$\mathrm{SS}~2025$

	Enderended to the rectard	
	Semantics	
	Sheet 3	
Dolond Morron		

Prof. Dr. Roland Meyer	
Jan Grünke	Delivery until 7.05.2025 at 23:59

Exercises to the lecture

Exercise 3.1 (Compactness of Colorings)

A proper coloring of a graph (V, E) with colors C is a labelling $l : V \mapsto C$ such no two vertices sharing the same edge have the same color, i.e. for all edges $\{v, w\} \in E.l(v) \neq l(w)$. A coloring using at most k colors is called a (proper) k-coloring. Show the following using König's Lemma:

A (countably) infinite graph G is k-colorable if and only if every finite subgraph of G is k-colorable.

Exercise 3.2 (Variation of Ramsey's Theorem)

Let (V, E) be an infinite graph such that for every infinite set of vertices $X \subseteq V$ there are $v, v' \in X$ with $(v, v') \in E$. Prove that (V, E) contains an infinite complete subgraph.

Exercise 3.3 (Abstraction Refinement)

Consider the following program. It computes the product $z = x \cdot y$ for $x, y \in \mathbb{N}$. Use the CEGAR loop to show that block 8 is not reachable. Begin with the empty set of predicates.

$$\begin{array}{l} [z:=0]^{1} \\ \textbf{if} \ [x>0]^{2} \ \textbf{then} \\ \textbf{if} \ [y>0]^{3} \ \textbf{then} \\ \textbf{while} \ [x>0]^{4} \ \textbf{do} \\ \ [z:=z+y]^{5} \\ \ [x:=x-1]^{6} \\ \textbf{if} \ [z=0]^{7} \ \textbf{then} \\ \ [skip]^{8} \\ \textbf{else} \\ \ [skip]^{9} \\ \textbf{else} \\ \ [skip]^{10} \\ \textbf{else} \\ \ [skip]^{11} \end{array}$$

Exercise 3.4 (Spurious Counterexamples) Let $r = r_1, \ldots, r_n$ be a spurious counterexample and

$$s_i = \operatorname{sp}(true, r_1, \dots, r_i)$$
 $w_i = \operatorname{wp}(r_{i+1}, \dots, r_n, false)$

Show that $s_i \models w_i$ holds for all $i = 1, \ldots, n-1$.