$\mathrm{SS}~2025$

Exercises to the lecture Semantics Sheet 9

Prof. Dr. Roland Meyer Jan Grünke

Delivery until 15.07.2025 at 11:30

Exercise 9.1 (Transfinite Iteration)

In this exercise, we prove a fixed point theorem that does not require the given function to be continuous (in contrast to Kleene's theorem).

Let (D, \leq) be a complete lattice, and let $f : D \to D$ be a monotone function. The transfinite iterates of f from \perp are defined as follows:

$$f^{0} = \bot$$
$$f^{\alpha+1} = f(f^{\alpha})$$
$$f^{\lambda} = \bigsqcup_{\beta < \lambda} f^{\beta}$$

where α is a successor ordinal and λ is a limit ordinal.

- 1. Show that the transfinite iterates of f form an increasing chain.
- 2. Show that the chain becomes stationary, i.e., there exists some ordinal ϵ such that for all $\delta \geq \epsilon$, we have $f^{\delta} = f^{\epsilon}$.
- 3. Let ϵ be the ordinal where the chain becomes stationary. Show that f^{ϵ} is the least fixed point of f.

Bonus Exercise 9.2 (Transition Invariants & Linear Ranking Functions) Consider a program with variables x_1, x_2, \ldots, x_n ranging over \mathbb{Z} , consisting of a single while loop with a body f:

1: int $x_1, x_2, ..., x_n$ 2: while $x_1 > 0 \land x_2 > 0 \land ... \land x_n > 0$ do 3: $(x_1, x_2, ..., x_n) \leftarrow f(x_1, x_2, ..., x_n)$ 4: end while

Let f be a linear function in x_1, x_2, \ldots, x_n . Assume we obtain a k-ary disjunctive termination argument of the form $R^* \subseteq T_1 \cup \cdots \cup T_k$ with each T_i well-founded. Suppose we have synthesized linear ranking functions $r_j : \mathbb{Z}^n \to \mathbb{N}$ for each T_j . This means that the ranking function r_j maps a program state (an assignment to the variables) to a natural number such that

 $r_j(s) > r_j(s')$ whenever $(s, s') \in T_j$.

Determine the maximal number of loop iterations by classifying it within the Grzegorczyk hierarchy.