Prof.	Dr.	Roland	Meyer
Ian (<u>l</u> riin	ke	

Delivery until 23.04.2025 at 23:59

Exercise 1.1 (Semantics of Arithmetic & Boolean Expressions) Let arithmetic expressions AExp and boolean expressions BExp be given by the following grammar

$$a ::= x | n | a_1 + a_2 | a_1 * a_2$$

$$b ::= true | a_1 <= a_2 | !b | b_1 \&\& b_2$$

with variables $x \in Vars$ and $n \in \mathbb{Z}$. Let states be a functions from variables to integers $\Sigma := \mathbb{Z}^{Vars}$ and configurations be $\Gamma := BExp \times \Sigma$.

- (a) Define a small-step semantic TS[-] for arithmetic and boolean expressions.
- (b) Define denotational semantics $PT[\![-]\!]: AExp \to \mathbb{Z}^{\Sigma}$ for arithmetic expressions and $PT[\![-]\!]: BExp \to \mathcal{P}(\Sigma)$ for boolean expressions.
- (c) Evaluate $[0 * (x + 3) \le 4]$ && $!(x \le 2)$ in both semantics for $\sigma := \{x \mapsto 1\} \in \Sigma$.

Exercise 1.2 (k-Induction)

In this exercise we consider k-inductive invariants that are a generalisation of inductive invariants. An invariant I is k-inductive if

- 1. $\forall 0 \leq i < k$. $Init \rightarrow^i \subseteq I$.
- 2. $(I \rightarrow I^{k-1}) \rightarrow \subseteq I$ with $\rightarrow_I := \rightarrow \cap (I \times I)$

holds. Note that standard inductive invariants are 1-inductive.

Consider the program p, given by

1: x := 1 y := 2 z := 32: while true do 3: t := x x := y y := z z := t4: end while

with configurations $\Gamma := \{1, \ldots, 4\} \times \Sigma$ and states $\Sigma := \mathbb{Z}^{\{x,y,z,t\}}$. For this exercise, we combine several commands into one, e.g. the first command is [x := 1; y := 2; z := 3]. This simplifies the transition relation of the small-step semantics which, for example, contains the following transition $(1, [0, 0, 0, 0]) \rightarrow (2, [1, 2, 3, 0])$.

The goal of this excercise is to prove safety for p wrt. $Bad := \{2\} \times \{\sigma \in \Sigma \mid [x = y]](\sigma)\}$. A naive invariant for p that is safe wrt. Bad is \overline{Bad} .

- (a) Show that \overline{Bad} is not 1-inductive.
- (b) Show that \overline{Bad} is k-inductive for some k > 1.
- (c) Give an 1-inductive invariant I_1 that is a strengthening of \overline{Bad} $(I_1 \subseteq \overline{Bad})$.
- (d) Show that k-induction is sound and complete for proving safety for all $k \in \mathbb{N}_{>0}$: $Reach(p) \cap Bad = \emptyset$ if and only if there is a k-inductive invariant for p that is safe wrt. Bad.

Exercise 1.3 (Galois Connections)

For each of the following pairs (α, γ) , state whether it is a Galois connection. If this is not the case, give a counterargument or counterexample for each.

	L	М	lpha	γ
a)	$(\mathbb{Z}_{\pm\infty},\leq)$	$\left(\mathbb{P}\left(\mathbb{Z} ight) ,\subseteq ight)$	$z\mapsto \{z\}, -\infty\mapsto$	$m \mapsto \bigsqcup\{z \mid z \in m\}$
			$\emptyset,\infty\mapsto\mathbb{Z}$	
b)	$(\mathbb{P}\left(\mathbb{Z} ight),\subseteq)$	$(\mathbb{Z}_{\pm\infty},\leq)$	$l\mapsto \bigsqcup\{z\mid z\in l\}$	$z\mapsto \{z\}, -\infty\mapsto$
				$\emptyset,\infty\mapsto\mathbb{Z}$
c)	$(\mathbb{Z}\cup\{\bot,\top\},\sqsubseteq)$	$\left(\mathbb{P}\left(\mathbb{Z} ight),\subseteq ight)$	$z\mapsto \{z\},\top\mapsto \mathbb{Z},\bot\mapsto$	$m \mapsto \bigsqcup \{a \mid a \in m\}$
			Ø	
d)	$(\mathbb{Z}_{\pm\infty},\leq)$	$\left(\mathbb{Z}^2_{\pm\infty},\leq^2\right)$	$l\mapsto (l,l)$	$(l_1, l_2) \mapsto l_1$
e)	$\left(\mathcal{P}(\mathbb{R}^2),\subseteq\right)$	$(\operatorname{conv} \mathbb{R}^2, \subseteq)$	$l \mapsto \operatorname{conv}\left(l\right)$	$m \mapsto m$

Here we use

- $z \in \mathbb{Z}, l \in L, m \in M$.
- $\mathbb{Z}_{\pm\infty} := \mathbb{Z} \cup \{-\infty, +\infty\}$ and for all $z \in \mathbb{Z}$. $-\infty \le z \le +\infty$ holds.
- $z_1 \sqsubseteq z_2$ iff $z_1 = \bot \lor z_2 = \top$.
- $(l_1, l_2) \leq^2 (l_3, l_4)$ if $l_1 \leq l_3$ and $l_2 \leq l_4$ for $l_1, l_2, l_3, l_4 \in \mathbb{Z}_{\pm \infty}$.
- conv \mathbb{R}^2 the *convex sets* over \mathbb{R}^2 or conv (l) the *convex hull* of l. A subset $m \subseteq \mathbb{R}^2$ is called convex if every connecting line between two points in m itself lies completely in m. The convex hull conv (l) is the smallest convex set m that contains l.