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1. Regular Separability



.


-REGSEP: 
Given: Initialized VASS  and  over  . 
Question: Does  hold?


: 
 regular.  

Write  . 

𝕏 ∈ {ℤ, ℕ}

𝕏
V1 V2 Σ

L𝕏(V1) ∣ L𝕏(V2)

L1 ∣ L2
∃R ⊆ Σ* L1 ⊆ R ∧ R ∩ L2 = ∅ .

R : L1 ∣ L2

Regular Separability

vs.

Reachability languages.



Regular Separability
Example: 
1. 


Yes! Separator: Even.Even  Odd.Odd. 


2. 


No! Assume  and  has  states. 
Consider 


Discussion: 
Separability tries to understand the gap between languages.


Insight: 
Modulo seems to play an important role!

{an . bn ∣ n ∈ ℕ} ∣ {an . bn+1 ∣ n ∈ ℕ} .

∪

{an . b≤n ∣ n ∈ ℕ} ∤ {an . b>n ∣ n ∈ ℕ} .

A : L1 ∣ L2 A m
am+1 . bm+1 ∈ L1 ⊆ L(A) .



Regular Separability
Known: 
 
Theorem [Lorenzo, Wojtek, Slawek, Charles, ICALP’17]: 

-REGSEP is decidable.


Goal:


Theorem: 
-REGSEP is decidable.

ℤ

ℕ





2. Transducer Trick
 [Lorenzo, Wojtek, Slawek, Charles, ICALP’17] 

[Wojtek and Georg, LICS’20]



Transducer Trick

Goal: 
Take only one language as input.


Lemma:  
L(V) ∣ L(U) ⇔ L(V) ∣ TU(Dn)

⇔ T−1
U (L(V)) ∣ Dn

⇔ L(V′￼) ∣ Dn .

Visible VAS:  leads to an 
increment of counter . 

ai
i

over Σn := {ai, āi ∣ i ∈ dy := [1,n]}





3. Intermezzo: Reachability



Deciding Reachability
Approximations: 


Coverability graphs: 
Good: Can keep counters non-negative. 
Bad: Cannot guarantee precise counter values. 


Marking Equation: 
Good: Can guarantee precise counter values. 
Bad: Cannot keep counters non-negative. 


Solution: 
Combine the two.



Deciding Reachability

Challenge: 
Coverability graphs need pumping to guarantee non-negativity.  
Pumping has to respect the marking equation. 


Solution:  
Only pump where the solution space is unbounded.

(0,0) (0,1) (0,ω)
σ ⇒  with x[e] e ∈ σ

 with j = 2x[ j]
have to be unbounded 
in the solution space. 



Deciding Reachability
Lemma: 
Consider   over  and variable x[i].


x[i] is unbounded in   
                                        


Support  =  the set of unbounded variables.


Support solution  =   
        giving a positive value to all variables in the support.


Note: Homogeneous solutions are stable under addition. 

A ⋅ x = b ℕk

sol(A ⋅ x = b)
⇔ ∃s ∈ sol(A ⋅ x = 0) . s(x[i]) > 0.

s ∈ sol(A ⋅ x = 0)



Deciding Reachability

So far: 
Pumping where the solution space is unbounded  
                                                      = pumping should yield a support solution.


Problem: 
 may not match a support solution .


Idea: 
Turn  into a path.

σ s

s − ψ(σ)

(0,0) (0,1) (0,ω)
σ ⇒  with x[e] e ∈ σ

 with j = 2x[ j]
have to be unbounded 
in the solution space. 

Parikh image.



Deciding Reachability
Lemma (Euler-Kirchhoff): 
Let  be a strongly connected directed graph. 
Let  satisfy





Then there is a cycle  in  with . 
Also write .

G = (V, E)
x : ℕE

∑
e=(−,v)

x[e] = ∑
e=(v,−)

x[e] ∀v ∈ V

x ≥ 1

c G ψ(c) = x
c = ⟨x⟩

Realization.



Definition: 
A precovering graph (PG) is a strongly connected VASS:


• The nodes are decorated by gen. markings, like in coverability graphs.


• These markings agree on where to put . 


• The PG has a root  with decoration c.  


• There are gen. entry/exit markings ,  with .

ω

(vroot, c)

(vroot, c1) (vroot, c2) c1, c2 ⊑ω c

Deciding Reachability
Decorated SCCG

(vroot, c1) (vroot, c2)

(vroot, c)

Specialization:  
Preserve concrete values,  

may concretize . ω



Definition: 
A PG is perfect, if 


• all edge variables are in the support,


• all variables decorated  in the entry and exit markings are in the support, 


• : 
 

 = cycle in  exec. from increasing the counters in . 
 = cycle in G bw exec. from  decreasing .

ω

Up(G) ≠ ∅ ≠ Down(G)

u ∈ Up(G) G c1 Ω(c)∖Ω(c1)
v ∈ Down(G) c2 Ω(c)∖Ω(c2)

Deciding Reachability



Pumping should yield a support solution:


Let  be a support solution with


 


By the Euler-Kirchhoff Lemma, the difference can be realized by a cycle


 .


Now  and we say they match.

s

d := s − ψ(u) − ψ(v) ≥ 1 .

w = ⟨d⟩

ψ(u) + ψ(w) + ψ(v) = s

Deciding Reachability

This is why we have connectivity 
and all edges 


should be in the support!



Deciding Reachability
Insight: 


 has a strictly negative effect on the  counters     
                                                                  must have a strictly positive effect.


Pumping:


 and  match         and  match.


With 


least number of  needed to execute w . 
k + least number of further  needed to execute 


the sequence becomes an -run/executable.

v ω
⇒ u . w

u, w, v s ⇒ uc . wc . vc c ⋅ s

k := u . w
c := u uk . wk

ℕ



Lambert’s Iteration Lemma [TCS’92]: 
For  large enough, one can even fit in a -cycle  
that reaches the exit from the entry marking: 





Since pumping happens in a support solution, this still solves reachability. 
Notably, it stays non-negative.


Note: 
This works for all -runs, and all choices of  
that match a support solution.

c ℤ

uc . ρ . wc . vc .

ℤ (u, w, v)

Deciding Reachability
Trick 1: 

Add this slack to Lambert’s Iteration Lemma.  



Problem: Precovering graphs may not be perfect. 


Solution: Decompose them into sequences of precovering graphs, MGTS:

Deciding Reachability

…
MGTS



Deciding Reachability
Deciding Reachability: 


As long as perfectness fails, decomposition is guaranteed to succeed.


It yields finite sets of MGTS that are smaller in a well-founded order.


Hence, perfectness will eventually hold.


For perfect MGTS, 


-reachability holds        -reachability holds. ℕ ⇔ ℤ



Acceptance on MGTS:


Counters that have to stay non-negative.


Preorder to compare markings at red nodes for acceptance.








The -runs for reachability satisfy .

C :=

≤ :=

AccC,≤(U) :=

IAccC,≤(U) :=

ℤ IAccℤ,⊑ω

Deciding Reachability

…

…





4. DMGTS



Doubly-Marked MGTS : 


MGTS over  with counters  with  visible.


. 


 
Strategy:  
Define language  and . 
Use perfectness to achieve


W = (U, μ)

U = Σn sj ⊎ dy dy

μ ≥ 1

Lsj(W) Ldy(W)

Lsj(W) ∣ Dn ⇔ Lℤ,sj(W) ∣ Lℤ,dy(W) .

DMGTS

Trick 2: 
Defining two languages on a single DMGTS.



Acceptance: 

DMGTS
Keep  counters non-negative. dy

Specialization only makes 
requirements on  .dy

Trick 3: 

Intersection.

Trick 4: 

Modulo-  

Specialization. 
μ

(I)Accℤ,dy(W) := (I)Accℤ,⊑ω[dy](W)
IAccsj(W) := IAccsj,⊑ω[sj](W) ∩ IAccdy,⊑μ

ω[dy](W)
IAccℤ,sj(W) := IAccℤ,⊑ω[sj](W) ∩ IAccℤ,⊑μ

ω[dy](W)

(I)Accdy(W) := (I)Accdy,⊑ω[dy](W)



Modulo-  Specialization:


 , if  or  .


Lemma (Monotonicity of Modulo-  Intermediate Acceptance):


μ

x ⊑μ
ω k k = ω x ≡ k mod μ

μ

ρ ∈ IAccℤ,⊑μ
ω[dy](W) ⇒ ρ+μ ∈ IAccℤ,⊑μ

ω[dy](W) .

DMGTS

Trick 5: 

Monotonicity.

Increase the Dyck counters 
in all configurations by .μ

Thanks to this, we could 
have replaced 


 by  in .dy ℤ IAccsj(W)



Languages: 

DMGTS
Trick 6: 


Use of  . λ♯

…

 puts here 
 instead of a.

λ♯(ρ)
(a, ♯)

Lsd(W) := {λ(ρ) ∣ ρ ∈ IAccsd(W)}
Lℤ,sd(W) := {λ♯(ρ) ∣ ρ ∈ IAccℤ,sd(W)}



Zero-Reaching: 





Faithfulness: Zero-reaching + 


W . cin[dy] = 0 = W . cout[dy] .

Accℤ,dy(W) ∩ IAccℤ,⊑μ
ω[dy](W) ⊆ IAccℤ,dy(W) .

DMGTS Trick 7: 

Faithfulness.

Faithful: 
Intermediate acceptance modulo-   

ordinary intermediate acceptance, 

provided we fix initial and final values.

μ ⇔



Perfectness:  
W is perfect, if it is faithful and for all :


 .





G ∈ W

Up(G) ≠ ∅ ≠ Down(G)

∀e ∈ G . E . e ∈ supp(Charsj(W)) ∧ e ∈ supp(Chardy(W)) .

∀j ∈ sd . G . cio[ j] = ω ⇒ x[G, io, j] ∈ supp(Charsd(W)) .

DMGTS
Trick 8: 


Share  and  between  and  .  
Make sure the edges are in the support of both sides.

Up(G) Down(G) sj dy





5. Deciding Regular Separability
Theorem: Let  be an initialized VASS over . 


Then  is decidable. 


U Σn

L(U) ∣ Dn



Deciding Regular Separability
Algorithm:

U

…

[ICALP’17]
ℤ

…
…

Perfect

…
…

Separating

Decompose

∀

∃



Algorithm: 


1. Turn the given VASS  into an initial DMGTS . 


2. Decompose  into finite sets  and . 


For the DMGTS ,


 .


For the DMGTS ,  


 .


3. Check  using [ICALP’17].  
If all checks pass return true, else return false.

U W

W Perf Fin

T ∈ Fin

Lsj(T) ∣ Dn

S ∈ Perf

Lsj(S) ∣ Dn ⇔ Lℤ,sj(S) ∣ Lℤ,dy(S)

Lℤ,sj(S) ∣ Lℤ,dy(S)

Reduce -REGSEP to -REGSEP

using perfectness!
ℕ ℤ

Deciding Regular Separability

Needed: Initial DMTS, decomposition, 
separability transfer.

…
…

Perfect

…
…

Separating



Definition:  
Let  be a VAS with counters .


The associated initial DMGTS is  with  and

(U, cinit, cfinal) sj

W = (G, μ) μ = 1

Zero-Zero-reaching.

Deciding Regular Separability: Initial DMGTS

Counters .sj ⊎ dy All decorated .ω Maintain .dy

  , if  in . vroot
a,(x,ya) vroot v a,x v U

(vroot, (cinit,0)) (vroot, (cfinal,0))

vroot

ω
G



Lemma (Initial DMGTS):  
1. .  
2.  is faithful.


Proof: 
1.  additionally requires acceptance modulo  on .  
As  and the extremal markings are  on , this is no restriction.


2.  is zero-reaching by definition. 
Moreover, there are no intermediate markings. 
Hence, acceptance and intermediate acceptance on  coincide:


 . 

Lsj(W) = L(U)
W

Lsj(W) μ dy
μ = 1 0 dy

W

dy

Accℤ,dy(W) ∩ IAccℤ,⊑μ
ω[dy](W) ⊆ Accℤ,dy(W) = IAccℤ,dy(W)

We can now show 

and rely on faithfulness. 

Lsj(W) ∣ Dn

Deciding Regular Separability: Initial DMGTS



Proposition (Decomposition):  
Given a faithful DMTS , we can compute finite sets


 and  of DMGTS, 


where


•  is perfect,


• 


•

W

Perf Fin

∀S ∈ Perf . S

∀T ∈ Fin . Lsj(T) ∣ Dn ,

Lsj(W) = Lsj(Perf ) ∪ Lsj(Fin) .

We only have to show 

and can rely on perfectness. 

Lsj(Perf ) ∣ Dn

Deciding Regular Separability: Decomposition

…
… Perfect

…
…

Separating



Proposition (Separability Transfer):  
If  is perfect,


 . 


Lemma: 
Given a DMGTS , we can compute ( -)VASS  

 and  with 


Proof:  
Auxiliary counters for each intermediate marking. 
Maintain them until that marking is reached. 
Check their values at the end. 

S

Lsj(S) ∣ Dn ⇔ Lℤ,sj(S) ∣ Lℤ,dy(S)

W ℤ
Usj Udy Lℤ,sd(S) = Lℤ(Usd) .

We can rely on the decision procedure 

for  -REGSEP from [ICALP’17].ℤ

Deciding Regular Separability: Decomposition

… c
c′￼1 c2 c′￼2 ck



Deciding Regular Separability
Algorithm: 


1. Turn the given VASS  into an initial DMGTS .


2. Decompose  into finite sets  and .  

For the DMGTS ,  


 .


3. For each , compute VASS  and  with  . 


4. Check  using [ICALP’17]. 


5. If all  pass the check, then return true, else return false.

U W

W Perf Fin
S ∈ Perf

Lsj(S) ∣ Dn ⇔ Lℤ,sj(S) ∣ Lℤ,dy(S)

S ∈ Perf Usj Udy Lℤ(Usd) = Lℤ,sd(S)

Lℤ(Usj) ∣ Lℤ(Udy)

S ∈ Perf

It remains to prove

 decomposition and separability transfer!



Proposition: Let  be perfect. Then 


 . 


S

Lℤ,sj(S) ∣ Lℤ,dy(S) ⇔ Lsj(S) ∣ Dn

6. Separability Transfer





6.1 Separability
Lemma: Let  be faithful. Then 


 . 


S

Lℤ,sj(S) ∣ Lℤ,dy(S) ⇒ Lsj(S) ∣ Dn



Approach:  
Reuse a separator for the -languages:


Note: 
Every -separator can be turned into an -separator.  

 only depends on , but is independent of . 
 

ℤ

ℤ ℕ
A♯ S B♯

Separability
Every transition as an  

 and  variant. a (a, ♯)
Language intersection.

B♯ : Lℤ,sj(S) ∣ Lℤ,dy(S)
!

⇒ B♯ × A♯ : Lℤ,sj(S) ∣ D♯
n ⇒ B × A : Lsj(S) ∣ Dn .



Lemma:  
Let  be faithful.  
We can construct an NFA  so that for all .





Task: 
Restrict  to make it disjoint from  .

S
A♯ B♯

B♯ : Lℤ,sj(S) ∣ Lℤ,dy(S) ⇒ B♯ × A♯ : Lℤ,sj(S) ∣ D♯
n .

B♯ D♯
n

Separability



Situation:


 
Observation:  is disjoint from  . 


Lemma: Let  . Then





Proof:  

B♯ Lℤ,dy(S)

L(B♯) ∩ Lℤ,dy(S) = ∅

L(B♯ × A♯) ∩ D♯
n = ∅ ⇔ L(B♯ × A♯) ∩ D♯

n ⊆ Lℤ,dy(S) .

⇒

⇐ L(B♯ × A♯) ∩ D♯
n

assumption
⊆ L(B♯) ∩ Lℤ,dy(S) premise= ∅ .

Separability: Disjointness
L(B♯) D♯

n Lℤ,dy(S)

Easier to prove!



1. Failure of :


 may not follow the control flow of  .


1. Definition:


. 


1. Check of :


Consider  .


Then  labels a run  through .


As  and  is visible,  takes the Dyck counters in  from  to  .


Hence, 


L(B♯) ∩ D♯
n ⊆ Lℤ,dy(S)

B♯ S

A♯
S := NFA(S)

L(B♯ × A♯
S) ∩ D♯

n ⊆ Lℤ,dy(S)

w ∈ L(B♯ × A♯
S) ∩ D♯

n

w ρ S

w ∈ D♯
n S ρ S 0 0

ρ ∈ Accℤ,dy(S) .

Separability: Disjointness



2. Failure of :


 is not defined via  but via  . 
The run may not reach intermediate values. 


2. Solution: Faithfulness





Track the control flow as before. 
Track the  counters modulo . 
Check the  counters when entering and exiting precovering graphs. 

L(B♯ × A♯
S) ∩ D♯

n ⊆ Lℤ,dy(S)

Lℤ,dy(S) Accℤ,dy(S) IAccℤ,dy(S)

Accℤ,dy(S) ∩ IAccℤ,⊑μ
ω[dy](S) ⊆ IAccℤ,dy(S) .

dy μ
dy

Separability: Disjointness

Definition of .A♯



Proof of :


Consider  .


Then  labels a run  through .


As before, we have 


But additionally, we now get  


Faithfulness yields


L(B♯ × A♯) ∩ D♯
n ⊆ Lℤ,dy(S)

w ∈ L(B♯ × A♯) ∩ D♯
n

w ρ S

ρ ∈ Accℤ,dy(S) .

ρ ∈ IAccℤ,⊑μ
ω[dy](S) .

ρ ∈ IAccℤ,dy(S) .

Trick 7 in Action: 
Faithfulness gives us disjointness from .  D♯

n

Separability: Disjointness



Problem: 


Yes! 
 by assumption.


 
For , note that 





The latter intersection guarantees the inclusion!

Lℤ,sj(S) ⊆ L(B♯ × A♯)?

Lℤ,sj(S) ⊆ L(B♯)

Lℤ,sj(S) ⊆ L(A♯)

IAccℤ,sj(S) = IAccℤ,⊑ω[sj](S) ∩ IAccℤ,⊑μ
ω[dy](S) .

Separability: Inclusion
Trick 3 in Action: 

The intersection in the definition of 

is what allows us to restrict the -separator! 

IAccℤ,sj(S)
ℤ

The  is not needed for this direction 

of separability transfer!

♯



6.2 Intermezzo: Büchi Boxes



Goal: Understand what a separator can distinguish [Büchi’62].


Definition:  
An NFA  over  induces an equivalence on  by


  , if    .


Intuition: 
Words are equivalent, if they induce the same state changes. 
Equivalence classes therefore correspond to relations on states.

A Σ Σ*

u ∼A v ∀p, q ∈ A . Q . p u q ⇔ p v q

Intermezzo: Büchi Boxes



Intermezzo: Büchi Boxes

 
a ∼A b a ≁A v v ≠ b

c . c ∼A d c . c . c ∼A a . aA
b
a c c

d

Example:

[a]∼A
. [c . c]∼A

= {a, b} . {c . c, d} = {a . c . c, a . d, b . c . c, b . d} = [a . c . c]∼A

Box(a . c . c)

=

Box(a)

;

Box(c . c)

Classes = relations on states:



Lemma (Büchi):  
1.  is a congruence wrt. concatenation:  


 .


2.  has finite index.


3.  .


4.  is a regular language.


Proof: 
1. routine, 2. count the boxes, 3. by definition, 4.


 .

∼A

∀u1, u2, v1, v2 . u1 ∼A u2 ∧ v1 ∼A v2 ⇒ u1 . v1 ∼A u2 . v2

∼A

∀c ∈ Σ*/∼A
. c ⊆ L(A) ∨ c ∩ L(A) = ∅

∀c ∈ Σ*/∼A
. c

[u]∼A
= ⋂

p, q ∈ A . Q
p u q

L(Ap,q) ∩ ⋂
p, q ∈ A . Q

p u q

L(Ap,q)

Intermezzo: Büchi Boxes





6.3 Inseparability
Lemma: Let  be perfect. Then 


 . 


S

Lℤ,sj(S) ∤ Lℤ,dy(S) ⇒ Lsj(S) ∤ Dn



Strategy:  
Towards a contradiction, assume  .  
We construct words 


    and        with     .


Contradiction: 


A : Lsj(S) ∣ Dn

osj ∈ Lsj(S) ody ∈ Ldy(S) ⊆ Dn osj ∼A ody

osj ∈ L(A)
Büchi 3.

⇒ ody ∈ L(A) ⇒ L(A) ∩ Dn ≠ ∅ .
osj ∉ L(A) ⇒ Lsj(S) ⊈ L(A) .

Inseparability



Construction:  
Use Lambert’s iteration lemma twice:





Note: We can assume a common pumping constant  .


Strategy (cont.):  
For , using Büchi 1. we need 


osj = λ(uc
0 . gc

0 . wc
sj,0 . vc

0 . t1…tk . uc
k . gc

k . wc
sj,k . vc

k) ∈ Lsj(S)
ody = λ(uc

0 . hc
0 . wc

dy,0 . vc
0 . t1…tk . uc

k . hc
k . wc

dy,k . vc
k) ∈ Ldy(S) .

c

osj ∼A ody

∀0 ≤ i ≤ k . λ(gi) ∼A λ(hi) ∧ λ(wsj,i) ∼A λ(wdy,i) .

Inseparability
Trick 8 in Action: 

The pumping sequences  and  
are shared between  and  .  

ui vi
Lsj(S) Ldy(S)



Construction:  
 

When solving reachability,  resp.  can be arbitrary -runs.


We need  . 


The premise  provides equivalent -runs. 

g0…gk h0…hk ℤ

λ(gi) ∼A λ(hi)

Lℤ,sj(S) ∤ Lℤ,dy(S) ℤ

Inseparability: λ(gi) ∼A λ(hi)

ody = λ(uc
0 . h0

c . wc
dy,0 . vc

0 . t1…tk . uc
k . hk

c . wc
dy,k . vc

k)

osj = λ(uc
0 . g0c . wc

sj,0 . vc
0 . t1…tk . uc

k . gkc . wc
sj,k . vc

k)

∼
A

∼
A



Goal: Use the premise  to obtain equivalent -runs.


Idea: Understand how  yields separability, then use contraposition. 


Lemma:  
Let A be an NFA so that 


for all pairs of words


 


there is  with  .


Then  . 

Lℤ,sj(S) ∤ Lℤ,dy(S) ℤ

∼A

w0 . (a1, ♯)…(ak, ♯) . wk ∈ Lℤ,sj(S)

v0 . (a1, ♯)…(ak, ♯) . vk ∈ Lℤ,dy(S)

0 ≤ i ≤ k wi ≁A vi

Lℤ,sj(S) ∣ Lℤ,dy(S)

Inseparability: λ(gi) ∼A λ(hi)



Lemma: Let A be an NFA so that 


for all pairs of words  there is  .


Then  . 


Construction of  and : 
Apply the lemma in contraposition to the premise  . 


This yields a pair of words as in the lemma with  for all  .


Then the  and  are loops in the PGs of  with 


    for all  .

… wi ≁A vi

Lℤ,sj(S) ∣ Lℤ,dy(S)

gi hi
Lℤ,sj(S) ∤ Lℤ,dy(S)

wi ∼A vi i

gi hi S

λ(gi) = wi λ(hi) = vi i

Inseparability: λ(gi) ∼A λ(hi)



Lemma: Let A be an NFA so that 


for all pairs of words  there is  .


Then  . 


Proof: Define





L is regular:  
    The union is finite as  has finite index by Büchi 2. 
    The classes are regular by Büchi 4.


L is a separator:  
     by definition. 


    Assume . 
    Then there is  
    for which there is 


with  for all  .

… wi ≁A vi

Lℤ,sj(S) ∣ Lℤ,dy(S)

L := ⋃
w0.(a1,♯)…(ak,♯).wk∈Lℤ,sj(S)

[w0]∼A
. (a1, ♯)…(ak, ♯) . [wk]∼A

.

∼A

Lℤ,sj(S) ⊆ L

L ∩ Lℤ,dy(S) ≠ ∅
v0 . (a1, ♯)…(ak, ♯) . vk ∈ Lℤ,dy(S)

w0 . (a1, ♯)…(ak, ♯) . wk ∈ Lℤ,sj(S)

wi ∼A vi i

Inseparability: λ(gi) ∼A λ(hi)

Trick 6 in Action: 
The  is essential here. 

To conclude  for all  , we use that 
 only relates words without  .

♯
wi ∼A vi i

∼A ♯



Construction: 

Inseparability: λ(gi) ∼A λ(hi)

ody = λ(uc
0 . h0

c . wc
dy,0 . vc

0 . t1…tk . uc
k . hk

c . wc
dy,k . vc

k)

osj = λ(uc
0 . g0c . wc

sj,0 . vc
0 . t1…tk . uc

k . gkc . wc
sj,k . vc

k)

∼
A

∼
A



Construction: 


 
Actually: We will also modify the support solutions and covering sequences. 

Inseparability: λ(wsj,i) ∼A λ(wdy,i)

ody = λ(uc
0 . g0c . wdy,0c . vc

0 . t1…tk . uc
k . gkc . wdy,kc . vc

k)

osj = λ(uc
0 . g0c . wsj,0c . vc

0 . t1…tk . uc
k . gkc . wsj,kc . vc

k)

∼
A

∼
A



Goal: Construct support solutions  and  and for all 





with  so that


                         (Matching)


Need matching to invoke Lambert’s iteration lemma. 

ssj sdy 0 ≤ i ≤ k

ui ∈ Up(Gi) vi ∈ Down(Gi) wsj,i wdy,i

λ(wsj,i) ∼A λ(wdy,i)

ψ(ui) + ψ(wsj,i) + ψ(vi) = ssj[Gi . E]
ψ(ui) + ψ(wdy,i) + ψ(vi) = sdy[Gi . E] .

Inseparability: λ(wsj,i) ∼A λ(wdy,i)



Notation:  
Fix an index  and call the





we want to construct , , , and  .

0 ≤ i ≤ k

ui ∈ Up(Gi) vi ∈ Down(Gi) wsj,i wdy,i

u v wsj wdy

Inseparability: λ(wsj,i) ∼A λ(wdy,i)



Idea:  
For the construction of  and , use pumping.


Construction:    
Assume  has n states. 
We define


 


The runs  and  and the constant  will be fixed when we analyze (Matching).


No matter how,  will hold.

wsj wdy

A

wsj := diff n . rem

wdy := diff n+c⋅n! . rem .

diff rem c

λ(wsj) ∼A λ(wdy)

Inseparability: λ(wsj) ∼A λ(wdy)



Lemma:    
Let  be a DFA over  with n states and let .  
Then for all , we have





Proof:  
Consider states  and  in .  
To show





it suffices to show that  reaches the same state 
when reading  and  from  .

A Σ c ∈ ℕ
u, v ∈ Σ*

un . v ∼A un+c⋅n! . v .

p q A

p un.v q ⇔ p un+c⋅n!.v q

A
un un+c⋅n! p

Inseparability: λ(wsj) ∼A λ(wdy)



Lemma:    
Let  be a DFA over  with n states and let .  
Then for all , we have





Proof:  
We show that  reaches the same state 
when reading  and  from  .


Let  be the state in  reached after reading  from , where  . 
By the pigeonhole principle, there are 


    with     . 


As  is a DFA,  and   both end up in  . 
We not only repeat  once, but


 many times. 


Thanks to the factorial and , this is a positive integer. 
This means also  ends up in  . 

A Σ c ∈ ℕ
u, v ∈ Σ*

un . v ∼A un+c⋅n! . v .

A
un un+c⋅n! p

qi A ui p u0 := ε

0 ≤ i < j ≤ n qi = qj

A un uj . uj−i . un−j = un+( j−i) qn
uj−i

c ⋅ n!
j − i

c ∈ ℕ
un+c⋅n! qn

Inseparability: λ(wsj) ∼A λ(wdy)



Want: , , , and , and  
support solutions  and  that match. 


Have: By perfectness, support solutions  and  and for all .





so that


u ∈ Up(G) v ∈ Down(G) diff rem
ssj sdy

s′￼sj s′￼dy 0 ≤ i ≤ k

u′￼i ∈ Up(Gi) v′￼i ∈ Down(Gi)

s′￼sd[Gi . E] − ψ(u′￼i) − ψ(v′￼i) ≥ 1 .

Inseparability: λ(wsj) ∼A λ(wdy)



Needed:


 


Recall:  and  .  


Consequence: Need


ψ(u) + ψ(wsj) + ψ(v) = ssj[E]
ψ(u) + ψ(wdy) + ψ(v) = sdy[E] .

wsj = diff n . rem wdy = diff n+c⋅n! . rem

ψ(u) + n ⋅ ψ(diff ) + ψ(rem) + ψ(v) = ssj[E]
ψ(u) + (n + c ⋅ n!) ⋅ ψ(diff ) + ψ(rem) + ψ(v) = sdy[E] .

Inseparability: λ(wsj) ∼A λ(wdy)

(Matching)



Consequence: Need





Consequence: We subtract the equations to isolate : 


ψ(u) + n ⋅ ψ(diff ) + ψ(rem) + ψ(v) = ssj[E]
ψ(u) + (n + c ⋅ n!) ⋅ ψ(diff ) + ψ(rem) + ψ(v) = sdy[E] .

ψ(diff )

c ⋅ n! ⋅ ψ(diff ) = sdy[E] − ssj[E] = (sdy − ssj)[E] .

Inseparability: λ(wsj) ∼A λ(wdy)



Consequence: We subtract the equations to isolate  and get 





Define: 


 . 


Consequence: We can factor out  and get rid of it, 


ψ(diff )

c ⋅ n! ⋅ ψ(diff ) = (sdy − ssj)[E] .

ssd := c ⋅ n! ⋅ s′￼sd

c ⋅ n!

c ⋅ n! ⋅ ψ(diff ) = c ⋅ n! ⋅ (s′￼dy − s′￼sj)[E] .

Inseparability: λ(wsj) ∼A λ(wdy)



Definition: To obtain , we set





Remark:  
To invoke Euler-Kirchhoff, we need  . 
We can assume  has been scaled to guarantee this.

ψ(diff ) = (s′￼dy − s′￼sj)[E]

diff := ⟨(s′￼dy − s′￼sj)[E]⟩ .

(s′￼dy − s′￼sj)[E] ≥ 1
s′￼dy

Inseparability: λ(wsj) ∼A λ(wdy)



Recall: We need matching





Consequence: Inserting the choice of  yields





Consequence:


ψ(u) + ψ(wsj) + ψ(v) = ssj[E] .

ssj

ψ(u) + n ⋅ ψ(diff ) + ψ(rem) + ψ(v) = c ⋅ n! ⋅ s′￼sj[E] .

ψ(rem) = c ⋅ n! ⋅ s′￼sj[E] − ψ(u) − ψ(v) − n ⋅ ψ(diff ) .

Inseparability: λ(wsj) ∼A λ(wdy)



Consequence:





Idea: To apply Euler-Kirchhoff, the right-hand side has to be  .


Define: 


ψ(rem) = c ⋅ n! ⋅ s′￼sj[E] − ψ(u) − ψ(v) − n ⋅ ψ(diff ) .

≥ 1

u := (u′￼)c⋅n! v := (v′￼)c⋅n! .

Inseparability: λ(wsj) ∼A λ(wdy)



Consequence:


Definition: 


least value so that 


Defininition: 


c := ψ(rem) ≥ 1 .

rem := ⟨c ⋅ n! ⋅ (s′￼sj[E] − ψ(u′￼) − ψ(v′￼)) − n ⋅ ψ(diff )⟩ .

Inseparability: λ(wsj) ∼A λ(wdy)

ψ(rem) = c ⋅ n! ⋅ s′￼sj[E] − ψ(u) − ψ(v) − n ⋅ ψ(diff )

= c ⋅ n! ⋅ s′￼sj[E] − c ⋅ n! ⋅ ψ(u′￼) − c ⋅ n! ⋅ ψ(v′￼) − n ⋅ ψ(diff )

= c ⋅ n! ⋅ (s′￼sj[E] − ψ(u′￼) − ψ(v′￼)) − n ⋅ ψ(diff ) .

≥1



Remark:  
The choice of  is not local to  
but global in that it has to hold for all PGs in  .

c G
S

Inseparability: λ(wsj) ∼A λ(wdy)





7. Decomposition
Proposition: Given a faithful DMGTS , we can compute 

finite sets  and  of DMGTS so that


(i)  is perfect . 
(ii)  

(iii)  . 


W
Perf Fin

∀S ∈ Perf . S
∀T ∈ Fin . Lsj(T) ∣ Dn .

Lsj(W) = Lsj(Perf ) ∪ Lsj(Fin)



Approach:  
Capture a single decomposition step. 
Rely on well-foundedness.


Lemma (Step): 
There is a computable function  that takes a DMGTS  as follows


faithful,    imperfect,    


It returns finite sets  of DMGTS with


(a)  is faithful and  
(b)  
(c)  

dec( − ) W

sol(Charsj(W)) ≠ ∅ ≠ sol(Chardy(W)) .

(X, Y) = dec(W)

∀S ∈ X . S S < W .
∀T ∈ Y . Lsj(T) ∣ Dn .
Lsj(W) = Lsj(X) ∪ Lsj(Y) .

Decomposition

(b) and (c) as required by decomposition.

Faithfulness is an invariant!Faithfulness is an invariant!

If not perfect, you can decompose. If not perfect, you can decompose. 



algo(input: a faithful DMGTS , output:  and ) begin 
    if  is perfect then 
        return  = , ; 
    else if  then 
        return , ; 
    else if  then 
        return , ;  
    else 
        ; 
        ; ; 
        for all  begin 
             = algo( ); 
            ; 
            ; 
        end for all 
    end else 
end

W Perf Fin
W

Perf {W} Fin = ∅
sol(Charsj(W )) = ∅

Perf = ∅ Fin = ∅
sol(Chardy(W )) = ∅

Perf = ∅ Fin = {W}

(X, Y ) = dec(W )
Perf = ∅ Fin = Y

S ∈ X
(PerfS, FinS) S
Perf = Perf ∪ PerfS
Fin = Fin ∪ FinS

Decomposition

Goal:


(i)  is perfect . 
(ii)  
(iii) 

∀S ∈ Perf . S
∀T ∈ Fin . Lsj(T) ∣ Dn .
Lsj(W) = Lsj(Perf ) ∪ Lsj(Fin) .

(i), (ii), (iii) trivial

sol(Charsj(W)) = ∅ ⇒ Lℤ,sj(W) = ∅
⇒ Lsj(W) = ∅ .

sol(Chardy(W)) = ∅ ⇒ Lℤ,dy(W) = ∅
⇒ Lℤ,sj(W) ∣ Lℤ,dy(W)

{Separability Transfer} ⇒ Lsj(W) ∣ Dn .



Fact: Let  be faithful. 


 is not perfect  with


(1) 


(2) 


(3) 


Approach: Case distinction.

W

W ⇔ ∃G ∈ W . (1) ∨ (2) ∨ (3)

G . cio[ j] = ω ∧ G . cio[ j] ∉ supp(Charsd(G)) .

e ∈ G . E ∧ e ∉ supp(Charsd(G)) .

Up(W) = ∅ ∨ Down(G) = ∅ .

Decomposition: Step Lemma



7.1 Case j ∉ supp(Charsd(W))



Fact: If , 





is finite, non-empty, and . 

j ∉ supp(Charsd(W))

Asd := {s[ j] ∣ s ∈ sol(Charsd(W))}

⊆ ℕ

Step Lemma: Case j ∉ supp(Charsd(W))

Lemma in the beginning.   sol(Charsd(W)) ≠ ∅ .
Shape of 

Charsd(W) .



7.1.1 Case sd = sj



Step Lemma: Case j ∉ supp(Charsj(W))

Let 


Define: 





W = (U, μ) .

X := {(Ua, μ) ∣ a ∈ Asj} Y := ∅ .

 with the value of  
at the moment of interest

modified from  to 

U j

ω a .



Step Lemma: Case j ∉ supp(Charsj(W))
Proof: 


(c) 


 Consider  
Then  solves the characteristic equations. 
Hence, counter  assumes a value  at the moment of interest.  
Hence, , and 


 Concrete values make intermediate acceptance stronger.


(b)  There is nothing to show. 

Lsj(W) = Lsj(X) .

⊆ ρ ∈ IAccsj(W) .
ρ

j a ∈ Asj
ρ ∈ IAccsj(Ua, μ) (Ua, μ) ∈ X .

⊇

∀T ∈ Y…



Step Lemma: Case j ∉ supp(Charsj(W))
Proof (cont.): 


(a) Faithfulness. 


We neither modified the edges nor the  markings.  
Hence, faithfulness holds by the faithfulness of  .


(a) Descent 


, , and  stay unchanged.  
We reduce 

dy
W

Ω(G) G . E G . cio
|Ω(G . cio) | .



7.1.2 Case sd = dy

This is the complicated case!



Setting:  
We change an extremal marking for a Dyck counter


from  to a concrete value.


As a consequence, we have to check faithfulness.

ω

Step Lemma: Case j ∉ supp(Chardy(W))



Setting: We have to check faithfulness.


Lemma (Modulo Trick):  
Consider  .


 

0 ≤ a, b < ν

a ≡ b mod ν ⇒ a = b .

Trick 9: 
The Modulo Trick is essential for faithfulness.

Step Lemma: Case j ∉ supp(Chardy(W))



Discussion:  
(i) We will have 


Hence, to apply the Modulo Trick, we need to


modify  to     with    

b ∈ Ady .

μ ν ν > max Ady .

Step Lemma: Case j ∉ supp(Chardy(W))



Discussion:  
(ii) We canot simply increase  to exceed  . 
We need


acceptance modulo         acceptance modulo 


This works, if  divides  . We thus set





for an  defined later. 

ν μ

ν ⇒ μ .

μ ν

ν := μ ⋅ l

l
Trick 10: 

Maintaining divisibility among the  values.μ

Step Lemma: Case j ∉ supp(Chardy(W))



Discussion:  
(iii) If we modify  to , we need to 


modify the extremal markings of all PGs. 


Example: 





Let  and thus . 
Then


 


does not yield all solutions.

μ ν

x ≡ 2 mod 3.

l = 4 ν = 3 ⋅ 4 = 12

x ≡ 2 mod 12

0 3 6 9 12 15

x ≡ 2 mod 3

x ≡ 2 mod 12

Make sure not to lose the red values.

Step Lemma: Case j ∉ supp(Chardy(W))



Example:





Then


 


together yield all solutions.

x ≡ 2 mod 3.

x ≡ 2 mod 12
x ≡ 5 mod 12
x ≡ 8 mod 12
x ≡ 11 mod 12

0 3 6 9 12 15

x ≡ 2 mod 12

x ≡ 2 mod 3

Step Lemma: Case j ∉ supp(Chardy(W))



Lemma ( Modification): Let  divide  and consider .





Example: 


μ − ν− μ ν x, k ∈ ℤ

x ≡ k mod μ ⇔ ∃0 ≤ i < ν . x ≡ i mod ν
i ≡ k mod μ .

x ≡ 2 mod 3 ⇔ ∃i ∈ {2,5,8,11} . x ≡ i mod 12 .
Trick 11: 

Adapt intermediate markings to  .i ≡ k mod μ
0 3 6 9 12 15

Step Lemma: Case j ∉ supp(Chardy(W))



Goal: Transfer the adaptation lemma to DMGTS.


Approach: Equate MGTS up to modulo equivalence 





on the Dyck counters.


Definition ( Modification Equivalence): 


  ,                if    


,    if    

k ≡ i mod μ

μ−

G1 ≡μ G2
G1 . V = G2 . V G1 . cio[sj] = G2 . cio[sj]
G1 . E = G2 . E G1 . cio[dy] ≡ G2 . cio[dy] mod μ

S1 . up . S2 ≡μ S′￼1 . up . S′￼2 S1 ≡μ S′￼1 ∧ S2 ≡μ S′￼2 .

Step Lemma: Case j ∉ supp(Chardy(W))



Lemma ( Modification for Intermediate Acceptance): 
Assume  divides . 


 .


Note: 
This is a direct lift of the Modification Lemma.


•  corresponds to  .


•  corresponds to  .


• The union is the existential quantifier. 

μ − ν−
μ ν

IAccsj(U, μ) = ⋃
V ≡μ U

0 ≤ V < ν

IAccsj(V, ν)

μ − ν−

V ≡μ U i ≡ k mod μ

0 ≤ V < ν 0 ≤ i < ν

All extremal markings

take values from  .[0,ν − 1] ∪ {ω}

Step Lemma: Case j ∉ supp(Chardy(W))



Discussion:  
(iv) If we modify the extremal markings of all PGs,  
we have to check faithfulness also there.


To apply the Modulo Trick, 


 has to be larger than all values in extremal markings.


Recall  . We thus set 


values in extremal markings. 

ν

ν := μ ⋅ l

l := max Ady ∪

Step Lemma: Case j ∉ supp(Chardy(W))



Remark: 
We do not maintain the invariant that  

 is larger than the values in the extremal markings. 
 
This would force us to repeat the argument for Case (1) 
in Cases (2) + (3).

μ

Step Lemma: Case j ∉ supp(Chardy(W))



Definition: 


X := {(V, ν) ∈ Z ∣ V . cout[dy] = 0}
Y := Z∖X .

zero-reachingZero-reaching.

Dyck counters  . ≢ 0 mod ν

Modification . μ − ν−Modification . μ − ν− Not just !Ady

Step Lemma: Case j ∉ supp(Chardy(W))

Z := {(V, ν) ∣ V ≡μ Ua, 0 ≤ V < ν, 0 ≤ a < μ, V . cin[dy] = 0}



Note: 
We cannot just take the values from   
They stem from  which reaches intermediate values precisely. 
In , we only need to reach intermediate Dyck values modulo . 
Hence,  may not contain enough values.  


Ady .
Chardy(W)

IAccsj(W) μ
Ady

PG1 PG2 PG3
a

a + μ

∈ Ady

∉ Ady

Step Lemma: Case j ∉ supp(Chardy(W))



Proof (of the Step Lemma):  
Let 


(c) 


Similar to the Case , we have


 .


With the Modification Lemma for Intermediate Acceptance, 


 .


We argue that we do not lose words by assuming in  


the initial values for  zero modulo  instead of zero modulo  . 


Consider  .  
As  is zero-reaching,  starts from a multiple of  on  , say  for simplicity. 
By the monotonicity of modulo acceptance, . 
This run is labeled by the same word and starts from  on  .   
Hence, it will be accepted by  where the Dyck counters are initially  .

W = (U, μ) .

Lsj(W ) = Lsj(X) ∪ Lsj(Y ) .

sd = sj

IAccsj(U, μ) = ⋃
0≤a<μ

IAccsj(Ua, μ)

μ − ν−

IAccsj(Ua, μ) = ⋃
V ≡μ Ua

0 ≤ V < ν

IAccsj(V, ν)

V

dy ν μ

ρ ∈ IAccsj(Ua, μ)
Ua ρ μ dy μ

ρ + (ν − μ) = ρ + (l − 1) ⋅ μ ∈ IAccsj(Ua, μ)
ν dy

V ≡μ Ua 0

Step Lemma: Case j ∉ supp(Chardy(W))

Trick 5 in Action: 
Monotonicity of modulo-  intermediate acceptance.μ



Step Lemma: Case j ∉ supp(Chardy(W))
Proof (cont.):  
(b) 


Consider  
By construction,  and  . 
This means  has an effect  on .  
By visibility of  and the VAS accepting , we have .


Hence, an NFA that tracks the Dyck counters modulo  
and accepts upon values  shows separability.

∀T ∈ Y . Lsj(T) ∣ Dn .

T ∈ Y .
T . cin[dy] = 0 T . cout[dy] ≠ 0

ρ ∈ IAccsj(T) c ≢ 0 mod ν dy
T Dn λ(ρ) ∉ Dn

ν
≠ 0



Proof (cont.): 


(a) Descent 


As in the case sd = sj .

Step Lemma: Case j ∉ supp(Chardy(W))



Proof (cont.): Recall that  and .  
Faithfulness





is a consequence of


 

S = (V, ν) W = (U, μ)

Accℤ,dy(S) ∩ IAccℤ,⊑ν
ω[dy](S) ⊆ IAccℤ,dy(S)

Accℤ,dy(S) ∩ IAccℤ,⊑ν
ω[dy](S) ⊆ IAccℤ,dy(W) (1)

IAccℤ,dy(W) ∩ IAccℤ,⊑ν
ω[dy](S) ⊆ IAccℤ,dy(S) . (2)

Step Lemma: Case j ∉ supp(Chardy(W))



Proof (cont.): For 





we use





and the faithfulness of  .

Accℤ,dy(S) ∩ IAccℤ,⊑ν
ω[dy](S) ⊆ IAccℤ,dy(W) (1)

Accℤ,dy(S) ⊆ Accℤ,dy(W)
IAccℤ,⊑ν

ω[dy](S) ⊆ IAccℤ,⊑μ
ω[dy](W)

W

 and  are zero-reaching. 
We only change an intermediate value, 


which acceptance does not see.

S W

 divides  . μ ν

Step Lemma: Case j ∉ supp(Chardy(W))



Proof (cont.): For 


 .


Consider  in the intersection. 
Consider counter  that we changed from  to a concrete value.


As  ,  solves .  
Hence, it reaches a value  at the moment of interest.


As , it also reaches the value  that replaces  in , but only modulo .


We have  by the definition of intermediate acceptance. 


We have  by the choice of .  
We have  by the construction of .


Modulo intermediate acceptance means .  
The Modulo Trick shows a=b.

IAccℤ,dy(W ) ∩ IAccℤ,⊑ν
ω[dy](S) ⊆ IAccℤ,dy(S)

ρ
j ω

ρ ∈ IAccℤ,dy(W ) ρ Chardy(W )
b ∈ Ady

ρ ∈ IAccℤ,⊑ν
ω[dy](S) a ω S ν

0 ≤ a, b

b < ν ν
a < ν S

a ≡ b mod ν

Step Lemma: Case j ∉ supp(Chardy(W))



Proof (cont.): For 


 .


Consider a counter different from  or  but another moment. 


As  ,  reaches an intermediate value  given in .


We again have  by the choice of .


Now the same argument applies.  

IAccℤ,dy(W) ∩ IAccℤ,⊑ν
ω[dy](S) ⊆ IAccℤ,dy(S)

j j

ρ ∈ IAccℤ,dy(W) ρ b W

b < ν ν

Step Lemma: Case j ∉ supp(Chardy(W))





7.2 Reasoning Locally 

about Faithfulness



Reasoning Locally about Faithfulness

Case (1): Modified entire DMGTS.


Cases (2) + (3): Modify a single PG. 


Goal: Develop techniques that allow us to


reason about a single PG and 
lift the result to the entire DMGTS.  

Focus on faithfulness.



Reasoning Locally about Faithfulness
Definition:  
MGTS context





DMGTS insertion: For  let 





Lemma: Well-founded order stable under insertion


C[ ∙ ] ::= ∙ ∣ C[ ∙ ] . up . W ∣ W . up . C[ ∙ ] .

W = (S, μ)

C[W] := (C[S], μ) .

W1 ≤ W2 ⇒ C[W1] ≤ C[W2] .

Replace  by  .∙ S



Reasoning Locally about Faithfulness

Approach: For Cases (2) + (3), consider ,  


decompose  into sets of DMGTS  and , 
define 


C[(G, μ)]

(G, μ) U V

X := C[U] := {C[(S, μ)] ∣ (S, μ) ∈ U} Y := C[V] .



Reasoning Locally about Faithfulness
Goal: Lift faithfulness of  to .


Approach: Establish a relation between  and the DMGTS in .  


Definition: 
-  is a specialization of , if 


1.  
2.  
3. .


- If  is a specialization of , then  is a specialization of 

C[(G, μ)] C[U]

(G, μ) U

(S, μ) (G, μ)

S . cio ⊑ω G . cio .
∀ρ ∈ Runsℤ(S) . ∃σ ∈ Runsℤ(G) . σ ≈ ρ .
∀ρ ∈ IAccℤ,⊑μ

ω[dy](S) with ρ[ first/last][dy] ⊑ω G . cio . ρ ∈ IAccℤ,dy(S)

W1 W2 C[W1] C[W2] .

Same .μ

Smaller language.
Preserve faithfulness.



Reasoning Locally about Faithfulness
Lemma: Let  be a specialization of . 


.  
 faithful         faithful.


Intuition: Why does decomposition for Cases (2) + (3) guarantee  


 ?


Decompositions for (2) + (3) unroll  into DMGTS. 
 
    New intermediate counter values    =   consistent assignments in  or values in coverability graph for . 


Hence, runs in the new DMGTS respects these values.  

W1 W2

Lsj(W1) ⊆ Lsj(W2)
W2 ⇒ W1

∀ρ ∈ IAccℤ,⊑μ
ω[dy](S) with ρ[ first/last][dy] ⊑ω G . cio . ρ ∈ IAccℤ,dy(S)

G

G G

Only need to worry about Lsj(W) ⊆ Lsj(X ∪ Y) .



7.3 Case e ∉ supp(Charsd(W))



Case (2): e ∉ supp(Charsd(W))
Observation: If  is not in the support, there is


an upper bound 


on the number of times  can be taken. 


Idea: Decompose  so that every occurrence of  leads to a new PG. 
 
Definition:  

DMGTS that admit at most  occurrences of .  
 

 = DMGTS that expect  occurrences of ,  
                                        afterwards return to the root of .  

e

l ∈ ℕ

e

G e

U = l e
Vsj = ∅ .
Vdy l + 1 e

G



Case (2): e ∉ supp(Charsd(W))
Lemma: Let  contain edge  with .  
With elementary resources, we can compute sets  and  
containing specializations of  that satisfy: 


 
 

 is infeasible.


(G, μ) e e ∉ supp(Charsd(C[(G, μ)]))
U V

(G, μ)

∀S ∈ U . S < (G, μ) .
∀ρ ∈ IAccsj(G, μ) . ∃σ ∈ IAccsj(U ∪ V) . σ ≈ ρ .
∀T ∈ V . Char(C[T])

Faithfulness already done!

Descent also done! 

Separability also done!


