Theoretical Computer Science Exercise Sheet 5

Prof. Dr. Roland Meyer René Maseli TU Braunschweig Winter Semester 2025/26

Release: 2025-12-20 Due: 2025-01-15 23:59

Homework Exercise 5.1: Closure properties of regular languages [3 points]

Let Σ an alphabet and $X, L, R \subseteq \Sigma^*$ languages. The remainder $L \triangleleft X \triangleright R$ is defined as

$$L \triangleleft X \triangleright R := \left\{ v \in \Sigma^* \mid \exists u \in L, w \in R : u.v.w \in X \right\}.$$

Let X, L and R regular languages. Show that $L \triangleleft X \triangleright R$ is regular.

Homework Exercise 5.2: Pumping lemma for regular languages [4 points]

Consider $\Sigma = \{a, b, c\}$ For all words v and w let $|w|_v$ be the number of occurrences of v in w. By using the Pumping Lemma, prove that the following languages are not regular.

- a) [1 point] $L_a = \{xb^m y \in \{a, b\}^* \mid \exists n \in \mathbb{N} : |y| = n \text{ and } x \in (a^*b)^n \text{ and } m \ge 2\}$
- b) [1 point] $L_b = \{ u.v \in \{a,b\}^* \mid |u|_a + u_b = |v|_a + v_c \}$
- c) [1 point] $L_c = \{ a^{m \cdot n} b^n \mid m, n \in \mathbb{N} \}$
- d) [1 point] $L_d = \{ w \in \{a, b, c\}^* \mid |w|_{ab} < |w|_{ac} \}$

Homework Exercise 5.3: Replacement systems [5 points]

Consider $\Sigma = \{a, b\}$. Give context free grammars G_1 , G_2 , G_3 and G_4 , which produce the following languages:

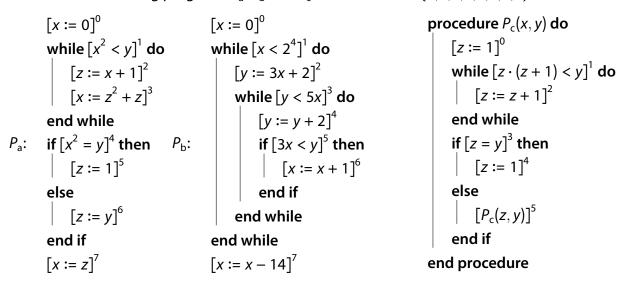
- a) [1 point] $L_a := \{ a^n b^m w \mid w \in \Sigma^* \text{ and } m > 2 \text{ and } |w|_a = n \}.$
- b) [1 point] $L_b := \{ w \in \Sigma^* \mid |w|_a < |w|_b \}.$
- c) [1 point] $L_c := \{ a^m b^n \mid m, n \in \mathbb{N}, m \neq n \}.$
- d) [1 point] $L_d := \{ w_1 \dots w_n \in \Sigma^n \mid n \in \mathbb{N}, \forall 1 \le k \le n : |w_k \dots w_n|_a \le |w_k \dots w_n|_b \}.$
- e) [1 point] $L_e = \bigcup_{m \in \mathbb{N}} M^m.c^m$, where $M = \{a^nb^n \mid n \in \mathbb{N}\}$ is already known to be context-free (see Example 8.18 from the lecture notes). E.g. $bbabaacc \in L_e$.

Remark: Die Sprache der wohlgeformten einfachen "Klammerterme" aus *ab* ist $L_d \cap \{ w \in \Sigma^* \mid |w|_a = |w|_b \}.$

Homework Exercise 5.4: Programm Languages [3 points]

A control path of a while-program can be seen as a walk in the controlflow graph, i.e. a block sequence, such that all consecutive pairs are connected with a flow edge. In program analysis, those walks are usually called paths (acyclic walks), because e.g. their index in the sequence are also considered.

Consider the following programs P_a , P_b and P_c with blocks $B = \{0,1,2,3,4,5,6,7\}$.



- a) [1 point] Construct a **right-linear** grammar G_a over the alphabet $\Sigma = B$, that produces exactly all control paths of P_a starting in block 0 and ending in block 7. E.g. 01457 $\in \mathcal{L}(G_a)$ and 01231467 $\in \mathcal{L}(G_a)$, are valid, but e.g. 01234567 $\notin \mathcal{L}(G_a)$ must not be producable.
- b) [1 point] Construct a **left-linear** grammar G_b over the alphabet $\Sigma = B$, that produces exactly all control paths of P_b starting in block 0 and ending in block 7. E.g. 017 $\in \mathcal{L}(G_b)$ is the shortest word of the language. Another element is e.g. 0123456317 $\in \mathcal{L}(G_b)$, but e.g. 01234567 $\notin \mathcal{L}(G_b)$ must not be produceable.
- c) [1 point] Construct a **linear** grammar G_c for the control paths of P_c , including the blocks inside the recursion. Here, block 5 shall be positioned directly **after** the recursive call. E.g. 030345 $\in \mathcal{L}(G_c)$.

Homework Exercise 5.5: Regular grammars [4 points]

Prove that the regular languages exactly coincide with the languages that are produced by some right-linear grammar.

- a) [2 points] Explain how to construct a right linear grammar G from a given NFA A such that $\mathcal{L}(G) = \mathcal{L}(A)$ holds.
- b) [2 points] Explain how to construct an NFA A from a given right linear grammar G such that $\mathcal{L}(G) = \mathcal{L}(A)$ holds.

Tutorial Exercise 5.6:

Consider abstract programs on boolean variables. An assignment $[x := *]^{\ell}$ non-deterministically guesses the value for x, as if read from an input stream.

Consider the following program P with blocks $B = \{0, 1, 2, 3, 4, 5, 6, 7\}$ and variables $Vars = \{x, y, z\}$.

```
[x := *]^0
while [ \text{ not } x \text{ or not } z]^1 \text{ do}
[y := \text{ not } x \text{ and not } z]^2
[x := *]^3
if [y]^4 then
[x := \text{ not } x]^5
end if
[z := x]^6
end while
[\text{skip}]^7
```

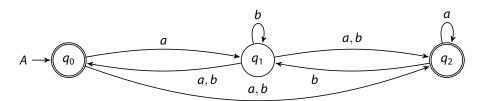
Construct a finite automaton A_P that accepts the assigned values as a language over $\Sigma = \text{Vars} \times \{0, 1\}$.

 $\varepsilon \notin \mathcal{L}(A_{P})$, since every execution must pass through Block b_0 .

 $x1 \notin \mathcal{L}(A_P)$, since executions always start with z = 0 and therfore have to iterate at least once. $x1.y0.x1.z1 \in \mathcal{L}(A_P)$, because there is an execution that first reads 1 and then 0, breaking the loop.

Tutorial Exercise 5.7:

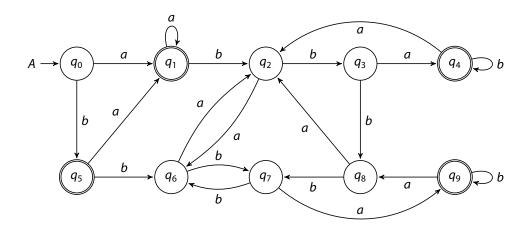
Consider the following NFA A over $\{a, b\}$.



- a) From A, construct a language equivalent DFA $\mathcal{P}(A)$ using the Rabin-Scott power set construction. Make sure that $\mathcal{P}(A)$ has no unreachable states.
- b) Determine the \sim -equivalence classes on the states of $\mathcal{P}(A)$ by using the Table-Filling-Algorithm from the lecture. Make clear in which order the cells of the table were marked.
- c) Give the minimal DFA B for $\mathcal{L}(A)$. Make use of the \sim -equivalence classes.
- d) Find all equivalence classes of the Nerode right-congruence $\equiv_{\mathcal{L}(A)}$.

Tutorial Exercise 5.8:

Consider the following NFA A over $\{a, b\}$.



- a) Determine the ~-equivalence classes on the states of *A* by using the Table-Filling-Algorithm from the lecture. Make clear in which order the cells of the table were marked.
- b) Give the minimal DFA B for $\mathcal{L}(A)$. Make use of the \sim -equivalence classes.
- c) Find all equivalence classes of the Nerode right-congruence $\equiv_{\mathcal{L}(A)}$. Find an expression for $\mathcal{L}(A)$ as a union of a certain subset of those classes.
- d) Use \overline{B} to construct a regular expression for $\overline{\mathcal{L}(A)}$.