Theoretische Informatik 1

Prof. Dr. Roland Meyer UbunngIatt 6 TU Braunschweig
René Maseli Wintersemester 2025/26
Ausgabe: 2026-01-17 Abgabe: 2026-01-29 23:56

Hausaufgabe 6.1: Die Syntax einer Programmiersprache als Grammatik [4 Punkte]

Die Syntax von Programmiersprachen ist Ublicherweise als kontextfreie Grammatik (oft
dargestellt als EBNF oder Syntaxdiagramm) definiert. In dieser Aufgabe sollen Sie eine Gram-
matik konstruieren, welche die Syntax einer einfachen Programmiersprache beschreibt.

a) [1 Punkt] Geben Sie eine kontextfreie Grammatik G an, so dass £(G) die Menge der gemal3
der weiter unten erklarten Regeln syntaktisch korrekten Programme ist.

« Verwenden Sie 3 := {id, num, ;,0p,=, (,), if else,while, end, break}.

+ Ein Ausdruck besteht aus Variablen, Zahlen und geklammerte binaren Operationen,
z.B.id, (id op num), (id op id), (id op (id op num)), (num op (num op num)).
+ Ein Programm ist entweder
- leer
- eine Variablendefinition (z.B. id=(id op num))
- eine bedingte Verzweigung (z.B. if id id=(id op id) else id=id end)
- eine Schleife (zB.while (id op num) id=(id op num) end)
- ein Ausbruch break nur innerhalb einer Schleife
- eine durch ; getrennte Verkettung von Programmen (z.B. id=num ; id=num)

b) [1 Punkt] Geben Sie eine Ableitung in Ihrer Grammatik aus Teil a) vom Startsymbol zum fol-
genden Programm an. Geben Sie auller dem Startsymbol und dem Wort, mindestens drei
Satzformen aus lhrer Ableitungssequenz an.
while(id op id) id=(id op num); if(id op id) break else id=(id op num) end end

¢) [1 Punkt] Modifizieren Sie G zu einer weiteren Grammatik G, sodass die Programmiersprache
offensichtlich unerreichbaren Code nicht erlaubt: break springt aus der Programmsequenz
heraus. Hinter so einer Anweisung darf sich kein Code befinden. Auch Verzweigung zédhlen
dazu, falls beide Kontroll-Pfade mit break enden. Das kann sich sogar beliebig verschachteln.

d) [1 Punkt] Modifizieren Sie G aus Teil a) zu einer weiteren Grammatik G', sodass die Pro-
grammiersprache Funktionen unterstiitzt. Eine Funktion beginnt mit dem Schlisselwort
fn und einem Funktionsnamen, gefolgt von einer durch , getrennten Liste von Param-
etern (potentiell leer), dann gefolgt von einem Funktionsrumpf (einem Programm) und
abgeschlossen vom Schliisselwort end. Im Funktionsrumpf darf die Rickkehr-Anweisung
(z.B.return (id op id)) benutzt werden. Funktionsaufrufe diirfen als Anweisungen und

Ausdriicke benutzt werden. Beispielsweise soll folgendes Wort ein valides Programm sein:
fn id(id) id=num; return id(id,id) end;

fn id(id,id) if(id op id) return id else return id end end;

id(num);

Hausaufgabe 6.2: CFG, CNF, CYK [5 Punkte]

SeiG = (N, X, S, P) eine kontextfreie Grammatik. Um Unit-Regeln zu eliminieren, berechnet man
den kleinster Fixpunkt der folgenden Transformation F : P(N x (NU X)*) = P(N x (N U £)*) mit
F(X):=Pu{X->B|(X->Y),(Y>B)eX}.

a) [2 Punkte] Sei G = (N, %, S, P) kontextfrei. Zeigen Sie, dass die Grammatik G" = (N, %, S, P")
ohne Unit-Produktionen, d.h. mit P":=Ifp(F) \ { X = Y| X, Y € N }, die Gleichung £(G) = L(G")
erfallt.

b) [1 Punkt] Betrachten Sie die folgende Grammatik G,,. Entfernen Sie zuerst alle unerreichbaren
Nichtterminale, anschlieBend alle unproduktiven Nichtterminale und geben Sie die so entste-
hende Grammatik an. Sind alle Gbrigen Nichtterminale nitzlich?

S-> XY |bVc T-cTb|Zaz |V U-a|bWb Voal| VWV | VXV | e
W- cTUb | ZbZ |V X->azZb| X Y>b|TV Z->bX|XX|azZ

Der Cocke-Younger-Kasami-Algorithmus (CYK-Algorithmus) erwartet als Eingabe eine kon-

textfreie Grammatik (CFG) in Chomsky-Normalform (CNF). Dies bedeutet, dass alle Produktion-

sregeln von der Form X — YZ (fir Nichtterminale Y und 2) oder von der Form X — a (fiir ein

Terminal a) sind.

) [1 Punkt] Verwenden Sie das Verfahren aus der Vorlesung, um eine Grammatik G in CNF zu
berechnen, die £(G,) = L(G.) \ {&} erfullt. Die Grammatik G. = ({S,X, Y}, {a, b, c},P.,S) sei
dabei durch die folgenden Produktionen definiert:

S - XcX X-alYX|YbYb Y - be | X | XX

d) [1 Punkt] Nutzen Sie den CYK-Algorithmus, um zu priifen, ob das Wort bbacbbc von der fol-

genden Grammatik G4 := ({S, T, U, A, B, C},{a, b, c}, P4, S) erzeugt werden kann:
S—>BA|BC T-CT|BS U->TA
A-al|AC|BB B-b|UU C-oc|CT
Hausaufgabe 6.3: Pushdown-Automaten [4 Punkte]
Konstruieren Sie Pushdown-Automaten fiir die folgende Sprache und geben Sie jeweils an,

welche Akzeptanzbedingung Sie annehmen (leerer Stack oder Finalzustande).
Hinweis: Beachten Sie, dass beim Pushen mehrerer Symbole das Letzte zum neuen Top wird.

L:={w e (bab)" LLi (ac)" |Vx,y € {a,b,c}" : w=xy=>|x|, < |x|. }

Dabei bezeichne LI den Shuffle, der in groBen Ubung 3 vorgestellt wurde. Die zweite Bedingung
beschreibt, dass jeder Prafix eines akzeptierten Wortes héchstens so viele b’s wie ¢’s enthalten
soll.

a) [2 Punkte] Zeichnen Sie den Zustandsgraphen eines PDAs, der L genau akzeptiert.

b) [2 Punkte] Erklaren Sie Ihren Automaten in drei Satzen.

Hausaufgabe 6.4: Tripel-Konstruktion [3 Punkte]
Betrachten Sie den Pushdown-Automaten M = ({s, t, u, v}, {a, b}, {A, B}, s, A,), der mit leerem
Stack akzeptiert und dessen Transitionsrelation 6 durch das folgende Diagramm definiert ist.

a) [1 Punkt] Betrachten Sie nur die einzelnen Zustande, um die folgenden beiden Fragen zu
beantworten. Welche zwei Zustande kommen als Ziel g € Q eines Tripels (p, s, q) in Frage?
Welche fiinf Paare aus p € Qund s € I kdnnten auftauchen?

b) [2 Punkte] Verwenden Sie die Tripelkonstruktion aus der Vorlesung, um eine kontextfreie
Grammatik G mit £(M) = £(G) zu bestimmen.

Hausaufgabe 6.5: Pumping-Lemma fiir kontextfreie Sprachen [4 Punkte]

Nutzen Sie das Pumping-Lemma, um zu zeigen, dass die folgende Sprachen nicht kontextfrei ist:
a) [2 Punkte] L, = {a"ba’"ba’"ba™ |n e N} ¢ {a, b}" .

b) [2 Punktel L, = { u#v#w |u,v,w € {a,b} und (u=woderv=w)} c{a,b,#}*.

Ubungsaufgabe 6.6:
Betrachten Sie die kontextfreie Grammatik G = ({S, W, X}, {a, b}, P, S) mit den folgenden Regeln

S—>¢e| bW W - a| XXb X—->SS|ab.

a) Verwenden Sie das Verfahren aus der Vorlesung, um eine Grammatik G, ohne e-Produktionen
zu berechnen, die £(G,) = £L(G) \ {&} erfiillt.

b) Verwenden Sie G, und das Verfahren aus der Vorlesung, um eine Grammatik G, in CNF zu
berechnen, welche L£(G,) = L(G) \ {&} erfillt.

¢) Benutzen Sie G, und den CYK-Algorithmus, um zu entscheiden, ob das Wort babba von G
erzeugt wird.

d) Entscheiden Sie mit Hilfe von G, und des CYK-Algorithmus, ob bbababb € L(G) gilt.

Betrachten Sie die folgende Grammatik G..

S - UVab | bU U - aV | aUSc V->e|bSc|U

e) Verwenden Sie das Verfahren aus der Vorlesung, um eine Grammatik G, in CNF zu berechnen,
die £(G,) = L(G.) \ {g} erfullt.

f) Benutzen Sie G, und den CYK-Algorithmus, um zu entscheiden, ob das Wort aaabca von G,
erzeugt wird.

g) Entscheiden Sie mit Hilfe des CYK-Algorithmus, ob die Worter babaa und baba von der Gram-
matik mit den folgenden Produktionen erzeugt wird.

S—> AB| BC A-alCC B—-b|BA C—-alAB

Ubungsaufgabe 6.7:
Konstruieren Sie Pushdown-Automaten fir folgende Sprachen und geben Sie jeweils an, welche
Akzeptanzbedingung Sie annehmen (leerer Stack oder Finalzustande).

a) Ly ={we{a,b,(,)} | wist korrekt geklammert }.
b) L ={we{ab, ()} |Iwl=2|wl}.

c) Konnen Sie auch einen PDA bauen, der L, n L, akzeptiert?
Falls ja, erklaren Sie kurz die Funktionsweise. Falls nein, was ist intuitiv das Problem hier?

Linl,={we{ab,(,)}"||wl, = 2|w|y, und wist korrekt geklammert }

JavaScript Object Notation (JSON) ist eine Beschreibungssprache fiir strukturierte Sammlungen
serialisierbarer Daten, die in vielen Web-Technologien zum Einsatz kommt. Dabei werden neben
primitiven Datentypen auch Listen (Arrays) und Assoziative Container (Objekte) ausgedruickt.

d) Konstruieren Sie Pushdown-Automaten M fir die folgende Sprache L und geben Sie jeweils
an, welche Akzeptanzbedingung Sie annehmen (leerer Stack oder Finalzustande). Es reicht
nicht, nur eine kontextfreie Grammatik anzugeben. Ein Beweis zur Korrektheit wird nicht
bendtigt.

Wir betrachten eine vereinfachte Variante von JSON tiber dem Alphabet {a, b, {, }}: ,Objekte’
sind zwischen geschweiften Klammern ,{"und,}’ eingeschlossen. Darin befinden sich beliebig
viele Schliissel-Wert-Paare. Schliissel sind Worte aus a.b™ und miissen innerhalb eines Objekts
nicht eindeutig sein. Werte sind entweder Worte aus a.b™, oder wiederum Objekte. Der Au-
tomat M soll ausschlieB8lich wohlgeformte Objekte akzeptieren.

Zum Beispiel sollen {abbababb{}} € L und {abb{ab{aba}a{abbab}}} € L akzeptiert werden,
aber nicht {ababab} ¢ L, abb{aa} ¢ L oder {ab{} ¢ L.

e) Beschreiben Sie die Funktionsweise des folgenden Pushdown-Automaten
N = <{q07q1aq2’q3}7{57{7}7a7[7]}7{C7A707 S}7q07576>l We|Cher mit leerem StaCk akzep_
tiert, indem Sie die Rolle jedes Zustandes und jedes Stack-Symbols mit jeweils einem Satz

erklaren.

Ubungsaufgabe 6.8:
Betrachten Sie den Pushdown-Automaten M = ({s, t,u},{a, b}, {A, B},s, A,), der mit leerem
Stack akzeptiert und dessen Transitionsrelation 6 dul;ch das folgende Diagramm definiert ist.

a) Betrachten Sie nur die einzelnen Zustande, um die folgenden beiden Fragen zu beantworten.
Welche Zustande kommen als Ziel g € Q eines Tripels (p, s, q) in Frage? Welche Paare aus
p € Qund s € I kdnnten auftauchen?

b) Verwenden Sie die Tripelkonstruktion aus der Vorlesung, um eine kontextfreie Grammatik G

mit £(M) = L(G) zu bestimmen.

Ubungsaufgabe 6.9:

Gegeben eine linkslineare Grammatik G = (X, N, S, P) (mit jeweils hochstens einem Nichtterminal
als Prafix auf rechten Seiten von Produktionen), sei A; = (Q, g, =, Q¢) ein NFA mit e-Ubergangen.
Dieser besteht aus ,originalen” Zustanden N C Q, einen neuen Startzustand g, € Q, einzigem
Finalzustand Qr = {S} und Transitionen

Yﬂw--ngdw.Xe Yw,...w, €P

qoﬂ...ﬂngw.X—>W1.--Wn€P

Uber weiteren neuen Zustanden, falls gebraucht.
Beweisen Sie, dass L(Ag) = £L(G) gilt.

Ubungsaufgabe 6.10:
Uberfiihren Sie die folgende Grammatik G in die GNF.

S>WS|uU Usb|c|uw Vo W-alVW| W

a) Geben Sie fir jedes Paar aus Nichtterminal X € N und Terminal s € X einen reguldren Aus-
druck fiir die Sprache Ly, < N* der Reste von Satzformen a € N* an, die durch die starke
Linksableitung erzeugt werden: X =5 sa.

b) Finden Siefiralle nichtleeren Sprachen Ly ; eine rechts-lineare Grammatik Gy ; ber Terminale
N und Startsymbol Ty ;. Erzeugen Sie neue Nichtterminale, falls erforderlich.

¢) Uberfiihren Sie nun die Vereinigung von G und all diesen Grammatiken in Pseudo-GNF,
indem Sie diese neue Grammatik G' jedes Terminalsymbol erraten lassen, wie in der Vor-
lesung gezeigt. Sie missen nicht beweisen, aber sich daran halten, dass £(G') = £(G) gilt.
Beschranken Sie sich auf die niitzlichen Nichtterminale.

d) Eliminieren Sie die e-Produktionen aus G', sodass nun eine Grammatik G" in GNF entsteht, die
L(G") = L(G) \ {e} erfiillt.

Betrachten Sie nun die folgende Grammatik G in CNF mit

Lys S T U
S—>d|TU UUS(SUTS) TU | eUS(SUTS)*T | S(SUTS)*
T-alb|UT UUS(SUTS)*TU | euS(SUTS)*T | S(SuTS)*

(SuTS)'TU (SUTS)'T (SuTS)*
eu(SUTS)'TU (SUTS)'T (SuTs)*

Usc|d|TS|US.

Q| N | TS| Q

e) Nutzen Sie die Sprachen der Nebenprodukte der starken Linksableitung aus der Tabelle, um
eine Grammatik G' in GNF mit £(G') = £(G) zu konstruieren.

