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1 NFA zu REGmit Ardens Lemma 10 Punkte

Geben Sie einen regulären Ausdruck an, der die Sprache L(A) des folgenden NFA A über
Σ = {a, b, c} beschreibt. Stellen Sie hierzu ein Gleichungssystem auf und lösen Sie es unter Ver-
wendung von Ardens Lemma.

q0A q1 q2

q3 q4

a

b

b

a

b

b

a

c
c

a
Vorschlag:

DerAutomatenthält vier erreichbareSchleifen:q1
a
−→ q1,q2

a
−→ q2,q1

b
−→ q2

b
−→ q1,q3

c
−→ q4

a
−→ q3. Ar-

dens Lemmamuss höchstens einmal für jede davon angewandtwerden. Da es aber anGleichun-
gen angewandtwird, könnten einzelneAnwendungen jeweilsmehrere Schleifen lösen. DasGlei-
chungssystem ist eindeutig.

X0 = ε ∪ aX1 ∪ bX3 X1 = aX1 ∪ bX2 ∪ bX3 X2 = bX1 ∪ aX2 ∪ cX4 X3 = ε ∪ cX4 X4 = aX3

Hinweis: Es genügt einen Ausdruck für den Startzustand zu finden. Zwischenergebnisse sind
nur dann anzugeben, wenn die Gleichung wechselt, oder Ardens Lemma angewandt wird. An-
wendungen der Assoziativität, Distributivität, Neutralität, usw. müssen nicht genannt werden.
Priorität sollten Schleifen haben, die keine anderen Schleifen erreichen.

X3 = ε ∪ caX3 X4 eingesetzt

= (ca)∗ Ardens Lemma

X4 = a(ca)∗ X3 eingesetzt

X2 = a∗(bX1 ∪ cX4) Ardens Lemma

= a∗bX1 ∪ a∗cX4 Distributivität

= a∗bX1 ∪ a∗ca(ca)∗ X4 eingesetzt

X1 = aX1 ∪ bX2 ∪ b(ca)∗ X3 eingesetzt

= aX1 ∪ b(a∗bX1 ∪ a∗ca(ca)∗) ∪ b(ca)∗ X2 eingesetzt

= (a ∪ ba∗b)X1 ∪ (ba∗ca ∪ b)(ca)∗ Distributivität × 3

= (a ∪ ba∗b)∗(ba∗ca ∪ b)(ca)∗ Ardens Lemma

L(A) = X0 = ε ∪ aX1 ∪ b(ca)∗ X3 eingesetzt

= ε ∪ a(a ∪ ba∗b)∗(ba∗ca ∪ b)(ca)∗ ∪ b(ca)∗ X1 eingesetzt



Seite 3 / 14

2 Determinisierung und Komplementierung 10 Punkte

Berechnen Sie einen DFA zur Komplementsprache L(A) der Sprache L(A) des folgenden NFA A
über Σ = {a, b, c}. Verwenden Sie hierzu die Rabin-Scott-Potenzmengenkonstruktion aus der
Vorlesung. Konstruieren Sie nur die vom Startzustand erreichbaren Zustände.

0A 1 2

3 4 5

a

b

b

a

b

b, c

a

c

c

a
a

b, c

Vorschlag:

(Die Konstruktion nach Rabin & Scott könnte auf bis zu 2∣Q∣ (hier 64 Zustände) heranwachsen.
Man kann früh erkennen, dass Zustand 5 unerreichbar ist. Die Ziel-Automaten haben bei dieser
Aufgabe immer 8 bis 12 Zustände. Akzeptierende Zustände werden invertiert, also nur dann
markiert, wenn sie keinen akzeptierenden Zustand aus A enthalten.)

{0}A {1} {2, 4}

{3} {4}

{2, 3}{2}

{1, 4}

{1, 3}

∅

a

b

c

b

a

c a

b, c

a, b

c

a

b c

a

b

c

a

b, c

a

b

c

a b

c

a, b, c
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3 CYK 9 + 1 = 10 Punkte

BetrachtenSiedie kontextfreieGrammatikG = ⟨{S,A, B, C}, Σ, P, S⟩überdemAlphabet Σ = {a, b},
mit den folgenden Produktionsregeln.

S → AA ∣ BA ∣ BB ,
A → a ∣ AC ∣ BC ,

B → b ∣ CS ,
C → b .

a) Nutzen Sie den Cocke-Younger-Kasami-Algorithmus aus der Vorlesung, um zu bestimmen,
ob das Wort w = bbbaaa von der kontextfreien Grammatik G erzeugt wird. Füllen Sie die
Tabelle vollständig aus.

b) Wie viele Präfixe vonw liegen in der Sprache vonG? EinWort x ∈ Σ∗ ist ein Präfix vonw, wenn
w von der Formw = x.ymit y ∈ Σ∗ ist.

Vorschlag:

a) Da S in der Zelle für das volle Teilwort enthalten ist, giltw ∈ L(G).
BC AS ABS BS BS S

BC AS BS S B
BC S B S

A S
A S

A

b) Zähle wie viele Zellen in der ersten Zeile S enthalten: 5. (Erzeugte Präfixe sind bb, bbb, bbba,
bbbaa und bbbaaa selbst. ε ist auch ein Präfix, kann aber nicht erzeugt werden.)
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4 Tripelkonstruktion 2 + 8 + 2 = 10 Punkte

Betrachten Sie den Pushdown-Automaten M = ⟨{0, 1, 2, 3, 4, 5}, {a, b, c}, {A, B, C}, q0,A, δ⟩, der
mit leerem Stack akzeptiert und dessen Transitionsrelation δ wiefolgt definiert ist.

0M

1

2

3

4

5

a

A/BC c
C/C

ε
B/BBA c

C/ε a
C/ε

b
C/ε

a
B/C

a) Beschränken Sie Ihren Suchraum für nützliche Nichtterminale. Welche Zustände besitzen
kein Verhaltenmit bestimmten Stapel-Symbole als Top? Welche Zustände kommen nicht als
Ende einer Berechnung in Frage?

b) Verwenden Sie die Tripelkonstruktion aus der Vorlesung, um eine kontextfreie Grammatik G
mit L(M) = L(G) zu bestimmen.

c) Entfernen Sie alle unnützlichen Nicht-Terminale aus G.

Vorschlag:

Nützliche Tripel haben höchstens die Formen ⟨0,A, ?⟩, ⟨1, C, ?⟩, ⟨2, B, ?⟩, ⟨3, C, ?⟩, ⟨5, B, ?⟩, sowie⟨?, ?, 2⟩, ⟨?, ?, 4⟩, ⟨?, ?, 5⟩.
Hinweis:

Die Reihenfolge, in der Tripel hinzugefügt werden, ist irrelevant. Hier wurden jeweils die Tripel
in einer Warteschlange organisiert.

Wann immer ein neues Tripel gefunden wurde, wurde es hier unterstrichen. Das ist nicht not-
wendig, kann aber hilfreich sein.
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Entlang der Erreichbaren:

S → 0A2 ∣ 0A4 ∣ 0A5
0A2 → a 1C2 2B2 ∣ a 1C5 5B2

0A4 → a 1C2 2B4 ∣ a 1C5 5B4

0A5 → a 1C2 2B5 ∣ a 1C5 5B5

1C2 → c 3C2

2B2 → ε 0A2 2B2 2B2 ∣ ε 0A2 2B5 5B2 ∣ ε 0A5 5B2 2B2 ∣ ε 0A5 5B5 5B2

1C5 → c 3C5

5B2 → a 3C2

2B4 → ε 0A2 2B2 2B4 ∣ ε 0A2 2B5 5B4 ∣ ε 0A5 5B2 2B4 ∣ ε 0A5 5B5 5B4

5B4 → a 3C4

2B5 → ε 0A2 2B2 2B5 ∣ ε 0A2 2B5 5B5 ∣ ε 0A5 5B2 2B5 ∣ ε 0A5 5B5 5B5

5B5 → a 3C5

3C2 → c

3C5 → b

3C4 → a

Alle erreichbaren Tripel sind hier produktiv:
(Sei dazu F ∶ P(N) → P(N)mit
F(X) = X ∪ { A ∈ N ∣ A → α ∈ (X ∪ Σ)∗ }.

F(∅) = {3C2, 3C4, 3C5}
F2(∅) = F(∅) ∪ {1C2, 1C5, 5B2, 5B4, 5B5}
F3(∅) = F2(∅) ∪ {0A2, 0A4, 0A5}
F4(∅) = F3(∅) ∪ {2B2, 2B4, 2B5, S}
F5(∅) = F4(∅) = N .)
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5 Pumping-Lemma 7 + 3 = 10 Punkte

Es sei Σ = {a, b}. Betrachten Sie die Sprachen

L = { an.bm ∣ n,m ∈ N, n ist gerade oder n = 3m } und
L′ = { w ∈ {a, b}∗ ∣ ∣w∣a ist gerade oder ∣w∣a = 3∣w∣b } .

a) Zeigen Sie unter Verwendung des Pumping-Lemmas, dass L nicht regulär ist.

b) Zeigen Sie, welche Konsequenz sich dadurch für die Sprache L′ ergibt.

Vorschlag:

a) Sei p ∈ N eine Pumping-Konstante.
Betrachtew = a6p+3b2p+1 ∈ L.
Jede Zerlegung w = x.y.zmit ∣x.y∣ ≤ p und y ≠ ε erfüllt x.y ∈ a+.
Jetzt betrachte i = 3. Es gilt xy3z = a6p+3+2∣y∣b2p+1 /∈ L, da 6p + 3 + 2∣y∣ ungerade und ungleich
3(2p + 1) ist.
Da dies für alle Zerlegungen und für alle p gilt, kann L nach demPumping-Lemmanichtmehr
regulär sein.

b) (Reguläre Sprachen sind unter endlichen Schnitten abgeschlossen.)
Wäre L′ regulär, so wäre es auch L = L′ ∩ a∗b∗.
Alternativ kannmanauch sagen, dasArgument aus a) lässt sich analog, alsomit demgleichen
w und i für L′ wiederholen.
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6 Automatenkonstruktion 5 + 5 = 10 Punkte

Betrachten Sie die Sprache L = {w ∈ {a, b}∗ ∣ ∣w∣a ≠ 2∣w∣b + 1 }.
a) Konstruieren Sie einen PDA M, der L akzeptiert. Geben Sie insbesondere die Akzeptanz-

bedingung ihres Automaten an.

b) Erklären Sie jeden Zustand und jedes Bandsymbol ihrer Konstruktion.

Vorschlag:

a) (Idee : Führe einen Zähler für ∣w∣a−2∣w∣b, teste am Ende desWortes, ob dieser 1 ist. Alternativ
kann der Zähler bei −1 starten und man vergleicht mit 0.)
Dieser PDA nutzt akzeptierende Zustände.

iM

b′

c

1?

acc

ε
ε/0

ε
A/ε ε

0/0Bb
A/ε

a0/0A a
A/AA a

B/ε b

B/BBB

b
0/0BB

ε
A/ε
ε
0/0

ε
B/B

ε A/A

b) Der Zustand i initialisiert den Zähler auf 0. c und b′ erhöhen den Zähler um 1 für jedes a und
verringern ihn um 2 für jedes b in der Eingabe. Mit den Zuständen 1? und acc geschieht der
Vergleich mit 1: Mit positivem Zählerstand gelangt man in 1?, der nur dann nach acc weiter-
leitet, wenn der Wert größer als 1 ist.
Um positive von negativen Zählerwerten zu unterscheiden, gibt es A und B. Um zu jeder Zeit
die Null zu erkennen, liegt immer genau ein 0 auf dem Bottom.
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7 Verband der Quasi-Ordnungen 2 + 4 + 3 + 1 = 10 Punkte

Sei X eine beliebige Menge. Wir definieren die Menge QO(X) ⊆ P(X × X) aller Quasi-Ordnungen
auf X, d.h. reflexive und transitive binäre Relationen.

a) Zeigen Sie, dass QO(X) unter beliebigen (potentiell unendlichen) Durchschnitten abgeschlos-
sen ist.

b) Wir definieren den Abschlussoperator cl ∶ P(X × X) → QO(X)wie folgt:

cl(R) = ⋂{A ∈ QO(X) ∣ R ⊆ A}.
Zeigen Sie nun, dass cl folgende Eigenschaften erfüllt:

• cl ist surjektiv, d.h. ∀.

• cl ist monoton.

• cl ist idempotent, d.h. cl(cl(R)) = cl(R).
c) ⟨QO(X),⊆⟩ ist ein vollständiger Verband. Geben Sie dessen Join, Meet, Top und Bottom an.

d) Gegeben sindHasse-DiagrammezweierQuasi-OrdnungenR, S ∈ QO({a, b, c, d, e}). Zeichnen
Sie ein Hasse-Diagramm von R ⊔ S.

a

b c

d e

a

b c

d e
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Vorschlag:

a) SeiM ⊆ QO(X).
Sei x ∈ X. Alle R ∈ M erfüllen x R x. Es folgt x ⋂M x. Da dies für alle x gilt, ist⋂M reflexiv.

Seien x ⋂M y ⋂M z und R ∈ M. Per Definition folgt x R y R z und weil R ∈ QO(X) transitiv
ist, auch x R z. Da dies für alle R gilt, folgt auch x ⋂M z. Und da dies für alle x, y, z gilt, ist⋂M
transitiv.

Da für alle M, ⋂M eine Quasi-Ordnung ist, ist QO(X) unter beliebigen Durchschnitten abge-
schlossen.

b) Sei R ∈ QO(X). Dann ist cl(R) = ⋂{ A ∈ QO(X) ∣ R ⊆ A } = R ∩⋂{ A ∈ QO(X) ∣ R ⊂ A } = R. (Für
jedes S ∈ { A ∈ QO(X) ∣ R ⊂ A } gilt R ∩ S = R.) Also liegt R im Bild von cl. Da dies für alle R gilt,
ist cl surjektiv.

Seien R ⊆ S ⊆ X × X und x cl(R) y. x A y für alle A ∈ { A ∈ QO(X) ∣ R ⊆ A } ⇒ x R y ⇒ x S y
⇒ x A x für alleA ∈ {A ∈ QO(X) ∣ R ⊆ A } ⇒ x cl(S) y. Da dies für alle x, ygilt, folgt cl(R) ⊆ cl(S).
Da dies für alle R, S gilt, ist cl monoton.

Sei R ⊆ X × X. Das Bild cl(R) ist eine Quasi-Ordnung. Wie bereits gezeigt, ist damit
cl(cl(R)) = cl(R). Da dies für alle R gilt, ist cl idempotent.

c) Der Join von M ⊆ QO(X) ist cl(⋃M). Der Meet ist ⋂M. Top ist X × X und Bottom ist
idX = { ⟨x, x⟩ ∣ x ∈ X }.

d) (Hasse-Diagramme sollen alle Beziehungen beschreiben, dürfen aber weder transitive noch
reflexive Kanten zeigen. Wegen der „starken Zusammenhangskomponente” {b, e} sind vier
Diagramme möglich.)

a

b c

d e

a

b c

d e

a

b c

d e

a

b c

d e
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8 Quiz 2 + 2 + 3 + 3 = 10 Punkte

Bestimmen Sie zu jeder der folgenden Aussagen, ob sie wahr oder falsch ist. Geben Sie jeweils
einen kurzen Beweis oder ein Gegenbeispiel an.

a) Sei L1 eine kontextfreie Sprache und L2 regulär. Ist L1 \ L2 immer kontextfrei?

b) Es sei k ∈ N. Die Sprachklasse Regk enthalte genau die Sprachen von DFAmit bis zu k Zustän-
den. Ist Regk unter Vereinigung abgeschlossen?

c) Sei L1 kontextfrei. Haben alle Grammatiken für L1 in Chomsky-Normalform die selbe Anzahl
von nützlichen Nichtterminalen?

d) Sei ⟨D,⊑⟩ ein vollständiger Verband und f ∶ D → P(D) mit f (d) = { d′ ∈ D ∣ d′ ⊑ d }. Damit
enthält f (D) = { f (d) ∣ d ∈ D } ⊂ P(D) die „nach unten geöffneten” Teilmengen von D. Ist⟨f (D),⊆⟩ ein vollständiger Verband?

Vorschlag:

Ja, L1 \ L2 = L1 ∩ L2 ist der Schnitt einer kontextfreien Sprache mit einer regulären Sprache, und
daher wieder kontextfrei.

Nein, {ab} ∈ Reg4 und {ba} ∈ Reg4, aber {ab, ba} ∈ Reg5.

Nein, S → AA ∣ AB,A → a, B → a ist in CNF, aber S → AA,A → a ist sprachäquivalent und hat
weniger Nichtterminale.

Ja, ⊆ ist eine partielle Ordnung und für jede Teilmenge Y ⊆ f (D) gibt es ein X ⊆ D mit Y = f (X),
daher⨆ Y = f (⨆ X) und d

Y = f (d X). Hilfreich kann auch eine Zeichnung wie diese sein:

⊤

f (⊤) = D

x

f (x)
y

f (y)
z

f (z)

⊥
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9 Myhill-Nerode 6 + 3 + 1 = 10 Punkte

Betrachten Sie die folgende Sprache

L = { w ∈ {a, b}∗ ∣ ∣w∣a ≤ ∣w∣b } .
Es wird die folgende Gleichung vermutet:

[an]≡L = { w ∈ {a, b}∗ ∣ ∣w∣a = n + ∣w∣b } .
a) Zeigen Sie, dass für jedes n ∈ N, die Äquivalenzklasse [an]≡L wie oben charakterisiert ist.

b) NutzenSiediesesWissenunddenSatz vonMyhill &Nerode, umzu zeigen, dass Lnicht regulär
ist.

c) Finden Sie einen Repräsentanten für jede weitere, bisher nicht genannte Klasse.

Vorschlag:

a) Sei n ∈ N und Ln = {w ∈ {a, b}∗ ∣ ∣w∣a = n + ∣w∣b }.
Sei w ∈ [an]≡L . Das heißtw ≡L a

n bzw. für alle v ∈ {a, b}∗ giltw.v ∈ L gdw. an.v ∈ L.
Insbesondere für v = bm gilt anbm ∈ L und damit w.bm ∈ L.
Per Definition von L folgt ∣w∣a = ∣w.bn∣a ≤ ∣w.bn∣b = ∣w∣ + n.
Gleichzeitig gilt für n > 0 und v = bn−1 auch anbn−1 /∈ L und somitw.bn−1 /∈ L.
Also folgt ∣w∣a = ∣w.bn−1∣a > ∣w.bn−1∣b = ∣w∣b + n − 1 bzw. ∣w∣a ≥ ∣w∣b + n.
Für n = 0 und n > 0 gilt daher ∣w∣a = n + ∣w∣b.
Damit istw ∈ L′ und als Folge [an] ⊆ Ln gezeigt.

(Alternativ sei v ∈ {a, b}∗.
Es gilt ∣w∣a + ∣v∣a ≤ ∣w∣b + ∣v∣b gdw.w.v ∈ L gdw. an.v ∈ L gdw. n + ∣v∣a ≤ ∣v∣b.
Stellt man beide Ungleichungen um, erhält man ∣w∣a − ∣w∣b ≤ ∣v∣b − ∣v∣a gdw. n ≤ ∣v∣b − ∣v∣a.
Daraus folgt nun ∣w∣a − ∣w∣b = n, also ∣w∣a = n + ∣w∣b.)
Sei w ∈ Ln und v ∈ {a, b}∗.
Es giltw.v ∈ L gdw. n + ∣w∣b + ∣v∣a = ∣w∣a + ∣v∣a = ∣w.v∣a ≤ ∣w.v∣b = ∣w∣b + ∣v∣b
gdw. ∣an.v∣a = n + ∣v∣a ≤ ∣v∣b = ∣an.v∣b.
Da dies für alle v gilt, folgtw ≡L a

n und somitw ∈ [an]≡L .
Für alle n gilt somit [an]≡L = Ln.

b) Es gilt am /≡L an für alle m ≠ n. Damit sind die obigen Klassen paarweise disjunkt. Diese
Teilmenge der Äquivalenzklassen ist unendlich groß, daher ist der Index von ≡L unendlich,
also ist L nach dem Satz von Myhill & Nerode nicht regulär.

c) Für alle n > 0 gibt es noch [bn]≡L ( = {w ∈ {a, b}∗ ∣ ∣w∣a + n = ∣w∣b }).
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10 Purer Pushdown-Automat 4 + 6 = 10 Punkte

Ein purer Pushdown-Automat über einem Alphabeten Σ ist ein 3-Tupel M = ⟨ Γ, α, T ⟩ mit
initialem Stapelinhalt α ∈ Γ∗, mitunter auch ein ganzes Wort, und einer endlichen Transitions-
relation T ⊆ Γ∗×(Σ∪ε)×Γ∗. Diese Automaten sind in der Lagemit einer einzigen Transition ganze
Wörter aus dem Stapel zu entfernen und können daher mehr als nur das Top-Symbol sehen.

Ohne Zustand besteht eine Konfiguration nur aus dem Stapelinhalt Γ∗. Jede Transition⟨x, s, y⟩ ∈ T liest den Buchstaben s aus der Eingabe und ersetzt den exakten oberen Inhalt-
x ∈ Γ∗ mit y ∈ Γ∗, ganz gleich welcher Inhalt β ∈ Γ∗ weiter unten steht. Dadurch entsteht die
Transitionsrelation →M über Konfigurationen. Es gilt β.x

s
−→M β.y für alle ⟨x, s, y⟩ ∈ T und aus

β1
w1
−−→M β2 und β2

w2
−−→M β3 folgt immer β1

w1w2
−−−−→M β3.

EinWortw ∈ Σ∗ wird akzeptiert, sobald es vollständig abgearbeitet undder Stapel geleertwurde.
Die Sprache vonM ist daher L(M) ∶= {w ∈ Σ∗ ∣ α w

−→M ε }.
a) Zeigen Sie, dass jede kontextfreie Sprache durch einen puren Pushdown akzeptiert wird.

b) Zeigen Sie, dass die Sprache L(M) jedes puren Pushdown-AutomatenM kontextfrei ist.
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Vorschlag:

a) (Das größte Problem ist hier, dass man keine Zustandsmenge mehr hat. Aber man kann nut-
zen, dass für jeden PDA nach Tripel-Konstruktion undGreibach-Normalform ein äquivalenter
PDA mit einem Zustand entsteht.)
Sei L ⊆ Σ∗ kontextfrei undM = ⟨{q0}, Σ, Γ, q0,#, δ⟩ ein PDA mit L(M) = L, welcher mit leerem
Stack akzeptiert. Der pure Pushdown M′ = ⟨Γ,#, T⟩ mit T ∶= { ⟨x, s, y⟩ ∣ ⟨q0, x, s, y, q0⟩ ∈ δ }
erfüllt L(M′) = L.

Sei w ∈ Σ∗. Es giltw = s1s2 . . . sn ∈ L(M) (wobei für alle i ≤ n ≤ ∣w∣ gilt: si ∈ Σ ∪ {ε})
gdw.#

s1
−→M β1

s2
−→M ⋯

sn
−→M βn = ε gdw. ⟨q0,#⟩ s1

−→M′ ⟨q0, β1⟩ s2
−→M′ ⋯

sn
−→M′ ⟨q0, βn⟩ = ⟨q0, ε⟩

gdw.w ∈ L(M′). Also gilt Sprachgleichheit.

b) (Zwei Probleme: Der initiale Inhalt und mehrere Pop’s pro Transition.)
SeiM = ⟨Γ, α, T⟩ ein purer Pushdown und $ /∈ Γ.
Der gewöhnliche PushdownM′=⟨Q, Σ, Γ∪{$},q0,{q1},δ⟩mit Q={q0,q1}∪{ ⟨x, y⟩ ∣ ⟨x.x′, s, y⟩∈T }
und folgendem δ erfüllt L(M′) = L(M): q0

ε
−−−→
$/α q1 (für Probleme 1 und 3),

q1
s

−−→
ε/ε ⟨x, y⟩ und ⟨ε, y⟩ ε

−−→
ε/y q1 für alle ⟨x, s, y⟩ ∈ T,

sowie ⟨β.x, y⟩ ε
−−→
x/ε ⟨β, y⟩ für alle x ∈ Γ und ⟨β.x.x′, s, y⟩ ∈ T (für Problem 2).

Sei w = s1 . . . sn ∈ L(M)mit Transitionsfolge α = β0
s1
−→M . . .

sn
−→M βn = ε und i < n.

Sei dazu ⟨xi, si, yi⟩ ∈ T die passende Transition und βi = β.xi.
Es gibt ⟨q1, βi⟩ wi

−−→M′ ⟨⟨xi, yi⟩, βi⟩ ε
−→M′ ⟨⟨ε, yi⟩, β⟩ ε

−→M′ ⟨q1, β.yi⟩ = ⟨q1, βi+1⟩.
Da dies für alle i gilt, folgt zusammen ⟨q0, $⟩ ε

−→ ⟨q1, α⟩ s1
−→ ⋯

sn
−→ ⟨q1, ε⟩ und damit w ∈ L(M′).

Sei w ∈ L(M′) mit Transitionsfolge ⟨q0, $⟩ ε
−→ ⟨q1, α⟩ s1

−→ ⋯
sn
−→ ⟨q1, ε⟩, die nach Konstruktion

immer so existiert und q1 n-mal wiederholt. Jedes Fragment ⟨q1, βi⟩ si
−→M′ ⟨q1, βi+1⟩ entstammt

dabei einer einzelnen Transition ⟨x, si, y⟩ ∈ T. Darum gilt auch βi
si
−→M βi+1 für alle i. Es folgt

α = β0
s1
−→M ⋯

sn
−→ βn = ε, alsow ∈ L(M).


