$\mathrm{SS}~2025$

Exercises to the lecture Semantics Sheet 7

Prof. Dr. Roland Meyer Jan Grünke

Delivery until 26.04.2025 at 16:45

Exercise 7.1 (μ -Calculus Formulas)

Consider a transition system with actions $Act = \{a, b\}$ and propositions $Prop = \{P, Q\}$. Write μ -calculus formulas for the following properties:

- 1. Nodes that have a path to a Q-labeled node.
- 2. Nodes that have a path to a node v labeled with Q, such that v has a path to a node labeled with P.
- 3. Nodes from which an infinite path exists where inifitely often P holds.
- 4. Nodes from which every path eventually reaches a state where Q holds, and from that state onward, P holds globally.

Exercise 7.2 (μ -Calculus)

Consider the following transition system M with propositions P and Q, and actions a and b.

For each of the following formulas, describe its semantics in words and evaluate it on M:

- 1. [a]ff
- 2. $\mu X. ((P \land \langle a \rangle X) \lor Q)$
- 3. $\nu X. (\neg Q \land [a]X \land [b]X)$
- 4. $\nu X.\mu Y.[a](Y \lor (X \land P))$

Exercise 7.3 (μ -Calculus to Parity Games)

Consider the formula $F = \nu X \cdot \mu Y$. $(P \wedge [b]X) \vee \langle b \rangle Y$, and let M be the transition system from the previous exercise. Construct the parity game G(M, F) as described in the lecture, such that

 $M, s_0 \models F$ if and only if Eve has a winning strategy from (s_0, F) in G(M, F).

You only need to construct positions that are reachable from (s_0, F) . Finally, determine whether s_0 satisfies F by solving the parity game.