Theoretische Informatik 1
René Masel GroB3e Ubung 5 TU Braunschweig
Prof. Dr. Roland Meyer Wintersemester 2025/26

Chomsky-Normalform
Es sei die folgende kontextfreie Grammatik G gegeben lber X = {c, d}.

S—>A|ABB A - Scc|e B-dB]|c

Zur Erinnerung: Eine Grammatik ist in Chomsky-Normalform (CNF), falls alle Produktionen die
Form X — YZ oder X — s haben. Die Greibach-Normalform (GNF) benétigt alle Produktionen in
derForm X — sX; ... X, (mitX,Y,Z X;,...X, € Nunds € %).

Fur die CNF eliminiert man zuerst die e-Produktionen (sowohl A als auch S kdnnen zu € Ubersetzt
werden). Die resultierende Grammatik G erfiillt £(G") = £(G') \ {e} = L(G) \ {€} .

G: S—>A|ABB|¢|BB A-Scc|e]|cc B-dB|c
G": S—>A|ABB| BB A > Scc| cc B-dB|c

Nur S - BB und B — ¢ haben schon CNF, der Rest muss angepasst werden, notfalls mit neuen
Nichtterminalen. Dadurch erhalten wir eine Grammatik G" in CNF mit £(G") = £L(G").

G": S>SE|CC|AF|BB A->SE|CC B->DB|c C»c D->d E->CC F-BB

Wortproblem I6sen mit dem CYK-Algorithmus
Gegeben die kontextfreie Grammatik G, nutze den CYK-Algorithmus, um zu priifen, ob ccdecde
von G erzeugt werden kann.

S —> ABC | CAB A - dC | eBC B—ED|BB|EA C-c.
Fir den Algorithmus aus der Vorlesung benétigen wir eine Grammatik in Chomsky-Normalform.
S>AF|CH A->DC|EF B—>ED|BB|EA C-»>c D->d E—-e F->BC H-AB.

Die Tabelle wird diagonal-weise gefiillt.

1 2 3 4 5 6 7
1/E|-|—-|A|—-|H|AHS
2 E|B|BF|—-|B| BF
3 Dl A|—-|H| HS
4 Cl—-|—-| -
5 E|B| BF
6 D| A
7 C

In der oberen rechten Zelle soll sich genau dann S befinden, wenn das Wort in der Sprache liegt.
Hier kdnnen wir also eedcedc € L(G') = L(G) schlieBen.

Darliber hinaus lesen wir anhand der Anzahl von Sin der ganzen Tabelle, dass 2 nicht-leere Infixe
des Wortes in der Sprache liegen: Neben eedcedc selbst gibt es noch dcedc € L£(G). Die oberen
Zeile verrat Eigenschaften Uber Prafixe und die rechteste Spalte steht fiir die Suffixe des Wortes.

Konstruktion von Pushdown-Automaten
Gesucht ist ein PDA fiir die Palindrom-Sprache { w € {a, b}" | w = rev(w) }.

Idee: Der erste Halfte des Wortes wird in den Stack gepusht und beim Verarbeiten der zweiten
Halfte werden die Symbole abgeglichen und gepopt. Dazu nutzt man Stack-Symbole A und B.
Der Automat hat keine Moglichkeit, deterministisch die Mitte des Wortes zu erkennen, also muss
er sie wahrend des Runs nicht-deterministisch erraten. Worter kbnnen gerade oder ungerade
sein, also darf in der Mitte ein Buchstabe konsumiert werden.

Runs, die falsch raten, diirfen aber nicht akzeptieren. Das kdnnte sonst bei jedem Wort passieren,
wenn die geratene Mitte sich als das letzte Symbol der Eingabe herausstellt. Der Stack muss kom-
plett abgebaut werden, und damit der Automat das feststellen kann, braucht man ein weiteres
Stack-Symbol #, das nur einmal und nur am Bottom of Stack vorkommt.

a b a b
@ AlEB/s
€ e a b £
M=\ s O e e e O ws

Eine Variante, die mit leerem Stack akzeptiert, statt mit akzeptierenden Zustanden wie oben,
kann wiefolgt aussehen:

a o6 a b
e|Ae/8 Al€8/e
e a b
—(g
M # 1 ele €le ¢gfe @
€

#/€

Addendum:Jeder PDA kann in eine kontextfreie Grammatik GUberfiihrt werden. Die starken Links-
ableitungen werden dabei Laufe des Automaten simulieren.

Mit einem Nichtterminal fassen wir einen Teil der PDA-Berechnung zusammen: Nichtterminale
haben die Form (p, A, g) € QxT x Q und beschreiben alle Teil-Laufe, die in p mit A auf dem Stack
starten, und irgendwann im Zustand g erstmals das darunterliegende Stack-Symbol freilegen,
bzw. den Stack leeren.

In der naiven Grammatik sind Ublicherweise die meisten Produktionen nutzlos, also entweder
nicht erreichbar oder nicht produktiv. Der folgende Algorithmus berechnet einen nennenswert
kleineren erreichbaren Teil:

Require: PDAM =(Q, %, T, qo, #, 6) (akz. mit leerem Stack)
Ensure: L£(G) = L(M)
P<o
T« {(p,Aq)|p #) g undp' —é;) g } (mit den richtigen Beobachtungen kleiner)
N < {$}
Ngone < {S}
for(p,A,q) € Tdo
P PU{S—(q0,#, 9)}

N « N U {<q07 #7 q)}
end for

while N # Ny, do

Sei <p7A7 q) EN \ Ndone
forp 7/35—9 g und (p1,B8:,a1)...(pn, B,.qn) € T" do

n---b1

if p, =q und g, = qund g, = p;,, furalleie {1,...,n -1} then
P‘_PU{(paAaq>_)5(P1aB1aQ1>~-(mean>}

N « NU{<p1JB17q1>7‘"7<pn7Bn7qn)}
end if

end for

Ndone « Ndone U {(p,A, q)}
end while

return G := (N, X, S, P)

Bemerkung
Achtet darauf, dass die Reihenfolge nach LIFO-Prinzip im Stack verkehrt herum gelesen wird:

Inp %) g wird B, als erstes gepusht und daher als letztes verarbeitet. B, wird als letztes
A/B,...B

gepusht und muss deshalb zuerst verarbeitet werden.

