Exercises to the lecture Semantics Sheet 10

Prof. Dr. Roland Meyer	
Jan Grünke	Delivery until 15.08.2025 at 23:59

Bonus Exercise 10.1 (Translating LTL Operators into Modal μ -Calculus) Translate standard LTL formulas into equivalent formulas in the modal μ -calculus. You may assume an action-labeled transition system with only one label *a* for simplicity. Provide modal μ -calculus equivalents for the following LTL formulas:

a) $\bigcirc \varphi$	(Next)
b) $\varphi \mathcal{U} \psi$	(Until)
c) $\diamondsuit \varphi$	(Eventually)
d) $\Box \varphi$	(Gloablly)
e) $\varphi \mathcal{R} \psi$	(Release)

Bonus Exercise 10.2 (Does it terminate?)

Consider the following program P = (W, I, R), where every state is an initial state.

1: while (x >= 0) { 2: x := x - y; 3: y := y + 1; }

The configuration space is $\Gamma = \{\ell_1, \ell_2, \ell_3\} \times \Sigma$, where the state space is $\Sigma = \mathbb{Z}^2$. The transition relation R is the union of the following transitions:

$$R_1 \equiv pc = \ell_1 \land pc' = \ell_2 \land x' = x \land y' = y \land x \ge 0$$

$$R_2 \equiv pc = \ell_2 \land pc' = \ell_3 \land x' = x - y \land y' = y$$

$$R_3 \equiv pc = \ell_3 \land pc' = \ell_1 \land x' = x \land y' = y + 1$$

Question: Is the program terminating? If the program terminates, give a disjunctively well-founded transition relation. If the program does not terminate, describe some infinite program execution.