Exercise J.1

A. We do browstinile induction.
Assuming
$$(f^{\beta})_{\beta \in \mathcal{A}}$$
 is an increasing choin we show
that $(f^{\beta})_{\beta \in \mathcal{A}}$ is an increasing choin for all \mathcal{A} .

Base Case
$$\chi = 0$$

(Lain how only one element.
Inductive Step successor ordinal $\alpha = \alpha' + \Lambda$
By IH $(f^{\beta})_{\beta \leq \alpha'}$ is on increasing claim.
Thus, we have $f^{\beta' \leq} f^{\alpha'} f_{\alpha \leq} \alpha M \beta' \leq \alpha'$.
By wonshary of f we get
 $f^{\beta' + \Lambda} = f(f^{\beta'}) \leq f(f^{\alpha'}) = f^{\alpha}$
So for all β with $\Lambda = \beta \leq \alpha' + \Lambda = \alpha$
we have $f^{\beta' \leq} f^{\alpha'}$
 $W_{i}H f^{\circ} = \bot \leq f^{\alpha'}$ we the set
 $f^{\beta' \leq} f^{\alpha'}$
 $f^{\beta' \leq} f^{\alpha'}$

Inductive Slep Limit ordinal
$$\alpha = \lambda$$

By IH $(f^{\beta})_{\beta < \alpha}$ is an increasing chain with
Limit $f^{\alpha} = \coprod_{\beta < \alpha} f^{\beta}$ (which exists because $(0, \leq)$ is
a complex (allice)

By definition of "L" we have
$$f^{B} \leq f^{\alpha}$$

for all $\beta \leq \alpha$,

Fich such an elliptic (SZDEN With
$$f = f$$

We have $(6y 1.)$
 $f^{B} \leq f^{B+1} \leq \dots \leq f^{\alpha+1}$
Since $f^{P} = f^{\alpha+1} ; f f wown that$
 $f^{P} = f^{\beta+1} = \dots = f^{\alpha+1}$
 $\int_{a} f^{B} is a fixed point of f:$
 $f(f^{P}) = f^{\beta+1} = f^{B}$

3. Let x be a fixed point of f.

We then
$$\int^{d} f x = x$$
 for all d
by branchile indection.
Base Case $x = 0$
 $f^{\circ} = \pm \leq x$.
Inductive Step successor ordinal $x = a' + \lambda$
 $f^{\alpha} = f(f^{\alpha'}) \leq f(x) = x$
 $f_{\mu}^{\alpha} = wondowy of$

Indudrive Slep Limit ordinal
$$\alpha = \lambda$$

 $f \propto = \bigsqcup_{B < \alpha} f^{B} \leq \bigsqcup_{X < x} = \times$
 $\beta < \alpha$
 $f \propto = \bigsqcup_{B < \alpha} f^{B} \leq \bigsqcup_{X < x} = \times$
 $f \propto = \bigsqcup_{B < \alpha} f^{B} \leq \bigsqcup_{X < x} = \times$

Exercise J.2

1. let 5, 5, 5, 52, be a sequence of program rideo after each loop iteration. This induces a sequence

$$\langle \Gamma_{\lambda}(s_{0}), \Gamma_{2}(s_{0}), \dots, \Gamma_{k}(s_{0}) \rangle \\ = \Gamma(s_{0})$$

Note that this sequence is finite:
Otherwise there is a composable poir
$$r(s_{i_1}) \leq r(s_{i_1})$$

with india by Dickon's Lemma. Since $(f_{i_1}, f_{i_2}) \in \mathbb{R}^+$
we have $(f_{i_1}, f_{i_2}) \in T_j$ for some j . This implies
 $r_j(f_{i_1}) \geq r_j(f_{i_2})$ controdicting $r(f_{i_1}) \leq r(f_{i_2})$.