Regular Separability of
VASS Reachability Languages

Eren Keskin and Roland Meyer
TU Braunschwelg



1. Regular Separability



Regular Separability

Reachability languages.

X e {Z,N}.

X-REGSEP:
Given: Initialized VASS V, and V, over X .

Question: Does Ly (V;) | Ly(V,) hold?

L, | L
dR C 2*regular. L CRARNL, =Q .
Write R : L, | L, .



Regular Separability

Example:

1. {a".b" |neN} | {a".b" | n e N}. V

Yes! Separator: Even.Even U Odd.Odd.

2 {a". b"|neN) 4} {a".b>" |neN) .

No! Assume A : L, | L, and A has m states. x
Consider a1 . p"*! L, CLA) . 6

Discussion:
Separability tries to understand the gap between languages.

Insight:
Modulo seems to play an important role!



Regular Separability

Known:

Theorem [Lorenzo, Wojtek, Slawek, Charles, ICALP’17]:
/ -REGSEP is decidable.

Goal:

Theorem:
N-REGSEP is decidable.






2. lransducer Irick

[Lorenzo, Wojtek, Slawek, Charles, ICALP’17]
[Wojtek and Georg, LICS’20]



Transducer Irick

Visible VAS: a; leads to an

increment of counter 1.
Goal:

Take only one language as input.

Lemma:
L(V) | L(U) < LV)|TyD,

& T;'(LV)|D, overX, :={a,a|i€dy:=][l,n])
< LV)|D,.




y -

qﬂrﬂ...f“»l...u d A
Sy b

2 AT

' Pt Car
'l PR

s vyt
MR~ o

-

s
12 »

.,...,.u.

.ﬁ...?,..,/.,

._. ./... .. .. ; ..

5 N . a2 . -~ - LA . g

! ,¢,. - ’ 0 B . b Y-’.;...-.’.i...‘..-.ﬂ...

L A . TR "Wy : 2 - s PN
. . . ) . B ~ -~

s 3

p

AT O
L
.d....... : .




3. Intermezzo: Reachability



Deciding Reachability

Approximations:

Coverability graphs:
Good: Can keep counters non-negative.
Bad: Cannot guarantee precise counter values.

Marking Equation;
Good: Can guarantee precise counter values.
Bad: Cannot keep counters non-negative.

Solution:
Combine the two.



Deciding Reachability

Challenge:
Coverability graphs need pumping to guarantee non-negativity.
Pumping has to respect the marking equation.

Solution:
Only pump where the solution space is unbounded.

- - -
.” S~

o °» . XleJwithe € 6 have to be unbounded
0,0) (B4) (0,w) x[j] with j =2 IN the solution space.




Deciding Reachability

Lemma:
Consider A - x = b over N* and variable X[i].

x[i] is unbounded in sol(A - x = b)
< ds e sol(A-x=0). s(x[i]) > O.

Support = the set of unbounded variables.

Support solution =
s € sol(A - x = 0) giving a positive value to all variables in the support.

Note: Homogeneous solutions are stable under addition.



Deciding Reachability

- -
e” S~

, . XleJwithe € have to be unbounded
0,0) (B4) (0,w) x[j] with j =2 IN the solution space.

So far:
Pumping where the solution space is unbounded
= pumping should yield a support solution.

Problem:;
o may not match a support solution s. Parikh image.

ldea: |
Turn s — w(o) into a path.



Deciding Reachability

Lemma (Euler-Kirchhoff):
Let G = (V, E) be a strongly connected directed graph.

Let x : N satisfy

2 xle] = Z x[e] VvevV

e:(—,V) €:(V,—)

x> 1

Then there is a cycle ¢ in G with y(c) = x.

Also write ¢ = (x).



Deciding Reachability
G . Decorated SCC

Definition: «( i
A precovering graph (PQ) is a strongly connected VASS: ® ®

(Vroot’ Cl) (Vroot’ 62)

 The nodes are decorated by gen. markings, like in coverability graphs.

_ Specialization:
 These markings agree on where to put w. Preserve concrete values,

may concretize .

e The PG has aroot (v, ., ¢) with decoration c.

root’

» There are gen. entry/exit markings (v, 1), (V,,op C2) With ¢(, ¢, E_ .



Deciding Reachability

Definition:
A PG is perfect, if

* all edge variables are In the support,
e all variables decorated w In the entry and exit markings are in the support,
e Up(G) # @ # Down(G):

u € Up(G) = cycle in G exec. from ¢ increasing the counters in £2(c)\€2(c;).
v € Down(G) = cycle in G bw exec. from ¢, decreasing (c)\2(c,).



Deciding Reachability

Pumping should yield a support solution:

Let s be a support solution with

This Is why we have connectivity
and all edges

d.=§ — W(l/t) — l//(V) > ] . should be in the support!

By the Euler-Kirchhoff Lemma, the difference can be realized by a cycle
w = {(d).

Now yw(u) + w(w) + w(v) = s and we say they match.



Deciding Reachability

Insight:

v has a strictly negative effect on the @w counters
= u.w must have a strictly positive effect.

Pumping:
u,w,vand s match = u°.w°.v“andc - s match.
With

k := least number of 1 . w needed to execute w .
¢ .= k + least number of further u needed to execute uk : wk

the sequence becomes an N-run/executable.



Deciding Reachakih

Trick 1:
Add this slack to Lambert’s Iteration Lemma.

Lambert’s lteration Lemma [TCS’92].

For ¢ large enough, one can even fit in a Z-cycle
that reaches the exit from the entry marking:

us.p.wt.ve.

Since pumping happens in a support solution, this still solves reachability.
Notably, it stays non-negative.

Note:

This works for all Z-runs, and all choices of (u, w, v)
that match a support solution.



Deciding Reachability

Problem: Precovering graphs may not be perfect.

Solution: Decompose them into sequences of precovering graphs, MGTS:

MGTS .,1.‘0. ,1.%. ,1.%.
¢

Yo—¢ Yo— ¢ %o



Deciding Reachability

Deciding Reachabillity:
As long as perfectness fails, decomposition is guaranteed to succeed.
It yields finite sets of MGTS that are smaller in a well-founded order.

Hence, perfectness will eventually hold.

For perfect MGTS,

N-reachability holds < Z-reachability holds.



Deciding Reachability

Acceptance on MGTS:
C := Counters that have to stay non-negative.

< := Preorder to compare markings at red nodes for acceptance.

Acc C.< ( U ) N N N
B _ )
I A cC C. S( U ) = ‘..1 »4'_>‘.ﬂ "0—» —>0", »A‘

The Z-runs for reachability satisfy IAccz

—









DMGTS

Doubly-Marked MGTS W = (U, u):

U = MGTS over 2, with counters sj & dy with dy visible.

u>1.

Trick 2:
Strategy: Defining two languages on a single DMGTS.

Define language L (W) and L, (W).
Use perfectness to achieve

L (W) |D, — Ly W) | Lz 4(W) .



Specialization only makes
requirements on dy .

Keep dy counters non-negative.

‘ Trick 4:

Trick 3: & [ Modulou
Intersection. Specialization.

Acceptance:
(HAccy, (W) = (DAccy,
(DAccz 4 (W) = (I)Accyc
[Acc (W) = [Accgc (7(W)
[Accy (W) = IAch,;w[Sj](W)




DMGTS

Increase the Dyck counters

MOdU|O—//t SpeCiaIization- in all configurations by u.

Trick 5:

Monotonicity.

xCh k,ifk=worx=k mod u.

Lemma (Monotonicity of Modulo-u Intefinediate Acceptance):

P & IACCZ,;/g)[dy](W) = pPtUE IACCZ,_ [dy](W) :

Thanks to this, we could
have replaced

dy by Z in [Acc i (W).



Trick 6:
Use of /lﬁ :

A4(p) puts here

Languages: (a, #) instead of a.

L, (W) = {Alp) | p € [Accsq(W) ]
Ly W) = {4(p) | p € [Accz o(W)}]




DMGTS

Zero-Reaching:

Faithful:

Intermediate acceptance modulo-i <

W Cm[dy] — () — W Cout[dy] . ordinary intermediate acceptance,

provided we fix initial and final values.

Faithfulness: Zero-reaching +

- Acczay(W) N IAccy cupgy (W)




DMGTS

Trick 8:

Share Up(G) and Down(G) between sj and dy .
Make sure the edges are in the support of both sides.

Perfectness:
W is perfect, if it is faithful and for all G &

Up(G) # @ # Down(G) .

Ve € G.E.e € supp(Chargi(W)) A e € supp(Charz(W)) .

Viesd. G.c ljl=0 = x[G,io,]] € supp(Char,(W)) .






5. Deciding Regular Separability

Theorem: Let U be an initialized VASS over 2.

Then L(U) | D, is decidable.



Deciding Regular Separability

Algorithm:

Perfect

U Separating

V . £\
= x ICALP’17]




Deciding Regular Separability

Algorithm: Reduce N-REGSEP to Z-REGSEP
using perfectness!

1. Turn the given VASS U into an initial DMGTS W. Separating
2. Decompose W into finite sets Perf and Fin.
For the DMGTS T € Fin,

L T)|D,.

For the DMGTS § € Perf,

Perfect

L(S)|D, < Lz (S)|Lzyy(S).

3. Check Ly ((S) | Ly 4,(S) using [ICALP*17]. Needed: Initial DMTS, decomposition,
If all checks pass return true, else return false. separability transfer.




Deciding Regular Separability: Initial DMGTS

Definition:

Let (U, Cjpips Cpingt) € @ VAS with counters sj.

init?

The associated initial DMGTS is W = (G, u) with 1 = 1 and

a,(x,y,)

. oax .
Y >V ifv—vin U.

root root

(Vroot’ (Cinit’o)) ‘ (Vroov (Cfinal’o))

Counters sj W dy. Zero-reaching. All decorated w. Maintain dy.




Deciding Regular Separability: Initial DMGTS

Lemma (Initial DMGTS):

1 sz(W) = L(U). We can now show L (W) | D,
and rely on faithfulness.

2. W is faithful.

Proof:
1. LS]-(W) additionally requires acceptance modulo i on dy.

As u = 1 and the extremal markings are 0 on dy, this is no restriction.

2. W is zero-reaching by definition.
Moreover, there are no intermediate markings.

Hence, acceptance and intermediate acceptance on dy coincide:

ACCZ,dy(W) N IACCZ,;/;)[dy](W) C ACCZ,dy(W) . IACCZ,dy(W) .




Deciding Regular Separability: Decomposition

Separating
Proposition (Decomposition):
Given a faithful DMTS W, we can compute finite sets

Perf and Fin of DMGTS,

where
Perfect

e VS € Perf. S§is perfect,

e VI € Fin. LSJ(T) ‘ Dn ] We only have to show LS]-(Perf) | D,

and can rely on perfectness.

» L(W) = L(Perf)U L(Fin) .



Deciding Regular Separability: Decomposition

Proposition (Separability Transfer): We can rely on the decision procedure
. Z - "17].
If Sis perfect, 1{o]§ REGSEP from [ICALP’17]

L(S)|D, < Lz S |Lzyy(S)-

Lemma:
Given a DMGTS W, we can compute (Z-)VASS

USj and Udy with LZ,Sd(S) — LZ(USd) .

Proof:

. . . . _ _ _
Auxiliary counters for each intermediate marking. Ao A Ty Ay
: : : : : 4 *—@ o— —@ O
Maintain them until that marking Is reached. : . C
Check their values at the end. e,
C
> 2




Deciding Regular Separability

Algorithm:
1. Turn the given VASS U into an initial DMGTS W.

2. Decompose W into finite sets Perf and Fin. It remains to prove
For the DMGTS S € Perf. decomposition and separability transfer!

L(S)|D, < Lz S)|Lzy4(S).

3. For each § € Perf, compute VASS U; and U, with L,(U;) = Lz ,,(S) .
4. Check L,(U,) | L,(U,,) using [ICALP’17].

5. If all § € Perf pass the check, then return true, else return false.



6. Separability Transfer

Proposition: Let S be perfect. Then

Ly (S) | Lyg(S) & LAS)|D,.



’

[

}

S ddd VISl T SEPEE ; /), J
\vbs\\\,\ CL AP P \sssxh\\\ ’ . T
4 ’ ¥ , SIS/ 7277 :
‘N“\‘\‘\ \\\V‘V\\\\‘V\s‘\\\\.\n\.\.‘v\.\\\\‘\\\Q- \-\‘\\\\\\“V\\.\\\\..\\
A I e ) )
w .\\\wx\‘\\*:::-.:::.\.A.‘:,. ‘.I\\\\\\\\.

4
Et POr N FRFFFPET 'S r7d

‘ ‘..1,‘w\.{.::{i\::.\c:::::.2\\\\ :

‘| Frxrrii i FPPF PP
\ w_ww:.:i.‘_::\_).:I\::.‘.\‘....Q.\\\\

¥ S L2 P21 TEF I EF I 70044

Y E 0314444444

\g Sl I 1111112777700

s

ro Yrrirvc s Frrrr \\-\s\

N

! ' N

N
NI unH

rrry

Wi
) %ﬁ?% i
R

;
Y

¥

19711111113)144444¢

Mpstate
\...f e/

LB
/
o




6.1 Separability

Lemma: Let S be faithful. Then

Ly (S) | Lz 4(S) = Ly(S)|D,.



Separability

Language intersection.

Every transition as an
a and (a, ) variant.

Approach:
Reuse a separator for the Z-languages:

!
B¥: L, (S)|Ly4(S) = B'XA*:L, (S)ID} = BXA:L(S)I|D,.

Note:
Every Z-separator can be turned into an N-separator.

AF only depends on S, but is independent of B*



Separability

Lemma:
Let S be faithful.

We can construct an NFA A so that for all B*.
B¥: Ly ()| Ly4f(S) = BYxA*:L, (S)|D} .

Task:
Restrict B* to make it disjoint from D,E .



Separability: Disjointness

Observation: B is disjoint from LZ,dy(S) .

Easier to prove!

Lemma: Let L(Bﬁ) N Ly 4(5) = @ . Then

LB*xAHND! =@ & LB* X AN D} C Ly ,(S) .

Proof: = v/

assumption
& LB*XAHND! T LBYHNLyu(S) prefmise




Separability: Disjointness

1. Failure of L(Bﬂ) N D,f C Ly 4/(5):

B* may not follow the control flow of S .

1. Definition:

A% = NFA(S).

1. Check of L(Bﬁ X ASﬂ) N Dg C LZ,dy(S):

Consider w € L(B* x Ag) N D,f .

Then w labels a run p through S.

Asw € D,E and S is visible, p takes the Dyck countersin § from O to O .

Hence,

p € Accz 4,(S) .



Separability: Disjointness
2. Failure ofL(BﬁXASﬁ)nD,E C Ly 4/(5):

LZ,dy(S) is not defined via Accy 4,(5) but via IAccz 4,(S) . x
The run may not reach intermediate values.

2. Solution: Faithfulness

Accz 4,(S) N IAcCz cr14y)(S)

1N

IACCZ,dy(S) :

Track the control flow as before.

Track the dy counters modulo /.

Check the dy counters when entering and exiting precovering graphs.




Separability: Disjointness

Proof of L(Bﬁ X Aﬁ) N D,f C Ly 4/(S):

Consider w € L(B* x A%) n D,f .
Trick 7 in Action:
Faithfulness gives us disjointness from Dg.

Then w labels a run p through §.

As before, we have p € Accz 4,(S5) .

But additionally, we now get p € [Accz cr(4,(S) .

Faithfulness yields

p € [Accz 44(S) . V




Separability: Inclusior

Problem: L (S) C L(B* x A%)?

The intersection in the definition of [Accz i(S)

Yes! is what allows us to restrict the Z-separator!

LZ,sj(S) C L(Bﬁ) by assumption.

For LZ,S]-(S) C L(Aﬁ), note that

IAccz,(S) = TAcczr 5i(S) | N TAcczcipay(S) )4

The latter intersection guarantees the inclusion! The 1 is not needed for this direction

of separability transfer!



6.2 Intermezzo: Buchi Boxes



Intermezzo: Buchi Boxes

Goal: Understand what a separator can distinguish [Blchi’62].

Definition:
An NFA A over 2 induces an equivalence on 2* by

u~,v,if Vp,geA.Q. Poqg © p—ogq.

Intuition:
Words are equivalent, if they induce the same state changes.
Equivalence classes therefore correspond to relations on states.




Intermezzo: Buchi Boxes

Example:

d C C
& b‘\‘d/" c.c~yd c.c.c~ja.a

an~yb a~,Vv V#D

Classes = relations on states:
[CZ]NA.[C.C]NA ={a,b}.{c.c,d} = {a.c.c,a.d,b.c.c,b.d} = [a.c.c]NA

R8N \

Box(a)  Box(c.c) Box(a.c.c)




Intermezzo: Buchi Boxes

Lemma (Buchi):
1. ~, Is a congruence wrt. concatenation:

Vul,uz,vl,\/z. l/ll NAMZ A Vl NAV2 : ul.vl NAMZ’VZ'
2. ~ 4 has finite index.

3.Vee2¥/, . ¢cCLA) VvV c¢cNLA)=0.

4. Vc € Z*/NA. c is a regular language.

Proof:
1. routine, 2. count the boxes, 3. by definition, 4.
., =[] LAan [ L@,y
p?QEA.Q p,QEAQ

p—q pAq







6.3 Inseparability

Lemma: Let S be perfect. Then

Ly {(S) 1t Lz 4(S) = LS tD,.



Inseparability

Strategy:
Towards a contradiction, assume A : L (S) | D,, .

We construct words
o, € Li(5) and oy € L;[(5) €D, with oy ~, 04,

Contradiction:

Blichi 3.
0,; € L(A) = o,y € LA) = LAND,#D. e

o, & L(A) = Ly(S) € L(A) .




Trick 8 In Action:

Inseparability st et 3 A ).

Construction:
Use Lambert’s iteration lemma twice:

— C
Oy = AUy .8 W0V Tl Uy - 8 - Wi Vi € L(5)
Ody — A«(uo .hgowdy,o.VO .tl...tk.l/tk .hIS.Wdy,k.Vk) E Ldy(S) .

Note: We can assume a common pumping constant c .

Strategy (cont.):
For og; ~4 0g4,, using Buchi 1. we need

VO<i<k. AgG)~aAh) A AWg;) ~a AWy ) -



Inseparability: A(g;) ~4 /l(hi)

Construction:

— C C C C C C
O = MUy.8oC Wi Vo -t B U 81 Wi i - Vg
< <
{ {
— C C C C C C C C
Ody — A«(I/to.ho .Wdy,O.VO.tl...tk.uk.hk .Wdy,k.vk)

When solving reachability, g,...g; resp. hy...h, can be arbitrary Z-runs.
We need A(g;) ~4 A(/;) .

The premise L ((S) + Ly 4,(S) provides equivalent Z-runs.



Inseparability: A(g;) ~4 /l(hi)

Goal: Use the premise L ((S) 1 Lz 4,(S) to obtain equivalent Z-runs.

Idea: Understand how ~ , yields separability, then use contraposition.

Lemma:
Let A be an NFA so that

for all pairs of words

wo-(ap ... (ap 1) . w, € Ly ()
vo-(ap ... (ap ). v € Lz 4,(S)

there is 0 < i < kwith w; », v..

Then Ly (S) | Lz 4,(S) .



Inseparability: A(g;) ~4 A(/;)

for all pairs of words ... there is w; »~, v..

Then Ly (S) | Ly 4(S) -

Construction of g; and /.
Apply the lemma in contraposition to the premise LZ,sj(S) + LZ,dy(S) .

This yields a pair of words as in the lemma with w. ~, v. forall 1 .
Then the g; and h; are loops in the PGs of § with

Ag) = w; ACh)) =v; foralli.



Inseparability: A(g;) ~4 /l(hi)

Lemma: Let A be an NFA so that
for all pairs of words ... thereis w; =, v, .

Then Ly () | Ly 4,(S) .

Proof: Define

L = U wolo, - (@ ). (@ B) . wil.., - Trick 6 in Action:
"o @ (@0 ELz 55 The { is essential here.
L is regular: To conclude w; ~, v, for all 1 , we use that

The union is finite as ~ 4 has finite index by Buchi 2.
The classes are regular by Buchi 4.

~ , only relates words without { .

L is a separator:
Ly (S) € L by definition.

Assume L N L, ;(S) # @.
Then there is Vo - (Cll, f’-) . .(ak, f’-) - Vi c LZ,dy(S)
for which there is wy . (@, )...(a, ) . wy € Lz (S)

with w; ~, v; forall 7 . 6




Inseparability: A(g;) ~4 /l(hi)

Construction:

— C C C C C C
OSj B A/(l/to ° gOC ° WSj,O ° VO ° tl °o o otk ° l/tk ° gkc ° Wsj,k ° Vk)
<G <G
{ {

— C C C C C C C C
Ody — ﬂ(l/lo.ho .Wdy,oo‘/().tl...tk.uk.hk .Wdy,k.vk)



Inseparability: A(w; ;) ~4 AWy, ;)

Construction:

— C C C C
O = AMUy.80° - Wyiof Vo BTy - Uy - 8- Wi 1€ Vi)
< <
{ {
— C C C C
Ogy = AUy - 80 Wy o€ - Vo - 1+ Tr - Uy - 81E - Wy i€ - Vi)

Actually: We will also modify the support solutions and covering seguences.



Inseparability: A(w; ;) ~4 AWy, ;)

Goal: Construct support solutions s,; and s, and forall 0 < i < k

u, € Up(G,) v: € Down(G;) W.; Wiy, i

ST,

wu;) +wwg ) +yw(v) = slG; . E]

Matchi
;) + W(Wdy,i) +y(v) = de[Gi E] . (Matching)

Need matching to invoke Lambert’s iteration lemma.



Inseparability: A(w; ;) ~4 AWy, ;)

Notation:
Fix an index 0 < i < k and call the

u, € Up(G,) v: € Down(G;) Wi s Wy i

we want to construct u, v, w;, and w, .



Inseparability: A(w,;) ~4 A(wy,)

|dea:

For the construction of w,; and w,,, use pumping.

Construction:

Assume A has n states.
We define

g ,‘
||

=
||

The runs diff and rem and the constant ¢ will be fixed when we analyze (Matching).

No matter how, A(wy;) ~4 A(wy,) will hold.



Inseparability: A(w,;) ~4 A(wy,)

Lemma:
Let A be a DFA over 2. with n states and let ¢ € N.

Then for all u, v € 2*, we have

TLRY, ~ un+c-n! Vv
Proof:
Consider states p and g in A.
To show

7l
n+cn.v

u'.v u .
p—qg < P > {

it suffices to show that A reaches the same state
when reading u" and u"+¢"* from p .




Inseparability: A(w,;) ~, A(wg,

Lemma:
Let A be a DFA over 2 with n states and let ¢ € N.

Then for all u, v € 2*, we have

n!
Ut v~ Uty

Proof:
We show that A reaches the same state
when reading u” and "¢ from p .

Let g; be the state in A reached after reading u' from P, where u = ¢,

By the pigeonhole principle, there are
0<i<j<n with g =g;.

AsAisaDFA, u"and /. ™" . u"7 = u"*tU=) poth end uping, .

We not only repeat Wt once, but

c-n!

many times.

J—1

Thanks to the factorial and ¢ € N, this is a positive integer.
This means also 1™ ends up in g,, .




Inseparability: A(w,;) ~4 A(wy,)

Want: u € Up(G), v € Down(G), diff, and rem, and

support solutions s,; and s, that match.

Have: By perfectness, support solutions SS,]- and Sc,ly and forall0 <i <k

u; € Up(G;) v € Down(G;)

soO that

s G El —w(u) —w(v) > 1.



Inseparability: A(w,;) ~4 A(wy,)

Needed:

w(w) + ywy) + () = s [E]

(Matching)
() + yug) +p(v) = sy [E]
Recall: wy; = diff" . rem and w,, = diff" ™ rem .

Consequence: Need

w(u) +n - y(diff ) + y(rem) + y(v) = s [ E£]
w(u) + (n+c-nl) - y(diff) + ylrem) + y(v) = sl E] .



Inseparability: A(w,;) ~4 A(wy,)

Conseqguence: Need

yt) £ y(diff) + yremn) + y«v) = s [E]
M+/(n/+c-n!)-1//(diff)+l/fj}€ﬁ1) +y€\75= SaylE] -

Consequence: We subtract the equations to isolate w(diff ):

¢ - n! - y(diff) = s, [E] — s, [E] = (s, — s, )E] .



Inseparability: A(w,;) ~4 A(wy,)

Consequence: We subtract the equations to isolate yw(diff) and get
¢l y(diff) = (s — SyIE]

Define:

Consequence: We can factor out ¢ - n! and get rid of it,

-l - ydiff) = cnl - (sy, — sHIE]



Inseparability: A(w,;) ~4 A(wy,)

Definition: To obtain y(diff) = (s, — sg)E£], we set

) = gy = s)LED - |

Remark:
To invoke Euler-Kirchhoff, we need (Sc’ly — S;j)[E] > 1.

We can assume Sc’iy has been scaled to guarantee this.



Inseparability: A(w;) ~4 A(Wy)
Recall: We need matching

() + wwy) + () = s, [E] .
Consequence: Inserting the choice of s yields

w(u) + n - w(diff) + w(rem) + w(v) = c - n! - s [E] .

Consequence:

w(rem) = c-n!- s |E] —y(u) —yw(v) —n - wldiff) .



Inseparability: A(w,;) ~4 A(wy,)

Conseqguence:
p(rem) = c - nl-sc[E] —y(u) —yp(v) — n - y(diff) .

ldea: To apply Euler-Kirchhoff, the right-hand side hastobe > 1.

Define:

1 = (u/)c-n!
[ f _

* et |




Inseparability: A(w,;) ~4 A(wy,)

Conseqguence:
w(rem) = c-n!- s lE]—yw(u) —w(v) —n - w(diff)
= c-n! s [E]l—c-n!-y)—c-n! ywO)—n-y(diff)
= c-n!-(sy[E] —wW) —w(v)) — n - w(diff) .

Definition:

Defininition:




Inseparability: A(w,;) ~4 A(wy,)

Remark:
The choice of ¢ is not local to G

but global in that it has to hold for all PGs in S .






/. Decomposition

Proposition: Given a faithful DMGTS W, we can compute
finite sets Perf and Fin of DMGTS so that

(i) VS € Perf. S is perfect .
(i) VI € Fin. LS]-(T) | D .

(iii) L(W) = L(Perf) U L (Fin) .



D eC O m p O S it i O n Faithfulness is an invariant!

Approach:

Capture a single decomposition step.
Rely on well-foundedness.

Lemma (Step):
There is a computabi€ function dec( — ) that takegfa DMGTS W as follows

faithful, imperfect, sol(Charg i (W @ # sol(Charg(W)) .

It returns finite sets (X, Y) = dec(WW') of DMGTS with

If not perfect, you can decompose.

(@) VS € X. Sis faithfuland S < W .
L) VT €Y. L(T)|D,.

©) LAW) = L(X) ULAY) .

(b) and (c) as required by decomposition.



Decomposition

tput: Perf and Finls

sol(Char{(W)) =@ = Ly (W)=
=> L(W) =

algo(input: a faithful DMGTS W
if W 1s perfect then
return Perf = {W}, Fin=Q;

else 1f sol(Chary(W)) =@ then
return Perf=@, Fin= @,

1§ Lf sol(Chary(W)) =@ th : :
T return Paf =, Fin (W) (i) VS € Perf. §is perfect .
(i) VI € Fin. L(T) | D,

(iii) L{(W) = L(Perf) U L (Fin) .

oal:

else
(X,Y) =dec(W);
Perf=@,; Fin=Y,
for all S e X begin
(Perf, Fing) = algo(S);
Perf = Perf U Perf;
Fin=FinU Fing,
end for all sol(Chargy(W)) =@ = Ly ,(W) =
end else = Lz,sj(W) | Lz,dy(W)

{Separability Transfer} = L(W) |[D, .

end



Decomposition: Step Lemma

Fact: Let W be faithful.

W is not perfect = 1G e W.(1) Vv (2) Vv (3) with
N G.c ljl=0 N G.c lj] & supp(Chary(G)) .
2 ee G.E N e & supp(Char, (G)) .

3) Up(W)=@ VvV Down(G) =g .

Approach: Case distinction.



7.1 Case ] & supp(Char, (W))



Step Lemma: Case j & supp(Char,y(W))

Fact: If ] & supp(Char, (W)),
A, = {sljl | s € sol(Char, (W))}

is finite, non-empty, and C N.

Shape of
Char (W) .

Lemma in the beginning. sol(Char,;(W)) # @ .




7.1.1 Case sd = sj



Step Lemma: Case j & supp(Charg(W))

Let W= (U, u) .

Define:

X:={(U,w |aeA Y =0 .

U with the value of j
at the moment of interest

modified from w to a .




Step Lemma: Case j & supp(Charg(W))

Proof:

(C) sz(W) — sz(X) :

C Consider p € IAcc (W) .
Then p solves the characteristic equations.
Hence, counter j assumes a value a € ASJ- at the moment of interest.

Hence, p € IAcc, (U, pn), and (U, 1) € X .

2 Concrete values make intermediate acceptance stronger.

(b) VI € Y... There is nothing to show.



Step Lemma: Case j & supp(Charg(W))

Proof (cont.):

(a) Faithfulness.

We neither modified the edges nor the dy markings.
Hence, faithfulness holds by the faithfulness of W' .

(a) Descent

Q(G), G. E, and G . ¢;; stay unchanged.
We reduce |Q(G.c,)]| .



7.1.2 Case sd = dy

This is the complicated case!




Step Lemma: Case j & supp(Charg(W))

Setting:
We change an extremal marking for a Dyck counter

from w to a concrete value.

As a consequence, we have to check faithfulness.



Step Lemma: Case j & supp(Charg(W))

Setting: We have to check faithfulness.

Trick 9:
The Modulo Trick is essential for faithfulness.

Lemma (Modulo Trick):
Consider0 <a,b<v.

{ =) mod v

= = — _— E—— =




Step Lemma: Case j & supp(Charg(W))

Discussion:
(i) We will have b & Agy -

Hence, to apply the Modulo Trick, we need to

|
.\1




Step Lemma: Case j & supp(Charg(W))

Discussion:

(i) We canot simply increase v to exceed [ .
We need

~acceptance modulorv = acceptance modulo u .

— |

S -

This works, It iz divides v . We thus set

Trick 10:
for an l defined later. Maintaining divisibility among the /i values.




Step Lemma: Case j & supp(Charg(W))

Discussion:
(ii)) If we modify u to v, we need to

modify the extremal markings of all PGs.

Example: 0 3 6 0

x =72 mod 3.

® ® x=2 mod3

let/ =4 andthusv =3 -4 = 12.
Then

® x=2 mod 12
x=2 mod 12

does not yield all solutions.

Make sure not to lose the red values.




Step Lemma: Case j & supp(Charg(W))

Example:
x =2 mod 3.
Then 0 3 6 9 12 15
——@———@ —@—+——@—+——0—
x=2 mod 12
ryr=5 mod 12 ® ® x=2 mod 3
x=8 mod 12
x=11 mod 12 ® x=2 mod 12

together yield all solutions.



Step Lemma: Case j & supp(Charg(W))

Lemma (4 — v—Modification): Let u divide v and consider x, k € Z.

—— — — S - - == _ E— — — - _ — EE— — ————

|
x=k mod u &

Example:
x=2 mod 3 & _
rick 11;
Adapt intermediate markingstoi = k£ mod u .




Step Lemma: Case j & supp(Charg(W))

Goal: Transfer the adaptation lemma to DMGTS.

Approach: Equate MGTS up to modulo equivalence
k=1 mod u
on the Dyck counters.

Definition (14— Modification Equivalence):

Gl V= G2 .V Gl . CiO[Sj] — G2 . CiO[Sj]

G, =, G, f
1 =u 2 " G,.E=G,.E G,.c,ldy]=G,.c,[dy] mod u

Sp.up.5,=,51.up. 5, it 5=, 5A5,=5,5,.



Step Lemma: Case j & supp(Charg(W))

Lemma (¢ — v—Modification for Intermediate Acceptance):
Assume u divides v.

|
‘1

f [Accg(U,p) = U [Accy(V,v) . ‘
I V=,U J‘

Note: All extremal markings

This is a direct lift of the 4 — v—Modification Lemma.

take values from [O,v — 1] U {w} .

» V=, Ucorrespondstoi =k mod p .

e 0 <V<vecorrespondsto) <i <.

 The union is the existential quantifier.



Step Lemma: Case j & supp(Charg(W))

Discussion;
(iv) If we modify the extremal markings of all PGs,

we have to check faithfulness also there.

To apply the Modulo Trick,

U has to be larger than all values in extremal markings.

Recall v := u - [ . We thus set

|
|
(!
‘\

i
!
|




Step Lemma: Case j & supp(Charg(W))

Remark:
We do not maintain the invariant that

u 1s larger than the values in the extremal markings.

This would force us to repeat the argument for Case (1)
iIn Cases (2) + (3).



Step Lemma: Case j & supp(Charg(W))

p# — v—Modification . Not just A ;!

Definition:

Z = {(V,v) ] V=,U,0<V<ry,0<a<py, V.c,ldy] =0}

(V1) e Z|V.c, [dy]=0)
Z\X .

~ P<
1l

Zero-reaching.

Dyck counters =2 (0 mod v .



Step Lemma: Case j & supp(Charg(W))

Note:
We cannot just take the values from A, .

They stem from Chardy(W) which reaches intermediate values precisely.
In [Accgi(W), we only need to reach intermediate Dyck values modulo .
Hence, Ady may not contain enough values.

c Ay,

® a
PG1 PG2 PG3



Step Lemma:

Proof (of the Step Lemma):
Let W= (U, u) .

Similar to the Case sd = sj, we have

TAccg (U, 1) = U TAccg (U, p) .

0<a<u

Casej & supp(Charg(W))

With the ¢4 — v—Modification Lemma for Intermediate Acceptance, Trick 5 in Action:

TAceg(U,, 1) = U TAccy(V,v) .
V=0,
0<V<v

We argue that we do not lose words by assuming in V

the initial values for dy zero modulo v instead of zero modulo y .

Consider p € IAcc{(U,, 1) .

As U , is zero-reaching, p starts from a multiple of 4 on dy , say u for simplicity.

Monotonicity of modulo-/ intermediate acceptance.

By the monotonicity of modulo acceptance, p + (v —u) = p + (I — 1) - u € IAcc (U, p).
This run is labeled by the same word and starts from v on dy .
Hence, it will be accepted by V =, U, where the Dyck counters are initially O .



Step Lemma: Case j & supp(Charg(W))

Proof (cont.):
(b) VI €Y. LS]-(T) | D, .

Consider I € ¥ .
By construction, T". ¢, |dy] =0and T.c, |dy] # 0.

This means p € IAcc(T') has an effect c 0 mod v on dy.
By visibility of T'and the VAS accepting D, , we have A(p) € D,..

Hence, an NFA that tracks the Dyck counters modulo v
and accepts upon values # 0 shows separability.



Step Lemma: Case j & supp(Charg(W))

Proof (cont.):

(a) Descent

As in the case sd = s7 .



Step Lemma: Case j & supp(Charg(W))

Proof (cont.): Recall that § = (V,v) and W = (U, u).
Faithfulness

Accz 4)(S) N IAcczvian(S)  C  TAccz 4y(S)
IS a consequence of
ACCZ,dy(S) N IACCZ,;g)[dy](S) C (1)
N IACCZ,;Z)[dy](S) Q IACCZ’dy(S) . (2)




Step Lemma: Case j & supp(Charg(W))

Proof (cont.): For

ACCZ,dy(S) N IACCZ,;%[C[),](S) C IACCZ,dy(W)

S and W are zero-reaching.
We only change an intermediate value,
which acceptance does not see.

we US€E

ACCZ,dy(S)
IACC7,_5)[dy](S)

ACCZ,dy(W)
IACCZ,;g)[dy](W)

N 1N

and the faithfulness of W .



Step Lemma: Case j & supp(Charg(W))

Proof (cont.): For

N IACCZ,EZ)[dy](S) C IACCZ,dy(S) :

Consider p in the intersection.
Consider counter j that we changed from @ to a concrete value.

As p € , p solves Char z,(W).
Hence, it reaches a value b € A, at the moment of interest.

As p € [Accy co1ay(S), it also reaches the value a that replaces w in S, but only modulo v.

We have 0 < a, b by the definition of intermediate acceptance.

We have b < v by the choice of v.
We have a < v by the construction of S.

Modulo intermediate acceptance means a = b mod v.
The Modulo Trick shows a=Db.



Step Lemma: Case j & supp(Charg(W))

Proof (cont.): For

IN

N IAccz cofay(S) [Accz 44(S) .

Consider a counter different from j or j but another moment.

As p E , p reaches an intermediate value b given in W.

We again have b < v by the choice of v.

Now the same argument applies.







/.2 Reasoning Locally
about Faithfulness



Reasoning Locally about Faithfulness

Case (1): Modified entire DMGTS.

Cases (2) + (3): Modify a single PG.

Goal: Develop techniques that allow us to
Focus on faithfulness.
reason about a single PG and

lift the result to the entire DMGTS.



Reasoning Locally about Faithfulness

Definition:
MGTS context

Cle] 1= eo| Cle].up. W | W.up.Cle].

DMGTS insertion: For W = (S, u) let

CIW] = (C[S],p).

Lemma: Well-founded order stable under insertion

W, <W, =  C[W]<C[W,].



Reasoning Locally about Faithfulness

Approach: For Cases (2) + (3), consider C[(G, u)],

decompose (G, ) into sets of DMGTS U and 'V,
define

X := C[U] := {C[(S, )] | (S,u) € U) Y := C[V] .



Reasoning Locally about Faithfulness

Goal: Lift faithfulness of C[(G, u)] to C[U].

Approach: Establish a relation between (G, 1) and the DMGTS in U.

Definition:
- (S, p) is a specialization of (G, p), if

Smaller language.

1.5. Cio Ea) G. Cio - , Preserve faithfulness.
2. Vp € Runsz(S).do € Runsz(G). o=p.

3. Vp € [Accz criay(S) with pl first/last][dy] E, G .c;,. p € [Accz 4,(9).

- If W, is a specialization of W,, then C[W,] is a specialization of C|W,] .



Reasoning Locally about Faithfulness

Lemma: Let W, be a specialization of W,. Only need to worry about L (W) C L (XU Y).

sz(Wl) C sz(Wz)-
W2 faithful = Wl faithful.

Intuition: Why does decomposition for Cases (2) + (3) guarantee

Vp € [Accz crpay)(S) with pl first/lastl|dyl E, G .c,,. p € [Accz 4,/(S) ?
Decompositions for (2) + (3) unroll G into DMGTS.

New intermediate counter values = consistent assignments in G or values in coverability graph for G.

Hence, runs in the new DMGTS respects these values.



7.3 Case ¢ & supp(Charyy (W))



Case (2): ¢ & supp(Charyy (W))

Observation: If e is not in the support, there is
an upper bound [ € N

on the number of times e can be taken.

ldea: Decompose G so that every occurrence of e leads to a new PG.

Definition:
U = DMGTS that admit at most [ occurrences of e.
VSj — @ .

de = DMGTS that expect [ + 1 occurrences of e,

afterwards return to the root of G.



Case (2): ¢ & supp(Charyy (W))

Faithfulness already done!

Lemma: Let (G, ) contain edge e with e & supp{Char,,(C[(G, n)])).
With elementary resources, we cancompute sets U and V
containing specializations of (G, i) that satisfy:

VSe U.S<(G,u).

Vp € IAccg(G,pn).do € [Acc,{UU V). o=xp.
VI €V. Char(C|T]) is infeasible.

Separability also done!




