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Chomsky-Normalform
Es sei die folgende kontextfreie Grammatik G gegeben über Σ = {c, d}.

S → A ∣ ABB A → Scc ∣ ε B → dB ∣ c
Zur Erinnerung: Eine Grammatik ist in Chomsky-Normalform (CNF), falls alle Produktionen die
Form X → YZ oder X → s haben. Die Greibach-Normalform (GNF) benötigt alle Produktionen in
der Form X → sX1 . . . Xn (mit X, Y, Z, X1, . . . Xn ∈ N und s ∈ Σ).

Für die CNF eliminiert man zuerst die ε-Produktionen (sowohl A als auch S können zu ε übersetzt
werden). Die resultierende Grammatik G′′ erfüllt L(G′′) = L(G′) \ {ε} = L(G) \ {ε} .

G′ ∶ S → A ∣ ABB ∣ ε ∣ BB A → Scc ∣ ε ∣ cc B → dB ∣ c
G′′ ∶ S → A ∣ ABB ∣ BB A → Scc ∣ cc B → dB ∣ c

Nur S → BB und B → c haben schon CNF, der Rest muss angepasst werden, notfalls mit neuen
Nichtterminalen. Dadurch erhalten wir eine Grammatik G′′′ in CNF mit L(G′′′) = L(G′′).

G′′′ ∶ S → SE ∣ CC ∣ AF ∣ BB A → SE ∣ CC B → DB ∣ c C → c D → d E → CC F → BB

Wortproblem lösen mit dem CYK-Algorithmus
Gegeben die kontextfreie Grammatik G, nutze den CYK-Algorithmus, um zu prüfen, ob ccdecde
von G erzeugt werden kann.

S → ABC ∣ CAB A → dC ∣ eBC B → ED ∣ BB ∣ EA C → c .

Für den Algorithmus aus der Vorlesung benötigenwir eine Grammatik in Chomsky-Normalform.

S → AF ∣ CH A → DC ∣ EF B → ED ∣ BB ∣ EA C → c D → d E → e F → BC H → AB .

Die Tabelle wird diagonal-weise gefüllt.

1 2 3 4 5 6 7
1 E − − A − H AHS
2 E B BF − B BF
3 D A − H HS
4 C − − −

5 E B BF
6 D A
7 C



In der oberen rechten Zelle soll sich genau dann S befinden, wenn das Wort in der Sprache liegt.
Hier können wir also eedcedc ∈ L(G′) = L(G) schließen.
Darüber hinaus lesenwir anhand der Anzahl von S in der ganzen Tabelle, dass 2 nicht-leere Infixe
des Wortes in der Sprache liegen: Neben eedcedc selbst gibt es noch dcedc ∈ L(G). Die oberen
Zeile verrät Eigenschaften über Präfixe und die rechteste Spalte steht für die Suffixe des Wortes.

Konstruktion von Pushdown-Automaten

Gesucht ist ein PDA für die Palindrom-Sprache {w ∈ {a, b}∗ ∣w = rev(w) }.
Idee: Der erste Hälfte des Wortes wird in den Stack gepusht und beim Verarbeiten der zweiten
Hälfte werden die Symbole abgeglichen und gepopt. Dazu nutzt man Stack-Symbole A und B.
Der Automat hat keineMöglichkeit, deterministisch dieMitte desWortes zu erkennen, alsomuss
er sie während des Runs nicht-deterministisch erraten. Wörter können gerade oder ungerade
sein, also darf in der Mitte ein Buchstabe konsumiert werden.

Runs, die falsch raten, dürfen aber nicht akzeptieren. Das könnte sonst bei jedemWort passieren,
wenndie gerateneMitte sich als das letzte Symbol der Eingabe herausstellt. Der Stackmuss kom-
plett abgebaut werden, und damit der Automat das feststellen kann, braucht man ein weiteres
Stack-Symbol#, das nur einmal und nur am Bottom of Stack vorkommt.
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Eine Variante, die mit leerem Stack akzeptiert, statt mit akzeptierenden Zuständen wie oben,
kann wiefolgt aussehen:
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Addendum: Jeder PDAkann ineine kontextfreieGrammatiküberführtwerden.Die starkenLinks-
ableitungen werden dabei Läufe des Automaten simulieren.

Mit einem Nichtterminal fassen wir einen Teil der PDA-Berechnung zusammen: Nichtterminale
haben die Form ⟨p,A, q⟩ ∈ Q× Γ×Q und beschreiben alle Teil-Läufe, die in pmit A auf dem Stack
starten, und irgendwann im Zustand q erstmals das darunterliegende Stack-Symbol freilegen,
bzw. den Stack leeren.

In der naiven Grammatik sind üblicherweise die meisten Produktionen nutzlos, also entweder
nicht erreichbar oder nicht produktiv. Der folgende Algorithmus berechnet einen nennenswert
kleineren erreichbaren Teil:

Require: PDAM = ⟨Q, Σ, Γ, q0,#, δ⟩ (akz. mit leerem Stack)
Ensure: L(G) = L(M)

P ← ∅

T ← { ⟨p,A, q⟩ ∣ p σ
−−−→
A/β q′ und p′

s
−−→
B/ε q } (mit den richtigen Beobachtungen kleiner)

N ← {S}
Ndone ← {S}
for ⟨p,A, q⟩ ∈ T do

P ← P ∪ {S → ⟨q0,#, q⟩}
N ← N ∪ {⟨q0,#, q⟩}

end for
while N ≠ Ndone do

Sei ⟨p,A, q⟩ ∈ N \ Ndone

for p
s

−−−−−−→
A/Bn...B1 q′ und ⟨p1, B1, q1⟩ . . . ⟨pn, Bn, qn⟩ ∈ T n do

if p1 = q′ und qn = q und qi = pi+1 für alle i ∈ {1, . . . , n − 1} then
P ← P ∪ {⟨p,A, q⟩ → s ⟨p1, B1, q1⟩ . . . ⟨pn, Bn, qn⟩}
N ← N ∪ {⟨p1, B1, q1⟩, . . . , ⟨pn, Bn, qn⟩}

end if
end for
Ndone ← Ndone ∪ {⟨p,A, q⟩}

end while
return G ∶= ⟨N, Σ, S, P⟩

Bemerkung
Achtet darauf, dass die Reihenfolge nach LIFO-Prinzip im Stack verkehrt herum gelesen wird:
In p

s
−−−−−−→
A/Bn...B1 q′ wird Bn als erstes gepusht und daher als letztes verarbeitet. B1 wird als letztes

gepusht und muss deshalb zuerst verarbeitet werden.


