
Theoretische Informatik 1
Übungsblatt 6Prof. Dr. Roland Meyer TU Braunschweig

René Maseli Wintersemester 2025/26

Ausgabe: 2026-01-17 Abgabe: 2026-01-29 23:56

Hausaufgabe 6.1: Die Syntax einer Programmiersprache als Grammatik [4 Punkte]
Die Syntax von Programmiersprachen ist üblicherweise als kontextfreie Grammatik (oft
dargestellt als EBNF oder Syntaxdiagramm) definiert. In dieser Aufgabe sollen Sie eine Gram-
matik konstruieren, welche die Syntax einer einfachen Programmiersprache beschreibt.

a) [1 Punkt] Geben Sie eine kontextfreie Grammatik G an, so dass L(G) die Menge der gemäß
der weiter unten erklärten Regeln syntaktisch korrekten Programme ist.

• Verwenden Sie Σ ∶= {id, num, ;, op, =, (, ), if, else, while, end, break}.
• Ein Ausdruck besteht aus Variablen, Zahlen und geklammerte binären Operationen,

z.B. id, (id op num), (id op id), (id op (id op num)), (num op (num op num)).

• Ein Programm ist entweder
– leer
– eine Variablendefinition (z.B. id=(id op num))
– eine bedingte Verzweigung (z.B. if id id=(id op id) else id=id end)
– eine Schleife (z.B. while (id op num) id=(id op num) end)
– ein Ausbruch break nur innerhalb einer Schleife
– eine durch ; getrennte Verkettung von Programmen (z.B. id=num ; id=num)

b) [1 Punkt] Geben Sie eine Ableitung in Ihrer Grammatik aus Teil a) vom Startsymbol zum fol-
genden Programm an. Geben Sie außer dem Startsymbol und dem Wort, mindestens drei
Satzformen aus Ihrer Ableitungssequenz an.
while(id op id) id=(id op num); if(id op id) break else id=(id op num) end end

c) [1 Punkt] Modifizieren Sie G zu einer weiteren Grammatik G′, sodass die Programmiersprache
offensichtlich unerreichbaren Code nicht erlaubt: break springt aus der Programmsequenz
heraus. Hinter so einer Anweisung darf sich kein Code befinden. Auch Verzweigung zählen
dazu, falls beide Kontroll-Pfademit break enden. Das kann sich sogar beliebig verschachteln.

d) [1 Punkt] Modifizieren Sie G aus Teil a) zu einer weiteren Grammatik G′, sodass die Pro-
grammiersprache Funktionen unterstützt. Eine Funktion beginnt mit dem Schlüsselwort
fn und einem Funktionsnamen, gefolgt von einer durch , getrennten Liste von Param-
etern (potentiell leer), dann gefolgt von einem Funktionsrumpf (einem Programm) und
abgeschlossen vom Schlüsselwort end. Im Funktionsrumpf darf die Rückkehr-Anweisung
(z.B. return (id op id)) benutzt werden. Funktionsaufrufe dürfen als Anweisungen und
Ausdrücke benutzt werden. Beispielsweise soll folgendes Wort ein valides Programm sein:
fn id(id) id=num; return id(id,id) end;
fn id(id,id) if(id op id) return id else return id end end;
id(num);



Hausaufgabe 6.2: CFG, CNF, CYK [5 Punkte]
Sei G = ⟨N, Σ, S, P⟩ eine kontextfreie Grammatik. UmUnit-Regeln zu eliminieren, berechnet man
den kleinster Fixpunkt der folgenden Transformation F ∶ P(N × (N ∪ Σ)∗) → P(N × (N ∪ Σ)∗)mit
F(X)∶=P ∪ { X → β ∣ (X → Y), (Y → β) ∈ X }.
a) [2 Punkte] Sei G = ⟨N, Σ, S, P⟩ kontextfrei. Zeigen Sie, dass die Grammatik G′′ = ⟨N, Σ, S, P′′⟩

ohne Unit-Produktionen, d.h. mit P′′∶= lfp(F) \ { X → Y ∣ X, Y ∈ N }, die Gleichung L(G) = L(G′′)
erfüllt.

b) [1 Punkt] Betrachten Sie die folgendeGrammatikGb. Entfernen Sie zuerst alle unerreichbaren
Nichtterminale, anschließendalle unproduktivenNichtterminaleundgebenSiedie soentste-
hende Grammatik an. Sind alle übrigen Nichtterminale nützlich?

S → XY ∣ bVc T → cTb ∣ ZaZ ∣ V U → a ∣ bWb V → a ∣ VVV ∣ VXV ∣ ε
W → cTUb ∣ ZbZ ∣ V X → aZb ∣ cX Y → b ∣ TV Z → bX ∣ XX ∣ aZ

Der Cocke-Younger-Kasami-Algorithmus (CYK-Algorithmus) erwartet als Eingabe eine kon-
textfreie Grammatik (CFG) in Chomsky-Normalform (CNF). Dies bedeutet, dass alle Produktion-
sregeln von der Form X → YZ (für Nichtterminale Y und Z) oder von der Form X → a (für ein
Terminal a) sind.

c) [1 Punkt] Verwenden Sie das Verfahren aus der Vorlesung, um eine Grammatik G′
c in CNF zu

berechnen, die L(G′
c) = L(Gc) \ {ε} erfüllt. Die Grammatik Gc = ⟨{S, X, Y}, {a, b, c}, Pc, S⟩ sei

dabei durch die folgenden Produktionen definiert:

S → XcX X → a ∣ YX ∣ YbYb Y → bc ∣ X ∣ XX
d) [1 Punkt] Nutzen Sie den CYK-Algorithmus, um zu prüfen, ob das Wort bbacbbc von der fol-

genden Grammatik Gd ∶= ⟨{S, T,U,A, B, C}, {a, b, c}, Pd, S⟩ erzeugt werden kann:

S → BA ∣ BC T → CT ∣ BS U → TA

A → a ∣ AC ∣ BB B → b ∣ UU C → c ∣ CT
Hausaufgabe 6.3: Pushdown-Automaten [4 Punkte]
Konstruieren Sie Pushdown-Automaten für die folgende Sprache und geben Sie jeweils an,
welche Akzeptanzbedingung Sie annehmen (leerer Stack oder Finalzustände).
Hinweis: Beachten Sie, dass beim Pushen mehrerer Symbole das Letzte zum neuen Top wird.

L ∶= {w ∈ (bab)∗ ⊔⊔ (ac)∗ ∣∀x, y ∈ {a, b, c}∗ ∶ w = x.y ⇒ ∣x∣b ≤ ∣x∣c }
Dabei bezeichne⊔⊔denShuffle, der ingroßenÜbung3vorgestelltwurde. Die zweiteBedingung
beschreibt, dass jeder Präfix eines akzeptierten Wortes höchstens so viele b’s wie c’s enthalten
soll.

a) [2 Punkte] Zeichnen Sie den Zustandsgraphen eines PDAs, der L genau akzeptiert.

b) [2 Punkte] Erklären Sie Ihren Automaten in drei Sätzen.



Hausaufgabe 6.4: Tripel-Konstruktion [3 Punkte]
Betrachten Sie den Pushdown-Automaten M = ⟨{s, t, u, v}, {a, b}, {A, B}, s,A, δ⟩, der mit leerem
Stack akzeptiert und dessen Transitionsrelation δ durch das folgende Diagramm definiert ist.

M sA

t

v

u

a
A/A

b
A/AA

a
B/BB

b

B/BA aA/AB
b
A/ε

b
A/ε

a
B/ε b

A/ε
a) [1 Punkt] Betrachten Sie nur die einzelnen Zustände, um die folgenden beiden Fragen zu

beantworten. Welche zwei Zustände kommen als Ziel q ∈ Q eines Tripels ⟨p, s, q⟩ in Frage?
Welche fünf Paare aus p ∈ Q und s ∈ Γ könnten auftauchen?

b) [2 Punkte] Verwenden Sie die Tripelkonstruktion aus der Vorlesung, um eine kontextfreie
Grammatik Gmit L(M) = L(G) zu bestimmen.

Hausaufgabe 6.5: Pumping-Lemma für kontextfreie Sprachen [4 Punkte]
Nutzen Sie das Pumping-Lemma, um zu zeigen, dass die folgende Sprachen nicht kontextfrei ist:

a) [2 Punkte] L1 = { anba2nba3nba4n ∣ n ∈ N } ⊆ {a, b}∗ .
b) [2 Punkte] L2 = { u#v#w ∣ u, v,w ∈ {a, b}∗ und (u = w oder v = w) } ⊆ {a, b,#}∗ .
Übungsaufgabe 6.6:
Betrachten Sie die kontextfreie Grammatik G = ⟨{S,W, X}, {a, b}, P, S⟩mit den folgenden Regeln

S → ε ∣ bW W → a ∣ XXb X → SS ∣ ab .
a) Verwenden Sie das Verfahren aus der Vorlesung, umeine GrammatikGa ohne ε-Produktionen

zu berechnen, die L(Ga) = L(G) \ {ε} erfüllt.
b) Verwenden Sie Ga und das Verfahren aus der Vorlesung, um eine Grammatik Gb in CNF zu

berechnen, welche L(Gb) = L(G) \ {ε} erfüllt.
c) Benutzen Sie Gb und den CYK-Algorithmus, um zu entscheiden, ob das Wort babba von G

erzeugt wird.

d) Entscheiden Sie mit Hilfe von Gb und des CYK-Algorithmus, ob bbababb ∈ L(G) gilt.



Betrachten Sie die folgende Grammatik Ge.

S → UVab ∣ bU U → aV ∣ aUSc V → ε ∣ bSc ∣ U
e) Verwenden Sie das Verfahren aus der Vorlesung, um eine GrammatikG′

e in CNF zu berechnen,
die L(G′

e) = L(Ge) \ {ε} erfüllt.
f ) Benutzen Sie G′

e und den CYK-Algorithmus, um zu entscheiden, ob das Wort aaabca von Ge

erzeugt wird.

g) Entscheiden Siemit Hilfe des CYK-Algorithmus, ob dieWörter babaa und baba von der Gram-
matik mit den folgenden Produktionen erzeugt wird.

S → AB ∣ BC A → a ∣ CC B → b ∣ BA C → a ∣ AB
Übungsaufgabe 6.7:
Konstruieren Sie Pushdown-Automaten für folgende Sprachen und geben Sie jeweils an, welche
Akzeptanzbedingung Sie annehmen (leerer Stack oder Finalzustände).

a) L1 = {w ∈ {a, b, (, )}∗ ∣w ist korrekt geklammert }.
b) L2 = {w ∈ {a, b, (, )}∗ ∣ ∣w∣a ≤ 2∣w∣b }.
c) Können Sie auch einen PDA bauen, der L1 ∩ L2 akzeptiert?

Falls ja, erklären Sie kurz die Funktionsweise. Falls nein, was ist intuitiv das Problem hier?

L1 ∩ L2 = { w ∈ {a, b, (, )}∗ ∣ ∣w∣a ≤ 2∣w∣b undw ist korrekt geklammert }
JavaScript Object Notation (JSON) ist eine Beschreibungssprache für strukturierte Sammlungen
serialisierbarer Daten, die in vielenWeb-Technologien zumEinsatz kommt. Dabeiwerdenneben
primitiven Datentypen auch Listen (Arrays) und Assoziative Container (Objekte) ausgedrückt.

d) Konstruieren Sie Pushdown-Automaten M für die folgende Sprache L und geben Sie jeweils
an, welche Akzeptanzbedingung Sie annehmen (leerer Stack oder Finalzustände). Es reicht
nicht, nur eine kontextfreie Grammatik anzugeben. Ein Beweis zur Korrektheit wird nicht
benötigt.
Wir betrachten eine vereinfachte Variante von JSON über dem Alphabet {a, b, {, }}: ,Objekte’
sind zwischengeschweiftenKlammern ,{’ und ,}’ eingeschlossen. Darinbefinden sichbeliebig
viele Schlüssel-Wert-Paare. Schlüssel sindWorte ausa.b∗ undmüssen innerhalb einesObjekts
nicht eindeutig sein. Werte sind entweder Worte aus a.b∗, oder wiederum Objekte. Der Au-
tomatM soll ausschließlich wohlgeformte Objekte akzeptieren.
Zum Beispiel sollen {abbababb{}} ∈ L und {abb{ab{aba}a{abbab}}} ∈ L akzeptiert werden,
aber nicht {ababab} /∈ L, abb{aa} /∈ L oder {ab{} /∈ L.



e) Beschreiben Sie die Funktionsweise des folgenden Pushdown-Automaten
N = ⟨{q0, q1, q2, q3}, {s, {, }, ,, [, ]}, {C,A,O, S}, q0, S, δ⟩, welcher mit leerem Stack akzep-
tiert, indem Sie die Rolle jedes Zustandes und jedes Stack-Symbols mit jeweils einem Satz
erklären.

q0N q1

q2

q3
s
S/ε {

S/O [
S/A

}
O/ε,

C/ε
]

A/εs

A/AC
{

A/ACO[
A/ACA

εC/ε
s

O/O
]
A/ε

}O/ε
s

O/OC[
O/OCA{

O/OCO

Übungsaufgabe 6.8:
Betrachten Sie den Pushdown-Automaten M = ⟨{s, t, u}, {a, b}, {A, B}, s,A, δ⟩, der mit leerem
Stack akzeptiert und dessen Transitionsrelation δ durch das folgende Diagramm definiert ist.

M s
A

u

t

a

A/AB a
B/ε

b
B/BAB

a
B/ε

b
A/ε

a) Betrachten Sie nur die einzelnen Zustände, um die folgenden beiden Fragen zu beantworten.
Welche Zustände kommen als Ziel q ∈ Q eines Tripels ⟨p, s, q⟩ in Frage? Welche Paare aus
p ∈ Q und s ∈ Γ könnten auftauchen?

b) Verwenden Sie die Tripelkonstruktion aus der Vorlesung, um eine kontextfreie Grammatik G
mit L(M) = L(G) zu bestimmen.



Übungsaufgabe 6.9:
Gegebeneine linkslineareGrammatikG = ⟨Σ,N, S, P⟩ (mit jeweils höchstens einemNichtterminal
als Präfix auf rechten Seiten von Produktionen), sei AG = ⟨Q, q0 →,QF⟩ ein NFAmit ε-Übergängen.
Dieser besteht aus „originalen” Zuständen N ⊂ Q, einen neuen Startzustand q0 ∈ Q, einzigem
Finalzustand QF = {S} und Transitionen

Y
w1
−−→ ⋯

wn
−−→ X gdw. X → Yw1 . . .wn ∈ P

q0
w1
−−→ ⋯

wn
−−→ X gdw. X → w1 . . .wn ∈ P

über weiteren neuen Zuständen, falls gebraucht.

Beweisen Sie, dass L(AG) = L(G) gilt.
Übungsaufgabe 6.10:
Überführen Sie die folgende Grammatik G in die GNF.

S → WS ∣ UU U → b ∣ c ∣ UW V → c W → a ∣ VW ∣ VU
a) Geben Sie für jedes Paar aus Nichtterminal X ∈ N und Terminal s ∈ Σ einen regulären Aus-

druck für die Sprache LX,s ⊆ N∗ der Reste von Satzformen α ∈ N∗ an, die durch die starke
Linksableitung erzeugt werden: X ⇒

∗
SL sα.

b) FindenSie für alle nichtleerenSprachen LX,s eine rechts-lineareGrammatikGX,s überTerminale
N und Startsymbol TX,s. Erzeugen Sie neue Nichtterminale, falls erforderlich.

c) Überführen Sie nun die Vereinigung von G und all diesen Grammatiken in Pseudo-GNF,
indem Sie diese neue Grammatik G′ jedes Terminalsymbol erraten lassen, wie in der Vor-
lesung gezeigt. Sie müssen nicht beweisen, aber sich daran halten, dass L(G′) = L(G) gilt.
Beschränken Sie sich auf die nützlichen Nichtterminale.

d) Eliminieren Sie die ε-Produktionen aus G′, sodass nun eine Grammatik G′′ in GNF entsteht, die
L(G′′) = L(G′) \ {ε} erfüllt.

Betrachten Sie nun die folgende Grammatik G in CNF mit

S → d ∣ TU
T → a ∣ b ∣ UT
U → c ∣ d ∣ TS ∣ US .

LX,s S T U

a U ∪ S(S ∪ TS)∗TU ε ∪ S(S ∪ TS)∗T S(S ∪ TS)∗
b U ∪ S(S ∪ TS)∗TU ε ∪ S(S ∪ TS)∗T S(S ∪ TS)∗
c (S ∪ TS)∗TU (S ∪ TS)∗T (S ∪ TS)∗
d ε ∪ (S ∪ TS)∗TU (S ∪ TS)∗T (S ∪ TS)∗

e) Nutzen Sie die Sprachen der Nebenprodukte der starken Linksableitung aus der Tabelle, um
eine Grammatik G′ in GNF mit L(G′) = L(G) zu konstruieren.


