Exercises to the lecture Semantics Sheet 2

Prof. Dr. Roland Meyer Jan Grünke

Delivery until 30.04.2025 at 23:59

Exercise 2.1 (Abstract Interpretation)

Recall that a *Galois insertion* is a Galois connection where $\alpha \circ \gamma = id$ holds. Let $(\mathbb{P}(\mathbb{Z}^{\{x,y\}}), \subseteq)$ and $(\mathbb{P}(\{even, odd\}^{\{x,y\}}), \subseteq)$ be complete lattices.

- a) Define a Galois insertion (α, γ) for the above lattices. Show that it is a Galois insertion.
- b) Let the semantics $\llbracket b \rrbracket$ for boolean expressions b denote the set of states that satisfy b. Show that $\llbracket assume \ b \rrbracket^{\#}(s) := s \cap \alpha(\llbracket b \rrbracket)$ is a sound approximation for $\llbracket assume \ b \rrbracket$.
- c) Give the best approximation $[x--]^{\#}$ for [x--]. Is the best approximation also an exact approximation?

Exercise 2.2 (Best and Exact Approximations) Let (α, γ) be a Galois connection between (C, \subseteq) and (A, \sqsubseteq) . Let $f : C \mapsto C$ be a function. Prove or disprove:

- a) An exact approximation of f is also the best approximation of f.
- b) If (α, γ) is a Galois insertion, then an exact approximation of f is also a best approximation of f.
- c) There is an abstract domain (A', \sqsubseteq') and a Galois insertion (α', γ') between (C, \subseteq) and (A', \sqsubseteq') so that f has a computable exact approximation.
- d) Consider a sound approximation $f^{\#}$ for f. Then, $f^{\#}$ is an exact approximation if and only if $f^{\#} \circ \alpha \sqsubseteq \alpha \circ f$.

Exercise 2.3 (Well Quasi Orderings)

Prove or disprove that the following are well quasi orderings:

a) The lexicographical order $(\{0,1\}^*, \leq_{lex})$ over binary words:

 $u \leq_{lex} v$ if and only if u is a prefix of v or the first symbol $u[\ell]$ that does not coincide with $v[\ell]$ satisfies $u[\ell] < v[\ell]$.

Note that $u[\ell]$ refers to the ℓ -th symbol of u.

b) The colexicographical order $(\{0,1\}^*, \leq_{colex})$ defined by:

 $u \leq_{colex} v$ if and only if u is a post fix of v or the last symbol $u[\ell]$

that does not coincide with $v[\ell]$ satisfies $u[\ell] < v[\ell]$.

c) The radix order $(\{0,1\}^*, \leq_{radix})$ over binary words:

 $u \leq_{radix} v$ if and only if |u| < |v| or $|u| = |v| \land u \leq_{lex} v$

- d) The quasi ordering $(\mathbb{N}, |)$, where $a \mid b$ means that a divides b.
- e) The quasi ordering $(\mathbb{N} \times \mathbb{N}, \leq_2)$ with $(n, m) \leq_2 (n', m')$ if $n \leq n'$ and $m \leq m'$.

Exercise 2.4 (Termination for Well-structured Programs)

Let $(\Sigma, COM, [-])$ be a well-structured domain with wpo $\leq \subseteq \Sigma \times \Sigma$ that is a simulation wrt. [com] for all $com \in COM$. Let p be a (well-structured) program. Recall that we lift the well-structured domain to configurations $\Gamma_p \subseteq W(COM) \times \Sigma$. Here, Γ_p denotes the restriction of configurations to the finitely many control states that occur in p. Assume that

- $\sigma \leq \sigma'$ is decidable for each $\sigma, \sigma' \in \Sigma$,
- the set $post(\sigma, com) = \{\sigma' \mid (\sigma, \sigma') \in [[com]]\}$ is finite for each $\sigma \in \Sigma$ and $com \in COM$, and post is a computable function.

Then, p is called *terminating for* $\sigma_0 \in \Sigma$ if every computation (transition sequence in small-step semantics) starting in $(p, \sigma_0) \in \Gamma$ is finite.

Show that the *termination problem* is decidable. That is, given a well-structured program p and initial state σ_0 like above, decide whether p is terminating for σ_0 .