
Theoretical Computer Science
Exercise Sheet 6Prof. Dr. Roland Meyer TU Braunschweig

René Maseli Winter Semester 2025/26

Release: 2026-01-17 Due: 2026-01-29 23:56

Homework Exercise 6.1: The syntax of programming languages as grammar [4 points]
The syntax of a programming language is usually formulated with a context-free grammar (of-
tentimes expressed in EBNF or a syntax diagram). In this exercise you will construct a grammar
which describes the syntax of a simple programming language.

a) [1 point] Give a context-free grammar G such that its language L(G) consists of the set of
syntactically correct programs as described below.

• Use the terminals Σ ∶= {id, num, ;, op, =, (, ), if, else, while, end, break}.
• An expression consists of variables, numbers and parenthesized binary operations,

e.g. id, (id op num), (id op id), (id op (id op num)), (num op (num op num)).

• A program is either
– empty
– a variable definition (e.g. id=(id op num))
– a conditional branching (e.g. if id id=(id op id) else id=id end)
– a loop (e.g. while (id op num) id=(id op num) end)
– a break break but only inside a loop
– a ;-delimited sequence of programs (e.g. id=num ; id=num)

b) [1 point] Derive the following program from your grammar in part a) starting from the initial
symbol. Additionally to the start symbol and the resulting word, give at least three interme-
diate words of your derivation sequence.
while(id op id) id=(id op num); if(id op id) break else id=(id op num) end end

c) [1 point] Modify G into another grammar G′, such that the programming language prohibits
obvious dead code: break jumps out of the current program sequence, so it should not pre-
ceed any other program instruction. This also applies to conditional branches, if both sub-
programs end with break. This can even nest indefinetly.

d) [1 point]ModifyG to another grammarG′, such that its programming language supports func-
tions.
A function starts with the keyword fn, a function name and a ,-delimited list of parameters
(potentially empty), followed by the function body (a program) and the keyword end. Inside
the function body, the return statement (i.e. return (x*x)) may appear.
Function calls may be used as statements and as expressions in the program.
For example, the following word should be a valid program:
fn id(id) id=num; return id(id,id) end;
fn id(id,id) if(id op id) return id else return id end end;
id(num);



Homework Exercise 6.2: CFG, CNF, CYK [5 points]
Let G = ⟨N, Σ, S, P⟩ a context-free grammar. You eliminate unit rules by computing the least
fixed point of the following transformation F ∶ P(N × (N ∪ Σ)∗) → P(N × (N ∪ Σ)∗) with
F(X)∶=P ∪ { X → β ∣ (X → Y), (Y → β) ∈ X }.
a) [2 points] Let G = ⟨N, Σ, S, P⟩ context-free. Show that the grammar G′′ = ⟨N, Σ, S, P′′⟩ without

unit rules, i.e. with P′′∶= lfp(F) \ { X → Y ∣ X, Y ∈ N }, fulfills the equation L(G) = L(G′′) .
b) [1 point] Consider the following grammar Gb. Remove at first all unreachable non-terminals,

then all unproductivenon-terminals andwritedown the resultinggrammar. Are all remaining
non-terminals useful?

S → XY ∣ bVc T → cTb ∣ ZaZ ∣ V U → a ∣ bWb V → a ∣ VVV ∣ VXV ∣ ε
W → cTUb ∣ ZbZ ∣ V X → aZb ∣ cX Y → b ∣ TV Z → bX ∣ XX ∣ aZ

TheCocke-Younger-Kasami-algorithm (CYK algorithm) assumes as input a context-free grammar
(CFG) in Chomsky normal form (CNF). Thismeans that all production rules are of the form X → YZ
(for non-terminals Y and Z) or of the form X → a (for a terminal a).

c) [1 point] Use the procedure introduced in the lecture to construct a grammarG′
c in CNF, which

satisfies L(G′
c) = L(Gc) \ {ε} . The grammar Gc = ⟨{S, X, Y}, {a, b, c}, Pc, S⟩ shall be defined by

the following productions:

S → XcX X → a ∣ YX ∣ YbYb Y → bc ∣ X ∣ XX
d) [1 point] Use the CYK Algorithm to check if the word bbacbbc can be produced by the follow-

ing grammar Gd ∶= ⟨{S, T,U,A, B, C}, {a, b, c}, Pd, S⟩ :
S → BA ∣ BC T → CT ∣ BS U → TA

A → a ∣ AC ∣ BB B → b ∣ UU C → c ∣ CT
Homework Exercise 6.3: Pushdown automata [4 points]
Construct pushdown automata for the following language and state which acceptance condi-
tion (empty stack or final states) you assume.
Remark: Note that whenever multiple symbols are pushed, the last gets to be the new top.

L ∶= {w ∈ (bab)∗ ⊔⊔ (ac)∗ ∣∀x, y ∈ {a, b, c}∗ ∶ w = x.y ⇒ ∣x∣b ≤ ∣x∣c }
Hereby, ⊔⊔ denotes the ridge shuffle presented in Tutorium 3. The second constraint describes,
that each prefix of an accepted word shall contain at most as many b’s as c’s.

a) [2 points] Draw the state chart of a pushdown automaton that accepts L exactly.

b) [2 points] Describe your automaton in three sentences.



Homework Exercise 6.4: Triple Construction [3 points]
Consider the Pushdown Automaton M = ⟨{s, t, u, v}, {a, b}, {A, B}, s,A, δ⟩, with empty-stack ac-
ceptance and whose transition relation δ is given by the following diagram.

M sA

t

v

u

a
A/A

b
A/AA

a
B/BB

b

B/BA aA/AB
b
A/ε

b
A/ε

a
B/ε b

A/ε
a) [1 point] Consider just the states on their own, to answer those two questions. Which two

states are befitting destinations q ∈ Q in triples like ⟨p, s, q⟩? Which five pairs of p ∈ Q and
s ∈ Γ are enabled?

b) [2 points] Find a context-free grammar G with L(M) = L(G), by using the triple construction
from the lecture.

Homework Exercise 6.5: Pumping-Lemma for context-free languages [4 points]
Make use of the Pumping Lemma, to show, that the following languages are not context-free:

a) [2 points] L1 = { anba2nba3nba4n ∣ n ∈ N } ⊆ {a, b}∗ .
b) [2 points] L2 = { u#v#w ∣ u, v,w ∈ {a, b}∗ and (u = w or v = w) } ⊆ {a, b,#}∗ .
Tutorial Exercise 6.6:
Given the context-free grammar G = ⟨{S,W, X}, {a, b}, P, S⟩with the following productions

S → ε ∣ bW W → a ∣ XXb X → SS ∣ ab .
a) Use the procedure introduced in the lecture to construct a grammarGa without ε productions,

which satisfies L(Ga) = L(G) \ {ε}.
b) Use Ga and the procedure from the lecture to construct a grammar Gb in CNF with

L(Gb) = L(G) \ {ε}.
c) Use Gb and the CYK algorithm to decide whether the word babba is produced by G.

d) Use Gb and the CYK algorithm to decide whether bbababb ∈ L(G) is true.



Consider the following grammar Ge.

S → UVab ∣ bU U → aV ∣ aUSc V → ε ∣ bSc ∣ U
e) Use the procedure from the lecture to construct a grammar G′

e in CNF, that satisfies
L(G′

e) = L(Ge) \ {ε} .
f ) Use G′

e and the CYK algorithm to decide whether the word aaabca is produced by Ge.

g) Use the CYK algorithm to decide, whether the words babaa and baba are produced by the
grammar with the following productions.

S → AB ∣ BC A → a ∣ CC B → b ∣ BA C → a ∣ AB
Tutorial Exercise 6.7:
Construct pushdown automata for the following languages and state which acceptance condi-
tion (empty stack or final states) you assume.

a) L1 = {w ∈ {a, b, (, )}∗ ∣w is correctly parenthesized }.
b) L2 = {w ∈ {a, b, (, )}∗ ∣ ∣w∣a ≤ 2∣w∣b }.
c) Can you construct a PDA, which accepts L1 ∩ L2?

If possible, briefly explain its functionality. If not, what is the intuitive problem here?

L1 ∩ L2 = { w ∈ {a, b, (, )}∗ ∣ ∣w∣a ≤ 2∣w∣b andw is correctly parenthesized }
JavaScript Object Notation (JSON) is a description language for structured collections of serializ-
able data, which is applied in numerous web technologies. Alongside some primitive datatypes,
they can also express lists (arrays) and associative containers (objects).

d) Construct pushdown automata M for the following language L and state which acceptance
condition (empty stack or final states) you assume. Do not just give context-free grammars.
You do not need to prove the correctness of your construction.
Consider a simplified variant of JSON over {a, b, {, }}: ,Objects’ start and end with fitting curly
braces ,{’ and ,}’. Inside, there is an arbitrary number of key-value pairs. Keys are words of
a.b∗ and may not be unique inside the same object. Values are either words of a.b∗, or again
objects. The automatonM shall accept exactly the well-formed objects.
For example, {abbababb{}} ∈ L and {abb{ab{aba}a{abbab}}} ∈ L have to be accepted, but
neither {ababab} /∈ L, abb{aa} /∈ L nor {ab{} /∈ L.



e) Describe the behavior of the following pushdown automaton
N = ⟨{q0, q1, q2, q3}, {s, {, }, ,, [, ]}, {C,A,O, S}, q0, S, δ⟩, with empty-stack acceptance, by
explaining the role of all states and stack symbols with one sentence, each.

q0N q1

q2

q3
s
S/ε {

S/O [
S/A

}
O/ε,

C/ε
]

A/εs

A/AC
{

A/ACO[
A/ACA

εC/ε
s

O/O
]
A/ε

}O/ε
s

O/OC[
O/OCA{

O/OCO

Tutorial Exercise 6.8:
Consider the Pushdown AutomatonM = ⟨{s, t, u}, {a, b}, {A, B}, s,A, δ⟩, with empty-stack accep-
tance and whose transition relation δ is given by the following diagram.

M s
A

u

t

a

A/AB a
B/ε

b
B/BAB

a
B/ε

b
A/ε

a) Consider just the states on their own, to answer those two questions. Which states are befit-
ting destinations q ∈ Q in triples like ⟨p, s, q⟩? Which pairs of p ∈ Q and s ∈ Γ are enabled?

b) Find a context-free grammar G with L(M) = L(G), by using the triple construction from the
lecture.



Tutorial Exercise 6.9:
Given a left-linear grammar G = ⟨Σ,N, S, P⟩ (with at most one non-terminal in the prefix of right
sides of each production), let AG = ⟨Q, q0 →,QF⟩ an NFA with ε-transitions. It consists of ‘original’
states N ⊂ Q, a new initial state q0 ∈ Q, sole final state QF = {S} and transitions

Y
w1
−−→ ⋯

wn
−−→ X iff X → Yw1 . . .wn ∈ P

q0
w1
−−→ ⋯

wn
−−→ X iff X → w1 . . .wn ∈ P

over additional new states, if needed.

Prove, that L(AG) = L(G) holds.
Tutorial Exercise 6.10:
Transform the following context-free grammar G into GNF.

S → WS ∣ UU U → b ∣ c ∣ UW V → c W → a ∣ VW ∣ VU
a) For each pair of non-terminal X ∈ N and terminal s ∈ Σ, give a regular expression for the

language LX,s ⊆ N∗ of the suffixes of terms α ∈ N∗ which are produced by the strong left
derivation: X ⇒

∗
SL sα.

b) Find for all non-empty languages LX,s a right-linear grammarGX,s over terminal symbolsN and
with initial symbol TX,s. Create new non-terminals, if required.

c) Transform the union of G and all your grammars into pseudo-GNF, by letting this new gram-
mar G′ guess each next terminal symbol, like has been shown in the lecture. Ensure, that
L(G′) = L(G) holds. A proof is not necessary. Try to avoid useless non-terminals.

d) Eliminate all ε-productions from G′, to form a grammar G′′ in GNF, which satisfies
L(G′′) = L(G′) \ {ε} .

Now consider the following grammar G in CNF with

S → d ∣ TU
T → a ∣ b ∣ UT
U → c ∣ d ∣ TS ∣ US .

LX,s S T U

a U ∪ S(S ∪ TS)∗TU ε ∪ S(S ∪ TS)∗T S(S ∪ TS)∗
b U ∪ S(S ∪ TS)∗TU ε ∪ S(S ∪ TS)∗T S(S ∪ TS)∗
c (S ∪ TS)∗TU (S ∪ TS)∗T (S ∪ TS)∗
d ε ∪ (S ∪ TS)∗TU (S ∪ TS)∗T (S ∪ TS)∗

e) Use the languages of side-products of the strong left derivation from the table, to construct
a grammar G′ in GNF with L(G′) = L(G) .


