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Literature

Unfortunately, it seems that there is no single book containing the contents of this lec-
ture.

• There is a plethora of books on game theory, but they mostly study games with
imperfect information (which are of interest for economic science). These books
usually treat games with perfect information hardly or not at all.

• There are books on perfect-information games that consider them from a purely
mathematical perspective, i.e. with an emphasis on theoretical concepts like de-
terminacy and without caring about the algorithmics.

• Parts of the lecture can be found, for example, in books on automata theory,
where certain games are introducedas tools toobtain automata-theoretic results.
In contrast to this approach, wewill focus on game-theoretic results and see their
automata-theoretic consequences as applications.

Therefore, I have to refer the reader to a collection of books and papers for the different
types of games considered in this lecture. The later sections will contain references to
the books and papers that I used to prepare the corresponding lecture. A full list of
references can be found at the end of this document.

One should note that the basic definitions, e.g. those of games and plays, differ be-
tween different books and papers. For example, in parts of the literature, games are
deadlock-free by definition, while we try to avoid making such an assumption. These
differences can usually be overcome by minor tweaking.

Other people have taught lectures on games with perfect information whose syllabus
overlaps with the one of this lecture. In particular, I want to refer the reader to the
lecture notes for a lecture on games given by Martin Zimmermann at the University of
Saarland [ZKW].
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1. Introduction

Games, inparticular boardgames, havebeena recreational activity forhumans for thou-
sands of years. While this fact alone might justify that they are studied in science, one
may ask: Why exactly do theoretic computer scientists study board games? A second
question that may arise when looking at the title of this lecture is what distinguishes
games with perfect information from other types of games.

Perfect vs. imperfect information

Let us first answer the second question, then the first. Most games that are played by
humans are actually not perfect-information games: In some games, a part of the infor-
mation is only visible to one of the players, e.g. in Battleships. In others, randomness
plays a role, e.g. in Mensch ärgere dich nicht. Most card games, e.g. Poker, combine
both: Initially, the cards are shuffled randomly, and later, each player has a set of cards
on her hand that is not visible to the other players.

It turns out that randomness can usually be modeled by ”hidden information”. Thus,
all such games are called games with imperfect information. These games are widely
studied in science, in particular in economic science. The players of a game can model
companies and the rules of the gamemodel amarket, and thus finding an optimal way
to play the game corresponds to finding an optimal behavior for a company in a certain
market situation.

The concepts and methods used to study games with imperfect information differ
widely from the ones used to study games with perfect information. Therefore, the
presentation of games with imperfect information in this lecture will be limited to this
paragraph. We present the most famous (and most simple) example of a game with
imperfect information that is studied in science. The rules of prisoner’s dilemma are as
follows: Two criminals are caught after a robbery by the police and interrogated sepa-
rately, with no means of communication. If both remain silent, they can only be con-
victed for a lesser crime, and have to serve 2 years in prison each. The prosecutormakes
them an offer: If one of them confesses the crime (and thereby betrays the other), the
traitor only has to serve one year in prison, while the other criminal can be convicted
for robbery and has to go to prison for 4 years. The catch is that if both confess, both
serve 4 years in prison. Obviously, the sum of the years in prison is minimized if both
stay silent, then they have to serve 4 years in total. This value is usually called the social
optimum. This solution does not take selfishness into account: One could argue that
the optimal solution is for both to confess and betray their partner: They now serve 8
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I. Introduction & preliminaries

years in total, but none of the players can improve their personal situation by changing
their behavior. Such a situation is called Nash equilibrium, and finding such equilibria
is one of the goals of the studies that are made. The factor between Nash equilibrium
and social optimum, 8

4
= 2 in our case, is called theprice of anarchy. These concept can

for example be applied to study traffic flow. One can show that under the assumption
of the drivers being selfish, there are situations in which the travel time decreases for
all drivers if a road is closed.

Let us turn back to games with perfect information. We say that a game is a perfect-
information game if both players know the rules of the game (i.e. the possible states in
which the game be in, and the moves that lead from one state to another), and when-
ever it is their turn, they know the current state and the full history, i.e. all states in
which the game has been before. Among real life board games, many games in which
no randomness is involved belong to this class, e.g. Chess and Go. Those two are actu-
ally simple examples: We will see in Section 4 that in principle, Chess and Go are easy
to solve using a known algorithm. The only thing that prevents us from actually doing
so is the huge number of possible states that cannot be handled by modern comput-
ers. (In fact, this will probably stay this way in the foreseeable future.) In principle, we
can consider games that are far more complicated, because they are infinite: The plays
might be of infinite length, the number of possible states can be infinite, or both.

Games with perfect information are special because they allow a reasoning of a special
shape: Whenever aplayer has topick amove, the consequencesof eachpossible choice
are clear to the players, e.g. which choices the opponent has in the next move. More
formally, for each given initial position, the tree of all possible plays that can unfold
when the game is played from the given position is known in principle. (But it may be
infinite or at least very large.)

Examples of games with perfect information

To answer the first question and to motivate why such games are of interest for com-
puter scientists, we consider three examples.

The first example is that games naturally occur whenever decisions in a system are
made by several separate entities. In automata theory, non-determinism is often con-
sidered (e.g. in the form of NFAs, non-deterministic finite automata), but it is usually
assumed to be either completely controllable (e.g. “Is state p reachable from state q?”,
or, to highlight the contribution of non-determinismbetter, “Can the non-determinism
be resolved such that we reach p from q?”), or to be completely uncontrollable (e.g. “Is
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1. Introduction

state p unreachable from q, no matter how non-determinism is resolved?”). It is a nat-
ural extension to consider several types of non-determinism, say one controllable and
one uncontrollable type. We then ask whether we can instantiate the controllable non-
determinism such that a certain property holds, nomatter how the uncontrollable non-
determinism is resolved. Such a scenario canbe seen as a two-player game,where each
player represents one type of non-determinism, the desired property corresponds to
the winning condition of the game, and the question is now whether one player can
enforce that she wins the game, no matter how the other player acts.

This situation occurs for example in synthesis. In contrast to verification, where we
want to check whether the run-time behavior of a program satisfies a given specifica-
tion (whichmeans thatwehave either noor just one typeof non-determinism), wenow
have a program template (a programwith ”holes”) and a specification. Herewewant to
knowwhetherwe can instantiate the template such that the resultingprogramsatisfies
the specification. The choices when instantiating the template form one type of non-
determinism resp. one of the players, the environment in which the program should
be executed in represents another type of non-determinism resp. the other player.

As a second example, games can be used as a powerful tool to obtain new theoretic
results. Rabin’s tree theorem essentially states that the class of tree-languages accept-
able by a certain type of automata is closed under complement. It is a highly non-trivial
result, and its easiest proof is using parity games as a tool. The idea is to see the branch-
ing of a tree as another form of non-determinism (in addition to the non-determinism
from the automaton). This allows us to see the acceptance problem for these tree au-
tomata (“Does the given automaton accept a given tree?”) as a game, in which one
player picks the moves of the automaton, and the other player picks the branch of the
tree on which the automaton should run. The positional determinacy of parity games, a
deep result from game theory, states that exactly one of the players can enforce that
she wins the game, and in fact do so in a very special way, via a so-called uniform posi-
tional winning strategy. On the trees not in the language of the automaton, the player
representing the automaton cannot win the game. Consequently, the other player has
auniformpositionalwinning strategy for these trees. This strategy cannowbeencoded
into an automaton that will by construction accept the complement language of the
original automaton, which proves the result.

The third example can be seen as a combination of the concepts in the first two exam-
ples. Verifying anon-deterministic systemagainst a specification that is givenby logical
formula can be seen as a game: Existential quantifiers in the formula means that there
has to be a move of the system such that the subsystem reached by the move satisfies
the inner condition. We model this as a player in a game that should select the correct
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move. Universal quantifiers mean that all subsystems that can be reached by a move
should satisfy someproperty. This ismodeled by having a secondplayer that can select
amove of his choice to which the first player has to react. The verification question can
now be answered by solving the game.

Altogether, we see that whenever multiple entities make decisions that influence the
run of a system, we can model the system as a game in which the entities are the play-
ers. This is even true when the entities are initially not apparent, but rather are hidden,
e.g. in the form of branching of trees, or the evaluation semantics of logical formulas.
Formany settings that originate in theoretic computer science and its subfields like ver-
ification and automata theory, games with perfect information have been successfully
used as a suitable model. This enables us to use results from game theory to obtain
deep results in these fields.

What it means to “solve” a game

Whenwe talk about solving a game, what dowe actuallymean? Solving a gamemeans
essentially determining the winner of the game. The winner of one concrete play is
determined by the winning condition of the game, and thus easy to find. To be the
winner of the whole game, a player has to be able to enforce the winning condition to
hold in all plays, no matter how the other player acts.

The questions that we are usually asking are the following:

• Determinacy: Is there awinner? (Thismay sound counter-intuitive, but there are
games in which there is no winner, although “draw” is not a possible outcome of
a play.)

• Decidability/Computability: Is there an algorithm (and can we explicitly imple-
ment it) that computes the winner?

• Strategies: How does the winner have to play to ensure that she does indeed
win a play? How can such a strategy be implemented such that executing it uses
a minimal amount of space and computation time?

Structure of the lecture

The lecture is structured in four parts.

14



1. Introduction

In the first part, we start by considering Nim, a very simple game with perfect informa-
tion. We thenmove on and define the basic notations needed in the rest of the lecture:
games on graphs, plays, winning conditions and strategies.

In the second part, we consider various types of winning conditions for games on
graphs. We start with simple reachability conditions and continuewith conditions that
workonplaysof infinite length, likeBüchi, parity, andMuller conditions. Althoughparts
of the theory also work for games on infinite graphs, our focus is on finite graphs as for
them, the theory immediately gives rise to algorithms that allows us to compute the
winner of the game. We conclude the part by considering games that are not about
winning or losing, but about optimizing the payoff (which is a number associated to a
play of the game). We study zero-sum games of bounded length with arbitrary payoff
functions and mean payoff games in which the payoff is some sort of average value of
an infinite play.

We then turn towards studying games on infinite graphs in Part III. We will see that if
we do not restrict the game arena and the winning condition, we might obtain games
that are undetermined: Although each play has a winner, none of the players has a
systematic way of winning. We continue with games whose underlying graph is infi-
nite, but has a finite representation by an automaton. Such games have a winner, and
we have the hope that we are able to compute it by working on the finite represena-
tion. Deciding the winner algorithmically will of course not work for automata models
for which verification problems are undecidable, like Turingmachines and counter ma-
chines. Surprisingly, the problem remains undecidable if we restrict counter machines
to counter nets, for which verification problems like control state reachability are decid-
able. In contrast to this result, pushdowngames, games on the configuration graphs of
pushdown automata, can be decided. We conclude the part by briefly mentioning the
Borel determinacy theorem and the resulting Borel hierarchy of winning conditions for
which the associates games are guaranteed to be decidable.

As mentioned earlier, game theory has numerous applications. In the course of the lec-
ture, we study two of them, both bundled together in these notes in the form of the
fourth part. As a practical application, we see that reachability games can be used to
model online scheduling problems. To this end, the tasks that are generated at run-
time are seen as one player and the scheduler that should be constructed as the other.
A theoretic application of game theory is the above-mentioned Rabin’s tree theorem
from automata theory which we will state and prove.
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I. Introduction & preliminaries

Further reading

There are a lot of topics in the research on games with perfect information that are not
covered in this lecture. The content of this lecture has hopefully laid the foundation for
the interested reader to explore these topics in self-study. We point out a few possible
directions and give corresponding references.

• Algorithmics of parity games on finite graphs:
There is active research on finding algorithms for solving parity games. In Sec-
tion 6, we already mentioned the breakthrough result [Cal+17; JL17] that parity
games can be solved by an algorithm that is quasi-polynomial and only expo-
nential in the highest priority. Whether solving parity games is a problem in P
remains an open problem.

• Algorithmics for pushdown games:
Walukiewicz’s reduction which we discussed in Section 12 shows that parity
games on pushdown automata can be decided. However, the resulting algo-
rithm is not suitable for practical usage (although it has the optimal time com-
plexity). There are different techniques for solving various types of Pushdown
games that work e.g. by saturating automata[Cac02] or by computing the least
solution to a system of equations [HMM16]. Parity games can be turned into
safety games by adding a counter (with bounded value) to the control state (see
e.g. [FZ12]). In the case of Pushdown games, this even gives a polynomial-time
reduction [Hag+18].

• Higher order pushdown games:
Walukiewicz’s reduction and someof the other techniques for solving pushdown
games can be extended to work on larger classes of systems. Namely, they work
for higher levels of the pushdown hierarchy: for higher-order recursion schemes
and for higher-order (collapsible) pushdown automata [CW07; HMM17].

• Game semantics:
We have discussed in Section 15 the correspondence between logics and au-
tomata, and that algorithmic problems for the latter can be dealt with by solving
games. Amore direct correspondence is given by the game semantics for certain
kinds of logics. For example, the problemofmodel checking a μ-calculus formula
on a system usually corresponds to solving parity games on the systems [Wal01;
KO09].

• Determinacy:
A line of studies that is more oriented towards puremathematics is trying to find

16



1. Introduction

sufficient conditions for the determinacy of infinite games. The big result in this
area is the Borel determinacy theorem [Mar75; Mar82] which we have stated but
not proven in Section 13.
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2. Nim – A warm-up

Before formally introducing the basic definitions, wewill work on a toy example. It is of
no practical use, but a very famous example of a perfect information game, and one of
the first games that have been implemented on a computer. When doing the general
theory later, we will eventually see that many steps of the general solutions for games
corresponds to the steps that we take in the following to solve the example.

Sources
The content of this section is based on Roland Meyer’s notes on the topic.
They can be found here:
tcs.cs.tu-bs.de/documents/ComplexityTheory_WS_20152016/landnl.pdf

Nim

2.1 Definition: Nim
The state of a game of Nim is given by a list of piles, each containing a (non-negative)
number of coins.

During a play of the game, the players take turns alternately. In each turn, the active
player has to select a non-empty pile, and take coins from this pile. She has to take at
least one coin, but other than that, shemay take arbitrarilymany coins, up to thewhole
pile.

The player that takes the very last coin such that all piles are empty after themove, wins
the play of the game.

2.2 Example
Consider a state of a game of Nim that has three piles, two consisting of two coins
each, one consisting of just one coin. In the following, we write states as tuples, e.g. as(2, 2, 1). Assume the first player makes takes two coins from the first pile, resulting in
state (0, 2, 1). The second player now takes the whole second pile, resulting in (0, 0, 1)
and thus enabling the first player to win the play of the game by taking the very last
coin.

We write plays as a sequences of transitions between states, e.g. as

(2, 2, 1) player 1
−−−−−−→ (0, 2, 1) p2

−−→ (0, 0, 1) p1
−−→ (0, 0, 0) .

19
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I. Introduction & preliminaries

So we have seen that this concrete play ends with a win for player 1. Is the fact that
player 1 has won an inherent property of the initial position (2, 2, 1) or could player 2
have won by playing more cleverly?

Given some fixed initial position (c1, . . . , ck) (i.e. k piles of coins, where each pile i con-
sists of ci coins), we would like to check which player can enforce a win, and how she
has to play to do this.

One could use the fact that each play of Nim has bounded length: Since each player
has to take at least one coin whenever it is her turn, the play consists of at most

C = ∑ ci = c1 + . . . + ck

moves. Furthermore, in each state, there are only up to C possible moves. Combining
these insights, we obtain that all possible plays can be arranged in a tree of height at
most C and of out-degree at most C, i.e. a tree with at most CC nodes.

We could explicitly construct the tree anddo the followingprocedure to checkwhether
player 1 can win:

1. Mark all occurrences of the state (0, . . . , 0) in which player 1 took the last turn as
winning.

2. Mark all states in which player 2 has to move to a winning state as winning.

3. Mark all states in which player 1 can move to a winning state as winning.

Now repeat steps 2. and 3. until no new states are marked as winning anymore. When-
ever the play reaches a winning state, player 1 can win by picking a move that again
leads to a winning state whenever it is her turn. The manner in which the states were
marked ensures that player 2will never have amove to reach a state that is notwinning.
A play played like this will end in a node (0, . . . , 0) in which player 1 did the last move,
and is thus won by player 1.

A similar argumentation can be used to show that whenever a state is not winning,
player 2 can ensure that the not-winning property is maintained, and shewins the play
of the game.

Checking which player is the winner of the game for a given initial state now can be
done by constructing andmarking the tree of plays and then checkingwhether its root
note (corresponding to the initial state) is winning.
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2. Nim – A warm-up

2.3 Example
We show a part of the tree of plays for the initial state (2, 2, 1)1. Here, the superscripts
(e.g. 1) denotes which player has to make the next move. In the base case, states(0, 0, 0)2 are winning for player 1. Winning nodes have a blue, losing nodes have a red
background.

(2, 2, 1)1
(0, 2, 1)2

(0, 0, 1)1
(0, 0, 0)2

(0, 1, 1)1
(0, 1, 0)2
(0, 0, 0)1

(0, 0, 1)2
(0, 0, 0)1

⋯

⋯ (2, 2, 0)2
(2, 0, 0)1

(0, 0, 0)2 ⋯

⋯

The algorithmworks, but it has two severedisadvantages: Firstly, it needs tobuild a tree
that is exponential in the size of the initial position. (To be precise: Exponential even
in the unary encoding of the numbers!) Secondly, it has to be rerun for every initial
position.

Bouton’s theorem

Wewould prefer an algorithm that identifies whether a state is winning without explic-
itly building the tree.

In the following,wewill use the fact thatNim is an impartialgame: The tuple (c1, . . . , ck)
representing the current state uniquely determines all possible moves, and it does not
matter which player is currently moving. We will give a condition that is fulfilled if and
only if the active player, i.e. the player whose turn it is, wins the play.

The desired algorithm was first presented by Bouton in 1901 [Bou01]. The condition is
dependent on a property of a binary representation of the ci, defined as follows.

2.4 Definition: Nim sum
Let (c1, . . . , ck) be a state of a Nim play. We consider a binary, most significant bit first
representation of the ci.
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I. Introduction & preliminaries

Let jmax be the length of the binary representation of the greatest ci. Let cij ∈ {0, 1} for
i ∈ {1, . . . , k}, j ∈ {1, . . . , jmax} be the jth bit of the binary representation of ci.

The Nim sum NimΣ(c1, . . . , ck) of (c1, . . . , ck) is a vector in N
jmax such that the jth compo-

nent is the sum of the jth bits of the binary representations of the ci, i.e.

NimΣ(c1, . . . , ck)j = k

∑
i=1

cij .

We call a state (c1, . . . , ck) balanced if every component of NimΣ(c1, . . . , ck) is even.
2.5 Example
The Nim sum of (2,2,1) is unbalanced.

ci ci1 ci2

c1 = 210 = 1 0
c2 = 210 = 1 0
c3 = 110 = 0 1

NimΣ = 2 1

2.6 Theorem: Solving Nim (Bouton 1901 [Bou01])
The active player can enforce that she wins from a state (c1, . . . , ck) if and only if(c1, . . . , ck) is not balanced.
Crucial to the proof of the theorem will be the following three lemmata.

2.7 Lemma
Let (c1, . . . , ck) be a balanced state. There is no move from this state to (0, . . . , 0).
Proof:
If the position is (0, . . . , 0), there is no move, in particular no move to (0, . . . , 0).
Assume there is at least one ci that is not equal to 0, say ci0 . We prove that there is some
index i1 ≠ i0 such that ci1 ≠ 0:

Towards a contradiction, assume we have ci = 0 for all i ≠ i0. As a result, we have cij = 0
for all i ≠ i0 and all j. Since ci0 ≠ 0, there is at least one j, say j0, such that ci0j0 = 1. Then
we have

NimΣ(c1, . . . , ck)j0 = k

∑
i=1

cij = 0 + ci0j0 = 1 .

This would mean that the Nim sum is not balanced, a contradiction.
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2. Nim – A warm-up

Nowwe know that there are two piles onwhich at least one coin is present. Since in the
next move, the active player can empty at most one of the piles, she will not be able to
reach state (0, . . . , 0): Coins remain on at least one pile. ⬛

2.8 Lemma
Let (c1, . . . , ck) be a balanced state. Every successor state (i.e. a state to which we can
go with one single move) is unbalanced.

Proof:
If the position is (0, . . . , 0), there is nothing to show since there is no successor.

Assume that ci ≠ 0 for some i, and consider an arbitrary successor state (c′1, . . . , c′k).
When doing a move, exactly one of the ci is changed, say ci0 . Thus, at least one bit of
the binary representation of this ci0 is changed, i.e. there is j0 such that c′i0j0 ≠ ci0j0 .

Now consider the Nim sum of the successor state. It is easy to see that if
NimΣ(c1, . . . , ck)j0 was even, then NimΣ(c′1, . . . , c′k)j0 is now odd: ci0j0 and c′i0j0 differ by
one, and cij0 is unchanged for all i ≠ i0. This means that the new Nim sum is not bal-
anced. ⬛

Note that Lemma 2.8 in fact implies Lemma 2.7. We chose to present them separately
for didactic reasons.

2.9 Lemma
Let (c1, . . . , ck) be a unbalanced state. There is a successor state (i.e. a state to which we
can go with one single move) that is balanced.

Proof: Exercise 2.13. ⬛

Now we are ready to give to prove the theorem.

Proof of Theorem 2.6:
For one direction of the proof, assume that the initial position (c1, . . . , ck) is not bal-
anced. We present a winning strategy for the active player, i.e. a systematic way of
playing that ensures that the player that is active in the initial positions wins.

The winning strategy maintains the invariant that whenever it is the turn of the player,
the state of the game is not balanced. Whenever it is her turn, she picks a move that
makes the resulting state balanced, which is possible by Lemma 2.9. Whenever it is
the turn of the opponent, she has to make a move that makes the state unbalanced
again by Lemma 2.8. Each play that is played like this is winning for the player that
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I. Introduction & preliminaries

is initially active: Whenever the opponent has to move, she is in a balanced state and
thus cannot directly reach the winning state (0, . . . , 0) by Lemma 2.7. Since every play
of Nim is finite, (0, . . . , 0) has to be reached at some point. This proves that eventually,
the initially active player wins by reaching (0, . . . , 0)with her move.

For the other direction of the proof, assume that the initial position is (c1, . . . , ck) bal-
anced. We prove that the player that is not active then has a winning strategy. This is
sufficient to show that the active player cannot enforce that she wins (see Lemma 3.9).

By Lemma 2.8, the active player has no choice but to go to an unbalanced state. In this
state, the opponent is now the active player, and she can use the above strategy from
the first part of the proof to ensure that she wins the play. ⬛

2.10 Example
The theorem shows that (2, 2, 1) is indeed a good position for player 1. But the move
thatplayer 1made inExample2.2 is notoptimal, it leads to theunbalanced state (2, 2, 1)
with Nim sum 1 1. To ensure that she wins, she would have to take the single coin on
the last pile, leading to state (2, 2, 0) with Nim sum 2 0. If the other player now takes
a whole pile (state (2, 0, 0), Nim sum 1 0), player 1 wins by taking the other pile. If the
other player takes only one coin from one pile (state (2, 1, 0), Nim sum 1 1), player 1 can
get to a balanced state by taking one coin from the other pile (state (1, 1, 0), Nim sum
0 2). From this position one, it is easy to see that player 2 has to take the second to last
coin, and player 1 can take the last coin.

2.11 Remark
As mentioned above, Nim is a so-called impartial game. This means that

• the possible moves from a state of the game are independent of which player is
active,

• all plays have finite length,

• the player who cannot move anymore loses.

The Sprague–Grundy theorem shows that for every such impartial game, there is an
initial state of Nim that is equivalent to it.

Exercises

2.12 Exercise
Complete the tree from Example 2.3, i.e. draw the full tree of plays for the initial state
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2. Nim – A warm-up

(2, 2, 1)1, where we assume that player 1 has to move first. For every node, write down
the Nim sum. Furthermore, mark all winning states in the tree.

2.13 Exercise
Prove Lemma 2.9: Let (c1, . . . , ck) be an unbalanced state. There is a successor state
(i.e. a state to which we can go with one single move) that is balanced.

Hint: Consider the smallest index j such that NimΣ(c1, . . . , ck)j is odd. (Note that “small-
est” means that the corresponding bit is most significant.) Prove that there is an index
i with cij = 1 that can be modified to get to a balanced state.

25





3. Games with perfect information – Basic definitions

The goal of this section is to provide the basic definitions. The rest of the lecture will be
based on them. We need to define games, plays, and the winner of plays. Furthermore,
we consider strategies, systematic ways of playing.

Games and Plays

3.1 Definition: Game
A sequential two-player board game with perfect information G, shortly referred to
as game in the rest of the lecture, consists of a game arena and a winning condition.

A game arena is a directed graph G = (V, R) together with a function

owner∶ V → { , }
that assigns to eachvertex inV anowner, either theuniversal player or theexistential
player .

We postpone the definition of the winning condition as it needs more notation.

The vertices V of the graph are the possible states of the game, wewill mostly call them
positions (or sometimes also configurations) in this lecture. The arcs R of the graph are
the moves or transitions of the game that connect the positions.

We usually write a game arena as G = (V ∪⋅ V , R), i.e. instead of explicitly specifying
the ownership function, we give an implicit definition that is based on a partition of the
positions into the positions owned by each player.

We will assume throughout the lecture that R contains no parallel arcs (arcs that have
the same origin and destination). Consequently, each arc is uniquely specified by a
tuple (o, d) ∈ V × V consisting of its origin o and its destination d, and we can see
R ⊆ V × V as a set of such tuples. We allow self-loops, i.e. arcs (o, d)with o = d.

In the rest of this section, we assume G = (V ∪⋅ V , R) to be some fixed game arena.

Beforewe can formally definewhat awinning condition is, we need to understand how
a game is played.
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I. Introduction & preliminaries

Intuitively, we assume that at each point in time, a token is placed on one position of
the game arena. Then, the owner of this position picks an arc of the game arena orig-
inating in the current position and moves the token to its destination. This continues
ad infinitum or until the token is in a position for which there is no leaving arc. The
resulting path of the token in the game arena is called a play.

3.2 Definition: Play
A play of a game is a finite or infinite path in its game arena.

Each play is uniquely identified by a finite or infinite sequence of positions
p = p0p1p2 . . . such that (pi, pi+1) is an arc of the arena for all i. (Here, we use that R
is parallel-free.)

The length of a finite play p0 . . . pk is ∣p∣ = k, meaning we count the number of moves
that have been made. In this case, we also write plast to denote the last position pk. We
write ∣p∣ = ω for infinite plays.

The “for all i” above should be read as: For all i ∈ {0, . . . , k − 1} if the play is finite and
has length k, and for all i ∈ {0, . . . ,ω} = N if the play is infinite.

A position x is live if it has at least one successor in the game arena (i.e. there is an arc(x, y) ∈ R for some y ∈ V). If a position has no successor it is called dead or a deadlock.

We call a finite play alive resp. dead or deadlocked if its last position is live resp. dead.

We call a play maximal if it cannot be prolonged, i.e. if it is infinite or finite but dead.

For a play that is alive, we call the player active that owns the last position. Intuitively,
this player should make the next move.

In a play p, we think of a move (pi, pi+1) as chosen by the owner of pi, i.e. each player
chooses the next position whenever she owns the current position.

We write

• Plays for the set of all plays,

• Playsinf for the set of all infinite plays,

• Playsmax for the set of all maximal plays,

• Plays resp. Plays for the finite plays in which player resp. is active.
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3. Games with perfect information – Basic definitions

Sometimes, we only want to consider the plays that start in some fixed initial po-
sition x, i.e. plays p with p0 = x. We call such plays the plays from x, and write
Plays(x), Playsinf(x), . . .
3.3 Remark

a) We only consider two-player games, but extending the definitions to k-player
games is straightforward. Luckily, as we will see in Exercise 3.16, any perfect-
information game for k > 2 players can be reduced to two-player games. Note that
this is not true for games with imperfect information.

b) Our games are called sequential because onemove happens after the other. There
are other types of games in which the players move simultaneously. While some of
these games can be easily sequentialized, recall that in prisoner’s dilemma, it was
important that both players moved simultaneously without any knowledge of the
move of the other players. Simultaneousmovesmay introduce an aspect of hidden
information, a case which is not considered in this lecture.

c) We assume that a game is essentially given by its set of positions and set of moves.
In game theory, this is sometimes called the extensive form. To handle games in
which the set of positions V is infinite, one needs a finite representation of the game
arena to handle them algorithmically.

3.4 Definition: Winning condition
The winning condition win of a game is a function

win∶ Playsmax → { , }
that assigns each maximal play p its winner win(p) ∈ { , }.
We say that amaximal play p is wonby the universal resp. existential player ifwin(p) =
resp. win(p) = .

With this definition, a game can be seen as a tuple G = (G,win) consisting of a game
arena and of a winning condition for maximal plays on this arena.

3.5 Remark
According toourdefinitionofwinning, eachmaximal playhas auniquewinner, i.e. there
is a winner, and at most one player wins. In particular, we do not allow a draw as a
possible outcome. Many games that you know from real life allow a draw as a possible
outcome, e.g. chess. Such games cannot be directly studied using our methods. It is a
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common technique to consider variants of the game in which a draw is seen as a win
for one of the players. We apply this trick to chess in Example 3.13.

Strategies

The goal of each player is to pick her moves such that the resulting maximal play is
winning for her. Since the maximal plays are partitioned into the plays won by each of
the players, both cannot reach their goal at the same time.

For onemaximal play, the winning function determines thewinner. Instead of just con-
sidering one play at a time, we are interested in checking whether a player can enforce
that she wins always by playing cleverly, no matter what her opponent does. This is
formalized using the concept of strategies.

In the rest of this course, we assume that ∈ { , } is one of the players and is the
other player, i.e. { , } = { , }.
3.6 Definition: Strategy
A strategy for player ∈ { , } is a function

s ∶ Plays → V

that assigns each finite play p such that is active in plast a vertex s (p) ∈ V such that(plast, s (p)) ∈ R is a valid move in the arena.

A strategy for player fixes the behavior of during a play: Whenever it is her turn,
she executes the move that is the value for the play up to this point returned by the
strategy. If all such plays are won by , we call the strategy a winning strategy.

3.7 Definition: Conforming, Winning strategy
A play p ∈ Plays conforms to a strategy s if for all pi ≠ plast such that pi ∈ V is owned
by , we have pi+1 = s (p0 . . . pi).
A strategy s is a winning strategy for player from position x if every maximal play
p ∈ Playsmax(x) from x that conforms to s is won by .

When we say that we want to solve a game from a certain position x, we mean that we
want to check which player has a winning strategy from x. Similarly, solving a game
means that we want to characterize for each of the players the positions from which
she has a winning strategy.
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3. Games with perfect information – Basic definitions

3.8 Definition
A vertex is winning for player if she has a winning strategy from position x.

The set of all such vertices is called the winning region W ⊆ V.

Naively, it seems that for each position x ∈ V, there are four cases:

• None of the players could have a winning strategy, i.e. x ∉ W , x ∉ W ,

• Exactly one of the players could have a winning strategy,
i.e. x ∈ W , x ∉ W or x ∉ W , x ∈ W , or

• Both could have a winning strategy,
i.e. x ∈ W , x ∈ W .

Formost games, for each of the positions, one of the players has awinning strategy and
the other does not. There are games in which none of the players have a winning strat-
egy for some positions, wewill see an examplemuch later in the lecture. The following
lemma states that the last case can never occur.

3.9 Lemma
For each position x, at most one of the players has a winning strategy.

In particular, W ∩W = ∅.

Proof:
Towards a contradiction, assume that for some position x, both players have a winning
strategy s resp. s . Consider amaximal play p that is conform to both s and s . In fact,
there exists a unique play satisfying this condition that we can inductively construct by

p0 = x , pi+1 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩s (p0 . . . pi) if pi ∈ V ,

s (p0 . . . pi) if pi ∈ V .

Since s is winning from x, we have win(p) = . Similarly, we obtain win(p) = , a
contradiction. ⬛

After we have checked that there is a winning strategy, we are also interested in finding
a simplewinning strategy. According to the definition, the strategy canmake its return
value dependent on thewhole history of the play, which is finite but unboundedly long.

We are interested in strategies that only take the current position into account and do
not look at the history at all.
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3.10 Definition
A strategy s is called positional if for each two plays p, p′ ∈ Plays with plast = p′last,
we have s (p) = s (p′).
Positional strategies are also called memoryless in the literature, because they cannot
store any information on the history of the play at all. For the same reason, a positional
winning strategy s is usually given as a function with the signature

{x ∈ V ∣ x is alive} → V .

As we will see later, there are games in which a position is winning, but no positional
strategies exists.

3.11 Remark
Furthermore, we are interested in strategies that are:

• Uniform: Instead of having one winning strategy for each position in W , we
want to have one single strategy that is winning from all positions in W .

If we allow arbitrary strategies, then in fact uniform strategies do always exist. If
we only consider positional strategies, then there are games that have positional
winning strategies, but no uniform positional winning strategies.

• Easy to implement & computationally inexpensive: Instead of just allowing posi-
tional strategies, one can consider strategies that are allowed to store some infor-
mation on the history of the play. To do so, we see a strategy s as a transducer,
an automaton with input and output. It reads moves made by the opponent,
i.e. arcs (x, y) ∈ R with x ∈ V , and whenever the play has reached a position
x′ ∈ V (that is alive), it outputs a move (x′, y) ∈ R.

A strategy that can be realized by a deterministic transducer with finite mem-
ory and no additional storage mechanism (the transducer equivalent of DFAs) is
called finitememory strategy. A strategy that can be realized by a deterministic
transducer that uses a stack as storage is called pushdown strategy. A strategy
that can be realized by a deterministic transducer that uses a tape as storage (sim-
ilar to a Turing machine) is called computable strategy.

Before advancing the theoretical development, we take the Nim game from the pre-
vious section and formalize it as a game according to the definitions of this section.
Furthermore, we consider several other examples.
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3.12 Example
The game Nim can be defined as follows:

• The set of positions is
V = N

∗ × { , } .
The first component of a position (c⃗, ) is a finite sequence c⃗ of natural numbers,
each entry ci denoting the number of coins on pile i. The second component
is denoting the active player, i.e. V = V ∪⋅ V = (N∗ × { }) ∪⋅ (N∗ × { }).

• The moves are defined as follows:

R = {((c⃗, ), (d⃗, )) »»»»»»»»»» c⃗, d⃗ ∈ N
k for some k ∈ N,

∃i0 ∈ {0, . . . , k − 1}∶ di0 < ci0 and ci = di for all i ≠ i0
} .

• The winning condition is given by win(. . . (0⃗, )) = , i.e. if we reach position 0⃗,
the active player that would have to move next loses the game. Note that every
maximal play necessarily ends in a position of the shape (0⃗, ).

• The winning regions can be characterized using the Nim sum,

W = {(c⃗, ) ∣ NimΣ(c⃗) is unbalanced } ∪ {(c⃗, ) »»»»» NimΣ(c⃗) is balanced } .
Note that V = W ∪⋅ W .

• The strategy presented in the proof of Theorem 2.6 is positional and uniform:

s (c⃗, ) = (d⃗, ) ,
where d⃗ is an arbitrary balanced successor if such a successor exists and an arbi-
trary successor otherwise.

Note that for Nim, the set of positions V is infinite, but from each given initial position
x ∈ V, only finitely many positions are reachable.

3.13 Example
Chess is maybe the best known game with perfect information. In this exercise, we
want to study it, in particular, we want to prove the following result:

In chess, it is the case that

1. either white has a winning strategy,
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2. or black has a winning strategy,

3. or both have a drawing strategy.

Here, a winning strategy is a strategy ensuring that the player wins (in particular, the
games conform to it do not end in a draw), while a drawing strategy is a strategy that
only ensures that player does not lose, i.e. the game is won by her or ends in a draw.
Furthermore, we are only interested in the typical initial board configuration of chess,
so writing e.g. “white has a winning strategy” should mean that white has a winning
strategy from this position.

While chess is intuitively a game with perfect information, it is not conforming to our
definition, since “draw” is a possible outcome. To circumvent this issue, we use the
following trick: We define two variants of chess, namely white chess and black chess.
In white chess, the white players wins in the case of a draw, analogously for black chess.
These variants are games that we can study with themethods presented in this lecture.

In the following, we will use the fact that white and black chess are determined, since
they are games played on a finite graph in which each play has a bounded length. (As
soon as a board configuration repeats three times, the game ends with a draw in “real”
chess.) This means that for each position exactly one of the players has a winning strat-
egy. We have not proven this result yet, but we will do so in the next section.

Using the result, we know that there are four possibilities:

• White has a winning strategy for white and for black chess. In this case, she has
a winning strategy for “real” chess: The winning strategy for black chess ensures
that the game does not end in what would be a draw in real chess, since draws
are won by black in black chess. This is case 1. of the result that wewant to prove.

• The analogous case for black gives us case 2. of the result.

• If both players have a winning strategy for the opposite variant of chess (white
for black chess, black for white chess), we obtain a contradiction, similar to
Lemma 3.9: Consider the play of real chess in which each player conform to her
winning strategy. The strategies werewinning strategies for the opposite variant
of chess, meaning they are winning (and not drawing) in real chess. This means
that the play is won by both players, a contradiction, so this case can never occur.

• Assume that each player has a winning strategy for her variant of chess (white
for white chess, black for black chess). Since each strategy was winning in the
variant of the game in which draws counts as wins, these strategies are drawing
strategies for real chess.
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To see that both strategies cannot be winning strategies for real chess, consider
the play in which each players conforms to her strategy. The resulting play is
winning for white in white chess, and winning for black in black chess, so it has
to be a draw in real chess.

This result is credited to a famous paper of Zermelo from 1903 [Zer13], see [SW01] for
a discussion.

Exercises

3.14 Exercise: Tic-tac-toe
Consider the popular game tic-tac-toe,
see e.g. https://en.wikipedia.org/wiki/Tic-tac-toe.

Formalize the game, i.e. formally define a gameG = (G,win) consisting of a game arena
and a winning condition that imitates the behavior of tic-tac-toe.

Assume that player makes the first mark, and the other player wins in the case of a
draw.

3.15 Exercise: Positional and uniform strategies
If a game arena has finitely many positions, we can explicitly give it as a graph. For this
exercise, we consider a game on the following game arena G = (V, R). Positions owned
by the universal player are drawn as boxes, positions owned by the existantial player

as circles. The numbers should denote the names of the vertices, i.e. V = {1, . . . , 5}.
5

1

2

3 4

We consider the following winning condition: A maximal play is won by the existential
player if and only if the positions 3, 4 and 5 are each visited exactly once.
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a) What is the winning region for each of the players?

Present a single strategy s ∶ Plays → V that is winning from all positions x in the
winning region W of the existential player. Argue shortly why your strategy is in-
deed winning from these positions.

Note: Such a strategy is called a uniform winning strategy.

b) For each vertex x ∈ W in the winning region of the existential player, present a
positional strategy for existential player s ,x∶ {3, 4} → R such that s ,x is winning
from x.

c) Prove that there is no uniform positional winning strategy for the existential player,
i.e. no single positional strategy that wins from all x ∈ W .

d) Consider the modified graph that is obtained by adding a vertex 6 owned by and
the arcs (6, 3) and (6, 4).
Prove that position 6 is winning for the existential player, but there is no positional
winning strategy from 6.

3.16 Exercise: Multiplayer games
Assume that three-player games are defined analogously to two-player games, i.e. they
are played on a directed graph with an ownership function owner∶ V → {1, 2, 3}, and
their winning condition is a function win∶ Playsmax → {1, 2, 3}. (Winning) strategies are
defined similar to two-player games.

For every three-player game G3p = (G3p,win3p), where G3p = (V1 ∪⋅ V2 ∪⋅ V3, R) and each
player i ∈ {1, . . . , 3}, show how to construct a two-player game Gi = (Gi,wini) with
Gi = (V ∪⋅ V , R) such that:

• The underlying directed graph is the same, i.e. V1 ∪⋅ V2 ∪⋅ V3 = V ∪⋅ V .

• Each node x ∈ V1 ∪⋅ V2 ∪⋅ V3 is winning for player i in the game G3p if and only if it
is winning for player in the game Gi.

Prove that your constructed game Gi has the desired properties.

3.17 Exercise: Deadlocks
Many books in the literature only consider games that are deadlock-free, meaning ev-
ery position x ∈ V has at least one outgoing arc (x, y) ∈ R (where self-loops, i.e. x = y,
are allowed).

36



3. Games with perfect information – Basic definitions

Assume that G = (G,win) is a game that may contain deadlocks. Furthermore, we as-
sume that thewinning condition has the property that any finite play ending in a dead-
lock is lost by the player owning the last position.

Construct a game G ′ = (G′
,win′) that does not contain deadlocks. The new game arena

G′ should be obtained from G by adding vertices and arcs, in particular each position
of the old game is a position of the new game, V ⊆ V′.

Your construction should guarantee that eachposition x ∈ Vof the old game iswinning
in the new game for the same player for which it was winning in the old game. Argue
why it has this property.

3.18 Exercise: Language inclusion as a game
Note: You may need to recall the definitions of finite automata for this exercise.

Consider two non-deterministic finite automata (NFAs) A = (QA, q0A,→A,QFA) respec-
tively B = (QB, q0B,→B,QFB) over the same alphabet of input symbols Σ. Wewant to con-
struct a game that is won by the universal player if and only if the regular language
accepted by A is included in the regular language accepted by B, i.e. L(A) ⊆ L(B).
Our approach is to let each of the players control one of the automata. The existential
player controls automaton A, and her goal is to disprove inclusion. To do so, she step-
by-step picks a run of A such that the corresponding word is accepted by A, but not
accepted by B. The universal player wants to prove inclusion and controls automaton
B. She has to react to themovesmade by the existential player to find an accepting run
of automaton B for the word chosen by existential player.

More precisely, the game works as follows:

• A configuration of the game consists of a state qA resp. qB of each automaton.

• The players alternately takes turns, starting with the existential player .

• In each of her turns, selects a transition qA
a
−→A q′A of the automaton A.

• In the following turn, the universal player selects a transition qB
a
−→B q′B of B. Note

that it has to be labeledby the same letter a ∈ Σ thatwas pickedby the existential
player in the previous move.

• Amaximal play of the game is won by the existential player if it visits a configura-
tion in which the state qA of A is final, but the state qB of B is not final (Intuitively,
thismeans that theword chosen step-by-step by refuter is acceptedbyA, but not
accepted by B.) It is also won by if it ends in a position in which cannot react
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to a move, i.e. there is no transition of B with the required letter. It is won by the
universal player otherwise.

a) Formalize the game, i.e. formally define a game arena G and a winning condition
win such that the game G = (G,win) has the behavior described above.

b) Let x be the configuration of the game consisting of the initial states q0A and q0B of
both automata. We would like to have the following result:
“x is winning for the universal player if and only if the inclusion L(A) ⊆ L(B) holds.”
Prove that this isnot true in general by considering the following automata over the
alphabet {a, b, c}.

q0AA q1A

q2A

q3A

a

b

c

q0BB

q1B

q2B

q3B

q4B

a

a

b

c
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4. Reachability & safety games

In the last section, we have allowed arbitrary functions as winning conditions without
imposing any restriction. In the following sections, we will study specific types of win-
ning conditions. For each of them, we will develop a theory that allows us to conclude
that the correspondinggames are determined. The theory also leads to algorithms that
can be used to compute the winner in case the game arena is finite.

We start with the two most simple conditions, reaching resp. avoiding positions from
a given set. More formally, the reachability condition is satisfied if the play reaches a
position in a givenwinning set. Its analogon is the safety condition, for which the play
needs to avoid a position in a given losing set.

Many games that you know from real life are of this type, e.g. in chess, the winning
positions are given by the configurations of the board with checkmate.

Sources
The content of this section is common knowledge in game theory and can be found
in most textbooks on the topic. The presentation here does not follow any particular
source.

Reachability and safety games

In the following, we assume that the existential player is the player thatwins if the set
ofwinningpositions is reached, and that the universal player wants to avoid this. One
can easily adapt the theory for the opposite case by swapping the players everywhere.

4.1 Assumption
In this section, let G = (V ∪⋅ V , R) be a fixed game arena. We furthermore assume that
G has finite out-degree, i.e. for each position x, the set of successors {y ∈ V ∣ (x, y) ∈ R}
is finite.

Note that in particular, the assumption is satisfied if V is finite.
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4.2 Definition: Reachability games
Let B ⊆ V be a set of positions called the winning set.

The reachability game on G with respect to B is the game whose winning condition is
given by

win ∶ Playsmax → { , }
p ↦

⎧⎪⎪⎪⎨⎪⎪⎪⎩ if ∃i∶ pi ∈ B ,

else, i.e. ∀i∶ pi ∉ B .

4.3 Remark
The game specified by the abovewinning condition can also be seen from the perspec-
tive of the universal player. It is then called the safety game with respect to the losing
set B.

Our goal is to show that reachability/safety games are uniformly positionally deter-
mined, by proving the following theorem.

4.4 Theorem: Reachability/safety games are positionally determined
Reachability/safety games are uniformly positionally determined: The set of positions
can be partitioned into thewinning regions for each of the players, and each player has
a uniform positional winning strategy, a positional strategy that is uniformly winning
from all positions in her winning region.

Attractor

In order to solve the reachability game, we need to compute the set of positions from
which can enforce that a play visits a position in B. We start by considering the set of
positions from which an immediate visit of B (within one move) can be enforced. The
definition is parametric in the player ∈ { , } of interest, as we will reuse it later.

4.5 Definition: Controlled predecessors
For a set X ⊆ V of positions, the controlled predecessors for player ∈ { , } are

CPre (X) = {x ∈ V ∣ ∃(x, y) ∈ R∶ y ∈ X} ∪ {x ∈ V »»»»» x is live ,∀(x, y) ∈ R∶ y ∈ X} .
The controlled predecessors of X contain all positions of player for which there is a
move to a position in X. If a play reaches such a position, then can enforce a visit of
X within one step. Furthermore, a position owned by the opponent is a controlled
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4. Reachability & safety games

predecessor of X if all possiblemoves lead to X (and there is at least onemove). If a play
reaches such a position, the opponent cannot prevent a visit of X within one step.

To obtain the set of all positions from which can enforce a visit of a given set, we
apply the controlled predecessors iteratively. We formalize this in the definition of the
attractor.

4.6 Definition: Attractor
Let B ⊆ V be a set. The i-step attractor Attri (B) of B for player ∈ { , } is inductively
defined as follows:

Attr0 (B) = B
Attri+1(B) = Attri (B) ∪ CPre (Attri (B))

The attractor Attr is the union of the i-steps attractors for all i,

Attr (B) = ⋃
i∈N

Attri (B) .
The i-step attractor is the set of all positions fromwhich can enforce visiting B within
at most i steps. The player can enforce visiting B in zero steps if and only if the current
position is already in B, justifying the base case of the definitions. From all positions
from which the player can enforce visiting B in at most i steps, she can of course also
enforce a visit in at most i+ 1 steps, so Attri ⊆ Attri+1. This in particular means that the
attractors form a chain

Attr0 (B) ⊆ Attr1 (B) ⊆ Attr2 (B) ⊆ . . . .

To enforce a visit of B in at most i + 1 steps, it is sufficient to move to a position from
which a visit of B in at most i steps can be enforced.

If we are interested in all positions from which can enforce visiting B in an arbitrary
but finite number of steps, we have to take the union of all i-step attractors.

4.7 Example
Consider the game arena given by the following picture.

1

2

3
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We want to compute the attractor of the blue-colored positions for the existential
player, i.e. Attr ({1, 2}).

0. Initially, we have Attr0 ({1, 2}) = {1, 2}.
1. By the definition, we have {1, 2} ⊆ Attr1 ({1, 2}). When we check for position 3

whether it should be contained in Attr1 ({1, 2}), we see that there is a successor
– namely position 4 – that is not in Attr0 ({1, 2}), so we have 3 ∉ Attr1 ({1, 2})
since 3 is owned by the universal player. Similarly, positions 5 and 6 are not in
Attr1 ({1, 2}).
Position 4 is owned by the existential player and has a successor in Attr0 , so we
need to add it. We obtain Attr1 ({1, 2}) = {1, 2, 3}.

2. Now, all successors of position 3 are in Attr1 ({1, 2}), so we need to add 3 to the
attractor. Still, for both 5 and 6 no successor is contained in Attr1 ({1, 2}).
We obtain Attr2 ({1, 2}) = {1, 2, 3, 4} .

3. Now position 5 has a successor in the attractor, but it is owned by the opponent,
so we do not add it. We obtain

Attr ({1, 2}) = Attr3 ({1, 2}) = Attr2 ({1, 2}) = {1, 2, 3, 4} .
4.8 Lemma
Let X, Y ⊆ V be sets of positions.

a) If X ⊆ Y, then CPre (X) ⊆ CPre (Y) and Attr (X) ⊆ Attr (Y)
b) CPre (Attr (X)) ⊆ Attr (X).
Proof: Part a) is immediate by the definition. Part b) is essentially Exercise 4.13. ⬛

The attractor allows us to solve reachability games.

4.9 Theorem
Consider the reachability gamewith respect to thewinning setB ⊆ V. The set Attr (B) is
the winning region of the existential player, and its complement is the winning region
of the universal player.
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The theorem in particular claims that V = W ∪⋅ W = Attr (B) ∪⋅ (V \ Attr (B)). We will
construct positional strategies s , s such that s is uniformlywinning fromall positions
in V \Attr (B) and s is uniformly winning from all positions in Attr (B). This will prove
Theorem 4.4 as well as Theorem 4.9.

Given any live position x ∈ V , s (x) returns amove (x, y) ∈ Rwith y ∈ W = V \Attr (B)
if such amove exists, and an arbitrarymove otherwise. (Tomake the strategy determin-
istic, we fix one move if several exist.)

s ∶ {x ∈ V ∣ x is live} → V

x ↦

⎧⎪⎪⎪⎨⎪⎪⎪⎩y with (x, y) ∈ R, y ∈ W , if such a y exists ,

y arbitrary with (x, y) ∈ R , else .

4.10 Lemma
s is a positional strategy that is uniformly winning from all positions in
W = V \ Attr (B).
Proof:
Let p0 ∈ W be an arbitrary initial position. We show that any play p = p0p1p2 . . . that
conforms to s has the property pj ∈ W for all j

This already shows that p is won by the universal player: We have
B = Attr0 (B) ⊆ Attr (B), thus B ∩ W = ∅. Any play with the above property
will never visit a position in B.

We show that under the assumption x ∈ W , whenever the universal player is active,
there is a move (x, y) leading to a position y ∈ W that will then be selected by s
according to its definition. Under the same assumption, we show that when the exis-
tential player has to move, she has no choice but to go to a position in W . Those two
proofs can be combined into an induction showing the desired property. In the base
case, we have p0 ∈ W by assumption.

Let p = p0 . . . pj be a play conform to s of length j such that pj is not dead. By induction,
we know that pj ∈ W . (If pj is dead, we are done, since the play is maximal and won by
the universal player.)

Assume that it is the turn of the universal player, pj ∈ V . Assume there is nomove (x, y)
to a position in W , meaning that all moves go to positions in V \ W = W = Attr (B).
By the definition of the attractor, for each such y, there is iy such that y ∈ Attr

iy . Let
imax = maxy iy be the maximum of the iy, and note that this is a well-defined natural
number since we assumed the game arena to have finite out-degree. By the definition
of the attractor resp. the controlled predecessors, we have x ∈ Attrimax+1(B) ⊆ W , a
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contradiction to the assumption x ∈ W . Thus, there is a move to some y ∈ W as
required, and the strategy will pick such a move by its definition.

Assume that it is the turn of the existential player, pj ∈ V . We need to argue that all
moves (x, y) that she can pick go to a position in y ∈ W . Assume there is a move to
a position y ∈ W . Then there is a number i such that y ∈ Attri (B), and by the defini-
tion of the attractor resp. the controlled predecessors, we have x ∈ Attri+1(B) ⊆ W , a
contradiction. ⬛

The strategy for the existential player is a little bit more involved. The universal player
wins a play by preventing it from visiting B forever, while the existential player has to
ensure that the play visits Bwithin a finite number of steps. If s would just work similar
to s and pick an arbitrary move to W , the strategy would ensure that all positions
occurring in a play are inside the winning region, but it would not guarantee that there
is some index i ∈ N such that B is visited after i steps.

To get rid of this problem, the strategy does not pick an arbitrary move (x, y) such that
y ∈ W = Attr (B), but a move to y ∈ Attri (B) such that i is minimal. If any move to
Attr (B) exists, we fix an arbitrary one that minimized i as described before. If no move
to Attr (B) exists, the strategy should return an arbitrary move.

s ∶ {x ∈ V ∣ x is live} → V

x ↦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
y with (x, y) ∈ R, y ∈ Attri (B)

s.t. i is minimal, if y ∈ Attr (B) exists,
y arbitrary with (x, y) ∈ R, else.

4.11 Lemma
s is a positional strategy that is uniformly winning from all positions in W = Attr (B).
Proof:
We have to prove that for all p0 ∈ W = Attr (B), all plays that conform to s from p0

are won by the existential player. For each such p0 ∈ W = Attr (B), there is an i ∈ N

such that p0 ∈ Attri (B) by the definition of the attractor. Let i0 ∈ N be the minimal i
with this property.

We prove the required statement by induction on i0. In the base case, we have i0 = 0.
This means p0 ∈ Attr0 (B) = B. Any play from p0 visits B and is won by .

In the inductive step, assume that i0 > 0 is some number such that the statement holds
for all i < i0. Consider an arbitrary p0 ∈ Attri0 (B). We know that

Attri0 (B) = Attri0−1(B) ∪ CPre (Attri0−1(B)) .
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Since we assumed that i0 is minimal, the case p0 ∈ Attri0−1(B) cannot occur. We thus
know p0 ∈ CPre (Attri0−1(B)).
In the case that p0 ∈ V is owned by the existential player, there is a move (p0, y) with
y ∈ Attri0−1(B), and the strategy picks one such successor. Thus, any play from p0 is of
the shape p = p0p1p2 . . .where p1 ∈ Attri0−1(B). If p conforms to s , then also the suffix
p′ = p1p2 . . . is a play that conforms to s . By induction, we obtain that p′ is won by ,
i.e. it visits B. The play p, obtained from p′ by prepending p0, thus also visits B and is also
won by .

If p0 ∈ V , we argue similarly. Since p0 ∈ CPre (Attri0−1(B)), any successor y of x picked
by the universal player satisfies y ∈ Attri0−1(B). Thus, no matter which successor p1 is
picked, we may apply induction to obtain that any play from p1 that conforms to s is
winning. Prepending p0 does not change this fact. ⬛

Together, Lemma 4.10 and Lemma 4.11 prove Theorem 4.4 and Theorem 4.9.

If the game arena is finite, Theorem 4.4 gives directly rise to an algorithm that deter-
mines the winning region by computing the attractor of the winning set. In fact, one
can set up the algorithm in a clever way such that

a) it also computes the winning strategies s and s ,

b) its running time is linear in ∣V∣ + ∣R∣.
For a), we tweak the computation of the attractor as follows:

• Whenever a position x ∈ V is added to the attractor for the first time, say to
Attri+1(B), we set s (x) = (x, y), where (x, y) is the move that caused x to be added
to the attractor.

• Whenever a position x ∈ V is found to not belong to the attractor, we set
s (x) = (x, y), where (x, y) is a move with y ∉ Attr (B) (yet).

Note that while s (x) is fixed after it is set once, s (x) might need to be updated if the
previously selected move later turns our to lead to the attractor.

For b), notice that naively, the algorithm is linear in ∣V∣2 ⋅ ∣E∣: In each iteration of the
attractor computation (i.e. whenever we compute the i + 1-step attractor), we need
to consider all vertices that are not yet in the attractor, and check their successors. To
obtain Attr (B), we have to compute at most ∣V∣ steps, as we will see in Exercise 4.13.

To get the running time down toO(∣V∣ + ∣R∣) we need to assign a counter c(x) to each
vertex x ∈ V. This counter is initially 1 for positions owned by the existential player,
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and ∣{y ∣ (x, y) ∈ R}∣, i.e. the number of successors, for positions owned by the universal
player.

Whenever we add a position y to the attractor, we decrease c(x) by one for all positions
x that are a predecessor of y, i.e. (x, y) ∈ R. Whenever the counter c(x) of a position that
is not yet in the attractor drops to 0, we add it to the attractor.

To start the algorithm, we add all positions in B to the attractor.

Exercises

4.12 Exercise: 2 × 2 tic tac toe
Consider a 2×2-variant of tic tac toe, i.e. tic tac toe played on a 2×2matrix. We assume
that starts. The player that is first able to put 2 of her marks into one row, column or
diagonal wins, and the game then stops.

Formalize this game as a reachability game, draw the game arena as a graph, and solve
it explicitly using the attractor algorithm.

4.13 Exercise: Attractors have attractive algorithmics

a) Prove that if Attri (B) = Attri+1(B), then we have Attri (B) = Attr (B).
Conclude that if the set of positions V is finite, we have Attr (B) = Attr∣V∣(B).

b) Let G = (V, E) be a finite game arena, and let B ⊆ V be a set. We consider the reacha-
bility game on G with respect to B.

Write down pseudo-code for an algorithm that computes thewinning regionW of
the existential player, and at the same time computes uniform positional winning
strategies s , s for both players.

4.14 Exercise: Double-reachability games
Consider a finite game arena G = (V ∪⋅ V , R)without deadlocks and sets B1, B2 ⊆ V. In
the double-reachability game G, wins by enforcing that the play visits first B1 and
later B2. More formally, the winning condition is given by

win ∶ Playsinf → { , }
p ↦ { , if ∃i ∈ N∶ pi ∈ B1 and ∃j ∈ N, j > i∶ pj ∈ B2

, else.
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a) Present an algorithm that takes a double-reachability game and computes a reach-
ability game G ′ that contains the positions in V, i.e. a game arena G′ = (V′, R′) and
a winning set B′ ⊆ V′, with V ⊆ V′. For all x ∈ V, x should be winning for in the
double-reachability gameG if and only if it is winning for in the reachability game
G ′. Argue formally that your algorithm is correct.

b) Present an algorithm that directly computes the winning regions of the double-
reachability game. Argue that you algorithm is correct.

4.15 Exercise: Reach-and-stay games
Consider a finite game arena G = (V ∪⋅ V , R) without deadlocks and a winning set
B ⊆ V. In a reachability game, any play that visits B is winning for , no matter how it
continues after the visit.

In this exercise, we consider reach-and-stay games, in which the goal of player is
to enforce that the play visits B and stays there forever. More formally, the winning
condition is given by

win ∶ Playsinf → { , }
p ↦ { , if ∃i ∈ N∶ ∀k ⩾ i∶ pk ∈ B,

, else.

Present an algorithm that takes a finite game arenawithout deadlocks and thewinning
set and computes the winning regions of the reach-and-stay game. Argue that it is
correct.

Do uniform positional strategies exist?

Hint: First identify the position form which one stays inside B forever.

4.16 Exercise: Determinacy of games of finite length
Let G = (G,win) be a game such that each maximal play of G has finite length. Then G
is determined, i.e. every position is winning for exactly one of the players, V = W ∪⋅ W .

Hint: Construct a reachability game whose set of positions is PlaysG .

Note: When considering chess in Example 3.13, we have already used this result.

4.17 Exercise: Graphs with infinite out-degree
In this section, wemade the assumption that the out-degree of the game arena is finite.
In this exercise, we want to understand this restriction.

49



II. Games on finite graphs

Let N+ = {1, 2, 3, . . .} denote the positive natural numbers. We consider the infinite
graph G = (V, R) given by

V = {start, goal} ∪⋅ ⋃
i∈N+

Pathi , where for each i ∈ N
+
, we have Pathi = {pi

1, p
i
2, . . . , p

i
i} ,

R = ⋃
i∈N+

{(start, pi
1)} ∪⋅ ⋃

i∈N+
{(pi

i, goal)} ∪⋅ ⋃
i∈N+

i−1

⋃
j=1
{(pi

j, p
i
j+1)} .

We want to consider a reachability game on G with respect to the winning set {goal},
i.e. needs to reach the position goal, wants to prevent this.

a) Draw a schematic representation of the graph G, e.g. involving the vertices{start, goal} and the positions in Pathi for i ⩽ 4.

b) Assume that all positions are owned by the existential player. For each position
x ∈ V, give the minimal ix ∈ N such that x ∈ Attrix ({goal}), respectively ix = ∞ if no
such ix exists.

Present a winning strategy for the reachability game from the position start.

c) Assume that all positions are owned by the universal player. For each position x ∈ V,
give theminimal ix such that x ∈ Attrix ({goal}), respectively ix =∞ if no such ix exists.

Which player wins the reachability game from start?

4.18 Remark
In Part c) of the above exercise, we see that our attractor construction is not able to deal
with game arenas that have infinite out-degree.

To fix the problem,we can use a non-constructive definition of the attractor: The attrac-
tor Attr (B) is the smallest subset of positions that satisfies the following three proper-
ties:

(1) B ⊆ Attr (B),
(2) if some successor of a position x ∈ V is contained in Attr (B), then so is x, and

(3) if all successor of a spotion x ∈ V is contained in Attr (B), then so is x.

“Smallest set” means that we intersect over all subsets of V that satisfy the properties,
i.e. more formally, Attr (B) is definition to be the intersection over all V′ ⊆ V that satisfy
the Properties (1) – (3).
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If the game arena satisfies the conditions that we have imposed at the beginning of
this section, the new definitions of the attractor coincides with the one from Defini-
tion 4.6. With the new definition of the attractor, the positional determinacy of reach-
ability/safety games can be proven to hold even if the game arena has infinite out-
degree. In this case, the attractor can be “computed” by continuing the iteration be-
yond all natural numbers, essentially using a concept called transfinite induction.

In the example, we could fix the problem by considering the union of all i-step attrac-
tors, that we will call Attrω in the following, and then doing one more step of the at-
tractor computation.

Attrω (B) = ⋃i∈N Attri (B)
Attrω+1(B) = Attrω (B)

∪ {x ∈ V ∣ ∃(x, y) ∈ R∶ y ∈ Attrω (B)}
∪ {x′ ∈ V ∣ ∀(x′, y′) ∈ R∶ y′ ∈ Attrω (B), x′ is live}

In general, even this could not be sufficient. We could not only need more steps of the
attractor computation, but even more limits steps, steps in which we take the union
over all smaller attractors.

51



II. Games on finite graphs

Application: Multiprocessor online scheduling

We have now gathered the prerequisites to study a practical application of reachability
/ safety games. Online scheduling problems can be seen as a game where one player
generates the tasks that have tobe scheduled and theother player is the scheduler. The
existence of a winning strategy for the scheduling player corresponds to the existence
of a safe scheduler, a scheduler that guarantees that no job ever misses its deadline.

The content can be found in Section 14.
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Aplay that satisfies the reachability winning conditionmay be infinite, but it essentially
canbe cut off after theposition inwhich thewinning set is reached. An infinitemaximal
play is winning for the existential player with respect to the winning condition if and
only if it has a finite prefix in which a position in the winning set occurs.

Nowwewant to look at a winning condition that can not be checked by looking at pre-
fixes. To satisfy the winning condition of Büchi games, positions in a winning set have
to be visited infinitely often. For this reason, they are also called recurrence games.

The dual concept are coBüchi games or persistence games, in which a set of losing
positions may be visited finitely many times, but not infinitely often.

Similar to the chapter on reachability and safety games, we assume that the existential
player wants to satisfy the Büchi condition, while the universal player wants to prevent
it.

Sources
The content of this section is based on Martin Zimmermann’s notes [ZKW].

Other available resources for the topic include [CHP08; Kum; Jobb; Joba].

Büchi & coBüchi games

5.1 Definition
Let X be a set (finite or infinite). Let Xω be the set of infinite sequences of elements in X,
i.e.

Xω = {f ∣ f∶N → X} .
For such a sequence p ∈ Xω, we denote by Inf(p) the set of elements of X that occur in
s infinitely often,

Inf(p) = {x ∈ X ∣ pi = x for infinitely many i ∈ N}
= {x ∈ X ∣ {i ∣ pi = x} is infinite}
= {x ∈ X ∣ ∄k ∈ N∶ ∣{i ∣ pi = x}∣ = k}

For finite sequences, we can set Inf(p) = ∅.

Note that we can see the set of infinite plays Playsinf of a game as a subset of Vω, i.e. writ-
ing Inf(p) for an infinite play makes sense.
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For the rest of this section, let G = (V ∪⋅ V , R). We make two assumptions:

• V is finite (and thus R is finite, too).

• G contains no deadlock, i.e. all positions are live.

We have already discussed in Exercise 3.17 that the second assumption can usually
be enforced easily by a minor tweaking of the game arena. This is in particular
true for Büchi games. This assumption guarantees that all maximal plays are infinite,
Playsmax = Playsinf.

We comment on the first assumption after the crucial definition.

5.2 Definition: Büchi games
Let B ⊆ V be a set of positions. The Büchi game or recurrence game on G with respect
to the winning set B is the game with the winning condition

win ∶ Playsmax → { , }
p ↦

⎧⎪⎪⎪⎨⎪⎪⎪⎩ , if Inf(p) ∩ B ≠ ∅ ,

, else, i.e. Inf(p) ∩ B = ∅ .

As in the case of reachability and safety games, we can also see the above definition as
the definition of the coBüchi game or persistence gamewith respect to the losing set
B from the perspective of the universal player.

Let us now comment on the assumption that V is finite. If we allow infinitely many
positions, then the set B can also be infinite. If B is finite, and a play p visits positions in
B infinitely often, then there has to be a position x ∈ B that is visited infinitely often, and
we have x ∈ Inf(p) ∩ B. This is by a variant of the pigeonhole principle: We distribute
infinitely many pigeons into finitely many holes.

If we would allow B to be infinite, we could have that infinitely many positions in p are
in B, but no single position is visited infinitely often, Inf(p) ∩ B = ∅.

5.3 Remark
Büchi games are named after the Swiss mathematician Julius Richard Büchi. He intro-
duced Büchi automata in 1962, automata that read infinite words. Their acceptance
condition is that infinitely many final control states have to occur during a run.

Although he did not consider games, at least to my knowledge, this type of games
is named after him due to the similarity of the winning condition to his acceptance
condition.
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Recurrence construction

The attractor construction again plays an important role in the solution of such games.
Note that if a position is not in Attr (B), it cannot be winning for the existential player,
since the universal player can prevent each play from visiting B even once. Theremight
be positions from which the existential player can enforce a first visit of B, but not a
second one. Imagine for example that we reach a position of B that has a single succes-
sor not in B, in which the play then loops. This means that the winning region may be
smaller than Attr (B).
Ourgoal is to restrict thewinning set ofB to thepositions fromwhicha revisit ofB canbe
enforced by the existential player. For each i ∈ N, we define Bi as i-revisits recurrence
set, the set of positions in B such that the existential player can enforce i revisits of B. We
obtain that the recurrence set⋂i∈N Bi is the set of positions in B from which arbitrarily
many revisits to B can be enforced by the existential player.

Intuitively, the winning region of the Büchi game for the existential player should
be the set of positions from which she can enforce reaching the recurrence set,
i.e. Attr (⋂i∈N Bi ).
We formalize this recurrence construction in the following definition.

5.4 Definition: Recurrence construction
For all natural numbers i, the sets Bi and Pi of vertices aremutually inductive defined as.

B0 = B,

P i = V \ Attr (Bi),
B i+1 = B \ CPre (Pi).

The set Bi is called the ith recurrence set, the set Pi is called the ith persistence set.

It might not be clear that the sets Bi are indeed the i-revisits recurrence sets that were
mentioned before. It is possible to define the sets in a way that corresponds better to
the intuition explained above. The definitions here were chosen because they simplify
the proof. We will see that both definitions are equivalent in Exercise 5.13.
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5.5 Lemma
The sets Bi form a descending, the sets Pi form an ascending chain. There is an index
m ∈ N such that the chains simultaneously become stationary.

B = B0 ⊇ B1 ⊇ . . . ⊇ Bm = Bm+1 = ⋂i∈N Bi

P0 ⊆ P1 ⊆ . . . ⊆ Pm = Pm+1 = ⋃i∈N Pi

Proof:
Proving Bi ⊇ Bi+1 and Pi ⊆ Pi+1 boils down to Lemma 4.8, Part a). In a finite arena, the
chains have to become stationary, similar to Exercise 4.13. We leave the details to the
reader as an exercise, Exercise 5.12. ⬛

5.6 Theorem: Solving Büchi games
For the Büchi game with respect to B, we have W = ⋃i∈N Pi, and W = V \ W .

Towards a proof of the theorem, let X = V \⋃i∈N Pi be the set of positions that we claim
is the winning region of the existential player.

We prove that all vertices in X are winning for the existential player, X ⊆ W , and we
prove that the vertices not in X arewinning for the universal player, V\X ⊆ W . Because
no position can be winning for both players, Lemma 3.9, this proves the claim.

By Lemma 5.5, there is an index m ∈ N such that Bm = Bm+1 and Pm = Pm+1. This means
⋃i∈N Pi = Pm.

Furthermore, as previously claimed, we have X = Attr (Bm), because
X = V \⋃

i∈N
Pi

= V \ Pm

= V \ (V \ Attr (Bm))
= Attr (Bm).

Let us first show that X is indeed winning for the existential player. Before we state the
strategy, we prove the following Lemma. It states that from Bm, the existential player
can enforce reaching X within one step.

After proving it, we have collected all ingredients that we need to state the winning
strategy and show that it is indeed winning. The concept of the winning strategy is
shown in the following picture.
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Bm

X

•

•

•

•

•

•

Whenever the current position is in the set X that we claim to be the winning region,
the existential player can enforce a visit of Bm within finitelymany steps. This is because
X = Attr (Bm). In the picture, this is symbolized by the dashed, bend lines. Whenever
the play reaches Bm, the existential player can enforce that we stay in X in the next step.
This is the statement of the next lemma, and symbolized by the straight solid lines in
the picture.

Note that Bm ⊆ B is a subset of winning positions. Any play that follows the strategy
outlined above visits Bm ⊆ B infinitely often, and thus is winning.

5.7 Lemma
Bm ⊆ CPre (X).
Proof:
Let x ∈ Bm be arbitrary. We have x ∈ Bm = Bm+1 = (B \ CPre (Pm)) by definition.

If x is owned by the existential player, x ∈ V , x has a successor y not in Pm. Because
Pm = Pm+1, we have that y is not in any Pi and thus by definition, y ∈ X.

If x is owned by the universal player, x ∈ V , all successors are not in Pm, and thus not in
any Pi, and thus in X.

In both cases, we conclude x ∈ CPre (X). ⬛

Recall that X = Attr (Bm). By Lemma 4.11, there is a positional strategy sAttr that, if
played from a position in X, reaches Bm ⊆ B within finitely many steps.

We construct a winning strategy s for the existential player as follows.
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s ∶ V → V

x ↦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
sAttr(x), if x ∈ Attr (Bm) \ Bm

,

y with (x, y) ∈ R and y ∈ X, if x ∈ Bm
,

y with (x, y) ∈ R arbitrary , else.

In the first case, note that we apply sAttr to a position in Attr (Bm) \ Bm ⊆ Attr (Bm) = X,
i.e. to a position for which it guarantees to reach Bm after finitely many steps.

Furthermore note that in the second case, i.e. x ∈ Bm, we know that there is a successor
in X, because we have shown x ∈ Bm ⊆ CPre (X) in Lemma 5.7.

5.8 Lemma
s is a positional strategy for the existential player that is uniformly winning from all
positions in X.

Proof:
Let p = p0p1p2 . . . be an arbitrary maximal play from some position p0 ∈ X that is con-
form to s .

We first show that p never leaves X, i.e. ∀i ∈ N: pi ∈ X. We proceed by induction, where
the base case is by the assumption p0 ∈ X.

Assume that pj is in X. We distinguish the two cases that are also distinguished by our
strategy.

If pj ∈ X \ Bm and pj is owned by the existential player, the existential player uses the
strategy sAttr. Note that the strategy from Lemma 4.11 in particular guarantees that
all moves stay within the attractor, i.e. the successor y picked by the strategy satisfies
y ∈ X. If pj is owned by the opponent the universal player, she cannot leave Attr (Bm)
as all successors are in X by the definition of the attractor. Note that for both cases, it is
important that we are not in the 0-step attractor Attr0 (Bm) = Bm.

Now assume that pj ∈ Bm. If pj is owned by the existential player, the strategy picks a
successor in X, and we have already argued that this is always possible. If pj is owned
by the universal player, we know that all successors are in X, since we have argued that
Bm ⊆ CPre (X). In both cases, we rely on Lemma 5.7.

To finish the proof, we still need to argue that B is visited infinitely often. Assume
that i ∈ N is some index such that pi /∈ B. Because B ⊇ Bm, this implies
pi ∈ X \Bm = Attr (Bm) \Bm. On such a position, the strategy s behaves as the strategy
sAttr that guarantees reaching Bm. In particular, there is some number k ∈ N such that
pi+k ∈ Bm ⊆ B.
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5. Büchi & coBüchi games

This shows that whenever we are not in B, we reach B again after finitely many moves.
Overall, we visit B infinitely often. ⬛

This finishes our proof of X ⊆ W . We now consider the case of the universal player,
showing that

V \ X = V \ (V \⋃
i∈N

Pi) = ⋃
i∈N

Pi = Pm

is a subset of W . To this end, we define a function δ that maps each vertex x ∈ Pm to
a natural number δ(x) such that any play from x conform to the strategy – which we
will present later – visits vertices in B atmost δ(x)many times. In particular, only finitely
many visits may occur. The function is defined as follows:

δ ∶ Pm
→ N

x ↦ min{i ∈ N ∣ x ∈ P i}
Note that we only consider vertices x ∈ Pm, so we have that δ(x) ⩽ m for all positions x.

Before formally defining the strategy, we prove some properties of δ that will be crucial
for the well-definedness of the strategy.

5.9 Lemma

a) For all x ∈ Pm ∩ B, we have δ(x) > 0.

b1) For all x ∈ Pm ∩ V , there is a successor y such that δ(x) ⩾ δ(y).
b2) If additionally x ∈ B, the inequality from b1) is strict, δ(x) > δ(y)
c1) For all x ∈ Pm ∩ V , and all successors y, δ(x) ⩾ δ(y) holds.
c2) If additionally x ∈ B, the inequality from c1) is strict, δ(x) > δ(y)
Proof:

a) Let x ∈ Pm ∩ B. To show δ(x) > 0, we need to argue that x /∈ P0. By the definition, we
have P0 = V\Attr (B), i.e. no vertex in P0 is in the attractor of B. Certainly B ⊆ Attr (B)
holds, so we indeed get B ∩ P0 = ∅.

b1) Assume that for all successors y, we have δ(y) > δ(x). In particular, we have y /∈ Pδ(x)
for all successors. This proves that all successors y ∈ V \ Pδ(x) = Attr (Bδ(x)) are in the
attractor of Bδ(x). Consequently, x ∈ CPre (Attr (Bδ(x))) ⊆ Attr (Bδ(x)) since attractors
are closed under taking the controlled predecessor by Lemma 4.8, Part b). This is a
contradiction, since x ∈ Pδ(x) = V \ Attr (Bδ(x)).
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b2) Assume that additionally, we have x ∈ B. By Part a) of the lemma, we have δ(x) > 0
and thus x ∈ Pδ(x)

, x /∈ Pδ(x)−1, where δ(x) − 1 is a natural number.

We have x ∈ V \ Attr (Bδ(x)), and therefore x /∈ Attr (Bδ(x)). This in particular implies
x /∈ Bδ(x) = B \ CPre (Pδ(x)−1).
Since we assume x ∈ B, we get x ∈ CPre (Pδ(x)−1). By the definition of CPre, there
has to be a successor y ∈ Pδ(x)−1, i.e. with δ(y) ⩽ δ(x) − 1 < δ(x).

c) Dual to b1) and b2), see Exercise 5.14.

⬛

We can now formally define the strategy s as follows.

s ∶ V → V

x ↦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
y with (x, y) ∈ R and δ(x) > δ(y), if x ∈ Pm ∩ B,

y with (x, y) ∈ R and δ(x) ⩾ δ(y), if x ∈ Pm \ B,

y with (x, y) ∈ R arbitrary , else.

The successors picked in the first resp. second case are guaranteed to exist by
Lemma 5.9, Part b).

A play that conforms to s guarantees that the

• the δ-values do not increase along the play, and

• whenever the play visits B, they strictly decrease.

This is by the definition of the strategy and by Lemma 5.9, Part c).

Since the value is initially at most m, and it stays non-negative, the set B is visited at
most m times, in particular only finitely often.

5.10 Lemma
s is a positional strategy for the universal player that is uniformly winning from all
positions in Pm.

Proof:
Let p = p0p1p2 . . . be an infinite play that is conform to s .

It is easy to see that for all i ∈ N, we have δ(pi) ⩾ δ(pi+1), i.e. we have an infinite decreas-
ing chain

δ(p0) ⩾ δ(p1) ⩾ δ(p2) ⩾ δ(p3) ⩾ . . .
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5. Büchi & coBüchi games

For positions ownedby the existential player, this is by Lemma5.9, Part c1), for positions
owned by the universal player, this is by the definition of the strategy.

Assume that p is not winning for , meaning that there are infinitely many i such that
pi ∈ B, say i0, i1, i2, . . .. Again by Part c2) of Lemma 5.9 and by the definition of the
strategy, we then obtain an infinite strictly decreasing chain

δ(pi0) > δ(pi1) > δ(pi2) > δ(pi3) > . . .

Since we have δ(pi) ∈ N for all i, we get a contradiction. All strictly decreasing chains of
natural numbers have to be finite. ⬛

Together, the Lemmata 5.8 and 5.10 prove Theorem 5.6. Since the strategies are posi-
tional and uniformly winning, they even prove the following corollary.

5.11 Corollary: Positional determinacy of Büchi games
Büchi games are positionally determined: The set of positions can be partitioned into
the winning regions for each of the players, and each player has a uniform positional
winning strategy for her winning region.

Exercises

5.12 Exercise
Formally prove Lemma 5.5.

In the next exercise, we give a more intuitive definition of the recurrence sets Bi, and
we prove that it is equivalent to Definition 5.4.

5.13 Exercise: A more intuitive definition of recurrence sets
For the definition, we need a slightly modified attractor construction:

A0 (X) = ∅
Ai+1(X) = Ai (X) ∪ CPre (Ai (X) ∪ X)

Attr+ (X) = ⋃
i∈N

Ai (X)
Now we give an alternative definition for the sets Bi, here called Bi

ex:

B0
ex = B

Bi+1
ex = B ∩ Attr+ (Bi

ex)
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a) Describe the difference between Attr+ (B) and Attr (B) in your own words.

b) Formally prove using induction on i that Ai (B) ∪ B = Attri (B) for all i ∈ N and
conclude Attr+ (B) ∪ B = Attr (B).

c) Formally prove using induction on i that Bi = Bi
ex for all i ∈ N.

Hint: In the induction step, you essentially need to prove

V \ Attr+ (Bi) = CPre (V \ Attr (Bi)) .
Part b) of this exercise is crucial for proving this statement.

5.14 Exercise
Prove Lemma 5.9, Part c1) and c2).

5.15 Exercise: A Büchi game
Consider the following game arena. As usual, vertices of the universal player are drawn
as boxes, those of the existential player as circles.

1 2 3

4 5 6

7 8 9

Consider theBüchi gamewith respect to thewinning set {5, 7}, i.e. the existential player
wants to visit the blue-colored vertices infinitely often.

Solve the Büchi game using the recurrence construction. Give the sets Bi
, Pi for all i, and

give all sets Attr and CPre that are needed to compute them.
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Our goal in this section is to generalize Büchi games to parity games. Similar to
Büchi games, the winning condition for Parity games will be a condition on infinite
plays that can not be decided by looking at a finite prefix. The winning condition of
Parity games allows us to express more involved properties like the following.

• If position x is visited infinitely often, then position y also has to be visited in-
finitely often.

• If position x is visited infinitely often, then position y should not be visited in-
finitely often.

Parity games have important applications:

• The model checking problem for certain kinds of logics can be expressed as a
parity game. For themodal μ-calculus, parity games are equivalent to themodel
checking problem.

• Rabin’s tree theorem, a deep result on the closure properties of a certain class
of tree languages, can be proven by using the positional determinacy of parity
games. Rabin’s tree theorem in turn is used to prove the decidability ofMSO logic
over infinite trees. We will prove Rabin’s tree theorem in the Section 15.

• The emptiness problem for certain types of automata (alternating automata, tree
automata) can be solved by solving a parity game.

Furthermore, parity games are an interesting problem in complexity theory; We will
discuss this in more detail later.

Sources
The content of this section is loosely based on Roland Meyer’s notes on the topic.
They can be found here:
35_parity_tree_automata_part_1.pdf
36_parity_tree_automata_part_2.pdf

Parity games

6.1 Definition: Parity game
Aparitygame is givenby agamearenaG = (V ∪⋅ V , E) anda functionΩ∶ V → {0, . . . , k}
for some k ∈ N that assigns each position one of finitely many priorities (also called
colors)
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6.2 Assumption
We assume that G is deadlock-free and that each position has only finitely many suc-
cessors. We do not assume that V itself is finite.

Because the game arena is deadlock-free, again each maximal play p has to be infinite.
The parity winning condition is satisfied depending on the highest priority that occurs
infinitely often in B.

We formalize this as follows: A maximal play p = p0p1p2 . . . defines a sequence

Ω(p) = Ω(p0)Ω(p1)Ω(p2) . . . ∈ {0, . . . , k}ω .

By the pigeon hole principle, {0, . . . , k} being finite implies that Inf(Ω(p)) is non-empty.
We are interested in max Inf(Ω(p)), the highest priority occurring infinitely often. By
convention, even numbers are good for the existential player, odd numbers are good
for the universal player.

6.3 Definition: Parity winning condition
The parity winning condition for the parity game given by the game arena
G = (V ∪⋅ V , E) and the priority function Ω is given by

win ∶ Playsmax → { , }
p ↦

⎧⎪⎪⎪⎨⎪⎪⎪⎩ , if max Inf(Ω(p)) is even,
, else, i.e. if max Inf(Ω(p)) is odd.

6.4 Example
Consider the Büchi game on some game arena Gwith respect to the winning set B. We
can see it as the parity game on G with the priority function

Ω(x) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩2, x ∈ B,

1, x /∈ B.

This example shows that parity games indeed generalize Büchi games. Nomatter how
large the graph is, we just need maximal priority 2 to encode the Büchi winning condi-
tion.

Just like the Büchi winning condition (but unlike the reachability condition), the parity
winning condition is not depending on finite prefixes of the play.
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6. Parity games

6.5 Lemma: Winning is prefix-independent
Let p = p′.p′′ ∈ Vω be an infinite play that decomposes into a finite prefix p′ and an
infinite play p′′. We have win(p) = win(p′′).
Proof: Inf(Ω(p)) = Inf(Ω(p′′)). ⬛

We can see this lemma in two ways: On the one hand, we can cut off a finite prefix of a
play without changing its winner. On the other hand, we can prepend a finite prefix to
a play without changing its winner.

The consequence of this is that positional winning strategies from different positions
can be combined to a single uniform positional winning strategy. We have seen in
Exercise 3.15 that this is not true for arbitrary winning conditions.

6.6 Lemma

a) Let x, x′ ∈ V be positions such that player ∈ { , } has positional winning strate-
gies s ,x resp. s ,x′ winning from x resp. x′. Then there is a positional strategy s
that is winning from both x and x′.

b) Let X be a set of positions such that for each x ∈ X, ∈ { , } has a positional
strategy s ,x that is winning from x. Then there is a positional strategy s that is
uniformly winning from all positions x ∈ X.

Proof:
We prove a), Part b) is Exercise 6.25.

Let P ⊆ Vω be the set of all plays from x that conform to s ,x. We define Y ⊆ V to be the
set of all positions that occur in such plays,

Y = {y ∈ V ∣ ∃p ∈ P∃i ∈ N∶ pi = y} .
By the previous Lemma 6.5, we know that s ,x is not only winning from x, but also from
any position in Y: Any play from a position y ∈ Y can be seen as the suffix of a play from
x.

We define a strategy s as follows:

s ∶ V → V

z ↦

⎧⎪⎪⎪⎨⎪⎪⎪⎩s ,x(z) if z ∈ Y,

s ,x′(z) else.
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Intuitively, s imitates s ,x′ until the play visits Y. Afterwards, it behaves like s ,x′ .

It remains to prove that s is indeed winning from both x and x′.

To this end, one should first prove that if a play visits a position in Y, from then on all
positions in the play will be contained in Y, and thus s will behave like s ,x. This can
be easily done by induction, and we leave it to the reader as an additional exercise.

Since x ∈ Y, consequently each play from x that conforms to s also conforms to s ,x.
Since s ,x was a winning strategy, the play is then won by player .

Any play p from x′ that conforms to s will either never visit Y, or there is a smallest
index i ∈ N such that pi ∈ Y. In the first case, the play is also conform to s ,x′ , and thus
winning. In the second case, the play can be decomposed into p = p0 . . . pi−1pipi+1 . . .,
where pipi+1 . . . is an infinite play from pi ∈ Y that is conform to s ,x and thus winning.
By the Lemma 6.5, prepending the prefix p0 . . . pi−1 does not influence the winner of
the play. ⬛

As a result of the Lemma, it is sufficient to show that for each position, exactly one
of the players has a positional winning strategy. The lemma then gives us that there
are uniform positional winning strategies for both players on their respective winning
region.

Zielonka’s proof of positional determinacy

The goal of this section is to prove the following result.

6.7 Theorem: Positional determinacy of parity games [Mos91; EJ91; Zie98]
Parity games are positionally determined: There is a decomposition of the positions
into the winning regions of the players, V = W ∪⋅ W , and each player has a uniform
positional winning strategy on her winning region.

6.8 Remark: History of parity games
The determinacy of parity games can be proven using the Borel determinacy theo-
rem (Martin 1975 [Mar75]). However, this proof approach is non-constructive and nei-
ther gives an algorithm to compute a winner nor information on the type of strategies
needed.

In 1982, Gurevich and Harrington [GH82] have proven that it is possible for the win-
ner to win with a strategy that uses only finite memory. However, their proof is non-
constructive and does not immediately result in an algorithm to compute the winner
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of a game. In 1993, McNaughton [McN93] presented an algorithm that can compute
the winner for parity games on a finite graph.

The positional determinacy of parity games was independently proven in 1991 by
Mostowski [Mos91] and Emerson and Jutla [EJ91]. The proof and the recursive algo-
rithm that we will present here are due to Zielonka [Zie98].

In the proof, wewill restrict the gamearena to obtain a so-called subgame. To formalize
this, we will need the following definition.

6.9 Definition: Trap
We call a set X ⊆ V a trap for player ∈ { , } if

• for all positions x ∈ X owned by player , all successors are in X, and

• all positions x ∈ X owned by the opponent have at least one successor in X.

The intuition behind this definition is that whenever the play visits a trap X for player
, the opponent can trap the play inside X. This means that player cannot enforce

that the play will ever leave X if the opponent does not cooperate.

The conditions should sound awfully familiar to the definition of the controlled prede-
cessors. Therefore, the first part of the next lemma should not be surprising.

6.10 Lemma

a) Let Y ⊆ V and ∈ { , }. The complement of the attractor V \ Attr (Y) is a trap for
player .

b) Let P ⊆ V be the set of positions such that for each x ∈ P , has a positional
winning strategy from x. Then its complement V \ P is a trap for player .

Proof:

a) Obvious by the definition of the attractor; See Exercise 6.26.

b) By Lemma 6.6, there is a uniform positional winning strategy on P for player .

Assume that x ∈ V \ P .

If x is owned by the player , and x would have a successor in P , then the posi-
tional winning strategy on P could be extended to a positional winning strategy
on P ∪ {x} by picking this successor. This means x ∈ P , a contradiction. Conse-
quently, for positions owned by , all successors are in V \ P .
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If x is owned by the opponent , but all its successors are in P , then the positional
winning strategy on P is also winning from x. Consequently, at least one successor
is not in P .

⬛

Traps are important because one can restrict a deadlock-free game arena to a trap and
again obtain a deadlock-free game arena.

6.11 Definition
Let G be the parity game given by the game arena G = (V ∪⋅ V , R) and the priority
function Ω, and let X ⊆ V be a trap for player .

We define G↾X to be the parity game on the game arena

G↾X = ((V ∩ X) ∪⋅ (V ∩ X), {(x, y) ∈ R ∣ x, y ∈ X})
with respect to the restricted priority function Ω↾X.

6.12 Lemma
The subgame G↾X with respect to a trap is deadlock-free.

Proof: Immediate by the definition of trap and the assumption that the original game
was deadlock-free. ⬛

In the definition of the subgame, it did not matter for which player the set X is a trap.
This is important for the following lemma.

6.13 Lemma
Let X ⊆ V be a trap for player in G and let s be a strategy for the opponent that is
winning from some vertex x ∈ X in the subgame G↾X. Then s is also winning from x in
the original game G.

Proof: Exercise 6.27. ⬛

We have now gathered all prerequisites, and turn to proving the Theorem.

Proof of Theorem 6.7:
Weproceed by induction on the highest occurring number n that occurs as the priority
of one of the positions.
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Base case, n = 0:
In the base case, we assume that n = 0. Any play of such a game will by won be the
existential player. Thus, any positional strategy for the existential playerwill bewinning.

Induction step:
Now we assume that the statement already holds for games where the highest occur-
ring priority is n − 1. Let G be the given parity game where n is the highest occurring
priority.

Without loss of generality, we assume that n is even. If this is not the case, one has to
swap the roles of the players in the following proof.

Let P ⊆ V be the set of positions from which the universal player has a positional
winning strategy. Obviously, P is a subset of the universal player’s winning region W .

We show that for each position in the complement V \ P , the existential player has
a positional winning strategy. By Lemma 6.6, we then get the existence of uniform
positional winning strategies for both sets, which proves the theorem.

Consider the subgame G ′ = G↾V\P . By Lemma 6.10, Part b), V \ P is a trap for the
universal player, and thus G ′ is a deadlock-free parity game.

We distinguish two cases:

Case 1: Highest priority n does not occur in subgame.
This means there is no position x ∈ V \ P with Ω(x) = n.

In this case, we can apply the induction hypothesis to G ′ and we get that its set of ver-
tices decomposes into the winning region for the two players,

V \ P = W′ ∪⋅ W′
,

and the two players have positional winning strategies on their respective winning re-
gion in the subgame.

IfW′ is not empty, then there is a vertex x ∈ W′ such that the universal player has a po-
sitional strategy s from x in the subgame. This strategy can be extended to a strategy
for the original game G by using the strategy on P that we have by the definition of
P . This combined strategy is winning on P ∪⋅ {x} since the parity winning condition is
prefix-independent, Lemma 6.5. We conclude x ∈ P , a contradiction.

Consequently, we have W′ = ∅ and thus W′ = V \ P . By Lemma 6.13, the winning
strategy for the existential player in the subgame is also a winning strategy for the ex-
istential player in the original game, since V \ P is a trap for the universal player.
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Case 2: Highest priority occurs in subgame.
We define N to be the non-empty set of positions of the subgame with priority n,

N = {x ∈ V \ P ∣ Ω(x) = n} .
Now consider the attractor AttrG

′(N) in V \ P . We again construct a subgame
G ′′ = G ′

↾V\P \Attr (N). Here, V \ P \ Attr (N) should be read as (V \ P ) \ Attr (N).
By Lemma6.10, Part a), this is indeed a deadlock-free parity game, since V\P \AttrG ′(N)
is a trap for the existential player.

Because N ⊆ AttrG
′(N), G ′′ does certainly not contain the highest priority n. We can

apply induction to get that its set of positions decomposes into the winning regions of
the two players (V \ P ) \ AttrG

′(N)) = W′′ ∪⋅ W′′
,

and each player has a positional winning strategy on her respective winning region.

Similar to before, a winning strategy for the universal player on W′′ could be extended
to awinning strategy for the original game: Since (V\P )\AttrG ′(N) is a trap for (inside
V\P ), awinning strategy for inG ′′ is also awinning strategy for inG ′ by Lemma6.13.
It could be combinedwith the positionalwinning strategy on P . Altogether, weobtain
that if x ∈ W′′ , then x ∈ P , a contradiction to W′ ⊆ (V \ P ) \ AttrG

′(N) ⊆ V \ P . Hence
W′′ = ∅.

It remains to argue that the existential player has a positional winning strategy on
W′′ ∪ AttrG

′(N) = V \ P . To this end, we define a positional strategy.

Let sAttr be the attractor strategy for the existential player that is winning for the reacha-
bility game in V \P with respect to the winning setN on AttrG

′(N). Note that it will also
enforce reaching AttrG

′(N) in V itself, since V \ P was a trap for the universal player.

Let sG ′′ be the winning strategy for the existential player for the parity game G ′′ on the
set V \ P \ AttrG

′(N). We combine the two strategies and define a positional winning
strategy for the existential player for the original game G as follows.

s ∶ V → V

x ↦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sAttr(x) , if x ∈ AttrG
′(N) \ N, (1)

y with y ∈ AttrG
′(N) , if x ∈ N and such a successor y exists , (2)

y with y ∈ V \ P , if x ∈ N and no succ y as in (2) exists, (3)
sG ′′(x) , if x ∈ V \ P \ AttrG

′(N), (4)
y arbitrary successor , else. (5)
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The strategy is illustrated by the following figure.

N

AttrG
′(N)

P V \ P

(5)
(1)

(2)(3) (4)
For the well-definedness of s , we need to argue that each vertex in x ∈ N has a succes-
sor in V \ P . This is because if all successors of a position x ∈ N would be in P , then x
would be winning for the universal player and thus be contained in P , but N ⊆ V \ P
by definition.

It remains to argue that s is winning on V \ P .

Let p = p0p1p2 . . . be a play that conforms to s with p0 ∈ V \ P . By the definition of s ,
p never visits P .

If p visits AttrG
′(N) infinitely often, then p also visits N infinitely often and is indeed won

by the existential player.

Let us assume that p visits N only finitely often. This also means there is a last visit of
AttrG

′(N) in p, because after each visit of the attractor, a visit of N follows after finitely
many steps. We can split the play p = p′.p′′ such that p′′ does not visit AttrG

′(N). By
the prefix independence, Lemma 6.5, it is sufficient to show that p′′ is winning for the
existential player.

In p′′ the existential player behaves as given by the strategy sG ′′ . As argued before, the
universal player cannot force the play to visit P . If the universal player forces the play
to visit AttrG

′(N), this is a contradiction to p′′ not visiting this set. Therefore, the play p′′

stays inside V \ P \ AttrG
′(N). Thus, it can be seen as a play of the subgame G ′′ that

is conform to the winning strategy sG ′′ , proving that it is won by the existential player.
⬛
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6.14 Remark
We could actually define the winning strategy by

s ∶ V → V

x ↦

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
sAttr(x) , if x ∈ AttrG

′(N)
sG ′′(x) if x ∈ V \ P \ AttrG

′(N),
y arbitrary successor , else.

in the proof. Since sAttr(x) is a strategy for the game G ′ whose set of positions is V \ P ,
this strategy will also ensure that P is never visited. The proof of correctness works
withoutmodification. We chose tomake the additional case distinction in the proof for
didactic reasons.
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Zielonka’s algorithm

If the game arena is finite, the winning regions can be computed by the following re-
cursive algorithm due to Zielonka [Zie98]. It is a modified version of the McNaughton’s
algorithm for solving Muller games [McN93].

6.15 Algorithm: Zielonka’s recursive algorithm
Input: parity game G given by G = (V , V , R) and Ω.
Output: winning regions W and W .

Procedure solve(G)
1: n = maxx∈V Ω(x)
2: if n = 0 then
3: return W = V,W = ∅
4: else
5: N = {x ∈ V ∣ Ω(x) = n}
6: if n even then
7: = , =
8: else
9: = , =

10: end if
11: A = AttrG (N)
12: W′

,W′ = solve(G↾V\A)
13: if W′ = V \ A then
14: return W = V,W = ∅
15: else
16: B = AttrG (W′ )
17: W′′

,W′′ = solve(G↾V\B)
18: return W = W′′

,W = W′′ ∪ B
19: end if
20: end if

6.16 Remark: Another proof of positiona determinacy
The algorithm differs from the above proof in a key aspect: In the proof, we assumed
the set P = W to be fixed, but in the algorithm, we need to compute it.

To understandwhy the algorithm is correct, it is helpful to consider an alternative proof
of positional determinacy that proceeds by induction on the number of positions. The
drawback is that it proves positional determinacy only for finite game arenas.
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Wegive a sketch of the proof in the following. In the base case, the gamearena is empty
and so are the winning regions.

Consider a non-empty game arena, and let n be the highest priority assigned to any
node. We again assume that n is even (otherwise, the roles of the players have to be
swapped). We defineN to be the positions with priority n, and A = Attr (N) as its attrac-
tor. Consider the gameG ′ = G↾V\A. Since V\A is a trap, Lemma 6.10, G ′ is a deadlock-free
parity game. Since N ≠ ∅ and N ⊆ A, its number of positions is strictly smaller than the
number of positions ofG. Hence, wemay apply induction toobtain thatV\A = W′ ∪⋅W′

is partitioned into the winning regions of the players and each player has a uniform po-
sitional winning strategy from her winning region.

Consider the case thatW′ = ∅. We claim that in this case, the existential playerwins the
whole game G using a positional winning strategy. We define the strategy s to com-
bine the strategy s′ forG ′ onW′ = V\A and the attractor strategy sAttr, onA = Attr (N).
Any play conform to s either visits N infinitely often (in which case wins since n is
the highest priority and even), or after some finite prefix, it stays inside V \ A. Hence,
the play has an infinite suffix that is a play of G ′ conforming to the winning strategy s′ .
By prefix independence, the existential player wins the whole play.

Consider W′ ≠ ∅. Define B = Attr (W′ ), and note that B ≠ ∅. Hence, G ′′ = G↾V\B is a
deadlock-free parity game towhichwe can apply induction, obtaining V\B = W′′ ∪⋅ W′′

and corresponding positional winning strategies. The winning strategy for the existen-
tial player fromW′′ inG ′′ is also awinning strategy fromW′′ inG by Lemma 6.13 since
V \ B is a trap for . Hence, W′′ ⊆ W and a positional winning strategies exist.

To see that W′′ ∪ B ⊆ W , we construct a positional winning strategy that combines (1)
the strategy s′ (for G ′) on W′ , (2) the strategy sAttr, on Attr (W′ ) \W′ , (3) the strategy
s′′ (for G ′′) on W′′ . Any play conforming to the combined strategy from W′′ ∪ B either
completely occurs inW′′ (and conforms to thewinning strategy s′′ ), or it entersW′ after
finitely many steps and then stays there, conforming to the winning strategy s ’. The
techniques needed to formally prove this are similar to the ones used in the proof of
Theorem 6.7 above.

Computational complexity

To finish this section, we want to study the computational complexity of solving parity
games. To this end, we see parity games as decision problems.
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Solving parity games (PARITY)

Given: G = (V ∪⋅ V , R), Ω, x ∈ V
Question: Is x winning for the existential player?

The algorithm above can be used to solve PARITY by solving the game and checking
whether the given vertex x is in the winning region of the existential player.

6.17 Lemma
Algorithm 6.15 solves PARITY in time ∣G∣n ⋅ poly(∣G∣), where n is the highest occurring
priority.

Currently, PARITY is not proven to be in P, but it is in NP ∩ coNP. To show this, we first
consider the following lemma.

6.18 Lemma
Let s be a positional strategy and let x ∈ V be a vertex. One can check in polynomial
time whether s is winning from x.

Proof: Exercise 6.28, Part a). ⬛

By Theorem6.7, exactly oneplayer has a positionalwinning strategy for the given initial
position. This means that positional strategies can be used as a polynomial certificate.

6.19 Proposition
PARITY ∈ NP ∩ coNP.

Proof:
To show PARITY ∈ NP, we give an algorithm that uses existential non-determinism.
The algorithm guesses a positional winning strategy for the existential player, checks
whether it is winning from x, and returns yes if this is the case. The strategy can be
stored using polynomial space, and checkingwhether it is winning can be done in poly-
nomial time by Lemma 6.18.

To show PARITY ∈ coNP, there are two possible approaches:

• Useuniversal non-determinism to check that no strategy for the existential player
is winning from x.

• Solve the complement problemusing existential non-determinismbyguessing a
strategy for theopponent theuniversal player andcheckingwhether it iswinning
from x.
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⬛

6.20 Remark
Assume we could show that PARITY is NP-complete. Then its complement problem
is coNP-complete, and since parity games are self-dual, PARITY itself is also coNP-
complete.

We would obtain NP = coNP, a statement that is assumed to be wrong, since it would
mean that the polynomial hierarchy would collapse to the first level.

In 2017, a new algorithm was presented that achieves a much better running time.

6.21 Theorem: Parity games in polynomial time, Calude et al. 2017 [Cal+17]

• PARITY can be solved in quasi-polynomial time

O(∣G∣log n+6) ⊆ O(2(log ∣G∣)2) ,
where n is the highest priority.

• PARITY is fixed-parameter tractable in the highest priority n as there is an algo-
rithm solving it in time

O(∣G∣5) + g(n) ,
where g is some function whose value only depends on n.

An important consequence is that parity games can be solved quickly even for large
game arenas if the highest priority is small. Whether PARITY is in P is still open. On the
one hand, there are some problems for which quasi-polynomial algorithms could be
improved to obtain a polynomial algorithm. On the other hand, there are problems
for which quasi-polynomial lower and upper bounds have been proven. (The lower
bounds assume the exponential time hypothesis to hold, a strengthened version of
NP ≠ P.)

6.22 Remark
An easier proof ot the result by Calude et al. [Cal+17] was later found by Jurdzinski and
Lazic [JL17].
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Exercises

6.23 Exercise: Encoding winning conditions
Let G = (V ∪⋅ V , R) be a deadlock-free, finite game arena. Let x, y ∈ V be two positions,
x ≠ y.

a) Present a reachability/safety gamewhosewinning condition encodes the following
property:
A play is won by the existential player if it visits first x, then y.

Note: You are allowed to modify the game arena G.

b) Present a reachability/safety gamewhosewinning condition encodes the following
property:
A play is won by the universal player if it does not visit both x and y.

c) Present a Büchi/coBüchi game whose winning condition encodes the following
property:
A play is won by the existential player if it visits x at least once, and later visits y in-
finitely often.

d) Present a parity game whose winning condition encodes the following property:
A play is won by the existential player if it either does not visit x infinitely often, or it
visits both x and y infinitely often.

e) Present a parity game whose winning condition encodes the following property:
A play is won by the existential player if it either does not visit x infinitely often, or it
visits x, but not y infinitely often.

For each part, reason briefly why your construction is correct.
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6.24 Exercise
Consider the parity game given by the following graph. For each vertex labeled with xi,
the letter x denotes the name of the vertex, the superscript denotes its priority Ω(x) = i.

a3 b3 c1 d 0

e4

f 4 g1
h2 i3

For each player, identify her winning region and present a uniform positional winning
strategy. Reason briefly why the strategies are indeed winning.

6.25 Exercise
Prove Part b) of Lemma 6.6.

6.26 Exercise: Is it a trap?

a) Formally prove Part a) of Lemma 6.10.

b) Construct a game arena and a set Y such that Attr (Y) is not a trap for any of the
players. Prove that these properties hold.

6.27 Exercise: It’s a trap!
Formally prove Lemma 6.13.
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6.28 Exercise: Algorithmics of parity games

a) Prove Lemma 6.18.

b) Use Zielonka’s recursive algorithm to solve the following parity game. The notation
is as in Exercise 6.24.

a0 b1 c2 d3 e4 f 5 g6
h7

i 0 j1 k2
l
3 m4 n5 o6 p7

6.29 Exercise: Weak parity games
Let us considerweak parity games. Just like a parity game, aweak parity game is given
by a game arena G = (V ∪⋅ V , R) and a priority function Ω. Instead of considering the
highest priority thatoccurs infinitelyoften todetermine thewinnerof aplay,weconsider
the highest priority that occurs at all.

Formally, the winner of the weak parity game given by G and Ω is determined by the
weak parity winning condition:

win ∶ Playsmax → { , }
p ↦

⎧⎪⎪⎪⎨⎪⎪⎪⎩ , if max {Ω(pi) ∣ i ∈ N} is even,
, else, i.e. if max {Ω(pi) ∣ i ∈ N} is odd.

a) Present an algorithm that, given aweak parity game on a finite, deadlock-free game
arena, computes the winning regions of both players. Briefly argue that your algo-
rithm is correct.

b) Is the winning condition of weak parity games prefix-independent, i.e. does
Lemma 6.5 hold?

Do uniform positional winning strategies exist?
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Application: Rabin’s tree theorem

Wehave nowgathered the prerequisites to study a theoretical application of game the-
ory. Rabin’s tree theorem is a deep result from automata theory, stating that a certain
class of languages of infinite trees is closed under complementation. Its easiest proof
relies on the positional determinacy of Parity games, Theorem 6.7.

The content can be found in Section 15.
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The goal of this section is to generalize the parity winning condition by getting rid of
the dependency on the priority assignment. We obtain a type of games called Muller
games. We will show that these games are determined. However, the winning strate-
gies are not positional, but use finite memory.

Muller games

7.1 Assumption
We assume throughout the section that G = (V ∪⋅ V , R) is a fixed deadlock-free and
finite game arena. We will use n = ∣V∣ to denote the number of positions.

Intuitively, the winning condition of a Muller game specifies for each set of position
that can occur infinitely often which player wins.

7.2 Definition: Muller game, Muller winning condition
A Muller game GMuller on the game arena G is given by a judgment

judgment∶P(V) → { , }
that assigns to each set of positions a winner.

The Muller winning condition is given by

win ∶ Playsmax → { , }
p ↦ judgment(Inf(p))

7.3 Remark
Muller games are named after David E. Muller (1924 - 2008), an American computer
scientist. In 1963, he invented Muller automata, automata that accept an infinite word
if and only if the set of states that occurs infinitely often is inside a specified collection.
The acceptance condition of these automata is very similar to the winning condition of
Muller games, hence the name.

Sources
The section does not follow any particular source. The book [HL11] (in German) dis-
cusses the translation from Muller automata to parity automata, which is very similar
to the construction that we consider here. A discussion of Muller games in English
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can be found in [KN01]. Note that [KN01] only considers the simple case in which
judgment(V) = and judgment(X) = for all X ⊊ V.

See [ZKW] for another presentation of Muller games.

7.4 Example
Consider the following example.

1

2 3

For the above game arena, we use the winning function defined by
judgment({1, 2, 3}) = and judgment(X) = for all other X ⊊ V.

Every position is winning for the existential player. Namely, the strategy that for posi-
tion 1 alternates between choosing 2 and 3 is winning, as it generates a play in which
all positions occur infinitely often.

It is easy to see that the existential player has no positional winning strategy. A posi-
tional strategy will either only generate plays p with Inf(p) = {1, 2} or only plays with
Inf(p) = {2, 3}. In both cases, the universal player wins. Consequently, there is no prior-
ity assignment on the game arena such that the resulting parity game is equivalent to
the Muller game.

Latest appearance records

A strategy for a Muller game will need to track information about the past of the game.
However, instead of tracking the history of the play (which has unbounded length), it
is sufficient to track the order of last appearances of the positions. In the following, we
define a data structure that does precisely that.
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7.5 Definition: Latest appearance record
A latest appearance record (LAR) lar for the game arena G is a tuple

lar = (x0 . . . xn−1, i)
such that

• x0 . . . xn−1 is a permutation of the set of positions, i.e. a sequence of positions in
which each positions occurs exactly once, and

• i ∈ {0, . . . , n − 1} is a number.

Let us denote by LAR the set of all LARs, and note that ∣LAR∣ = n! ⋅ n.

LARs support an update operation that takes an LAR lar and a position x ∈ V and pro-
duces a new LAR lar′ defined as follows

update ∶ LAR × V → LAR((x0 . . . xn−1, i), x) ↦ (xx0 . . . xj−1xj+1 . . . xn−1, j)
where j is the index of x in x0 . . . xn−1 (i.e. xj = x).

Thismeansposition x ismoved to the front and its old indexof the sequence is exhibited
as the second component.

7.6 Example
Consider the LAR lar = (123, 1) for the game from Example 7.4. If we now see position
3, we obtain

update(lar, 3) = (312, 2) ,
i.e. 3 is now the most recent positions, and it was moved from index 2.

As thenamesuggest, the latest appearance records indeed track the latest appearances
of the positions in a play. If lar is an arbitrary LAR and p = p0 . . . pk ∈ V∗ is a finite
sequence of positions in which each position occurs at least once, then

update(. . . update(update(update(lar, p0), p1) . . .)pk)
will be an LAR of the shape (p′, i), where p′ is obtained from p by (1) reversing the order
(such that the most recent position is leftmost) and (2) removing from each position
all occurrences but the last one. The result shows the positions ordered by their latest
appearance.

83



II. Games on finite graphs

The number i in the second component of an LAR shows the old index of the position
that was moved to the front by the update. We will comment on why this number is
needed in a second.

Note that we can split the first component x0x1 . . . xn−1 of an LAR into the most recent
position x0 and the history x1 . . . xn−1. For convenience, we define a function returning
the most recent position,

mr ∶ LAR → V(x0 . . . xn−1, i) ↦ x0 .

In the following, wewill translate the givenMuller game into a parity gamewith LAR as
the set of positions and moves induced by the update function.

7.7 Definition
We define the LAR parity game Gparity to be the parity game on the game arena

G′ = (LAR, R′)
with

owner′(lar) = owner(mr(lar))
and R′ = {(lar, lar′) ∣mr(lar) = x, (x, y) ∈ R, lar′ = update(lar, y)} .

Its priority assignment is given by the function

Ω ∶ LAR → {0, . . . , 2n − 1}
(x0 . . . xn−1, i) ↦

⎧⎪⎪⎪⎨⎪⎪⎪⎩2i , if judgment({x0, . . . , xi}) = ,

2i + 1 , if judgment({x0, . . . , xi}) = .

Note that if one projects the new graph G′ to the most recent positions, one obtains
the original game arena G. Therefore, one may see G′ as a version of G that keeps track
of (a part of ) the history of the play.

The intuition behind the priority assignment is more complicated. We argue why it
depends on {x0, . . . , xi}, where i is the second component of the LAR, i.e. the old index
of the position that was just moved to the front.

Consider a play of the Muller game containing a simple cycle from x to x, say
p = p′.xx(1) . . . x(m)x. Then during the cycle from x to x, we have seen the set of
positions {x, x(1), . . . , x(m)}. This cycle is good for the existential player if and only if
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judgment({x, x(1), . . . , x(m)}) = . Let lar be the LAR associated to the first occurrence
of x, and let lar′ be the LAR associated to the second occurrence. Note that we have

lar′ = update(update(. . . update(update(update(lar, x(1)), x(2)) . . .)x(m)), x)
and lar′ is of the shape

lar′ = (xx1 . . . xn−1, i)
such that indeed {x, x1, . . . , xi} = {x, x(1), . . . , x(m)}. Note that the priority of lar′ is even
(which is good for the existential player with respect to the parity winning condition) if
and only if this set is good for with respect to the Muller winning condition.

Now consider an infinite play p of the Muller game and let X = Inf(p) ⊆ V. This means
that we can decompose p = pfin

.pinf such that that in pinf, only positions in X occur: All
positions not in X occur only finitely often, so for each position, there is a finite index at
which it occurs for the last time. Take the maximum of these indices over all positions
not in X to determine the location of the cut. Consider the sequence of LARs in the
parity game associated to pinf. In it, only the first ∣X∣ entries of the (first component
of the) LAR will be modified anymore, since the other positions do not occur and are
nevermoved to the front. However, whenwe consider the set {x0, . . . , xi} onwhich the
priority assignment depends, we will not always have {x0, . . . , xi} = X: It might happen
that some position occurs twice without all other positions occurring in between. In
this case, we have {x0, . . . , xi} ⊊ X and i < ∣X∣ − 1. Nevertheless, as we are interested in
the largest priority infinitely often, we are sure that the priority that is exhibited by the
positions with {x0, . . . , xi} = X will be the dominating priority in the run.

7.8 Example
We consider the construction of Gparity for the Muller game GMuller from Example 7.4.

(213, 1)3 (123, 1)3
(312, 2)4

(213, 2)4
(132, 1)3 (312, 1)32 → 1

1 → 2

1 → 3 3 → 1

1 → 3

3 → 1

1 → 22 → 1

Here, we have only drawn the part of the graph G′ reachable from the LAR (123, 1). The
names of the positions are of the shape larΩ(lar), i.e. the superscript denote the priority.
The part x0 . . . xi of an LAR lar = (x0 . . . xn−1, i) that is underlined is the part on which
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the priority assignment depends. The moves are labeled by the moves of the original
game that induce them.

Note that

• no LAR has 0 as second component because the original game contains no self
loops,

• there is no LAR in which the first component contains 2 and 3 in succession be-
cause there are no corresponding moves in the original game.

From parity to Muller with finite-memory strategies

To show the determinacy ofMuller games, wewill prove the following correspondence
between the original Muller game GMuller and the parity game Gparity.

7.9 Theorem: Correspondence
A position x ∈ V is winning in the Muller game GMuller for some player if and only if
any/all positions lar with mr(lar) = x are winning for in the parity game Gparity.

To prove Theorem 7.9, we show how to transform a positional winning strategy for
Gparity into a winning strategy for GMuller. Since parity games are determined, Theo-
rem 6.7, we then obtain the determinacy of Muller games.

Assume that sparity is a positional strategy that is uniformly winning from all LARs in the
winning region of . For simplicity, we will fix one LAR lar1 from the winning region
that we will consider as the initial position.

Unfortunately, we cannot translate sparity into a positional winning strategy for the
Muller game. Instead of translating it into an arbitrary strategy (i.e. one that has un-
restricted behavior on plays), we translate it into a simple strategy. In the following, we
define such simple, although non-positional, strategies in general.

7.10 Definition: Finite-memory strategy
A (deterministic) finite-memory strategy (or forgetful strategy) for player is defined
by a (deterministic) finite-state transducer T that reads the moves of the game and
outputs the moves of . More formally, the transducer is a tuple T = (Q, V, V, q0, δ, o)
where

• Q is a finite set of internal control states, the finite memory,

• q0 ∈ Q is the initial state,
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• the set of positions V is the input as well as the output alphabet,

• δ∶Q × V → Q is the deterministic transition function that, given the old state q
and the new position x of the game, determines the new state δ(q, x), and

• o∶Q → V is the output function that determines a the successor o(q) that is put
out depending on the current internal state q.

(The transducer should guarantee that whenever it outputs a position, this is actually
a valid successor, but we leave this assumption implicit.)

For such a transducer, we define its state state(p) after reading some finite sequence of
positions p ∈ V∗ inductively by

state(ε) = q0 ,

state(p′.x) = δ(state(p′), x) .
The strategy induced by the transducer can then by defined by

sT ∶ Plays → V
p ↦ o(state(p)) .

7.11 Remark
Note that the transducer has only one initial state q0, but in the very first step, it can up-
date its state depending on the initial position of the play: The base case of the defini-
tion of state is the empty sequence ε. Hence, transducers canbeused to define uniform
strategies.

Instead of considering strategy with irregular behavior (i.e. strategies that can output
different successors for plays that are very similar), a finite-memory strategy will base
its decision on the state in which the transducer is after reading the play. This allows
us to restrict ourselves to storing the state of the transducer (which can be done with
space log ∣Q∣) instead of storing the unbounded history of the play.

Recall thatGparity was constructedby amending theMuller gamewith finite information
about the history of the play, namely by the latest appearance records. It is therefore
natural that we use exactly this information to define a finite-state transducer, which
will then allow us to simulate the strategy for Gparity in the Muller game.
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7.12 Definition
We define sMuller to be the finite-memory strategy induced by the transducer

T = (LAR, V, V, lar0, update, o)
where LAR and update are defined as before, the output function is defined by

o(lar) = mr(sparity(lar)) ,
and the initial state lar0 is a LAR such that update(lar0,mr(lar1)) = lar1.

Note that indeed update∶ LAR × V → LAR has the required signature. The reason for
picking lar0 as the initial state is that after we update it with respect to the most recent
position from lar1, we obtain precisely the LAR lar1 for which we assume that sparity is
winning.

7.13 Proposition
Assume that sparity is winning from lar1 ∈ LAR, then the finite-memory strategy sMuller is
winning from mr(lar1).
Proof:
Let us denote x = mr(lar1). Consider a play p = p0p1p2 of the Muller game from x
(i.e. p0 = x) that is conform to sMuller. We associate to it the sequence of states that T has
while reading p,

lar0
p0
−−→ lar1 = state(p0) p1

−−→ lar2 = state(p0p1) p2
−−→ . . .

i.e. for each number i, let lari be the state in which T is after reading p0 . . . pi−1. (Recall
that lar0 is chosen such that we are indeed in state lar1 after the first move)

Note that the states are latest appearance records and the transition relation of T coin-
cides with the update operation on LAR. Hence, the sequence of LARs plar = lar1lar2 . . .
(without the initial state) is a valid play of Gparity from lar1. Because the output function
of T that is used to determined themoves by sMuller, is defined using sparity, we have that

plar is conform to sparity, and hence winning.

Consequently, the highest priority lthat occurs infinitely often in plar is good for player
. We may decompose plar = plarfin

.plarinf such that all priorities that occur in plarinf

are smaller or equal to l. By the prefix independence of the parity winning condition,
Lemma 6.5, we know that also plarinf is won by . Since the Muller winning condition is
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also prefix independent, it will be sufficient to argue that the corresponding suffix pinf

is winning with respect to the Muller game.

Note that since there is some index i that corresponds to priority l(which is, depending
on which player is, either l

2
or l−1

2
) such that all LARs (x0 . . . xn−1, j) have j ⩽ i, and in-

finitely many LARs with j = i occur. This in particular means that all but the first i entries
are not moved inside plarinf. Define X = {x0, . . . , xi} as the entries that are swapped for
some LAR from plarinf. (By the previous argumentation, it does notmatter which onewe
pick.)

We obtain that Inf(p) = Inf(pinf) ⊆ X, as the positions not in X are never swapped to the
front inplarinf, whichmeans that theydonot occur inpinf. To see that Inf(p) = X, note that
every position from Xhas to occur infinitely often, as it is infinitely often swapped to the
front in plarinf: Swapping another position to the front will make it wander towards the
end of the sequence, until it appears at index i. Since i occurs infinitely often as the
second component, it is then swapped to the front after finitely many steps.

To conclude the proof, note that since lwas a good priority for , X = {x0, . . . , xi} is a
set of positions that is good for player with respect to the Muller judgment. ⬛

7.14 Example
Consider the positional strategy sparity for in the parity game Gparity from Example 7.8
that is defined by (123, 1) ↦ (312, 2) and (132, 1) ↦ (213, 2). The plays ofGparity that are
conform to it use the cycle in themiddle of the game arena infinitely often (and thus are
won by since the highest occurring priority is 4). This strategy induces the finite state
strategy sMuller for GMuller that, whenever the game is in position 1, alternates between
outputting successor 2 and outputting successor 3 (because the internal state of the
transducer alternates between (123, 1) and (132, 1)). As discussed in Example 7.4, this
strategy for the Muller game is indeed winning.

7.15 Remark
For the proof of Proposition Proposition 7.13, we have constructed a non-uniform win-
ning strategy. In Exercise 7.20, youwill see that finite-memory strategies can always be
made uniform. In the special case of Muller games, it is actually possible to prove that,
assuming sparity is a uniform winning strategy, the LAR strategy sMuller is also uniformly
winning.

Using Proposition 7.13, it is easy to show Theorem 7.9.
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Proof of Theorem 7.9:
If a LAR lar is winning in Gparity for , then mr(lar) is winning in GMuller for ⋆ by Proposi-
tion 7.13.

If a position x is winning in the Muller game for , then all LARs lar with mr(lar) = x
need to be winning for in the parity game. If one such LAR is not winning for , it
needs to be winning for because parity games are determined. Consequently, also x
would be winning for by Proposition 7.13, a contradiction. ⬛

From Theorem 7.9, we obtain easily the determinacy of Muller games.

7.16 Theorem: Determinacy of Muller games I
Muller games are determined, V = W ∪⋅ W .

We have even shown a stronger result: If a position is winning for some player , then
this player has a finite-memory strategy with memory bounded by n! ⋅ n (because this
is the number of LARs). As mentioned in Remark 7.15, one can in fact show that both
players have a uniformfinite-memorywinning strategywithmemory bounded by n! ⋅n.

To improve the result, one can observe that the second component i of an LAR(x0 . . . xn−1, i) is only needed to determine the priority assignment. One could show
that there is a uniform positional strategy sparity for Gparity that does not depend on this
second component, i.e. it has

sparity(x0 . . . xn−1, i) = sparity(x0 . . . xn−1, j)
for all i, j. Using this, one can build a transducer that only uses the first components of
the LARs as memory.

Altogether, we can strengthen the statement of Theorem 7.16 to obtain the following
result.

7.17 Theorem: Determinacy of Muller games II
Muller games are determined, V = W ∪⋅ W , and each player has a uniform finite-
memory strategy for her winning region with memory bounded by n!, where n = ∣V∣.
One may criticize that the memory requirement of n! bits is very large. However, note
that already the encoding of a Muller game is quite large: To encode the judgment, we
need to store for each subset of nodes for which player it is winning. If the graph has
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∣V∣ = n nodes and we just need one bit per subset, we will need 2n = ∣P(V)∣many bits
to encode the judgment. Now observe that

n! ⩽ nn = (2log n)n = 2log n⋅n

which is not polynomial in 2n, but only slightly super-polynomial.

Furthermore, one can show that the memory consumption of n! is essentially optimal.

7.18 Theorem: Optimality of LARs, Theorem 15 in [DJW97]
For each n ∈ N, there is a Muller game on a game arena with 2n many positions such
that any winning finite state strategy needs to have memory at least n!.

The game that is used to prove Theorem 7.18 is presented in Example 7.22. For the
proof, we refer the reader to [DJW97].

7.19 Remark
Deciding which player wins a Muller game from a fixed position is a PSPACE-complete
problem: There is a (deterministic) algorithm solving the problem that uses polynomial
space, but exponential time. Unless PSPACE = P, there is no algorithm solving the
problem just using polynomial time.

Exercises

7.20 Exercise: Making finite-memory strategies uniform
LetG be agameon somefinite graphG = (V ∪⋅ V , R)with some arbitrary fixedwinning
condition win. Assume for each of the two positions x, y ∈ V, player has some finite-
memory strategy, say induced by the transducers Tx and Ty, respectively.

Show how to construct a transducer T such that the finite-memory strategy induced by
T is winning from both x and y.
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7.21 Exercise: Constructing a transducer
Consider the game G(n) (for some n ∈ N, n > 0) on the following graph:

V = {guess, go} ∪⋅ N ∪⋅ X with

N = {1, . . . , n} ,
X = {x1 . . . xn} ,
R = {(guess, i), (i, go) ∣ i ∈ {1, . . . , n}}
∪ {(go, xi) ∣ i ∈ {1, . . . , n}} ∪ {(xi, xj) ∣ i, j ∈ {1, . . . , n}} ,

owner(guess) = owner(i) = for all i ∈ N ,

owner(go) = owner(xi) = for all xi ∈ X .

Let us focus on plays starting in position guess. Note that all maximal plays from this
position are infinite, and they visit exactly one position from the set N, and they visit
this position exactly once.

Such a play p is won by if and only ∣Inf(p) ∩ X∣ = m holds, where m is the unique
position from N that occurs in p.

a) Draw G for n = 4. Assume that the universal player picks the move (guess, 3). Draw
in a positional strategy for that wins under this assumption.

b) Let n ∈ N, n > 0 be an arbitrary fixed number, and consider G(n). Show how to
construct a transducer T such that the finite-memory strategy for induced by T is
winning from guess.

7.22 Example: An expensive game
Let n ∈ N, n > 0 be a fixed positive number. We define a Muller game GMuller on the
game arena G = (V, R) with V = {1, . . . , n} × { , } (where the second component
indicates the active player) and the moves defined by

R = {(i, ) → (j, ) »»»»» i, j ∈ {1, . . . , n}, { , } = { , }} .
The Muller judgment is defined as follows: judgment(X) = if and only if

∣X ∩ V ∣ = max{i ∣ (i, ) ∈ X} .
a) Draw G for n = 2.

b) Explain the winning condition in your own words.
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c) Construct the parity game Gparity obtained form GMuller by the LAR construction. You
can fix some initial LAR lar0 and just draw all LARs reachable from lar0. Similar to the
example in the lecture, mark all positions with their priorities.

Draw in a positional winning strategy for the existential player .

7.23 Exercise: From parity to Muller

a) Let G = (V ∪⋅ V ) be a finite, deadlock-free graph. Consider the parity game Gparity

defined on G by some priority assignment Ω∶ V → {0, . . . , n}.
Present a Muller judgment judgment∶P(V) → { , } such that the corresponding
Muller game GMuller is equivalent to Gparity: Any position x ∈ V is winning for some
player in GMuller if and only if it is winning for this player in Gparity.

b) We call aMuller gameGMuller union-closed if its defining judgment has the following
property: If judgment(X) = and judgment(Y) = for some sets X, Y ⊆ V, then
judgment(X ∪ Y) = .

Check that the game you have constructed in Part a) is union-closed.

Note: One can show that if aMuller game is union-closed, and x ∈ V is winning for some
player , then has a positional winning strategy from x.
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8. Mean payoff games

In this section, wewant to study adifferent kindof gameswith perfect information: The
goal of the players it not to satisfy a winning condition, but to optimize their payoff, a
numeric value associated to each play.

Our goal is to study mean payoff games. In these games, both players alternately pick
moves in a finite graph. Each position has an associated weight, and the payoff of an
infinite play is determined by the mean (average) of the weights.

Similar to the games thatwepreviously considered, wewant to showa theorem stating
that positional winning strategies for such games exist.

In the proof of this theorem, we will associate to a mean payoff game a game whose
plays are of bounded length. Therefore, we will start by studying such games.

Sources
The content of the first subsection is common knowledge in game theory and can be
found in most textbooks on the topic.

The content of the rest of this section is based on the papers [EM79] and [ZP96].

Zero-sum games

8.1 Definition
A zero-sum game of length k ∈ N is a game G given by a game arena G, a fixed initial
position x0 and a payoff function φ.

It is played as follows: Both players play for in total at most k moves or until the play
deadlocks. Let Plays⩽kmax denote the set of such plays.

The payoff function φ maps
φ∶ Plays⩽kmax → R ,

such plays to a real number, yielding the payoff φ(p) of the play.

We think of it as if after play p, the existential player has to pay the universal player
the value φ(p) (respectively the universal player pays the value ∣φ(p)∣ to the existential
player if φ(p) is negative). The goal of the existential player is to minimize her loss φ(p),
the goal of the universal player is to maximize her income φ(p).
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8.2 Remark
These games are called zero-sum games because the income of the universal player
equals the loss of the existential player. Wealth is neither created nor destroyed.

The goal of each player is not to satisfy a winning condition, but to optimize her payoff.
To formalize this, we define strategies that guarantee a certain payoff.

8.3 Definition
A strategy s for either player guarantees value ν if any play from the initial position
x0 that conforms to s has

• φ(p) ⩽ ν if = , resp.

• φ(p) ⩾ ν if = .

We are interested in the smallest value ν that can be guaranteed by a strategy for the
existential player, and in the largest value ν that can be guaranteed by a strategy for
the universal player. We are in particular interested in whether these values coincide.

For (not necessarily positional) strategies s , s for each of the players, let p@s s de-
note the unique play from the initial position x0 that is conform to the strategies. Note
that each play occurs as p@s s for suitable strategies.

The best value that a strategy for the existential player can guarantee is

ν = min
s

max
s

φ(p@s s ) .
Similarly, the best value that a strategy for the universal player can guarantee is

ν = max
s

min
s

φ(p@s s ) .
The next lemma states that theminimal loss of the existential player is in general larger
or equal to the maximal income of the universal player.

8.4 Lemma

ν = min
s

max
s

φ(p@s s ) ⩾ max
s

min
s

φ(p@s s ) = ν .
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Proof:
Let s′ be the strategy that minimizes maxs φ(p@s s ). Similarly, let s′ be the strategy
maximizing mins φ(p@s s ).
We have

min
s

max
s

φ(p@s s ) = max
s

φ(p@s s′ )
⩾ φ(p@s′ s′ )
⩾ min

s
φ(p@s′ s )

= max
s

min
s

φ(p@s s ) .
⬛

This lemma even holds in much more general settings than the one considered here,
e.g. when we drop the condition that each maximal play has bounded length. Note
that we can write mins and maxs because there are only finitely many strategies. In
a more general setting, infinitely many strategies may exist, so the minimum and max-
imum might not be well-defined. In this case, we have to replace the minimum by the
infimum infs over all strategies, and maximum by the supremum sups .

8.5 Definition
A length-k zero-sumgame has value ν if there are strategies for each of the players that
guarantee value ν, i.e.

ν = ν = ν .

In particular, a game either has no value, or it has a unique value.

There are games that do not have a value, i.e. games for which ν > ν holds.

8.6 Remark
As already briefly mentioned, the concepts in this section correspond to concepts for
the types of games that we already studied: The payoff corresponds to the winning
condition, and strategies that guarantee a value correspond to winning strategies.

Likewise, having a value corresponds to the game being determined.

The simple games under consideration here always have a value.

8.7 Theorem: Minmax theorem for zero-sum games of bounded length
Each length-k zero-sum game has a value.
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Proof:
We proceed by induction on the maximal length k.

For k = 0, the value is φ(ε) and there is nothing to show.

Assume the statement holds for games of length at most k − 1. Let G be the game of
length k under consideration. A play of length k can be seen as the first position x0,
followed by a play of length k − 1 from y.

x0 y

For each possible successor y, we consider a new zero-sum game Gy:

• Its plays have length at most k − 1.

• Its initial position is y.

• Its payoff function φ′ is defined by

φ′(p) = φ(x0.p) ,
i.e. we prepend the position x0 that we assume has already been visited in G.

By induction, each such game has a value νy.

We assume wlog. that the player making the first move is the existential player. If this
is not true, one has to swap the roles of the players in the following and to maximize
instead of minimizing.

We claim that the value of the original game is miny ν
y, where we minimize over all y

such that there is an arc (x0, y) ∈ R.

Let y′ be a node y such that νy is minimal. It remains to prove that both players can
guarantee νy′ in G.

The existential player can pick the move (x, y′) and then use her strategy for Gy′ guar-
anteeing value νy′ . More formally, let sy

′

be a strategy for the existential player for the

game Gy′ that guarantees νy′ . We define a strategy s for G as follows:

s (x0) = y′ ,

s (x0.p) = sy
′ (p) .

By the definition of the payoff function φ′ onGy′ , any play of the original game conform-
ing to s has value at most νy′
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The universal player has no influence on the first move (x0, y) that is made by the exis-
tential player. For each such y, let sy be her strategy guaranteeing νy in Gy. We combine
these strategies to obtain s as follows:

s (x0.y.p) = sy (y.p) .
Assumingwe fix the firstmove (x0, y)madeby the existential player, then s guarantees
value νy by the definition of the payoff function φ′. Therefore, for an arbitrary firstmove,
s guarantees miny ν

y. ⬛

8.8 Remark
This theorem has also been established for more general payoff games, but as men-
tioned above, it does not hold in all settings.

Mean payoff games

In this subsection, we want to consider payoff games whose maximal plays are infinite.

In theprevious subsection,wehaveallowedanarbitrarypayoff function that can assign
each play an arbitrary value. In a sense, this allows the function to exhibit irregular
behavior: Very similar plays can have vastly different payoffs.

Here, we restrict ourself to a very regular setting: We assume that each position x of the
graph has an associated weight w(x) ∈ R. The payoff of a play is the mean (average)
over the weights of the positions visited in the play. Since the play is infinite, we have
to express this mean as a limit.

For simplicity, we impose some more restrictions on the finite game arena
G = (V ∪⋅ V , R):

• It should be deadlock-free.

• We assume the initial position x0 ∈ V is owned by the existential player.

• We assume that V = V ∪⋅ V is a bipartite decomposition of the graph:

R ⊆ (V × V ) ∪⋅ (V × V ) .
The last condition enforces that the players alternately take turns.
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We furthermore assume that a weight function

w∶ V → R

is given, assigning each position x its weight w(x).
8.9 Definition
A mean payoff game G inf is given by a game arena G and initial position x0 as above
together with a weight function w.

To an infinite play p = p0p1p2 . . . of G
inf, written as a sequence of moves, we associate

two values

φ (p) = lim sup
n→∞

1
n + 1

n

∑
i=0

w(pi) ,
φ (p) = lim inf

n→∞

1
n + 1

n

∑
i=0

w(pi) .
We think of φ (p) as the loss of the existential player, and of φ (p) as the income of the
universal player. The goal of the existential player is to minimize φ , the goal of the
universal player is to maximize φ .

8.10 Remark
For each n ∈ N, the expression

1
n + 1

n

∑
i=0

w(pi)
is themean (arithmetic average) over the weights of the first n+ 1 positions of the play.
We can consider the sequence formed by these values for all n ∈ N. We would like to
define the mean over the infinite play as the limit of this sequence, i.e.

φ(p) = lim
n→∞

1
n + 1

n

∑
i=0

w(pi) .
Unfortunately, it is not clear whether this limit exists.

To solve this problem, we consider the limit superior respectively the limit inferior. Re-
call that they are defined to be the supremum resp. infimum of the set of limit points
of a sequence.

In contrast to the limit, they are well-defined for any sequence. The limit exists if and
only if their values coincide.
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In principle, these values could be (minus) infinity. This will never occur in the setting
considered here, because we only have finitely many arcs and thus the range of the
weight function is bounded.

Note that by definition, this type of game is not necessarily a zero-sum game: φ (p)
could be strictly larger than φ (p).
The key theorem that we want to prove expresses that, firstly, mean payoff games al-
ways have a value, and secondly, this value can be guaranteed for both players by po-
sitional strategies.

8.11 Theorem: Ehrenfeucht & Mycielski 1979 [EM79]
There is a value ν such that both players have positional strategies s , s such that:

• Any play p from x0 conforming to s has φ (p) ⩽ ν.

• Any play p from x0 conforming to s has φ (p) ⩾ ν.

Using the notions from the previous subsection, one could phrase this as: Mean payoff
games have a value, and it can be achieved using positional strategies.

8.12 Remark

• In the literature, one usually considers a weight function in R → R that assigns
each arc a weight. To fit better the notation used in the rest of this lecture, we
have adapted the theory to the case of weighted vertices.

• Without the assumption that the graph is bipartite, i.e. the players are taking
turns alternately, the theory becomes substantially more difficult. Nevertheless,
positional determinacy can be proven [V A88].

To establish the result, we consider a version of the game inwhich all maximal plays are
of bounded length. The idea is to stop after the first repetition of a position.

8.13 Definition
The game G fin is defined to be played on the same game arena G and from the same
initial position x0 ∈ V as G inf.

Both players pick moves as usual.

A play p deadlocks as soon as a player ∈ { , } picks a position pm = y ∈ V such
that y already occurred in the game, i.e. there is l < m with pl = y.
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For such a play p of this game, we assume that the existential player pays to the univer-
sal player the value

φfin(p) = 1
m − l

m

∑
i=l+1

w(pi) .
We depict a maximal play of G fin in the following figure.

x0 = p0

x = pm−1

y = pl = pm

z = pl+1

The payoff of a play ofG fin is the average of theweights of the positions occurring in the
loop from y to y (with y only counted once). The weights in the prefix are not regarded.

8.14 Lemma
G fin has a value.

Proof:
G fin can be modeled as zero-sum payoff game of bounded length, see Exercise 8.30.

⬛

The idea in the following is to relate G fin to G inf. Firstly, we will prove that strategies
for G fin can be lifted to obtain strategies for G inf guaranteeing the same value. This will
prove that G inf has a value. Secondly, we need to show that there are positional strate-
gies for G inf. By the first part of the development, it will be enough to prove that G fin

admits positional strategies. To show this, we go from the finite game (more precisely,
the game with finite maximal plays) to the infinite game, where we can use that the
payoff function is defined as a limit.

Ehrenfeucht and Mycielski state this in their paper as follows: “An amusing feature of
our proofs is that we have to use both games to establish our claims about any one of
them.”
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We start by lifting strategies for G fin to strategies for G inf.

Let p = p0 . . . pk be a finite play of G inf.

Assume there are numbers l < m ⩽ k such that

pm = pl = y .

We call such a situation a repetition.

We want to consider the first repetition: Let m0 be the least m such that there is a cor-
responding lsuch that l < m0 forms a repetition. Note that this lhas to be unique is,
let us denote it by l0.

We define purge(p) to be the play in which we delete the segment pl0+1 . . . pm0 :

purge(p) = p0 . . . pl0pm0+1 . . . pk .

For an arbitrary play p′ (that may not necessarily contain a repetition), we define
purge∗(p) to be the sequence we get by applying purge as often as possible, i.e. un-
til the resulting sequence contains no repetition any more.

8.15 Lemma
Let p be a finite play of G inf. The sequence purge∗(p) is a valid play of G fin ending in the
same position as p.

Using purge∗, we can lift strategies from G fin to G inf: For a given play of G inf, we apply
purge∗ and then ask the strategy for G fin for the next move.

8.16 Definition
Let sfin be a strategy for a player for the game G fin. We define a strategy sinf for G inf as
follows:

sinf(p) = sfin(purge∗(p)) .
Using the properties of purge∗, the following lemma is easy to prove.

8.17 Lemma
If sfin is positional, so is sinf.

The crucial lemma is the following. It shows that lifting the strategies also lifts the value
they guarantee.
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8.18 Lemma
If sfin guarantees value ν in G fin, then sinf guarantees value ν in G inf.

Proof:
We consider the case of the existential player, i.e. = . The proof for the universal
player is similar.

Let p = p0p1p2 . . . be an infinite play of G inf from x0 that is conform to sinf. We need to
show φ (p) ⩽ ν.

First note that since G inf is played on a finite graph, after some finite number of steps,
each position that will be visited at all has been visited for the first time. From this
moment on, p is essentially a sequence of loops. In total, p is a sequence of loops plus
a finite prefix.

In each loop, the existential player plays as if all previous loops had not occurred. This
is because sinf is defined to apply the purge∗-operation.

To prove the desired statement, we first provide an estimation for the average of finite
prefixes of p. Later, we lift this estimation to the infinite play p.

Let us consider for each n ∈ N the finite prefix p(n) = p0p1 . . . rn of p. p(n) decomposes
into loops and a part of the play that is not contained in any loop.

The following figure depicts a possible decomposition of p(n) into two loops. Only the
prefix and the suffix of the play that aremarked using red color are not part of any loop.

x0

The idea of theproof is to consider thepositions contained in any loop and theones not
contained in any loop separately. The average over the weights occurring in the loops
is bounded by ν, as the strategy is obtained by lifting a strategy for the finite game G fin

guaranteeing value ν. The number of positions not contained in any loop is bounded,
thus the corresponding weights do not influence the payoff of the infinite play. This is
made precise in the following.
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Let us consider the mean over the weights in p(n), i.e. the value

avg(n) = 1
n + 1

n

∑
i=0

w(pi) .

Let Loop1, . . . , Loopk ⊆ {0, . . . , n} denote for each j the set of indices i ∈ {1, . . . , k} such
that pi is part of the jth loop. Let Rest denote the set of indices not contained in any
loop.

We can rewrite the expression above by decomposing the sum accordingly, obtaining

avg(n) = 1
n + 1

⎛⎜⎝ k

∑
j=1

∑
i∈Loopj

w(pi) + ∑
i∈Rest

w(pi)⎞⎟⎠ .

Observe that each loop together with the part that leads to it (in which we remove
all loops that occurred earlier) is a play of G fin. In fact, it is a play that conforms to the
strategy sfin that we lifted to obtain sinf. Therefore, each such play has payoff at most
ν in G fin. The payoff function of G fin was defined to yield the mean over the moves
occurring in the loop. Thus, the mean value of the weights of each loop is at most ν.
Consequently, the total value of each loop is at most its cardinality times ν. We obtain
the new estimation

avg(n) ⩽ 1
n + 1

( k

∑
j=1

ν∣Loopj∣ + ∑
i∈Rest

w(pi))
= 1

n + 1
(ν(n + 1 − ∣Rest∣) + ∑

i∈Rest
w(pi))

= 1
n + 1

(ν(n + 1) − ν ⋅ ∣Rest∣ + ∑
i∈Rest

w(pi)) .

Let us now consider the expressions involving Rest: The number of moves in Rest is
bounded by ∣V∣: After going through all positions once, it is not possible to make a
move without having a repetition and thus closing a loop. In particular, this bound
does not depend on the length n of the play under consideration. This allows us to
bound the influence of these nodes on the average by taking their maximum number
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times the maximal weight assigned to any position of G. Altogether, we may chose a
suitable constant c not depending on n such that we have

avg(n) ⩽ 1
n + 1

(ν(n + 1) + c)
=

ν(n + 1)
n + 1

+
c

n + 1
= ν +

c
n + 1

.

Let us now consider the value φ (p) for the infinite play. We have
φ (p) = lim infn→∞ avg(n) by definition, and thus

φ (p) ⩽ lim inf
n→∞

(ν + c
n + 1

) = ν ,

since c
n+1

goes to 0 when n becomes large.

This is what we needed to show. ⬛

Intuitively, we have exploited that an infinite play p consists of infinitely many loops
and a negligible (bounded) part not contained in any loop. Since the payoff is a limit,
this bounded part does not matter.

The lemma that we have just proven already gives us a part of the desired theorem.

8.19 Corollary
The game G inf has a value, namely the same value as G fin.

It remains to show that the value of G inf can be achieved using positional strategies.
By the Lemmas 8.17 and 8.18, it is sufficient to show that G fin has positional strategy
guaranteeing the value.

A positional strategy essentially forgets the whole past of the play. To prove this, we
will introduce another finite game that has a forgetting-mechanic: as soon as a certain
position is visited, the prefix of the play up to this point is forgotten. We will show that
even in this “forgetful game”, we are able to achieve the same value as in G fin, and then
deduce the existence of positional strategies for G fin.

The catch is that to prove this statement, we will need to go back to the infinite game
G inf: In an infinite play where the payoff is defined as limit, forgetting a finite prefix of
the play certainly will not hurt.
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Let us first introduce some notation: For a position x ∈ V owned by the existential
player, let G fin

x and G inf
x be the games that work like G fin and G inf, but are played from x

(instead of x0)as the initial position.

We can now define the forgetful game.

8.20 Definition
For a node x ∈ V , the game Gx is a zero-sum payoff game of bounded length played
on the same game arena G and from the same initial position x0 as G fin and G inf.

Its plays work as follows:

• As long as position x is not visited in a play, the termination criterion and the
payoff function are defined as for G fin.

This means we stop after the first repetition, and the payoff is the mean of the
weights of the positions occurring in the loop.

• If a play p visits x, say pk = x the game essentially forgets the prefix r0 . . . rk−1.

The play continues until a repetition occurs, i.e. until there are k ⩽ l < m such
that rm = rl = y. The payoff of such a play is

φx(p) = 1
m − l

m

∑
i=l+1

w(pi) .
Note that in the second case, we require k ⩽ l < m, i.e. that the repetition only involves
positions that happened after visiting x. Wedonot considermoves pm′ that close a loop
started by pl′ with l

′ < k as repetitions, since we want to forget the prefix p0 . . . pk−1.

We can rephrase the mechanics of Gx as follows: As long as the universal player does
not move to x, Gx behaves like G fin. If she does, the game behaves like G fin

x , G fin started
from x, and the prefix leading to x is forgotten.

8.21 Lemma
For each x ∈ V , Gx has a value.

This lemma can again be proven by modeling Gx as a zero-sum payoff game with
bounded length.

Crucial is that the value of Gx is still the same as the value of G fin.

8.22 Lemma
For every x ∈ V , the value of Gx equals the value of G fin.
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Proof:
Consider a strategy for some player sfin for G fin that guarantees value ν. It remains to
show that there is a strategy sx for Gx also guaranteeing value ν.

If in no play of G fin conforming to sfin, the universal player ever uses a move leading to
x, then sfin is also a strategy for Gx that guarantees value ν.

Assume that there is a play in which x is visited. Consider the lifted strategy sinf for G inf.
Then there is a play conforming to sinf that visits x in G inf.

We observe that this means that the value of G inf
x is not worse than the value of G inf.

(Here, not worse means ⩽ if we consider the existential player, and ⩾ if we consider the
universal player.) Each play of G inf

x can be seen as a play of G inf in which we remove the
finite prefix leading to the first visit of x. Since the payoff function in G inf is a limit, it
does not care about removing a finite prefixes.

Wemay apply Corollary 8.19 to G inf
x and G fin

x to conclude that also the value of G fin
x is not

worse than the value of G fin.

Since plays of Gx in which x is visited behave like G fin
x , this proves the result: Recall that

sfin is a strategy for G fin that guarantees value ν. Let sfinx be a strategy for G fin
x that guar-

antees value ν. (It exists by the previous discussion.)

We define a strategy sx for Gx guaranteeing value ν as follows: As long as we have not
visited x, sx behaves like sfin would.

Assume the play has already visited x, and let p = p′p′′ be a decomposition into the
prefix leading to x and the rest. Then we define sx (p) = sfinx(p′′) to be the strategy for
G fin

x applied to the rest. ⬛

The lemma that we have just proven is now crucial for finally proving the second part
of the theoremof Ehrenfeucht andMycielski. Recall that it is sufficient to prove that the
value of G fin can be achieved using positional strategies.

8.23 Proposition
There are positional strategies for G fin guaranteeing its value ν.

Proof:
We only consider the case of the existential player. The case of the universal player is
similar, using a suitable version of Gx for positions x ∈ V .

Let R be the set of arcs originating in positions of the existential player,
i.e. R = R ∩ (V × V ).
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We proceed by induction on m = ∣R ∣ − ∣V ∣. This number m is essentially the number
of possible choices for : Note that m ⩾ 0 has to hold, since the game is deadlock-free.

If m = 0, we have ∣V ∣ = ∣R ∣ and each position has a unique move originating in it.
Consequently, each strategy can only pick this move and is necessarily positional.

Assume m > 0 holds. Then there is a position x ∈ V such that there are several arcs
originating in x.

Consider the game Gx. By the previous Lemma, there is a strategy sx for Gx guaran-
teeing the value ν. We can assume that the strategy only uses at most one arc (x, y)
originating in x: If x is visited at second time, this closes a loop, and thus the play stops.

Wewill nowconsider variantsG fin′ andGx′ of thegames inwhichwe remove all arcs orig-
inating in x but this one arc (x, y). Removing these arcs does not influence the strategy
sx , since it has only used the arc that still exists. Thus it guarantees value ν in Gx′.

By Lemma8.22 applied forG fin′ andGx′, this value coincideswith the value ofG fin′. Since
in G fin′, there are strictly less choices for the existential player, so we can apply the in-
duction hypothesis. This yields a positional strategy spos guaranteeing value ν in G fin′.

We may see this as a strategy for G fin. Since we only restricted the choices of the exis-
tential player in G fin′, any play of G fin conforming to the strategy is also a play of G fin′

conforming to the strategy. We conclude that, since spos guarantees value ν in G fin′, it
also guarantees value ν in G fin. ⬛

Proposition 8.23 together with Corollary 8.19 proves Theorem 8.11.

The complexity of mean payoff games

In the previous subsection, we have followed the development of the original paper
by Ehrenfeucht andMycielski from 1979 [EM79] to prove thatmean payoff games have
optimal positional strategies. The proof does not yield an efficient algorithm: It is a
brute-force approach, as we essentially try out all subgames in which only one choice
is possible.

In this subsection, we want to list some complexity results on mean payoff games
without giving detailed proofs. Let us assume that all weights are integers, i.e. the
weight function has signature w∶ V → Z. Note that a weight function assigning ra-
tional weights can be transformed into an equivalent one assigning integer weights by
multiplying all weights with the least common denominator.
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The decision problem variant of mean payoff games can be phrased as follows. Note
that, as usual for the decision problem variant of optimization problems, we assume
that a proposal for the value ν is given instead of computing it.

Solving mean payoff games (MEANPAYOFF)

Given: G bipartite deadlock-free game arena, x0 ∈ V initial position,
w∶ V → Zweight function,
ν ∈ Q,
player ∈ { , }

Question: Can guarantee value at least ν?

Here, at least ν should mean greater than or equal to ν if the player is the universal
player, and less than or equal to ν if the player is the existential player.

First, note that similar to parity games, mean payoff games can be solved in NP as well
as in coNP.

8.24 Lemma
MEANPAYOFF ∈ NP ∩ coNP

Proof (sketch):
Similar to the proof of Proposition 6.19 (the analogous result for parity games) the goal
is to guess a positional strategy for one of the players and check whether it guarantees
the given value. The deterministic polynomial-time algorithm that checks whether a
strategy is winning is more involved than the one that proves Lemma 6.18. Assumewe
have reduced the game arena to a game arena in which only the opponent has choices
(using the guessed positional strategy to resolve the choices of the player of interest).
One needs to checkwhether a cycle in this graph exists ofwhich themean isworse than
ν. To this end, one can use a polynomial time algorithm by Karp [Kar78].

If such a cycle exists, the opponent could force the play to have the bad value of the
cycle by taking this cycle infinitely often If the mean of all cycles is better than ν, the
guessed strategy is winning.

The algorithm of Karp can be used to determine the maximal resp. minimal mean over
a cycle. Therefore, this approachworks for strategies for both players, just themeaning
of worse has to be adjusted. ⬛

Even more interesting than the decision problem variant would be to actually com-
pute the precise value of the game (which is the best value each player can guaran-
tee). Furthermore, one would like to obtain positional strategies without using brute
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force methods. These problems are studied by Zwick and Paterson in their 1996 pa-
per [ZP96].

To determined the value of the game, they consider a variant of the game that is played
from an initial position x for a fixed number k of moves. The payoff of a play is the sum
of the obtained weights. Let νk(x) denote the value of this game for initial position x
and length k. It can be easily computed using a recursive algorithm, see Exercise 8.29.

The time needed for the recursive computation of the values νk(x) is inO(k ⋅ ∣E∣). To this
end, notice that the recursive computation naively forms a tree, which would be too
large, but it can be compacted into a DAG (directed acyclic graph). This is possible by
mergingmultiple occurrences of νi(y) for the same i and y into one node. The resulting
DAG has at most k ⋅ ∣E∣many arcs.

To actually implement the algorithm, one should use a dynamic programming ap-
proach: We compute the values νi(y) for all y ∈ V in a loop for i = 1, . . . , k. This allows
to evaluate each νi+1(y) by looking up the values for νi without recursive call.

Intuitively, the value ν of the mean payoff game should be obtainable as the limit

lim
k→∞

νk(x0)
k

.

This indeed holds, as stated by the following result.

In the following, we will use n = ∣V∣ to refer to the number of positions, and
W = maxx∈V ∣w(x)∣ for the the greatest absolute value of the weight function.

8.25 Proposition

k ⋅ ν − 2nW ⩽ νk(x0) ⩽ k ⋅ ν + 2nW.

Note that 2nW does not depend on k. Using the sandwich criterion, we get that νk(x0)
has the same limit behavior as k ⋅ ν, and thus νk(x0)

k
converges to ν for k →∞.

8.26 Theorem
The value ν of a mean payoff game can be computed in timeO(n3 ⋅ ∣E∣ ⋅W).
Proof sketch / Algorithm:
Compute the value vk(x0) for k = 4∣V∣3W. As stated above, this is possible inO(n3W ⋅ ∣E∣).
Define ν′ = νk(x0)/k. Using Proposition 8.25, we obtain

ν′ −
2nW
k

⩽ ν ⩽ ν′ +
2nW
k

.
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By plugging in the definition of k, we can obtain the estimation

ν′ −
1

2n(n − 1) < ν < ν′ +
1

2n(n − 1) .
We use (without proof) that ν can be written as a rational number with denominator at
most n.

The index k was chosen such that the interval provided by the estimation contains a
unique such number, which then has to be ν. ⬛

We now turn to optimal positional strategies.

8.27 Theorem
For both players, optimal positional strategies can be computed in time
O(n4 ⋅ ∣E∣ ⋅ log( ∣E∣

n
) ⋅W).

Proof sketch / Algorithm:
The idea is to use the fact that the existence of positional optimal strategies guarantees
that for each position, we can select a unique outgoing arc that should be used by the
strategies. We select candidate arcs and test whether the value of the game stays the
same, if yes, we have chosen the correct arc.

Instead of doing this one by one, we use binary search to detect in a logarithmic num-
ber of steps for each position the optimal move. Zwick and Paterson call this approach
a group test strategy. We use the fact that we can compute the value of a game using
the previous algorithm, even if the game involves choices by both players.

The algorithm is as follows:

• Compute the values ν for the game using the algorithm above.

• For all positions with only one outgoing arc, the move made by the strategy is
fixed.

• As long as there is a position y with out-degree d > 1:

Let Ry be the set of arcs outgoing from this position. We may partition it into
non-empty sets Ry = R1

y ∪⋅ R2
y of size ⌊d/2⌋ resp. ⌈d/2⌉.

Consider the game G j in which all arcs from Ry but the arcs in R j
y have been re-

moved, for j ∈ {1, 2}. Compute their values ν j using the algorithmabove. If ν = ν j,
then there is an optimal positional strategy for the player owning y in which she
choses an arc in Rj

y.
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Repeat this approach and refine until a single optimal move has been identified
from every position.

⬛

Note the the algorithms presented here a pseudo-polynomial, as they are polynomial
in the size of G and W. This means they are polynomial assuming weights are encoded
in unary. Note that W = 2logW is exponential in its binary encoding, i.e. the algorithms
are not polynomial using an usual binary encoding of the input.

If themaximumweight is small, the algorithms presented here are efficient. If themax-
imumweight is very high compared to the size of the graph, the brute-force-approach
that is exponential in the size of G, but essentially independent of W, could be better.

Exercises

8.28 Exercise
Let G be a zero-sum game. Prove that if G has a value, it has a unique value.

Use the definitions in your proof, do not use ν ⩾ ν or the minmax theorem.

8.29 Exercise
Let G be a length-k payoff game on a finite game arena G = (V ∪⋅ V , R) for some
initial position x0 ∈ V. We assume that there is a weight-function w∶ V → Z assigning
each position its weight as an integer. The value of the payoff function φ of a play
p = p0p1p2 . . . rn of length n ⩽ k is defined as follows:

φ(p) = n

∑
i=0

w(pi) .
Present a recursive algorithm determining the value ν of such a game.

Hint: For each position y and each number n ⩽ k, define νk(y) as the value achieved in
the game where we see y as the initial position and n as the bound on the length of
plays. Show how to compute these values.

8.30 Exercise
Consider the game G fin from Definition 8.13.

a) Prove that if the positions corresponding to the indicesod l < m form a repetition,
then l+m is even.
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b) Derive a bound on the length of maximal plays of G fin.

c) Prove that G fin has a value by modeling G fin as a zero-sum game of bounded length.

8.31 Exercise
Formally prove Lemma 8.15 and conclude the statement of Lemma 8.17.

8.32 Exercise

a) Throughout the whole lecture, we have assumed that the game arena is parallel-
free, meaning there is at most one arc from some position to another.

Assume you are given a game arena that is not parallel free. Show how to construct
an equivalent game arena that is parallel-free

• for reachability/Büchi/parity games,

• for mean payoff games.

b) In this section, we have assumed that the game arena is bipartite and the players
alternately take turns.

Assume you are given a non-bipartite game arena. Showhow to construct an equiv-
alent bipartite game arena for reachability/Büchi/parity games.

Does this also work for mean-payoff games?

Here, by equivalent game arena, we mean that the old set of positions V is a subset of
the set of positions of the new game arena V′, i.e. V ⊆ V′. Furthermore, we want that a
position x ∈ V ⊆ V′ is winning for player in the old game if and only if x is winning for

in the new game.

8.33 Exercise
Let G be a finite, bipartite, deadlock-free game arena, and let B be the winning set for a
Büchi game from a fixed initial position x0.

Show how this Büchi game can be transformed into a mean payoff game.

Assume the initial position x0 is winning for some player in the Büchi game. How is
this reflected in the mean payoff game? Make your argumentation formal!
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9. An undetermined Gale-Stewart game

So far, we have only considered games that are determined: For each initial position,
exactly one of players has a winning strategy. In this chapter, we will see that one can
construct undetermined games.

Sources
The content of this section is mostly based on Yurii Khomskii’s notes [Kho].

Gale-Stewart games

The games that we will look at in this section are not played on a graph, they have a
much simpler shape.

9.1 Definition: Gale-Stewart games
Let A be a set of actions. Let B ⊆ Aω be a set of infinite sequences over A, called the
winning set (or winning condition, or payoff set). TheGale-Stewart game G(A, B)with
respect to A and B is played as follows:

• The players alternately take turns, starting with the existential player.

• In each turn i, the player whose turn it is picks an action ai ∈ A.

• A maximal play is an infinite sequence

p = a0a1a2 . . .

in which the actions ai with i even have been picked by the existential player and
the actions ai with i odd have been picked by the universal player.

• Such an infinite play p is won by the existential player if and only if p ∈ B.

In other words, the game is played by both players alternately naming actions of their
choice, without any restrictions. Note that the plays in which the existential player is
active are exactly the plays a0 . . . an where n is odd (including the empty play ε).

Wemay seeG(A, B) as a game on the graph A×{ , } in which arcs (a, ) → (a′, ) exist
for all a, a′ ∈ A. The winning set B defines the winning condition. Wemake this precise
in Exercise 9.13.

Similarly, any graph game can be seen as Gale-Stewart gamewith the set of nodes V as
the set of actions. To this end, the graph structure has to be encoded into the winning
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set, i.e. the set B is such that if a player picks an illegal move in the graph, she loses. We
consider this construction for the case of reachability games in Exercise 9.14.

(Winning) strategies can be defined as usual. Here, we fix the empty sequence ε as the
initial position of interest.

9.2 Definition: Strategies, and winning
A strategy s for player is a function

s ∶ {p ∈ A∗ ∣ p = a0 . . . ai, i is odd (if = ) resp. even (if = ) } → A

that takes a finite play p in which it is player ’s turn and selects the next action
s (p) ∈ A that should pick.

We call a strategy winning if any play (starting in ε) conforming to it is winning.

Player wins the Gale-Stewart game G(A, B) if she has a winning strategy.

Let us consider some easy examples.

9.3 Example
Let A = {0, 1}.
a) Consider B = A∗00Aω ∪ A∗11Aω. The winning plays are exactly the plays in which

there are two consecutive occurrences of the same letter.

Note that the existential player can win in her secondmove (overall the third move)
by repeating the action picked by the universal player in the second move.

b) Consider B = A∗000Aω ∪ A∗111Aω. The winning plays are exactly the plays in which
there are three consecutive occurrences of the same letter.

The universal player can ensure her win by avoiding the repetition of any action
used by the existential player.

9.4 Remark
Gale-Stewart games are named after the American mathematician David Gale (1921 –
2008) and F. M. Stewart. Together, they founded the research on infinite games with
perfect information.
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9. An undetermined Gale-Stewart game

An undetermined game and transfinite induction

Our goal is to show that it is possible to pick A, B such that G(A, B) has no winner: Each
infinite play is won by one of the two players, but none of the players has a systematic
way of winning.

9.5 Theorem: Existence of undetermined games
There is an undetermined Gale-Stewart game: There are sets A and B ⊆ Aω such that
none of the players has a winning strategy for G(A, B).
The rest of this subsection is dedicated to proving the theorem.

We can pick A = N as the set of natural numbers. Note that this set is not finite, which
will be needed in the proof.

Choosing B ⊆ N
ω is much harder and requires a bit of preparation.

Crucial in our development is the fact that even for a fixed strategy s , the number of
plays conforming to s is immense. More precisely, it is not even countable.

This will allow us to to pick B such that for each strategy s for any of the players

• there is at least one play conforming to the strategy in B, and

• there is at least one play conforming to the strategy not in B.

Since a winning strategy for the existential player has to guarantee that all plays are in
B, and a winning strategy for the universal player has to guarantee that no play is in B,
this set B results in an undetermined game.

The following graphic depicts this schematically. The columns represent strategies sα

for the existential player, the rows represent strategies sβ for the universal player. The
node pα,β in row sα and column sβ represents the (unique) play in which each player
plays conforming to her strategy.
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⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋮

sβ
′

sβ

sβ
′′

⋮

sαsα
′

sα
′′

⋯ ⋯

pα,β

For each row, we guarantee that it contains a play in B (marked with a blue border), so
the universal player has no winning strategy. Similarly, we guarantee that at least one
play per column is not in B (marked with a red border), meaning that the existential
player has no winning strategy.

9.6 Remark
The graphic may wrongfully give the impression that the number of plays and strate-
gies is countable. This is not true, both sets are uncountable as we will see in the proof.

In fact, we will not only construct B, but we will also construct a set C ⊆ N
ω \ B in the

complement of B. We will guarantee that each strategy of has a play in C and that
each strategy for has a play in B.

C

BN
ω \ B
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It remains to construct the sets B and C by picking two plays for each strategy. To do
so, we apply a concept called transfinite induction to the set of strategies. Transfinite
induction lifts the proof principle of induction from finite sets to arbitrary well-ordered
sets.

We recall the definition of a well-ordering.

9.7 Definition
Let I be a set, and ⩽ ⊆ I × I be a relation on I .

We call the tuple (I,⩽) a well-order if ⩽ satisfies the following conditions:

• ⩽ is a partial order on I , i.e. reflexive, transitive, and antisymmetric.

• ⩽ is a total order, i.e. any two elements from I are comparable:

∀α, β ∈ I∶ α ⩽ β or β ⩽ α .

• ⩽ is well-founded: Every non-empty subset J ⊆ I contains a ⩽-minimal element,
i.e. an element α ∈ J such that there is no β ∈ J, β ≠ α with β ⩽ α.

9.8 Remark
If we assume that ⩽ is total, the condition of being well-founded can be rephrased as
follows: Every non-empty subset J ⊆ I contains a least element, i.e. an element α ∈ J
with α ⩽ β for all β ∈ J,

∀J ⊆ I, J ≠ ∅∶ ∃α ∈ J ∀β ∈ J∶ α ⩽ β .

This least element is unique by antisymmetry.

An equivalent formulation is that there is no infinite strictly-descending chain in I ,
i.e. there is no infinite sequence

α0 > α1 > α2 > α3 > . . .

of elements αi ∈ I .

Here, strictly smaller < is defined as usual, α < β iff α ⩽ β and α ≠ β. We write α ⩾ β
resp. α > β for β ⩽ α resp. β < α.
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Transfinite induction proceeds as follows: Let A(α) be a statement that is parametric in
an element α ∈ I , where (I,⩽) is well-ordered. If we want to show ∀α ∈ I∶A(α) (i.e. A
is true for any α), we can proceed as follows:

• Base case: The statement holds for the least element of I , and

• Inductive step: Assuming that the statement holds for all elements β ∈ I that
are strictly smaller than some α ∈ I , the statement also holds for α.

If the well-ordered set of consideration is (N,⩽), with ⩽ defined as usual, transfinite in-
duction and the usual induction proof principle coincide.

9.9 Remark
We shortly argue that the proof principle of transfinite induction is sound. Consider
some statement A(α) that is parametric in α ∈ I , I well-ordered. Assume we have
shown that, for any fixed α, that A(β) holding for all β < α implies that A(α) holds.
We claim that this proofs that∀α ∈ I∶A(α) holds. Towards a contradiction assume that
this is not true. Consider the subset ` = {α′ ∈ I ∣ A(α′) does not hold}. By assumption,
this set is non-empty, so it contains some least element α0 ∈ `. Because α0 is the least
element from `, all strictly smaller elements are not in `. Consequently,A(β)holds for all
β < α0. Using our initial assumption, we obtain that A(α0) has to hold, a contradiction.

Note that the base case was not needed in the proof. In fact, the case of the least ele-
ment is the case in which the set of elements that are strictly smaller is empty.

Our goal is to apply transfinite induction to the set of all strategies to pick the sets B and
C ⊆ N

ω \ B. However, the set of strategies does not come with a natural well-ordering.
In fact, it is not even possible to actually construct such a well-ordering explicitly. Still
we can apply the following lemma to equip it with one. The lemma can be seen as a
stronger version of the well-ordering theorem, on which the proof relies.

9.10 Lemma
For any set X, there is a well-order (I,⩽) such that

(1) ∣X∣ = ∣I∣, i.e. X and I have the same size, and

(2) For any α ∈ I , the set of elements strictly smaller than α

{β ∈ I ∣ β < α}
has cardinality strictly smaller than ∣X∣ = ∣I∣.
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9.11 Remark
Recall that the cardinality for infinite sets is defined using functions:

• ∣X∣ ⩽ ∣Y∣ if there is an injection f∶ X → Y,

• ∣X∣ ⩾ ∣Y∣ if there is a surjection f∶ X → Y, and

• ∣X∣ = ∣Y∣ if there is a bijection f∶ X → Y.

The cardinality of X is strictly smaller than the cardinality of Y if ∣X∣ ⩽ ∣Y∣ and ∣X∣ ≠ ∣Y∣,
i.e. there is an injection, but no bijection from X to Y.

Note that for finite sets, these definitions coincidewith the usual ones, see Exercise 9.15.
For example, we write ∣X∣ = 5 if ∣X∣ = ∣{0, . . . , 4}∣.
Property (1) of I of the lemma is essentially just the well-ordering theorem: On any
set, there is an order such that the set together with the order is a well-order. Property
(2) of I in the lemma gives us a stronger property that we will need in the proof of
Theorem 9.5.

9.12 Example

• The natural numbers arewell-ordered by⩽ (defined as usual). Additionally, (N,⩽)
satisfies the second property in the Lemma:

For each number n, the set {m ∈ N ∣m < n} has cardinality n < ∣N∣.
• Consider the real numbersR with ⩽ defined as usual. This is not a well-ordering:
The open interval ]0,∞[ has no least element. We still may check whether Prop-
erty (2) holds: For any a ∈ R, the set of elements smaller than a is the open
interval ] − ∞, a[. It has the same cardinality as R itself, thus Property (2) does
not hold.

For the sake of completeness, we give the proof of the lemma. It uses properties of
cardinal and ordinal numbers. If you are not familiar with these concepts, you can skip
the proof and treat the lemma as a black box result.

Proof of Lemma 9.10:
By the well-ordering theorem, any set can be well-ordered. This means there is a rela-
tion ⩽ ⊆ X × X such that (X,⩽) is a well-order.

For every well-order, there is an ordinal number α that is order-isomorphic to it. (I.e.
there is a bijection f∶ X → α such that for x, y ∈ X we have x ⩽ y iff f(x) ⩽ f(y).)
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Pick κ as the least ordinal in bijection to α, i.e. ∣α∣ = ∣κ∣. The least ordinal with a certain
cardinality is a cardinal number, andwehave ∣κ∣ = ∣α∣ = ∣X∣ (recall that fwas abijection).

This proves that κ satisfies Property (1).

For any γ ∈ κ, we need to consider the set

{β ∈ κ ∣ β < γ} .
Using the von Neumann definition of ordinals, the definition of the set simplifies to

{β < κ ∣ β < γ} = {β ∣ β < γ} = γ .

Since γ ∈ κ, we certainly have ∣γ∣ ⩽ ∣κ∣.
If equality would hold, then γ would be a ordinal smaller than κ that is in bijection to
α. This would be a contradiction to the choice of κ. Therefore, we obtain ∣γ∣ < ∣κ∣. This
proves that κ satisfies Property (2) and is thus as required. ⬛

We are now prepared to prove the existence of undetermined games.

Proof of Theorem 9.5:
The proof will proceed in four steps.

1. Wewill determine the number of strategies and the number of plays conforming
to a fixed strategy.

2. We use transfinite induction to pick the sets of plays B and C.

3. We show B ∩ C = ∅, which proves that C lives inside the complement of B.

4. We prove that G(A, B) is undetermined as outlined above: Each strategy for the
existential player has a play inC (and thus not in B), each strategy for the universal
player has a play in B.

1. Preliminaries

A strategy for a player is essentially a function

s ∶N∗
→ N

picking for each finite prefix the next action inN. Note thatN∗ is countably infinite, and
therefore isomorphic to N.
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Consequently, the number of strategies for each player is

∣N∗
→ N∣ = ∣N → N∣ def= 2ℵ0 .

Here, you may see 2ℵ0 as a name that we use for the size of the set N → N.

Remark: ℵ0 is usually used to denote the cardinality of N. One can indeed show that∣N → N∣ = ∣P(N)∣, so the name 2ℵ0 for the size of N → Nmakes sense.

Let Strat be the set of all possible strategies for the existential player. We apply
Lemma 9.10 to it to obtain a well order (I,⩽) that satisfies the Properties (1) and (2).
The set I has the same cardinality, thus there is a bijection f∶ I → Strat . For each
element α ∈ I , let sα denote the strategy f(α). We may write

Strat = {sα ∣ α ∈ I} .
We apply the same argumentation for the set Strat of possible strategies for the uni-
versal player. Since ∣Strat ∣ = ∣Strat ∣ = 2ℵ0 , we may even use the same well-order(I,⩽). Again, there is a bijection (say g with g(α) = sα ) between I and Strat , and we
can write

Strat = {sα ∣ α ∈ I} .
For a strategy s , let Playsinf(s ) denote the set of all maximal plays in which player
moves conforming to her strategy s . The cardinality of each set Playsinf(s ) is

∣Playsinf(s )∣ = 2ℵ0 ,

as there is essentially one play per strategy of the opponent.

More precisely, for each prefix N∗ of suitable length (even or odd), the opponent has
one choice per number in Nwith which she can react. Therefore, we obtain

∣Playsinf(s )∣ = ∣N → N∣ = 2ℵ0 .

2. Defining B and C

We will now define two sets B and C using transfinite induction on (I,⩽).
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They will have the shape

B = {bα ∣ α ∈ I} ,
C = {cα ∣ α ∈ I} ,

where the bα and cα are defined by simultaneous induction. In each step of the induc-
tion, say for α ∈ I , we first pick bα, then cα.

Our goal is enforce that the sets are disjoint. To this end, we ensure that each bα is not
equal to any previously picked cβ for β < α, and each cα is not equal to any previously
picked bβ, β ⩽ α.

Base case:

Let α0 ∈ I denote the least element of I (with respect to the well-ordering ⩽). It exists
because we may see I ⊆ I as a non-empty subset of itself.

• Picking bα0 ∈ B:
Consider the strategy sα0 ∈ Strat , and pick bα0 as an arbitrary play in Playsinf(sα0).

• Picking cα0 ∈ C:
Consider sα0 . The set Playsinf(sα0) hasmore than one element, so Playsinf(sα0)\{b0}
is non-empty. Pick cα0 as an arbitrary element from this set.

Induction hypothesis:

Let α ∈ I be fixed and suppose that for all β < α, the elements bβ and cβ have already
been chosen.

Induction step:

We have to chose bα and cα.

• Picking bα ∈ B:
Consider the set of elements {cβ ∣ β < α}
of C that have already been chosen. It has at most the same cardinality as

{β ∈ I ∣ β < α} ,
since the function defined by β ↦ cβ is a surjection. By Property (2) of
Lemma 9.10, we have that this second set has cardinality strictly smaller than∣I∣ = ∣Strat ∣ = 2ℵ0 .
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As discussed, Playsinf(sα ) has cardinality 2ℵ0 . Thus, the set

Playsinf(sα ) \ {cβ ∣ β < α}
is nonempty, and we may define bα to be an arbitrary element in this set.

• Picking cα ∈ C:
Similarly, the set {bβ ∣ β < α}
of previously picked elements of B has cardinality less than 2ℵ0 . If we add the
element bα ∈ B that we have picked above, this still holds true. (Adding a sin-
gle element to an infinite set does not change its cardinality). Consequently, the
cardinality of {bβ ∣ β < α} ∪ {bα}
is strictly smaller than the cardinality of I , which is 2ℵ0 . Therefore, we may pick
an arbitrary element cα from the non-empty set

Playsinf(sα ) \ ({bβ ∣ β < α} ∪ bα) .
Note that each element bα is a play, and thus a sequence of natural numbers. We have
B, C ⊆ N

ω.

The desired undetermined Gale-Stewart game is G(N, B), where B = {bα ∣ α ∈ I}.
Towards proving that G(N, B) is not determined, let us first prove that C lives inside the
complement of B, B ∩ C = ∅.

3. Claim: B ∩ C = ∅

Let b ∈ B be arbitrary. By the definition of B, there is an α ∈ I such that b = bα. Note
that when picking bα in the inductive step, we made sure that bα is not equal to cβ for
any β < α. When picking any cγ for γ ⩾ α, we make sure that cγ is neither equal to bγ,
nor to any bβ for β < γ. Thus, any such cγ is not equal to bα.

Consequently, b = bα is not contained in C.

We can now conclude the desired result.

4. Claim: G(N, B) is undetermined

We consider an arbitrary strategy for each of the players and show that is cannot be
winning.
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• For the universal player:
Assume the universal player has a winning strategy s ∈ Strat . This strat-
egy has to ensure that no play conforming to it is in the winning set B, thus
Playsinf(s ) ∩ B = ∅.

There is an α ∈ I such that s = sα . When picking bα ∈ B, we have chosen it in
Playsinf(sα ).
Thus, B ∩ Playsinf(sα ) contains bα and is non-empty, a contradiction.

• For the existential player:
Assume the existential player has a winning strategy s ∈ Strat . This strat-
egy has to ensure that all plays conforming to it are in the winning set B, thus
Playsinf(s ) ⊆ B.

There is an α ∈ I such that s = sα . When picking cα ∈ C, we picked
cα ∈ Playsinf(sα ). Since B ∩ C = ∅ by the previous claim, this proves
c ∈ Playsinf(s ) \ B. This disproves the inclusion Playsinf(s ) ⊆ B, a contradiction.

⬛

Exercises

9.13 Exercise: Gale-Stewart games as graph games
Let G(A, B) be a Gale-Stewart game. Define an equivalent game over a graph with set
of positions

a) V = A × { , },
b) V = A∗.

In each case, specify the ownership, the arcs, the winning condition and the initial po-
sition of interest.

9.14 Exercise: Reachability games as Gale-Stewart games
Let G be a reachability game, specified as usual by a game arena G = (V ∪⋅ V , R) and a
winning set Vreach ⊆ V. For simplicity, let us assume thatG is deadlock-free and bipartite:
Any move from some position x ∈ V leads to a position y ∈ V and vice versa, i.e. the
players take turns alternately. Furthermore, we fix the initial position x0 ∈ V .

Design a Gale-Stewart game G(V, B)where the actions are nodes ofG and B is such that

1. the existential player loses if she does not start in x0,
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9. An undetermined Gale-Stewart game

2. the existential player loses if she picks an illegal move, i.e. if the play p is of the
shape p = p′.xi.xi+1.p

′′ where i is odd and (xi, xi+1) /∈ R,

3. the universal player loses if she picks an illegal move, i.e. if the play p is of the
shape p = p′.xi.xi+1.p

′′ where i is even and (xi, xi+1) /∈ R,

4. any play that does not fall into one of the Cases 1. to 3. is won by the existential
player if and only if it contains a position from Vreach.

Argue briefly that your set B enforces the desired behavior.

Note: If a play falls into several cases, i.e. into 2. and 3. if both players cheat, you may
resolve this as you wish.

9.15 Exercise: Cardinality and functions
Recall that a function f∶ X → Y is called injective (or an injection) if for x ≠ x′ we have
f (x) ≠ f (x′). A function is called surjective (or a surjection) if for any y ∈ Y, there is
some x ∈ X with f(x) = y. It is called bijective (or a bijection) if it is both injective and
surjective.

In the rest of this exercise, assume that X = {x1, . . . , xn} and Y = {y1, . . . , ym} are finite
sets.

a) Prove that if there is an injection f∶ X → Y if and only if ∣X∣ ⩽ ∣Y∣.
b) Prove that if there is a surjection f∶ X → Y if and only if ∣X∣ ⩾ ∣Y∣.
c) Prove that there is an injection g∶ Y → X if and only if there is a surjection f∶ X → Y.

d) Prove that if there is an injection fi∶ X → Y and a surjection fs∶ X → Y, then there is a
bijection fb∶ X → Y.

Note: The properties that you have proven in Part c) and d) also hold for infinite sets.
However, their proof is much more complicated in this case and involves the axiom of
choice.
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10. Infinite games on the configuration graphs of

automata

In the previous section, we have seen that games on an infinite game arena may be
undetermined. In this section, we will see a general way to obtain games on infinite
arenas that are not only determined, but also decidable in some cases. To be able to
obtain an algorithm that computes the winner, we consider games that have a finite
syntactic representation. Here, we use structures known from automata theory.

Sources
The content of this section is common knowledge in automata theory and does not
follow any particular source.

Automata and counter machines

Recall that a transition system (V, R) consists of a set of configurations V (usually infi-
nite) and a transition relation R ⊆ V × V.

Conceptually, an automaton is a transition system such that V = Q × M, where Q is a
small set of control states (in particular: a finite set), and M is the memory (which is
potentially infinite). Furthermore, the transition relation acts on the memory in a local
way that admits a finite description. More precisely, there should be a finite set of rules
→ such that the set of transitions R consists of precisely the transitions that satisfy one
of the rules.

One usually calls A = (Q,→) the automaton, and the transition system (Q × M, R) its
configuration graph.

10.1 Example: Automata

a) A finite-state system is an automaton with M = {1}, i.e. there is no memory. In this
case, we essentially have→= R ⊆ Q × Q.

b) A pushdown system is an automaton with M = S∗ for some finite stack alphabet S,
i.e. it consists of a finite control and an unbounded stack as storage. The rules in→

are of the shape→⊆ (Q × S) × (Q × S∗): A transition only depends on the tuple (q, s)
formed by the control state and the topmost stack symbol.

c) A Turing machine is an automaton with M = S∗ × S × S∗, i.e. the storage is a finite
tape that decomposes into the part left of the head position, the tape content at the
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head position, and the part right of the head position. The transitions only depend
on the control state and on the symbol at the current head position.

10.2 Remark
All these automata models are versions of the well-known finite automata, pushdown
automata and Turing machines that do not read any input (or produce any output).

It is easy to extend the notion of transition systems by initial and final configurations
and in- or output.

Let us consider another automatonmodel for which the set of configurations is infinite.

10.3 Definition: Counter machine
A counter machine of dimension d ∈ N is an automaton A = (Q,→) over memory Nd.
More precisely:

• Q is a finite set of control states

• Let X = {x1, x2, . . . , xd} be a set consisting of d counters. The set of operations
is given by

Ops = {noop} ∪ ⋃
x∈X

{x + +, x − −, x = 0, x ≠ 0} .
→⊆ Q × Ops × Q is a finite set of rules. Instead of (q, op, q′) ∈→, we usually write
q

op
−−→ q′, i.e. q

x1≠0
−−−→ q′.

A configuration of such a counter machine is of the shape (q, c⃗), where q ∈ Q is a con-
trol state and c⃗ = (c1, . . . , cd) ∈ N

d is a vector of non-negative integer counter values.
Consequently, Γ = Q × N

d.

The semantics of counter-machines are as expected: A transition q
xi++
−−−→ q′ increments

counter i, a transition q
xi−−
−−−→ q′ decrements it. A zero-test transition q

xi=0
−−−→ q′ can

only be taken if ci is indeed zero, a non-zero test can only be taken if the corresponding
counter is non-zero. A transition q

noop
−−−−→ p performs no operation.

More formally, there is a transition

((q, c⃗), (p, d⃗)) ∈ R

if and only if

• there is a rule q
xi++
−−−→ p, and di = ci + 1 and dj = cj for all j ≠ i, or

• there is a rule q
xi−−
−−−→ p, and di = ci − 1 and dj = cj for all j ≠ i, or
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• there is a rule q
xi=0
−−−→ p, and ci = 0, and c⃗ = d⃗, or

• there is a rule q
xi≠0
−−−→ p, and ci > 0, and c⃗ = d⃗, or

• there is a rule q
noop
−−−−→ p, and c⃗ = d⃗.

Note that noop, zero and non-zero tests do not change the counter assignment, and
that increments and decrements only influence the value of one counter. Furthermore,
we only consider non-negative counter values. In a configuration (q, c⃗) with ci = 0, a
transition q

xi−−
−−−→ p is not enabled.

10.4 Example

a) Consider the 1-counter machine A = (Q,→)with counter x and

Q = {q, p, s} ,
→ = {q x=0

−−−→ s, q
x≠0
−−−→ p, p

x−−
−−−→ p, p

x=0
−−−→ s} .

A can be represented graphically as follows:

q

p

s
x = 0

x ≠ 0

x − −

x = 0

From a configuration (q, n) ∈ Q×N, there is a unique transition sequence ending in(s, 0): If n = 0, the transition sequence is just (q, 0) → (s, 0). Else, it is
(q, n) → (p, n) → (p, n − 1) → (p, n − 2) → . . . → (p, 1) → (p, 0) → (s, 0) .

b) Consider the 3-counter machine A = (Q,→) with Q = {q, q1, q2, p, p1, p2, p3, s} and
counters x, y, z, where→ is given by the following graphical representation.
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q

q1q2

p

p1

p2

p3

s
x = 0

x ≠ 0

x − −

z + +

z = 0

z ≠ 0

z − −x + +

y + +

From a configuration (q, n,m, 0) ∈ Q × N
3 (i.e. cx = n, cy = m, cz = 0), there is

a unique transition sequence reaching control state s. This sequence reaches the
configuration (s, n,m+ n, 0), i.e. the value of counter x has been added to counter y.
Counter z is only used as an intermediary storage.

In the following, when defining counter machines, instead of explicitly stating Q and
→, we will only give the graphical representation. We will not give explicit names to
control states for which the names are not important.

Games on configuration graphs

We can now consider games that are played on the transition graphs of automata.

10.5 Definition
Assume that A = (Q,→) is some automaton (with memory M) and Q = Q ∪⋅ Q is a
partitioning of the control states into the control states owned by the universal player

and the ones owned by the existential player .

Then we obtain an infinite game arena GA = (V, R) as follows. The configurations and
moves are given by the transition system induced by the automaton:

V = Q ×M ,

R = {((q,m), (q′,m′)) ∈ V × V
»»»»»»»»»» ((q,m), (q′,m′)) ∈ R,

i.e. ((q,m), (q′,m′)) satisfies a rule from →
} .

The ownership is induced by the ownership on the control states:

V = Q ×M, V = Q ×M .

It is now possible to equip GA with various winning conditions. Here, we restrict our-
selves to a very simple setting.
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10.6 Definition
Let A be an automaton and qf one of its control states. The control state reachability
game is the reachability game on GA with respect to the winning set {qf}×M. In words,
the goal of the existential player is to reach a configuration (q,m)with q = qf.

10.7 Remark
Analogously, one can define reachability gameswhere thewinning condition is a set of
control states. One can also define Parity games on GA. For this, one assumes that a pri-
ority assignment Ω∶Q → N on the control states is given. The priority of a configuration(q,m) is then induced by the priority of q.

The decision problem that we are interested in is as usual to check which player is win-
ning. Here, we fix the initial configuration of interest.

Deciding the winner of a control state reachability game

Given: Automaton A = (Q,→), state qf ∈ Q, initial configuration (q0,m0) ∈ Q×M
Question: Does have a winning strategy for the control state reachability game

with respect to A and qf from the initial position (q0,m0)?
10.8 Example

a) Control state reachability games on finite-state systems are just a special case of
reachability games on finite graphs, where the winning set is a singleton. We have
seen how such games can be solved in Section 4.

b) Control state reachability games on pushdown systems are decidable. We will dis-
cuss the decision procedure in Section 12.

c) Control state reachability games on Turing machines are undecidable. Recall that
the halting on the empty word problem is undecidable: Given a Turing machine
A = (Q, . . .) with initial state q0 and halting state qf, it is not decidable whether
there is a transition sequence from q0 with the empty tape to configuration with
control state qf. Now observe that if let the existential player own all control states,
Q = Q,Q = ∅, the control state reachability game with respect to A, qf and
q0 + empty tape is equivalent to the halting on the empty word problem.

In Part c) of the example, we have seen that if a verification problem (that has no non-
determinism or only one type of non-determinism) is undecidable for some type of
automaton, then the associated game problem (with two types of non-determinism) is
also undecidable.
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Games on counter machines

In the rest of this section, we want to look at control state reachability games where
the automaton is a d-dimensional counter machine. We have to distinguish two cases:
d = 1, i.e. one-counter machines (also called one-counter automata), and d > 1.

10.9 Lemma
One-counter automata are a special case of pushdown automata.

Proof: Exercise 10.21. ⬛

Together with the decidability of pushdown games that wewill prove in Section 12, we
obtain that control state reachability games for one-counter automata are decidable.

Surprisingly, adding a second counter makes the problem undecidable. In fact, we can
prove that 2-counter machines are Turing-powerful.

10.10 Theorem: see e.g. Minsky 1967 [Min67]
For d ⩾ 2, counter machines of dimension d are Turing powerful: Given a Turing ma-
chine ATM with two designated states q0, qf, we can construct in polynomial time a two-
countermachine A2CM with two designated states q0, qf such that ATM can reach qf from
q0 with the empty tape if and only if A2CM can reach qf from q0 with both counters zero.

In other words: For any Turing machine, we can construct a two-counter machine that
simulates it.

10.11 Remark
The backwards direction also works: For any counter-machine (with arbitrary dimen-
sion), we can construct a Turingmachine that simulates it by storing the counter values
on the tape. We say that two-counter machines are Turing complete.

As a consequence, any problem that is undecidable for Turing machines is also unde-
cidable for two-counter machines. This in particular applies to the following variant of
the halting problem.

Control state reachability for two-counter machines

Given: Two-counter machine A, control states q0, qf

Question: Is there a transition sequence from (q0, 0, 0) to (qf, n,m) for some
n,m ∈ N?
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10.12 Corollary
Control state reachability for two-counter machines is undecidable.

Using this result, we immediately obtain the undecidability of control state reachability
games on counter machines of dimension d ⩾ 2, similar to Part c) of Example 10.8.

10.13 Corollary
Control state reachability games on counter machines of dimension d > 1 are undecid-
able.

It remains to prove Theorem 10.10. We proceed in two steps.

1. We show how to simulate a Turing machine by a counter machine of dimension
3.

2. We show how to simulate a counter machine of arbitrary fixed dimension d by a
two-counter machine.

From Turing machines to three-counter machines

10.14 Proposition
For d ⩾ 3, counter machines of dimension d are Turing powerful.

Proof:
Let ATM = (Q, δ, . . .) be a Turingmachine. It is well known that it is sufficient to consider
deterministic Turing machines with tape alphabet {0, 1}. Any other Turing machine
can be transformed into such a machine in polynomial time.

We show how to construct a three-counter machine ACM = (Q′
,→) such that

• Q ⊆ Q′: The control states of ACM are the control states of ATM plus some constant
number of helper states.

• The counters x, y are used to simulate the tape content of ATM. The third counter
h is a helper used as intermediary storage.

Recall that the transition function of a Turing machine consists of mappings of the the
shape

δ(q, a) = (p, b, d) .
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If themachine is in state q ∈ Q, and the symbol at the current head position in the tape
is a ∈ {0, 1}, the machine will

1. replace a by b ∈ {0, 1},
2. move the head to the left or right, depending on d ∈ {L, R}, and
3. change the control state to p.

Consider some configuration v qa w, i.e. v ∈ {0, 1}∗ is the tape content to the left of
the head, a ∈ {0, 1} is the tape content at the head position and w ∈ {0, 1}∗ is the
remainder to the right of the head. For example, consider

001100ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
v

q 1ÍÑÏ
a

010ÍÒÒÒÒÑÒÒÒÒÏ
w

.

We may see the tape content as given by the numbers cx, cy ∈ N such that the binary
representation of cx is v and the binary representation of cy is reverse(a.w). In our ex-
ample, we have

cx = 0011002, cy = reverse(1.010) = 01012 .

We see that the bits that are closest to the head position are the least significant bits in
each of the numbers. Here, we follow the convention that the tape content at the head
position is a part of cy, i.e. a is the least significant bit of cy.

Remark: We have 01012 = 1012, i.e. if we see the tape content as a number, we cannot
detect leading zeros anymore. This corresponds to ignoring leading as well as trailing
zeros on the tape of the Turing machine. Initially, we assume that the Turing machine
starts with a tape that is empty in the sense that it is filled with infinitely many zeros.
This corresponds to the counter values being 0.

Our goal is to construct the three-counter machine ACM such that counter x stores cx

and counter y stores cy. Initially, we let both counters be 0, which corresponds to the
tape being empty. We now explain how to simulate the Turing machine step by step.

Assume we are in configuration (q, cx, cy, 0), which represents the configuration
bin(cx) q reverse(bin(cy)). We explain how to simulate a transition of the shape

δ(q, a) = (p, b, d) .
• The first step is to check whether the transition is applicable, i.e. if the symbol at
the head position is actually equal to a. To this end, we need to check whether
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the least significant bit of (the binary representation of) cy is equal to a. Note that
this bit is 1 if and only if cy is odd.

To test this, we use the following gadget.

q qeven

qodd

noop y = 0

y − −

h + +y − −

h + +

y = 0

From configuration (q, cx, cy, 0), we reach configuration (qeven, cx, 0, cy) if and only
if cy is even. If cy is odd, we reach (qodd, cx, 0, cy). Note that we have moved the
value cy from counter y to the helper h.

In the states qeven and qodd, it is clear which transition of the Turing machine ATM

has to be applied: δ(q, 0) in qeven and δ(q, 1) in qodd.

We restrict ourselves to the case of δ(q, 0) in qeven here, the case of qodd is similar.

It remains to actually apply the transition, i.e. by (i) replacing the content at the
head position, (ii) moving the head and (iii) changing the control state.

• For (i), observe that if a = b, nothing has to be done. If a = 0, b = 1, we have to
add a single transition that increments the value. Analogously, if a = 1, b = 0, we
have to subtract one.

Let us consider the case a = 0, b = 1 here. We obtain the following transition.

qeven qb
even

h + +

Note that we increment counter h here, because it currently stores the value cy.

• Next, we need tomove the head position. We only discuss the case d = R, i.e. the
head should be moved to the right. The case d = L is slightly more involved and
remains as an exercise for the reader.

If the current configuration of the Turing machine is

v qb c.w′ÍÒÒÒÒÑÒÒÒÒÏ
w

,
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and we move the head to the right, we obtain the new configuration

v.b q c w′ÍÒÒÒÒÒÑÒÒÒÒÒÏ
w

.

Weneed to imitate this operation on the numbers representing v andw. Observe
that

v.b = 2 ⋅ v + b , w = ⌊b.w
2

⌋ .
Shifting a number one bit to the left means multiplying it by two: The bit that
was least significant now becomes second-to-least significant. Similarly, shifting
a number to the right means dividing it by two (and dropping the remainder).

We design a gadget that performs these operations.

qb
even

qhalfed qtmp qdone
h = 0 x = 0 h = 0

h − − h = 0

h − −

y + +

x − −

h + +

h + +
h − − x + +

Recall that we are in configuration (qb
even, cx, 0, cy + b)when we enter the gadget.

When we reach control state qhalfed, we are in configuration

(qhalfed, cx, ⌊cy + b
2

⌋, 0) .
The loop from qb

even to qb
even implements the division by decrementing h twice per

increment of y. The shortcut to qhalfed is used to handle the case that cy + b is odd.

From this configuration, we can in turn reach the configuration

(qtmp, 0, ⌊cy + b
2

⌋, 2 ⋅ cx) .
To this end, we take the loop from qhalfed to qhalfed that decrements counter xwhile
storing the doubled value in counter h. It remains to move the counter value to
counter x again, which is implemented by the loop in state qtmp. Finally, we reach

(qdone, 2 ⋅ cx, ⌊cy + b
2

⌋, 0) .
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• It remains to add the former tape content at the head position b to counter x, and
to change the control state to p.

Recall that we have assumed that b = 1. The final part of the translation is the
following gadget.

qdone px + +

• After going through all gadgets, we are in configuration (p, c′x, c′y, 0), where c′x and
c′y represent the new tape content of the Turing machine ATM. The simulation of
the next transition can begin.

It is tedious, but conceptually easy to check that any transition sequence of the Turing
machine from q0 + empty tape to qf induces a transition sequence from (q0, 0, 0) to(qf, n,m, 0) in the three-counter machine and vice versa.

Note thatwehave replacedeach transitionof theTuringmachinebya constantnumber
of transitions and states of the counter machines. Thus, the size of ACM is linear in the
size of ATM. ⬛

From three to two counters

To complete the proof of Theorem 10.10, it remains to show that the three-counter ma-
chine ACM that we have constructed in the proof of Proposition 10.14 can be simulated
by a two-counter machine. In fact, we show a stronger statement.

10.15 Proposition
For any countermachine of dimension d, we can construct a two-countermachine that
simulates it.

The proof of the proposition uses a famous trick due toMinsky [Min67]. Let c⃗ ∈ N
d be a

d-dimensional vector of counter values. Let p1, p2, . . . , pn be the first d prime numbers.

We define the prime encoding primenc(c⃗) of c⃗ to be the number

primenc(c⃗) = p1
c1 ⋅ p2

c2 ⋯ pd
cd ∈ N .
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10.16 Example
Consider cx = 10, cy = 5, cz = 0. We have

primenc(c⃗) = 210 ⋅ 35 ⋅ 50 = 1024 ⋅ 243 ⋅ 1 = 248832 .

Instead of storing c⃗, it will be sufficient to store the single number primenc(c⃗). For this
to be valid, it is crucial that the value of c⃗ can be recovered from primenc(c⃗).
10.17 Lemma
The prime encoding is unique: If primenc(c⃗) = primenc(e⃗), then c⃗ = e⃗.

Proof:
Assume that primenc(c⃗) = primenc(e⃗). Consequently, we have

p1
c1 ⋅ p2

c2 ⋯ pd
cd = p1

e1 ⋅ p2
e2 ⋯ pd

ed .

Note that both expressions are primedecompositions of primenc(c⃗). By the fundamen-
tal theoremofarithmetic, theprime factorizationof a number is unique. Thus, wehave
c1 = e1, . . . , cd = ed and c⃗ = e⃗. ⬛

It remains to implement the required operations in the form of a two counter machine.

Proof of Proposition 10.14:
Assume that we are given a counter machine ACM of some fixed dimension d. We con-
struct a two-counter machine A2CM that uses two counters. The first counter v will be
used to store the prime encoding. The second counter h is used as a helper for inter-
mediary storage.

More formally, to the configuration (q, c⃗) of ACM, we associate the configuration(q,primenc(c⃗), 0) of A2CM. The two-counter machine will use additional control states
and reach intermediary configurations in which the helper is non-zero.

We consider (q0, 1, 0) as the initial configuration for A2CM, as primenc(0, 0, . . . , 0) = 1.

It remains to explain how each type of transition of ACM can be simulated by A2CM. Here,
we will consider operations for the second counter y of ACM, which corresponds to the
primenumber 3. The simulationof theoperations for theother counters is similar. How-
ever, the later counters will need more control states, as the associated prime number
becomes bigger. Here, it is important that d is arbitrary but fixed.

• To simulate a transition of the type q
noop
−−−−→ p, we add a transition q

noop
−−−−→ p to A2CM.
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• To simulate a transition of the type q
y++
−−−→ p, observe that this rule induces transi-

tions of the shape (q, cx, cy, . . .) → (p, cx, cy + 1, . . .) ,
and that

primenc(cx, cy + 1, . . .) = 2cx ⋅ 3cy+1⋯ = 3 ⋅ 2cx ⋅ 3cy⋯ = 3 ⋅ primenc(cx, cy, . . .) .
Consequently, we simulate an increment of cy by tripling the value of v. This is
implemented by the following gadget.

q t p
noop v = 0 h = 0

v − −

h + +h + +

h + +
h − −v + +

Thegadget takes configuration (q, cv, 0) first to configuration (t, 0, 3⋅cv), and then
to configuration (p, 3 ⋅ cv, 0) as desired.

• Transitions of type q
y−−
−−−→ p can be implemented very similarly to the case y + +.

Here, we have to divide the current value of v by 3.

q t p
noop v = 0 h = 0

v − −

v − −v − −

h + +
h − −v + +

Note that it may occur that a run of themachine gets stuck in the loop that decre-
ments v. This will happen if and only if the initial value cv is not divisible by 3,
which in turn corresponds to the value of y being 0 in the vector encoded by v. If
y is 0, the transition y−− is not enabled, so the fact that our gadget blocks is not
a problem.

• Asmentionedabove, testing y forbeingnon-zero corresponds to testingwhether
cv is divisible by 3. Transitions of type q

y≠0
−−−→ p are implemented by the following

gadget.
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q t p
noop v = 0 h = 0

v − −

v − −

v − −h + +

h + +

h + +
h − −v + +

From configuration (q, cv, 0), we can reach state t if and only if cv is divisible by
3. In this case, we reach configuration (t, 0, cv). Finally, we arrive in configuration(p, cv, 0) as desired.

• To simulate q
y=0
−−−→ p, we use a gadget similar to the previous one.

q t p
noop

v = 0

v = 0

h = 0

v − −

h + +

v − −

h + +

v − −

h + +
h − −v + +

Here, we can only reach t if the initial value of v is either 1 or 2modulo 3, i.e. if it is
not divisible by 3. In this case, we restore the original counter value and proceed
to state p.

Again, each transition of ACM has been replaced by a constant number of transitions of
A2CM. The size of A2CM is linear in the size of ACM, assuming that the dimension d is fixed.

⬛

10.18 Remark
Aswe have seen, control state reachability games over countermachines are not decid-
able. However they are still determined: These are reachability games over a countable
graph with finite outdegree, as the number of outgoing transitions in a configuration
is bounded by the finitely many rules in→. Thus, these games satisfy the assumptions
that we made in Section 4, and (uniform positional) determinacy applies.

A similar argumentation holds for games over Turing machines.
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Exercises

10.19 Exercise: Counter machines
Show how to construct a counter machine of dimension d ⩾ 2 with two control states
q0, qf such that there is a transition sequence from (q0, n,m, . . .) that reaches qf if and
only if

a) n ⩾ m ,

b) n < m ,

c) n is divisible by m .

Hint: You may use an arbitrary constant number of additional counters.

10.20 Exercise: Primality testing
Show how to construct a counter machine of dimension d ⩾ 1 with two states q0, qf

such that there is a transition sequence from (q0, n, . . .) that reaches state qf if and only
if n is not a prime number. Explain your construction.

Hints: You may use an arbitrary constant number of additional counters. You can use
non-determinism. You may split your construction into smaller parts (gadgets) and ex-
plain later how these should be combined.

10.21 Exercise: One-counter automata as pushdowns
Prove that one-counter automata can be simulated by pushdown systems.

Recall that apushdownsystem is anautomaton (Q,→)withmemory S∗, where S is some
finite stack alphabet. The transition rules in→ are of the shape

q
push a
−−−−−→ p or q

push a
−−−−−→ p

for symbols a ∈ S. There is a transition ((q,m) → (p,m′)) ∈ T if

• there is a rule q
push a
−−−−−→ p and m′ = m.a, or

• there is a rule q
pop a
−−−−→ p and m = m′

.a.

(Here, weuse the convention that the right endof thewordm encodes the topof stack.)
Note that a pop a transition is only enabled when a is indeed the top of stack.

Assume that some one-counter automaton AOCA = (Q′
,→

′) with states q0, qf is given.
Show how to construct a pushdown system APDS = (Q,→) with Q′ ⊆ Q over a suitable
stack alphabet such that qf is reachable in AOCA from (q0, 0) if and only if qf is reachable
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in APDS from some suitable initial configuration. Briefly argue that your construction is
correct.

10.22 Exercise: Integer counter machines
An integer counter machine of dimension d is defined similarly to a counter machine
of dimension d. However, the counters can reach negative values, i.e. the memory is
Z

d. A transition of type q
xi−−
−−−→ p is enabled even if the value of counter xi is zero.

a) Let AICM be an integer counter machine of dimension d, and q0, qf control states.
Show how to construct a counter machine ACM with states q′0 and q′f such that qf is
reachable from (q0, 0, . . . , 0) in AICM if and only if q′f is reachable from (q′0, 0, . . . , 0) in
ACM.

b) Let ACM be a counter machine of dimension d, and q′0, q
′
f control states. Show how

to construct an integer counter machine AICM with states q0 and qf such that qf is
reachable from (q0, 0, . . . , 0) in AICM if and only if q′f is reachable from (q′0, 0, . . . , 0) in
ACM.

In both cases, argue briefly that your construction is correct.
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In the previous section, we have seen that control state reachability games on counter
machines are undecidable. In the proof, we have not even used the game aspect; we
have relied on the fact that already verification problems for counter machines are un-
decidable. In this section, we want to weaken the computational model to so-called
counter nets. In contrast to counter machines, almost all verification problems for
counter nets are decidable. However, games on these automata remain undecidable.

Sources
The content of this section is common knowledge in the theory of perfect information
games and does not follow any particular source.

Counter nets

We start by introducing counter nets, restricted countermachines that cannot perform
zero tests.

11.1 Definition
A counter netof dimension d ∈ N, is defined similar to a countermachine of dimension
d, see Definition 10.3. However, the set of operations that is allowed in the definition
of the transition rules→⊆ Q × NOps × Q is restricted. LetX = {x1, . . . , xd} be the set of
counters. We have

NOps = {noop} ∪ ⋃
x∈X

{x + +, x − −} .
We call the counters of a counter net partially blind. They are partially blind, because
we cannot test them for being zero. However, they are only partially blind, because
we are still able to assert that a counter has a positive value: After a transition of type
q

x−−
−−−→ p has been taken, we know that the previous value of counter x was non-zero;

otherwise the transition would not have been enabled.

11.2 Remark
The reader familiar with automata theory might see that counter nets are just a variant
of vector addition systems with states (VASS) (or, equivalently, Petri nets). To be pre-
cise, counter nets are VASS in which the transition multiplicities are encoded in unary.
In a VASS, we allow transitions of type q

x+m
−−−→ p for arbitrary constants m. This in partic-

ular allows having a transition q
x+2n

−−−→ p that adds an exponential value to the counter,
but it can be encoded in binary using log 2n = n bits. In our definition of counter nets,

147



III. Games on infinite graphs

such a transition would need to be decomposed into 2n many increments, which will
need at least 2n bits.

Thus, the binary representation that one usually considers for VASS is more succinct.

Counter nets have decidable verification problems: Intuitively, the computational
power of counter machines relies on having zero tests. Removing them limits their
capabilities, but makes many problems decidable.

11.3 Theorem
The control state reachability problem for counter nets is:

• in EXPSPACE for arbitrary dimension, i.e. it can be solved using exponential space
and doubly exponential time,

• EXPSPACE-hard for arbitrary dimension, i.e. it cannot be solved using less than
exponential space, and, unless EXPSPACE = EXP, not in exponential time or less,

• NL-complete for dimension 2.

The result follows from the corresponding results for VASS resp. Petri nets, namely

• an EXPSPACE algorithm for coverability (Rackoff 1978 [Rac78]),

• the EXPSPACE-hardness of coverability and reachability (Lipton 1976 [Lip76])

• the NL-completeness of coverability in the case of two-dimensional unary VASS.
The NL-hardness is by the NL-hardness of the PATH problem for directed graphs.
The membership in NL is implies by the membership of reachability for two-
dimensional unary VASS, proven in [ELT16].

The last result is explicitly for VASS encoded in unary. Rackoff’s result talks about VASS
encoded in binary, but trivially alsoworks for VASS encoded in unary. Lipton’s hardness
proof works for both VASS encoded in binary or unary, as his construction nevermakes
use of transitions that decrement or increment a counter by more than one.

11.4 Remark
The proofs and more information on Rackoff’s and Lipton’s result can be found in
our lecture notes on concurrency theory, available at https://tcs.cs.tu-bs.de/
documents/lecturenotes/conctheo2017.pdf.
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Games on counter nets

Surprisingly, games over two-counter nets are undecidable. This is in sharp contrast
with the decidability of control state reachability.

11.5 Theorem
The problem of deciding the winner of a control state reachability game on a counter
net of dimension d > 1 is undecidable.

In the proof of the theorem, we will reduce the control state reachability problem for
two-counter machines, which is undecidable by Corollary 10.12. Using the game as-
pect, we can simulate zero tests.

Proof:
Let A2CM = (Q,→) be a given two-counter machine with counters x and y. Let q0, qf be
a designated initial and halting state, respectively.

We show how to construct a two-counter net ANet = (Q ∪ Q ,→
′) such that there

is a transition sequence from (q0, 0, 0) to (qf, n,m) for A2CM if and only if the existen-
tial player has a winning strategy for the control state reachability game with respect
to ANet, (q0, 0, 0) and qf. As the control state reachability problem for two-counter ma-
chines is undecidable, Corollary 10.12, the desired result follows.

We will construct ANet as follows:
Q = Q ,

i.e. the states ownedby the existential player are precisely the states of the two-counter
machine A2CM. The states owned by Q consist of helper states, at most one per transi-
tion plus an additional deadlock state dead.

Each transition of A2CM will be replaced by a constant number of transitions in ANet. We
will demonstrate how this translations works for transitions involving the first counter
x. The transitions for counter y can be implemented similarly.

• Transitions of type q
noop
−−−−→ p, q

x++
−−−→ p and q

x−−
−−−→ p can be inserted into A2CM

without any change. Observe that the semantics of two-counter machines and
two-counter nets coincides for these transitions.

• A transition of type q
x≠0
−−−→ p is replaced by the following gadget.

q px − − x + +

149



III. Games on infinite graphs

The semantics is as desired: The transition labeledby x−− can only be taken if the
value of counter x is non-zero. The increment x + + restores the former counter
value.

• A transition of type q
x=0
−−−→ p can be replaced by a gadget. We let the existential

player claim that x = 0 in a transition that is labeled by noop. The resulting state
is owned by the universal player . She can now check whether this claim is true:
If yes, she proceeds to state p, where is in control. If the counter is non-zero,
she moves to a deadlock.

q p

dead

noop

x − −

noop

We see that can move to state dead if and only if the existential player has lied
and the counter was non-zero, because only in this case, the transition x − − is
enabled. If the counter was zero, as claimed by , has no choice but to use the
transition that leads to p.

We claim that the translation is correct: The existential player has awinning strategy for
reaching state qf if and only if qf was reachable in the two-counter machine.

For one direction, assume that qf is reachable in the two-counter machine, and let

(q0, 0, 0) op1
−−−→ (q1, c1, d1) op2

−−−→ . . .
opk
−−−→ (qk, ck, dk) = (qf, n,m)

be the associated sequence of transitions. It induces a winning strategy for : In con-
figuration (qi, ci, di), use the transition labeled by opi+1 if it is not a (non-)zero test. If
opi+1 is x ≠ 0, use the corresponding transition labeled by x−−. If opi+1 is x = 0, use the
corresponding transition labeled by noop. (And similar for counter y.) Since the transi-
tion sequence defining the strategy was valid in the counter-machine, the transitions
corresponding to zero tests are only takenwhen the counter value is actually zero. Con-
sequently, has no choice but to use the move that leads to the next state; the tran-
sition leading to dead is not enabled as the counter cannot be decremented. Hence,
the strategy induces a unique play of the game that visits all configuration (qi, ci, di). In
particular, it visits state qf, and the play is winning.

For the other direction, we show that if qf is not reachable, then cannot have a win-
ning strategy. To this end, we show that has a winning strategy. This strategy is
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very simple: Whenever is in control, she uses the move to the state dead if possi-
ble. To prove that this strategy is indeed winning for , consider an arbitrary play p
from (q0, 0, 0) that is conform to the strategy. Towards a contradiction, assume that the
play visits qf, p = (q0, 0) . . . (qf, n,m). Consider the sequence of transitions of the two-
countermachine that corresponds to the play. Since qf is not reachable by assumption,
this is not a valid transition sequence. The only reason for it not being valid can be that
a zero test transition was used although the corresponding counter was non-zero. This
contradicts the definition of the strategy for , which would have taken the move to
the state dead in this case. ⬛
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12. Context-free games

We conclude our study of games on the (infinite) configuration graphs of automata
by considering a case in which reachability games can be decided: We study context-
free games, here formalized using Pushdown systems. Wewill show that control state
reachability games on the configuration graphs of pushdown systems are decidable
(i.e. thewinner canbe computed). For theproof, wewill studyWalukiewicz’s reduction,
which allows us to turn the infinite state pushdown game into a finite state reachability
game. This reduction can be seen as the most important contribution in the area of
algorithmic game theory for infinite state games.

Sources
The presentation is loosely based on Walukiewicz’s paper [Wal01].

Another presentation of the material can be found in [ZKW].

Pushdown games

Recall the definition of Pushdown systems.

12.1 Definition: Pushdown system
Let Δ be a finite stack alphabet. A pushdown system (PDS) P = (Q,→) over Δ is an
automaton with memory Δ∗. As usualQ is a finite set of control states, and→ is a set of
transition rules of the form

→⊆ Q × OpsΔ × Q ,

where
OpsΔ = {noop} ∪ {pusha,popa ∣ a ∈ Δ}

is the set of stack operations.

The configurations are of the shape (q,m), where m ∈ Δ∗ is the stack content. Here,
we fix the convention that the rightmost symbol of m encodes the top-of-stack.

The semantics of PDS is as expected. Pushoperations add a letter to the topof the stack,
pop operations remove the top-of-stack. A transition labeled by popa is only enabled
when a ∈ Δ is indeed the top-of-stack.

For the sake of completeness, we give the formal definition.
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12.2 Definition: Semantics of pushdown systems
The configuration graph of a PDS P over Δ is (Q × Δ∗

, R), where

((q,m), (p,w)) ∈ R

if

• w = m and there is a transition rule q
noop
−−−−→ p , or

• w = m.a and there is transition rule q
pusha
−−−−→ p , or

• m = w.a and there is transition rule q
popa
−−−−→ p.

We will now consider the same setting as in the previous section: We assume that an
ownership partitioning Q = Q ∪⋅ Q , an initial configuration (q0,m) and a final state qf

are given, and we ask whether the existential player has a strategy to enforce reaching(qf,w) (for some w) from (q0,m).
Here, wewill always assume that in the initial configuration the stack is empty, i.e. (q0, ε)
is the initial position. Note that in this configuration, no pop transition is enabled.

12.3 Example
Wepresent aPDSgame that is amodifiedversionof anexamplebyZimmermann [ZKW].
Consider the PDS P = (Q ∪⋅ Q ,→)over the stack alphabet {⊥, a}givenby the following
graphical representation.

q0

q1

q2

qf

push⊥

noop

pop⊥

pusha

popa
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The associated configuration graph is as follows.

(q0, ε)

(q1,⊥) (q1,⊥a) (q1,⊥aa) (q1,⊥aaa) ⋯

(q2,⊥) (q2,⊥a) (q2,⊥aa) (q2,⊥aaa) ⋯

(qf, ε)

push⊥

pusha pusha pusha pusha

noop noop noop noop

popapopapopapopa

pop⊥

Obviously, has a strategy to reach qf, namely by pushing ⊥ in q0 and then directly
going to q2. Even if she decides to use the pusha transition finitely often, she will win
because has no choice but to move to qf.

Before proceeding with the theory, let us clarify some notation needed in the rest of
the section. Let (q0,m0) op1

−−−→ (q1,m1) op2
−−−→ . . .

be a computation of a pushdown system, i.e. a sequence of configurations(qi,mi) ∈ Q × Δ∗ where each (qi+1,mi+1) results from (qi,mi) by applying a transition
rule. Assume that (qi+1,mi+1) is obtained from (qi,mi) by applying a push-operation,

say rule qi
pushb
−−−−→ qi+1. In particular, we then have mi+1 = mi.b.

(qi,mi) pushb
−−−−→ (qi+1,mi.b) .
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Either b stays on the stack for the rest of the computation, or there is a corresponding
pop in which b is removed from the stack for the first time:

. . . → (qi,mi) pushb
−−−−→ (qi+1,mi.b)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï

push

→ . . . . . . . . . →ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
b on the stack

(qj,mi.b) popb
−−−−→ (qj+1,mi)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

corresponding pop

→ . . . .

During the time that b is on the stack, the prefixmi of the stack content is not modified.
The index j + 1 at which the corresponding pop just has occurred can be identified as
the smallest index l > i such that ml = mi.

The goal of the rest of this section is to prove the following theorem.

12.4 Theorem: Walukiewicz 1996 [Wal01]
Control state reachability games on the configuration graphs of Pushdown systems
(PDS games) are decidable.

Actually, Walukiewicz has shown that even Parity games are decidable. For the sake of
simplicity, we only discuss the case of control state reachability. The extensions of the
result are discussed in Remark 12.16.

Walukiewicz’s reduction

The proof of the theorem relies on Walukiewicz’s reduction. From it, we cannot only
derive the decision procedure, but it also gives us the strategies that are needed for
PDS games.

12.5 Theorem: Walukiewicz’s reduction
Given a control state reachability game on a PDS GPDS, we can effectively construct a
reachability game GFS on a finite graph G = (V ∪⋅ V , R)with respect to some winning
set B ⊆ V and an initial position x ∈ V such that wins GPDS if and only if she wins GFS

from x.

The decidability of PDS games follows immediately from the reduction: The finite state
game can, once it has been computed, easily be solvedusing the attractor construction.

12.6 Remark
The size of the underlyinggraphofGFS is exponential in the number of states of the PDS.
Furthermore, GFS can be constructed in exponential time. Since reachability games can
be solved in linear time, overall we obtain an EXP algorithm for solving PDS games.
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One can in fact show that this is optimal: Control state reachability games on PDS are
EXP-complete. Walukiewicz’s paper [Wal01] contains an indirect proof of this fact. For
a proof which is more accessible, see [MSS05].

The construction is quite complicated. We provide a sequence of explanations, each
explanation going intomore details than the previous, finally culminating in the formal
definition

High-level idea: Storing only the top-of-stack

The fundamental ideabehind the constructionofGFS is the following: Insteadof storing
the unbounded stack content, we only store the top-of-stack: We will consider posi-
tions of shape (q, a), where q ∈ Q is a state and a ∈ Δ is a single symbol. This obviously
results in a finite-state game, as Q × Δ is a finite set.

In GFS, transitions labeled by noop can be executed normally. Push and pop transitions

need to be modified: If after using transition rule q
pushb
−−−−→ s in position (q, a), we would

simplymove to (s, b), wewould forgeta. This becomesaproblemwhen the correspond-
ing pop transition, say s′

popb
−−−−→ p, occurs. As we store the top-of-stack, we can verify that

the transition is indeed enabled, but it is not clear what the new top-of-stack should be
as we have forgotten the former top-of-stack a.

This problem is solved as follows. Whenever a push should be performed in a play of
GPDS, the corresponding play of GFS splits into two plays:

• Either the push is performed. After the corresponding pop occurs, the play ends.

• Or we skip the subplay of GPDS between the push that we want to perform and
the corresponding pop.

More precisely, consider the position (q, a) of GFS. For a transition q
pushb
−−−−→ s, there are

two possible continuations of the play.

• Either, the push can be performed. The play moves to position (s, b). As soon as
popb occurs, the play will end.

• Or, the play can move to position (p, a) for some state p. We assume that the
subplay in which b is on the stack, i.e. the sequence of transitions

q
pushb
−−−−→ s ⟶ . . . ⟶ s′

popb
−−−−→ p

has been skipped. Note that after popb, indeed symbol a should (again) be the
top-of-stack.
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This idea is depicted in Figure 1.

Play in GPDS:

time

stack
height

(q0, ε)

(q,m.a)
(s,m.a.b) (s′,m.a.b)

(p,m.a)
pushb popb

b on the stack

1

2

3

Corresponding plays in GFS:

time

stack
height

(q0, ε) (q, a)
(p, a)

(s, b) (s′, b) •

⋯

pushb

popb

1

2

3

Deadlock

Figure 1: The idea behind the construction of GFS.
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This approach clearly solves the above-mentioned problem: Since the play ends after
the top-of-stack has been popped, it does not hurt to forget the rest of the stack con-
tent.

However, there are a fewmissing holes that are crucial for the correctness of the reduc-
tion:

• Which player wins in case the game ends after a pop?

• Which state(s) p are eligible for jumping to them (instead of performing the
push)?

Guess & check

These problems are solved by a guess and check approach. The fundamental idea
behind guess and check is to guess information non-deterministically, use it, and later
check that the guess has been correct. This replaces a deterministic upfront computa-
tion of the information.

In our case, the guess and check approach is used whenever a push should be per-
formed. We guess the states p that we can can be reached by the corresponding pop.

In a guess and check algorithm, normally theguessed information is first used, and later
verified. Here, we can exploit that we are in a game setting, and have two types non-
determinism – one for each player – at hand. We give the power of making the guess
to the existential player. After it has been made, the universal player decides whether
to trust and use the guess, or whether it should be verified. In the notation of Figure 1,
at the end of 1⃝, the existential player canmake a guess, but thenwe give the universal
player the choice between verifying the guess, 2⃝, or trusting it, 3⃝.

Let us clarify what the guessed information is and how it is used. Whenever a push
pushb should be performed, the existential player is allowed to make a prediction
which states p can be reached with the corresponding popb. Afterwards, it is the uni-
versal players choice to decide:

• Whether to verify the prediction by performing the push. In this case, the play
continues until the corresponding popb occurs.

• Whether to trust the prediction and jump to one of the states proposed by the
existential players. This skips the subplay in which b would be on the stack.

More formally, the prediction picked by the existential player is a set P ⊆ Q of states.
The reason why we need a set of states (instead of a single state) is that in the play that
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unfolds after the push has been performed, both players may influence the outcome.
We comment on this in more detail in Remark 12.7.

• Assume theuniversal playerwants toverify theprediction. Thepush isperformed
and the play goes on. If the corresponding pop occurs, we know precisely the
state p in which the play is. The existential played wins if p is contained in her
prediction (p ∈ P), else (p /∈ P) the universal player wins.

• If the universal player trusts the prediction P, she can pick an arbitrary state p ∈ P
that is contained in the prediction. The play then continues from state p with
unchanged top-of-stack.

This in particular fills in the holes in the construction mentioned above.

We explain the details of the construction on an example play.

1. Assume the play is in position (q, a) (i.e. a ∈ Δ is the top-of-stack, the rest of the
stack is not stored). Furthermore assume that player , the owner of q ∈ Q ,

wants to execute a push transition, say q
pushb
−−−−→ s.

2. The play moves to the position Push((q, a), (s, b)) in which the intention to exe-
cute this push is signaled. In this position, the existential player is in control
(independent ofwhich player owns q). She is allowed tomake aprediction P ⊆ Q.
The prediction should be the set of control states that can be reached after popb

has occurred, the pop corresponding to the pushb that wants to perform.

3. After the prediction is chosen, the play moves to a state Predict((q, a), (s, b), P)
storing the prediction and the push. In this state, the universal player is in con-
trol. She has two choices:

• She can trust the prediction. In this case, she can pick an arbitrary state
p ∈ P. The play continues as if the transition sequence

(q, a) pushb
−−−−→ (s, b) ⟶ . . . ⟶ (s′, b) popb

−−−−→ (p, a)
would have been played: We are in control state p ∈ P and the top-of-stack
isaagain (sincebwas justpopped). Wesay that thepart of theplaybetween
push and pop has been skipped.

• She can doubt the prediction and verify it. The push operation is actually
performed, and the prediction is stored, i.e. we go to position

(s, b, P) .
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4. If another push operation is performed, this process repeats. The new prediction
replaces the old one, i.e. we store at most one prediction at a time.

5. Consider the case that a pop operation should be performed. Say we are in state(s′, b, P), and the owner of s′ has selected the transition s′
popb
−−−−→ p. Note that P is

the prediction that wasmade by just before bwas pushed. In particular, we are
in the case that wants to verify precisely this prediction.

The game moves to a special positions Pop(p, P) storing the target state of the
pop and the prediction. This position is a deadlock. It is winning for the existen-
tial player if p ∈ P, i.e. p is as predicted, and winning for universal player if p /∈ P.

12.7 Remark

a) Note that we need a set of states P as prediction instead of just a single state: The
play that unfolds after a push has been performed also depends on the behavior of
. A strategy for cannot guarantee that a unique state is reached.

However, it would be too coarse to just consider the set of all states that are reach-
able with the desired pop: The existential player can influence the play that hap-
pens after the push, so she may be able to avoid some undesirable states.

We will later see that a strategy sPDS for on GPDS induces for each push a (unique)
predictionP forGFS. Namely, it defines the set of states reachablebya corresponding
pop in plays in which conforms to sPDS, while can be pick arbitrary moves. The
choice among the states in P corresponds to the choices that can make in GPDS

between push and corresponding pop. Intuitively, P contains one state p for each
strategy of for GPDS.

b) The construction indirectly enforces that the existential player is honest with her
prediction, i.e. she has to choose a set of states P such that each state in P is actually
reachable, and any state that she cannot prevent being reached is contained in P.

• In case she picks a set P that is too big (i.e. it contains states that are unreach-
able), there are two cases: If the additional states are good for , then will
never use these states when skipping subplays. If the additional states are
good for , then is free to skip to one of these states (although reaching the
state might not have been possible in the original PDS game), and might
lose unnecessarily.

• If she picks a set P that is too small (i.e. it misses out some states that the game
might reach), then can win by verifying the prediction and reaching one of
those missing states.
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Hence, a winning strategy for for GFS will never pick such a prediction.

c) Note that if P is valid prediction, in the sense that the existential player will not lose
if decides to verify, then so is P ∪ {qf}. If the universal player skips and jumps to
state qf, she loses instantly.

Formal definition of the construction

It remains to formally state the construction of GFS. For simplicity, all positions of the
game will maintain a prediction (unlike in the example play above, where we started
with having no prediction). Hence, positions of GFS are essentially of the shape (q, a, P),
where q ∈ Q is a control state, a ∈ Δ is the top-of-stack, and P ⊆ Q is the current
prediction. To model the empty stack, we also allow a = ε and define Δε = Δ ∪⋅ {ε}.
The game will also have intermediary positions of shape Push((q, a, P), (s, b)),
Predict((q, a, P), (s, b, P′)), Verify(s, b, P′), Skip(p, a, P), and Pop(p, P) to implement the
mechanism described before. The meaning of the states Push((q, a, P), (s, b)),
Predict((q, a, P), (s, b, P′)), and Pop(p, P) has been explained before. The positions of
typePredict((q, a, P), (s, b, P′))andVerify(s, b, P′)are additional intermediarypositions to
signal that the universal player has just decided to skip respectively verify a prediction.
They are actually not strictly required for the correctness of the construction. However,
their presence will greatly simplify the proof of correctness.

The initial configuration is (q0, ε,∅), consisting of the initial state, the empty stack and
the empty prediction. As ε cannot be popped, startingwith the empty prediction does
not hurt.

A state is winning if it is of the shape (qf, a, P), i.e. we have reached the desired con-
trol state, or if a pop has occurred that leads to a state that is in the current prediction.
Formally, the latter case will correspond to positions of the shape Pop(p, P)with p ∈ P.

Before finally giving the formal definition, we present a part of the game arena of G fin

for the game from Example 12.3. This should be helpful to visualize the construction.

12.8 Example
Consider the PDS game from Example 12.3. The associated finite-state game is as fol-
lows.
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(q0, ε,∅)

Push((q0, ε,∅), (q1,⊥))

Predict((q0, ε,∅), (q1,⊥, {qf})) ⋮⋮

Skip(qf, ε,∅)

(qf, ε,∅)

Verify(q1,⊥, {qf})

(q1,⊥, {qf})

⋮ (q2,⊥, {qf})

Pop(qf, {qf})

// Transition q0
push⊥
−−−−−→ q1

// Prediction {qf} // Other predictions

// Skip q0
push⊥
−−−−−→ q1 → . . .

pop⊥
−−−−−→ qf

// Verify

// Perform q0
push⊥
−−−−−→ q1

// q1
pusha
−−−−−→ q1

// q1
noop
−−−−→ q2

// q2
pop⊥
−−−−−→ qf

The states Pop(qf, {qf}) and (qf, ε,∅) are deadlocks that are winning for the existential
player. Hence, the existential player indeed has a winning strategy for GFS. Similar to
the winning strategy for GPDS that we discussed in Example 12.3, it picks the moves

q0
push⊥
−−−−−→ q1 and q1

noop
−−−−→ q2. Additionally, it needs to pick the prediction {qf}.

We leave it as an exercise for the reader to check that picking e.g. the set {q1, qf} as
prediction will not result in a winning strategy.
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12.9 Definition: GFS

To thePDSgame,we associate the finite state gameGFS onG = (V, R), whereV is defined
in Figure 2 and R is defined in Figure 3.

The ownership of positions of type (q, a, P) is given by the ownership of q. All push-
positions are owned by , as she has to make a prediction. All predict-positions are
owned by , as she has to choose between verifying the prediction and skipping the
subplay. Ownership on all other types of positions does not matter, as they have at
most one successor.

Formally, we have
owner(q, a, P) = iff q ∈ Q ∀q ∈ Q, a ∈ Δε, P ⊆ Q ,

owner(Push((q, a, P), (s, b))) = ∀q, s ∈ Q, a ∈ Δε, b ∈ Δ, P ⊆ Q ,

owner(Predict((q, a, P), (s, b, P′))) = ∀q, s ∈ Q, a ∈ Δε, b ∈ Δ, P, P′ ⊆ Q ,

owner(Pop(p, P)) = ∀p ∈ Q, P ⊆ Q ,

owner(Verify(s, b, P′)) = ∀s ∈ Q, b ∈ Δ, P′ ⊆ Q ,

owner(Skip(p, a, P)) = ∀p ∈ Q, a ∈ Δε, P ⊆ Q .

The winning set that has to reach consists of all positions (qf, a,Q
′)where the control

state is qf and of all pop-positionswhere the control state is contained in the prediction:

B = { (qf, a, P) ∣ a ∈ Δε, P ⊆ Q }
∪ { Pop(p, P) ∣ p ∈ P, a ∈ Δε, P ⊆ Q } ⊆ V .

The initial position of interest is (q0, ε,∅) ,
i.e. we start with the empty stack and the empty prediction.

Proof of correctness

It remains to show that GFS is indeed the game required for Theorem 12.5. We divide
the proof in two steps:

• Proposition 12.10: If has a winning strategy for GPDS, then she has one for GFS.

• Proposition 12.11: If has a winning strategy for GFS, then she has one for GPDS.

We start with the first direction, as it is the easier one.
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V = { (q, a, P) ∣ q ∈ Q,
a ∈ Δε,
P ⊆ Q

}
// State + top-of-stack + current prediction

∪ { Push((q, a, P), (s, b)) ∣ q, s ∈ Q,
a ∈ Δε, b ∈ Δ,
P ⊆ Q

}
// Owner of q wants to perform q

pushb
−−−−→ s

∪ { Predict((q, a, P), (s, b, P′)) ∣ q, s ∈ Q,
a ∈ Δε, b ∈ Δ,
P, P′ ⊆ Q

}
// Existential player makes a new prediction

∪ { Verify(s, b, P′) ∣ s ∈ Q,
b ∈ Δ,
P′ ⊆ Q

}
// Universal player decides to verify - the push is performed

∪ { Skip(p, a, P) ∣ p ∈ Q,
a ∈ Δε,
P ⊆ Q

}
// Universal player trusts the prediction and skips the subplay

∪ { Pop(p, P) ∣ p ∈ Q,
P ⊆ Q } .

// A pop has been performed, the game ends

Figure 2: The definition of the set of positions V of GFS.
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R = { (q, a, P) → (s, a, P) ∣ q
noop
−−−−→ s,

q, s ∈ Q,
a ∈ Δε,
P ⊆ Q

}
// Transition with no operation, keep current prediction

∪ { (q, a, P) → Push((q, a, P), (s, b)) ∣ q
pushb
−−−−→ s,

q, s ∈ Q,
a ∈ Δε, b ∈ Δ,
P ⊆ Q

}
// Owner of q wants to perform q

pushb
−−−−→ p

∪ { Push((q, a, P), (s, b)) → Predict((q, a, P), (s, b, P′)) ∣ q, s ∈ Q,
a ∈ Δε, b ∈ Δ,
P, P′ ⊆ Q

}
// Existential player makes a new prediction

∪ { Predict((q, a, P), (s, b, P′)) → Verify(s, b, P′) ,
Verify(s, b, P′) → (s, b, P′) ∣ q, s ∈ Q,

a ∈ Δε, b ∈ Δ,
P, P′ ⊆ Q

}
// Universal player wants to verify the prediction, then the push is performed

∪ { Predict((q, a, P), (s, b, P′)) → Skip(p, a, P) ,
Skip(p, a, P) → (p, a, P) ∣ p ∈ P′,

q, p, s ∈ Q,
a ∈ Δε, b ∈ Δ,
P, P′ ⊆ Q

}
// Universal player trusts the prediction and skips the subplay from q to p

∪ { (s′, a, P) → Pop(p, P) ∣ s′
popa
−−−−→ p,

s′, p ∈ Q,
a ∈ Δ,
P ⊆ Q

} .

// A pop has been performed

Figure 3: The definition of the set of moves R of GFS.
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12.10 Proposition
If has a winning strategy (for reaching qf) for the PDS game GPDS from (q0, ε), then she
has a winning strategy for the finite-state reachability game GFS from (q0, ε,∅).
Proof:
Towards a proof, we fix a winning strategy for GPDS. Since the PDS game is also a reach-
ability game (although on an infinite graph), positional determinacy (Theorem 4.4) ap-
plies, and there is a uniform positional winning strategy sPDS. (Note that this strategy is
positional, but it still works on the configuration consisting of control state and stack
content.) Our goal is to translate sPDS into a winning strategy sFS for GFS.

Construction of the strategy

We construct sFS as a non-positional winning strategy. To be able to apply sPDS, we need
to recover from a play of GFS a position of GPDS, i.e. a full configuration consisting of
control state and stack content.

Formally, let pFS = p0p1 . . . pk be a finite play of GFS from (q0, ε,∅).
We define the associated stack content assoc(pFS) as follows: Let
Verify(p1, b1, P1), Verify(p2, b2, P2), . . . , Verify(pk, bk, Pk) be the sequence of all verify
positions in pFS in their order of occurrence. Then

assoc(pFS) = b1b2 . . . bm .

In particular, we have assoc(pFS) = ε if pFS contains no verify-positions. Indeed, the
verify-positions correspond to pushes that have been performed. The pushes that are
skipped do not contribute to the associated stack content, as in the play of GPDS we
assume that the corresponding pop has also occurred.

We can now define the non-positional strategy sFS on plays that end with a position of
type (q, a, P) as follows.

sFS(pFS
.(q, a, P)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Push((q, a, P)), (s, b)) ,
if sPDS(q, assoc(pFS)) = (s, assoc(pFS).b)with q

pushb
−−−−→ s ,(s, a, P) ,

if sPDS(q, assoc(pFS)) = (s, assoc(pFS))with q
noop
−−−−→ s ,

Pop(p, P) ,
if sPDS(q, assoc(pFS)) = (s, assoc(pFS)pop)with q

popa
−−−−→ s .
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Here, assoc(pFS)pop is assoc(pFS) with the rightmost symbol removed. Note that this
symbol has to be a ∈ Δ whenever assoc(pFS) is non-empty. (In the case that
a = ε = assoc(pFS), a pop-transition cannot be performed anyhow.)

It remains to define sFS for plays pFS that endwith a position of type Push((q, a, P), (s, b))).
In such a position, the existential player should make a prediction P′ ⊆ Q. Our intuition
is that P′ should contain all states that can be reached by popping b in a play conform
to sPDS.

Consider the configuration (s,m.b) of GPDS with m = assoc(pFS) in which GPDS after the
push has been performed, and consider the set of all plays from (s,m.b) that conform
to sPDS: {pPDS play »»»»» pPDS

0 = (s,m.b), pPDS conforming to sPDS} .
We restrict ourselves to plays in which a pop corresponding to b occurs. (There might
be plays in which b stays on the stack for the rest of the play.) Recall that the position
after which the pop has occurred is the first j such that pPDS

j = (p,m) for some state
p. This means the stack content coincides with m, the stack content before the push,
for the first time. The prediction P should consist of states p corresponding to such
configurations.

There is one more restriction we need to make: We need to avoid that the universal
player can skip the occurrence of the target control state qf, in case it is between s and
p. In this case, could avoid losing by skipping this segment of the play. To this end,
we just exclude all plays that encounter control state qf between s and p.

If the universal player decides to verify the prediction, excluding these plays will not
hurt: If the play has already visited qf, it will be won by the existential player, even if it
ends in Pop(p, P)with p /∈ P.

Formally, we define

Prediction(s,m, b) = ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ p ∈ Q

»»»»»»»»»»»»»»
∃pPDS play with pPDS

0 = (s,m.b) conforming to sPDS
,

∃j ∈ N∶ pPDS
j = (p,m) ,

∀j′ < j∶ pPDS
j′ = (p′,m′)with m ≠ m′ and p′ ≠ qf

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .
We then can define

sFS(pFS
.Push((q, a, P), (s, b)))) = Predict((q, a, P), (s, b, P′))

with P′ = Prediction(s, assoc(pFS), b) .
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Proving that the strategy is winning

To show that sFS is indeed winning, we want to use that sPDS is winning for GPDS.

First note that if (q, a, P) can be reached in GFS by a play conforming to sFS, say by pFS,
then the position (q, assoc(pFS)) can be reached in GPDS by a play conforming to sPDS: As
long as no subplays are skipped, the play of GFS proceeds exactly as the correspond-
ing play of GPDS. Whenever a subplay is skipped, the state that the play jumps to is a
state reachable by playing conforming to sPDS by the definition of Prediction(s,m, b). A
formal proof of this fact using induction is conceptually easy, but tedious.

Let us now assume towards a contradiction that pFS is a maximal play of GFS conform-
ing to sFS that is not won by pFS. In particular, it does not contain control state qf. We
distinguish two cases:

• If pFS ends with a pop-position, say Pop(p, P′), then it is not winning if and only if
p /∈ P′. However, the predictions are chosen such that this case cannot occur.

Let Predict((q, a, P), (s, b, P′)) be the position in which prediction P′ was chosen.
This means P′ = Prediction(s, assoc(pf), b), where pf is the prefix of the play be-
fore the prediction was chosen. The play of GFS from Predict((q, a, P), (s, b, P′)) to
Pop(p, P′) corresponds to a play of GPDS from (s, assoc(pf).b) to (p, assoc(pf)) that
is conform to sPDS. Hence, we have p ∈ P′ by definition.

• Else, i.e. if pFS does not contain a pop-position, consider the play ofGPDS that is cor-
responding topFS. As alreadymentioned, it is conforming to thewinning strategy
sPDS, and hence, it reaches state qf after finitelymany steps. Sincewe do not allow
to skip subplays in which qf occurs (see the definition of Prediction(s,m, b)), this
means that pFS also needs to contain an occurrence of qf.

⬛

It remains to prove the other direction.

12.11 Proposition
If has awinning strategy for the finite-state reachability gameGFS from (q0, ε,∅), then
she has a winning strategy for the PDS game GPDS from (q0, ε).
Again we can assume that we are given a uniform positional winning strategy sFS for
GFS. As GFS is finite, we can even assume that we have an explicit representation of this
strategy.
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In the following, wewill not only prove the existence of a strategy GPDS, but wewill also
discuss how to obtain a finite representation.

ThegamearenaofGPDS is infinite-state: Even single configurations (q,m) cannot be rep-
resented using bounded space. However, we would like to obtain a strategy that only
needs to process a bounded amount of information in each step. The control states
themselves provide too little information for this approach to work. Thus, we consider
strategies that work on the finite set of transition rules→ of the pushdown system. This
means the strategy will read the moves of the game that have been used.

Unfortunately, it is not easily possible to obtain such a strategy that is finite-state or
even positional. The strategy that we construct will need unbounded memory. To be
precise, we will build a so-called pushdown strategy, a strategy that maintains an un-
bounded stack as storage.

We give the idea behind the construction of the strategy and then argue why it needs
unbounded memory.

In the notation of Figure 1, the strategy sFS is winning both the play 2⃝ in which the
push is performed, as well as the play 3⃝ in which the subplay is skipped. This will
be guaranteed, as the universal player has to choose between verifying and skipping:
Whenever a position of type Predict((q, a, P), (s, b, P′)) is in thewinning region of , then
both Verify(s, b, P′) and Skip(p′, a, P) (for all p ∈ P′) also have to be in the winning region.

The idea for the construction of sPDS is as follows: After a push has been made, say(q,m.a) → (s,m.a.b), the strategy first simulates sFS from Verify(s, b, P′). Since sFS is win-
ning, it is guaranteed that if b is ever popped, we land in a state pwith p ∈ P′. From this
moment on, we can simulate sFS from Skip(p, a, P) on.
However, this will require us to keep track of one prediction for every push that has
been performed: After b has been popped in our example, a is again the top-of-stack.
To behave properly (i.e. as required by sFS), we need to know again the prediction that
was made when a was pushed. Since the number of pushes is not bounded, we will
need an unbounded storage.

The automaton implementing the strategy will always maintain the prediction for the
current top-of-stack in the control state. When a push happens, it stores the current
prediction on the stack and picks a new prediction for the new top-of-stack (guided by
the strategy sFS). When a pop happens, the current prediction can be forgotten and the
correct prediction for the new top-of-stack is recovered from the stack.

We formally introduce pushdown strategies, define sPDS and finally prove the correct-
ness.
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12. Context-free games

12.12 Definition
Apushdownstrategy for player is definedbya (deterministic)pushdowntransducer
T that reads the moves of a game G = (V, R) (with fixed initial state x0) and outputs the
moves of . More formally, the transducer is a tuple

T = (QT, R, R,ΔT, qT0, δ, o)
where

• QT is a finite set of internal control states,

• qT0 ∈ QT is the initial state associated to x0,

• the set of moves R is the input as well as the output alphabet,

• ΔT is the stack alphabet of T,

• δ ⊆ QT × R × OpsΔT
× QT is the transition relation, and

• o∶QT → R is the output function that determines a the successor o(qT) that is put
out depending on the current internal state qT ∈ QT.

The transition relation contains pairs of the shape

(qT, r, op, pT) ,
meaning that when the transducer is in state qT ∈ QT and readsmove r ∈ R of the game,
it can perform operation op (i.e. noop or pusha or popa for some a ∈ ΔT) on its stack and
go to state pT ∈ QT.

We require that T is deterministic in the following sense: If there is a transition(qT, r, op, pT) ∈ δ for some qT ∈ QT, r ∈ R where the operation is op = noop or a push
(op = pusha for some a ∈ ΔT), then there is no other transition (qT, r, op

′
, p′T) for this qT

and r. Furthermore, for each qT ∈ QT, r ∈ R and a ∈ ΔT, there is at most one pT such that(qT, r,popa, pT) ∈ δ .

(The transducer should also guarantee that it does not deadlock and whenever it out-
puts a position, this is actually a valid successor, but we leave these assumptions im-
plicit.)
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For such a transducer, we define its configuration config(pr) ∈ QT × Δ∗
T after reading

some finite sequence of moves pr ∈ R∗ inductively by

config(ε) = (qT0, ε) ,
config(pr′.r) = (pT,m)

where (qT,m
′) = config(pr′), (qT, r, op, pT) ∈ δ, and m is the result of applying op to m′,

i.e. m.a = m′ and op = popa, or m
′ = m and op = noop, or m = m′

.a and op = pusha.

The strategy induced by the transducer can then by defined by

sT ∶ Plays → V
play ↦ o(qT) where (qT,m) = config(play) .

12.13 Remark
Comparing to the definition of finite-state strategies (and the corresponding transduc-
ers) in Definition 7.10 we have made several changes that go beyond allowing a stack
as storage.

• As discussed argued above, the transducer now reads moves instead of states.

• Consequently, the initial state is associated to a fixed initial position of the game.
The trick of choosing the real starting state by reading the first position of the
game which we have employed in Definition 7.10 does not work for transducers
that read moves: A trivial play p0 consists of one position, but of no move.

• Although the transducer should be deterministic, we have formalized its transi-
tions by a relation instead of a function. This is because we allow several pop-
transitions (for different stack symbols) to be present at the same time, i.e. we
may have (qT, r,popa, pa), (qT, r,popb, pb) ∈ δ. However, at most one of these
transitions is enabled in any configuration, namely the one that pops the current
top-of-stack. This allows the transducer to obtain information about the old top-
of-stack whenever a pop-occurs.

The same concept can also be realized using a transition function, but at the cost
of more syntax.

It remains to implement the strategy described before by a pushdown transducer T.
Formally, we have

T = (QT,→,→,QT, qT0, δ, o) ,
where the components are specified below.

172



12. Context-free games

The states QT are precisely the positions of GFS of type (q, a, P). In particular, the state
of the transducer stores the control state q of the PDS, the current top-of-stack a, and
the prediction P for the push which pushed a.

QT = {(q, a, P) ∣ q ∈ Q, a ∈ Δε, P ⊆ Q} .
The initial state is qT0 = (q0, ε,∅), the initial state of GFS.

The stack alphabet of T is also the set QT of states of shape (q, a, P). Whenever a push
is performed, the current state is stored on the stack. On a pop, the state is taken from
the current top-of-stack.

To define the transition relation, note that our transducer will not read a move r ∈ R
from the infinite set of transitions of the pushdown system, but it will read q

op
−−→ p ∈→,

the rule which induces transition r. Note that→ is a finite set. For example, if the move(q,m) → (p,m.a) occurs in the game, the transducer will read q
pusha
−−−−→ p. (To be consis-

tent with the definition above, one can assume that the transducers reads transitions,
but that all transitions that are induced by the same rule cause the same behavior.)

• Upon reading q
noop
−−−−→ s in state (q, a, P), the transducer performs no stack opera-

tion and moves to (s, a, P).
• Upon reading q

pushb
−−−−→ s in state (q, a, P), the transducer performs push(q,a,P), stor-

ing the old prediction on the stack. Let

sFS(Push((q, a, P), (s, b))) = Predict((q, a, P), (s, a, P′)) ,
i.e. P′ is the newprediction picked by the positional strategy sFS. The new internal
state is (s, b, P′).

• Upon reading s
popb
−−−−→ p in state (s, b, P′), the system pops the top-most stack sym-

bol, say (q, a, P). It then moves to (p, a, P).
All other cases can be undefined. Note that the definition guarantees that whenever
the transducer is in state (q, a, P), then a is indeed the top-of-stack and q is the control
state of the PDS. The transition relation is deterministic as required. Formally, we have
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δ = {((q, a, P), q noop
−−−−→ s, noop, (s, a, P)) ∣ q, s ∈ Q, a ∈ Δε, P ⊆ Q}

∪ {((q, a, P), q pushb
−−−−→ s,push(q,a,P), (s, b, P′)) ∣

sFS(Push((q, a, P), (s, b))) =
Predict((q, a, P), (s, a, P′))

q, s ∈ Q, a ∈ Δε, b ∈ Δ,
P, P′ ⊆ Q,

}
∪ {((s, b, P′), s popa

−−−−→ p,pop(q,a,P), (p, a, P)) ∣ q, p, s ∈ Q, b ∈ Δ, a ∈ Δε, P, P
′ ⊆ Q} .

It remains to define the output function o. Note that is sufficient to define the output
for states (q, a, P) with q ∈ Q . The definition of the output function is induced by the
strategy sFS for GFS.

o(q, a, P) =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
q

pushb
−−−−→ s , if sFS(q, a, P) = Push((q, a, P), (s, b)) ,

q
noop
−−−−→ s , if sFS(q, a, P) = (s, a, P) ,

q
popa
−−−−→ p , if sFS(q, a, P) = Pop(p, P) .

The fact that sFS is a valid strategy ensures that the transitions that are printed actually
exist.

To finish the proof of Proposition 12.11, we need to show that sPDS is indeed winning.

Proof:
We have to show that the strategy sPDS induced by the pushdown transducer T is win-
ning for GPDS from (q0, ε). Let pPDS be a maximal play of GPDS from (q0, ε) conforming to
sPDS.

To prove that pPDS is won by , we will construct an associated play pFS of GFS conform-
ing to the strategy sFS. Since sFS is winning and T is induced by sFS, we will then obtain
that pFS and also pPDS is winning.

The main challenge for the construction of pFS is that plays in GFS should not contain
pops. Therefore, for everypopoccurring inpPDS, wedelete thewhole segmentbetween
the corresponding push and the pop from pPDS. The result of applying this operation
exhaustively is essentially a play of GFS.

Formally, the construction of pFS is as follows. Initially, we have pFS
0 = (q0, ε,∅). As-

sume we have already constructed the prefix pFS
0 . . . pFS

i corresponding to some prefix
pPDS
0 . . . pPDS

j of pPDS. Let pFS
i = (q, a, P). To construct pFS

i+1, we proceed as follows:
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• If pPDS
j+1 is obtained from pPDS

j be a transitioned labeled by noop, i.e.

(q,m) → (s,m) via q
noop
−−−−→ s ,

then we define pFS
i+1 to be (s, a, P).

• If pPDS
j+1 is obtained from pPDS

j be a transitioned labeled by pushb, i.e.

(q,m) → (s,m.b) via q
pushb
−−−−→ s ,

we distinguish two cases:

– If pPDS contains the corresponding pop, i.e. if there is some index j′ > j that is
the first index such that pPDS

j′ = (p,m), then we skip the part between push
and pop. More precisely, we append to the part of pFS that has already been
constructed the following moves:

Push((q, a, P), (s, b)).Predict((q, a, P), (s, b, P′)).Skip(p, a, P).(p, a, P) ,
where sFS(Push((q, a, P), (s, b))) = Predict((q, a, P), (s, b, P′)), i.e. P′ is the pre-
diction selected by sFS.

In the next step, we will then construct pFS
i+5 (the position following (p, a, P))

depending on pPDS
j′+2 .

– If pPDS contains no corresponding pop, then the push is actually executed:
We append to the part of pFS that has already been constructed the follow-
ing moves:

Push((q, a, P), (s, b)).Predict((q, a, P), (s, b, P′)).Verify(s, b, P′).(s, b, P′) ,
where again sFS(Push((q, a, P), (s, b))) = Predict((q, a, P), (s, b, P′)).
In the next step, the construction proceeds by defining pFS

i+5 depending on
pPDS

j+2 .

– Since any pop in pPDS has a corresponding push somewhere earlier in the
play, we do not need to consider the case that pPDS

j+1 is obtained by a pop.

It is again tedious to check that pFS is indeed a maximal play of GFS that is conforming
to sFS. In particular, whenever a pop occurs, the state reached by the pop is contained
in the current prediction. This fact is based on the definition of transducer T which
relies on sFS, and the fact that pPDS is conforming to the strategy sPDS induced by the
transducer.
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To be precise, pFS is the play of GFS in which the existential player plays conforming to
sFS and the universal player verifies the predictions that correspond to pushes that do
not have a corresponding pop in pPDS. For the pushes that do have a corresponding
pop in pPDS, jumps precisely to the control state which is visited by pPDS after the pop.

Since sFS is a winning strategy, the play pFS conforming to it must be winning. As pFS is
constructed to not contain any pop-position, thismeans pFS visits control state qf. Note
that if pFS

i = (q, a, P) for some i, then there is some index j such that the control state
of pPDS

j is q. Combing the arguments, we obtain that pPDS visits control state qf and is
winning. ⬛

Theorem 12.5, and subsequently Theorem 12.4, is now obtained by combining the
Propositions 12.10 and 12.11.

Concluding remarks

12.14 Remark
The strategy that we have constructed for the proof of Proposition 12.11 is not just
an arbitrary pushdown strategy, it is a so-called synchronized pushdown strategy.
This means that the transducer implementing the strategy pushes resp. pops precisely
when the pushdown system defining the game pushes resp. pops. Consequently, the
height of the stack of the pushdown system equals the height of the stack that forms
the internal storage of the strategy transducer.

Such strategies have a big advantage over arbitrary pushdown strategies. Assume that
P = (Q,→) is the underlying PDS for a pushdown game over stack alphabet Δ, and
let T = (QT, R, R,ΔT, qT0, δ, o) be a synchronized pushdown transducer implementing
a strategy for player . Since the stack heights of the PDS and T are equal, we can
construct the cross-product, which is again a pushdown system

P@T = (Q × QT,→
′)

over stack alphabet Δ × ΔT. The idea is to always store the state of the PDS as well as
the state of the transducer, and whenever the current PDS state is owned by , then
the next move of the system is determined by the output function of T.

The resulting PDS P@Thas only one typeof non-determinism, namely non-determinism
corresponding to player . (The non-determinism for player has been resolved using
T).
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Checking properties of the strategy defined by T can now be done by checking prop-
erties of P@T using standard algorithms for pushdown automata (e.g. a variant of the
CYK algorithm for reachability). For example, assume that one wants to check whether
T defines a strategy that is winning for a safety game, i.e. whether it guarantees that
some state qf is never reached. We can check whether any state of the shape (qf, qT) is
reachable in P@T. If and only if the result is negative T indeed defines awinning strategy.

Recall that without the guarantee that the stack heights of two pushdown automata
are equal, their cross product is not a pushdown system. (In fact, their cross product
can be seen as a proper Turing machine, since the intersection-emptiness problem for
context-free languages is undecidable.)

12.15 Remark
In the proof of Theorem 12.5, we have only constructed strategies for the existential
player . However, a similar construction works for the universal player: A uniform
positional winning strategy for on GPDS induces a winning strategy for on GFS, and
a uniform positional winning strategy for on GFS induces a winning strategy for on
GPDS that can be implemented by a synchronized pushdown transducer.

12.16 Remark
For simplicity, we have only considered the case of control state reachability games,
while in [Wal01], the more general case of parity games is considered.

Recall that a parity game on a pushdown system P = (Q ∪Q ,→) is given by a priority
assignment Ω∶Q → N on the control states.

The construction of GFS needs some modifications in this case:

• All states are modified to keep track of the priorities, e.g. we consider states of
shape (q, a, P, n). On every transition, the tracked priority is updated to be the
maximum of the priorities that have been seen.

• GFS is now a parity game.

• The priority of state (q, a, n, P) is the priority of q.

• Instead of choosing a single prediction, the existential player picks a family of
predictions (Pn)n, one prediction Pn per priority.

• The universal player can pick a priority n and then some p ∈ Pn for some n and
skip the subgame. In this case, the priority n which we assume has occurred in
the subgame is the priority of the skip-position. Afterwards, the tracked priority
is reset to 0.
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• A pop-position Pop(p, n′, (Pn)n) has even priority if and only if p ∈ Pn′ . To avoid
deadlocks, we can add self-loops to pop-positions.

• All other positions have priority 0.

The proof of correctness then only requires minor changes.

12.17 Remark
The trick used in Walukiewicz’s reduction is very powerful and extends to classes
of systems beyond pushdown systems, namely to higher-order computation
models (like higher-order collapsible pushdown systems or higher-order recursion
schemes) [CW07], and to certain kinds of games on multi-pushdown systems [Set09].

The guess & check approach has a long history in the domain of program verification.
Using it in combination with the two types of non-determinism in a game comes from
the game semantics for the modal μ-calculus, a certain kind of logics [EJ91].
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In this section, we look at sufficient conditions for a Gale-Stewart game being deter-
mined. We state the Borel determinacy theorem which shows that for a large class
of winning conditions, the corresponding games are determined. The theorem results
in the so-called Borel hierarchy of winning conditions: Each condition that satisfies
the requirements of the Borel determinacy theorem is in some level of the hierarchy,
which characterizes the complexity of the winning condition. The conditions that we
have looked at in Part II of the lecture are in low levels of the hierarchy.

Sources
The presentation here partially follows [ZKW].

The Borel hierarchy and the Borel determinacy theorem

We start by recalling some notation for (sets of ) sequences.

13.1 Remark
Let Vbe a (not necessarily) finite set. We denote by V∗ the set of sequences v0 . . . vk over
V of finite length and by Vω the set of sequences v0v1 . . . over V

ω of infinite length.

Let pfin = v0 . . . vn, p
fin′ = u0 . . . uk ∈ V∗, pinf = w0w1 . . . ∈ Vω. Finite sequences pfin

, pfin′

can be concatenated, resulting in the finite-length sequence pfin
.pfin′ = v0 . . . vnu0 . . . uk.

A finite sequence pfin can be concatenated with the infinite sequence pinf, resulting in
the infinite sequence pfin

.pinf = v0 . . . vnw0w1 . . ..

For sets of sequences, we define their concatenation element-wise. Let K, K′ ⊆ V∗ and
H ⊆ Vω. We define

K.K′ = {pfin
.pfin′ ∈ V∗

»»»»»» pfin ∈ K, pfin′ ∈ K} ,
K.H = {pfin

.pinf ∈ Vω »»»»» pfin ∈ K, pinf ∈ H} .
Using this notation, we can define the lowest level of the hierarchy, the open sets.

13.2 Definition: Open
Let A be a set. A set B ⊆ Aω is open if it is of the shape

B = K.Aω

for some set K ⊆ A∗.
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Intuitively, a set B is open if membership in B only depends on a finite prefix: p ∈ Vω is
in B = K.Aω if and only if there is a partition p = pfin

.pinf such that pfin ∈ K.

13.3 Lemma
The notion of being open defines a topology. This means the following properties
hold:

a) ∅ and Aω are open,

b) any union of open sets is again open, and

c) intersections of finitely many open sets are open.

Proof: Exercise 13.16. ⬛

13.4 Remark
In fact, the topology defined by the notion of being open above is a well-known topol-
ogy, namely the product topology on Aω with respect to the discrete topology on
A.

In the discrete topology on A, each subset of A is open.

For a sequence p = p0p1p2 . . . ∈ Aω and j ∈ N, we define projj(p) = pj, the projection of
p to the jth component. For sets B ⊆ Aω, we define projj(B) element-wise, i.e.

projj(B) = {projj(p) »»»»» p ∈ B} .
In the product topology on Aω, a set B ⊆ Aω is open if and only if it can be written as
union

B = ⋃
i∈I

Bi ,

where I is some index set (that may be infinite, even uncountable), each Bi ⊆ Aω is a set
and for each i, we have that

projj(Bi) = A

for all but finitely many j ∈ N.

(In the general definition, we would additionally require that projj(Bi) ⊆ A is open for
all i and j. Here, we consider the discrete topology on A and this condition is trivially
satisfied.)

The correspondence stated in the previous remark can be formally proven.
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13.5 Lemma
Our definition of being open coincideswith the definition of being open in the product
topology.

Proof:
Assume B ⊆ Aω is a set such that proji(B) = A for all but finitely many i ∈ N. We show
that B is open. Since unions of open sets are again open, Lemma 13.3, this shows that
all open sets in the product topology are open according to our definition.

Let i0 ∈ N be the greatest index i such that proji(B) ≠ A. We may write

B = proj0(B).proj1(B) . . .proji0(B)Aω
,

which is open by definition.

Assume that B = K.Aω is a set that is open according to our definition. We may write
K ⊆ A∗ as disjoint union

K = ⋃
i∈N

K(i)
such that each K(i) = K ∩ Ai contains exactly the sequences in K of length i. We get

B = ⋃
i∈N

K(i)Aω
.

Note that for each set K(i)Aω, we have projj(K(i)Aω) = A for all j > i. This concludes the
proof. ⬛

We can now define the further levels of the Borel hierarchy. The hierarchy consists of
two branches, the Σ branch and theΠ branch. The open sets are the lowest level of the
Σ branch.

13.6 Definition: Borel hierarchy
Let A be a set. We define a hierarchy consisting of elements Σ0

α and Π0
α for all ordinal

numbers α > 0.

Each Σ0
α resp. Π0

α is a collection of subsets of Aω.

• Σ0
1 contains the open sets,

• For each α > 0, Π0
α contains the complements of sets in Σ0

α , and

• For each α > 1, Σ0
α contains countable unions of sets in Π0

β for 0 < β < α.
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Σ0
1 = {B ⊆ Aω ∣ B open } ,

Π0
α = {C ⊆ Aω »»»»» Aω \ C ∈ Σ0

α} ,
Σ0

α = {B ⊆ Aω
»»»»»»»»» B = ⋃

i∈N
Ci , where each Ci ∈ Π0

βi
for some βi < α} .

13.7 Remark

• The superscript 0 that all Σ0
α and Π0

α have is a part of the name.

• The natural numbers are a special case of ordinal numbers. Thus, the above defi-
nition in particular defines Σ0

n and Π0
n for all natural numbers n > 0.

• We give a down to earth explanation of the first levels of the Borel hierarchy.

Σ0
1 = open sets,

Π0
1 = closed sets (complements of open sets),

Σ0
2 = countable unions of closed sets,

Π0
2 = complements of countable unions of closed sets
= countable intersection of open sets,

Σ0
3 = countable unions of countable intersection of open sets,

• The sets in each branch of the hierarchy form a chain:

Σ0
1 ⊆ Σ0

2 ⊆ Σ0
3 ⊆ . . .

Π0
1 ⊆ Π0

2 ⊆ Π0
3 ⊆ . . .

More generally, if α, β are ordinal numbers with β ⩽ α, then

Σ0
β ⊆ Σ0

α and Π0
β ⊆ Π0

α .

• Furthermore, each Σ0
α contains all Π0

β for β < α, and similar for Π0.

We do not give a formal proof of these properties here.

The following figure depicts the first few levels of the Borel hierarchy. It takes the prop-
erties stated in the above remark into account.
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⋮

Σ0
2 Π0

2

Σ0
2 ∩ Π0

2

◦ B ◦ B

Σ0
1 Π0

1

Σ0
1 ∩ Π0

1

The Borel determinacy theorem states that a game is determined if its winning condi-
tion lies in any countable level of the Borel hierarchy. We introduce the Borel algebra
to make this formal.

13.8 Definition
TheBorel algebraB is the union of the sets Σ0

α for all countable ordinals α. Equivalently,
it can be defined to be the union over Π0

α for all countable ordinals α.

B = ⋃
α countable ordinal

Σ0
α = ⋃

α countable ordinal

Π0
α .

A set B ⊆ Aω is called Borel set if it is contained in the Borel algebra, B ∈ B.

13.9 Remark
The natural numbers are the finite ordinals, and thus a special case of countable ordi-
nals.

Therefore, the Borel algebra in particular contains all Σ0
n and Π0

n for n ∈ N, n > 0.

The collection of open sets is closed under arbitrary unions, but not under countable
intersections or complement. The Borel algebra has these properties.
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13.10 Lemma
The Borel algebra B is the smallest collection of subsets of Aω that contains the open
sets and is closed under complement, countable union and countable intersection.

We omit the proof of this lemma.

We cannowstate theBorel determinacy theorem: AnyBorel game, i.e. anygamewhose
winning condition is a Borel set, is determined.

13.11 Theorem: Borel determinacy theorem, Martin 1975 [Mar75; Mar82]
Let A be a set. If B ⊆ Aω is a Borel set, then the Gale-Stewart game G(A, B) is determined.

13.12 Corollary
Let A be a set and B ⊆ Aω. If B is in Σ0

α or Π0
β for some countable ordinal α, then G(A, B) is

determined.

TheBorel hierarchy allowsus tomeasure the complexity ofwinning conditions. LetBbe
a winning condition, then we can ask what is the least α such that Σ0

α resp. Σ0
β contains

B.

In the following, we want to study the complexity of several winning conditions that
wehave seen so far. Here, we consider Gale-Stewart gameswith reachability, parity, etc.
winning conditions. If onewants to do this for the graph games thatwe have studied in
the earlier sections, one can model the graph game as a Gale-Stewart game. We refer
to Exercise 9.14.

13.13 Theorem
Reachability games are in Σ0

1, but not in Π0
1. Analogously, safety games are in Π0

1, but
not in Σ0

1.

Proof sketch:
Consider a reachability games with respect to the winning set Vreach. Its winning con-
dition is given by the set Bwin = V∗VreachV

ω, which is open, but not closed (i.e. not the
complement of an open set).

Analogously, let Vreach denote the losing set of a safety game. We have
Bwin = Vω \ V∗VreachV

ω, which is closed, but not open. ⬛

13.14 Theorem
Büchi games are in Σ0

2, but not in Π0
2.
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Analogously, coBüchi games are in Π0
2, but not in Σ0

2.

Proof sketch:
Consider a Büchi game with respect to the winning set Vreach.

For each i ∈ N, let
B(i) = V∗VreachV

∗VreachV
∗
. . . V∗VreachÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

i times

Vω

denote the set of plays that visit Vreach at least i times. Note that each B(i) is open, but
not closed. Consequently, for each i, the set Vω \ B(i) of plays that visit Vreach less than i
times is closed, but not open.

The union
⋃
i∈N

Vω \ B(i)
,

is the set of all plays that visit Vreach only finitely often, is thus in Σ0
2. Its complement, the

set of all plays that visit Vreach infinitely often, is in Π0
2.

We could argue more directly and define

Bwin = ⋂
i∈N

B(i)
.

This is a countable intersection of open sets, thus in Π0
2. ⬛

13.15 Remark
The complexity of parity games depends on the exact definition. In Section 6, we have
considered the highest priority occurring infinitely often, but restricted ourselves to a
finite number of priorities (even when the arena is infinite). With this definition, parity
games are in Σ0

3 ∩ Π0
3, i.e. in Σ0

3 and in Π0
3, but not in Σ0

2 ∪ Π0
2, i.e. neither in Σ0

2 nor in Π0
2.

The same result holds for Muller games¹

One can drop the restriction of having only finitely many priorities. However, one then
needs to define a winner in the case that Inf(Ω(p)) has no well-definedmaximum.² Par-
ity games of this type are in higher levels of the Borel hierarchy.

¹ To define Muller games on an infinite arena, one usually assumes that there is a coloring function
c∶ V → C that assigns each position one of finitely many colors. The winner now depends on the set of
infinitely occurring colors Inf(c(p)) in a play p.

² In this setting, one usually considers parity games in which the minimal priority occurring infinitely
often is determining the winner, since any non-empty set of natural numbers has a minimum, but not
necessarily a maximum.
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III. Games on infinite graphs

Exercises

13.16 Exercise: Open sets
Let A be a set, and B, B′ ⊆ Aω.

a) Prove that the empty set ∅ ⊆ Aω and Aω itself are open.

b) Prove that if B and B′ are open, then also their union B ∪ B′ is open.

c) Prove that if B and B′ are open, then also their intersection B ∩ B′ is open.

Remark: This almost proves that the notion of being open defines a topology on Aω,
see Lemma 13.3. It remains to prove that arbitrary unions of open sets are open, which
can be done similar to Part b).
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14. Multiprocessor online scheduling

As a practical application of the reachability games that we studied in Section 4, we
want to consider schedulingproblems. A schedulingproblem is of the following shape:
Given a list of jobs and a list of processors, find a scheduling, an assignments of jobs to
processors that has certain properties.

14.1 Example
Consider the well-known NP-complete partition problem.

Partition problem (PARTITION)

Given: A multiset S of natural numbers.
Question: Is there a partition S = S1 ∪⋅ S2 such that∑s∈S1 s = ∑s∈S2 s ?

It can be seen as a scheduling problem: Given a list of jobs, each job having a given
computation time, is there a scheduling of the jobs on two uniform processors such
that both processors finish at the exact same time?

Sources
The content of this section is based on the papers [GGN17] and [Gee+18].

Amultiprocessor online scheduling problem

The problem that we will consider in the following is an online scheduling problem.
Instead of having a list of jobs that is known beforehand, we have a set of tasks that can
generate jobs at runtime. The (online) scheduler has to react at runtime to jobs that
are generated by the task without knowing when jobs will be generated in the future.

More precisely, our tasks are sporadic: Each task has a minimal interarrival time T, a
timespan that is guaranteed to elapse between two generations of jobs for the task.
Assume a job for the task is generated at time t. As soon as the minimal interarrival
time has elapsed at time t + T, a new job of the task can be generated. It may not be
generated immediately, it can be generated at an arbitrary later point in time that is
not known to the scheduler.

One might think that the worst case for the scheduler occurs if every task generates
a job immediately as soon as T has elapsed. This is not true: By allowing later genera-
tions, the future of the system becomes non-deterministic, which makes it harder for
the online scheduler that has no knowledge of the future, see Exercise 14.16.
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Each task has a computation time C, the time that a job for this task needs on the pro-
cessor to be finished.

Furthermore, each task has a relative deadline D. Whenever a job of the task is gen-
erated, say at time t, it needs to be finished within a timespan of length D, i.e. at time
t + D.

We will assume that we have some fixed number m of uniform processors to which
we want to schedule the jobs. We discretize the model and assume that one computa-
tion step of the processors (called tick) decreases the remaining computation time of
each scheduled job by 1. We assume that after each computation step, the jobs can be
freely migrated between processors without causing a delay. Furthermore, we assume
that each job has to be processed sequentially. This means that not more than one
processor can work on the same job during one tick.

In the following, wewill formally define the resultingmultiprocessor online feasibility
of sporadic tasks problem (MOFST).

14.2 Definition
The input of MOFST is a set T of tasks, each task τ ∈ T being a tuple(Cτ,Dτ, Tτ) ∈ (N \ {0})3 consisting of the computation time Cτ, the relative deadline
Dτ, and the minimal interarrival time Tτ.

Such an input gives rise to a system as described above. We can model the system
naively as follows.

A configuration at time t of the system consists of

• a list of pending jobs J , each job j specified by its remaining computation time
RCTj, and the time RDj until its deadline (at time t + RDj), and

• for each task τ in T the minimal time NATτ until its next arrival.

Initially, we consider the configuration at time 0, with an empty list of jobs, where each
task τ has earliest arrival time NATτ = 0.

In each tick, three things happen:

• The tasks may generate new jobs for eligible tasks: For each tasks τ that has
NATτ = 0, a new job j may be spawned. This job has RCTj = Tτ and RDj = Dτ.
If this happens, the remaining minimal interarrival time is reset, NATτ = Tτ.

• The scheduler may select up to m jobs and decrease their remaining computa-
tion time by one. If this results in RCTj = 0, the job is deleted from the job list.
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• The time until the deadline RDj is decreased by one for each job, and for all tasks
τ with NATτ > 0, NATτ is decreased by one.

If a job has a negative deadline, i.e. RDj < 0 after a time step, it has missed its deadline.

We call an input feasible for online scheduling if there is an online scheduler that sched-
ules jobs such that no job ever misses its deadline, no matter when the jobs are gener-
ated at runtime.

Multiprocessor online feasibility of sporadic tasks problem (MOFST)

Given: A set of tasks T , a number m of processors.
Question: Is the input feasible for online scheduling?

Note that the job list may contain more than one job per task while still being feasible,
namely if Tτ < Dτ for a task. In any configuration in which a job has not missed its
deadline, the number of pending jobs for task τ is bounded by ⌈Dτ

Tτ
⌉.

We want to store a state as compact as possible, in particular we want to get rid of the
job list. To this end, we assume that Tτ ⩾ Dτ for each job τ. This means that for no
task, two jobs can be pending at the same time without the earlier one already having
missed its deadline. One can get rid of this assumption, but it has to be handled with
care. Since it does not contribute to the concepts that we want to highlight here, we
omit this.

MOFST as a safety game

In the following, we will model an instance of MOFST as a safety game.

• The reachability objective is given by the losing set of configurations in which a
job will miss its deadline.

• The existential player represents the tasks. As usual, she wants to satisfy the
reachability objective. Her goal is to generate jobs such that a job will miss its
deadline.

• The universal player represents the scheduler. She is trying to satisfy the com-
plementary safety objective. She needs to schedule the jobs such that no job
ever misses its deadline.

We represent configuration as above by system states S ∈ States. A state S is a tuple
S = (NATS, RCTS), where
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• NATS∶ T → N assigns to each task τ its earliest next arrival time NATS(τ) ⩽ Tτ, and

• RCTS∶ T → N assigns to each task τ its remaining computation time RCTS(τ) ⩽ Cτ.

In comparison to the configurations above, we have gotten rid of the job list using the
assumption that we made. Furthermore, we have dropped the time until the deadline.
Wewill see later that the deadline is still implicitly given by the two values that we store.

We call a task τ active in state S if RCTS(τ) > 0. This means that for this task, there is a
pending job.

We call a task τ eligible in state S if RCTS(τ) = 0 and NATS(τ) = 0. This means that for this
task, there is no pending job, and itsminimal interarrival time has elapsed since the last
generation of a job.

It might seem strange that for a task τ to be eligible, it needs to have RCTS(τ) = 0. This
is no real restriction, since ifNATS(τ) = 0, but RCTS(τ) > 0, than it hasmissed its deadline
by the assumption Tτ > Dτ that we made.

The actions of the existential player correspond to picking a set of eligible tasks and
generating corresponding pending jobs. This resets the remaining computation time
of these jobs to their computation time. The earliest next arrival time of the jobs that
were scheduled is reset to Tτ.

Formally, for a state S ∈ States and a set T ′ ⊆ {τ ∈ T ∣ τ is eligible in S} , Succ (S, T ′) is
the state S′ with

RCTS′(τ) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩Cτ, if τ ∈ T ′

RCTS(τ), else,

and

NATS′(τ) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩Tτ, if τ ∈ T ′

NATS, (τ) else.

The moves of the universal player correspond to picking a set of active tasks and
scheduling their corresponding pending jobs. This means that their computation time
is decreased by one. Furthermore, we assume that the tick happens after the universal
player has picked the jobs that should be scheduled, meaning the earliest interarrival
time of all jobs is decreased by one.
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Formally, for a state S ∈ States and a set T ′ ⊆ {τ ∈ T ∣ τ is active in S} of size at most m
(the number of processors), Succ (S, T ′) is the state S′ with

RCTS′(τ) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩RCTS(τ) − 1, if τ ∈ T ′

RCTS(τ), else,

and NATS′(τ) = NATS(τ) − 1 for all τ.

NATS′(τ) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩NATS(τ) − 1, NATS(τ) > 0,

0, else.

The game arena of the scheduling game has as positions the elements of
States × { , }, where the second component indicates the active player. The arcs can
be partitioned into the arcs R originating in positions owned by the universal player,
and the arcs R originating in positions owned by the existential player,

R = {(S, ) → (S′, ) ∣ T ′ ⊆ {τ ∈ T ∣ τ is active in S}, ∣T ′∣ ⩽ m, S′ = Succ (s, T ′)} ,
R = {(S, ) → (S′, ) ∣ T ′ ⊆ {τ ∈ T ∣ τ is eligible in S}, S′ = Succ (s, T ′)} .

As one can see, the players alternately take turns.

We still need to specify thewinningconditionof thegame. Insteadof checkingwhether
a job has actually missed its deadline, we will check whether it surely will miss its dead-
line. To this end, we define a function LaxityS∶ T → Z by

LaxityS(τ) = Dτ − ( Tτ − NATS(τ) )ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
time since last generation

− RCTS(τ) .
Intuitively, the laxity measures for how many steps τ could stay idle in state S without
riskingmissing its deadline: We take the deadlineDτ, subtract the time Tτ−NATS(τ) that
has elapsed since the last generation, and obtain the remaining time until the deadline.
In the resulting timespan, we have to schedule the job for the task for at least RCTS(τ)
many ticks to avoid it missing its deadlines.

If the laxity of a task is negative, it will definitely miss its deadline, even if the corre-
sponding job is scheduled consecutively in all following ticks.

14.3 Definition
The scheduling game is the reachability game on the previously defined game arena

G = (States × { } ∪⋅ States × { }, R ∪⋅ R )
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with respect to the winning set

B = {(S, ) ∣ ∃τ active in S ∶ LaxityS(τ) < 0} .
Note that the winning set only consists of positions owned by the existential player.
This is because we assume that the tick happens after the universal player picked the
scheduling, so when the existential player is active, a tick has just elapsed.

14.4 Theorem
An input for MOFST is feasible if and only if the universal player has a winning
strategy for the corresponding scheduling game from the position (Sinit, ), where
NATSinit(τ) = RCTSinit(τ) = 0 for all tasks τ.

In the initial position, we assume that no job is pending and all tasks are eligible for
generation. The existential player can start by generating a set of tasks.

A winning strategy for the universal player from this position directly corresponds to a
scheduling policy.

14.5 Remark
Any play that is winning for the existential player, i.e. a play reaching a state S such that
LaxityS(τ) < 0 for some active task τ also contains a position (S′, )with LaxityS′(τ) = −1.
This allows us to redefine the winning set to

B = {(S, ) ∣ ∃τ active in S ∶ LaxityS(τ) = −1} .
The size of States is

∏
τ∈T

(Cτ + 1) ⋅∏
τ∈T

(Tτ + 1) ⩽ (max
τ∈T

Cτ + 1)∣T ∣ ⋅ (max
τ∈T

Tτ + 1)∣T ∣
.

Even if we assume that the number of tasks ∣T ∣ is a constant, the size is polynomial in
the numbers occurring in the tuples τ ∈ T , meaning in their unary encoding. If we
assume that the numbers are encoded in binary, the size of States is exponential in the
size of the input.

We have now obtained a reachability game on a large, but finite game arena. It can be
solved using the attractor algorithm to determine whether the input is feasible. If the
input is feasible, a uniform positional winning strategy for the universal player is the
desired scheduling policy.
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Unfortunately, the size of the arena makes this approach impractical for real-life appli-
cations. The i-step attractors that have to be computed are very large, and the winning
strategy has to store one successor for each of the many positions owned by the uni-
versal player. Here, we will focus on the first problem. Our goal is to find compact
representations for the attractors.

We will define the concepts for general reachability games, and then use them for the
scheduling game.

TBA-simulations and attractor minimization

LetG = (V ∪V , R)be a reachability gameon a finite graphwith respect to thewinning
set B ⊆ V. We assume that G contains no deadlocks. Note that the scheduling game
satisfies this property, since for each player, picking T ′ = ∅ is always possible.

Recall that a relation ⊴ ⊆ V× V is called a partial order if it has the following properties:

• Reflexivity: ∀x ∈ V∶ x ⊴ x.

• Transitivity: ∀x, y, z ∈ V∶ If x ⊴ y and y ⊴ z, then x ⊴ z.

• Antisymmetry: ∀x, y ∈ V∶ If x ⊴ y and y ⊴ x, then x = y.

In the following, we will assume that ⊴ is some fixed partial order on V.

Given a setX ⊆ Vof positions, we call x ∈ X aminimal elementofX if there is no element
in X that is strictly smaller than x. In other words, for all y ∈ X, x is smaller than y, x ⊴ y,
or they are incomparable.

We define the operatorMin that takes a set X and returnsMin(X) ⊆ X, the set ofminimal
elements of X. It can be computed by iteratively removing non-minimal elements from
X. For each y ∈ X, Min contains an element x that is smaller than y ¹.

Note that the elements in Min(X) form a so-called antichain: Two non-equal elements
x ≠ y are not comparable. Assume that onewould be smaller, then the other onewould
not be minimal. (Here, antisymmetry is important!)

Our aim is to define a variant of the attractor algorithm that works on minimal ele-
ments. This means that instead of Attri , we consider Min(Attri ) which is hopefully
much smaller. For this optimization to be valid, we need that Min(Attri ) is a precise
representation of Attri . The following notion will make this formal.

¹ For this statement to be true, we need to guarantee that minimal elements exist. This is true because
any partial order on a finite set is well-founded.
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We call a set X upward closed (with respect to the fixed partial order ⊴) if for each ele-
ment x ∈ X, all elements y ∈ V that are larger than x, are also contained in X, expressed
as formula:

∀x ∈ X∶ ∀y ∈ V∶ x ⊴ y implies y ∈ X .

Given an arbitrary set X ⊆ V, we let the upward closure of X, denoted by X ↑, be the set
that contains for each element in X all larger elements:

X ↑= {y ∈ V ∣ ∃x ∈ X∶ x ⊴ y} .
It can easily be checked that the upward closure of a set X is indeed always upward
closed. To be precise, the upward closure is the smallest upward-closed set containing
X. A set X is upward closed if and only if it is its own upward closure, X = X ↑.

For upward-closed sets, the set of minimal elements considered before is an exact rep-
resentation. The original set can be recovered by taking the upward closure.

14.6 Lemma
Let X ⊆ V be upward closed, i.e. X = X ↑, then X = Min(X) ↑.
Proof: Exercise 14.17, Part c). ⬛

It remains to characterize the partial orders such that the i-step attractors are upward-
closed.

14.7 Definition
We call ⊴ a turn based alternating simulation relation (tba-sim) if it only relates posi-
tions owned by the same player,

⊴ ⊆ (V × V ) ∪ (V × V ) ,
and for all x, y ∈ V with x ⊴ y, the following properties hold:

• If x ∈ B, then y ∈ B.

• If y ∈ V , then for all successors x′ of x, there is a successor y′ of y such that x′ ⊴ y′.

• If y ∈ V , then for all successors y′ of y, there is a successor x′ of x such that x′ ⊴ y′.

The following diagrams represent the latter two properties.
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V ∋ y

⊴

x

y′

⊴

x′

∃

∀

V ∋ y

⊴

x

y′

⊴

x′

∀

∃

Intuitively, x ⊴ y means that it is easer for the existential player to win from y than from
x.

• The goal for the existential player is to reach B. Instead of reaching a position
x ∈ B, the existential player can also win by reaching any larger position y, be-
cause it also has to be in B by the first condition.

• Whenever the existential player has a move in some position x, she has a better
move in any larger position y. Better means that the result of the move y′ from
the larger position is larger than the result x′ of the move in the small position.

• Whenever the universal player has a move from y to y′, and x ⊴ y, then there is
a move from x to some x′ with x′ ⊴ y′. This means that a larger position cannot
suddenly give new possibilities to the universal player.

The following proposition makes this intuition precise by stating that indeed all i-step
attractors are upward closed with respect to tba-sims.

14.8 Proposition
Let ⊴ be a tba-sim. Then for each i ∈ N, Attri (B) is upward closed.

Recall that
Attri+1(B) = Attri (B) ∪ CPre (Attri (B)) .

Towards a proof of the proposition, we prove the following lemma.

14.9 Lemma
Let X be upward closed, and let ⊴ be a tba-sim. Then CPre (X) is upward-closed.

Proof:
Let x ∈ CPre (X) be arbitrary, and let x ⊴ y. We have to show that y ∈ CPre (X).
Note that we can assume that x, y are owned by the same player.

Assume that x, y ∈ V are owned by the existential player. Since x ∈ CPre (X), x has at
least one successor x′ ∈ X. By the definition of tba-sim, there is a successor y′ of y with
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x′ ⊴ y′. We obtain y′ ∈ X ↑= X. Since y is owned by the existential player, this proves
y ∈ CPre (X).
Assume that x, y ∈ V areownedby theuniversal player. By thedefinitionof tba-sim, for
each such successor y′ of y, there is a successors x′ of x with x′ ⊴ y′. Since x ∈ CPre (X),
all these successors x′ are contained in X. Since x′ ⊴ y′, we have y′ ∈ X ↑= X for all
successors y′. Thus, y ∈ CPre (X) as required. ⬛

Proof of Proposition 14.8:
We proceed by induction on i.

In the base case i = 0, we need to show that Attr0 (B) = B is upward-closed. Let x ∈ B,
and let x ⊴ y. By the first condition of being a tba-sim, we have y ∈ B.

For the induction step, assume that Attri (B) is upward closed. By
Lemma 14.9, CPre (Attri (B)) is also upward closed. To conclude that
Attri+1(B) = Attri (B) ∪ CPre (Attri ) is upward closed, note that the union of
upward closed sets is upward closed in general, see Exercise 14.17 Part b). ⬛

The propositions means that each i-step attractor can be represented by its minimal
elements without losing precision. As a consequence, we can define a variant of the
attractor algorithm that directly works on theminimal elements. To this end, we define
a variant of CPre that returns the minimal elements of the controlled predecessors,

MinCPre (X) = Min(CPre (X ↑)) .
Using MinCPre, we can state the desired variant of the attractor algorithm.

MinAttr0 (B) = Min(B)
MinAttri+1(B) = Min(MinAttri (B) ∪MinCPre (MinAttri (B)))

14.10 Proposition
Let ⊴ be a tba-sim. Then for each i ∈ N,

MinAttri (B) = Min(Attri (B)) and

Attri (B) = MinAttri (B) ↑ .

Proof: Follows easily by induction with Proposition 14.8. ⬛
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The consequence of this proposition is that to solve the reachability game, we can it-
eratively compute the sets MinAttri (B) until they stabilize, i.e. until we reach an index
i0 with MinAttri0 (B) = MinAttri0+1(B). Then we know that MinAttri0 (B) are the minimal
elements of the winning region of the existential player. To check whether a position
y is winning for the existential player, we have to check whether there is an element
x ∈ MinAttri0 (B)with x ⊴ y.

Still, we are not done. We need to identify a non-trivial tba-sim that we can use for the
algorithm. The trivial partial order {(x, x) ∣ x ∈ V} is a tba-sim, but for this order, the
MinAttr algorithm will just be the normal attractor algorithm. The more elements are
⊴-related, the smaller the sets ofminimal elementswill become, and themore compact
and thusmore efficient theMinAttr algorithmwill be. But the denser a relation ⊴ is, the
harder it will be for it to satisfy the required condition for being a tba-sim.

Furthermore, if we implement the MinAttr algorithm naively, it will not lead to the de-
siredboost in performance, in fact, it willmost likely exhibit a performance that isworse
than the one of the attractor algorithm.

In the first step, we need to obtain theminimal elements of B. If we do this by iteratively
removing non-minimal elements from the set B that potentially can already be very
large, this step might be very expensive.

In the following steps, we need to compute MinCPre (MinAttri (B)). If we do this by
definition, we will expand MinAttri (B) to Attri (B), then compute its controlled prede-
cessors, and minimize again.

Note that there is a third step in the MinAttr algorithm that might seem problem-
atic, namely the minimization after taking the union of MinCPre (MinAttri (B)) and
MinAttri (B). But we expect these sets to be small, and thus minimizing their union
in a naive way will not be very harmful.

A TBA-simulation for the scheduling game

In the following, we will move back to scheduling games. For these scheduling games,
we will define a partial order, state that it is a tba-sim, and show that the two problem-
atic operations mentioned above can be implemented in a clever way.

14.11 Definition
The idle-ext task simulation ◀ is a relation on States × { , } defined as follows. We
have (S, )◀(S′, ′) iff = ′ and for all taks τ ∈ T , we have

• RCTS(τ) ⩽ RCTS′(τ),
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• RCTS(τ) = 0 implies RCTS′(τ) = 0, and

• NATS(τ) ⩾ NATS′(τ).
As stated before, the relation intuitively states that a state is larger if and only if it is
easier for the existential player, the player representing the tasks, to win from this state.
This means that each task has a longer remaining computation time (first condition)
and can be generated again earlier (third condition). The second condition might look
counter-intuitive; recall that having RCTS(τ) = 0 was a condition for a task to be eligible
for generation.

14.12 Lemma
◀ is a partial order.

14.13 Theorem
◀ is a turn based alternating simulation relation.

The proofs are left to the reader as an exercise.

In the followingwe explain howMinAttr0 (B) = Min(B) andMinCPre can be computed
efficiently for◀.

First, we consider the computation of Min(B) for◀. Recall that

B = {(S, ) ∣ ∃τ active in S ∶ LaxityS(τ) < 0}
and that

LaxityS(τ) = Dτ + NATS(τ) − Tτ − RCTS(τ) .
If we have that τ is active in some state S, and LaxityS(τ) < 0, then

NATS(τ) ⩽ Tτ − Dτ + RCTS(τ) − 1 ,

since we have RCTτ > 0.

For a single task τ, we define the set

Bad◀τ = {(S, ) ∣ ∃j ∈ {1, . . . , Cτ}∶NATS(τ) = Tτ − Dτ + Cτ − j , RCTS(τ) = Cτ − (j − 1)}
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One can check that for the scheduling game with the single task τ, we have
Min(B) = Bad◀τ. It remains to extend this concept to games with several tasks. We
define B◀τ to be the set of all states that are losing because of task τ, i.e.

B◀τ = {(S′, ) »»»»»»»»»» ∃(S, ) ∈ Bad◀τ∶ NATS(τ) = NATS′(τ) and RCTS(τ) = RCTS′(τ),
∀τ′ ≠ τ∶ NATS′(τ′) = Tτ′ and RCTS′(τ′) ∈ {0, 1} } .

Finally, we define B◀ as the union of the B◀τ,

B◀ = ⋃
τ∈T

B◀τ .

14.14 Lemma
B◀ = Min(B).
This finishes the first part of our study. We still have to showhow to computeMinCPre .
Let X be an antichain, i.e. a set where the elements are pairwise incomparable. Thenwe
have

MinCPre (X) = MinExPre(X ∩ V ) ∪MinUnivPre(X ∩ V ),
where

MinExPre(Y) = Min({x ∈ V ∣ ∃ successor x′ of x with x′ ∈ Y ↑}) ,
MinUnivPre(Y) = Min({x ∈ V ∣ ∀ successors x′ of x∶ x′ ∈ Y ↑}) ,

where Y is an antichain. Note that if X is an antichain, then X ∩ V and X ∩ V are an-
tichains, too.

From the usual definition of the controllable predecessors, the above definition might
look strange: We have a universal quantification for the existential player, the player
whose perspective we take when computing the attractor, and an existential quantifi-
cation for the universal player. Whenwe consider X∩V , all predecessorswill be owned
by the universal player, thus the universal quantification is as expected. Similarly, all
predecessors of vertices in X ∩ V are owned by the existential player, and we have an
existential quantification.

It might look like the statement is missing an outermost min-
imization, i.e. one could think that the definition has to be
MinCPre (X) = Min(MinExPre(X ∩ V ) ∪MinUnivPre(X ∩ V )) . This is not the case
since the two sets each contain only positions owned by one of the players, and a
tba-sim does not relate positions owned by different players.
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We can now consider the cases of the universal player, i.e. MinUnivPre(X ∩ V ), and the
case of the existential player, i.e. MinExPre(X ∩ V ) separately.
The case of the existential player is very easy. Instead of having to expand an antichain
X to its upward closure X ↑, then taking the predecessors andminimizing again, we can
directly take the predecessors of the minimal elements, and then minimize.

14.15 Lemma
Let Y ⊆ V be an antichain. Then

MinExPre(Y) = Min({x ∈ V ∣ ∃ successor x′ of x with x′ ∈ Y}) .
To get the efficient computation of MinExPre(Y) that we desire, note that it is possible
to deterministically compute the predecessors for each position x′ ∈ Y. Thismeans that
instead of iterating over all x ∈ V and checking their successors, we can backtrack from
the given set.

The case of the universal player is not that easy. It seems that considering some ele-
ments from Y ↑ that are not in the antichain Y cannot be avoided. We refer to [GGN17]
for an algorithm that performs well in practice.

In [GGN17], several algorithms for solving scheduling games have been implemented
and compared, including the naive attractor algorithm and the optimization discussed
here. In random-generated examples, the optimized version outperforms the naive
version by a factor of about 5 in running time, and of about 10 in space consumption.

Exercises

14.16 Exercise: An intricate scheduling problem
Consider the set of tasks T = {τ1, τ2, τ3, τ4, τ5, τ6}, where the computation time Cτ, the
relative deadline Dτ, and the minimal interarrival time Tτ are given by the following
table.

Cτ Dτ Tτ

τ1 2 2 5
τ2 1 1 5
τ3 1 2 6
τ4 2 4 100
τ5 2 6 100
τ6 4 8 100
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We assume that we have 2 processors. Recall that the jobs can be freely migrated be-
tween processors after each tick, but they have to be processed sequentially, i.e. not
both processors can work on the same job during one tick.

a) Assume that each task generates a job as soon as the minimal interarrival time has
elapsed, i.e. all tasks generate a job at time 0, τ1 and τ2 generate a job at time 5, τ3
generates a job at time 6, and so on.

Consider the time interval [0, 8]. Show that there is a scheduling of the jobs for this
interval that makes no job miss its deadline.

Give a graphic representation of your scheduling.

b) Prove that the input is infeasible for online scheduling if we allow the tasks to delay
the generation of jobs.

Hint: Towards a contradiction, assume that an online scheduler exists. Show that by
time 8, at least one job has missed its deadline. Structure your proof as follows:

• Assume that all tasks generate a job at time 0. Note that this fixes the jobs for
the time interval [0, 5), and since theonline scheduler has no knowledgewhen
which job will be generated later, fixes a scheduling on the interval.

• For this fixed scheduling, there are two cases:

– Case 1: The job generated by task τ5 is not scheduled on any processor in
the time interval (2, 4].

– Case 2: The job generated by task τ5 is scheduled for at least one step on
a processor in the time interval (2, 4].

Show that for each of the cases, there is a possible generation of jobs that
makes a job miss its deadline.

Note: One can extend Part a) of the exercise beyond the interval [0, 8] to an infinite run.
Even if we drop the condition that each job is generated as soon as it becomes eligible
and allow arbitrary delays, but we assume that the exact time of generation is known
by the scheduler beforehand, the systems stays schedulable. This means the system
is feasible for clairvoyant scheduling, but not feasible for online scheduling. You have
proven the latter in Part b) of the exercise.

For the full, 28 pages long proof of the feasibility for clairvoyant scheduling,
see [FGB10].
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14.17 Exercise
Let ⊴ be a partial order on some set V.

a) Let X, Y ⊆ V be subsets of V with X ⊆ Y. Prove that X ↑ ⊆ Y ↑.

Does Min(X) ⊆ Min(Y) also hold?

b) Prove that the union of upward-closed sets is again upward closed.

c) Prove Lemma 14.6:
Let X ⊆ V be upward closed, i.e. X = X ↑, then X = Min(X) ↑.
Hint: Prove both inclusions separately. For one inclusion, you can use Part a).

14.18 Exercise: The subword relation
Let Σ be some fixed, finite, non-empty alphabet. We consider the set of words Σ∗ over
Σ.

We define the subword relation ⪯ on Σ∗ as follows: We have v ⪯ w if v can be ob-
tained from w by deleting letters. This means that w = a0a1 . . . ak for some ai ∈ Σ, and
v = aj0aj1 . . . ajl for 0 ⩽ j0 < j1 < . . . < jl ⩽ k.

For example, consider the alphabet {a, b} and w = aba. The words
ε, a, b, aa, ab, ba, aba are smaller with respect to ⪯ than w.

a) Prove that ⪯ is a partial order.

b) For each of the following languages over Σ = {a, b, c}, each represented by a regular
expression, present their minimal elements and check whether they are upward-
closed.

• aΣ∗bΣ∗c

• ab ∪ bΣ∗a ∪ aabb

• cΣ+c

Recall that Σ+ = Σ∗ \ {ε}.
c) Letw ∈ Σ be a word. How can one obtain a representation of the upward closure of

the singleton set containing w, i.e. {w} ↑ ?
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14.19 Exercise: A not so intricate scheduling problem
Consider the instance of MOFST with the tasks T = {τ1, τ2, τ3} specified by the table
below, and m = 2 processors.

Cτ Dτ Tτ

τ1 1 1 2
τ2 2 2 2
τ3 1 2 2

Construct and solve the scheduling game for this input.
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Let us now consider a theoretical application of game theory. As discussed in the in-
troduction, the theory of games with perfect information can be used to obtain proofs
for deep results in automata theory. In this section, we will see how we can use parity
games to prove Rabin’s tree theorem. Rabin’s tree theorem states that the class of reg-
ular languages of infinite trees is closed under complementation. We will also discuss
why this result is so important. Furthermore, we will see how we can use parity games
to solve the language emptiness problem for tree automata.

Sources
The content of this section is based on Roland Meyer’s notes on the topic.
They can be found here:
37_parity_tree_automata_part_3_MSOT.pdf

Infinite ranked trees

First, let us introduce infinite trees. We will consider trees whose nodes are labeled by
letters from a finite alphabet. Each letter in the alphabet has an associated rank that
determines the number of successors in the tree.

15.1 Definition
A ranked alphabet is a finite, non-empty set Σ together with a function rank∶ Σ → N

assigning each symbol a rank.

If a ∈ Σ and rank(a) = k, we write a/k ∈ Σ. We usually call just Σ ranked alphabet and
mean that the rank-function is implicitly given.

15.2 Definition
Let Σ be a ranked alphabet with rank(a) > 0 for all a ∈ Σ.

An infinite rankedΣ-labeled tree, shortly referred to as Σ-tree, is a tree T inwhich each
node v ∈ T is labeledby a symbola ∈ Σ. If the label of a node isa ∈ Σ, then it has exactly
rank(a)many successors.

We formalize this as follows: We identify each node v with its address,
a sequence of natural numbers, i.e. in N

∗.

• The address of the root node is ε.
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• Let v be the address of a node, and let a/k ∈ Σ be the label of this node. Then also
v.0, . . . , v.(k − 1), are valid addresses, namely the addresses of the successors of
v.

This allows us to see T as an infinite, prefix closed subset ofN∗ together with a labeling
function

label∶ T → Σ .

As for ranked alphabets, we say that T is a Σ-Tree and mean that the labeling function
is implicitly given.

A branch of such a tree T is an infinite path starting in the root. It can be identifiedwith
a sequence π ∈ N

ω such that for each i ∈ N, the prefix of length i is a valid address in T ,
i.e. π0 . . . πi−1 ∈ T . For each i ∈ N, the prefix π0π1 . . . πi−1 is the address of the ith node
in the path.

Note that the assumption rank(a) > 0 guarantees that all branches of any Σ-tree are
infinite: There can be no leaves, since a leaf would have a label a/k with k > 0, and thus
also have k > 0 many successors. The theory can easily be extended to allow trees in
which some branches are finite, but this would lead to nasty case distinctions.

15.3 Example
Consider the ranked alphabet Σ = {a/2, b/1}. The following figure depicts a prefix of a
Σ-tree. Next to each node, the text in blue color annotates its address.

a ε

b0 a 1

b0.0

⋮

b1.0

⋮

a 1.1

⋮ ⋮

One may ask why infinite trees are of interest.
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finite words

infinite words finite trees

infinite trees

Finite words canmodel finite executions of systems. Going from finite words to infinite
ones is needed tomodel reactive systems, systems that may run forever, e.g. operating
systems and database servers. Trees are needed to model branching behavior. Conse-
quently, infinite trees can model the branching behavior of reactive systems.

Parity tree automata

We cannot even represent a single infinite tree explicitly in memory, much less sets of
such trees. To solve this problem, wewill consider automata that operate on such trees.
An automaton then serves as a finite description for the set of trees it accepts.

15.4 Definition
A parity tree automaton (PTA) A is given by a tuple

A = (Σ,Q, q0,→,Ω) ,
where

• Σ is a ranked alphabet,

• Q is a finite set of control states,

• q0 ∈ Q is the initial state,

• Ω∶Q → N is a function assigning each state a priority, and

• →= (→a)a∈Σ is a family of transition relations, where →a ⊆ Q × Qrank(a) for each
a ∈ Σ.

Note that the automaton is non-deterministic: For a symbol a and a state q, theremight
exist several (or no) vectors of states q⃗ ∈ Qrank(a) with (q, q⃗) ∈→a.
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To check whether a tree is accepted by an automaton, we need to consider runs. For
finitewords, we can see a runof a finite automatononaword as an assignment of states
to each letter of the word (namely the state in which the automaton is after reading
each letter). Similarly, for infinite trees a run is an assignment of states to nodes of the
tree.

15.5 Definition
Let T be a Σ-tree, and A = (Σ,Q, q0,→,Ω) a PTA.

A run of A on T is a function
run∶ T → Q

that assigns each node a control state such that the following properties hold:

• run(ε) = q0, i.e. the root node is assigned the initial state q0.

• For each v ∈ T with label(v) = a/k ∈ Σ and its successors v.0 . . . v.k − 1, we have

(run(v), (run(v0), . . . , run(v.k − 1))) ∈→a .

This means the assignment of states is consistent with the transitions of the au-
tomaton.

A run is called accepting if on every branch π of the tree, max Inf(Ω(run(π))) is even,
i.e. the highest priority occurring infinitely often is even. Here, we have extended the
function run to branches, i.e. it takes a branch and yields the infinite sequences of states
seen on the branch. As in the previous section, we have lifted Ω from single elements
to sequences in the obvious way.

15.6 Example
We consider a state labeling on the tree from Example 15.3. Next to each node, the text
in red color annotates its address.
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a q0

bq1 a q2

bq3

⋮

bq4

⋮

a q5

⋮ ⋮

For the given state labeling to be a prefix of a valid run of a PTAA, we need the following
conditions to hold:

• q0 is the initial state of A,

• (q0, (q1, q2)) ∈→a,

• (q1, (q3)) ∈→b,

• (q2, (q4, q5)) ∈→a.

A language L of Σ-trees is a set of Σ-trees (just like a language of words was just a set
of words without further restrictions).

15.7 Definition
The language L(A) of a PTA A = (Σ,Q, q0,→,Ω) is the set of all Σ-trees on which A has
an accepting run,

L(A) = {T ∣ T Σ-tree,∃ accepting run of A on T } .
15.8 Definition
A language L of Σ-trees is called regular if it is PTA-recognizable, i.e. there is a PTA
A = (Σ,Q, q0,→,Ω)with L = L(A).
As suggested by the name, the regular languages of infinite trees are indeed a general-
ization of the regular languages of finite words to the setting of infinite trees.
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15.9 Definition
LetL be a language of Σ-trees. Its complementL is the set of all Σ-trees that are not in
L,

L = {T Σ-tree ∣ T /∈ L} .
Rabin’s tree theorem

We have now gathered the prerequisites to state Rabin’s tree theorem.

15.10 Theorem: Rabin’s tree theorem
The class of regular languages of infinite, labeled, ranked trees is closed under comple-
mentation. Given a PTA A, we can effectively construct a PTA A accepting the comple-
ment language, L(A) = L(A).
Note that the second lineof the theoremprovides a strictly stronger statement than the
first line. The closure property justmeans that for any regular languageLof Σ-trees, the
complement language L is also regular. Using automata, this means that for any PTA
A, there is a PTA A accepting the complement language L(A). However, this does not
necessarily imply that we are able to explicitly construct this PTA A.

As mentioned earlier, (possibly infinite) languages of infinite trees cannot be explicitly
stored, we thus represent them by automata. In order to manipulate languages, we
want to manipulate the automata describing them. Rabin’s tree theorem tells us that
this is possible for taking the complement: To obtain a description of the complement
of a language, we construct an automaton based on the given automaton for the orig-
inal language.

15.11 Remark
One might ask whether Rabin’s tree theorem is a deep result (and we thus expect its
proof to be complicated).

We recall the closure properties of regular languages of finite words. By definition, reg-
ular languages of finite words are only closed under union, concatenation and Kleene-
star. That they are also closed under complementation is a theorem that we have seen
in a basic course on automata theory (e.g. “Theoretische Informatik I”).

Recall that the trick for finite automata was to swap the final with the non-final states.
The question is whether this trick is also applicable here.

212



15. Rabin’s tree theorem

First, note that even for finite automata, the trick required the automaton to be deter-
ministic. The language of a non-deterministic finite automaton is the set of all words
that have an accepting run. If we swap the final with the non-final states in such an
automaton, we obtain the set of all words that had a non-accepting run in the original
automaton. This is not the complement of the language, which is the set of all words
that had no accepting run in the original automaton.

For finite automata, the requirement of being deterministic posed no real problem,
since we can apply the powerset construction to a given non-deterministic finite au-
tomaton to obtain a language-equivalent deterministic finite automaton. For parity
tree automata, this is not possible. One can prove that for top-down tree automata,
non-determinism is strictlymorepowerful thandeterminism. This applies to parity tree
automata: There are languages of Σ-trees that are regular, i.e. can be recognized by a
non-deterministic PTA, but that are not recognized by any deterministic PTA. We give
an example in Exercise 15.43.

Assume for a moment we would restrict ourselves to deterministic PTA. Note that a de-
terministic PTA has a unique run on a tree. One may ask whether the trick of swapping
final and non-final states works in this setting. Assume that some deterministic PTA
A = (Σ,Q, q0,→,Ω) is given. To implement the trick, we define a new priority function
Ω′∶Q → N by

Ω′(q) = Ω(q) + 1 .

Note that for an infinite sequence of states p, we have that max Inf(Ω′(p)) is even if and
only if max Inf(Ω(p))was odd.

Consider the deterministic PTA A′ = (Σ,Q, q0,→,Ω′). It does not accept the com-
plement language of L(A): A′ accepts all trees T in which for all branches π,
max Inf(Ω′(run(π))) is even. This means that in all branches π, max Inf(Ω(run(π))) is
odd. This is not equal to the complement language, the language of trees in which
max Inf(Ω(run(π))) is odd for at least one branch π.

Together, these two issues indicate that proving Rabin’s tree theorem will be much
more involved than proving that regular languages of finite words are closed under
complementation.

To prove the theorem, we want to use parity games. Before we consider parity games
for languages, we restrict ourself to the case of a single fixed tree.

Given a Σ-tree T and a PTA A, we want to construct a parity game that is won by the
existential player if and only if the tree T is accepted by the automaton A. To this end,
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the existential player represents the automaton, she has to select transitions that result
in an accepting run. The universal player wants to show that the tree is not accepted
by choosing a branch on which the acceptance condition is not satisfied.

15.12 Definition
Let T be a Σ-tree and let A = (Σ,Q, q0,→,ΩA) be a PTA.

We define the parity game G(T ,A) as follows:

• V = T × Q, i.e. a position (v, q) of the existential player consists of an address
v ∈ T ⊆ N

∗ of a node in the tree, and a state q ∈ Q.

• V = T ×Q⩽n, where n = maxa∈Σ rank(a), i.e. positions (v, q⃗) of the universal player
consist of addresses v and a vector of states q⃗.

• The arcs are defined per player as follows:

R = {((v, q), (v, q⃗)) ∣ (v, q) ∈ V ,∃(q, q⃗) ∈→a, where a = label(v)}
∪⋅ {((v, q⃗), (v.i, q⃗i)) ∣ (v, q⃗) ∈ T × Qk ⊆ V , i ∈ {0, . . . , k − 1}} .

This means the players take turns. The existential player, representing the au-
tomaton, picks a transition that respects the old state and the label of the current
node.

The universal player iteratively picks a branch of the tree by selecting a successor
of the current node. The new state is then the corresponding component of the
state vector that was picked by the existential player earlier.

• The priority function is defined as follows.

Ω(v, q) = ΩA(q) ,
Ω(v, q⃗) = 0 .

On the right-hand side, ΩA refers to the priority function of the automaton A.
The vertices in V have no relevant priority, only the priorities of the existential
player’s positions matter, as they represent nodes of the tree in the run.

With this construction, the desired correspondence holds.

15.13 Lemma
T is accepted byA if and only if the existential playerwins the parity gameG(T ,A) from
position (ε, q0),

T ∈ L(A) iff (ε, q0) ∈ WG(T ,A)
.
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Proof:
Using Theorem 6.7, we know that exactly one player has a positional winning strategy
from (ε, q0).
A winning strategy for the existential player yields an assignment of states that guar-
antees the highest priority occurring infinitely often on each branch to be even, i.e. an
accepting run.

A winning strategy for the universal player identifies for each possible run a branch for
which the highest priority occurring infinitely often is odd, i.e. a witness for the tree to
be non-accepting.

The reader is encouraged to work out the details, see Exercise 15.45. ⬛

Note that it is important that we first let the existential player pick the transition and
then let the universal player pick the successor. This allows the universal player to react
to the way in which the existential player chose to resolve the non-determinism of the
automaton.

15.14 Remark
Although the proof of Lemma 15.13 is straightforward, there is something surprising
about the result.

If T is not inL(A), then any run of A on T is not accepting. Thismeans that one can find
a branch π of T on which max Inf(Ω(run(π))) is odd. This branch is then a witness for
the run not being accepting.

The difference to the result above is that we assume that the run is given, and then
identify the branch violating the acceptance condition. In the parity game, the univer-
sal player needs to identify the violating branch on the fly: In each step, she has to
prolong the branch by onemovewithout knowing the full run. She only knows the run
on the prefix of the tree that has been explored so far, but she does not know how the
existential player will resolve the non-determinism of the automaton on the parts of
the tree that are yet to come.

Proof approach (informal):

To prove Rabin’s tree theorem, we need to lift the parity game approach from a single
fixed tree to all trees. Nevertheless, Lemma 15.13 will be very helpful. For some fixed
tree T , the universal player has a positional winning strategy forG(T ,A) if and only if
T /∈ L(A). This statement is obtained by negating both sides of the equivalence stated
in Lemma 15.13 and applying the positional determinacy of parity games. Hence, we
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have that L(A) is the set of all trees T such that has a positional winning strategy for
G(T ,A):

L(A) = {T Σ-tree ∣ ∃s positional winning strategy for G(T ,A)} .
Our goal is to construct an automaton A with L(A) = L(A) that checks precisely this
property.

However, the property contains an existential quantification, i.e. the automaton needs
to check whether there is some strategy, which is a hard task. We solve this problem
by considering amodified problem: We construct an automaton A′ that gets as input a
tree T and a position strategy s . Instead of checking whether there is some strategy
that is winning, the automaton just has to check whether the given strategy is winning.

Once A′ has been constructed, we can project away the strategy component of the
input. The result of the projection is the desired automaton A that checks for the exis-
tence of a winning strategy. We comment on this final step later in more details. Note
that handling existential quantification by first extending the input and later project-
ing away the extension is a standard trick in automata theory, used e.g. in the proof of
Büchi’s theorem.

Encoding strategies / Alphabet extension:

It remains to discuss the construction ofA′. One problem is that PTAs only support trees
as input. To be able to make the strategy a part of the input, we encode it in the tree.

To this end, let D = {0, . . . , n − 1} be the set of directions, where n = maxa∈Σ rank(a),
i.e. the indices of the children that a node in a Σ-tree might have. A positional strategy
for the universal player for G(T ,A) can be seen as a function

s ∶ T × Q⩽n
→ D ,

since a move of the universal player essentially consists of picking a successor of the
current position. Namely, the universal player picks the next node of the branch which
should be a witness for the run not being accepting.

We use currying¹ to rewrite it as

s ∶ T → (Q⩽n
→ D) .

¹ Currying, namedafterHaskell B. Curry, is the concept of seeing a function taking several parameters, say
f∶A × B → C, as a function taking the first parameter and returning a function that takes the remaining
parameters. In the example, this would mean we define a function f c∶A → (B → C) such that f c(a)
is the function with (f c(a))(b) = f(a, b). This is commonly implemented in functional programming
languages, to ease notation and allow for simple use of partially evaluated functions, e.g. in Haskell.
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Instead of assigning to each tuple (v, q⃗) consisting of address and state vector a child
node s (v, q⃗), we assign to each address v a function f(v)∶Q⩽n

→ D such that for each
state vector q⃗, f(v)(q⃗) is the selected child node.

We define S = Q⩽n
→ D as the set of functions from state vectors to child nodes. As ex-

plained above, a strategy is of type s ∶ T → S, i.e. it assigns to each address an element
from S. Note that the set S is finite.

To encode strategies into trees, wewill consider trees over the extended alphabet Σ×S.
This means that for each address, we have an associated element in S (in addition to
the label from Σ). As explained above, such a tree can be seen as a Σ-tree extended
with a strategy. Vice versa, if a Σ-tree T and a strategy s are given, one can construct a
Σ × S-tree that is basically T extended by s .

We make this formal in the following.

15.15 Definition
Let Σ be a ranked alphabet. We define the enhanced ranked alphabet Σ × S with
rank(a, s) = rank(a). We define the two projections

projΣ ∶ Σ × S → Σ(a, s) ↦ a ,

projS ∶ Σ × S → S(a, s) ↦ s ,

For a Σ × S-tree T ′, we define projΣ(T ′) to be the Σ-tree in which all labels (a, s) are
replaced by projΣ(a, s) = a.

For a Σ × S-tree T ′, we furthermore define s (T ′), a strategy for defined as follows:

s (T ′) ∶ T × Q⩽n
→ D(v, q⃗) ↦ (projS labelT ′(v))(q⃗) .

Proof approach (formal):

For the proof of Rabin’s tree theorem, we consider the language L′ of Σ × S-trees T ′

trees such that the strategy-component is a winning strategy for the universal player
for the acceptance game on the tree formed by the Σ-component,

L′ = {T Σ × S-tree ∣ s (T ′) is a winning strategy for G(projΣ(T ′),A)} .
We proceed as follows:
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1. We prove that projΣ(L′) = L(A).
2. We construct a PTA A′ with L(A′) = L′, proving that L′ is regular.

3. We prove that then also projΣ(L′) = L(A) is regular.
We finally obtain A = projΣ(A′)with L(A) = L(A).

The first and third step are easy, the second step is the crucial part of the proof.

Step 1: Proving that projΣ(L′) = L(A)
We show that projecting the strategy-component of the trees in L′ away indeed gives
us the complement of L(A). By projΣ(L′) we mean the set of all Σ-trees obtained by
applying projΣ to all Σ × S-trees in L′, projΣ(L′) = {projΣ(T ′) ∣ T ′ ∈ L′}.
15.16 Lemma
projΣ(L′) = L(A).
Proof:
By Lemma15.13, a treeT is not inL(A) if and only if the universal player has a positional
strategy for the parity game G(T ,A).
For any tree T ′ ∈ L′, there is a positional winning strategy on G(T ,A), where
T = projΣ(T ′), namely the one defined by the strategy-parts of the labels. This means
projΣ(T ′) ∈ L(A).
If a tree T is not in L(A), we can take the strategy and enhance the tree by putting the
strategy on each node as a second component of the label, obtaining the Σ× S-tree T ′.
The tree T ′ is in L′ by definition, and we have projΣ(T ′) = T . ⬛

Step 2: Constructing A′ with L(A′) = L′, proving thatL′ is regular.

This is the difficult part of the proof. To obtain A′ we proceed in several steps:

• we construct a word automaton Abranches out of the given PTA by decomposing it
into branches,

• we complement this word automaton to obtain a word automaton B,

• and we lift B to obtain again a tree automaton A′.

We start with explaining how to decompose a tree into its branches.
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15. Rabin’s tree theorem

15.17 Remark
If we have rank(a) = 1 for all symbols a ∈ Γ of a ranked alphabet, each Γ-tree is actually
an infinite word, since there is no branching.

We call a PTA over such an alphabet a parity word automaton, and a regular language
of Γ-trees a regular language of infinite words, or ω-regular language.

15.18 Definition
Let Σ′ be a ranked-alphabet, and let D = {0, . . . , n − 1}, where n = maxa∈Σ′ rank(a). We
define the ranked alphabet Σ′ × D with rank(a, d) = 1.

Every branch π of a Σ′-tree π can be seen as a word over Σ′ × D:

• The first component of each entry gives the label,

• the second component gives the successor that will be picked.

Given a tree T ′, we can define the word-language Branches(T ′) of all its branches.
15.19 Example
Consider the ranked alphabet Σ′ = {a/2, b/2}. The following figure depicts a prefix of a
Σ′-tree.

a

⋮ b

⋮ a

⋮ ⋮

The branch marked by the red arcs is represented by the following word over{a, b} × {0, 1}: (a, 1)(b, 1)(a, 0) . . . ∈ (Σ′s × D)ω .

Note that compared to our previous definitions of branches, we have to put the label
inside the representation of the branch.
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In our case, the base alphabet will be Σ × S, i.e. we consider a tree extended with a
strategy. In the following, we construct an automaton Abranches over Σ × S × D that runs
on branches of such an extended tree.

Let A = (Σ,Q, q0,→,Ω) be the given PTA for the language that wewant to complement.
We construct a parity word automaton

Abranches = (Σ × S × D,Q, q0,→
′
,Ω)

such that a transition (q, q′) is in →
′
a,s,d if and only if there is a transition (q, q⃗) ∈→a of A

such that s(q⃗) = d and q′ = q⃗d. Note that the other components Q, q,Ω coincide with
those of A.

For a Σ × S-tree T ′, this automaton checks whether the strategy-components of the
labeling isnot awinning strategy for theuniversal player. Consider the set Branches(T ′)
of branches of T ′.

• All branches that are not selected by the strategy are rejected since there is no
suitable transition for them in the transition relation→

′.

• A branch that is selected by the strategy is accepted if and only if there is a se-
quence of transitions of Abranches leading to acceptance. To this sequence of tran-
sitions corresponds a sequence of transitions of A that will also ensure that the
branch in projΣ(T ′) is accepted. This means that the branch is not a witness for
the acceptance condition being violated, and thus the universal player’s strategy
is not winning.

We make this observation formal in the following lemma.

15.20 Lemma
Let T ′ be a Σ×S tree. The strategy obtained by projS is a winning strategy for the univer-
sal player on G(T ,A), where T = projΣ(T ′), if and only ifL(Abranches)∩ Branches(T ′) = ∅.

Proof:
Assume that the intersection L(Abranches) ∩ Branches(T ′) is non-empty. Then there is a
branch π of T ′ that is accepted by Abranches, and thus there is an accepting run of Abranches

on this branch π.

Consider the play of G(T ,A) in which the universal player’s moves conform to the strat-
egy obtained by projS, and the existential players moves correspond to the transitions
picked in the run r. Since the run is accepting, the play is won by the existential player.
This proves that the universal player’s strategy cannot be winning.
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15. Rabin’s tree theorem

For the other direction, assume that L(Abranches) ∩ Branches(T ′) = ∅. Consider a play
of G(T ,A) in which the universal player’s moves conform to the strategy obtained by
projS. To the play corresponds a run of L(Abranches) on the branch π that is selected by
the universal player during the play: The existential player’s moves in the play corre-
spond to transitions of A and also to transitions of Abranches. Since the branch π is not in
L(Abranches), this run cannot be accepting, and the play is won by the universal player.

⬛

Using basic set theory, we can rewrite the emptiness of the intersection as an inclusion
in the complement.

15.21 Corollary
Let T ′ be a tree. The strategy obtained by projS is a winning strategy for the universal
player on G(T ,A), where T = projΣ(T ′), if and only if Branches(T ′) ⊆ L(Abranches).
Our goal is to use this corollary to prove the regularity of L′. The problem is that it is
not clearwhetherL(Abranches) is a regular language. In fact, proving the regularity of this
lecture seems to require Rabin’s tree theorem.

Luckily,L(Abranches) is just a regular language of infinitewords. These aremuch easier to
handle than regular tree languages. We can use the following theorem without proof,
which states that parity word automata are determinizable. (Note that this is not true
for parity tree automata!)

15.22 Theorem: Safra [Saf88]
Let Aw be a parity word automaton. One can construct a deterministic parity word au-
tomaton A′w with L(Aw) = L(A′w).
15.23 Remark: On the proof of Safra’s result
The proof uses the Safra-construction, another big result from automata theory. It can
be seen as an extended version of the powerset construction used to determinize finite
automata. It also leads to a blow-up in the number of states. If the original automaton
had k states, its determinization has up to 2O(k⋅log k) states.
15.24 Remark
Bydeterministic, wemean that for each stateq andeach symbola ∈ Σ′, there is aunique
transition (q, q′) ∈→a.

A deterministic automaton has a unique run on each infinite word. Whether the word
is in the language of the automaton depends on whether this run is accepting.
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Using the theorem, we get that regular languages of infinite words are closed under
complement. We can use the same trick as for the complementation of NFAs: We invert
the final states. Technically, this means we manipulate the priority assignment.

15.25 Corollary
Let Aw be a parity word automaton. One can construct a deterministic parity word au-
tomaton A′w with L(A′w) = L(Aw).
Proof:
Using Theorem 15.22, we can construct the deterministic parity word automaton
A′w = (Γ,Q′

, q′0,→
′
,Ω′). We define Aw = (Γ,Q′

, q′0,→
′
,Ω′′) with Ω′′(q) = Ω′(q) + 1. Note

that the unique run of Aw on a word π is accepting if and only if the unique run of A′w
on the word was non-accepting. We obtain L(A′w) = L(A′w) = L(Aw). ⬛

This allows us to construct a deterministic parityword automaton acceptingL(Abranches).
Let B = (Σ× S×D,QB

, qB
0,→

B
,ΩB) be this automaton. We will use it to construct a parity

tree automaton for L′.

15.26 Proposition
L′ is regular.

Proof:
We define the parity tree automaton

A′ = (Σ × S,QB
, qB

0,→
′
,ΩB)

where the transition relation→
′ is defined as follows: A transition (q, q⃗) is in→

′
a,s if and

only if for each d ∈ D, we have that (q, q⃗d) ∈→B
a,s,d is the unique transition of B for the

source stateq and the symbol (a, s, d). Note that theother componentsQ, q,Ωcoincide
with those of B.

In a run of A′ on a tree T ′, it essentially simulates B along each branch of the tree.

It remains to argue that A′ indeed accepts L′.

By the construction of A′, a tree T ′ is accepted by A′ if and only if B accepts each
of its branches π ∈ Branches(T ′). Since L(B) = L(Abranches), this means that
Branches(T ′) ⊆ L(Abranches). By Corollary 15.21, this is the case if and only if the strat-
egy obtained by projS is a winning strategy for the universal player on G(T ,A), where
T = projΣ(T ′). This was the condition for being in L′. ⬛
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15. Rabin’s tree theorem

Step 3: Conclude that projΣ(L′) = L(A) is regular
We can see the projection as a special case of the more general concept of rank-
preserving functions.

15.27 Definition
Let Σ1, Σ2 be ranked alphabets. We call a function f∶ Σ1 → Σ2 rank-preserving if for all
a ∈ Σ1, we have rank(f(a)) = rank(a).
Given a Σ1-tree T , we define f(T ) to be the Σ2 tree inwhich all labels a ∈ Σ1 are replaced
by f(a) ∈ Σ2. Note that since f is rank-preserving, f(T ) is indeed a valid Σ2-tree.

Regular languages of infinite trees are effectively closed under rank-preserving func-
tions.

15.28 Lemma
Let L be a regular language of Σ1-trees, let f∶ Σ1 → Σ2 be rank-preserving. Then

f(L) = {f(T ) ∣ T ∈ L}
is a regular language of Σ2-trees.

Proof: Exercise 15.44, Part c). ⬛

For the desired statement to follow, it remains to observe that the projection onto Σ is
indeed rank-preserving.

15.29 Lemma
The projection projΣ∶ Σ × S → Σ is rank-preserving.

Proof:
By definition, we have rank(a, s) = rank(a). ⬛

Finally, we are able to compose our results into a proof of Rabin’s tree theorem.

Proof of Theorem 15.10:
The languageL′ is regular by Proposition 15.26. Furthermore, we have projΣ(L′) = L(A)
by Lemma 15.16.

The projection is rank-preserving by Lemma 15.29. Thus, L(A) is regular by
Lemma 15.28.
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Note that the Proposition 15.26 and Lemma 15.28 can be strengthened to effectively
return the desired automata. This proves the second part of Rabin’s tree theorem. Note
that for the construction, we need Safra’s construction (Theorem 15.22) which we have
not explained. ⬛

15.30 Remark
ThePTAA′ constructed in theproof of Proposition15.26 is deterministic, since theparity
word automaton Bwasdeterministic. Thismeanswe can representL′ using a determin-
istic PTA.

At first glance, this seems to violate our result that deterministic PTAs are strictly less
expressive than non-deterministic ones (Exercise 15.43). This contradiction is resolved
by looking in detail at the alphabet over whichL′ and A′ are defined: It is the enhanced
alphabet Σ × S.

If we project the strategy-component away to obtain the automaton A for L(A), we
may obtain a non-determinism automaton: There might be two letters (a, s) and (a, s′)
for which the Σ-component is the same, but the strategy-component differs. For each
source state q, automaton A′ will have a unique transition for each of them. The au-
tomaton A cannot distinguish these letters, it will have (at least) two transitions for the
letter a.

This means that enhancing the tree by the strategy did not only make our theory work,
it also allows the language to be recognizable by a deterministic PTA.

To conclude this section, we want to check the emptiness of PTA languages via parity
games. Given a PTA A, we want to decide whether L(A) = ∅ holds, i.e. whether A is
actually the finite representation for a set consisting of at least one tree.

To do so, we construct a finite parity game G(A). The idea is to drop the T from the
positions in G(T ,A). The T component was used to force the existential player to re-
spect the labeling of the given tree. Nowwe are interested in whether there is a tree. To
model this, we allow the existential player to pick an arbitrary transition, without hav-
ing to respect the label of the automaton. Thismeans that during a play, the existential
player can construct the tree as she likes.

Formally, we define the game G(A) as follows:

• V = Q,

• V = Q⩽n, where n = maxa∈Σ rank(a),
• V = V ∪⋅ V ,
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15. Rabin’s tree theorem

•
R = {((q, q⃗)) ∣ q ∈ V ,∃a∃(q, q⃗) ∈→a}

∪⋅ {((q⃗, q⃗i)) ∣ q⃗ ∈ Qk ⊆ V , i ∈ {0, . . . , k − 1}} .
• Ω(q) = ΩA(q) ,
Ω(q⃗) = 0 .

15.31 Proposition
The language ofA is non-empty if and only if the existential playerwins the parity game
G(A) from position q0,

L(A) ≠ ∅ iff q0 ∈ WG(A)
.

The proof is an easy extension of the proof of Lemma 15.13.

Note that – in contrast to the game G(T ,A) – the game arena of G(A) is finite. Thus,
Zielonka’s recursive algorithm can be used to actually solve it.

If L(A) ≠ ∅, then the positional winning strategy for the existential player provides a
finite description of a tree in L(A).
Monadic second-order logic over infinite binary trees / S2S

The importanceof Rabin’s tree theoremcomes from the relationof parity tree automata
to a certain kind of logic. Parity tree automata are equivalent to formulas in monadic
second-order (MSO) logic over infinite trees. Rabin’s tree theorem is crucial for prov-
ing the equivalence. The translation togetherwith thedecisionprocedure for language
emptiness means that the satisfiability of formulas in monadic second order logic over
infinite trees is decidable. The latter result is also sometimes called Rabin’s tree theo-
rem.

Without loss of generality, we will assume that all symbols in the alphabet have rank
exactly 2. For this reason, monadic second order logic over infinite trees is also called
S2S, second-order logic with 2 successors.

The following diagram depicts the translation and the algorithmic problems on each
side.

PTA A

Emptiness
L(A) = ∅?

S2S-formula φ

Satisfiability
∃T ∶S(T ) ⊧ φ?
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15.32 Remark
There is alsomonadic secondorder logic over infinitewords. It is also called S1S, second
order logic with one successor. It corresponds to parity word automata.

In second-order logic, there are two types of variables:

• First-order variables, usually denoted by lowercase letters x, y, z, represent val-
ues, i.e. in our case nodes of a tree.

• Second-order variables, usually denoted by uppercase letters X, Y, Z, represent
sets of values, i.e. in our case sets of nodes of a tree.

The logic is called monadic, because second-order variables denote sets of values. In
polyadic logic, they can denote sets of tuples of values.

We will now formally introduce the syntax and semantics of S2S. We first introduce the
syntax, e.g. terms and formulas. We give a brief explanation of the meaning of the syn-
tax in italic. This should not be seen as a formal definition of the semantics.

15.33 Definition: Syntax of S2S
A (first-order) term s of S2S representing a node of a tree is

• either the symbol ε representing the root node of the tree

• or a first-order variable x representing the node to which x is mapped in the assign-
ment under consideration.

An atomic formula of S2S is, for terms s, s′,

• s = s′ expressing that s and s′ should represent the same node,

• s ⊑ s′ expressing that s should represent an (indirect) ancestor of the node repre-
sented by s′,

• Pa(s) for each symbol a/2 ∈ Σ expressing that the node represented by s is labeled by
a,

• Si(s, s′) for i ∈ {0, 1} expressing that s′ represents the left (if i = 0) resp. right (if i = 1)
successor of s,

• s ∈ X for a second-order variable X expressing that the set of nodes represented by
X contains the node represented by s.

The formulas of S2S are defined inductively as follows:

• Every atomic formula is a formula.
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15. Rabin’s tree theorem

• If φ, φ′ are formulas, then the following are formulas

¬φ φ ∧ φ′ φ ∨ φ′ ∃x∶ φ ∀x∶ φ ∃X∶ φ ∀X∶ φ .

A variable is free in a formula if it is not bound by a preceding quantifier. We call a
formula φ closed if it has no free variables.

15.34 Remark
The syntax of S2S is the syntax of monadic second-order predicate logic with equality
over the following signature:

• ε/0 is the only function symbol and constant (arity 0).

• The predicates are the binary predicates ⊑/2, S0/2, S1/2 and for each symbol a ∈ Σ
the unary predicate Pa/1.

Note that since the logic ismonadic, all function symbols andpredicates take first-order
terms as their parameters. Themembership predicate x ∈ X (that is not explicitly given
in the signature) is the only way to involve second-order variables.

To evaluate S2S – like any other kind of predicate logic – we need a structure. A struc-
ture consists of a set of data values and an interpretation of the function and predicate
symbols. We are interested in structures that are given by Σ-trees.

15.35 Definition
Let T be a Sigma-tree. Then we define S(T ) to be the structure where

• the data values are T , i.e. the nodes (addresses) of the tree are the data val-
ues. First-order terms represent nodes, second-order variables represent sets of
nodes.

• We have εT = ε ∈ T , i.e. ε is indeed interpreted to denote the root node.

• For two nodes v, v′, we have
v ⊑T v′ = true

iff v is a prefix of v′, i.e. v is an ancestor of v′.

• For two nodes v, v′ and i ∈ {0, 1}, we have

STi (v, v′) = true

iff v′ = v.i, i.e. v′ is the left (i = 0) resp. right (i = 1) successor of v in the tree.
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• For a node v and a ∈ Σ, we have

PTa (v) = true

iff label(v) = a, i.e. v is labeled by a.

To evaluate a formula, a structure S(T ) is not sufficient, we also need an interpretation

IT ∶ (First-order Variables → T ) ∪ (Second-Order Variables → P(T)) ,
also called valuation or assignment. This function maps each free first-order variable x
to a node IT (x) in T , and each second-order variable X to a set of nodes IT (X) ⊆ T .

The evaluation of formulas can then be defined by structural induction. Even when
the formula under consideration is closed, we will need an interpretation during the
induction after the quantifiers have been resolved.

15.36 Definition: Semantics of S2S
Let S(T ) be a structure and let IT be a corresponding interpretation.

For a term s, let

I(s) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩I(x) ∈ T s = x Variable

εT = ε ∈ T s = ε

be the node of T represented by s.

Then we can inductively define the models or satisfies relation for formulas.

S(T ), I ⊧ s = s′ if I(s) = I(s′) ,
S(T ), I ⊧ s ⊑ s′ if I(s) ⊑T I(s′) ,
S(T ), I ⊧ Si(s, s′) if STi (I(s), I(s′)) ,
S(T ), I ⊧ Pa(s) if PTa (I(s)) ,
S(T ), I ⊧ s ∈ X if I(s) ∈ I(X) ,
S(T ), I ⊧ ¬φ if S(T ), I /⊧ φ ,

S(T ), I ⊧ φ ∧ φ′ if S(T ), I ⊧ φ and S(T ), I ⊧ φ′
,

S(T ), I ⊧ φ ∨ φ′ if S(T ), I ⊧ φ or S(T ), I ⊧ φ′
,

S(T ), I ⊧ ∃x∶ φ if there is v ∈ T such that S(T ), I[x ↦ v] ⊧ φ ,

S(T ), I ⊧ ∀x∶ φ if for all v ∈ T we have S(T ), I[x ↦ v] ⊧ φ ,

S(T ), I ⊧ ∃X∶ φ if there is V ⊆ T such that S(T ), I[X ↦ V] ⊧ φ ,

S(T ), I ⊧ ∀X∶ φ if for all V ⊆ T we have S(T ), I[X ↦ V] ⊧ φ .
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If φ is closed, the initial interpretation does not matter. If S(T ) together with any inter-
pretation satisfies φ, we write S(T ) ⊧ φ and say that T satisfies φ or that T is a model
for φ.

15.37 Example
Consider the following closed formula.

φ ≡ ∃X∶ ε ∈ X ∧ ∀x∶ x ∈ X → (Pa(x) ∧ ∃y∶ y ∈ X ∧ (S0(x, y) ∨ S1(x, y)))
A tree is a model for φ if and only if it contains at least one branch labeled only by as.

15.38 Remark
ε and ⊑ are syntactic sugar, the other predicates are powerful enough to express them.

a) The formula
root(x) = ∀y∶ ¬S0(y, x) ∧ ¬S1(y, x)

is satisfied by S(T ), I if and only if I(x) is the root of T . It expresses that x has no
predecessor (and the root is the only node with this property).

b) The formula

ancestor(x, y) = ∀X∶ (x ∈ X ∧ ∀y∶ y ∈ X → ∀z∶ (S0(y, z) ∨ S1(y, z)) → z ∈ X) → y ∈ X

is satisfied by S(T ), I if and only if I(x) is a prefix of I(y). It expresses that every set
that contains x and is closed under taking the successors also has to contain y. Since
this then holds for the smallest such set, that is the set of indirect successors of x, we
have that x is an ancestor of y.

One can introducemore syntactic sugar, e.g. one usually writes s ≠ s′ and s /∈ X instead
of¬(s = s′) and¬(s ∈ X). The other Boolean operators like↔ (equivalence) and⊕ (XOR)
can be expressed using conjunction, negation and disjunction.

The crucial algorithmic problem is (as for many other kinds of logic) satisfiability.

S2S-Satisfiability

Given: A closed S2S-formula φ
Question: Is there a tree T with S(T ) ⊧ φ?

15.39 Theorem: Rabin’s tree theorem
S2S-Satisfiability is decidable.
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The proof works as follows: We can translate a given formula φ into an equivalent PTA
Aφ, and check language emptiness forAφ using Proposition 15.31. The translation is the
following theorem.

15.40 Theorem: Rabin’s tree theorem
S2S-formulas and PTAs are equivalent:

a) For a given closed PTA A we can effectively construct a closed S2S-formula φA such
that a tree models φA if and only if it is accepted by Aφ.

L(A) = {T ∣ S(T ) ⊧ φA} .
b) For a given closed S2S-formula φ we can effectively construct a PTA Aφ such that a

tree T is accepted by Aφ if and only if it is as a model for φ,

L(Aφ) = {T ∣ S(T ) ⊧ φ} .
Sketch of the Proof:

a) For a given automaton A, it is not too hard to construct a formula φA expressing that
A has an accepting run on a tree.

b) Given a formula, we need to construct a tree automaton.

• For the atomic formulas one can directly create PTAs.

• Negation, conjunction and disjunction are imitated by the corresponding op-
erations complementation, union and intersection on PTA languages. (This is
where the first formulation of Rabin’s tree theorem comes into play.)

• Dealingwith variables requires a trick. (This was knownbefore in the literature
from Büchi’s theorem on the equivalence of WMSO-definable languages and
the regular languages of finite words).

Let us assume that there are only existential quantifiers. This can be enforced
by rewriting ∀x∶ φ as ¬∃x∶ ¬φ (and similar for second-order variables).

To deal with variables, one enhances the alphabet. Instead of using Σ as the al-
phabet, we use Σ×BV1 ×BV2 where V1, V2 are the sets of free first- resp. second-
order variables. This means each position is labeled not only by a symbol in
Σ, but also by vectors of Boolean values denoting which variables are repre-
sented by the position. For a position v labeled by (a, x⃗, X⃗), we have I(y) = v if
x⃗y = 1, and similarly v ∈ I(Y) if X⃗Y = 1.
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15. Rabin’s tree theorem

Wheneverwehave anexistential quantifier bindinga variable, weproject away
the correspondingcomponentof the vector. For first order variables y, wehave
to enforce that there is a unique position with x⃗y = 1. This can be done by
intersecting with a suitable PTA language.

Since the original formula was closed, all additional components will be pro-
jected away during the inductive construction. The final automatonwill be an
automaton just over the alphabet Σ.

⬛

15.41 Corollary
The class of S2S-definable languages, i.e. the class of languages

L(φ) = {T ∣ S(T ) ⊧ φ}
whereφ is a closed S2S-formula, is exactly the class of regular languages of infinite trees.

15.42 Example

a) The language of A1 from Exercise 15.43 can be expressed by the following S2S-
formula:

Pa(ε)∧∀x∀y∀z∶ (S0(x, y)∧S1(x, z)) → ((Pa(x) → Pb(y) ∧ Pb(z)) ∧ (Pb(x) → Pa(y) ∧ Pa(z))) .
b) The language of A2 from Exercise 15.43 can be easily expressed by the following

S2S-formula:
∃x∶ Pa(x) ∧ ∀y∶ x ≠ y → Pb(y) .

c) Expressing the language of A3 is more complicated, see Exercise 15.48.

Exercises

15.43 Exercise
Consider the ranked alphabet Σ = {a/2, b/2}. Note that Σ-trees are so-called full infinite
binary trees.
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a) Consider the PTA A1 = (Σ, {q0, q1}, q0,→,Ω)with

→a = {(q0, (q1, q1))} ,
→b = {(q1, (q0, q0))} ,

Ω(q0) = Ω(q1) = 0 .

Describe its language L(A1).
b) Consider the PTA A2 = (Σ, {q+, q−}, q+,→,Ω)with

→a = {(q+, (q−, q−))} ,
→b = {(q+, (q+, q−)), (q+, (q−, q+)), (q−, (q−, q−))} ,

Ω(q−) = 0 , Ω(q+) = 1 .

Formally prove that L(A2) is exactly the set of Σ-trees in which exactly one node is
labeled by a.

Remark: A2 is non-deterministic, and one can prove that there is no deterministic
PTA A accepting the same language.

c) Present a PTA A3 whose language is the set of Σ-trees in which exactly one branch
contains infinitely many nodes labeled by a.

Argue that your automaton indeed has this property.

15.44 Exercise: Closure properties of regular languages of infinite trees
Prove that regular languages of infinite trees are closed under union, intersection, and
projection.

Let A = (Σ,Q, q0,→,Ω),A′ = (Σ,Q′
, q′0,→

′
,Ω′) be PTAs over the same ranked alphabet Σ.

a) Show how to construct a PTA A∪ with L(A∪) = L(A) ∪ L(A′).
b) Show how to construct a PTA A∩ with L(A∩) = L(A) ∩ L(A′).

Hint: Use Rabin’s tree theorem.

c) Let Σ′ be a ranked alphabet, and f∶ Σ → Σ′ be a rank preserving function, i.e. we
have rankΣ(a) = rankΣ′(f(a)) for all a ∈ Σ. For a Σ-tree T , we define f(T ) to be the
Σ′-tree in which the label a of each node is replaced by f(a). Note that the fact that f
is rank-preserving is crucial for f(T ) being a Σ′-tree.
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15. Rabin’s tree theorem

For a language of Σ-trees L, we define

f(L) = {f(T ) ∣ T ∈ L} .
Show how to construct a PTA Af = (Σ′,Qf, q0f,→f,Ωf)with L(Af) = f(L(A)).

15.45 Exercise
Let T be a Σ-tree and let A be a PTA. Consider the parity game G(T ,A) as defined in
Definition 15.12.

a) The game arena of G(T ,A) is not necessarily deadlock-free.

In which case can deadlocks occur?

Modify the game arena such that it becomes deadlock free such that the validity of
Lemma 15.13 is preserved.

How can one modify the automaton without changing its language such that
G(T ,A) is deadlock-free without modification?

b) Assume that the existential player has apositionalwinning strategy s fromposition(ε, q0) in G(T ,A).
Present an accepting run of A on T .

Hint: Construct the run inductively, guided by s .

c) Assume that the universal player has a positional winning strategy s from position(ε, q0) in G(T ,A).
For each candidate run of A on T , identify a branch on which the acceptance condi-
tion is violated.

15.46 Exercise
In this exercise, we want to apply Rabin’s tree theorem to the automaton A1 from Part
a) of Exercise 15.43.

a) Construct the set S = Q⩽n
→ D.

Hint: To avoid the following construction becoming excessively large, restrict the
domain to vectors of states that can actually occur.

b) Construct the parity word automaton Abranches.
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c) Make Abranches deterministic by adding an error-state and the corresponding tran-
sitions. (For each symbol a, s, d, and each state q, there needs to be exactly one
transition (q, q′) ∈→a,s,d.) Complement Abranches to obtain the automaton B with
L(B) = L(Abranches).

d) Construct the parity tree automaton A′ for L′ that simulates B on all branches of a
tree.

e) Project A′ to Σ to obtain the automaton A1. Check that L(A1) = L(A1) indeed holds
by describing the language of A1.

15.47 Exercise

a) Let A be a PTA, and assume that the existential player wins the parity game G(A)
from the initial position q0.

Explain howawinning strategy for the existential player can be used to define a tree
in T ∈ L(A). Make this formal by explaining the construction of the set of nodes T
and its labeling function labelT .

b) Consider automatonA2 fromPart b) of Exercise 15.43. Transform the automaton to a
language-equivalent automaton that has at least one transition (q, q⃗) ∈→a for each
source state q and symbol a. (This will ensure that the parity game is deadlock-free.)

Construct the parity game G(A) and identify a positional winning strategy for the
existential player. How does the tree described by the strategy look like?

Hint: Restrict yourself to positions Q2 of the universal player that can actually occur
during a play of the game. This prevents the game arena frombecoming excessively
large.

15.48 Exercise
Consider the Alphabet Σ = {a/2, b/2}. Our goal is to create a closed S2S-formula for the
language L of trees in which exactly one branch contains infinitely many as (known
from Part c) of Exercise 15.43).

a) Consider the following S2S formula that has the free second-order variable X.

Branch(X) = ε ∈ X (1)
∧ ∀x∶ x ∈ X → ∃y∃z∶ S0(x, y) ∧ S1(x, z) ∧ (y ∈ X ⊕ z ∈ X) (2)
∧ ∀y∶ (y ∈ X ∧ y ≠ ε) → ∃x∶ x ∈ X ∧ (S0(x, y) ∨ S1(x, y)) (3)
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15. Rabin’s tree theorem

Here, ⊕ is XOR and → is implication. They can be easily rewritten using negation,
conjunction, and disjunction.

Argue that Branch(X) evaluates to true under a structureS(T ) and an interpretation
IT if and only if IT (X) is a set of positions that forms a branch of T . Explain the
purpose of each Line (1) - (3).

b) In S2S, we only have an equality predicate for first-order terms. Construct a formula
Equal(X, Y) with two free second-order variables X, Y that evaluates to true under a
structure S(T ) and an interpretation IT if and only if IT (X) = IT (Y).

c) Construct formulas Fina(X) respectively Infa(X) with one free second-order variable
X that evaluate to true under a structure S(T ) and an interpretation IT if and only
if IT (X) contains only finitely many respectively infinite many nodes labeled by a.

For simplicity, you may suppose that IT (X) is a branch of T .

d) Combine the previous parts of this exercises to construct a closed S2S-formula φL

that evaluates to true under a structure S(T ) if and only if T ∈ L.
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