
SS 2025 15.05.2025

Exercises to the lecture
Semantics
Sheet 5

Prof. Dr. Roland Meyer
Jan Grünke Delivery until 28.05.2025 at 15:00

Excercise: Implement IC3

Implement the IC3 algorithm for checking whether a given hardware circuit satisfies a
safety property. Your implementation should accept circuits in the AIGER format that
is used in the Hardware Model Checking Competition (HWMCC) and it should either
return SAFE together with an inductive invariant, or UNSAFE along with a counterexample
to safety.

Setup

To help you get started, we provide a CMake project template that includes the following:

• A C library for parsing the AIGER file format (from https://github.com/arminbiere/
aiger?tab=readme-ov-file).

• A tool called aigToZ3.h, which transforms a parsed AIGER circuit into a symbolic
transition system represented in Z3.

• A basic C++ interface ic3.h and example type implementations for a minimal IC3
implementation.

You are free to modify the provided template as needed to suit your implementation. It is
intended to let you focus on implementing the core IC3 algorithm without dealing with
tasks like file parsing. Each part of the setup will be explained in detail in the following
sections of this document. Further information that may support you in implementing
IC3 can be found in the following reference:

Aaron R. Bradley. “SAT-Based Model Checking without Unrolling.” In Pro-
ceedings of the 12th International Conference on Formal Methods in Computer-
Aided Design (FMCAD), 2011. https://people.eecs.berkeley.edu/~alanmi/
publications/2011/fmcad11_pdr.pdf

Submission

Submit your code as zip or git repository together with instructions on how to build and
run it. Your implementation should be tested on examples from the HWMCC benchmark
suite that are contained in the benchmarks folder.

https://github.com/arminbiere/aiger?tab=readme-ov-file
https://github.com/arminbiere/aiger?tab=readme-ov-file
https://people.eecs.berkeley.edu/~alanmi/publications/2011/fmcad11_pdr.pdf
https://people.eecs.berkeley.edu/~alanmi/publications/2011/fmcad11_pdr.pdf


Z3 Solver

This project requires the Z3 SMT solver for SAT solving. You can find installation
instructions in the official Z3 GitHub repository:

• https://github.com/Z3Prover/z3

The provided CMake template links Z3 automatically if it is installed on your system.

Symbolic Transition Systems

The behavior of a sequential circuit is captured using a symbolic transition system,
represented using Z3 formulas. A symbolic transition system is described by the following
C++ struct:

struct SymbolicTransitionSystem {
z3::expr_vector variables;
z3::expr_vector primedVariables;
z3::expr transitions;
z3::expr init;
z3::expr bad;

};

Explanation of properties:

• variables: A vector of Z3 expressions representing the state variables of the system
(e.g. latches).

• primedVariables: A vector of Z3 expressions representing the next-state versions
of the variables. Each variable in variables has a corresponding next-state version
in this vector.

• transitions: A formula over variables and primedVariables that defines the
transition relation of the system.

• init: A formula over variables defining the initial states of the system.

• bad: A formula over variables representing the negation of the safety property.
The system is SAFE if no reachable state satisfies this formula.

Interface of aigToZ3.h

The aigToZ3 library provides a set of utility functions to construct and manipulate
symbolic transition systems derived from AIGER files. Below is an overview of the main
functions and their intended use:

https://github.com/Z3Prover/z3


z3::expr prime(const SymbolicTransitionSystem &ts, z3::expr expr);
z3::expr expr(const Cube &cube);
z3::expr expr(const std::vector<Cube> &cubes);
std::optional<Cube> SAT(const z3::expr &expr);
SymbolicTransitionSystem parse(const std::string &filepath);

• prime: Given an expression and a symbolic transition system, this function replaces
all state variables in the expression with their corresponding next-state (primed)
variables.

• expr(const Cube&): Constructs a Boolean formula representing the conjunction of
literals in a Cube.

• expr(const std::vector<Cube>&): Constructs a Boolean formula representing the
disjunction of multiple cubes. Each cube is treated as a conjunction; the result is a
disjunction of those conjunctions.

• SAT: Checks the satisfiability of a given Boolean formula using Z3. If the formula
is satisfiable, it returns a Cube representing a satisfying assignment; otherwise, it
returns std::nullopt.

• parse: Reads an AIGER file from the specified filepath and returns a corresponding
SymbolicTransitionSystem represented using Z3 expressions.

Interface of ic3.h

The ic3.h header defines the interface for implementing the IC3 (PDR) algorithm.

typedef std::vector<Cube> Frame;
typedef std::vector<Frame> Frames;

bool ic3(TS ts);
bool isInitial(TS ts, const Cube &cube);
std::optional<Cube> getBad(TS ts, const Frame &frame);
bool searchPathToInit(TS ts, Frames &frames, Cube &cti);
std::optional<Cube> getPre(TS ts, const Frames &frames, const Cube &cube, int relativeTo);
Cube generalize(TS ts, const Frames &frames, const Cube &cube, int frameIndex);
void blockCubeAtFrame(Frames &frames, int frameIndex, const Cube &cube);
bool isInductive(TS ts, const Frames &frames);
void newFrame(Frames &frames);

• ic3: Runs the IC3 algorithm on the given transition system. Returns true if the
system is safe, or false if a counterexample is found.



• isInitial: Returns true if the given cube represents a state allowed by the system’s
initial condition.

• getBad: Searches the provided frame for a cube that intersects with the set of bad
states. Returns such a cube if one is found, or std::nullopt otherwise.

• searchPathToInit: Attempts to find a path from a counterexample to the initial
states. Returns true if a counterexample trace exists; otherwise, strengthens the
frames to exclude that path and returns false.

• getPre: Computes a predecessor pre of cube satisfying the transition relation so
that pre lies in the previous frame (which is a forward overapproximation), and
¬pre is relative inductive to the previous frame. Returns such a predecessor if it
exists or std::nullopt otherwise.

• generalize: Returns a subcube of the given cube that remains unreachable from
the initial states and prior frames.

• blockCubeAtFrame: Adds the given cube to the specified frame to block it, strengt-
hening the overapproximation.

• isInductive: Checks whether there are equal consecutive frames (i.e., Fk+1 ⊆ Fk).
If so, returns true; otherwise, returns false.

• newFrame: Appends a new frame to the sequence of frames, allowing the algorithm
to continue if no inductive invariant is yet found.

AIGER Format

You don’t need to understand the AIGER format in detail—use the aigToZ3.h tool to
work directly with a symbolic transition system. The AIGER format is a simple, compact
format for describing sequential circuits using And-Inverter Graphs (AIGs). Each AIGER
file encodes:

• A list of inputs,

• A list of latches (registers),

• A list of AND gates, and

• A single output (representing the property to be verified).

Latches represent stateful memory elements. Each latch stores a single Boolean value
(initalized to false) that updates synchronously on each clock cycle. In AIGER, a latch
is defined by its current value and the signal defining what value it will take in the next
time step. At every time step:

1. All latch values are updated simultaneously according to their next-state functions,
which are computed from the previous state.



2. Combinational logic (e.g., AND gates) is re-evaluated based on the new input and
updated latch values.

Safety Semantics. The circuit is considered SAFE if the output is never equal to 1 in
any reachable state.

Circuit Visualization. The included AIGER parsing library also supports visualizing
circuits defined in .aig files. This feature requires graphviz to be installed. You can find
installation and usage instructions here:

• https://graphviz.org/download

You can use these tools to help debug or better understand the structure of the circuits.
For more on the aiger format, see: https://fmv.jku.at/aiger/.

Example

Circuit. Below is a visual representation of a small AIGER circuit as rendered by the
helper tools in the provided library:

Explanation:

• Triangles (blue): Inputs and outputs (e.g., I0, I1, O0).

• Diamonds (pink): Latches (e.g., L0).

• Rectangles: State elements.

https://graphviz.org/download
https://fmv.jku.at/aiger/


• Ovals: AND gates or internal signals.

• Dots on edges: Indicate negation (inversion) of the signal being passed.

A possible trace where the values for inputs are chosen arbritrary is shown below:

Time Input I0 Input I1 Latch L0 Next L0 Output O0
0 1 0 0 0 0
1 1 1 0 1 0
2 0 1 1 1 0

Symbolic Transition System. The symbolic transition system for the above circuit is
given by:

1. Initial State:
init := ¬l0

2. Bad State:
bad := a16

∧ (a8 == i1 ∧ a10)

∧ (a10 == ¬a12 ∧ ¬a14)
∧ (a12 == i0 ∧ l0)

∧ (a14 == ¬i0 ∧ ¬l0)
∧ (a16 == l0 ∧ ¬l0)
∧ (l′0 == a8)

3. Transition Relation:

transitions := (a8 == i1 ∧ a10)

∧ (a10 == ¬a12 ∧ ¬a14)
∧ (a12 == i0 ∧ l0)

∧ (a14 == ¬i0 ∧ ¬l0)
∧ (a16 == l0 ∧ ¬l0)
∧ (l′0 == a8)

This example illustrates how circuit components and safety conditions are encoded
symbolically and how the primed variables represent the next state. Note that a16 = l0∧¬l0
is a contradiction and will always be false, meaning the circuit is SAFE.


