Theoretical Computer Science 1 Exercise Sheet

René Maseli Roland Meyer TU Braunschweig Winter Semester 2025/26

Release: 2025-10-27 Due: 2025-11-06

Hand in your solutions to the Vips directory of the StudIP course until Thursday, November 6th 2025 23:59. You should provide your solutions either directly as .pdf file or as a readable scan/photo of your handwritten notes. Submit your results as a group of **three** and state **all** members of your group with **student id**, **name and course**.

Homework Exercise 1: Lattices [4 points]

Let (\mathbb{N}, \preceq) be a lattice, where \preceq is a binary relation over \mathbb{N} defined as follows: For $x, y \in \mathbb{N}$ the pair $x \preceq y$ holds if and only if x = 0 or y = 1 or $x = y \in \mathbb{N} \setminus \{0, 1\}$.

- a) [1 point] Draw a Hasse-diagram of (\mathbb{N}, \preceq) for the numbers up to 9.
- b) [1 point] State the values of the following joins and meets:

- c) [1 point] Is the height of this lattice finite? Is it bounded?
- d) [1 point] Give a Hasse-diagram for a lattice which has finite but non-bounded height.

Homework Exercise 2: Some Lattice [6 points]

Let $M \subseteq \mathbb{N}$ be a finite, non-empty set and $M' := \{ \langle a, b \rangle \mid a, b \in M \text{ and } a < b \} \cup \{ \Box \}$ the set of ascending-sorted pairs from M, with an extra element \Box .

Let \leq be a relation on M', defined as follows:

$$x \le y$$
 iff $x = \square$ or $(x = \langle a, b \rangle)$ and $y = \langle c, d \rangle$ and $c \le a$ and $b \le d$.

a) [1 point] Draw a Hasse-diagram of $\langle M', \leq \rangle$ with $M = \{0, 1, 2, 3, 4\}$.

In the following, let *M* again be a finite, non-empty set.

- b) [2 points] Show that \leq is reflexive, transitive and antisymmetrical. By definition, $\langle M', \leq \rangle$ is then a partial order.
- c) [2 points] Show that the join $\bigcup X$ and the meet $\bigcap X$ exist for each subset $X \subseteq M'$. By definition, $\langle M', \preceq \rangle$ is then a finite complete lattice.
- d) [1 point] State \top , \bot for $\langle M', \preceq \rangle$, depending on M.

Tutorial Exercise 3:

Let $M_1 \subseteq \mathbb{N}$ and $M_2 \subseteq \mathbb{N}$ be two finite sets and $M = M_1 \times M_2$ the set of all pairs (a, b) with $a \in M_1$ and $b \in M_2$. Let \leq be a relation on M, defined as follows:

$$\langle a_1, b_1 \rangle \leq \langle a_2, b_2 \rangle$$
 gdw. $a_1 \geq a_2$ und $b_1 \geq b_2$

where ≤ is the common "less or equals" relation on natural numbers.

Show that $\langle M, \preceq \rangle$ is then a complete lattice.

Does $\langle M, \preceq \rangle$ stay complete, if $M_1 \subseteq \mathbb{N}$ is infinite?

Tutorial Exercise 4:

Let $\langle D_1, \preceq_1 \rangle$ and $\langle D_2, \preceq_2 \rangle$ be complete lattices. The **product lattice** is defined as $\langle D_1 \times D_2, \preceq \rangle$, where \preceq is the **product ordering** on tuples with $\langle d_1, d_2 \rangle \preceq \langle d'_1, d'_2 \rangle$ if and only if $d_1 \preceq_1 d'_1$ and $d_2 \preceq_2 d'_2$.

Show that the product lattice is indeed a complete lattice.

Prove the following; The product lattice $\langle D_1 \times D_2, \preceq \rangle$ satisfies ACC if and only if $\langle D_1, \preceq_1 \rangle$ and $\langle D_2, \preceq_2 \rangle$ both satisfy ACC.

Tutorial Exercise 5:

Let $\langle D, \leq \rangle$ be a lattice and $x, y \in D$ be two arbitrary elements.

Show that if $f: D \to D$ is monotone, then $f(x \sqcup y) \ge f(x) \sqcup f(y)$ holds.

 $f: D \to D$ is called **distributive**, if $f(x \sqcup y) = f(x) \sqcup f(y)$ for all $x, y \in D$.

Show that if f is distributive then f is also monotone.

Tutorial Exercise 6:

Let $\langle D, \sqsubseteq \rangle$ be a lattice. Prove the first two statements from lemma 1.8 from the lecture: If $\bigcap D$ is defined, then the identity $\bigcap D = \bigcup \emptyset$ holds. Analoguously $\bigcup D = \bigcap \emptyset$, if $\bigcup D$ is defined.

Tutorial Exercise 7:

Show the last statement of lemma 1.8: All finite lattices are complete.

Tutorial Exercise 8:

Let *M* be a set. Show that $(\mathcal{P}(M), \subseteq)$ is a complete lattice.