
SS 2025 26.04.2025

Exercises to the lecture
Semantics
Sheet 8

Prof. Dr. Roland Meyer
Jan Grünke Delivery until 03.07.2025 at 16:45

Exercise 8.1 (r-Bad Sequences)
We consider in this exercise a generalisation of good sequences: a sequence x0, x1, ... over a
qo (X,≤) is r-good if we can extract an increasing subsequence of length r+1, i.e. if there
exist r + 1 indices i0 < ... < ir s.t. xi0 ≤ ... ≤ xir . A sequence is r-bad if it is not r-good.
Thus good and bad stand for 1-good and 1-bad respectively. By characterizations of wqos,
r-bad sequences over a wqo are always finite. Let (X,≤, | · |) be a nwqo. Then, similar to
bad (g, n)-controlled sequences we define the maximal length of an r-bad (g, n)-controlled
sequence over X to be Lr,g,X(n).
Our purpose is to show that questions about the length of r-bad sequences reduce to
questions about bad sequences: Lr,g,X(n) = Lg,X×Γr(n).

1. Show that such a maximal (g, n)-controlled r-bad sequence is (r − 1)-good.

2. Show Lr,g,X(n) ≤ Lg,X×Γr(n) by transforming a r-bad sequence over the nwqo X
into a bad sequence over the nwqo X × Γr.

Hint: Use the following definition of goodness in your transformation. Given a se-
quence x0, x1, ..., xl over X, an index i is p-good if it starts an increasing subsequence
of length p+ 1, i.e. if there exist indices i = i0 < ... < ip s.t. xi0 ≤ ... ≤ xip . The
goodness of an index i is the largest p s.t. i is p-good.

3. Show the converse, i.e. that Lr,g,X(n) ≥ Lg,X×Γr(n) by transforming a r-good
sequence over X into a good sequence over X × Γr.

Exercise 8.2 (Complexity of Karp and Miller Trees)
Recall that a (d-dimensional) vector addition system (VAS) is a finite subset T ⊆ Zd

together with an initial marking s0 ∈ Nd. A transition t ∈ T is enabled in a marking
s ∈ Nd if s′ := s+ t ∈ Nd, we write s

t−→ s′. In this excercise we want to determine the time
complexity of the algorithm that constructs the Karp Miller tree (KM tree) for a given
VAS. Recall that the KM tree is a tree that has nodes labeled by generlized markings
(N ∪ {ω})d and edges labeled by transitions. The algorithm constructs the tree as follows:

1. The root is lableded by s0.

2. Repeat: For each leaf sl with path s0, s1, ..., sl and for each transition sl
t−→ sc so

that sc ̸≤ si for all i = 0, ..., l we add a new t-labeled edge to a child with label

s′c :=

{
sc + ω · (sc − si) for smallest i with sc > si,

sc if no such i exists.

Determine the running time of the KM tree construction for a fixed dimension d.
Hint: Use the result from the previous excercise.

