Theoretical Computer Science Exercise Sheet 2

Prof. Dr. Roland Meyer René Maseli TU Braunschweig Winter Semester 2025/26

Release: 2025-11-10 Due: 2025-11-20 23:59

Hand in your solutions to the Vips directory of the StudIP course until Thursday, November 20th 2025 23:59. You should provide your solutions either directly as .pdf file or as a readable scan/photo of your handwritten notes. State all members of your group with student id, name and course.

Homework Exercise 2.1: Join-Meet-Continuity [4 points]

Prove or disprove, if the following statements hold.

a) [1 point] Let M be a finite set, $R \subseteq M \times M$ a binary relation over M. Consider the complete lattice $\langle \mathcal{P}(M), \subseteq \rangle$. Show that the function post : $\mathcal{P}(M) \to \mathcal{P}(M)$ is \sqcup -continuous.

$$post(X) := \{ y \in M \mid \forall x \in M : \langle x, y \rangle \in R \Rightarrow x \in X \}$$

b) [2 points] Let $\langle B, E, F \rangle$ be a control flow graph. Consider the lattice $\langle \mathcal{P}(\mathsf{Vars})^B, \subseteq^B \rangle$, where all elements $f, g : B \to \mathcal{P}(\mathsf{Vars})$ are ordered by $F \subseteq^B G$ iff $\forall b \in B : f(b) \subseteq g(b)$. A block is said to *use* a variable, if the variable appears inside any expression contained in the block (except the assigned variable of an assignment). Show that the function $G : \mathcal{P}(\mathsf{Vars})^B \to \mathcal{P}(\mathsf{Vars})^B$ is \Box -continuous.

$$G(X)(b) = \left\{ x \in \text{Vars} \mid \exists b' \in B : b \not\in b' \text{ and } (b' \text{ uses } x \text{ or } (b' \neq [x := e]^{\ell} \text{ and } x \in X_{b'})) \right\}$$

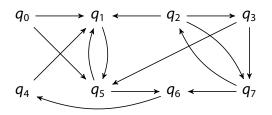
c) [1 point] Betrachten Sie die totale Ordnung $\omega + 2 := \langle D, \leq_{\omega+2} \rangle$ mit $D := \mathbb{N} \cup \{\omega, \omega+1\}$ and $\leq_{\omega+2} := \leq \cup \{\langle n, \omega \rangle \mid n \in \mathbb{N} \cup \{\omega\}\} \cup \{\langle n, \omega+1 \rangle \mid n \in D\}$.

Zeigen Sie, dass die Funktion succ : $D \to D$ with succ $(n) := \begin{cases} \omega + 1 & \text{falls } n = \omega + 1 \\ n + 1 & \text{sonst} \end{cases}$

Homework Exercise 2.2: Graph Unreachability [2 points]

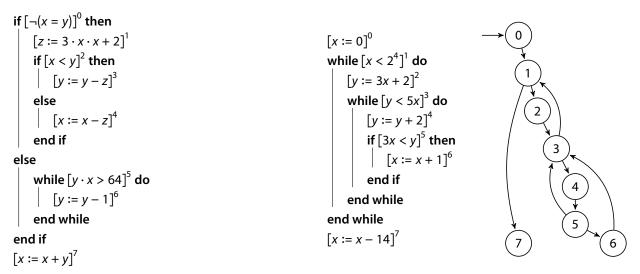
Let $\langle V, E \rangle$ be a graph, i.e. V finite and $E \subseteq V \times V$. Consider the function $f : \mathcal{P}(V) \to \mathcal{P}(V)$ with $f(X) = \{ v \in V \mid v \neq q_0 \text{ and } (\forall x \in V \setminus X: \langle x, v \rangle \notin E) \}$.

- a) [1 point] Show that f is monotone and \sqcap -continuous in $\langle \mathcal{P}(V), \subseteq \rangle$.
- b) [1 point] Apply the construction from a), to find all vertices in the following graph $G = \langle V, E \rangle$, that are **not** reachable from the start node q_0 . Give all elements, up to the point, where the sequence stabilizes. Compute gfp(f) using the sequence in Kleene's fixed point theorem.



Homework Exercise 2.3: Reaching Definitions [5 points]

Given the following program with variables Vars := $\{x, y, z\}$ and data flow graph $G = \langle B, E, F \rangle$ as given beneath. The goal is to compute for each block b, the set of blocks, that may be the latest writer of some variable, before the control flow reaches b.



- a) [1 point] Consider the program on the left side. Draw the control flow graph $G = \langle B, E, F \rangle$. Mark its extremal blocks.
- b) [1 point] Now consider the program on the right side, as well as the lattice $\langle D, \subseteq \rangle$ over the domain $D = \mathcal{P}(\text{Vars} \times (B + \{?\}))$. Assign for each block $b \in B$ elements $\text{kill}(b), \text{gen}(b) \in D$ such, that the transfer functions $f_b : D \to D$ become suitable for the analysis: $f_b(X) = (X \setminus \text{kill}(b)) \cup \text{gen}(b)$.
- c) [3 points] Solve the induced equation system from b) by determining its least solution using Kleene's fixed point theorem.

Homework Exercise 2.4: Live Variables [5 points]

Consider the following program. Map each block in the program to the set of variables that may be read by some other block later in the program order.

- a) [1 point] Draw the control flow graph *G*. Note that this is a backwards analysis.
- b) [1 point] Consider the lattice $D = \langle \mathcal{P}(\{x, y, z\}), \subseteq \rangle$. Assign for each block $b \in B$ a suitable, monotone transfer function f_b over this lattice.
- c) [3 points] Consider the data flow system $S := \langle G, D, \{x, y, z\}, (f_b)_{b \in B} \rangle$. Write down the induced equation system and determine its least solution using Kleene's fixed point theorem.

$$[x := 24 \cdot y \cdot z \cdot z + 12 \cdot y \cdot y \cdot z + 2]^{0}$$
if $[y < z]^{1}$ then
$$[x := 16 \cdot y \cdot y]^{2}$$
else
$$| while [y < z]^{3} do$$

$$[x := 2 \cdot y \cdot y - y + 1]^{4}$$

$$[y := y + x]^{5}$$
end while
end if
$$[skip]^{6}$$

Tutorial Exercise 2.5:

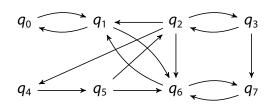
Let $n_1, n_2, n_3 \in \mathbb{N} \setminus \{0\}$ be positive integers and $D := \{k \in \mathbb{N} \mid k \mid n_1 \cdot n_2 \cdot n_3\}$ the set of divisors of the product $n_1 \cdot n_2 \cdot n_3$. Consider the lattice (D, ||). Show that the function $f_a : D \to D$ is \sqcap -continuous.

$$f_a(x) := \gcd(n_1, \operatorname{lcm}(n_2, n_3 \cdot x))$$

Tutorial Exercise 2.6:

Consider the graph $G = \langle V, E \rangle$ on the right, as well, as the powerset lattice $\langle \mathcal{P}(V), \subseteq \rangle$. Für each initial vertex $v \in V$, consider the function $f_v : \mathcal{P}(V) \to \mathcal{P}(V)$ with

$$f_v(X) := \{ y \mid y = v \text{ or } \exists x \in X : \langle x, y \rangle \in E \}.$$



Give the sequence from Kleene's fixed point theorem for $lfp(f_{q_0})$ and $lfp(f_{q_2})$ each until they stabilize.

Tutorial Exercise 2.7:

Consider a lattice $\langle D, \sqsubseteq \rangle$ and arbitrary elements keep, get $\in D$. Prove, that the function $f(x) = (x \sqcap \text{keep}) \sqcup \text{get is monotonic}$.

Tutorial Exercise 2.8:

Let $S = \langle \langle B, E, F \rangle, \langle D, \sqsubseteq \rangle, i, (f_b)_{b \in B} \rangle$ be a Data Flow System of a may-analysis, with Control Flow Graph $\langle B, E, F \rangle$, a complete lattice $\langle D, \sqsubseteq \rangle$ with ACC, initial data flow value $i \in D$ for extremal blocks and monotonic transfer functions $f_b : D \to D$ for each block $b \in B$.

Consider the lattice $\langle D^B, \sqsubseteq^B \rangle$ of functions $f \in D^B$, which assigns for each block b an element $f(b) \in D$. A pair $f_1, f_2 \in D^B$ is ordered (i.e. $f_1 \subseteq^B f_2$), if and only if all blocks $b \in B$, $f_1(b) \subseteq f_2(b)$ holds.

Show, that the function $g_S: D^B \to D^B$ is monotonic and \sqcup -continuous:

$$g_{S}(f)(b) = \bigsqcup_{\langle b',b\rangle \in F} f(b') \sqcup \begin{cases} i & \text{if } b \in E \\ \bot & \text{otherwise} \end{cases}$$