn

L(U) ∣ Dn

Deciding Regular Separability
Algorithm:

U

…

[ICALP’17]
ℤ

…
…

Perfect

…
…

Separating

Decompose

∀

∃

Algorithm:

1. Turn the given VASS into an initial DMGTS .

2. Decompose into finite sets and .

For the DMGTS ,

 .

For the DMGTS ,

 .

3. Check using [ICALP’17].  
If all checks pass return true, else return false.

U W

W Perf Fin

T ∈ Fin

Lsj(T) ∣ Dn

S ∈ Perf

Lsj(S) ∣ Dn ⇔ Lℤ,sj(S) ∣ Lℤ,dy(S)

Lℤ,sj(S) ∣ Lℤ,dy(S)

Reduce -REGSEP to -REGSEP

using perfectness!
ℕ ℤ

Deciding Regular Separability

Needed: Initial DMTS, decomposition,
separability transfer.

…
…

Perfect

…
…

Separating

Definition:  
Let be a VAS with counters .

The associated initial DMGTS is with and

(U, cinit, cfinal) sj

W = (G, μ) μ = 1

Zero-Zero-reaching.

Deciding Regular Separability: Initial DMGTS

Counters .sj ⊎ dy All decorated .ω Maintain .dy

 , if in . vroot
a,(x,ya) vroot v a,x v U

(vroot, (cinit,0)) (vroot, (cfinal,0))

vroot

ω
G

Lemma (Initial DMGTS):  
1. .  
2. is faithful.

Proof: 
1. additionally requires acceptance modulo on .  
As and the extremal markings are on , this is no restriction.

2. is zero-reaching by definition. 
Moreover, there are no intermediate markings. 
Hence, acceptance and intermediate acceptance on coincide:

 .

Lsj(W) = L(U)
W

Lsj(W) μ dy
μ = 1 0 dy

W

dy

Accℤ,dy(W) ∩ IAccℤ,⊑μ
ω[dy](W) ⊆ Accℤ,dy(W) = IAccℤ,dy(W)

We can now show

and rely on faithfulness.

Lsj(W) ∣ Dn

Deciding Regular Separability: Initial DMGTS

Proposition (Decomposition):  
Given a faithful DMTS , we can compute finite sets

 and of DMGTS,

where

• is perfect,

•

•

W

Perf Fin

∀S ∈ Perf . S

∀T ∈ Fin . Lsj(T) ∣ Dn ,

Lsj(W) = Lsj(Perf) ∪ Lsj(Fin) .

We only have to show

and can rely on perfectness.

Lsj(Perf) ∣ Dn

Deciding Regular Separability: Decomposition

…
… Perfect

…
…

Separating

Proposition (Separability Transfer):  
If is perfect,

 .

Lemma: 
Given a DMGTS , we can compute (-)VASS  

 and with

Proof:  
Auxiliary counters for each intermediate marking. 
Maintain them until that marking is reached. 
Check their values at the end.

S

Lsj(S) ∣ Dn ⇔ Lℤ,sj(S) ∣ Lℤ,dy(S)

W ℤ
Usj Udy Lℤ,sd(S) = Lℤ(Usd) .

We can rely on the decision procedure

for -REGSEP from [ICALP’17].ℤ

Deciding Regular Separability: Decomposition

… c
c′￼1 c2 c′￼2 ck

Deciding Regular Separability
Algorithm:

1. Turn the given VASS into an initial DMGTS .

2. Decompose into finite sets and .  

For the DMGTS ,

 .

3. For each , compute VASS and with .

4. Check using [ICALP’17].

5. If all pass the check, then return true, else return false.

U W

W Perf Fin
S ∈ Perf

Lsj(S) ∣ Dn ⇔ Lℤ,sj(S) ∣ Lℤ,dy(S)

S ∈ Perf Usj Udy Lℤ(Usd) = Lℤ,sd(S)

Lℤ(Usj) ∣ Lℤ(Udy)

S ∈ Perf

It remains to prove

 decomposition and separability transfer!

Proposition: Let be perfect. Then

 .

S

Lℤ,sj(S) ∣ Lℤ,dy(S) ⇔ Lsj(S) ∣ Dn

6. Separability Transfer

6.1 Separability
Lemma: Let be faithful. Then

 .

S

Lℤ,sj(S) ∣ Lℤ,dy(S) ⇒ Lsj(S) ∣ Dn

Approach:  
Reuse a separator for the -languages:

Note: 
Every -separator can be turned into an -separator.  

 only depends on , but is independent of . 

ℤ

ℤ ℕ
A♯ S B♯

Separability
Every transition as an

 and variant. a (a, ♯)
Language intersection.

B♯ : Lℤ,sj(S) ∣ Lℤ,dy(S)
!

⇒ B♯ × A♯ : Lℤ,sj(S) ∣ D♯
n ⇒ B × A : Lsj(S) ∣ Dn .

Lemma:  
Let be faithful.  
We can construct an NFA so that for all .

Task: 
Restrict to make it disjoint from .

S
A♯ B♯

B♯ : Lℤ,sj(S) ∣ Lℤ,dy(S) ⇒ B♯ × A♯ : Lℤ,sj(S) ∣ D♯
n .

B♯ D♯
n

Separability

Situation:

 
Observation: is disjoint from .

Lemma: Let . Then

Proof:

B♯ Lℤ,dy(S)

L(B♯) ∩ Lℤ,dy(S) = ∅

L(B♯ × A♯) ∩ D♯
n = ∅ ⇔ L(B♯ × A♯) ∩ D♯

n ⊆ Lℤ,dy(S) .

⇒

⇐ L(B♯ × A♯) ∩ D♯
n

assumption
⊆ L(B♯) ∩ Lℤ,dy(S) premise= ∅ .

Separability: Disjointness
L(B♯) D♯

n Lℤ,dy(S)

Easier to prove!

1. Failure of :

 may not follow the control flow of .

1. Definition:

.

1. Check of :

Consider .

Then labels a run through .

As and is visible, takes the Dyck counters in from to .

Hence,

L(B♯) ∩ D♯
n ⊆ Lℤ,dy(S)

B♯ S

A♯
S := NFA(S)

L(B♯ × A♯
S) ∩ D♯

n ⊆ Lℤ,dy(S)

w ∈ L(B♯ × A♯
S) ∩ D♯

n

w ρ S

w ∈ D♯
n S ρ S 0 0

ρ ∈ Accℤ,dy(S) .

Separability: Disjointness

2. Failure of :

 is not defined via but via . 
The run may not reach intermediate values.

2. Solution: Faithfulness

Track the control flow as before. 
Track the counters modulo . 
Check the counters when entering and exiting precovering graphs.

L(B♯ × A♯
S) ∩ D♯

n ⊆ Lℤ,dy(S)

Lℤ,dy(S) Accℤ,dy(S) IAccℤ,dy(S)

Accℤ,dy(S) ∩ IAccℤ,⊑μ
ω[dy](S) ⊆ IAccℤ,dy(S) .

dy μ
dy

Separability: Disjointness

Definition of .A♯

Proof of :

Consider .

Then labels a run through .

As before, we have

But additionally, we now get

Faithfulness yields

L(B♯ × A♯) ∩ D♯
n ⊆ Lℤ,dy(S)

w ∈ L(B♯ × A♯) ∩ D♯
n

w ρ S

ρ ∈ Accℤ,dy(S) .

ρ ∈ IAccℤ,⊑μ
ω[dy](S) .

ρ ∈ IAccℤ,dy(S) .

Trick 7 in Action: 
Faithfulness gives us disjointness from . D♯

n

Separability: Disjointness

Problem:

Yes! 
 by assumption.

 
For , note that

The latter intersection guarantees the inclusion!

Lℤ,sj(S) ⊆ L(B♯ × A♯)?

Lℤ,sj(S) ⊆ L(B♯)

Lℤ,sj(S) ⊆ L(A♯)

IAccℤ,sj(S) = IAccℤ,⊑ω[sj](S) ∩ IAccℤ,⊑μ
ω[dy](S) .

Separability: Inclusion
Trick 3 in Action: 

The intersection in the definition of

is what allows us to restrict the -separator!

IAccℤ,sj(S)
ℤ

The is not needed for this direction

of separability transfer!

♯

6.2 Intermezzo: Büchi Boxes

Goal: Understand what a separator can distinguish [Büchi’62].

Definition:  
An NFA over induces an equivalence on by

 , if .

Intuition: 
Words are equivalent, if they induce the same state changes. 
Equivalence classes therefore correspond to relations on states.

A Σ Σ*

u ∼A v ∀p, q ∈ A . Q . p u q ⇔ p v q

Intermezzo: Büchi Boxes

Intermezzo: Büchi Boxes

 
a ∼A b a ≁A v v ≠ b

c . c ∼A d c . c . c ∼A a . aA
b
a c c

d

Example:

[a]∼A
. [c . c]∼A

= {a, b} . {c . c, d} = {a . c . c, a . d, b . c . c, b . d} = [a . c . c]∼A

Box(a . c . c)

=

Box(a)

;

Box(c . c)

Classes = relations on states:

Lemma (Büchi):  
1. is a congruence wrt. concatenation:

 .

2. has finite index.

3. .

4. is a regular language.

Proof: 
1. routine, 2. count the boxes, 3. by definition, 4.

 .

∼A

∀u1, u2, v1, v2 . u1 ∼A u2 ∧ v1 ∼A v2 ⇒ u1 . v1 ∼A u2 . v2

∼A

∀c ∈ Σ*/∼A
. c ⊆ L(A) ∨ c ∩ L(A) = ∅

∀c ∈ Σ*/∼A
. c

[u]∼A
= ⋂

p, q ∈ A . Q
p u q

L(Ap,q) ∩ ⋂
p, q ∈ A . Q

p u q

L(Ap,q)

Intermezzo: Büchi Boxes

6.3 Inseparability
Lemma: Let be perfect. Then

 .

S

Lℤ,sj(S) ∤ Lℤ,dy(S) ⇒ Lsj(S) ∤ Dn

Strategy:  
Towards a contradiction, assume .  
We construct words

 and with .

Contradiction:

A : Lsj(S) ∣ Dn

osj ∈ Lsj(S) ody ∈ Ldy(S) ⊆ Dn osj ∼A ody

osj ∈ L(A)
Büchi 3.

⇒ ody ∈ L(A) ⇒ L(A) ∩ Dn ≠ ∅ .
osj ∉ L(A) ⇒ Lsj(S) ⊈ L(A) .

Inseparability

Construction:  
Use Lambert’s iteration lemma twice:

Note: We can assume a common pumping constant .

Strategy (cont.):  
For , using Büchi 1. we need

osj = λ(uc
0 . gc

0 . wc
sj,0 . vc

0 . t1…tk . uc
k . gc

k . wc
sj,k . vc

k) ∈ Lsj(S)
ody = λ(uc

0 . hc
0 . wc

dy,0 . vc
0 . t1…tk . uc

k . hc
k . wc

dy,k . vc
k) ∈ Ldy(S) .

c

osj ∼A ody

∀0 ≤ i ≤ k . λ(gi) ∼A λ(hi) ∧ λ(wsj,i) ∼A λ(wdy,i) .

Inseparability
Trick 8 in Action: 

The pumping sequences and  
are shared between and .

ui vi
Lsj(S) Ldy(S)

Construction:  
 

When solving reachability, resp. can be arbitrary -runs.

We need .

The premise provides equivalent -runs.

g0…gk h0…hk ℤ

λ(gi) ∼A λ(hi)

Lℤ,sj(S) ∤ Lℤ,dy(S) ℤ

Inseparability: λ(gi) ∼A λ(hi)

ody = λ(uc
0 . h0

c . wc
dy,0 . vc

0 . t1…tk . uc
k . hk

c . wc
dy,k . vc

k)

osj = λ(uc
0 . g0c . wc

sj,0 . vc
0 . t1…tk . uc

k . gkc . wc
sj,k . vc

k)

∼
A

∼
A

Goal: Use the premise to obtain equivalent -runs.

Idea: Understand how yields separability, then use contraposition.

Lemma:  
Let A be an NFA so that

for all pairs of words

there is with .

Then .

Lℤ,sj(S) ∤ Lℤ,dy(S) ℤ

∼A

w0 . (a1, ♯)…(ak, ♯) . wk ∈ Lℤ,sj(S)

v0 . (a1, ♯)…(ak, ♯) . vk ∈ Lℤ,dy(S)

0 ≤ i ≤ k wi ≁A vi

Lℤ,sj(S) ∣ Lℤ,dy(S)

Inseparability: λ(gi) ∼A λ(hi)

Lemma: Let A be an NFA so that

for all pairs of words there is .

Then .

Construction of and : 
Apply the lemma in contraposition to the premise .

This yields a pair of words as in the lemma with for all .

Then the and are loops in the PGs of with

 for all .

… wi ≁A vi

Lℤ,sj(S) ∣ Lℤ,dy(S)

gi hi
Lℤ,sj(S) ∤ Lℤ,dy(S)

wi ∼A vi i

gi hi S

λ(gi) = wi λ(hi) = vi i

Inseparability: λ(gi) ∼A λ(hi)

Lemma: Let A be an NFA so that

for all pairs of words there is .

Then .

Proof: Define

L is regular:  
 The union is finite as has finite index by Büchi 2. 
 The classes are regular by Büchi 4.

L is a separator:  
 by definition.

 Assume . 
 Then there is  
 for which there is

with for all .

… wi ≁A vi

Lℤ,sj(S) ∣ Lℤ,dy(S)

L := ⋃
w0.(a1,♯)…(ak,♯).wk∈Lℤ,sj(S)

[w0]∼A
. (a1, ♯)…(ak, ♯) . [wk]∼A

.

∼A

Lℤ,sj(S) ⊆ L

L ∩ Lℤ,dy(S) ≠ ∅
v0 . (a1, ♯)…(ak, ♯) . vk ∈ Lℤ,dy(S)

w0 . (a1, ♯)…(ak, ♯) . wk ∈ Lℤ,sj(S)

wi ∼A vi i

Inseparability: λ(gi) ∼A λ(hi)

Trick 6 in Action: 
The is essential here. 

To conclude for all , we use that 
 only relates words without .

♯
wi ∼A vi i

∼A ♯

Construction:

Inseparability: λ(gi) ∼A λ(hi)

ody = λ(uc
0 . h0

c . wc
dy,0 . vc

0 . t1…tk . uc
k . hk

c . wc
dy,k . vc

k)

osj = λ(uc
0 . g0c . wc

sj,0 . vc
0 . t1…tk . uc

k . gkc . wc
sj,k . vc

k)

∼
A

∼
A

Construction:

 
Actually: We will also modify the support solutions and covering sequences.

Inseparability: λ(wsj,i) ∼A λ(wdy,i)

ody = λ(uc
0 . g0c . wdy,0c . vc

0 . t1…tk . uc
k . gkc . wdy,kc . vc

k)

osj = λ(uc
0 . g0c . wsj,0c . vc

0 . t1…tk . uc
k . gkc . wsj,kc . vc

k)

∼
A

∼
A

Goal: Construct support solutions and and for all

with so that

 (Matching)

Need matching to invoke Lambert’s iteration lemma.

ssj sdy 0 ≤ i ≤ k

ui ∈ Up(Gi) vi ∈ Down(Gi) wsj,i wdy,i

λ(wsj,i) ∼A λ(wdy,i)

ψ(ui) + ψ(wsj,i) + ψ(vi) = ssj[Gi . E]
ψ(ui) + ψ(wdy,i) + ψ(vi) = sdy[Gi . E] .

Inseparability: λ(wsj,i) ∼A λ(wdy,i)

Notation:  
Fix an index and call the

we want to construct , , , and .

0 ≤ i ≤ k

ui ∈ Up(Gi) vi ∈ Down(Gi) wsj,i wdy,i

u v wsj wdy

Inseparability: λ(wsj,i) ∼A λ(wdy,i)

Idea:  
For the construction of and , use pumping.

Construction:  
Assume has n states. 
We define

The runs and and the constant will be fixed when we analyze (Matching).

No matter how, will hold.

wsj wdy

A

wsj := diff n . rem

wdy := diff n+c⋅n! . rem .

diff rem c

λ(wsj) ∼A λ(wdy)

Inseparability: λ(wsj) ∼A λ(wdy)

Lemma:  
Let be a DFA over with n states and let .  
Then for all , we have

Proof:  
Consider states and in .  
To show

it suffices to show that reaches the same state 
when reading and from .

A Σ c ∈ ℕ
u, v ∈ Σ*

un . v ∼A un+c⋅n! . v .

p q A

p un.v q ⇔ p un+c⋅n!.v q

A
un un+c⋅n! p

Inseparability: λ(wsj) ∼A λ(wdy)

Lemma:  
Let be a DFA over with n states and let .  
Then for all , we have

Proof:  
We show that reaches the same state 
when reading and from .

Let be the state in reached after reading from , where . 
By the pigeonhole principle, there are

 with .

As is a DFA, and both end up in . 
We not only repeat once, but

 many times.

Thanks to the factorial and , this is a positive integer. 
This means also ends up in .

A Σ c ∈ ℕ
u, v ∈ Σ*

un . v ∼A un+c⋅n! . v .

A
un un+c⋅n! p

qi A ui p u0 := ε

0 ≤ i < j ≤ n qi = qj

A un uj . uj−i . un−j = un+(j−i) qn
uj−i

c ⋅ n!
j − i

c ∈ ℕ
un+c⋅n! qn

Inseparability: λ(wsj) ∼A λ(wdy)

Want: , , , and , and  
support solutions and that match.

Have: By perfectness, support solutions and and for all .

so that

u ∈ Up(G) v ∈ Down(G) diff rem
ssj sdy

s′￼sj s′￼dy 0 ≤ i ≤ k

u′￼i ∈ Up(Gi) v′￼i ∈ Down(Gi)

s′￼sd[Gi . E] − ψ(u′￼i) − ψ(v′￼i) ≥ 1 .

Inseparability: λ(wsj) ∼A λ(wdy)

Needed:

Recall: and .

Consequence: Need

ψ(u) + ψ(wsj) + ψ(v) = ssj[E]
ψ(u) + ψ(wdy) + ψ(v) = sdy[E] .

wsj = diff n . rem wdy = diff n+c⋅n! . rem

ψ(u) + n ⋅ ψ(diff) + ψ(rem) + ψ(v) = ssj[E]
ψ(u) + (n + c ⋅ n!) ⋅ ψ(diff) + ψ(rem) + ψ(v) = sdy[E] .

Inseparability: λ(wsj) ∼A λ(wdy)

(Matching)

Consequence: Need

Consequence: We subtract the equations to isolate :

ψ(u) + n ⋅ ψ(diff) + ψ(rem) + ψ(v) = ssj[E]
ψ(u) + (n + c ⋅ n!) ⋅ ψ(diff) + ψ(rem) + ψ(v) = sdy[E] .

ψ(diff)

c ⋅ n! ⋅ ψ(diff) = sdy[E] − ssj[E] = (sdy − ssj)[E] .

Inseparability: λ(wsj) ∼A λ(wdy)

Consequence: We subtract the equations to isolate and get

Define:

 .

Consequence: We can factor out and get rid of it,

ψ(diff)

c ⋅ n! ⋅ ψ(diff) = (sdy − ssj)[E] .

ssd := c ⋅ n! ⋅ s′￼sd

c ⋅ n!

c ⋅ n! ⋅ ψ(diff) = c ⋅ n! ⋅ (s′￼dy − s′￼sj)[E] .

Inseparability: λ(wsj) ∼A λ(wdy)

Definition: To obtain , we set

Remark:  
To invoke Euler-Kirchhoff, we need . 
We can assume has been scaled to guarantee this.

ψ(diff) = (s′￼dy − s′￼sj)[E]

diff := ⟨(s′￼dy − s′￼sj)[E]⟩ .

(s′￼dy − s′￼sj)[E] ≥ 1
s′￼dy

Inseparability: λ(wsj) ∼A λ(wdy)

Recall: We need matching

Consequence: Inserting the choice of yields

Consequence:

ψ(u) + ψ(wsj) + ψ(v) = ssj[E] .

ssj

ψ(u) + n ⋅ ψ(diff) + ψ(rem) + ψ(v) = c ⋅ n! ⋅ s′￼sj[E] .

ψ(rem) = c ⋅ n! ⋅ s′￼sj[E] − ψ(u) − ψ(v) − n ⋅ ψ(diff) .

Inseparability: λ(wsj) ∼A λ(wdy)

Consequence:

Idea: To apply Euler-Kirchhoff, the right-hand side has to be .

Define:

ψ(rem) = c ⋅ n! ⋅ s′￼sj[E] − ψ(u) − ψ(v) − n ⋅ ψ(diff) .

≥ 1

u := (u′￼)c⋅n! v := (v′￼)c⋅n! .

Inseparability: λ(wsj) ∼A λ(wdy)

Consequence:

Definition:

least value so that

Defininition:

c := ψ(rem) ≥ 1 .

rem := ⟨c ⋅ n! ⋅ (s′￼sj[E] − ψ(u′￼) − ψ(v′￼)) − n ⋅ ψ(diff)⟩ .

Inseparability: λ(wsj) ∼A λ(wdy)

ψ(rem) = c ⋅ n! ⋅ s′￼sj[E] − ψ(u) − ψ(v) − n ⋅ ψ(diff)

= c ⋅ n! ⋅ s′￼sj[E] − c ⋅ n! ⋅ ψ(u′￼) − c ⋅ n! ⋅ ψ(v′￼) − n ⋅ ψ(diff)

= c ⋅ n! ⋅ (s′￼sj[E] − ψ(u′￼) − ψ(v′￼)) − n ⋅ ψ(diff) .

≥1

Remark:  
The choice of is not local to  
but global in that it has to hold for all PGs in .

c G
S

Inseparability: λ(wsj) ∼A λ(wdy)

7. Decomposition
Proposition: Given a faithful DMGTS , we can compute 

finite sets and of DMGTS so that

(i) is perfect . 
(ii)  

(iii) .

W
Perf Fin

∀S ∈ Perf . S
∀T ∈ Fin . Lsj(T) ∣ Dn .

Lsj(W) = Lsj(Perf) ∪ Lsj(Fin)

Approach:  
Capture a single decomposition step. 
Rely on well-foundedness.

Lemma (Step): 
There is a computable function that takes a DMGTS as follows

faithful, imperfect,

It returns finite sets of DMGTS with

(a) is faithful and  
(b)  
(c)

dec(−) W

sol(Charsj(W)) ≠ ∅ ≠ sol(Chardy(W)) .

(X, Y) = dec(W)

∀S ∈ X . S S < W .
∀T ∈ Y . Lsj(T) ∣ Dn .
Lsj(W) = Lsj(X) ∪ Lsj(Y) .

Decomposition

(b) and (c) as required by decomposition.

Faithfulness is an invariant!Faithfulness is an invariant!

If not perfect, you can decompose. If not perfect, you can decompose.

algo(input: a faithful DMGTS , output: and) begin 
 if is perfect then 
 return = , ; 
 else if then 
 return , ; 
 else if then 
 return , ;  
 else 
 ; 
 ; ; 
 for all begin 
 = algo(); 
 ; 
 ; 
 end for all 
 end else 
end

W Perf Fin
W

Perf {W} Fin = ∅
sol(Charsj(W)) = ∅

Perf = ∅ Fin = ∅
sol(Chardy(W)) = ∅

Perf = ∅ Fin = {W}

(X, Y) = dec(W)
Perf = ∅ Fin = Y

S ∈ X
(PerfS, FinS) S
Perf = Perf ∪ PerfS
Fin = Fin ∪ FinS

Decomposition

Goal:

(i) is perfect . 
(ii)  
(iii)

∀S ∈ Perf . S
∀T ∈ Fin . Lsj(T) ∣ Dn .
Lsj(W) = Lsj(Perf) ∪ Lsj(Fin) .

(i), (ii), (iii) trivial

sol(Charsj(W)) = ∅ ⇒ Lℤ,sj(W) = ∅
⇒ Lsj(W) = ∅ .

sol(Chardy(W)) = ∅ ⇒ Lℤ,dy(W) = ∅
⇒ Lℤ,sj(W) ∣ Lℤ,dy(W)

{Separability Transfer} ⇒ Lsj(W) ∣ Dn .

Fact: Let be faithful.

 is not perfect with

(1)

(2)

(3)

Approach: Case distinction.

W

W ⇔ ∃G ∈ W . (1) ∨ (2) ∨ (3)

G . cio[j] = ω ∧ G . cio[j] ∉ supp(Charsd(G)) .

e ∈ G . E ∧ e ∉ supp(Charsd(G)) .

Up(W) = ∅ ∨ Down(G) = ∅ .

Decomposition: Step Lemma

7.1 Case j ∉ supp(Charsd(W))

Fact: If ,

is finite, non-empty, and .

j ∉ supp(Charsd(W))

Asd := {s[j] ∣ s ∈ sol(Charsd(W))}

⊆ ℕ

Step Lemma: Case j ∉ supp(Charsd(W))

Lemma in the beginning. sol(Charsd(W)) ≠ ∅ .
Shape of

Charsd(W) .

7.1.1 Case sd = sj

Step Lemma: Case j ∉ supp(Charsj(W))

Let

Define:

W = (U, μ) .

X := {(Ua, μ) ∣ a ∈ Asj} Y := ∅ .

 with the value of  
at the moment of interest

modified from to

U j

ω a .

Step Lemma: Case j ∉ supp(Charsj(W))
Proof:

(c)

 Consider  
Then solves the characteristic equations. 
Hence, counter assumes a value at the moment of interest.  
Hence, , and

 Concrete values make intermediate acceptance stronger.

(b) There is nothing to show.

Lsj(W) = Lsj(X) .

⊆ ρ ∈ IAccsj(W) .
ρ

j a ∈ Asj
ρ ∈ IAccsj(Ua, μ) (Ua, μ) ∈ X .

⊇

∀T ∈ Y…

Step Lemma: Case j ∉ supp(Charsj(W))
Proof (cont.):

(a) Faithfulness.

We neither modified the edges nor the markings.  
Hence, faithfulness holds by the faithfulness of .

(a) Descent

, , and stay unchanged.  
We reduce

dy
W

Ω(G) G . E G . cio
|Ω(G . cio) | .

7.1.2 Case sd = dy

This is the complicated case!

Setting:  
We change an extremal marking for a Dyck counter

from to a concrete value.

As a consequence, we have to check faithfulness.

ω

Step Lemma: Case j ∉ supp(Chardy(W))

Setting: We have to check faithfulness.

Lemma (Modulo Trick):  
Consider .

0 ≤ a, b < ν

a ≡ b mod ν ⇒ a = b .

Trick 9: 
The Modulo Trick is essential for faithfulness.

Step Lemma: Case j ∉ supp(Chardy(W))

Discussion:  
(i) We will have

Hence, to apply the Modulo Trick, we need to

modify to with

b ∈ Ady .

μ ν ν > max Ady .

Step Lemma: Case j ∉ supp(Chardy(W))

Discussion:  
(ii) We canot simply increase to exceed . 
We need

acceptance modulo acceptance modulo

This works, if divides . We thus set

for an defined later.

ν μ

ν ⇒ μ .

μ ν

ν := μ ⋅ l

l
Trick 10: 

Maintaining divisibility among the values.μ

Step Lemma: Case j ∉ supp(Chardy(W))

Discussion:  
(iii) If we modify to , we need to

modify the extremal markings of all PGs.

Example:

Let and thus . 
Then

does not yield all solutions.

μ ν

x ≡ 2 mod 3.

l = 4 ν = 3 ⋅ 4 = 12

x ≡ 2 mod 12

0 3 6 9 12 15

x ≡ 2 mod 3

x ≡ 2 mod 12

Make sure not to lose the red values.

Step Lemma: Case j ∉ supp(Chardy(W))

Example:

Then

together yield all solutions.

x ≡ 2 mod 3.

x ≡ 2 mod 12
x ≡ 5 mod 12
x ≡ 8 mod 12
x ≡ 11 mod 12

0 3 6 9 12 15

x ≡ 2 mod 12

x ≡ 2 mod 3

Step Lemma: Case j ∉ supp(Chardy(W))

Lemma (Modification): Let divide and consider .

Example:

μ − ν− μ ν x, k ∈ ℤ

x ≡ k mod μ ⇔ ∃0 ≤ i < ν . x ≡ i mod ν
i ≡ k mod μ .

x ≡ 2 mod 3 ⇔ ∃i ∈ {2,5,8,11} . x ≡ i mod 12 .
Trick 11: 

Adapt intermediate markings to .i ≡ k mod μ
0 3 6 9 12 15

Step Lemma: Case j ∉ supp(Chardy(W))

Goal: Transfer the adaptation lemma to DMGTS.

Approach: Equate MGTS up to modulo equivalence

on the Dyck counters.

Definition (Modification Equivalence):

 , if

, if

k ≡ i mod μ

μ−

G1 ≡μ G2
G1 . V = G2 . V G1 . cio[sj] = G2 . cio[sj]
G1 . E = G2 . E G1 . cio[dy] ≡ G2 . cio[dy] mod μ

S1 . up . S2 ≡μ S′￼1 . up . S′￼2 S1 ≡μ S′￼1 ∧ S2 ≡μ S′￼2 .

Step Lemma: Case j ∉ supp(Chardy(W))

Lemma (Modification for Intermediate Acceptance): 
Assume divides .

 .

Note: 
This is a direct lift of the Modification Lemma.

• corresponds to .

• corresponds to .

• The union is the existential quantifier.

μ − ν−
μ ν

IAccsj(U, μ) = ⋃
V ≡μ U

0 ≤ V < ν

IAccsj(V, ν)

μ − ν−

V ≡μ U i ≡ k mod μ

0 ≤ V < ν 0 ≤ i < ν

All extremal markings

take values from .[0,ν − 1] ∪ {ω}

Step Lemma: Case j ∉ supp(Chardy(W))

Discussion:  
(iv) If we modify the extremal markings of all PGs,  
we have to check faithfulness also there.

To apply the Modulo Trick,

 has to be larger than all values in extremal markings.

Recall . We thus set

values in extremal markings.

ν

ν := μ ⋅ l

l := max Ady ∪

Step Lemma: Case j ∉ supp(Chardy(W))

Remark: 
We do not maintain the invariant that  

 is larger than the values in the extremal markings. 
 
This would force us to repeat the argument for Case (1) 
in Cases (2) + (3).

μ

Step Lemma: Case j ∉ supp(Chardy(W))

Definition:

X := {(V, ν) ∈ Z ∣ V . cout[dy] = 0}
Y := Z∖X .

zero-reachingZero-reaching.

Dyck counters . ≢ 0 mod ν

Modification . μ − ν−Modification . μ − ν− Not just !Ady

Step Lemma: Case j ∉ supp(Chardy(W))

Z := {(V, ν) ∣ V ≡μ Ua, 0 ≤ V < ν, 0 ≤ a < μ, V . cin[dy] = 0}

Note: 
We cannot just take the values from  
They stem from which reaches intermediate values precisely. 
In , we only need to reach intermediate Dyck values modulo . 
Hence, may not contain enough values.

Ady .
Chardy(W)

IAccsj(W) μ
Ady

PG1 PG2 PG3
a

a + μ

∈ Ady

∉ Ady

Step Lemma: Case j ∉ supp(Chardy(W))

Proof (of the Step Lemma):  
Let

(c)

Similar to the Case , we have

 .

With the Modification Lemma for Intermediate Acceptance,

 .

We argue that we do not lose words by assuming in

the initial values for zero modulo instead of zero modulo .

Consider .  
As is zero-reaching, starts from a multiple of on , say for simplicity. 
By the monotonicity of modulo acceptance, . 
This run is labeled by the same word and starts from on .  
Hence, it will be accepted by where the Dyck counters are initially .

W = (U, μ) .

Lsj(W) = Lsj(X) ∪ Lsj(Y) .

sd = sj

IAccsj(U, μ) = ⋃
0≤a<μ

IAccsj(Ua, μ)

μ − ν−

IAccsj(Ua, μ) = ⋃
V ≡μ Ua

0 ≤ V < ν

IAccsj(V, ν)

V

dy ν μ

ρ ∈ IAccsj(Ua, μ)
Ua ρ μ dy μ

ρ + (ν − μ) = ρ + (l − 1) ⋅ μ ∈ IAccsj(Ua, μ)
ν dy

V ≡μ Ua 0

Step Lemma: Case j ∉ supp(Chardy(W))

Trick 5 in Action: 
Monotonicity of modulo- intermediate acceptance.μ

Step Lemma: Case j ∉ supp(Chardy(W))
Proof (cont.):  
(b)

Consider  
By construction, and . 
This means has an effect on .  
By visibility of and the VAS accepting , we have .

Hence, an NFA that tracks the Dyck counters modulo  
and accepts upon values shows separability.

∀T ∈ Y . Lsj(T) ∣ Dn .

T ∈ Y .
T . cin[dy] = 0 T . cout[dy] ≠ 0

ρ ∈ IAccsj(T) c ≢ 0 mod ν dy
T Dn λ(ρ) ∉ Dn

ν
≠ 0

Proof (cont.):

(a) Descent

As in the case sd = sj .

Step Lemma: Case j ∉ supp(Chardy(W))

Proof (cont.): Recall that and .  
Faithfulness

is a consequence of

S = (V, ν) W = (U, μ)

Accℤ,dy(S) ∩ IAccℤ,⊑ν
ω[dy](S) ⊆ IAccℤ,dy(S)

Accℤ,dy(S) ∩ IAccℤ,⊑ν
ω[dy](S) ⊆ IAccℤ,dy(W) (1)

IAccℤ,dy(W) ∩ IAccℤ,⊑ν
ω[dy](S) ⊆ IAccℤ,dy(S) . (2)

Step Lemma: Case j ∉ supp(Chardy(W))

Proof (cont.): For

we use

and the faithfulness of .

Accℤ,dy(S) ∩ IAccℤ,⊑ν
ω[dy](S) ⊆ IAccℤ,dy(W) (1)

Accℤ,dy(S) ⊆ Accℤ,dy(W)
IAccℤ,⊑ν

ω[dy](S) ⊆ IAccℤ,⊑μ
ω[dy](W)

W

 and are zero-reaching. 
We only change an intermediate value,

which acceptance does not see.

S W

 divides . μ ν

Step Lemma: Case j ∉ supp(Chardy(W))

Proof (cont.): For

 .

Consider in the intersection. 
Consider counter that we changed from to a concrete value.

As , solves .  
Hence, it reaches a value at the moment of interest.

As , it also reaches the value that replaces in , but only modulo .

We have by the definition of intermediate acceptance.

We have by the choice of .  
We have by the construction of .

Modulo intermediate acceptance means .  
The Modulo Trick shows a=b.

IAccℤ,dy(W) ∩ IAccℤ,⊑ν
ω[dy](S) ⊆ IAccℤ,dy(S)

ρ
j ω

ρ ∈ IAccℤ,dy(W) ρ Chardy(W)
b ∈ Ady

ρ ∈ IAccℤ,⊑ν
ω[dy](S) a ω S ν

0 ≤ a, b

b < ν ν
a < ν S

a ≡ b mod ν

Step Lemma: Case j ∉ supp(Chardy(W))

Proof (cont.): For

 .

Consider a counter different from or but another moment.

As , reaches an intermediate value given in .

We again have by the choice of .

Now the same argument applies.

IAccℤ,dy(W) ∩ IAccℤ,⊑ν
ω[dy](S) ⊆ IAccℤ,dy(S)

j j

ρ ∈ IAccℤ,dy(W) ρ b W

b < ν ν

Step Lemma: Case j ∉ supp(Chardy(W))

7.2 Reasoning Locally

about Faithfulness

Reasoning Locally about Faithfulness

Case (1): Modified entire DMGTS.

Cases (2) + (3): Modify a single PG.

Goal: Develop techniques that allow us to

reason about a single PG and 
lift the result to the entire DMGTS.  

Focus on faithfulness.

Reasoning Locally about Faithfulness
Definition:  
MGTS context

DMGTS insertion: For let

Lemma: Well-founded order stable under insertion

C[∙] ::= ∙ ∣ C[∙] . up . W ∣ W . up . C[∙] .

W = (S, μ)

C[W] := (C[S], μ) .

W1 ≤ W2 ⇒ C[W1] ≤ C[W2] .

Replace by .∙ S

Reasoning Locally about Faithfulness

Approach: For Cases (2) + (3), consider ,

decompose into sets of DMGTS and , 
define

C[(G, μ)]

(G, μ) U V

X := C[U] := {C[(S, μ)] ∣ (S, μ) ∈ U} Y := C[V] .

Reasoning Locally about Faithfulness
Goal: Lift faithfulness of to .

Approach: Establish a relation between and the DMGTS in .

Definition: 
- is a specialization of , if

1.  
2.  
3. .

- If is a specialization of , then is a specialization of

C[(G, μ)] C[U]

(G, μ) U

(S, μ) (G, μ)

S . cio ⊑ω G . cio .
∀ρ ∈ Runsℤ(S) . ∃σ ∈ Runsℤ(G) . σ ≈ ρ .
∀ρ ∈ IAccℤ,⊑μ

ω[dy](S) with ρ[first/last][dy] ⊑ω G . cio . ρ ∈ IAccℤ,dy(S)

W1 W2 C[W1] C[W2] .

Same .μ

Smaller language.
Preserve faithfulness.

Reasoning Locally about Faithfulness
Lemma: Let be a specialization of .

.  
 faithful faithful.

Intuition: Why does decomposition for Cases (2) + (3) guarantee

 ?

Decompositions for (2) + (3) unroll into DMGTS. 
 
 New intermediate counter values = consistent assignments in or values in coverability graph for .

Hence, runs in the new DMGTS respects these values.  

W1 W2

Lsj(W1) ⊆ Lsj(W2)
W2 ⇒ W1

∀ρ ∈ IAccℤ,⊑μ
ω[dy](S) with ρ[first/last][dy] ⊑ω G . cio . ρ ∈ IAccℤ,dy(S)

G

G G

Only need to worry about Lsj(W) ⊆ Lsj(X ∪ Y) .

7.3 Case e ∉ supp(Charsd(W))

Case (2): e ∉ supp(Charsd(W))
Observation: If is not in the support, there is

an upper bound

on the number of times can be taken.

Idea: Decompose so that every occurrence of leads to a new PG. 
 
Definition:  

DMGTS that admit at most occurrences of .  
 

 = DMGTS that expect occurrences of ,  
 afterwards return to the root of .

e

l ∈ ℕ

e

G e

U = l e
Vsj = ∅ .
Vdy l + 1 e

G

Case (2): e ∉ supp(Charsd(W))
Lemma: Let contain edge with .  
With elementary resources, we can compute sets and  
containing specializations of that satisfy:

 
 

 is infeasible.

(G, μ) e e ∉ supp(Charsd(C[(G, μ)]))
U V

(G, μ)

∀S ∈ U . S < (G, μ) .
∀ρ ∈ IAccsj(G, μ) . ∃σ ∈ IAccsj(U ∪ V) . σ ≈ ρ .
∀T ∈ V . Char(C[T])

Faithfulness already done!

Descent also done!

Separability also done!

