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Literature

Unfortunately, it seems that there is no single book containing the contents of this lec-
ture.

« There is a plethora of books on game theory, but they mostly study games with
imperfect information (which are of interest for economic science). These books
usually treat games with perfect information hardly or not at all.

« There are books on perfect-information games that consider them from a purely
mathematical perspective, i.e. with an emphasis on theoretical concepts like de-
terminacy and without caring about the algorithmics.

« Parts of the lecture can be found, for example, in books on automata theory,
where certain games are introduced as tools to obtain automata-theoretic results.
In contrast to this approach, we will focus on game-theoretic results and see their
automata-theoretic consequences as applications.

Therefore, | have to refer the reader to a collection of books and papers for the different
types of games considered in this lecture. The later sections will contain references to
the books and papers that | used to prepare the corresponding lecture. A full list of
references can be found at the end of this document.

One should note that the basic definitions, e.g. those of games and plays, differ be-
tween different books and papers. For example, in parts of the literature, games are
deadlock-free by definition, while we try to avoid making such an assumption. These
differences can usually be overcome by minor tweaking.

Other people have taught lectures on games with perfect information whose syllabus
overlaps with the one of this lecture. In particular, | want to refer the reader to the
lecture notes for a lecture on games given by Martin Zimmermann at the University of
Saarland [ZKW].
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1. Introduction

Games, in particular board games, have been arecreational activity for humans for thou-
sands of years. While this fact alone might justify that they are studied in science, one
may ask: Why exactly do theoretic computer scientists study board games? A second
question that may arise when looking at the title of this lecture is what distinguishes
games with perfect information from other types of games.

Perfect vs. imperfect information

Let us first answer the second question, then the first. Most games that are played by
humans are actually not perfect-information games: In some games, a part of the infor-
mation is only visible to one of the players, e.g. in Battleships. In others, randomness
plays a role, e.g. in Mensch argere dich nicht. Most card games, e.g. Poker, combine
both: Initially, the cards are shuffled randomly, and later, each player has a set of cards
on her hand that is not visible to the other players.

It turns out that randomness can usually be modeled by "hidden information”. Thus,
all such games are called games with imperfect information. These games are widely
studied in science, in particular in economic science. The players of a game can model
companies and the rules of the game model a market, and thus finding an optimal way
to play the game corresponds to finding an optimal behavior fora company in a certain
market situation.

The concepts and methods used to study games with imperfect information differ
widely from the ones used to study games with perfect information. Therefore, the
presentation of games with imperfect information in this lecture will be limited to this
paragraph. We present the most famous (and most simple) example of a game with
imperfect information that is studied in science. The rules of prisoner’s dilemma are as
follows: Two criminals are caught after a robbery by the police and interrogated sepa-
rately, with no means of communication. If both remain silent, they can only be con-
victed for a lesser crime, and have to serve 2 years in prison each. The prosecutor makes
them an offer: If one of them confesses the crime (and thereby betrays the other), the
traitor only has to serve one year in prison, while the other criminal can be convicted
for robbery and has to go to prison for 4 years. The catch is that if both confess, both
serve 4 years in prison. Obviously, the sum of the years in prison is minimized if both
stay silent, then they have to serve 4 years in total. This value is usually called the social
optimum. This solution does not take selfishness into account: One could argue that
the optimal solution is for both to confess and betray their partner: They now serve 8
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. Introduction & preliminaries

years in total, but none of the players can improve their personal situation by changing
their behavior. Such a situation is called Nash equilibrium, and finding such equilibria
is one of the goals of the studies that are made. The factor between Nash equilibrium
and social optimum, % = 2inour case, is called the price of anarchy. These concept can
for example be applied to study traffic flow. One can show that under the assumption
of the drivers being selfish, there are situations in which the travel time decreases for
all drivers if a road is closed.

Let us turn back to games with perfect information. We say that a game is a perfect-
information game if both players know the rules of the game (i.e. the possible states in
which the game be in, and the moves that lead from one state to another), and when-
ever it is their turn, they know the current state and the full history, i.e. all states in
which the game has been before. Among real life board games, many games in which
no randomness is involved belong to this class, e.g. Chess and Go. Those two are actu-
ally simple examples: We will see in Section f that in principle, Chess and Go are easy
to solve using a known algorithm. The only thing that prevents us from actually doing
so is the huge number of possible states that cannot be handled by modern comput-
ers. (In fact, this will probably stay this way in the foreseeable future.) In principle, we
can consider games that are far more complicated, because they are infinite: The plays
might be of infinite length, the number of possible states can be infinite, or both.

Games with perfect information are special because they allow a reasoning of a special
shape: Whenever a player has to pick a move, the consequences of each possible choice
are clear to the players, e.g. which choices the opponent has in the next move. More
formally, for each given initial position, the tree of all possible plays that can unfold
when the game is played from the given position is known in principle. (But it may be
infinite or at least very large.)

Examples of games with perfect information

To answer the first question and to motivate why such games are of interest for com-
puter scientists, we consider three examples.

The first example is that games naturally occur whenever decisions in a system are
made by several separate entities. In automata theory, non-determinism is often con-
sidered (e.g. in the form of NFAs, non-deterministic finite automata), but it is usually
assumed to be either completely controllable (e.g. “Is state p reachable from state g?*,
or, to highlight the contribution of non-determinism better, “Can the non-determinism
be resolved such that we reach p from g?”), or to be completely uncontrollable (e.g. “Is

12



1. Introduction

state p unreachable from g, no matter how non-determinism is resolved?”). It is a nat-
ural extension to consider several types of non-determinism, say one controllable and
one uncontrollable type. We then ask whether we can instantiate the controllable non-
determinism such that a certain property holds, no matter how the uncontrollable non-
determinism s resolved. Such a scenario can be seen as a two-player game, where each
player represents one type of non-determinism, the desired property corresponds to
the winning condition of the game, and the question is now whether one player can
enforce that she wins the game, no matter how the other player acts.

This situation occurs for example in synthesis. In contrast to verification, where we
want to check whether the run-time behavior of a program satisfies a given specifica-
tion (which means that we have either no or just one type of non-determinism), we now
have a program template (a program with "holes”) and a specification. Here we want to
know whether we can instantiate the template such that the resulting program satisfies
the specification. The choices when instantiating the template form one type of non-
determinism resp. one of the players, the environment in which the program should
be executed in represents another type of non-determinism resp. the other player.

As a second example, games can be used as a powerful tool to obtain new theoretic
results. Rabin’s tree theorem essentially states that the class of tree-languages accept-
able by a certain type of automata is closed under complement. Itis a highly non-trivial
result, and its easiest proof is using parity games as a tool. The idea is to see the branch-
ing of a tree as another form of non-determinism (in addition to the non-determinism
from the automaton). This allows us to see the acceptance problem for these tree au-
tomata (“Does the given automaton accept a given tree?”) as a game, in which one
player picks the moves of the automaton, and the other player picks the branch of the
tree on which the automaton should run. The positional determinacy of parity games, a
deep result from game theory, states that exactly one of the players can enforce that
she wins the game, and in fact do so in a very special way, via a so-called uniform posi-
tional winning strategy. On the trees not in the language of the automaton, the player
representing the automaton cannot win the game. Consequently, the other player has
a uniform positional winning strategy for these trees. This strategy can now be encoded
into an automaton that will by construction accept the complement language of the
original automaton, which proves the result.

The third example can be seen as a combination of the concepts in the first two exam-
ples. Verifying a non-deterministic system against a specification that is given by logical
formula can be seen as a game: Existential quantifiers in the formula means that there
has to be a move of the system such that the subsystem reached by the move satisfies
the inner condition. We model this as a player in a game that should select the correct
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. Introduction & preliminaries

move. Universal quantifiers mean that all subsystems that can be reached by a move
should satisfy some property. This is modeled by having a second player that can select
a move of his choice to which the first player has to react. The verification question can
now be answered by solving the game.

Altogether, we see that whenever multiple entities make decisions that influence the
run of a system, we can model the system as a game in which the entities are the play-
ers. This is even true when the entities are initially not apparent, but rather are hidden,
e.g. in the form of branching of trees, or the evaluation semantics of logical formulas.
For many settings that originate in theoretic computer science and its subfields like ver-
ification and automata theory, games with perfect information have been successfully
used as a suitable model. This enables us to use results from game theory to obtain
deep results in these fields.

What it means to “solve” a game

When we talk about solving a game, what do we actually mean? Solving a game means
essentially determining the winner of the game. The winner of one concrete play is
determined by the winning condition of the game, and thus easy to find. To be the
winner of the whole game, a player has to be able to enforce the winning condition to
hold in all plays, no matter how the other player acts.

The questions that we are usually asking are the following:

- Determinacy: Is there a winner? (This may sound counter-intuitive, but there are
games in which there is no winner, although “draw” is not a possible outcome of

a play.)

- Decidability/Computability: Is there an algorithm (and can we explicitly imple-
ment it) that computes the winner?

- Strategies: How does the winner have to play to ensure that she does indeed
win a play? How can such a strategy be implemented such that executing it uses
a minimal amount of space and computation time?

Structure of the lecture

The lecture is structured in four parts.

14



1. Introduction

In the first part, we start by considering Nim, a very simple game with perfect informa-
tion. We then move on and define the basic notationd needed in the rest of the lecture:

games on graphs, plays, winning conditions and strategies.

In the gecond pari, we consider various types of winning conditions for games on
graphs. We start with simple feachability conditiong and continue with conditions that

work on plays of infinite length, like Blchi, parity, and Mulled conditions. Although parts
of the theory also work for games on infinite graphs, our focus is on finite graphs as for

them, the theory immediately gives rise to algorithms that allows us to compute the
winner of the game. We conclude the part by considering games that are not about
winning or losing, but about optimizing the payoff (which is a number associated to a

play of the game). We study gero-sum gamed of bounded length with arbitrary payoff

functions and mean payoff games in which the payoff is some sort of average value of

an infinite play.

We then turn towards studying games on infinite graphs in Part [ll. We will see that if
we do not restrict the game arena and the winning condition, we might obtain

that are undetermined: Although each play has a winner, none of the players has a

systematic way of winning. We continue with games whose underlying graph is infi-

nite, but has a finite representation by an automator. Such games have a winner, and

we have the hope that we are able to compute it by working on the finite represena-
tion. Deciding the winner algorithmically will of course not work for automata models
for which verification problems are undecidable, like Turing machines and
chined. Surprisingly, the problem remains undecidable if we restrict counter machines
tocounter nets, for which verification problems like control state reachability are decid-
able. In contrast to this result, pushdown games, games on the configuration graphs of

pushdown automata, can be decided. We conclude the part by briefly mentioning the

Borel determinacy theorem and the resulting Borel hierarchy of winning conditions for

which the associates games are guaranteed to be decidable.

As mentioned earlier, game theory has numerous applications. In the course of the lec-
ture, we study two of them, both bundled together in these notes in the form of the
fFourth part. As a practical application, we see that reachability games can be used to
model online scheduling problems. To this end, the tasks that are generated at run-
time are seen as one player and the scheduler that should be constructed as the other.

A theoretic application of game theory is the above-mentioned Rabin’s tree theorem

from automata theory which we will state and prove.
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. Introduction & preliminaries

Further reading

There are a lot of topics in the research on games with perfect information that are not
covered in this lecture. The content of this lecture has hopefully laid the foundation for
the interested reader to explore these topics in self-study. We point out a few possible
directions and give corresponding references.

« Algorithmics of parity games on finite graphs:
There is active research on finding algorithms for solving parity games. In Sec-
tion [, we already mentioned the breakthrough result [Cal+17; JL17] that parity
games can be solved by an algorithm that is quasi-polynomial and only expo-
nential in the highest priority. Whether solving parity games is a problem in P
remains an open problem.

« Algorithmics for pushdown games:

Walukiewicz's reduction which we discussed in Section shows that parity
games on pushdown automata can be decided. However, the resulting algo-
rithm is not suitable for practical usage (although it has the optimal time com-
plexity). There are different techniques for solving various types of Pushdown
games that work e.g. by saturating automata[Cac02] or by computing the least
solution to a system of equations [HMM16]. Parity games can be turned into
safety games by adding a counter (with bounded value) to the control state (see
e.g. [FZ12]). In the case of Pushdown games, this even gives a polynomial-time
reduction [Hag+18].

« Higher order pushdown games:
Walukiewicz's reduction and some of the other techniques for solving pushdown
games can be extended to work on larger classes of systems. Namely, they work
for higher levels of the pushdown hierarchy: for higher-order recursion schemes
and for higher-order (collapsible) pushdown automata [CW07; HMM17].

- Game semantics:
We have discussed in Section [T5 the correspondence between logics and au-
tomata, and that algorithmic problems for the latter can be dealt with by solving
games. A more direct correspondence is given by the game semantics for certain
kinds of logics. For example, the problem of model checking a u-calculus formula
on a system usually corresponds to solving parity games on the systems [Wal01];
KO09].

+ Determinacy:
A line of studies that is more oriented towards pure mathematics is trying to find

16



1. Introduction

sufficient conditions for the determinacy of infinite games. The big result in this
area is the Borel determinacy theorem [Mar75; Mar82] which we have stated but
not proven in Section [13.

17






2. Nim-Awarm-up

Before formally introducing the basic definitions, we will work on a toy example. It is of
no practical use, but a very famous example of a perfect information game, and one of
the first games that have been implemented on a computer. When doing the general
theory later, we will eventually see that many steps of the general solutions for games
corresponds to the steps that we take in the following to solve the example.

Sources

The content of this section is based on Roland Meyer’s notes on the topic.
They can be found here:
tcs.cs.tu-bs.de/documents/ComplexityTheory_WS_20152016/landnl.pdf

Nim

2.1 Definition: Nim
The state of a game of Nim is given by a list of piles, each containing a (hon-negative)
number of coins.

During a play of the game, the players take turns alternately. In each turn, the active
player has to select a non-empty pile, and take coins from this pile. She has to take at
least one coin, but other than that, she may take arbitrarily many coins, up to the whole
pile.

The player that takes the very last coin such that all piles are empty after the move, wins
the play of the game.

2.2 Example

Consider a state of a game of Nim that has three piles, two consisting of two coins
each, one consisting of just one coin. In the following, we write states as tuples, e.g. as
(2,2, 1). Assume the first player makes takes two coins from the first pile, resulting in
state (0, 2, 1). The second player now takes the whole second pile, resulting in (0,0, 1)
and thus enabling the first player to win the play of the game by taking the very last

coin.
We write plays as a sequences of transitions between states, e.g. as

|
(2,2,1) 2255 (0,2,1) 5 (0,0,1) 2 (0,0,0) .

19
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. Introduction & preliminaries

So we have seen that this concrete play ends with a win for player 1. Is the fact that
player 1 has won an inherent property of the initial position (2, 2, 1) or could player 2
have won by playing more cleverly?

Given some fixed initial position (cy, . . ., ¢) (i.e. k piles of coins, where each pile i con-
sists of ¢; coins), we would like to check which player can enforce a win, and how she
has to play to do this.

One could use the fact that each play of Nim has bounded length: Since each player
has to take at least one coin whenever it is her turn, the play consists of at most

C=2c,-=c1+...+ck

moves. Furthermore, in each state, there are only up to C possible moves. Combining
these insights, we obtain that all possible plays can be arranged in a tree of height at
most C and of out-degree at most C, i.e. a tree with at most C° nodes.

We could explicitly construct the tree and do the following procedure to check whether
player 1 can win:

1. Mark all occurrences of the state (0, . . ., 0) in which player 1 took the last turn as

winning.
2. Mark all states in which player 2 has to move to a winning state as winning.
3. Mark all states in which player 1 can move to a winning state as winning.

Now repeat steps 2. and 3. until no new states are marked as winning anymore. When-
ever the play reaches a winning state, player 1 can win by picking a move that again
leads to a winning state whenever it is her turn. The manner in which the states were
marked ensures that player 2 will never have a move to reach a state that is not winning.
A play played like this will end in a node (0, . . ., 0) in which player 1 did the last move,
and is thus won by player 1.

A similar argumentation can be used to show that whenever a state is not winning,
player 2 can ensure that the not-winning property is maintained, and she wins the play
of the game.

Checking which player is the winner of the game for a given initial state now can be
done by constructing and marking the tree of plays and then checking whether its root
note (corresponding to the initial state) is winning.

20



2. Nim - A warm-up

2.3 Example
We show a part of the tree of plays for the initial state (2, 2, 1)1. Here, the superscripts
(e.g. 1) denotes which player has to make the next move. In the base case, states
(0,0, 0) are winning for player 1. Winning nodes have a blue, losing nodes have a red
background.

(021

/ \

/ \ i \
(0,1,0° (0,0,1)

(0,0,0)' (0,0,0)'

The algorithm works, but it has two severe disadvantages: Firstly, it needs to build a tree
that is exponential in the size of the initial position. (To be precise: Exponential even
in the unary encoding of the numbers!) Secondly, it has to be rerun for every initial
position.

Bouton’s theorem

We would prefer an algorithm that identifies whether a state is winning without explic-
itly building the tree.

In the following, we will use the fact that Nim is an impartial game: The tuple(c;, . .., ¢)
representing the current state uniquely determines all possible moves, and it does not
matter which player is currently moving. We will give a condition that is fulfilled if and
only if the active player, i.e. the player whose turn it is, wins the play.

The desired algorithm was first presented by Bouton in 1901 [BouOT]]. The condition is
dependent on a property of a binary representation of the ¢;, defined as follows.

2.4 Definition: Nim sum
Let (¢, ..., ) be a state of a Nim play. We consider a binary, most significant bit first
representation of the c;.

21



. Introduction & preliminaries

Let jmax be the length of the binary representation of the greatest ¢;. Let ¢; € {0, 1} for
ie{1,....k}je{1,... jmax}be thejth bit of the binary representation of ¢;.

The Nim sum NimX(cy, ..., ¢ ) of (ci, ..., c) is a vectorin N such that thejth compo-
nent is the sum of thejth bits of the binary representations of the ¢;, i.e.

k
NimX(c;,...,c); = XCU
i=1
We call a state (¢, . . ., ¢k) balanced if every component of NimZ(c, . . ., ¢) is even.

2.5 Example
The Nim sum of (2,2,1) is unbalanced.

G G Cp
¢i=21= 1 0
G=21p=1 0
cGz=T1,p= 0 1

NimZ= 2 1

2.6 Theorem: Solving Nim (Bouton 1901 [Bou01])
The active player can enforce that she wins from a state (c;,...,c) if and only if
(¢q,...,c)is not balanced.

Crucial to the proof of the theorem will be the following three lemmata.

2.7 Lemma

Let (cy, ..., k) be a balanced state. There is no move from this state to (0, . . ., 0).
Proof:

If the positionis (0, . . ., 0), there is no move, in particular no move to (0, . .., 0).

Assume there is at least one ¢; that is not equal to 0, say ¢; . We prove that there is some
index i; # ig such that¢; # 0:

Towards a contradiction, assume we have ¢; = 0 for all i # iy. As a result, we have ¢; = 0
foralli # iy and all j. Since ¢;, # 0, there is at least one j, say jo, such that ¢;;, = 1. Then

we have

k
NimZ(C], '7Ck)jo = ZCU = O+Ci0jo = 1 .
i=1

This would mean that the Nim sum is not balanced, a contradiction.

22



2. Nim - A warm-up

Now we know that there are two piles on which at least one coin is present. Since in the
next move, the active player can empty at most one of the piles, she will not be able to

reach state (0, . .., 0): Coins remain on at least one pile. [ |
2.8 Lemma
Let (c;, ..., c) be a balanced state. Every successor state (i.e. a state to which we can

go with one single move) is unbalanced.

Proof:
If the positionis (0, . . ., 0), there is nothing to show since there is no successor.
Assume that ¢; # 0 for some i, and consider an arbitrary successor state (c;, ..., ).

When doing a move, exactly one of the ¢; is changed, say ¢;,. Thus, at least one bit of

the binary representation of this ¢; is changed, i.e. there is j, such that ¢; ;, # ¢,

Now consider the Nim sum of the successor state. It is easy to see that if

NimXZ(cy, ..., c);, was even, then NimZ(cy, ..., ¢);, is now odd: ¢, and ¢ ;, differ by
one, and ¢;, is unchanged for all i # iy. This means that the new Nim sum is not bal-
anced. |

Note that Lemma .8 in fact implies Lemma .7. We chose to present them separately
for didactic reasons.

29 Lemma
Let(cy,. .., ck) beaunbalanced state. There is a successor state (i.e. a state to which we
can go with one single move) that is balanced.

Proof: Exercise P.13. |

Now we are ready to give to prove the theorem.

Proof of Theorem 2.6:

For one direction of the proof, assume that the initial position (¢, ..., ¢) is not bal-
anced. We present a winning strategy for the active player, i.e. a systematic way of
playing that ensures that the player that is active in the initial positions wins.

The winning strategy maintains the invariant that whenever it is the turn of the player,
the state of the game is not balanced. Whenever it is her turn, she picks a move that
makes the resulting state balanced, which is possible by Lemma 2.9. Whenever it is
the turn of the opponent, she has to make a move that makes the state unbalanced
again by Lemma P.§. Each play that is played like this is winning for the player that
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. Introduction & preliminaries

is initially active: Whenever the opponent has to move, she is in a balanced state and
thus cannot directly reach the winning state (0, . . ., 0) by Lemma R.7. Since every play

of Nim is finite, (0, . . ., 0) has to be reached at some point. This proves that eventually,
the initially active player wins by reaching (O, . . ., 0) with her move.
For the other direction of the proof, assume that the initial position is (c;, . . ., ¢,) bal-

anced. We prove that the player that is not active then has a winning strategy. This is
sufficient to show that the active player cannot enforce that she wins (see Lemma 3.9).

By Lemma 2.8, the active player has no choice but to go to an unbalanced state. In this
state, the opponent is now the active player, and she can use the above strategy from
the first part of the proof to ensure that she wins the play. [ |

2.10 Example

The theorem shows that (2, 2, 1) is indeed a good position for player 1. But the move
that player 1 made in ExampleR.2is not optimal, it leads to the unbalanced state (2, 2, 1)
with Nim sum 1 1. To ensure that she wins, she would have to take the single coin on
the last pile, leading to state (2, 2, 0) with Nim sum 2 0. If the other player now takes
a whole pile (state (2, 0, 0), Nim sum 1 0), player 1 wins by taking the other pile. If the
other player takes only one coin from one pile (state (2, 1,0), Nim sum 1 1), player 1 can
get to a balanced state by taking one coin from the other pile (state (1, 1, 0), Nim sum
0 2). From this position one, it is easy to see that player 2 has to take the second to last
coin, and player 1 can take the last coin.

2.11 Remark
As mentioned above, Nim is a so-called impartial game. This means that

« the possible moves from a state of the game are independent of which player is
active,

- all plays have finite length,
+ the player who cannot move anymore loses.

The Sprague-Grundy theorem shows that for every such impartial game, there is an
initial state of Nim that is equivalent to it.

Exercises

2.12 Exercise
Complete the tree from Example 2.3, i.e. draw the full tree of plays for the initial state
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2. Nim - A warm-up

(2,2, 1), where we assume that player 1 has to move first. For every node, write down
the Nim sum. Furthermore, mark all winning states in the tree.

2.13 Exercise
Prove Lemma R.9: Let (cy, ..., ¢) be an unbalanced state. There is a successor state
(i.e. a state to which we can go with one single move) that is balanced.

Hint: Consider the smallest index j such that NimX(cy, . . ., ¢); is odd. (Note that “small-
est” means that the corresponding bit is most significant.) Prove that there is an index
i with ¢; = 1 that can be modified to get to a balanced state.
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3. Games with perfect information - Basic definitions

The goal of this section is to provide the basic definitions. The rest of the lecture will be
based on them. We need to define games, plays, and the winner of plays. Furthermore,
we consider strategies, systematic ways of playing.

Games and Plays

3.1 Definition: Game
A sequential two-player board game with perfect information G, shortly referred to
as game in the rest of the lecture, consists of a game arena and a winning condition.

A game arena is a directed graph G = (V, R) together with a function
owner:V - {O,0}

thatassigns to each vertexin Van owner, either the universal player Jor the existential
player O.

We postpone the definition of the winning condition as it needs more notation.

The vertices V of the graph are the possible states of the game, we will mostly call them
positions (or sometimes also configurations) in this lecture. The arcs R of the graph are
the moves or transitions of the game that connect the positions.

We usually write a game arena as G = (Vg W Vo, R), i.e. instead of explicitly specifying
the ownership function, we give an implicit definition that is based on a partition of the
positions into the positions owned by each player.

We will assume throughout the lecture that R contains no parallel arcs (arcs that have
the same origin and destination). Consequently, each arc is uniquely specified by a
tuple (o0,d) € V x V consisting of its origin o and its destination d, and we can see
R € V x Vas a set of such tuples. We allow self-loops, i.e. arcs (o, d) with o = d.

In the rest of this section, we assume G = (Vg U Vo, R) to be some fixed game arena.

Before we can formally define what a winning condition is, we need to understand how
a game is played.
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. Introduction & preliminaries

Intuitively, we assume that at each point in time, a token is placed on one position of
the game arena. Then, the owner of this position picks an arc of the game arena orig-
inating in the current position and moves the token to its destination. This continues
ad infinitum or until the token is in a position for which there is no leaving arc. The
resulting path of the token in the game arena is called a play.

3.2 Definition: Play
A play of a game is a finite or infinite path in its game arena.

Each play is uniquely identified by a finite or infinite sequence of positions
p = pop1ps - .. such that (p;, pi.q1) is an arc of the arena for all i. (Here, we use that R
is parallel-free.)

The length of a finite play p, . . . p« is |p| = k, meaning we count the number of moves
that have been made. In this case, we also write p,,; to denote the last position p,. We

write |p| = w for infinite plays.

The “for all i” above should be read as: Forall i € {0, ...,k — 1} if the play is finite and
has length k, and foralli € {0, ..., w} = N if the play is infinite.

A position x is live if it has at least one successor in the game arena (i.e. there is an arc
(x,y) € Rfor somey € V). If a position has no successor it is called dead or a deadlock.

We call a finite play alive resp. dead or deadlocked if its last position is live resp. dead.
We call a play maximal if it cannot be prolonged, i.e. if it is infinite or finite but dead.

For a play that is alive, we call the player active that owns the last position. Intuitively,
this player should make the next move.

In a play p, we think of a move (p;, pi.1) as chosen by the owner of p;, i.e. each player
chooses the next position whenever she owns the current position.

We write

Plays for the set of all plays,

Plays,, for the set of all infinite plays,

« Plays,,,, for the set of all maximal plays,

Plays resp. Playsq for the finite plays in which player O resp. O is active.

28



3. Games with perfect information — Basic definitions

Sometimes, we only want to consider the plays that start in some fixed initial po-
sition x, i.e. plays p with p, = x. We call such plays the plays from x, and write
Plays(x), Plays, Ax), . . .

]

3.3 Remark

a) We only consider two-player games, but extending the definitions to k-player
games is straightforward. Luckily, as we will see in Exercise B.16, any perfect-
information game for k > 2 players can be reduced to two-player games. Note that
this is not true for games with imperfect information.

b) Our games are called sequential because one move happens after the other. There
are other types of games in which the players move simultaneously. While some of
these games can be easily sequentialized, recall that in prisoner’s dilemma, it was
important that both players moved simultaneously without any knowledge of the
move of the other players. Simultaneous moves may introduce an aspect of hidden
information, a case which is not considered in this lecture.

c) We assume that a game is essentially given by its set of positions and set of moves.
In game theory, this is sometimes called the extensive form. To handle games in
which the set of positions Vis infinite, one needs a finite representation of the game
arena to handle them algorithmically.

3.4 Definition: Winning condition
The winning condition win of a game is a function

win: Plays,... = {O,0}

max

that assigns each maximal play p its winner win(p) € {O,O}.

We say that a maximal play p is won by the universal resp. existential player if win(p) = O
resp. win(p) = O.

With this definition, a game can be seen as a tuple G = (G, win) consisting of a game
arena and of a winning condition for maximal plays on this arena.

3.5 Remark

According to our definition of winning, each maximal play has a unique winner, i.e. there
is a winner, and at most one player wins. In particular, we do not allow a draw as a
possible outcome. Many games that you know from real life allow a draw as a possible
outcome, e.g. chess. Such games cannot be directly studied using our methods. Itis a
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. Introduction & preliminaries

common technique to consider variants of the game in which a draw is seen as a win
for one of the players. We apply this trick to chess in Example B.T3.

Strategies

The goal of each player is to pick her moves such that the resulting maximal play is
winning for her. Since the maximal plays are partitioned into the plays won by each of
the players, both cannot reach their goal at the same time.

For one maximal play, the winning function determines the winner. Instead of just con-
sidering one play at a time, we are interested in checking whether a player can enforce
that she wins always by playing cleverly, no matter what her opponent does. This is
formalized using the concept of strategies.

In the rest of this course, we assume that ¥r € {O,} is one of the players and ¥t is the
other player, i.e. {¥, %} = {O,00}.

3.6 Definition: Strategy
A strategy for player % € {O,O} is a function

Syet Playsy. = V

that assigns each finite play p such that ¥ is active in pj, a vertex sy.(p) € V such that
(Past: S2(p)) € Ris a valid move in the arena.

A strategy for player s fixes the behavior of 3% during a play: Whenever it is her turn,
she executes the move that is the value for the play up to this point returned by the
strategy. If all such plays are won by ¥, we call the strategy a winning strategy.

3.7 Definition: Conforming, Winning strategy
A play p € Plays conforms to a strategy sy if for all p; # pj,s such that p; € Vi is owned
by ¥r, we have pi. = s (po - . . pi).

A strategy sy is a winning strategy for player vx from position x if every maximal play
p € Plays,,..(x) from x that conforms to sy, is won by ¥.

When we say that we want to solve a game from a certain position x, we mean that we
want to check which player has a winning strategy from x. Similarly, solving a game
means that we want to characterize for each of the players the positions from which
she has a winning strategy.
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3. Games with perfect information — Basic definitions

3.8 Definition
A vertex is winning for player ¥ if she has a winning strategy from position x.

The set of all such vertices is called the winning region Wy, € V.

Naively, it seems that for each position x € V, there are four cases:
« None of the players could have a winning strategy, i.e. x ¢ Wo,x ¢ W,

« Exactly one of the players could have a winning strategy,
ie.x € Wpo,x¢ Wgorx ¢ Wo,x € W, or

+ Both could have a winning strategy,
i.e.x € Wo,x € Wg.

For most games, for each of the positions, one of the players has a winning strategy and
the other does not. There are games in which none of the players have a winning strat-
egy for some positions, we will see an example much later in the lecture. The following
lemma states that the last case can never occur.

3.9 Lemma
For each position x, at most one of the players has a winning strategy.

In particular, Wgn Wo = @.

Proof:

Towards a contradiction, assume that for some position x, both players have a winning
strategy sg resp. so. Consider a maximal play p that is conform to both s and so. In fact,
there exists a unique play satisfying this condition that we can inductively construct by

salpo---pi) ifpi € Vo,
solpo---pi) ifpi€Vo.

Po Pir1 =

1l
x

Since sg is winning from x, we have win(p) = O. Similarly, we obtain win(p) = O, a

contradiction. [ ]

After we have checked that there is a winning strategy, we are also interested in finding
a simple winning strategy. According to the definition, the strategy can make its return
value dependent on the whole history of the play, which is finite but unboundedly long.

We are interested in strategies that only take the current position into account and do
not look at the history at all.
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. Introduction & preliminaries

3.10 Definition
A strategy sy is called positional if for each two plays p, p' € Playsy, with pise = Pases

we have sx(p) = sx(p).

Positional strategies are also called memoryless in the literature, because they cannot
store any information on the history of the play at all. For the same reason, a positional
winning strategy sy is usually given as a function with the signature

{x € V| xis alive} - V.

As we will see later, there are games in which a position is winning, but no positional
strategies exists.

3.11 Remark
Furthermore, we are interested in strategies that are:

- Uniform: Instead of having one winning strategy for each position in Wy, we
want to have one single strategy that is winning from all positions in Wg,.

If we allow arbitrary strategies, then in fact uniform strategies do always exist. If
we only consider positional strategies, then there are games that have positional
winning strategies, but no uniform positional winning strategies.

« Easy to implement & computationally inexpensive: Instead of just allowing posi-
tional strategies, one can consider strategies that are allowed to store some infor-
mation on the history of the play. To do so, we see a strategy sy, as a transducer,
an automaton with input and output. It reads moves made by the opponent,
i.e. arcs (x,y) € Rwith x € Vi_%’ and whenever the play has reached a position
X € Vi (thatis alive), it outputs a move (x', y) € R.

A strategy that can be realized by a deterministic transducer with finite mem-
ory and no additional storage mechanism (the transducer equivalent of DFAs) is
called finite memory strategy. A strategy that can be realized by a deterministic
transducer that uses a stack as storage is called pushdown strategy. A strategy
that can be realized by a deterministic transducer that uses a tape as storage (sim-
ilar to a Turing machine) is called computable strategy.

Before advancing the theoretical development, we take the Nim game from the pre-
vious section and formalize it as a game according to the definitions of this section.
Furthermore, we consider several other examples.

32



3. Games with perfect information — Basic definitions

3.12 Example
The game Nim can be defined as follows:

« The set of positions is
V=N"x{O,0}.

The first component of a position (¢, %) is a finite sequence ¢ of natural numbers,
each entry ¢; denoting the number of coins on pile i. The second component ¥
is denoting the active player, i.e. V = Vg u Vo = (N* x {O0}) u (N* x {O}).

« The moves are defined as follows:

- {«a 0.7

¢,d e Nforsomek e N,
Jip €{0,...,k=1}:d;, <¢,and ¢ =d;foralli # i

. The winning condition is given by win(. . . (0, %)) = %, i.e. if we reach position 0,
the active player that would have to move next loses the game. Note that every
maximal play necessarily ends in a position of the shape (0, ).

« The winning regions can be characterized using the Nim sum,
Wy = {(¢,%) | NimX(¢) is unbalanced } u {(E, %) | NimZ(¢) is balanced } :
Note that V = W u Wo.
« The strategy presented in the proof of Theorem P.§ is positional and uniform:
s (8, %) = (d, %) ,

where d is an arbitrary balanced successor if such a successor exists and an arbi-
trary successor otherwise.

Note that for Nim, the set of positions V is infinite, but from each given initial position
x € V, only finitely many positions are reachable.

3.13 Example
Chess is maybe the best known game with perfect information. In this exercise, we
want to study it, in particular, we want to prove the following result:

In chess, it is the case that

1. either white has a winning strategy,
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. Introduction & preliminaries

2. or black has a winning strategy,
3. or both have a drawing strategy.

Here, a winning strategy is a strategy ensuring that the player wins (in particular, the
games conform to it do not end in a draw), while a drawing strategy is a strategy that
only ensures that player does not lose, i.e. the game is won by her or ends in a draw.
Furthermore, we are only interested in the typical initial board configuration of chess,
so writing e.g. “white has a winning strategy” should mean that white has a winning
strategy from this position.

While chess is intuitively a game with perfect information, it is not conforming to our
definition, since “draw” is a possible outcome. To circumvent this issue, we use the
following trick: We define two variants of chess, namely white chess and black chess.
In white chess, the white players wins in the case of a draw, analogously for black chess.
These variants are games that we can study with the methods presented in this lecture.

In the following, we will use the fact that white and black chess are determined, since
they are games played on a finite graph in which each play has a bounded length. (As
soon as a board configuration repeats three times, the game ends with a draw in “real”
chess.) This means that for each position exactly one of the players has a winning strat-
egy. We have not proven this result yet, but we will do so in the next section.

Using the result, we know that there are four possibilities:

« White has a winning strategy for white and for black chess. In this case, she has
a winning strategy for “real” chess: The winning strategy for black chess ensures
that the game does not end in what would be a draw in real chess, since draws
are won by black in black chess. This is case 1. of the result that we want to prove.

« The analogous case for black gives us case 2. of the result.

« If both players have a winning strategy for the opposite variant of chess (white
for black chess, black for white chess), we obtain a contradiction, similar to
Lemma B.9: Consider the play of real chess in which each player conform to her
winning strategy. The strategies were winning strategies for the opposite variant
of chess, meaning they are winning (and not drawing) in real chess. This means
that the play is won by both players, a contradiction, so this case can never occur.

+ Assume that each player has a winning strategy for her variant of chess (white
for white chess, black for black chess). Since each strategy was winning in the
variant of the game in which draws counts as wins, these strategies are drawing
strategies for real chess.
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3. Games with perfect information — Basic definitions

To see that both strategies cannot be winning strategies for real chess, consider
the play in which each players conforms to her strategy. The resulting play is
winning for white in white chess, and winning for black in black chess, so it has
to be a draw in real chess.

This result is credited to a famous paper of Zermelo from 1903 [Zer13], see [SWO01] for
a discussion.

Exercises

3.14 Exercise: Tic-tac-toe
Consider the popular game tic-tac-toe,
seee.g. https://en.wikipedia.org/wiki/Tic-tac-toe.

Formalize the game, i.e. formally define a game G = (G, win) consisting of a game arena
and a winning condition that imitates the behavior of tic-tac-toe.

Assume that player O makes the first mark, and the other player wins in the case of a
draw.

3.15 Exercise: Positional and uniform strategies

If a game arena has finitely many positions, we can explicitly give it as a graph. For this
exercise, we consider a game on the following game arena G = (V, R). Positions owned
by the universal player O are drawn as boxes, positions owned by the existantial player

O as circles. The numbers should denote the names of the vertices, i.e. V= {1,...,5}.
5
3 1 - 4
2

We consider the following winning condition: A maximal play is won by the existential
player if and only if the positions 3,4 and 5 are each visited exactly once.
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a) What is the winning region for each of the players?

Present a single strategy so: Playso — V that is winning from all positions x in the
winning region Wq of the existential player. Argue shortly why your strategy is in-
deed winning from these positions.

Note: Such a strategy is called a uniform winning strategy.

b) For each vertex x € Wy in the winning region of the existential player, present a
positional strategy for existential player so,:{3,4} = R such that so, is winning
from x.

c) Prove that there is no uniform positional winning strategy for the existential player,
i.e. no single positional strategy that wins from all x € Wo.

d) Consider the modified graph that is obtained by adding a vertex 6 owned by O and
the arcs (6, 3) and (6, 4).
Prove that position 6 is winning for the existential player, but there is no positional
winning strategy from 6.

3.16 Exercise: Multiplayer games

Assume that three-player games are defined analogously to two-player games, i.e. they
are played on a directed graph with an ownership function owner:V - {1,2,3}, and
their winning condition is a function win: Plays,,,, = {1, 2, 3}. (Winning) strategies are
defined similar to two-player games.

For every three-player game G, = (Gsp, wins,,), where G, = (V; u V, w V3, R) and each
playeri € {1,...,3}, show how to construct a two-player game G; = (G;, win;) with
G; = (Vg w Vo, R) such that:

« The underlying directed graph is the same, i.e. V; UV, U V5 = Vg u V(.

- Each node x € V; u V;, U V5 is winning for player i in the game G, if and only if it
is winning for player O in the game G..

Prove that your constructed game §; has the desired properties.

3.17 Exercise: Deadlocks

Many books in the literature only consider games that are deadlock-free, meaning ev-
ery position x € V has at least one outgoing arc (x,y) € R (where self-loops, i.e.x = y,
are allowed).
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Assume that G = (G, win) is a game that may contain deadlocks. Furthermore, we as-
sume that the winning condition has the property that any finite play ending in a dead-
lock is lost by the player owning the last position.

Constructagame G' = (G, win') that does not contain deadlocks. The new game arena
G' should be obtained from G by adding vertices and arcs, in particular each position
of the old game is a position of the new game, V ¢ V.

Your construction should guarantee that each position x € V of the old game is winning
in the new game for the same player for which it was winning in the old game. Argue
why it has this property.

3.18 Exercise: Language inclusion as a game
Note: You may need to recall the definitions of finite automata for this exercise.

Consider two non-deterministic finite automata (NFAs) A = (Qa, Goa, =4, Qra) respec-
tively B = (Qg, qog, =5, Qrg) over the same alphabet of input symbols Z. We want to con-
struct a game that is won by the universal player O if and only if the regular language
accepted by A is included in the regular language accepted by B, i.e. L(A) € L(B).

Our approach is to let each of the players control one of the automata. The existential
player controls automaton A, and her goal is to disprove inclusion. To do so, she step-
by-step picks a run of A such that the corresponding word is accepted by A, but not
accepted by B. The universal player wants to prove inclusion and controls automaton
B. She has to react to the moves made by the existential player to find an accepting run
of automaton B for the word chosen by existential player.

More precisely, the game works as follows:
« A configuration of the game consists of a state g, resp. g of each automaton.
- The players alternately takes turns, starting with the existential player O.
« In each of her turns, O selects a transition g, i>A g, of the automaton A.

« In the following turn, the universal player selects a transition g; i>B gp of B. Note
thatit has to be labeled by the same letter a € X that was picked by the existential
player in the previous move.

- A maximal play of the game is won by the existential player if it visits a configura-
tion in which the state g4 of A is final, but the state g; of B is not final (Intuitively,
this means that the word chosen step-by-step by refuter is accepted by A, but not
accepted by B.) Itis also won by O if it ends in a position in which [0 cannot react
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to a move, i.e. there is no transition of B with the required letter. It is won by the
universal player O otherwise.

a) Formalize the game, i.e. formally define a game arena G and a winning condition
win such that the game G = (G, win) has the behavior described above.

b) Let x be the configuration of the game consisting of the initial states gg4 and qgg of
both automata. We would like to have the following result:
“x is winning for the universal player if and only if the inclusion £(A) € £(B) holds.”
Prove that this is not true in general by considering the following automata over the
alphabet {a, b, c}.

O
b a
(N a

f (o) @< B*
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4. Reachability & safety games

In the last section, we have allowed arbitrary functions as winning conditions without
imposing any restriction. In the following sections, we will study specific types of win-
ning conditions. For each of them, we will develop a theory that allows us to conclude
that the corresponding games are determined. The theory also leads to algorithms that
can be used to compute the winner in case the game arena is finite.

We start with the two most simple conditions, reaching resp. avoiding positions from
a given set. More formally, the reachability condition is satisfied if the play reaches a
position in a given winning set. Its analogon is the safety condition, for which the play
needs to avoid a position in a given losing set.

Many games that you know from real life are of this type, e.g. in chess, the winning
positions are given by the configurations of the board with checkmate.

Sources

The content of this section is common knowledge in game theory and can be found
in most textbooks on the topic. The presentation here does not follow any particular
source.

Reachability and safety games

In the following, we assume that the existential player Ois the player that wins if the set
of winning positions is reached, and that the universal player Owants to avoid this. One
can easily adapt the theory for the opposite case by swapping the players everywhere.

4.1 Assumption

In this section, let G = (Vg w Vo, R) be a fixed game arena. We furthermore assume that
G has finite out-degree, i.e. for each position x, the set of successors {y € V| (x,y) € R}
is finite.

Note that in particular, the assumption is satisfied if V is finite.
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[l. Games on finite graphs

4.2 Definition: Reachability games
Let B € V be a set of positions called the winning set.

The reachability game on G with respect to B is the game whose winning condition is

given by
win : Plays,, — {O,0}
O if Jiip, €8,
p (g
O elseie. Viip; ¢B.
4.3 Remark

The game specified by the above winning condition can also be seen from the perspec-
tive of the universal player. It is then called the safety game with respect to the losing
setB.

Our goal is to show that reachability/safety games are uniformly positionally deter-
mined, by proving the following theorem.

4.4 Theorem: Reachability/safety games are positionally determined
Reachability/safety games are uniformly positionally determined: The set of positions
can be partitioned into the winning regions for each of the players, and each player has
a uniform positional winning strategy, a positional strategy that is uniformly winning
from all positions in her winning region.

Attractor

In order to solve the reachability game, we need to compute the set of positions from
which O can enforce that a play visits a position in B. We start by considering the set of
positions from which an immediate visit of B (within one move) can be enforced. The
definition is parametric in the player s € {O, 0} of interest, as we will reuse it later.

4.5 Definition: Controlled predecessors
For a set X € V of positions, the controlled predecessors for player ¥r € {O, 0} are

CPrex(X) = {x € V{:,|El(x,y)eR:y€X}U{xe Vi—:('xislive,‘v’(x,y)eR:yEX}.

The controlled predecessors of X contain all positions of player 5% for which there is a
move to a position in X. If a play reaches such a position, then Y can enforce a visit of
X within one step. Furthermore, a position owned by the opponent ¥ is a controlled
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predecessor of X if all possible moves lead to X (and there is at least one move). If a play
reaches such a position, the opponent cannot prevent a visit of X within one step.

To obtain the set of all positions from which st can enforce a visit of a given set, we
apply the controlled predecessors iteratively. We formalize this in the definition of the
attractor.

4.6 Definition: Attractor
Let B € V be a set. The j-step attractor Attr;}(B) of B for player ¢ € {O, O} is inductively
defined as follows:

Attr;?(B)
Attr) (B)

B
Attr, (B) U CPrey(Attrl, (8))

The attractor Attry, is the union of the i-steps attractors for all j,

Attry(B) = | Attr, (B) .

ieN

The i-step attractor is the set of all positions from which ¥t can enforce visiting B within
at most i steps. The player can enforce visiting B in zero steps if and only if the current
position is already in B, justifying the base case of the definitions. From all positions
from which the player can enforce visiting B in at most i steps, she can of course also
enforce a visit in at most i + 1 steps, so Attr;k c Attr;?. This in particular means that the
attractors form a chain

Attrs, (B) € Attry, (B) € Attry (B) < . .. .

To enforce a visit of B in at most i + 1 steps, it is sufficient to move to a position from
which a visit of B in at most i steps can be enforced.

If we are interested in all positions from which Yt can enforce visiting B in an arbitrary
but finite number of steps, we have to take the union of all i-step attractors.

4.7 Example
Consider the game arena given by the following picture.

@
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We want to compute the attractor of the blue-colored positions for the existential
player, i.e. Attro({1, 2}).

0. Initially, we have Attrg({1 ,21) ={1, 2}

1. By the definition, we have {1,2} ¢ Attrg)({1 ,2}). When we check for position 3
whether it should be contained in Attrg)({1 ,2}), we see that there is a successor
- namely position 4 - that is not in Attr?)({1 ,2}), so we have 3 ¢ Attrg)({1 ,2})
since 3 is owned by the universal player. Similarly, positions 5 and 6 are not in
Attrs({1, 2}).

Position 4 is owned by the existential player and has a successor in Attr%, so we
need to add it. We obtain Attrg)({1 ,2}) ={1,2,3}.

2. Now, all successors of position 3 are in Attrg)({1 ,2}), so we need to add 3 to the
attractor. Still, for both 5 and 6 no successor is contained in Attr(g({1 ,2}).

We obtain Attry({1,2}) = {1,2,3,4} .

3. Now position 5 has a successor in the attractor, but it is owned by the opponent,
so we do not add it. We obtain

Attro({1,2}) = Attry({1,2}) = Attry({1,2}) = {1, 2, 3,4} .

4.8 Lemma
Let X, Y € V be sets of positions.

a) If X ¢ Y, then CPrey(X) € CPrey(Y) and Attra(X) S Attra(Y)

b) CPreg(Attra(X)) € Attryy(X).

Proof: Part a) isimmediate by the definition. Part b) is essentially Exercise .13, [ ]

The attractor allows us to solve reachability games.

4.9 Theorem

Consider the reachability game with respect to the winning set B € V. The set Attro(B) is
the winning region of the existential player, and its complement is the winning region
of the universal player.

44



4. Reachability & safety games

The theorem in particular claims that V = Wo u W = Attro(B) w (V \ Attro(B)). We will
construct positional strategies sg, so such that s is uniformly winning from all positions
in V\ Attro(B) and so is uniformly winning from all positions in Attro(B). This will prove
Theorem B4 as well as Theorem B.9.

Given any live position x € Vg, sp(x) returns a move (x, y) € Rwithy € W = V\ Attro(B)
if such a move exists, and an arbitrary move otherwise. (To make the strategy determin-
istic, we fix one move if several exist.)

st {xeVg|xislive} » V

ywith (x,y) € R,y € W, ifsuchayexists,

X b

y arbitrary with (x,y) e R, else.

4.10 Lemma
sg is a positional strategy that is uniformly winning from all positions in
Wg = V' \ Attro(B).

Proof:
Let py € W be an arbitrary initial position. We show that any play p = pop:p; . . . that
conforms to sg has the property p; € W for all j

This already shows that p is won by the universal player: We have
B = Attrg(B) € Attro(B), thus B n W = @. Any play with the above property
will never visit a position in B.

We show that under the assumption x € W, whenever the universal player is active,
there is a move (x, y) leading to a position y € Wg that will then be selected by sg
according to its definition. Under the same assumption, we show that when the exis-
tential player has to move, she has no choice but to go to a position in Wg. Those two
proofs can be combined into an induction showing the desired property. In the base
case, we have p, € W by assumption.

Letp = p, ... p; be aplay conform to s of length j such that p; is not dead. By induction,
we know that p; € W. (If p; is dead, we are done, since the play is maximal and won by
the universal player.)

Assume that it is the turn of the universal player, p; € V7. Assume there is no move (x, y)
to a position in W, meaning that all moves go to positions in V'\ Wg = Wg = Attro(B).
By the definition of the attractor, for each such y, there is i, such thaty € Attré. Let

imax = Max, i, be the maximum of the i, and note that this is a well-defined natural
number since we assumed the game arena to have finite out-degree. By the definition

matl(B) € W, a

of the attractor resp. the controlled predecessors, we have x € AttrJ
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contradiction to the assumption x € Wg. Thus, there is a move to some y € W5 as
required, and the strategy will pick such a move by its definition.

Assume that it is the turn of the existential player, p; € Vo. We need to argue that all
moves (x, y) that she can pick go to a position in y € Wg. Assume there is a move to
a position y € Wo. Then there is a number i such thaty € Attréj(B), and by the defini-
tion of the attractor resp. the controlled predecessors, we have x € Attrg1 (B) € Wp, a
contradiction. [ |

The strategy for the existential player is a little bit more involved. The universal player
wins a play by preventing it from visiting B forever, while the existential player has to
ensure that the play visits B within a finite number of steps. If so would just work similar
to sg and pick an arbitrary move to Wp, the strategy would ensure that all positions
occurring in a play are inside the winning region, but it would not guarantee that there
is some index i € N such that B is visited after i steps.

To get rid of this problem, the strategy does not pick an arbitrary move (x, y) such that
y € Wo = Attrp(B), butamovetoy € Attré)(B) such that i is minimal. If any move to
Attro(B) exists, we fix an arbitrary one that minimized i as described before. If no move
to Attro(B) exists, the strategy should return an arbitrary move.

so : {xeVo|xislive} » V
ywith (x,y) eR,y € Attrb(B)
X B s.t.iis minimal, if y € Attro(B) exists,

y arbitrary with (x, y) € R, else.

4.11 Lemma
so is a positional strategy that is uniformly winning from all positions in W = Attro(B).

Proof:

We have to prove that for all p, € Wo = Attro(B), all plays that conform to so from p,
are won by the existential player. For each such p, € Wo = Attro(B), thereisani € N
such that p, € Attré)(B) by the definition of the attractor. Let iy € N be the minimal i
with this property.

We prove the required statement by induction on iy. In the base case, we have i, = 0.
This means p, € Attr%(B) = B. Any play from p, visits B and is won by O.

In the inductive step, assume that iy > 0is some number such that the statement holds
for all i < iy. Consider an arbitrary p, € Attrg(B). We know that

Attrd(B) = Attry ' (B) U CPreo(Attrd (B))

46



4. Reachability & safety games

Since we assumed that i, is minimal, the case p, € Attro”!

5 (B) cannot occur. We thus
know p, € CPreo(Attrg_1(B)).

In the case that p, € Vo is owned by the existential player, there is a move (py, y) with
y € Attry”
the shape p = pop1p, . . . Wwhere p; € Attr

(B), and the strategy picks one such successor. Thus, any play from p, is of
io—1

o)
p' = pyp ... Iis a play that conforms to so. By induction, we obtain that p' is won by O,

(B). If p conforms to sp, then also the suffix

i.e. it visits B. The play p, obtained from p' by prepending p,, thus also visits B and is also
won by O.

If py € Vo, we argue similarly. Since p, € CPreo(Attrg1 (B)), any successor y of x picked

by the universal player satisfies y € Attri°_1(B). Thus, no matter which successor p; is

o)
picked, we may apply induction to obtain that any play from p, that conforms to sg is

winning. Prepending p, does not change this fact. [ |

Together, Lemma and Lemma prove Theorem f.4 and Theorem A.9.

If the game arena is finite, Theorem B.4 gives directly rise to an algorithm that deter-
mines the winning region by computing the attractor of the winning set. In fact, one
can set up the algorithm in a clever way such that

a) it also computes the winning strategies so and sg,
b) its running time is linearin |V| + |R|.
For a), we tweak the computation of the attractor as follows:

« Whenever a position x € Vg is added to the attractor for the first time, say to
i+1

Attrg
to the attractor.

(B), we set so(x) = (x, y), where (x, y) is the move that caused x to be added

« Whenever a position x € Vg is found to not belong to the attractor, we set
sa(x) = (x,y), where (x, y) is a move with y ¢ Attro(B) (yet).

Note that while sp(x) is fixed after it is set once, sg(x) might need to be updated if the
previously selected move later turns our to lead to the attractor.

For b), notice that naively, the algorithm is linear in |V|* - |E|: In each iteration of the
attractor computation (i.e. whenever we compute the i + 1-step attractor), we need
to consider all vertices that are not yet in the attractor, and check their successors. To
obtain Attro(B), we have to compute at most |V| steps, as we will see in Exercise f.13.

To get the running time down to O(|V| + |R|) we need to assign a counter c(x) to each
vertex x € V. This counter is initially 1 for positions owned by the existential player,
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and |{y | (x,y) € R}|, i.e. the number of successors, for positions owned by the universal
player.

Whenever we add a position y to the attractor, we decrease c(x) by one for all positions
x that are a predecessor of y, i.e. (x, y) € R. Whenever the counter ¢(x) of a position that
is not yet in the attractor drops to 0, we add it to the attractor.

To start the algorithm, we add all positions in B to the attractor.

Exercises

4.12 Exercise: 2 X 2 tic tac toe

Consider a 2 x 2-variant of tic tac toe, i.e. tic tac toe played on a 2 x 2 matrix. We assume
that O starts. The player that is first able to put 2 of her marks into one row, column or
diagonal wins, and the game then stops.

Formalize this game as a reachability game, draw the game arena as a graph, and solve
it explicitly using the attractor algorithm.

4.13 Exercise: Attractors have attractive algorithmics

i+1

a) Prove that if Attr;ﬁ((B) = Attry, (B), then we have Attr;ﬁ((B) = Attry(B).

Conclude that if the set of positions V is finite, we have Attrx/(B) = Attrli‘Q(B).

b) Let G = (V, E) be a finite game arena, and let B € V be a set. We consider the reacha-
bility game on G with respect to B.

Write down pseudo-code for an algorithm that computes the winning region Wg of
the existential player, and at the same time computes uniform positional winning
strategies so, sg for both players.

4.14 Exercise: Double-reachability games

Consider a finite game arena G = (Vg U Vo, R) without deadlocks and sets B;,B, € V. In
the double-reachability game G, O wins by enforcing that the play visits first B, and
later B,. More formally, the winning condition is given by

win : Plays,, - {O,0O}
O, ifdieN:p;eBrand3jeN,j>ip; €B,
(=N
P O, else.
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a) Present an algorithm that takes a double-reachability game and computes a reach-
ability game G’ that contains the positions in V, i.e. a game arena G' = (V',R') and
a winning set B' ¢ V', with V € V. For all x € V, x should be winning for O in the
double-reachability game G if and only if it is winning for O in the reachability game
G'. Argue formally that your algorithm is correct.

b) Present an algorithm that directly computes the winning regions of the double-
reachability game. Argue that you algorithm is correct.

4.15 Exercise: Reach-and-stay games

Consider a finite game arena G = (Vg w Vo, R) without deadlocks and a winning set
B < V. In a reachability game, any play that visits B is winning for O, no matter how it
continues after the visit.

In this exercise, we consider reach-and-stay games, in which the goal of player O is
to enforce that the play visits B and stays there forever. More formally, the winning
condition is given by

win : Plays,, - {O,0}
O, iifdieN:Vk=ip,€B,
p »
O, else.

Present an algorithm that takes a finite game arena without deadlocks and the winning
set and computes the winning regions of the reach-and-stay game. Argue that it is
correct.

Do uniform positional strategies exist?

Hint: First identify the position form which one stays inside B forever.

4.16 Exercise: Determinacy of games of finite length
Let G = (G, win) be a game such that each maximal play of G has finite length. Then G
is determined, i.e. every position is winning for exactly one of the players, V = Wo w W

Hint: Construct a reachability game whose set of positions is Playsg.

Note: When considering chess in Example B.T3, we have already used this result.
4.17 Exercise: Graphs with infinite out-degree

In this section, we made the assumption that the out-degree of the game arena is finite.
In this exercise, we want to understand this restriction.
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Let N* = {1,2,3,...} denote the positive natural numbers. We consider the infinite
graph G = (V, R) given by

V = {start, goal} v U Path; , where for each i € N*, we have Path; = {pﬁ,p;, e ,p;} ,

ieN*

= U {lstare i) o Ul soal} o U Ul i)}

ieNt ieN* ieNt  j=1

We want to consider a reachability game on G with respect to the winning set {goal},
i.e. O needs to reach the position goal, 0 wants to prevent this.

a) Draw a schematic representation of the graph G, e.g. involving the vertices
{start, goal} and the positions in Path; for i < 4.

b) Assume that all positions are owned by the existential player. For each position
x € V, give the minimal i, € N such that x € Attré({goal}), respectively i, = 0o if no
such i, exists.

Present a winning strategy for the reachability game from the position start.

c) Assume that all positions are owned by the universal player. For each positionx € V,
give the minimal i, such thatx € Attrg({goal}), respectively i, = oo if no such i, exists.

Which player wins the reachability game from start?

4.18 Remark
In Part c) of the above exercise, we see that our attractor construction is not able to deal
with game arenas that have infinite out-degree.

To fix the problem, we can use a non-constructive definition of the attractor: The attrac-
tor Attry.(B) is the smallest subset of positions that satisfies the following three proper-
ties:

(1) B < Attra(B),
(2) if some successor of a position x € V is contained in Attri:,(B), then so is x, and
(3) if all successor of a spotion x € Vs contained in Attry(B), then so is x.

“Smallest set” means that we intersect over all subsets of V that satisfy the properties,
i.e. more formally, Attry(B) is definition to be the intersection over all V' ¢ V that satisfy
the Properties (1) — (3).
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If the game arena satisfies the conditions that we have imposed at the beginning of
this section, the new definitions of the attractor coincides with the one from Defini-
tion B.6. With the new definition of the attractor, the positional determinacy of reach-
ability/safety games can be proven to hold even if the game arena has infinite out-
degree. In this case, the attractor can be “computed” by continuing the iteration be-
yond all natural numbers, essentially using a concept called transfinite induction.

In the example, we could fix the problem by considering the union of all i-step attrac-
tors, that we will call Attr;‘é in the following, and then doing one more step of the at-
tractor computation.

Attrs (B) = Uien At (B)
w+1 w
Attry, (B) = Attr . (B)

U {x€Va|3(xy) € Ry e At (B)}
u {xe Vx| V(x,y') € Riy' € Attr (B), X' is live}

In general, even this could not be sufficient. We could not only need more steps of the

attractor computation, but even more limits steps, steps in which we take the union
over all smaller attractors.
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[l. Games on finite graphs

Application: Multiprocessor online scheduling

We have now gathered the prerequisites to study a practical application of reachability
/ safety games. Online scheduling problems can be seen as a game where one player
generates the tasks that have to be scheduled and the other player is the scheduler. The
existence of a winning strategy for the scheduling player corresponds to the existence
of a safe scheduler, a scheduler that guarantees that no job ever misses its deadline.

The content can be found in Section [T4.
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A play that satisfies the reachability winning condition may be infinite, but it essentially
can be cut off after the position in which the winning set is reached. An infinite maximal
play is winning for the existential player with respect to the winning condition if and
only if it has a finite prefix in which a position in the winning set occurs.

Now we want to look at a winning condition that can not be checked by looking at pre-
fixes. To satisfy the winning condition of Blichi games, positions in a winning set have
to be visited infinitely often. For this reason, they are also called recurrence games.

The dual concept are coBiichi games or persistence games, in which a set of losing
positions may be visited finitely many times, but not infinitely often.

Similar to the chapter on reachability and safety games, we assume that the existential
player wants to satisfy the Blichi condition, while the universal player wants to prevent
it.

Sources
The content of this section is based on Martin Zimmermann's notes [ZKW].

Other available resources for the topic include [CHP08; Kum; Jobb; Jobal.

Blichi & coBiichi games

5.1 Definition
Let X be a set (finite or infinite). Let X* be the set of infinite sequences of elements in X,

i.e.
X’ ={f| AN - X}.

For such a sequence p € X“, we denote by Inf(p) the set of elements of X that occur in
s infinitely often,

Inf(p) = {x € X| p; = x for infinitely many i € N}
= {x € X|{i| p; = x} is infinite}
={xeX|AkeN:|{i| pi = x}| = k}

For finite sequences, we can set Inf(p) = @.

Note that we can see the set of infinite plays Plays, . of a game as a subset of V*, i.e. writ-
ing Inf(p) for an infinite play makes sense.
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For the rest of this section, let G = (Vg w Vo, R). We make two assumptions:
« Vis finite (and thus R is finite, too).
+ G contains no deadlock, i.e. all positions are live.

We have already discussed in Exercise that the second assumption can usually
be enforced easily by a minor tweaking of the game arena. This is in particular
true for Blichi games. This assumption guarantees that all maximal plays are infinite,
Plays, ... = Plays

max inf*

We comment on the first assumption after the crucial definition.

5.2 Definition: Bilichi games
Let B € V be a set of positions. The Bilichi game or recurrence game on G with respect
to the winning set B is the game with the winning condition

win : Plays - {O,0}

O ,if Inflp)nB+ @,

max

p P
O ,elseie.Inf(p)nB=2.

As in the case of reachability and safety games, we can also see the above definition as
the definition of the coBilichi game or persistence game with respect to the losing set
B from the perspective of the universal player.

Let us now comment on the assumption that V is finite. If we allow infinitely many
positions, then the set B can also be infinite. If Bis finite, and a play p visits positions in
Binfinitely often, then there has to be a position x € Bthat s visited infinitely often, and
we have x € Inf(p) n B. This is by a variant of the pigeonhole principle: We distribute
infinitely many pigeons into finitely many holes.

If we would allow B to be infinite, we could have that infinitely many positions in p are
in B, but no single position is visited infinitely often, Inf(p) N B = @.

5.3 Remark

Blichi games are named after the Swiss mathematician Julius Richard Blichi. He intro-
duced Biichi automata in 1962, automata that read infinite words. Their acceptance
condition is that infinitely many final control states have to occur during a run.

Although he did not consider games, at least to my knowledge, this type of games
is named after him due to the similarity of the winning condition to his acceptance
condition.
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Recurrence construction

The attractor construction again plays an important role in the solution of such games.
Note that if a position is not in Attro(B), it cannot be winning for the existential player,
since the universal player can prevent each play from visiting B even once. There might
be positions from which the existential player can enforce a first visit of B, but not a
second one. Imagine for example that we reach a position of B that has a single succes-
sor not in B, in which the play then loops. This means that the winning region may be
smaller than Attro(B).

Our goalis torestrict the winning set of Bto the positions from which a revisit of Bcan be
enforced by the existential player. For each i € N, we define B as i-revisits recurrence
set, the set of positions in B such that the existential player can enforce i revisits of B. We
obtain that the recurrence set [ ]._, B'is the set of positions in B from which arbitrarily
many revisits to B can be enforced by the existential player.

Intuitively, the winning region of the Blichi game for the existential player should
be the set of positions from which she can enforce reaching the recurrence set,

i.e. Attro( ey B ).

We formalize this recurrence construction in the following definition.

5.4 Definition: Recurrence construction
For all natural numbers i, the sets B' and P of vertices are mutually inductive defined as.

B’ =B,
P' = V\ Attro(B),
B™' = B\ CPreg(P).

The set B'is called the i recurrence set, the set F is called the it" persistence set.
It might not be clear that the sets B are indeed the i-revisits recurrence sets that were
mentioned before. It is possible to define the sets in a way that corresponds better to

the intuition explained above. The definitions here were chosen because they simplify
the proof. We will see that both definitions are equivalent in Exercise 5.13.
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5.5 Lemma
The sets B' form a descending, the sets P’ form an ascending chain. There is an index
m € N such that the chains simultaneously become stationary.

@
1
mO
U
m_\
U

=) Bm — Bm+1 — ﬂieNBi

c P”

o
o
In
‘UA
N

P = UieNPi

Proof:

Proving B 2 B* and P' ¢ P*" boils down to Lemma B.8, Part a). In a finite arena, the
chains have to become stationary, similar to Exercise f.73. We leave the details to the
reader as an exercise, Exercise 5.12. [ |

5.6 Theorem: Solving Biichi games
For the Biichi game with respect to B, we have Wn = |,y P, and Wo = V\ Wa.

Towards a proof of the theorem, let X = V'\ .. P’ be the set of positions that we claim
is the winning region of the existential player.

We prove that all vertices in X are winning for the existential player, X € Wg, and we
prove that the vertices not in X are winning for the universal player, V\ X € W. Because
no position can be winning for both players, Lemma B.9, this proves the claim.

By Lemma .5, there is an index m € N such that B” = B""' and P" = P"*". This means
Usen P=p"

Furthermore, as previously claimed, we have X = Attro(B"), because

x=Vv\| JP

=v\pP"
=V\ (V\ Attro(B"))
= Attro(B™).

Let us first show that X is indeed winning for the existential player. Before we state the
strategy, we prove the following Lemma. It states that from B”, the existential player
can enforce reaching X within one step.

After proving it, we have collected all ingredients that we need to state the winning
strategy and show that it is indeed winning. The concept of the winning strategy is
shown in the following picture.
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Whenever the current position is in the set X that we claim to be the winning region,
the existential player can enforce a visit of B” within finitely many steps. This is because
X = Attro(B™). In the picture, this is symbolized by the dashed, bend lines. Whenever
the play reaches B”, the existential player can enforce that we stay in X in the next step.
This is the statement of the next lemma, and symbolized by the straight solid lines in
the picture.

Note that B” ¢ B is a subset of winning positions. Any play that follows the strategy
outlined above visits B” ¢ B infinitely often, and thus is winning.

5.7 Lemma
B"™ c CPreg(X).

Proof:
Let x € B” be arbitrary. We have x € B” = B™"' = (B'\ CPrey(P")) by definition.

If x is owned by the existential player, x € Vo, x has a successor y not in P". Because
P" = P™' we have that y is not in any P and thus by definition, y € X.

If x is owned by the universal player, x € Vo, all successors are not in P™ and thus notin
any Pi, and thusin X.

In both cases, we conclude x € CPrep(X). [ |

Attr

Recall that X = Attro(B"). By Lemma [f.T1], there is a positional strategy so that, if
played from a position in X, reaches B” ¢ B within finitely many steps.

We construct a winning strategy so for the existential player as follows.
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so + Vo -V
5" (x), if x € Attro(B™) \ 8",
X » qJywith(x,y)€eRandye X, ifxeB",
ywith (x,y) € Rarbitrary , else.

In the first case, note that we apply s3" to a position in Attro(B™) \ B™ € Attro(B™) = X,
i.e. to a position for which it guarantees to reach B” after finitely many steps.

Furthermore note that in the second case, i.e. x € B”, we know that there is a successor
in X, because we have shown x € B” ¢ CPrex(X) in Lemma.7.

5.8 Lemma
so is a positional strategy for the existential player that is uniformly winning from all
positions in X.

Proof:
Let p = pop1p; - - . be an arbitrary maximal play from some position p, € X that is con-
form to sp.

We first show that p never leaves X, i.e. Vi € N: p; € X. We proceed by induction, where
the base case is by the assumption p, € X.

Assume that p; is in X. We distinguish the two cases that are also distinguished by our
strategy.

If p; € X'\ B"™ and p; is owned by the existential player, the existential player uses the
strategy sgm. Note that the strategy from Lemma in particular guarantees that
all moves stay within the attractor, i.e. the successor y picked by the strategy satisfies
y € X. If p; is owned by the opponent the universal player, she cannot leave Attro(B™)
as all successors are in X by the definition of the attractor. Note that for both cases, it is

important that we are not in the 0-step attractor Attr?)(Bm) =B".

Now assume that p; € B”. If p; is owned by the existential player, the strategy picks a
successor in X, and we have already argued that this is always possible. If p; is owned
by the universal player, we know that all successors are in X, since we have argued that
B" c CPrep(X). In both cases, we rely on Lemma 5.7,

To finish the proof, we still need to argue that B is visited infinitely often. Assume
that i € N is some index such that p; ¢ B. Because B 2 B", this implies
p; € X\ B" = Attro(B™) \ B”. On such a position, the strategy so behaves as the strategy
sg" that guarantees reaching B™. In particular, there is some number k € N such that

pix € B™ € B.
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This shows that whenever we are not in B, we reach B again after finitely many moves.
Overall, we visit B infinitely often. [ ]

This finishes our proof of X € Wo. We now consider the case of the universal player,

V\X= V\(V\UP’)=UP’=Pm

showing that

ieN ieN
is a subset of Wg. To this end, we define a function & that maps each vertex x € P" to
a natural number §(x) such that any play from x conform to the strategy — which we
will present later — visits vertices in B at most §(x) many times. In particular, only finitely
many visits may occur. The function is defined as follows:

5§ : P" - N
x » min{ieN|xepP?

Note that we only consider vertices x € P", so we have that §(x) < m for all positions x.

Before formally defining the strategy, we prove some properties of 6 that will be crucial
for the well-definedness of the strategy.

5.9 Lemma

a) Forallx € P" n B, we have 6(x) > 0.

b1) Forallx € P" n Vg, there is a successor y such that §(x) = 6(y).
b2) If additionally x € B, the inequality from b1) is strict, 5(x) > 6(y)
c1) Forallx € P" n Vo, and all successors y, 6(x) = 6(y) holds.

c2) If additionally x € B, the inequality from c1) is strict, 5(x) > 6(y)

Proof:

a) Letx € P" nB. To show 8(x) > 0, we need to argue that x ¢ P°. By the definition, we
have P° = V\ Attro(B), i.e. no vertexin P is in the attractor of B. Certainly B € Attro(B)
holds, so we indeed get Bn P =o.

b1) Assume that for all successors y, we have 6(y) > &(x). In particular, we have y ¢ pov

) are in the

for all successors. This proves that all successorsy € V'\ PP = Attro(86
attractor of B°¥, Consequently, x € CPreo(Attro(Bé(X))) c AttrO(Bé(X)) since attractors
are closed under taking the controlled predecessor by Lemma f.8, Part b). This is a

contradiction, since x € P°™ = v\ Attro(8°%).
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b2) Assume that additionally, we have x € B. By Part a) of the lemma, we have §(x) > 0
and thus x € P x ¢ P°¥" where 6(x) — 1 is a natural number.

We havex € V'\ Attro(Bé(X)), and therefore x ¢ AttrO(Bé(X)). This in particular implies
x ¢ B = B\ CPreg(PV7").

Since we assume x € B, we get x € CPreD(P‘S(X)_1 ) By the definition of CPre, there
has to be a successor y € PP e, with 6(y) < 6(x) = 1 < 6(x).

c) Dual to b1) and b2), see Exercise 5.14.

We can now formally define the strategy s as follows.

sg Vg =V
ywith (x,y) € Rand §(x) > 6(y), ifxeP"nB,
x B <ywith(x,y) € Rand §(x) = 6(y), ifxeP"\B,
y with (x, y) € R arbitrary , else.

The successors picked in the first resp. second case are guaranteed to exist by
Lemma B.9, Part b).

A play that conforms to sp guarantees that the
« the §-values do not increase along the play, and
« whenever the play visits B, they strictly decrease.
This is by the definition of the strategy and by Lemma .9, Part c).

Since the value is initially at most m, and it stays non-negative, the set B is visited at
most m times, in particular only finitely often.

5.10 Lemma

sg is a positional strategy for the universal player that is uniformly winning from all
positions in P

Proof:
Let p = pop1p> - - - be an infinite play that is conform to sp.

Itis easy to see that for all i € N, we have &(p;) = 6(p;,1), i.e. we have an infinite decreas-
ing chain

8(po) = 8(p) = 8(p,) = 8(ps) = . ..
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For positions owned by the existential player, this is by LemmaP.9, Part c1), for positions
owned by the universal player, this is by the definition of the strategy.

Assume that p is not winning for J, meaning that there are infinitely many i such that
pi € B, say iy, iy, iy, .... Again by Part c2) of Lemma 5.9 and by the definition of the
strategy, we then obtain an infinite strictly decreasing chain

8(pi,) > 6(p;,) > 8(ps,) > 6(p;,) > . ..

Since we have §(p;) € N for all i, we get a contradiction. All strictly decreasing chains of
natural numbers have to be finite. |

Together, the Lemmata 5.8 and prove Theorem b.6. Since the strategies are posi-
tional and uniformly winning, they even prove the following corollary.

5.11 Corollary: Positional determinacy of Biichi games

Blichi games are positionally determined: The set of positions can be partitioned into
the winning regions for each of the players, and each player has a uniform positional
winning strategy for her winning region.

Exercises

5.12 Exercise
Formally prove LemmaB.5.

In the next exercise, we give a more intuitive definition of the recurrence sets Bi, and
we prove that it is equivalent to Definition 5.4.

5.13 Exercise: A more intuitive definition of recurrence sets
For the definition, we need a slightly modified attractor construction:

AsX) =@
A (X) = Al (X) U CPregy (AL (X) U X)
Attr (X) = | Ay (X)

ieN

Now we give an alternative definition for the sets B, here called BLX:

B =8

i+1

B, = B Attr(B.)
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a) Describe the difference between Attr;}(B) and Attry(B) in your own words.

b) Formally prove using induction on j that AQQ((B) UB = Attrik(B) foralli € N and
conclude Attry, (B) U B = Attry(B).

c) Formally prove using induction on i that B = BLX forall i e N.
Hint: In the induction step, you essentially need to prove
V\ Attrg(B') = CPreg(V\ Attro(B')) .

Part b) of this exercise is crucial for proving this statement.

5.14 Exercise
Prove Lemma .9, Part c1) and c2).

5.15 Exercise: A Biichigame
Consider the following game arena. As usual, vertices of the universal player are drawn
as boxes, those of the existential player as circles.

Consider the Blichi game with respect to the winning set {5, 7}, i.e. the existential player
wants to visit the blue-colored vertices infinitely often.

Solve the Blichi game using the recurrence construction. Give the sets Bi, P for alli, and
give all sets Attro and CPre that are needed to compute them.
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Our goal in this section is to generalize Biichi games to parity games. Similar to
Buichi games, the winning condition for Parity games will be a condition on infinite
plays that can not be decided by looking at a finite prefix. The winning condition of
Parity games allows us to express more involved properties like the following.

« If position x is visited infinitely often, then position y also has to be visited in-
finitely often.

- If position x is visited infinitely often, then position y should not be visited in-
finitely often.

Parity games have important applications:

« The model checking problem for certain kinds of logics can be expressed as a
parity game. For the modal u-calculus, parity games are equivalent to the model
checking problem.

+ Rabin’s tree theorem, a deep result on the closure properties of a certain class
of tree languages, can be proven by using the positional determinacy of parity
games. Rabin’s tree theorem in turn is used to prove the decidability of MSO logic
over infinite trees. We will prove Rabin'’s tree theorem in the Section [15.

« The emptiness problem for certain types of automata (alternating automata, tree
automata) can be solved by solving a parity game.

Furthermore, parity games are an interesting problem in complexity theory; We will
discuss this in more detail later.

Sources

The content of this section is loosely based on Roland Meyer’s notes on the topic.
They can be found here:

35_parity_tree_automata_part_1.pdf

36_parity_tree_automata_part_2.pdf

Parity games

6.1 Definition: Parity game

A parity game is given by agame arena G = (VgwVp, E)and afunction Q: V - {0, ... . k}
for some k € N that assigns each position one of finitely many priorities (also called
colors)
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6.2 Assumption
We assume that G is deadlock-free and that each position has only finitely many suc-
cessors. We do not assume that Vitself is finite.

Because the game arena is deadlock-free, again each maximal play p has to be infinite.
The parity winning condition is satisfied depending on the highest priority that occurs
infinitely often in B.

We formalize this as follows: A maximal play p = pop:p; - . . defines a sequence

Q(p) = Qpo)QAp1)QUp,) - .. €{0, ... K}

By the pigeon hole principle, {0, . . ., k} being finite implies that Inf(Q(p)) is non-empty.
We are interested in max Inf(Q(p)), the highest priority occurring infinitely often. By
convention, even numbers are good for the existential player, odd numbers are good
for the universal player.

6.3 Definition: Parity winning condition
The parity winning condition for the parity game given by the game arena
G = (Vg ¥ Vo, E) and the priority function Q is given by

win : Plays,.,, - {O,0}
O, if maxInf(Q(p)) is even,
p P
0O, else, i.e.if maxInf(Q(p))is odd.

6.4 Example
Consider the Biichi game on some game arena G with respect to the winning set B. We
can see it as the parity game on G with the priority function

2, X€B,
Qfx) =
1, Xx¢B.

This example shows that parity games indeed generalize Blichi games. No matter how
large the graph is, we just need maximal priority 2 to encode the Blichi winning condi-
tion.

Just like the Biichi winning condition (but unlike the reachability condition), the parity
winning condition is not depending on finite prefixes of the play.
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6.5 Lemma: Winning is prefix-independent
Letp = p'.p" € V* be an infinite play that decomposes into a finite prefix p’ and an

n

infinite play p". We have win(p) = win(p").
Proof: Inf(Q(p)) = Inf(Q(p")). [ |

We can see this lemma in two ways: On the one hand, we can cut off a finite prefix of a
play without changing its winner. On the other hand, we can prepend a finite prefix to
a play without changing its winner.

The consequence of this is that positional winning strategies from different positions
can be combined to a single uniform positional winning strategy. We have seen in
Exercise that this is not true for arbitrary winning conditions.

6.6 Lemma

a) Letx,x € Vbe positions such that player y¢ € {O,0} has positional winning strate-
gies sy, resp. sy, winning from x resp. x. Then there is a positional strategy s
that is winning from both x and x'.

b) Let X be a set of positions such that for each x € X, ¥ € {O,} has a positional
strategy sy, that is winning from x. Then there is a positional strategy sy that is
uniformly winning from all positions x € X.

Proof:
We prove a), Part b) is Exercise 6.25.

Let P € V* be the set of all plays from x that conform to sy, ,. We define Y € Vto be the
set of all positions that occur in such plays,

Y={yeV|3pePIieN:p =y}.

By the previous Lemma.5, we know that sy, is not only winning from x, but also from
any position in Y: Any play from a position y € Y can be seen as the suffix of a play from
X.

We define a strategy sy, as follows:

s 2V oV
Speul2)  ifzEY,

VAR o
Stexlz)  else.
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Intuitively, sy imitates sy, . until the play visits Y. Afterwards, it behaves like sy ...
It remains to prove that sy is indeed winning from both x and x'.

To this end, one should first prove that if a play visits a position in Y, from then on all
positions in the play will be contained in Y, and thus sy will behave like s4 . This can
be easily done by induction, and we leave it to the reader as an additional exercise.

Since x € Y, consequently each play from x that conforms to s also conforms to sy, .
Since sy, was a winning strategy, the play is then won by player ¥.

Any play p from x' that conforms to s, will either never visit Y, or there is a smallest
index i € N such that p; € Y. In the first case, the play is also conform to s« ,,, and thus
winning. In the second case, the play can be decomposed intop = pg...pi_1PiPis1 - - -
where pp;.+ . .. is an infinite play from p; € Y that is conform to sy, and thus winning.
By the Lemma .5, prepending the prefix p . .. pi.; does not influence the winner of
the play. [

As a result of the Lemma, it is sufficient to show that for each position, exactly one
of the players has a positional winning strategy. The lemma then gives us that there
are uniform positional winning strategies for both players on their respective winning
region.

Zielonka’s proof of positional determinacy

The goal of this section is to prove the following result.

6.7 Theorem: Positional determinacy of parity games [Mos91; EJ91; Zie98]

Parity games are positionally determined: There is a decomposition of the positions
into the winning regions of the players, V = W w W, and each player has a uniform
positional winning strategy on her winning region.

6.8 Remark: History of parity games

The determinacy of parity games can be proven using the Borel determinacy theo-
rem (Martin 1975 [Mar75]). However, this proof approach is non-constructive and nei-
ther gives an algorithm to compute a winner nor information on the type of strategies
needed.

In 1982, Gurevich and Harrington [GH82] have proven that it is possible for the win-
ner to win with a strategy that uses only finite memory. However, their proof is non-
constructive and does not immediately result in an algorithm to compute the winner
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of a game. In 1993, McNaughton [McN93] presented an algorithm that can compute
the winner for parity games on a finite graph.

The positional determinacy of parity games was independently proven in 1991 by
Mostowski [Mos91]] and Emerson and Jutla [EJ91]]. The proof and the recursive algo-
rithm that we will present here are due to Zielonka [Zie98].

In the proof, we will restrict the game arena to obtain a so-called subgame. To formalize
this, we will need the following definition.

6.9 Definition: Trap
We call a set X ¢ V a trap for player sx € {O, 0} if

- for all positions x € X owned by player ¥, all successors are in X, and

- all positions x € X owned by the opponent ¢ have at least one successor in X.

The intuition behind this definition is that whenever the play visits a trap X for player
%, the opponent ¢ can trap the play inside X. This means that player ¥¥ cannot enforce
that the play will ever leave X if the opponent does not cooperate.

The conditions should sound awfully familiar to the definition of the controlled prede-
cessors. Therefore, the first part of the next lemma should not be surprising.

6.10 Lemma

a) LetY ¢ Vand % € {O,O}. The complement of the attractor V' \ Attrx(Y) is a trap for
player >%.

b) Let Py, S V be the set of positions such that for each x € Py, ¥ has a positional

winning strategy from x. Then its complement V' \ Py, is a trap for player v*.

Proof:
a) Obvious by the definition of the attractor; See Exercise b.26.

b) By Lemma ., there is a uniform positional winning strategy on Py, for player st.
Assume that x € V'\ Px,.

If x is owned by the player %, and x would have a successor in Py, then the posi-
tional winning strategy on Py, could be extended to a positional winning strategy
on Py, U {x} by picking this successor. This means x € P, a contradiction. Conse-
quently, for positions owned by ¥, all successors are in V'\ Py,.
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If x is owned by the opponent 7%, but all its successors are in Ps., then the positional
winning strategy on Py, is also winning from x. Consequently, at least one successor
is not in Py,.

Traps are important because one can restrict a deadlock-free game arena to a trap and
again obtain a deadlock-free game arena.

6.11 Definition
Let G be the parity game given by the game arena G = (Vg w Vo, R) and the priority
function Q, and let X € V be a trap for player .

We define G,y to be the parity game on the game arena
Gy = (VanX)u(VonX) {(x,y) € R|x,y € X})
with respect to the restricted priority function Q y.

6.12 Lemma
The subgame G,y with respect to a trap is deadlock-free.

Proof: Immediate by the definition of trap and the assumption that the original game
was deadlock-free. |

In the definition of the subgame, it did not matter for which player the set X is a trap.
This is important for the following lemma.

6.13 Lemma

Let X € V be a trap for players¥in G and let S& be a strategy for the opponent ¥« that is
winning from some vertex x € X in the subgame G,y. Then S& is also winning from x in
the original game G.

Proof: Exercise .27 |

We have now gathered all prerequisites, and turn to proving the Theorem.

Proof of Theorem .7
We proceed by induction on the highest occurring number n that occurs as the priority
of one of the positions.
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Base case, n = O:
In the base case, we assume that n = 0. Any play of such a game will by won be the
existential player. Thus, any positional strategy for the existential player will be winning.

Induction step:

Now we assume that the statement already holds for games where the highest occur-
ring priority is n — 1. Let G be the given parity game where n is the highest occurring
priority.

Without loss of generality, we assume that n is even. If this is not the case, one has to
swap the roles of the players in the following proof.

Let Po S V be the set of positions from which the universal player has a positional
winning strategy. Obviously, P is a subset of the universal player’s winning region Wg.

We show that for each position in the complement V \ P, the existential player has
a positional winning strategy. By Lemma 6.6, we then get the existence of uniform
positional winning strategies for both sets, which proves the theorem.

Consider the subgame G' = Gy\p. By Lemma B.T0, Part b), V' \ P is a trap for the
universal player, and thus G' is a deadlock-free parity game.

We distinguish two cases:

Case 1: Highest priority n does not occur in subgame.
This means there is no position x € V' \ P with Q(x) = n.

In this case, we can apply the induction hypothesis to G' and we get that its set of ver-
tices decomposes into the winning region for the two players,

V\P|:|=W|:|UWO,

and the two players have positional winning strategies on their respective winning re-
gion in the subgame.

If W is not empty, then there is a vertex x € W such that the universal player has a po-
sitional strategy s from x in the subgame. This strategy can be extended to a strategy
for the original game G by using the strategy on P that we have by the definition of
Po. This combined strategy is winning on P W {x} since the parity winning condition is
prefix-independent, Lemma p.5. We conclude x € P, a contradiction.

Consequently, we have W5 = @ and thus Wy = V' \ Pq. By Lemma B.T3, the winning
strategy for the existential player in the subgame is also a winning strategy for the ex-
istential player in the original game, since V' \ Pgis a trap for the universal player.
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Case 2: Highest priority occurs in subgame.
We define N to be the non-empty set of positions of the subgame with priority n,

N={xeV\Pg|Qx)=n}.

Now consider the attractor Attrg(N) in V \ Po. We again construct a subgame
G'= Q}V\PD\AWO(N). Here, V'\ Pg \ Attro(N) should be read as (V' \ Pg) \ Attro(N).

By Lemma .10, Part a), this is indeed a deadlock-free parity game, since V\ PD\Attrg(N)
is a trap for the existential player.

Because N ¢ Attrg(N), G" does certainly not contain the highest priority n. We can
apply induction to get that its set of positions decomposes into the winning regions of
the two players

(V\ Pa) \ Attrg(N)) = Wiy Wes

and each player has a positional winning strategy on her respective winning region.

Similar to before, a winning strategy for the universal player on W5 could be extended

to a winning strategy for the original game: Since (V\PD)\Attrg(N) isatrap for O (inside

V\ Po), awinning strategy fordin G" is also a winning strategy fordJin G' by Lemma.T3.

It could be combined with the positional winning strategy on Po. Altogether, we obtain

that if x € W3, then x € P, a contradiction to W € (V'\ Pg) \ Attrg(N) € V\ Po. Hence
L =2.

It remains to argue that the existential player has a positional winning strategy on

Wg u Attrg(N) = V'\ Pg. To this end, we define a positional strategy.

Let s, be the attractor strategy for the existential player that is winning for the reacha-
bility game in V' \ P with respect to the winning set N on Attr(g)(N). Note that it will also
enforce reaching Attr(g)(N) in Vitself, since V'\ Pg was a trap for the universal player.

Let sg+ be the winning strategy for the existential player for the parity game G" on the
setV\ Po\ Attr(g)(N). We combine the two strategies and define a positional winning
strategy for the existential player for the original game G as follows.

so : Vo -V

Saer(X) | if x € Attrd (N) \ N, (1)

ywithy € Attrg(N) ,  ifx € Nand such a successor y exists , (2)

x » { ywithyeV\Pg, if x € Nand no succyasin (2) exists, (3)
sgr(x) ifx € V\ Pg \ Attrd (N), (4)

| yarbitrary successor , else. (5)
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The strategy is illustrated by the following figure.

Po V\ Po

mN\’(Z/)\N\r

For the well-definedness of so, we need to argue that each vertex in x € N has a succes-
sorin V' \ Pq. This is because if all successors of a position x € N would be in P, then x
would be winning for the universal player and thus be contained in Pg, but N € V'\ P
by definition.

It remains to argue that sg is winning on V' \ Pq.

Letp = pop1p; - . - be a play that conforms to s with p, € V'\ Po. By the definition of sp,
p never visits Po.

If p visits Attrg(N) infinitely often, then p also visits N infinitely often and is indeed won
by the existential player.

Let us assume that p visits N only finitely often. This also means there is a last visit of
Attrg(N) in p, because after each visit of the attractor, a visit of N follows after finitely
many steps. We can split the play p = p'.p" such that p" does not visit Attrg(N). By
the prefix independence, Lemma B.5, it is sufficient to show that p” is winning for the
existential player.

In p" the existential player behaves as given by the strategy sg.. As argued before, the
universal player cannot force the play to visit Po. If the universal player forces the play
to visit Attrg(N), this is a contradiction to p” not visiting this set. Therefore, the play p"
stays inside V'\ Pg \ Attrg(N). Thus, it can be seen as a play of the subgame G" that
is conform to the winning strategy sg«, proving that it is won by the existential player.

|
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6.14 Remark
We could actually define the winning strategy by

so : Vo » V
Sper(X) | if x € Attrd (N)

X b 3 sg(x) ifx € V\ P \ Attrd (N),

y arbitrary successor , else.

in the proof. Since s (x) is a strategy for the game G’ whose set of positions is V' \ P,
this strategy will also ensure that P is never visited. The proof of correctness works
without modification. We chose to make the additional case distinction in the proof for

didactic reasons.
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Zielonka’s algorithm

If the game arena is finite, the winning regions can be computed by the following re-
cursive algorithm due to Zielonka [Zie98]. It is a modified version of the McNaughton’s

algorithm for solving Muller games [McN93].

6.15 Algorithm: Zielonka’s recursive algorithm
Input: parity game G given by G = (Vg, Vo, R) and Q.
Output: winning regions Wg and Wo.

Procedure solve(G)

: N = maXey Q(x)

—_

2: if n = 0then

3 return Wo =V, Wg=09
4: else

5 N={xeV|Qx)=n}
6: if n even then

7 ‘ % =0,%=0

8 else

9 ‘ % =0%=0
10: end if

M | A= Attri(N)
122 | Wp, W = solve(Gyna)
13: if W{{,=V\A then

14 return We, =V, W{—? =Q

15: else

16: B = Attr%( War)

17: W5, W5 = solve(Gine)

18: return Wy, = W;}, Wx = W;—? uB
19: end if

20: end if

6.16 Remark: Another proof of positiona determinacy
The algorithm differs from the above proof in a key aspect: In the proof, we assumed
the set P = W to be fixed, but in the algorithm, we need to compute it.

To understand why the algorithm is correct, it is helpful to consider an alternative proof

of positional determinacy that proceeds by induction on the number of positions. The
drawback is that it proves positional determinacy only for finite game arenas.
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We give a sketch of the proof in the following. In the base case, the game arena is empty
and so are the winning regions.

Consider a non-empty game arena, and let n be the highest priority assigned to any
node. We again assume that n is even (otherwise, the roles of the players have to be
swapped). We define N to be the positions with priority n,and A = Attro(N) as its attrac-
tor. Consider thegame G' = Gyna- Since V\Aisatrap,Lemmap.70, G'is a deadlock-free
parity game. Since N # @ and N € A, its number of positions is strictly smaller than the
number of positions of G. Hence, we may apply induction to obtain that V\A = WuWg
is partitioned into the winning regions of the players and each player has a uniform po-
sitional winning strategy from her winning region.

Consider the case that W = @. We claim that in this case, the existential player wins the
whole game G using a positional winning strategy. We define the strategy so to com-
bine the strategy s for G’ on W5 = V\Aand the attractor strategy sy, 0 on A = Attro(N).
Any play conform to sg either visits N infinitely often (in which case O wins since n is
the highest priority and even), or after some finite prefix, it stays inside V \ A. Hence,
the play has an infinite suffix that is a play of G' conforming to the winning strategy s.
By prefix independence, the existential player wins the whole play.

Consider W # @. Define B = Attrg(W), and note that B # @. Hence, G" = Gp is a
deadlock-free parity game to which we can apply induction, obtaining V\ B = W w Wy
and corresponding positional winning strategies. The winning strategy for the existen-
tial player O from Wy in G" is also a winning strategy from Wy in G by Lemma since
V'\ Bis a trap for O. Hence, W € Wo and a positional winning strategies exist.

To see that W U B € W, we construct a positional winning strategy that combines (1)
the strategy s (for G') on W, (2) the strategy sau, o on Attrg(Wg) \ Wg, (3) the strategy
sg (for G") on W3. Any play conforming to the combined strategy from W5 U B either
completely occurs in W (and conforms to the winning strategy sp), or it enters W after
finitely many steps and then stays there, conforming to the winning strategy so". The
techniques needed to formally prove this are similar to the ones used in the proof of
Theorem p.7 above.

Computational complexity

To finish this section, we want to study the computational complexity of solving parity
games. To this end, we see parity games as decision problems.
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Solving parity games (PARITY)
Given: G=(VgwVo,R), Q, xeV
Question: Is x winning for the existential player?

The algorithm above can be used to solve PARITY by solving the game and checking
whether the given vertex x is in the winning region of the existential player.

6.17 Lemma
Algorithm solves PARITY in time |G|" - poly(|G|), where n is the highest occurring
priority.

Currently, PARITY is not proven to be in P, but it is in NP n coNP. To show this, we first
consider the following lemma.

6.18 Lemma
Let sy, be a positional strategy and let x € V be a vertex. One can check in polynomial
time whether sy, is winning from x.

Proof: Exercise b.28, Part a). |

By Theorem .7, exactly one player has a positional winning strategy for the given initial
position. This means that positional strategies can be used as a polynomial certificate.

6.19 Proposition
PARITY € NP n coNP.

Proof:

To show PARITY € NP, we give an algorithm that uses existential non-determinism.
The algorithm guesses a positional winning strategy for the existential player, checks
whether it is winning from x, and returns yes if this is the case. The strategy can be
stored using polynomial space, and checking whether it is winning can be done in poly-
nomial time by Lemma p.18.

To show PARITY € coNP, there are two possible approaches:

« Use universal non-determinism to check that no strategy for the existential player
is winning from x.

+ Solve the complement problem using existential non-determinism by guessing a
strategy for the opponent the universal player and checking whether itis winning
from x.
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6.20 Remark
Assume we could show that PARITY is NP-complete. Then its complement problem

is coNP-complete, and since parity games are self-dual, PARITY itself is also coNP-
complete.

We would obtain NP = coNP, a statement that is assumed to be wrong, since it would
mean that the polynomial hierarchy would collapse to the first level.

In 2017, a new algorithm was presented that achieves a much better running time.

6.21 Theorem: Parity games in polynomial time, Calude et al. 2017 [Cal+17]

+ PARITY can be solved in quasi-polynomial time
O(|G|Iog n+6) c O(Z(Iog |Gl) ) ’

where n is the highest priority.

« PARITY is fixed-parameter tractable in the highest priority n as there is an algo-
rithm solving it in time

o(I6F) +gln).

where g is some function whose value only depends on n.

An important consequence is that parity games can be solved quickly even for large
game arenas if the highest priority is small. Whether PARITY is in P is still open. On the
one hand, there are some problems for which quasi-polynomial algorithms could be
improved to obtain a polynomial algorithm. On the other hand, there are problems
for which quasi-polynomial lower and upper bounds have been proven. (The lower

bounds assume the exponential time hypothesis to hold, a strengthened version of
NP = P.)

6.22 Remark

An easier proof ot the result by Calude et al. [Cal+17] was later found by Jurdzinski and
Lazic [UL17].
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6. Parity games

Exercises

6.23 Exercise: Encoding winning conditions
Let G = (VoW Vo, R) be a deadlock-free, finite game arena. Let x, y € V be two positions,

X#Y.

a)

Present a reachability/safety game whose winning condition encodes the following

property:
A play is won by the existential player if it visits first x, then y.

Note: You are allowed to modify the game arena G.

Present a reachability/safety game whose winning condition encodes the following

property:
A play is won by the universal player if it does not visit both x and y.

Present a Buichi/coBuichi game whose winning condition encodes the following
property:

A play is won by the existential player if it visits x at least once, and later visits y in-
finitely often.

Present a parity game whose winning condition encodes the following property:
A play is won by the existential player if it either does not visit x infinitely often, or it
visits both x and y infinitely often.

Present a parity game whose winning condition encodes the following property:
A play is won by the existential player if it either does not visit x infinitely often, or it
visits x, but not y infinitely often.

For each part, reason briefly why your construction is correct.
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6.24 Exercise
Consider the parity game given by the following graph. For each vertex labeled with X,
the letter x denotes the name of the vertex, the superscript denotes its priority Q(x) = i.

For each player, identify her winning region and present a uniform positional winning
strategy. Reason briefly why the strategies are indeed winning.

6.25 Exercise
Prove Part b) of Lemma .6.

6.26 Exercise: Is it atrap?
a) Formally prove Part a) of Lemma 6.10.

b) Construct a game arena and a set Y such that Attrx/(Y) is not a trap for any of the
players. Prove that these properties hold.

6.27 Exercise: It's a trap!
Formally prove Lemma B.T3.
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6. Parity games

6.28 Exercise: Algorithmics of parity games

a) Prove Lemmap.18.

b) Use Zielonka’s recursive algorithm to solve the following parity game. The notation

is as in Exercise p.24.

6.29 Exercise: Weak parity games

Let us consider weak parity games. Just like a parity game, a weak parity game is given
by a game arena G = (Vg U Vo, R) and a priority function Q. Instead of considering the
highest priority that occurs infinitely often to determine the winner of a play, we consider
the highest priority that occurs at all.

Formally, the winner of the weak parity game given by G and Q is determined by the
weak parity winning condition:

win : Plays - {O,O}
O, if max{Q(p;)|i € N}iseven,

0O, else ie.if max{Q(p;)|i € N}isodd.

max

p P

a) Presentan algorithm that, given a weak parity game on a finite, deadlock-free game
arena, computes the winning regions of both players. Briefly argue that your algo-
rithm is correct.

b) Is the winning condition of weak parity games prefix-independent, i.e. does
Lemma 6.5 hold?

Do uniform positional winning strategies exist?
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[l. Games on finite graphs

Application: Rabin’s tree theorem

We have now gathered the prerequisites to study a theoretical application of game the-
ory. Rabin’s tree theorem is a deep result from automata theory, stating that a certain
class of languages of infinite trees is closed under complementation. Its easiest proof
relies on the positional determinacy of Parity games, Theorem 6.7.

The content can be found in Section [T5.
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7. Muller games

The goal of this section is to generalize the parity winning condition by getting rid of
the dependency on the priority assignment. We obtain a type of games called Muller
games. We will show that these games are determined. However, the winning strate-
gies are not positional, but use finite memory.

Muller games

7.1 Assumption
We assume throughout the section that G = (Vg w Vo, R) is a fixed deadlock-free and
finite game arena. We will use n = |V| to denote the number of positions.

Intuitively, the winning condition of a Muller game specifies for each set of position
that can occur infinitely often which player wins.

7.2 Definition: Muller game, Muller winning condition

Muller

A Muller game G on the game arena G is given by a judgment

judgment: P(V) - {O, 0O}

that assigns to each set of positions a winner.

The Muller winning condition is given by
win : Plays,, - {O,0}
p + judgment(Inf(p))

7.3 Remark

Muller games are named after David E. Muller (1924 - 2008), an American computer
scientist. In 1963, he invented Muller automata, automata that accept an infinite word
if and only if the set of states that occurs infinitely often is inside a specified collection.
The acceptance condition of these automata is very similar to the winning condition of
Muller games, hence the name.

Sources

The section does not follow any particular source. The book [HL11] (in German) dis-
cusses the translation from Muller automata to parity automata, which is very similar
to the construction that we consider here. A discussion of Muller games in English
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[l. Games on finite graphs

can be found in [KNOT]. Note that [KNOT|] only considers the simple case in which
judgment(V) = O and judgment(X) = Oforall X ¢ V.

See [ZKW] for another presentation of Muller games.

7.4 Example
Consider the following example.

Yy

For the above game arena, we use the winning function defined by
judgment({1, 2,3}) = O and judgment(X) = Ofor all other X ¢ V.

Every position is winning for the existential player. Namely, the strategy that for posi-
tion 1 alternates between choosing 2 and 3 is winning, as it generates a play in which
all positions occur infinitely often.

It is easy to see that the existential player has no positional winning strategy. A posi-
tional strategy will either only generate plays p with Inf(p) = {1, 2} or only plays with
Inf(p) = {2, 3}. In both cases, the universal player wins. Consequently, there is no prior-
ity assignment on the game arena such that the resulting parity game is equivalent to
the Muller game.

Latest appearance records

A strategy for a Muller game will need to track information about the past of the game.
However, instead of tracking the history of the play (which has unbounded length), it
is sufficient to track the order of last appearances of the positions. In the following, we
define a data structure that does precisely that.
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7. Muller games

7.5 Definition: Latest appearance record
A latest appearance record (LAR) /ar for the game arena G is a tuple

lar = (xo . .. Xp_1, 1)

such that

« Xo...Xp_q is a permutation of the set of positions, i.e. a sequence of positions in
which each positions occurs exactly once, and

« i€{0,...,n—1}isanumber.
Let us denote by LAR the set of all LARs, and note that [LAR| = n! - n.

LARs support an update operation that takes an LAR lar and a position x € V and pro-
duces a new LAR /ar’ defined as follows

update : LARXV - LAR

(X0 Xp1,0), %) P (xX0.. X1 X1 - - Xp—g J)

where jis the index of xin x, . .. x,_; (i.e. X = X).

This means position xis moved to the front and its old index of the sequence is exhibited
as the second component.

7.6 Example
Consider the LAR lar = (123, 1) for the game from Example [7.4. If we now see position
3, we obtain

update(/ar, 3) = (312, 2),

i.e. 3 is now the most recent positions, and it was moved from index 2.

As the name suggest, the latest appearance records indeed track the latest appearances
of the positions in a play. If lar is an arbitrary LARand p = p,...pc € V' is a finite
sequence of positions in which each position occurs at least once, then

update(. . . update(update(update(lar, po), p1) . . .)px)

will be an LAR of the shape (p', i), where p' is obtained from p by (1) reversing the order
(such that the most recent position is leftmost) and (2) removing from each position
all occurrences but the last one. The result shows the positions ordered by their latest
appearance.

83
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The number i in the second component of an LAR shows the old index of the position
that was moved to the front by the update. We will comment on why this number is
needed in a second.

Note that we can split the first component x,x; . . . x,_; of an LAR into the most recent
position x, and the history x; . . . x,_;. For convenience, we define a function returning
the most recent position,

mr : LAR - V

(Xo...Xn_1,i) = Xp.

In the following, we will translate the given Muller game into a parity game with LAR as
the set of positions and moves induced by the update function.

7.7 Definition
We define the LAR parity game G™*" to be the parity game on the game arena

G = (LAR,R')
with

owner (lar) = owner(mr(lar))

and R ={(lar,lar') | mr(lar) = x, (x,y) € R, lar' = update(/ar,y)} .

Its priority assignment is given by the function

Q : LAR - {0,...,2n—1}

2i, if judgment({x,, . . ., x;})

O,
(XO'--Xn—hi) =
O

2i+ 1, ifjudgment({xo,...,x})

Note that if one projects the new graph G' to the most recent positions, one obtains
the original game arena G. Therefore, one may see G’ as a version of G that keeps track
of (a part of) the history of the play.

The intuition behind the priority assignment is more complicated. We argue why it
depends on {xo, .. ., X;}, where i is the second component of the LAR, i.e. the old index
of the position that was just moved to the front.

Consider a play of the Muller game containing a simple cycle from x to x, say

p = p'.xx(” .. X™x. Then during the cycle from x to x, we have seen the set of

)

positions {x, X! ,...,X(m)}. This cycle is good for the existential player if and only if
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7. Muller games

judgment({x, x“), o ,x(m)}) = O. Let lar be the LAR associated to the first occurrence
of x, and let lar' be the LAR associated to the second occurrence. Note that we have

lar' = update(update(. . update(update(update(lar, x“)),x(z)) . .)x(m)),x)

and lar' is of the shape

lar = (xx; ... Xp_1, i)

such that indeed {x, x;, ..., x;} = {x, x“), o ,x(m)}. Note that the priority of lar’ is even
(which is good for the existential player with respect to the parity winning condition) if
and only if this set is good for O with respect to the Muller winning condition.

Now consider an infinite play p of the Muller game and let X = Inf(p) <€ V. This means
inf

f L
" , only positions in X occur: All

that we can decompose p = p .pi"f such that thatinp
positions not in X occur only finitely often, so for each position, there is a finite index at
which it occurs for the last time. Take the maximum of these indices over all positions
not in X to determine the location of the cut. Consider the sequence of LARs in the
parity game associated to pi"f. In it, only the first |X| entries of the (first component
of the) LAR will be modified anymore, since the other positions do not occur and are
never moved to the front. However, when we consider the set {x, . . ., x;} on which the
priority assignment depends, we will not always have {x,, . . ., x;} = X: It might happen
that some position occurs twice without all other positions occurring in between. In
this case, we have {x;, ..., x;} € Xand i < |X| — 1. Nevertheless, as we are interested in
the largest priority infinitely often, we are sure that the priority that is exhibited by the

positions with {xy, . . ., x;} = X will be the dominating priority in the run.

7.8 Example

Muller

We consider the construction of G™"™ for the Muller game G from Example /4.

(312,2)"
) 1 1-3 351 3 1
- -
(213,17 ((123,1) (132,17 (312,1)
152 \ 153
21 1->2
(213,2)°

Here, we have only drawn the part of the graph G' reachable from the LAR (123, 1). The

Q(lar)

names of the positions are of the shape lar ( , i.e. the superscript denote the priority.

The part x,...x; of an LAR lar = (X, .. .X,_1, i) that is underlined is the part on which
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[l. Games on finite graphs

the priority assignment depends. The moves are labeled by the moves of the original
game that induce them.

Note that

+ no LAR has 0 as second component because the original game contains no self
loops,

« there is no LAR in which the first component contains 2 and 3 in succession be-
cause there are no corresponding moves in the original game.

From parity to Muller with finite-memory strategies

To show the determinacy of Muller games, we will prove the following correspondence

Muller

between the original Muller game G""*" and the parity game G»"™.

7.9 Theorem: Correspondence
A position x € Vis winning in the Muller game """ for some player %% if and only if
any/all positions lar with mr(lar) = x are winning for ¥ in the parity game G*"™.

To prove Theorem [7.9, we show how to transform a positional winning strategy for

gparity Muller

into a winning strategy for G . Since parity games are determined, Theo-

rem .7, we then obtain the determinacy of Muller games.

Assume that szrity is a positional strategy that is uniformly winning from all LARs in the
winning region of . For simplicity, we will fix one LAR /ar, from the winning region

that we will consider as the initial position.

Unfortunately, we cannot translate szgmy into a positional winning strategy for the
Muller game. Instead of translating it into an arbitrary strategy (i.e. one that has un-
restricted behavior on plays), we translate it into a simple strategy. In the following, we
define such simple, although non-positional, strategies in general.

7.10 Definition: Finite-memory strategy

A (deterministic) finite-memory strategy (or forgetful strategy) for player 5 is defined
by a (deterministic) finite-state transducer T that reads the moves of the game and
outputs the moves of ¥. More formally, the transducer is a tuple T = (Q, V, V, qo, 6, 0)
where

« Qis a finite set of internal control states, the finite memory,

+ Qo € Qis the initial state,
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7. Muller games

« the set of positions Vis the input as well as the output alphabet,

« 6:Q x V = Qs the deterministic transition function that, given the old state g
and the new position x of the game, determines the new state 6(q, x), and

« 0:Q - Vis the output function that determines a the successor o(q) that is put
out depending on the current internal state g.

(The transducer should guarantee that whenever it outputs a position, this is actually
a valid successor, but we leave this assumption implicit.)

For such a transducer, we define its state state(p) after reading some finite sequence of
positions p € V* inductively by

state(e) = qq ,
state(p'.x) = &(state(p'), x) .

The strategy induced by the transducer can then by defined by

SsTf? : Playsy, —» V
p +— o(state(p)).

7.11 Remark

Note that the transducer has only one initial state g, but in the very first step, it can up-
date its state depending on the initial position of the play: The base case of the defini-
tion of state is the empty sequence €. Hence, transducers can be used to define uniform
strategies.

Instead of considering strategy with irregular behavior (i.e. strategies that can output
different successors for plays that are very similar), a finite-memory strategy will base
its decision on the state in which the transducer is after reading the play. This allows
us to restrict ourselves to storing the state of the transducer (which can be done with
space log |Q|) instead of storing the unbounded history of the play.

Recall that ™™ was constructed by amending the Muller game with finite information
about the history of the play, namely by the latest appearance records. It is therefore
natural that we use exactly this information to define a finite-state transducer, which

gparity

will then allow us to simulate the strategy for in the Muller game.
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7.12 Definition
Muller

We define Sp  tO be the finite-memory strategy induced by the transducer

T = (LAR,V,V, lar,, update, o)
where LAR and update are defined as before, the output function is defined by

o(lar) = mr(ss;my(lar)) ,

and the initial state /ar, is a LAR such that update(lar,, mr(lar,)) = lar;.

Note that indeed update: LAR X V — LAR has the required signature. The reason for

picking lar, as the initial state is that after we update it with respect to the most recent

position from lar,, we obtain precisely the LAR lar, for which we assume that s;?my is

winning.

7.13 Proposition

Assume that sE;rity is winning from lar; € LAR, then the finite-memory strategy sﬁgner is

winning from mr(lar; ).

Proof:

Let us denote x = mr(lar,). Consider a play p = pop;p, of the Muller game from x

(i.e. po = x) that is conform to ss'\g"er. We associate to it the sequence of states that T has

while reading p,
Po P P2
lar, — lar, = state(p,) — lar, = state(pop;) — ...

i.e. for each number i, let lar; be the state in which T is after reading p, . . . pi_;. (Recall
that lar, is chosen such that we are indeed in state /ar, after the first move)

Note that the states are latest appearance records and the transition relation of T coin-
cides with the update operation on LAR. Hence, the sequence of LARs p'” = lar,/ar, . ..

(without the initial state) is a valid play of GP*™ from lar,. Because the output function

of T that is used to determined the moves by 522;"”, is defined using Ss;rity’ we have that
la

. it
p™ is conform to 5

% , and hence winning.

Consequently, the highest priority ¢ that occurs infinitely often in p’ar is good for player

larfin _larinf larinf
p

w. We may decompose p"" =p such that all priorities that occur in p

are smaller or equal to €. By the prefix independence of the parity winning condition,

larinf .

LemmaB.5, we know thatalsop™ " is won by ¥*. Since the Muller winning condition is
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7. Muller games

also prefix independent, it will be sufficient to argue that the corresponding suffix pi”f
is winning with respect to the Muller game.

Note that since there is some index i that corresponds to priority ¢ (which is, depending
on which player ¥ is, either % or %) such that all LARs (xo . . . X,_1,j) havej </, and in-
finitely many LARs with j = i occur. This in particular means that all but the first i entries
are not moved inside p'a""f. Define X = {xo, ..., x;} as the entries that are swapped for

larinf

some LARfromp™"". (By the previous argumentation, it does not matter which one we

pick.)

We obtain that Inf(p) = Inf(pi”f) € X, as the positions not in X are never swapped to the
frontin p’a'i"f, which means that they do not occurin pi”f. To see thatInf(p) = X, note that
every position from X has to occur infinitely often, as it is infinitely often swapped to the
front in p™: Swapping another position to the front will make it wander towards the
end of the sequence, until it appears at index i. Since i occurs infinitely often as the

second component, it is then swapped to the front after finitely many steps.

To conclude the proof, note that since ¢ was a good priority for 3¢, X = {xo,...,X;} isa
set of positions that is good for player ¥t with respect to the Muller judgment. [ |
7.14 Example

Consider the positional strategy sgmy for O in the parity game G*"™ from Example /8
thatis defined by (123, 1) » (312, 2) and (132, 1) » (213, 2). The plays of G*"™ that are
conform to it use the cycle in the middle of the game arena infinitely often (and thus are
won by O since the highest occurring priority is 4). This strategy induces the finite state
strategy sy for G™"*' that, whenever the game is in position 1, alternates between
outputting successor 2 and outputting successor 3 (because the internal state of the
transducer alternates between (123, 1) and (132, 1)). As discussed in Example [74, this
strategy for the Muller game is indeed winning.

7.15 Remark
For the proof of Proposition Proposition [/.13, we have constructed a non-uniform win-
ning strategy. In Exercise [7.20, you will see that finite-memory strategies can always be

made uniform. In the special case of Muller games, it is actually possible to prove that,
pari
s

assuming e

"Y'is a uniform winning strategy, the LAR strategy ss'\g’"er is also uniformly
winning.

Using Proposition [/.13, it is easy to show Theorem [7.9.
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Proof of Theorem [7.9:
If a LAR /ar is winning in G*"™ for ¥, then mr(lar) is winning in G

tion /.13,

Muller tor * by Proposi-

If a position x is winning in the Muller game for 5%, then all LARs lar with mr(lar) = x
need to be winning for ¥r in the parity game. If one such LAR is not winning for ¥, it
needs to be winning for Yr because parity games are determined. Consequently, also x
would be winning for ¥ by Proposition /.13, a contradiction. [ |

From Theorem [/.9, we obtain easily the determinacy of Muller games.

7.16 Theorem: Determinacy of Muller games |
Muller games are determined, V = Wg u Wo.

We have even shown a stronger result: If a position is winning for some player %, then
this player has a finite-memory strategy with memory bounded by n! - n (because this
is the number of LARs). As mentioned in Remark [7.T5, one can in fact show that both
players have a uniform finite-memory winning strategy with memory bounded by n!-n.

To improve the result, one can observe that the second component i of an LAR
(Xo . ..Xp_1,i) is only needed to determine the priority assignment. One could show
that there is a uniform positional strategy s> for GP"™ that does not depend on this

)A¢
second component, i.e. it has

parit . parit .
Sﬁly(xo CXpoy, i) = Sﬁly(xo C Xp1,))
for all i, j. Using this, one can build a transducer that only uses the first components of
the LARs as memory.

Altogether, we can strengthen the statement of Theorem to obtain the following
result.

7.17 Theorem: Determinacy of Muller games Il
Muller games are determined, V = W w W, and each player has a uniform finite-
memory strategy for her winning region with memory bounded by n!, where n = |V/|.

One may criticize that the memory requirement of n! bits is very large. However, note
that already the encoding of a Muller game is quite large: To encode the judgment, we
need to store for each subset of nodes for which player it is winning. If the graph has
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[V| = n nodes and we just need one bit per subset, we will need 2" = |P(V)| many bits
to encode the judgment. Now observe that

n! < nn - (2Iogn)n - 2Iogn~n

which is not polynomial in 2", but only slightly super-polynomial.

Furthermore, one can show that the memory consumption of n! is essentially optimal.

7.18 Theorem: Optimality of LARs, Theorem 15 in [DJW97]
For each n € N, there is a Muller game on a game arena with 2n many positions such
that any winning finite state strategy needs to have memory at least n!.

The game that is used to prove Theorem [/.1§ is presented in Example [/.22. For the
proof, we refer the reader to [DJW97].

7.19 Remark

Deciding which player wins a Muller game from a fixed position is a PSPACE-complete
problem: There is a (deterministic) algorithm solving the problem that uses polynomial
space, but exponential time. Unless PSPACE = P, there is no algorithm solving the
problem just using polynomial time.

Exercises

7.20 Exercise: Making finite-memory strategies uniform

Let G be agame on some finite graph G = (VguwV(, R) with some arbitrary fixed winning
condition win. Assume for each of the two positions x, y € V, player O has some finite-
memory strategy, say induced by the transducers T, and T, respectively.

Show how to construct a transducer T such that the finite-memory strategy induced by
T is winning from both x and y.
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7.21 Exercise: Constructing a transducer
Consider the game G(n) (for some n € N, n > 0) on the following graph:

V = {guess,go} y Nw X with
N={1,...,n},
X={x;...x,},
R= {(guess,i),(i,go) |i€{1,....n}}
U{(gO,Xi)IiE {1,...,”}}U{(X},Xj) | I’je {17"'an}}a
owner(guess) = owner(i) = Oforalli € N,

owner(go) = owner(x;) = Oforall x; € X .

Let us focus on plays starting in position guess. Note that all maximal plays from this
position are infinite, and they visit exactly one position from the set N, and they visit
this position exactly once.

Such a play p is won by O if and only |Inf(p) n X| = m holds, where m is the unique
position from N that occurs in p.

a) Draw G for n = 4. Assume that the universal player picks the move (guess, 3). Draw
in a positional strategy for O that wins under this assumption.

b) Let n € N,n > 0 be an arbitrary fixed number, and consider G(n). Show how to
construct a transducer T such that the finite-memory strategy for O induced by T is
winning from guess.

7.22 Example: An expensive game

Muller

Letn € N,n > 0 be a fixed positive number. We define a Muller game G on the

game arena G = (V,R) with V = {1,...,n} x {O,O} (where the second component
indicates the active player) and the moves defined by

R={(i.%) > (%) |ije{1,....n}{0,0 = {& #}}.
The Muller judgment is defined as follows: judgment(X) = O if and only if
|X N Vo| = max{i| (i,0) € X} .
a) Draw Gforn = 2.

b) Explain the winning condition in your own words.
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parity Muller

¢) Construct the parity game G obtained form G by the LAR construction. You
can fix some initial LAR lary and just draw all LARs reachable from lar,. Similar to the

example in the lecture, mark all positions with their priorities.

Draw in a positional winning strategy for the existential player O.

7.23 Exercise: From parity to Muller
a) Let G = (Vg U Vo) be a finite, deadlock-free graph. Consider the parity game g™
defined on G by some priority assignment Q: V - {0, ..., n}.

Present a Muller judgment judgment: P(V) — {O,0O} such that the corresponding

Muller i< equivalent to G*™: Any position x € Vis winning for some

parity

Muller game G

Muller

playersxin g if and only if it is winning for this player in G

Muller

b) We calla Mullergame G union-closed if its defining judgment has the following

property: If judgment(X) = Y and judgment(Y) = ¥t for some sets X,Y € V, then
judgment(XuY) = 5k.

Check that the game you have constructed in Part a) is union-closed.

Note: One can show that if a Muller game is union-closed, and x € Vis winning for some
player ¥, then ¥¢ has a positional winning strategy from x.
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8. Mean payoff games

In this section, we want to study a different kind of games with perfect information: The
goal of the players it not to satisfy a winning condition, but to optimize their payoff, a
numeric value associated to each play.

Our goal is to study mean payoff games. In these games, both players alternately pick
moves in a finite graph. Each position has an associated weight, and the payoff of an
infinite play is determined by the mean (average) of the weights.

Similar to the games that we previously considered, we want to show a theorem stating
that positional winning strategies for such games exist.

In the proof of this theorem, we will associate to a mean payoff game a game whose
plays are of bounded length. Therefore, we will start by studying such games.

Sources
The content of the first subsection is common knowledge in game theory and can be
found in most textbooks on the topic.

The content of the rest of this section is based on the papers [EM79] and [ZP96].

Zero-sum games

8.1 Definition
A zero-sum game of length k € N is a game G given by a game arena G, a fixed initial
position x, and a payoff function ¢.

It is played as follows: Both players play for in total at most k moves or until the play
<k
max

deadlocks. Let Plays,. .. denote the set of such plays.

The payoff function ¢ maps
Q: Playssk - R,

max

such plays to a real number, yielding the payoff ¢(p) of the play.

We think of it as if after play p, the existential player has to pay the universal player
the value ¢(p) (respectively the universal player pays the value |¢(p)| to the existential
player if ¢(p) is negative). The goal of the existential player is to minimize her loss ¢(p),
the goal of the universal player is to maximize her income ¢(p).
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[l. Games on finite graphs

8.2 Remark
These games are called zero-sum games because the income of the universal player
equals the loss of the existential player. Wealth is neither created nor destroyed.

The goal of each player is not to satisfy a winning condition, but to optimize her payoff.
To formalize this, we define strategies that guarantee a certain payoff.

8.3 Definition
A strategy sy for either player guarantees value v if any play from the initial position
Xo that conforms to s, has

- o(p) < vifse =0, resp.

- o(p)zvifde=0

We are interested in the smallest value vg that can be guaranteed by a strategy for the
existential player, and in the largest value v that can be guaranteed by a strategy for
the universal player. We are in particular interested in whether these values coincide.

For (not necessarily positional) strategies sg, so for each of the players, let p@sgso de-
note the unique play from the initial position x, that is conform to the strategies. Note
that each play occurs as p@Qsgso for suitable strategies.

The best value that a strategy for the existential player can guarantee is
Vo = min max @(pQsgso) .
SO SD

Similarly, the best value that a strategy for the universal player can guarantee is

vo = max min @(pQsgso) .
S|:| SO

The next lemma states that the minimal loss of the existential player is in general larger
or equal to the maximal income of the universal player.

8.4 Lemma

Vo = min max ¢(pQsgso) = max min ¢(pQsgso) = v .
SO SD SD SO
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Proof:
Let s be the strategy that minimizes max, @(pQ@spso). Similarly, let sy be the strategy
maximizing min, o(pQsoso).

We have
min max @(pQ@sgso) = max ¢(pQspse)
SO SD SD
> ¢(pQsaso)
min @(pQ@sgso)
O

A\

= max min @(pQspsp) .
sa SO

This lemma even holds in much more general settings than the one considered here,
e.g. when we drop the condition that each maximal play has bounded length. Note
that we can write min, and max,, because there are only finitely many strategies. In
a more general setting, infinitely many strategies may exist, so the minimum and max-
imum might not be well-defined. In this case, we have to replace the minimum by the
infimum infsO over all strategies, and maximum by the supremum SUP,-

8.5 Definition
A length-k zero-sum game has value v if there are strategies for each of the players that
guarantee valuev, i.e.

V=Vvo=Vvg.

In particular, a game either has no value, or it has a unique value.

There are games that do not have a value, i.e. games for which vp > v holds.

8.6 Remark

As already briefly mentioned, the concepts in this section correspond to concepts for
the types of games that we already studied: The payoff corresponds to the winning
condition, and strategies that guarantee a value correspond to winning strategies.

Likewise, having a value corresponds to the game being determined.

The simple games under consideration here always have a value.

8.7 Theorem: Minmax theorem for zero-sum games of bounded length
Each length-k zero-sum game has a value.
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Proof:
We proceed by induction on the maximal length k.

For k = 0, the value is ¢(g) and there is nothing to show.

Assume the statement holds for games of length at most k — 1. Let G be the game of
length k under consideration. A play of length k can be seen as the first position xg,
followed by a play of length k — 1 from y.

For each possible successor y, we consider a new zero-sum game G”:
« Its plays have length at most k — 1.
« Itsinitial position s y.

- Its payoff function ¢' is defined by

¢'(p) = ¢(xo.p) ,
i.e. we prepend the position x, that we assume has already been visited in G.
By induction, each such game has a value V.

We assume wlog. that the player making the first move is the existential player. If this
is not true, one has to swap the roles of the players in the following and to maximize
instead of minimizing.

We claim that the value of the original game is min, v/, where we minimize over all y
such that there is an arc (xo, y) € R.

Let y' be a node y such that V' is minimal. It remains to prove that both players can
guarantee V' inG.

The existential player can pick the move (x,y') and then use her strategy for le guar-
anteeing value v''. More formally, let sé be a strategy for the existential player for the

game G’ that guarantees v''. We define a strategy so for G as follows:

so(xo) =y
soXo-p) = s5(p) -

1
)
]

By the definition of the payoff function ¢' on gy', any play of the original game conform-
ing to s has value at most v/
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The universal player has no influence on the first move (x,, y) that is made by the exis-
tential player. For each such y, let sly:| be her strategy guaranteeing v’ in G’. We combine
these strategies to obtain s as follows:

sa(xo-y-p) = s(y-p) -

Assuming we fix the first move (x,, y) made by the existential player, then s guarantees
value V' by the definition of the payoff function ¢'. Therefore, for an arbitrary first move,
so guarantees min, v’. [

8.8 Remark
This theorem has also been established for more general payoff games, but as men-
tioned above, it does not hold in all settings.

Mean payoff games

In this subsection, we want to consider payoff games whose maximal plays are infinite.

Inthe previous subsection, we have allowed an arbitrary payoff function that can assign
each play an arbitrary value. In a sense, this allows the function to exhibit irregular
behavior: Very similar plays can have vastly different payoffs.

Here, we restrict ourself to a very regular setting: We assume that each position x of the
graph has an associated weight w(x) € R. The payoff of a play is the mean (average)
over the weights of the positions visited in the play. Since the play is infinite, we have
to express this mean as a limit.

For simplicity, we impose some more restrictions on the finite game arena
G=(VgwVo,R):

« It should be deadlock-free.
« We assume the initial position x, € Vo is owned by the existential player.
« We assume that V = Vg w V5 is a bipartite decomposition of the graph:

Rc (VaxVo)u (Vo x V).

The last condition enforces that the players alternately take turns.
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[l. Games on finite graphs

We furthermore assume that a weight function
w:V - R

is given, assigning each position x its weight w(x).

8.9 Definition
A mean payoff game G is given by a game arena G and initial position x, as above
together with a weight function w.

. . inf . .
To an infinite play p = pop1p, ... of G, written as a sequence of moves, we associate
two values

¢o(p) = lim sup —

n—>00

1 ¢
¢o(p) = lim mfn i Z w(p;) .

n—->00

We think of ¢o(p) as the loss of the existential player, and of ¢5(p) as the income of the
universal player. The goal of the existential player is to minimize ¢g, the goal of the
universal player is to maximize ¢p.

8.10 Remark
For each n € N, the expression

is the mean (arithmetic average) over the weights of the first n + 1 positions of the play.
We can consider the sequence formed by these values for all n € N. We would like to
define the mean over the infinite play as the limit of this sequence, i.e.

n

olp) = lim —= wlp

i=0

Unfortunately, it is not clear whether this limit exists.
To solve this problem, we consider the limit superior respectively the limit inferior. Re-
call that they are defined to be the supremum resp. infimum of the set of limit points

of a sequence.

In contrast to the limit, they are well-defined for any sequence. The limit exists if and
only if their values coincide.
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In principle, these values could be (minus) infinity. This will never occur in the setting
considered here, because we only have finitely many arcs and thus the range of the
weight function is bounded.

Note that by definition, this type of game is not necessarily a zero-sum game: ¢o(p)
could be strictly larger than ¢(p).

The key theorem that we want to prove expresses that, firstly, mean payoff games al-
ways have a value, and secondly, this value can be guaranteed for both players by po-
sitional strategies.

8.11 Theorem: Ehrenfeucht & Mycielski 1979 [EM79]
There is a value v such that both players have positional strategies sg, so such that:

« Any play p from x, conforming to sg has @g(p) < v.

« Any play p from x, conforming to sg has ¢g(p) = v.

Using the notions from the previous subsection, one could phrase this as: Mean payoff
games have a value, and it can be achieved using positional strategies.

8.12 Remark

+ In the literature, one usually considers a weight function in R - R that assigns
each arc a weight. To fit better the notation used in the rest of this lecture, we
have adapted the theory to the case of weighted vertices.

« Without the assumption that the graph is bipartite, i.e. the players are taking
turns alternately, the theory becomes substantially more difficult. Nevertheless,
positional determinacy can be proven [V A88].

To establish the result, we consider a version of the game in which all maximal plays are
of bounded length. The idea is to stop after the first repetition of a position.

8.13 Definition
fin

The game G is defined to be played on the same game arena G and from the same

inf

initial positionxy € Voas G .
Both players pick moves as usual.

A play p deadlocks as soon as a player ¥x € {O,} picks a position p,, = y € Vi_ir such
that y already occurred in the game, i.e. thereis ¢ < m withp, = y.
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[l. Games on finite graphs

For such a play p of this game, we assume that the existential player pays to the univer-
sal player the value

0"(p) = — ) wip).

i=C+1

fin .

We depict a maximal play of G in the following figure.

Xo = Po Y=P¢ =Pm

The payoff of a play of G™Misthe average of the weights of the positions occurring in the
loop from y to y (with y only counted once). The weights in the prefix are not regarded.

8.14 Lemma
G™ has a value.

Proof:
G™ can be modeled as zero-sum payoff game of bounded length, see Exercise B.30.
|

The idea in the following is to relate gf"” to g’”f. Firstly, we will prove that strategies
for G can be lifted to obtain strategies for G" guaranteeing the same value. This will
prove that G" has a value. Secondly, we need to show that there are positional strate-
gies for G By the first part of the development, it will be enough to prove that g™
admits positional strategies. To show this, we go from the finite game (more precisely,
the game with finite maximal plays) to the infinite game, where we can use that the

payoff function is defined as a limit.

Ehrenfeucht and Mycielski state this in their paper as follows: “An amusing feature of
our proofs is that we have to use both games to establish our claims about any one of
them.”
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inf

We start by lifting strategies for G™ to strategies for G

inf

Letp = py ... pi be afinite play of G

Assume there are numbers € < m < k such that

Pm =pPe =Y.
We call such a situation a repetition.

We want to consider the first repetition: Let m, be the least m such that there is a cor-
responding ¢ such that ¢ < mg, forms a repetition. Note that this ¢ has to be unique is,
let us denote it by ¢,.

We define purge(p) to be the play in which we delete the segment p; ;... pm,:

0

purge(p) = Po - - - PeyPmo+1 - - - P -

For an arbitrary play p' (that may not necessarily contain a repetition), we define
purge”(p) to be the sequence we get by applying purge as often as possible, i.e. un-
til the resulting sequence contains no repetition any more.

8.15 Lemma
Let p be a finite play of G The sequence purge*(p) is a valid play of G™ ending in the
same position as p.

Using purge®, we can lift strategies from G™ to G™: For a given play of G, we apply
purge” and then ask the strategy for G™ for the next move.

8.16 Definition
fin fin inf inf

Let s, be a strategy for a player v¢ for the game G . We define a strategy 5S¢ forG" as

follows:
inf ﬁn(

sa(p) = s(purge’(p)) .

Using the properties of purge”, the following lemma is easy to prove.

8.17 Lemma
inf

fin . i .
If s’x’ is positional, so is s'.
pie

The crucial lemmais the following. It shows that lifting the strategies also lifts the value
they guarantee.

103



[l. Games on finite graphs

8.18 Lemma
fi i inf . inf
Ifsi'g guarantees valuevin G, then s'& guarantees valuevin G".

Proof:
We consider the case of the existential player, i.e. ¥t = O. The proof for the universal
player is similar.

Let p = pop1p; - - - be an infinite play of G from X, that is conform to sgf. We need to
show @p(p) < v.

First note that since G is played on a finite graph, after some finite number of steps,
each position that will be visited at all has been visited for the first time. From this
moment on, p is essentially a sequence of loops. In total, p is a sequence of loops plus
a finite prefix.

In each loop, the existential player plays as if all previous loops had not occurred. This
is because s;”; is defined to apply the purge*-operation.

To prove the desired statement, we first provide an estimation for the average of finite
prefixes of p. Later, we lift this estimation to the infinite play p.

)

Let us consider for each n € N the finite prefix p(" = pop; ... r, of p. p(”) decomposes

into loops and a part of the play that is not contained in any loop.

The following figure depicts a possible decomposition of p(”) into two loops. Only the
prefix and the suffix of the play that are marked using red color are not part of any loop.

The idea of the proof is to consider the positions contained in any loop and the ones not
contained in any loop separately. The average over the weights occurring in the loops
is bounded by v, as the strategy is obtained by lifting a strategy for the finite game g™
guaranteeing value v. The number of positions not contained in any loop is bounded,
thus the corresponding weights do not influence the payoff of the infinite play. This is

made precise in the following.
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8. Mean payoff games

Let us consider the mean over the weights in p("), i.e. the value

W_ 1 <
avg —n+1;W(p,)-

Let Loop;, ..., Loop, € {0, ..., n} denote for each jthe set of indicesi € {1,. .., k} such
that p; is part of the jth loop. Let Rest denote the set of indices not contained in any
loop.

We can rewrite the expression above by decomposing the sum accordingly, obtaining

k

an(n) = n-1H Z Z w(p;) + Z w(p;) |-

J=1 i€Loop; i€Rest

Observe that each loop together with the part that leads to it (in which we remove
all loops that occurred earlier) is a play of G™. In fact, itis a play that conforms to the
strategy sg' that we lifted to obtain sgf. Therefore, each such play has payoff at most
vin G™. The payoff function of G™ was defined to yield the mean over the moves
occurring in the loop. Thus, the mean value of the weights of each loop is at most v.
Consequently, the total value of each loop is at most its cardinality times v. We obtain

the new estimation

k
n 1
avg() Py ZV|L0°pj| + Z W(Pi))

j=1 i€Rest

/N

= v(n+ 1 — |Rest|) + Z W(Pi))

n+1 )
i€Rest

= v(n+1)=v-|Rest| + ) W(pi)).

n+1 )
i€Rest

Let us now consider the expressions involving Rest: The number of moves in Rest is
bounded by |V|: After going through all positions once, it is not possible to make a
move without having a repetition and thus closing a loop. In particular, this bound
does not depend on the length n of the play under consideration. This allows us to
bound the influence of these nodes on the average by taking their maximum number
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times the maximal weight assigned to any position of G. Altogether, we may chose a
suitable constant ¢ not depending on n such that we have

avg” < (vin+1)+¢)

n+1

vin+1) C
+

n+1 n+1

=v+ )
n+1

Let us now consider the value ¢@g(p) for the infinite play. We have
©o(p) = liminf,_ avg(”) by definition, and thus

. c
oo(p) < lim mf(v + m) =v,

n—->00

since = goes to 0 when n becomes large.
n+1

This is what we needed to show. [ |

Intuitively, we have exploited that an infinite play p consists of infinitely many loops
and a negligible (bounded) part not contained in any loop. Since the payoff is a limit,
this bounded part does not matter.

The lemma that we have just proven already gives us a part of the desired theorem.

8.19 Corollary
The game G has a value, namely the same value as g™,

inf

It remains to show that the value of G can be achieved using positional strategies.
By the Lemmas and B.T8, it is sufficient to show that G™" has positional strategy
guaranteeing the value.

A positional strategy essentially forgets the whole past of the play. To prove this, we
will introduce another finite game that has a forgetting-mechanic: as soon as a certain
position is visited, the prefix of the play up to this point is forgotten. We will show that
even in this “forgetful game”, we are able to achieve the same value as in gf"”, and then
deduce the existence of positional strategies for g™,

The catch is that to prove this statement, we will need to go back to the infinite game
G"™: In an infinite play where the payoff is defined as limit, forgetting a finite prefix of
the play certainly will not hurt.
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8. Mean payoff games

Let us first introduce some notation: For a position x € Vo owned by the existential
fin inf fin inf

player, let G, and G, be the games that work like G and G, but are played from x
(instead of xy)as the initial position.

We can now define the forgetful game.

8.20 Definition
For a node x € Vo, the game G is a zero-sum payoff game of bounded length played

fin inf

on the same game arena G and from the same initial position x,as G and G .
Its plays work as follows:

+ As long as position x is not visited in a play, the termination criterion and the
payoff function are defined as for g™
This means we stop after the first repetition, and the payoff is the mean of the

weights of the positions occurring in the loop.
« If a play p visits x, say px = x the game essentially forgets the prefixry ... r_;.

The play continues until a repetition occurs, i.e. until there are k < ¢ < m such
thatr,, = r, = y. The payoff of such a play is

Note that in the second case, we require k < ¢ < m, i.e. that the repetition only involves
positions that happened after visiting x. We do not consider moves p,,, that close aloop
started by p, with €' < k as repetitions, since we want to forget the prefix pg . . . py_1.

We can rephrase the mechanics of G* as follows: As long as the universal player does
fin fin

not move to x, G* behaves like G". If she does, the game behaves like G,", G™ started

from x, and the prefix leading to x is forgotten.

8.21 Lemma
For each x € Vo, G* has a value.

This lemma can again be proven by modeling G* as a zero-sum payoff game with
bounded length.

fin

Crucial is that the value of G* is still the same as the value of G"".

8.22 Lemma
For every x € Vo, the value of G* equals the value of gf"”.
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Proof:
Consider a strategy for some player sg'fg for G™ that guarantees value v. It remains to

show that there is a strategy s;, for G* also guaranteeing value v.

If in no play of g™ conforming to SZ‘;' the universal player ever uses a move leading to
x, then SZ:Z is also a strategy for G* that guarantees value v.

Assume that there is a play in which x is visited. Consider the lifted strategy s;'g for g™,
Then there is a play conforming to s;g that visits xin G"".

We observe that this means that the value of Q,"("f is not worse than the value of ™.

(Here, not worse means < if we consider the existential player, and > if we consider the
universal player.) Each play of g;”f can be seen as a play of G in which we remove the
finite prefix leading to the first visit of x. Since the payoff function in G is a limit, it
does not care about removing a finite prefixes.

We may apply Corollary to G and G™ to conclude that also the value of G™ is not
worse than the value of G™.

Since plays of G* in which x is visited behave like gf”, this proves the result: Recall that
fin fin finx fin

54 Is a strategy for G that guarantees value v. Let She be a strategy for G, that guar-
antees value v. (It exists by the previous discussion.)

We define a strategy sxﬁ for G* guaranteeing value v as follows: As long as we have not
visited x, sfﬁr behaves like SZ‘; would.

Assume the play has already visited x, and let p = p'p" be a decomposition into the
finx

prefix leading to x and the rest. Then we define s’;\z(p) = S (p") to be the strategy for
G™ applied to the rest. -

The lemma that we have just proven is now crucial for finally proving the second part

of the theorem of Ehrenfeucht and Mycielski. Recall that it is sufficient to prove that the
fin . . . .

value of G can be achieved using positional strategies.

8.23 Proposition
There are positional strategies for g™ guaranteeing its value v.

Proof:
We only consider the case of the existential player. The case of the universal player is
similar, using a suitable version of G* for positions x € V.

Let Ro be the set of arcs originating in positions of the existential player,
i.e.Ro =Rn (Vo x V).
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We proceed by induction on m = |Rp| — |Vo|. This number m is essentially the number
of possible choices for O: Note that m = 0 has to hold, since the game is deadlock-free.

If m = 0, we have |Vp| = |Ro| and each position has a unique move originating in it.
Consequently, each strategy can only pick this move and is necessarily positional.

Assume m > 0 holds. Then there is a position x € Vo such that there are several arcs
originating in x.

Consider the game G". By the previous Lemma, there is a strategy sg for G* guaran-
teeing the value v. We can assume that the strategy only uses at most one arc (x, y)
originating in x: If x is visited at second time, this closes a loop, and thus the play stops.

We will now consider variants ™" and G of the games in which we remove all arcs orig-
inating in x but this one arc (x, y). Removing these arcs does not influence the strategy
56, since it has only used the arc that still exists. Thus it guarantees value v in g~

By Lemma applied for G™ and G*' this value coincides with the value of G™. Since
in gf""', there are strictly less choices for the existential player, so we can apply the in-

fin'

duction hypothesis. This yields a positional strategy spoos guaranteeing valuevin G .

fin

We may see this as a strategy for G . Since we only restricted the choices of the exis-

fin'

tential player in g™ any play of g™ conforming to the strategy is also a play of G

conforming to the strategy. We conclude that, since spoo
fin

also guarantees valuevinG. [ |

o fin'
* guarantees value vin G, it

Proposition together with Corollary proves Theorem B.T1].

The complexity of mean payoff games

In the previous subsection, we have followed the development of the original paper
by Ehrenfeucht and Mycielski from 1979 [EM79] to prove that mean payoff games have
optimal positional strategies. The proof does not yield an efficient algorithm: It is a
brute-force approach, as we essentially try out all subgames in which only one choice
is possible.

In this subsection, we want to list some complexity results on mean payoff games
without giving detailed proofs. Let us assume that all weights are integers, i.e. the
weight function has signature w:V - Z. Note that a weight function assigning ra-
tional weights can be transformed into an equivalent one assigning integer weights by
multiplying all weights with the least common denominator.
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The decision problem variant of mean payoff games can be phrased as follows. Note
that, as usual for the decision problem variant of optimization problems, we assume
that a proposal for the value v is given instead of computing it.

Solving mean payoff games (MVEANPAYOFF)

Given: G bipartite deadlock-free game arena, x, € Vinitial position,
w:V — Z weight function,
veEQ,
player ¥ € {O,O}

Question: Can vr guarantee value at least v?

Here, at least v should mean greater than or equal to v if the player 3% is the universal
player, and less than or equal to v if the player ¥ is the existential player.

First, note that similar to parity games, mean payoff games can be solved in NP as well
asin coNP.

8.24 Lemma
MEANPAYOFF € NP n coNP

Proof (sketch):

Similar to the proof of Proposition (the analogous result for parity games) the goal
is to guess a positional strategy for one of the players and check whether it guarantees
the given value. The deterministic polynomial-time algorithm that checks whether a
strategy is winning is more involved than the one that proves Lemma 6.18. Assume we
have reduced the game arena to a game arena in which only the opponent has choices
(using the guessed positional strategy to resolve the choices of the player of interest).
One needs to check whether a cycle in this graph exists of which the mean is worse than
v. To this end, one can use a polynomial time algorithm by Karp [Kar78].

If such a cycle exists, the opponent could force the play to have the bad value of the
cycle by taking this cycle infinitely often If the mean of all cycles is better than v, the
guessed strategy is winning.

The algorithm of Karp can be used to determine the maximal resp. minimal mean over
a cycle. Therefore, this approach works for strategies for both players, just the meaning
of worse has to be adjusted. [ |

Even more interesting than the decision problem variant would be to actually com-

pute the precise value of the game (which is the best value each player can guaran-
tee). Furthermore, one would like to obtain positional strategies without using brute
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force methods. These problems are studied by Zwick and Paterson in their 1996 pa-
per [ZP9€].

To determined the value of the game, they consider a variant of the game that is played
from an initial position x for a fixed number k of moves. The payoff of a play is the sum
of the obtained weights. Let v,(x) denote the value of this game for initial position x
and length k. It can be easily computed using a recursive algorithm, see Exercise 8.29.

The time needed for the recursive computation of the values v,(x) is in O(k- |E|). To this
end, notice that the recursive computation naively forms a tree, which would be too
large, but it can be compacted into a DAG (directed acyclic graph). This is possible by
merging multiple occurrences of v(y) for the same i and y into one node. The resulting
DAG has at most k - |E| many arcs.

To actually implement the algorithm, one should use a dynamic programming ap-
proach: We compute the values v;(y) forally € Vinaloopfori = 1,..., k. This allows
to evaluate each v, (y) by looking up the values for v; without recursive call.

Intuitively, the value v of the mean payoff game should be obtainable as the limit

lim Vi(Xo)
k—o00 k '

This indeed holds, as stated by the following result.

In the following, we will use n = |V| to refer to the number of positions, and
W = max,ey |w(x)| for the the greatest absolute value of the weight function.

8.25 Proposition

k-v—2nW < v (xy) < k-v+2nW.

Note that 2nWW does not depend on k. Using the sandwich criterion, we get that v,(x,)

has the same limit behavior as k - v, and thus @ converges to v for k - oo.

8.26 Theorem
The value v of a mean payoff game can be computed in time O(n” - |E| - W).

Proof sketch / Algorithm:
Compute the value vi(x,) for k = 4|V|>W. As stated above, this is possible in O(n’ W- |E]).
Define v' = vi(x,)/k. Using Proposition B.25, we obtain

! 2nW 1 ZnW
— VSV +—.

111



[l. Games on finite graphs

By plugging in the definition of k, we can obtain the estimation

1 1 1
Vo————<V<V + ——— .
2n(n—1) 2n(n—=1)

We use (without proof) that v can be written as a rational number with denominator at
most n.

The index k was chosen such that the interval provided by the estimation contains a
unique such number, which then has to be v. [ ]

We now turn to optimal positional strategies.

8.27 Theorem

For both players, optimal positional strategies can be computed in time
O(n* - |E| - log(d) - w).

Proof sketch / Algorithm:

The idea is to use the fact that the existence of positional optimal strategies guarantees
that for each position, we can select a unique outgoing arc that should be used by the
strategies. We select candidate arcs and test whether the value of the game stays the
same, if yes, we have chosen the correct arc.

Instead of doing this one by one, we use binary search to detect in a logarithmic num-
ber of steps for each position the optimal move. Zwick and Paterson call this approach
a group test strategy. We use the fact that we can compute the value of a game using
the previous algorithm, even if the game involves choices by both players.

The algorithm is as follows:
« Compute the values v for the game using the algorithm above.

« For all positions with only one outgoing arc, the move made by the strategy is
fixed.

+ Aslong as there is a position y with out-degree d > 1:

Let R, be the set of arcs outgoing from this position. We may partition it into
non-empty sets R, = R;, g R; of size |d/2] resp.[d/2].

Consider the game G’ in which all arcs from R, but the arcs in Rj have been re-
moved, forj € {1, 2}. Compute their values v/ using the algorithm above. If v = v/,
then there is an optimal positional strategy for the player owning y in which she
choses an arcin R’y
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8. Mean payoff games

Repeat this approach and refine until a single optimal move has been identified
from every position.

Note the the algorithms presented here a pseudo-polynomial, as they are polynomial
in the size of G and W. This means they are polynomial assuming weights are encoded

logW

in unary. Note that W = 2 is exponential in its binary encoding, i.e. the algorithms

are not polynomial using an usual binary encoding of the input.

If the maximum weight is small, the algorithms presented here are efficient. If the max-
imum weight is very high compared to the size of the graph, the brute-force-approach
that is exponential in the size of G, but essentially independent of W, could be better.

Exercises

8.28 Exercise
Let G be a zero-sum game. Prove that if G has a value, it has a unique value.

Use the definitions in your proof, do not use vp = v or the minmax theorem.

8.29 Exercise

Let G be a length-k payoff game on a finite game arena G = (Vg w Vo, R) for some
initial position x, € V. We assume that there is a weight-function w:V - Z assigning
each position its weight as an integer. The value of the payoff function ¢ of a play
p = poP1ps - - - I, of length n < kis defined as follows:

o(p) =y wip).

i=0

Present a recursive algorithm determining the value v of such a game.

Hint: For each position y and each number n < k, define v,(y) as the value achieved in
the game where we see y as the initial position and n as the bound on the length of
plays. Show how to compute these values.

8.30 Exercise
Consider the game G™ from Definition B.13.

a) Prove that if the positions corresponding to the indicesod ¢ < m form a repetition,
then ¢ + mis even.
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fin

b) Derive a bound on the length of maximal plays of G
¢) Prove that G has a value by modeling G™ as a zero-sum game of bounded length.

8.31 Exercise
Formally prove Lemma and conclude the statement of Lemma B.17.

8.32 Exercise
a) Throughout the whole lecture, we have assumed that the game arena is parallel-
free, meaning there is at most one arc from some position to another.

Assume you are given a game arena that is not parallel free. Show how to construct
an equivalent game arena that is parallel-free

- for reachability/Blichi/parity games,
- for mean payoff games.

b) In this section, we have assumed that the game arena is bipartite and the players

alternately take turns.

Assume you are given a non-bipartite game arena. Show how to construct an equiv-
alent bipartite game arena for reachability/Blichi/parity games.

Does this also work for mean-payoff games?

Here, by equivalent game arena, we mean that the old set of positions Vis a subset of
the set of positions of the new game arena V/, i.e. V € V. Furthermore, we want that a
position x € V € V' is winning for player ¥ in the old game if and only if x is winning for

% in the new game.

8.33 Exercise
Let G be a finite, bipartite, deadlock-free game arena, and let B be the winning set for a

Biichi game from a fixed initial position x.
Show how this Blichi game can be transformed into a mean payoff game.

Assume the initial position X, is winning for some player ¥ in the Blichi game. How is
this reflected in the mean payoff game? Make your argumentation formal!
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9. Anundetermined Gale-Stewart game

So far, we have only considered games that are determined: For each initial position,
exactly one of players has a winning strategy. In this chapter, we will see that one can
construct undetermined games.

Sources
The content of this section is mostly based on Yurii Khomskii’s notes [Kha].

Gale-Stewart games

The games that we will look at in this section are not played on a graph, they have a
much simpler shape.

9.1 Definition: Gale-Stewart games

Let A be a set of actions. Let B € A” be a set of infinite sequences over A, called the
winning set (or winning condition, or payoff set). The Gale-Stewart game G(A, B) with
respect to A and B is played as follows:

- The players alternately take turns, starting with the existential player.
« In each turn i, the player whose turn it is picks an action g; € A.
« A maximal play is an infinite sequence
p = dya,a, . ..
in which the actions g; with i even have been picked by the existential player and
the actions g; with i odd have been picked by the universal player.

« Such an infinite play p is won by the existential player if and only if p € B.

In other words, the game is played by both players alternately naming actions of their
choice, without any restrictions. Note that the plays in which the existential player is
active are exactly the plays ay . . . a, where nis odd (including the empty play ¢).

We may see G(A, B) as a game on the graph Ax {O, 00} in which arcs (a, %) - (a', %) exist
forall a,d’ € A. The winning set B defines the winning condition. We make this precise

in Exercise P.T3.

Similarly, any graph game can be seen as Gale-Stewart game with the set of nodes V as
the set of actions. To this end, the graph structure has to be encoded into the winning
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[ll. Games on infinite graphs

set, i.e. the set Bis such that if a player picks an illegal move in the graph, she loses. We
consider this construction for the case of reachability games in Exercise P.T4.

(Winning) strategies can be defined as usual. Here, we fix the empty sequence ¢ as the
initial position of interest.

9.2 Definition: Strategies, and winning
A strategy sy, for player st is a function

sei{p €A |p=aqy...a;, iisodd (if¥r = O) resp.even (if¥r=0) } > A

that takes a finite play p in which it is player 5%’s turn and selects the next action
sye(p) € Athat ¥ should pick.

We call a strategy winning if any play (starting in €) conforming to it is winning.

Player st wins the Gale-Stewart game G(A, B) if she has a winning strategy.

Let us consider some easy examples.

9.3 Example
Let A = {0, 1}.

a) Consider B = A*00A” U A*11A“. The winning plays are exactly the plays in which
there are two consecutive occurrences of the same letter.

Note that the existential player can win in her second move (overall the third move)
by repeating the action picked by the universal player in the second move.

b) Consider B = A*000A” U A*111A”. The winning plays are exactly the plays in which
there are three consecutive occurrences of the same letter.

The universal player can ensure her win by avoiding the repetition of any action
used by the existential player.

9.4 Remark

Gale-Stewart games are named after the American mathematician David Gale (1921 -
2008) and F. M. Stewart. Together, they founded the research on infinite games with
perfect information.
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9. An undetermined Gale-Stewart game

An undetermined game and transfinite induction

Our goal is to show that it is possible to pick A, B such that G(A, B) has no winner: Each
infinite play is won by one of the two players, but none of the players has a systematic
way of winning.

9.5 Theorem: Existence of undetermined games
There is an undetermined Gale-Stewart game: There are sets A and B € A“ such that
none of the players has a winning strategy for G(A, B).

The rest of this subsection is dedicated to proving the theorem.

We can pick A = N as the set of natural numbers. Note that this set is not finite, which
will be needed in the proof.

Choosing B € N“ is much harder and requires a bit of preparation.

Crucial in our development is the fact that even for a fixed strategy s, the number of
plays conforming to sy is immense. More precisely, it is not even countable.

This will allow us to to pick B such that for each strategy s for any of the players
- there is at least one play conforming to the strategy in B, and
- thereis at least one play conforming to the strategy notin B.

Since a winning strategy for the existential player has to guarantee that all plays are in
B, and a winning strategy for the universal player has to guarantee that no play is in B,
this set B results in an undetermined game.

The following graphic depicts this schematically. The columns represent strategies sg
for the existential player, the rows represent strategies sg for the universal player. The
node pc”ﬁ in row sg and column sg represents the (unique) play in which each player
plays conforming to her strategy.
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o=

OO00O
(0]0)01010
~0O0Q000
~OO®0OO0
~QO000

O=

O=

O0O000
OO0000O

For each row, we guarantee that it contains a play in B (marked with a blue border), so
the universal player has no winning strategy. Similarly, we guarantee that at least one
play per column is not in B (marked with a red border), meaning that the existential

player has no winning strategy.

9.6 Remark

The graphic may wrongfully give the impression that the number of plays and strate-
gies is countable. This is not true, both sets are uncountable as we will see in the proof.

In fact, we will not only construct B, but we will also construct a set C € N” \ Bin the
complement of B. We will guarantee that each strategy of O has a play in C and that

each strategy for O has a play in B.

N“\ B
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9. An undetermined Gale-Stewart game

It remains to construct the sets B and C by picking two plays for each strategy. To do
so, we apply a concept called transfinite induction to the set of strategies. Transfinite
induction lifts the proof principle of induction from finite sets to arbitrary well-ordered
sets.

We recall the definition of a well-ordering.

9.7 Definition
Let 7 beaset,and <€ 7 x 7 be arelation on Z.

We call the tuple (Z, <) a well-order if < satisfies the following conditions:

- <is a partial order on Z, i.e. reflexive, transitive, and antisymmetric.

« <is a total order, i.e. any two elements from Z are comparable:

VYa,el:a<sforf<a.

+ <is well-founded: Every non-empty subset J € 7 contains a <-minimal element,
i.e.an element a € Jsuch thatthereisnof € J,f # awith 3 < a.

9.8 Remark

If we assume that < is total, the condition of being well-founded can be rephrased as
follows: Every non-empty subset J € 7 contains a least element, i.e. an element a € J
with a < Bforall B € J,

V/cZ,J+@:JaelJVBelasf.

This least element is unique by antisymmetry.

An equivalent formulation is that there is no infinite strictly-descending chain in Z,
i.e. there is no infinite sequence

ag>Qa;>0a;>0as > ...

of elements a; € 7.

Here, strictly smaller < is defined as usual, a < Biffa < Band a # B. We write a = 8
resp.a > fBforB<aresp.B<a.

121



[ll. Games on infinite graphs

Transfinite induction proceeds as follows: Let A(a) be a statement that is parametric in
an element a € Z, where (Z, <) is well-ordered. If we want to show Va € Z: A(a) (i.e. A
is true for any a), we can proceed as follows:

. Base case: The statement holds for the least element of Z, and

« Inductive step: Assuming that the statement holds for all elements 8 € 7 that
are strictly smaller than some a € Z, the statement also holds for a.

If the well-ordered set of consideration is (N, <), with < defined as usual, transfinite in-
duction and the usual induction proof principle coincide.

9.9 Remark

We shortly argue that the proof principle of transfinite induction is sound. Consider
some statement A(a) that is parametric in a € Z, Z well-ordered. Assume we have
shown that, for any fixed a, that A(B) holding for all 8 < a implies that A(a) holds.

We claim that this proofs that Va € Z: A(a) holds. Towards a contradiction assume that
this is not true. Consider the subset * = {a' € Z | A(a') does not hold}. By assumption,
this set is non-empty, so it contains some least element a, € *. Because q, is the least
element from *, all strictly smaller elements are notin *. Consequently, A(B) holds for all
B < a,. Using our initial assumption, we obtain that A(a,) has to hold, a contradiction.

Note that the base case was not needed in the proof. In fact, the case of the least ele-
ment is the case in which the set of elements that are strictly smaller is empty.

Our goal is to apply transfinite induction to the set of all strategies to pick the sets Band
C c N“ \ B. However, the set of strategies does not come with a natural well-ordering.
In fact, it is not even possible to actually construct such a well-ordering explicitly. Still
we can apply the following lemma to equip it with one. The lemma can be seen as a
stronger version of the well-ordering theorem, on which the proof relies.

9.10 Lemma
For any set X, there is a well-order (Z, <) such that

(1) |X] = |Z|,i.e. Xand Z have the same size, and

(2) Forany a € Z, the set of elements strictly smaller than a

{BeZ|B<a}

has cardinality strictly smaller than |X| = |Z|.
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9. An undetermined Gale-Stewart game

9.11 Remark
Recall that the cardinality for infinite sets is defined using functions:

X| < |Y| if there is an injection : X = Y,

X| = |Y| if there is a surjection : X - Y, and
« |X| = |Y| if there is a bijection f: X - V.

The cardinality of X is strictly smaller than the cardinality of Y if |[X| < |Y| and |X]| # |Y|,
i.e. there is an injection, but no bijection from Xto Y.

Note that for finite sets, these definitions coincide with the usual ones, see Exercise P.T5.
For example, we write |X| = 5if |X| = |{0, ..., 4}|.

Property (1) of Z of the lemma is essentially just the well-ordering theorem: On any
set, there is an order such that the set together with the order is a well-order. Property
(2) of Z in the lemma gives us a stronger property that we will need in the proof of
TheoremP.5.

9.12 Example

« The natural numbers are well-ordered by < (defined as usual). Additionally, (N, <)
satisfies the second property in the Lemma:

For each number n, the set {m € N | m < n} has cardinality n < |N|.

« Consider the real numbers R with < defined as usual. This is not a well-ordering:
The open interval ]0, oo[ has no least element. We still may check whether Prop-
erty (2) holds: For any a € R, the set of elements smaller than a is the open
interval ] — oo, g[. It has the same cardinality as R itself, thus Property (2) does
not hold.

For the sake of completeness, we give the proof of the lemma. It uses properties of
cardinal and ordinal numbers. If you are not familiar with these concepts, you can skip
the proof and treat the lemma as a black box result.

Proof of LemmaP.10;
By the well-ordering theorem, any set can be well-ordered. This means there is a rela-
tion < € X x X such that (X, <) is a well-order.

For every well-order, there is an ordinal number a that is order-isomorphic to it. (l.e.
there is a bijection f: X - a such that for x, y € X we have x < yiff f{x) < f{y).)
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Pick k as the least ordinal in bijection to g, i.e. |a| = |k|. The least ordinal with a certain
cardinality is a cardinal number, and we have |k| = |a| = |X]| (recall that fwas a bijection).

This proves that k satisfies Property (1).

For any y € k, we need to consider the set

{Bek|B<y}.

Using the von Neumann definition of ordinals, the definition of the set simplifies to

{B<k[B<y}={BIB<v}=Y.
Sincey € k, we certainly have |y| < |k|.

If equality would hold, then y would be a ordinal smaller than k that is in bijection to
a. This would be a contradiction to the choice of k. Therefore, we obtain |y| < |«]|. This
proves that k satisfies Property (2) and is thus as required. [

We are now prepared to prove the existence of undetermined games.

Proof of Theorem .5
The proof will proceed in four steps.

1. We will determine the number of strategies and the number of plays conforming
to a fixed strategy.

2. We use transfinite induction to pick the sets of plays B and C.
3. We show B n C = @, which proves that C lives inside the complement of B.

4. We prove that G(A, B) is undetermined as outlined above: Each strategy for the
existential player has a play in C (and thus not in B), each strategy for the universal
player has a play in B.

1. Preliminaries

A strategy for a player is essentially a function
St N > N

picking for each finite prefix the next action in N. Note that N* is countably infinite, and
therefore isomorphic to N.
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9. An undetermined Gale-Stewart game

Consequently, the number of strategies for each player is

def N

IN* > N| = |N>N| =2

Here, you may see 2™ as a name that we use for the size of the set N - N.

Remark: N, is usually used to denote the cardinality of N. One can indeed show that
IN = N| = |P(N)], so the name 2" for the size of N - N makes sense.

Let Strato be the set of all possible strategies for the existential player. We apply
Lemma to it to obtain a well order (Z, <) that satisfies the Properties (1) and (2).
The set Z has the same cardinality, thus there is a bijection f:Z — Strato. For each
elementa € 7, let sg denote the strategy f{a). We may write

Strato = {s5 | a € I} .
We apply the same argumentation for the set Stratg of possible strategies for the uni-
versal player. Since |Strato| = |Stratg| = 2™°, we may even use the same well-order
(Z,<). Again, there is a bijection (say g with g(a) = s3) between T and Stratg, and we

can write
Stratg = {s5 | a € I} .

For a strategy sy, let Plays,,{sy.) denote the set of all maximal plays in which player ¥
moves conforming to her strategy s4.. The cardinality of each set Plays; {s¢) is

[Playsdsy)] = 2,

as there is essentially one play per strategy of the opponent.

More precisely, for each prefix N* of suitable length (even or odd), the opponent has
one choice per number in N with which she can react. Therefore, we obtain

|Plays;,ds¢)| = IN = N| = 2.

2. Defining Band C

We will now define two sets B and C using transfinite induction on (Z, <).
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They will have the shape

B={ba|a€I},
C={CG|GEI}7

where the b, and ¢, are defined by simultaneous induction. In each step of the induc-
tion, say for a € Z, we first pick b,, then ¢,.

Our goal is enforce that the sets are disjoint. To this end, we ensure that each b, is not
equal to any previously picked ¢z for 8 < a, and each ¢, is not equal to any previously
picked bg, B < a.

Base case:

Let ay € Z denote the least element of Z (with respect to the well-ordering <). It exists
because we may see Z € 7 as a non-empty subset of itself.

« Picking b, € B:
Consider the strategy slo:'f € Stratg, and pick b,, as an arbitrary play in Plays,nf(sg’).

« Picking c,, € C:
Consider s 5. The set Plays, (s;5) has more than one element, so Plays;,{s5y) \ {bo}
is non-empty. Pick ¢,, as an arbitrary element from this set.

Induction hypothesis:

Let a € 7 be fixed and suppose that for all B < a, the elements bg and cg have already
been chosen.

Induction step:

We have to chose b, and c,,.

« Picking b, € B:
Consider the set of elements

{es|B<a}

of C that have already been chosen. It has at most the same cardinality as

{BeZ|B<a},

since the function defined by B = ¢; is a surjection. By Property (2) of
Lemma P.70, we have that this second set has cardinality strictly smaller than
|Z| = |Stratg| = 2™.
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9. An undetermined Gale-Stewart game

As discussed, Plays, {s%) has cardinality 2'°. Thus, the set

Plays,s2) \ {cs | B < a
is nonempty, and we may define b, to be an arbitrary element in this set.

+ Pickingc, € C:
Similarly, the set

{bs| B < a}

of previously picked elements of B has cardinality less than 2" If we add the
element b, € B that we have picked above, this still holds true. (Adding a sin-
gle element to an infinite set does not change its cardinality). Consequently, the
cardinality of

{bg|B < a}ui{b,}

is strictly smaller than the cardinality of Z, which is 2", Therefore, we may pick
an arbitrary element ¢, from the non-empty set

Playsiudso) \ ({bs | B < a}uba).
Note that each element b, is a play, and thus a sequence of natural numbers. We have
B,Cc N“.
The desired undetermined Gale-Stewart game is G(N, B), where B = {b, | a € T}.

Towards proving that G(N, B) is not determined, let us first prove that C lives inside the
complement of B,Bn C = @.

3.Claim:BnC=g

Let b € B be arbitrary. By the definition of B, there is an a € Z such that b = b,. Note
that when picking b, in the inductive step, we made sure that b, is not equal to ¢z for
any B < a. When picking any ¢, fory > a, we make sure that ¢, is neither equal to b,,
nor to any bg for B <y. Thus, any such ¢, is not equal to b,,.

Consequently, b = b, is not contained in C.

We can now conclude the desired result.

4. Claim: G(N, B) is undetermined

We consider an arbitrary strategy for each of the players and show that is cannot be

winning.
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« Forthe universal player:
Assume the universal player has a winning strategy s; € Stratg. This strat-
egy has to ensure that no play conforming to it is in the winning set B, thus
Plays,,{sa) N B = @.

There is an a € Z such that sg = s5j. When picking b, € B, we have chosen it in
Plays;usp).

Thus, B n Plays, {sg) contains b, and is non-empty, a contradiction.

« For the existential player:
Assume the existential player has a winning strategy so € Stratp. This strat-
egy has to ensure that all plays conforming to it are in the winning set B, thus
Plays;.{so) € B.

There is an a € Z such that sp = sg. When picking ¢, € C, we picked
ca € Plays,{ss). Since B n C = @ by the previous claim, this proves
¢ € Plays,./so) \ B. This disproves the inclusion Plays,.(so) S B, a contradiction.

Exercises

9.13 Exercise: Gale-Stewart games as graph games
Let G(A, B) be a Gale-Stewart game. Define an equivalent game over a graph with set
of positions

a) V=Ax{0O,0},
b) V=A%

In each case, specify the ownership, the arcs, the winning condition and the initial po-
sition of interest.

9.14 Exercise: Reachability games as Gale-Stewart games

Let G be a reachability game, specified as usual by agame arena G = (Vgw Vo,R)and a
winning set V .., € V. For simplicity, let us assume that G is deadlock-free and bipartite:
Any move from some position x € Vg leads to a position y € V5 and vice versa, i.e. the
players take turns alternately. Furthermore, we fix the initial position x, € V.

Design a Gale-Stewart game G(V, B) where the actions are nodes of G and B is such that

1. the existential player loses if she does not start in x,
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9. An undetermined Gale-Stewart game

2. the existential player loses if she picks an illegal move, i.e. if the play p is of the
shape p = p' x;.x;,,.p" where iis odd and (x;, x;,1) € R,

3. the universal player loses if she picks an illegal move, i.e. if the play p is of the
shape p = p' x;.x;,1.p" whereiis even and (x;, xi.1) € R,

4. any play that does not fall into one of the Cases 1. to 3. is won by the existential
player if and only if it contains a position from V,.q.

Argue briefly that your set B enforces the desired behavior.
Note: If a play falls into several cases, i.e. into 2. and 3. if both players cheat, you may

resolve this as you wish.

9.15 Exercise: Cardinality and functions

Recall that a function £: X — Y is called injective (or an injection) if for x # x' we have
f(x) # f(x'). A function is called surjective (or a surjection) if for any y € Y, there is
some x € X with f(x) = y. Itis called bijective (or a bijection) if it is both injective and
surjective.

In the rest of this exercise, assume that X = {x;,...,x,}and Y = {y,;,...,yn,} are finite
sets.

a) Prove that if there is an injection f: X - Y if and only if |X| < |Y].
b) Prove that if there is a surjection f: X - Yif and only if |X| = |Y|.
c) Prove that there is an injection g: Y —» Xif and only if there is a surjection f: X = Y.

d) Prove that if there is an injection f: X - Y and a surjection f;: X = Y, then there is a
bijection f,: X = Y.

Note: The properties that you have proven in Part ¢) and d) also hold for infinite sets.
However, their proof is much more complicated in this case and involves the axiom of
choice.

129






10. Infinite games on the configuration graphs of

automata

In the previous section, we have seen that games on an infinite game arena may be
undetermined. In this section, we will see a general way to obtain games on infinite
arenas that are not only determined, but also decidable in some cases. To be able to
obtain an algorithm that computes the winner, we consider games that have a finite
syntactic representation. Here, we use structures known from automata theory.

Sources
The content of this section is common knowledge in automata theory and does not
follow any particular source.

Automata and counter machines

Recall that a transition system (V, R) consists of a set of configurations V (usually infi-
nite) and a transition relation R € V x V.

Conceptually, an automaton is a transition system such that V = Q X M, where Qis a
small set of control states (in particular: a finite set), and M is the memory (which is
potentially infinite). Furthermore, the transition relation acts on the memory in a local
way that admits a finite description. More precisely, there should be a finite set of rules
- such that the set of transitions R consists of precisely the transitions that satisfy one
of the rules.

One usually calls A = (Q, =) the automaton, and the transition system (Q x M, R) its
configuration graph.

10.1 Example: Automata

a) A finite-state system is an automaton with M = {1}, i.e. there is no memory. In this
case, we essentially have - =R < Q x Q.

b) A pushdown system is an automaton with M = S* for some finite stack alphabet S,
i.e. it consists of a finite control and an unbounded stack as storage. The rules in —»
are of the shape — € (Q x §) x (Q x §¥): A transition only depends on the tuple (g, s)
formed by the control state and the topmost stack symbol.

¢) A Turing machine is an automaton with M = S*x SxS" ie. the storage is a finite
tape that decomposes into the part left of the head position, the tape content at the
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head position, and the part right of the head position. The transitions only depend
on the control state and on the symbol at the current head position.

10.2 Remark
All these automata models are versions of the well-known finite automata, pushdown
automata and Turing machines that do not read any input (or produce any output).

It is easy to extend the notion of transition systems by initial and final configurations
and in- or output.

Let us consider another automaton model for which the set of configurations is infinite.

10.3 Definition: Counter machine
A counter machine of dimension d € N is an automaton A = (Q, —) over memory N,
More precisely:

- Qis a finite set of control states

« Let X = {xq,X,,...,X4} be a set consisting of d counters. The set of operations
is given by
Ops = {noop} U U{x+ +,x——,x=0,x#0}.

xeX

— € Q X Ops x Qis a finite set of rules. Instead of (g, op, ') €, we usually write
g5 ieq X, q.

A configuration of such a counter machine is of the shape (g, ¢), where g € Qis a con-
trol stateand ¢ = (¢;,...,¢y) € N is a vector of non-negative integer counter values.
Consequently, I = Q x N

The semantics of counter-machines are as expected: A transition g AR g increments
counter i, a transition g AN q' decrements it. A zero-test transition g X, g can
only be taken if ¢; is indeed zero, a non-zero test can only be taken if the corresponding
counter is non-zero. A transition g oo, p performs no operation.

More formally, there is a transition

((9.2),(p.d)) R
if and only if
« thereisaruleg AR p,andd; = ¢;+ 1andd; = ¢;forallj # i, or

« thereisaruleg = p,andd; = ¢;—1and d; = ¢ forallj # i, or
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. x;=0 5>

« thereisaruleq — p,and¢;=0,and ¢ =d, or
. X[¢0 -> -

« thereisaruleq — p,and¢ > 0,and ¢ =d, or

. noop > -
« thereisaruleq — p,and ¢ = d.

Note that noop, zero and non-zero tests do not change the counter assignment, and
that increments and decrements only influence the value of one counter. Furthermore,
we only consider non-negative counter values. In a configuration (g, ¢) with¢; = 0, a

oy Xi—= .
transition g — p is not enabled.

10.4 Example

a) Consider the 1-counter machine A = (Q, —) with counter x and

Q={q.p.s},

(g5 5g 2 p S pp o).

A can be represented graphically as follows:

From a configuration (g, n) € Q x N, there is a unique transition sequence ending in
(s,0): If n = 0, the transition sequence is just (g, 0) — (s, 0). Else, it is

(qan)_)(p>n)_)(pvn_1)_)(pan_2)_)"'_)(p>1)_)(p70)_)(570)'

b) Consider the 3-counter machine A = (Q, =) with Q = {q, 91, 9>, p, p1, P2, P3, 5} and
counters x, y, z, where — is given by the following graphical representation.
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O

From a configuration (g,n,m,0) € Q x N’ (i.e. ¢, = n,c, = m,c, = 0), there is
a unique transition sequence reaching control state s. This sequence reaches the
configuration (s, n, m + n, 0), i.e. the value of counter x has been added to counter y.
Counter zis only used as an intermediary storage.

In the following, when defining counter machines, instead of explicitly stating Q and
-, we will only give the graphical representation. We will not give explicit names to
control states for which the names are not important.

Games on configuration graphs

We can now consider games that are played on the transition graphs of automata.

10.5 Definition

Assume that A = (Q, —) is some automaton (with memory M) and Q = Qq W Qo is a
partitioning of the control states into the control states owned by the universal player
Oand the ones owned by the existential player O.

Then we obtain an infinite game arena G, = (V, R) as follows. The configurations and
moves are given by the transition system induced by the automaton:

V=QxM,

R= {((q7 m)7 (qla m’)) eVxV ((q’m)’ (q’7m')) € R, } |

i.e.((g,m), (g',m") satisfies a rule from —

The ownership is induced by the ownership on the control states:

Vo=QgxM, Vo=QoxM.

It is now possible to equip G, with various winning conditions. Here, we restrict our-
selves to a very simple setting.
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10.6 Definition

Let A be an automaton and gr one of its control states. The control state reachability
game is the reachability game on G, with respect to the winning set {g¢} x M. In words,
the goal of the existential player is to reach a configuration (g, m) with g = gx.

10.7 Remark

Analogously, one can define reachability games where the winning condition is a set of
control states. One can also define Parity games on G,. For this, one assumes that a pri-
ority assignment Q: Q - N on the control states is given. The priority of a configuration
(g, m) is then induced by the priority of g.

The decision problem that we are interested in is as usual to check which player is win-
ning. Here, we fix the initial configuration of interest.

Deciding the winner of a control state reachability game

Given: Automaton A = (Q, ), state g; € Q, initial configuration (gy, my) € QXM
Question: Does O have a winning strategy for the control state reachability game

with respect to A and gy from the initial position (go, m)?

10.8 Example

a) Control state reachability games on finite-state systems are just a special case of
reachability games on finite graphs, where the winning set is a singleton. We have
seen how such games can be solved in Section @.

b) Control state reachability games on pushdown systems are decidable. We will dis-
cuss the decision procedure in Section [12.

c) Control state reachability games on Turing machines are undecidable. Recall that
the halting on the empty word problem is undecidable: Given a Turing machine
A = (Q,...) with initial state g, and halting state g;, it is not decidable whether
there is a transition sequence from g, with the empty tape to configuration with
control state gr. Now observe that if let the existential player own all control states,
Qo = Q,Qg = @, the control state reachability game with respect to A, gr and
qo + empty tape is equivalent to the halting on the empty word problem.

In Part c) of the example, we have seen that if a verification problem (that has no non-
determinism or only one type of non-determinism) is undecidable for some type of
automaton, then the associated game problem (with two types of non-determinism) is
also undecidable.
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Games on counter machines

In the rest of this section, we want to look at control state reachability games where
the automaton is a d-dimensional counter machine. We have to distinguish two cases:
d = 1, i.e. one-counter machines (also called one-counter automata), and d > 1.

10.9 Lemma
One-counter automata are a special case of pushdown automata.

Proof: Exercise[10.21]. [ ]

Together with the decidability of pushdown games that we will prove in Section [T2, we
obtain that control state reachability games for one-counter automata are decidable.

Surprisingly, adding a second counter makes the problem undecidable. In fact, we can
prove that 2-counter machines are Turing-powerful.

10.10 Theorem: see e.g. Minsky 1967 [Min67]

For d > 2, counter machines of dimension d are Turing powerful: Given a Turing ma-
chine Apy, with two designated states gy, g5, we can construct in polynomial time a two-
counter machine A,cy with two designated states g, gr such that Aqy, can reach g¢from
go with the empty tape if and only if A,cy can reach gf from go with both counters zero.

In other words: For any Turing machine, we can construct a two-counter machine that
simulates it.

10.11 Remark

The backwards direction also works: For any counter-machine (with arbitrary dimen-
sion), we can construct a Turing machine that simulates it by storing the counter values
on the tape. We say that two-counter machines are Turing complete.

As a consequence, any problem that is undecidable for Turing machines is also unde-
cidable for two-counter machines. This in particular applies to the following variant of
the halting problem.

Control state reachability for two-counter machines

Given: Two-counter machine A, control states g, g¢
Question: Is there a transition sequence from (gy,0,0) to (grn,m) for some

n,me N?
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10.12 Corollary
Control state reachability for two-counter machines is undecidable.

Using this result, we immediately obtain the undecidability of control state reachability
games on counter machines of dimension d > 2, similar to Part c) of Example [T0.8.

10.13 Corollary
Control state reachability games on counter machines of dimension d > 1 are undecid-
able.

It remains to prove Theorem [10.70. We proceed in two steps.

1. We show how to simulate a Turing machine by a counter machine of dimension
3.

2. We show how to simulate a counter machine of arbitrary fixed dimension d by a
two-counter machine.

From Turing machines to three-counter machines

10.14 Proposition
For d = 3, counter machines of dimension d are Turing powerful.

Proof:
Let Ay = (Q, 6, .. .) be a Turing machine. It is well known that it is sufficient to consider
deterministic Turing machines with tape alphabet {0, 1}. Any other Turing machine

can be transformed into such a machine in polynomial time.
We show how to construct a three-counter machine Aqy = (Q', =) such that

- Q € Q": The control states of Ay are the control states of Ay, plus some constant

number of helper states.

« The counters x, y are used to simulate the tape content of Aqy. The third counter
his a helper used as intermediary storage.

Recall that the transition function of a Turing machine consists of mappings of the the
shape
5(g,a) = (p,b,d).
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If the machine s in state g € Q, and the symbol at the current head position in the tape
isa € {0, 1}, the machine will

1. replaceaby b € {0, 1},
2. move the head to the left or right, depending on d € {L, R}, and
3. change the control state to p.

Consider some configuration v ga w, i.e. v € {0,1}" is the tape content to the left of
the head, a € {0, 1} is the tape content at the head position and w € {0, 1}" is the
remainder to the right of the head. For example, consider

001100 g 1 010 .
—_— N
v a w
We may see the tape content as given by the numbers ¢, ¢, € N such that the binary
representation of ¢, is v and the binary representation of ¢, is reverse(a.w). In our ex-
ample, we have

¢, = 001100,, ¢, = reverse(1.010) = 0101, .

We see that the bits that are closest to the head position are the least significant bits in
each of the numbers. Here, we follow the convention that the tape content at the head
position is a part of ¢, i.e. a is the least significant bit of ¢,.

Remark: We have 0101, = 101,, i.e. if we see the tape content as a number, we cannot
detect leading zeros anymore. This corresponds to ignoring leading as well as trailing
zeros on the tape of the Turing machine. Initially, we assume that the Turing machine
starts with a tape that is empty in the sense that it is filled with infinitely many zeros.
This corresponds to the counter values being 0.

Our goal is to construct the three-counter machine Ay, such that counter x stores ¢,
and counter y stores ¢,. Initially, we let both counters be 0, which corresponds to the
tape being empty. We now explain how to simulate the Turing machine step by step.

Assume we are in configuration (g, ¢, c,,0), which represents the configuration
bin(c,) g reverse(bin(c,)). We explain how to simulate a transition of the shape

8(g,a) = (p,b,d).

« The first step is to check whether the transition is applicable, i.e. if the symbol at
the head position is actually equal to a. To this end, we need to check whether
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the least significant bit of (the binary representation of) ¢, is equal to a. Note that
this bitis 1 if and only if ¢, is odd.

To test this, we use the following gadget.

From configuration (g, ¢, ¢,, 0), we reach configuration (Geyen, ¢, 0, ¢,) if and only
if ¢, is even. If ¢, is odd, we reach (goqq, Cx; 0, ¢;). Note that we have moved the
value ¢, from counter y to the helper h.

In the states Geven aNd Goqq, it is clear which transition of the Turing machine Ay
has to be applied: 6(g, 0) in Geven and 8(g, 1) in Gogg-

We restrict ourselves to the case of (g, 0) in geven here, the case of goqq is similar.

It remains to actually apply the transition, i.e. by (i) replacing the content at the
head position, (ii) moving the head and (iii) changing the control state.

« For (i), observe that if a = b, nothing has to be done. If a = 0,b = 1, we have to
add a single transition that increments the value. Analogously, ifa = 1,b = 0, we
have to subtract one.

Let us consider the case a = 0, b = 1 here. We obtain the following transition.

h++ b
qeven qeven

Note that we increment counter h here, because it currently stores the value c,.

+ Next, we need to move the head position. We only discuss the case d = R, i.e. the
head should be moved to the right. The case d = L is slightly more involved and
remains as an exercise for the reader.

If the current configuration of the Turing machine is

I
v gbcw,

w
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and we move the head to the right, we obtain the new configuration

v.b gcw .
w
We need to imitate this operation on the numbers representing vand w. Observe

that

vb=2-v+b, W={b’TWJ.

Shifting a number one bit to the left means multiplying it by two: The bit that
was least significant now becomes second-to-least significant. Similarly, shifting
a number to the right means dividing it by two (and dropping the remainder).

We design a gadget that performs these operations.

Recall that we are in configuration (qgven, ¢, 0, ¢, + b) when we enter the gadget.
When we reach control state gy,r.q, We are in configuration

¢ +b
(qhalfed7 o T 70) .

The loop from qzven to qgven implements the division by decrementing h twice per
increment of y. The shortcut to Ghaireq is used to handle the case that ¢, + b is odd.

From this configuration, we can in turn reach the configuration

¢ +b

(thpu 07 \‘TJ7 2- CX) :

To this end, we take the loop from gpaiteq O Ghaiteq that decrements counter x while
storing the doubled value in counter h. It remains to move the counter value to
counter x again, which is implemented by the loop in state gym,. Finally, we reach

¢, +b
(qdone7 2 o T 70) .
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« Itremains to add the former tape content at the head position b to counter x, and
to change the control state to p.

Recall that we have assumed that b = 1. The final part of the translation is the

X+ +
0

- After going through all gadgets, we are in configuration (p, ¢, ¢,, 0), where ¢, and

following gadget.

c'y represent the new tape content of the Turing machine Ayy. The simulation of
the next transition can begin.

It is tedious, but conceptually easy to check that any transition sequence of the Turing
machine from g, + empty tape to g; induces a transition sequence from (qy, 0, 0) to
(g¢, n, m, 0) in the three-counter machine and vice versa.

Note that we have replaced each transition of the Turing machine by a constant number
of transitions and states of the counter machines. Thus, the size of Acy is linear in the
size of Ary. [

From three to two counters

To complete the proof of Theorem [10.10, it remains to show that the three-counter ma-
chine Ay that we have constructed in the proof of Proposition can be simulated
by a two-counter machine. In fact, we show a stronger statement.

10.15 Proposition
For any counter machine of dimension d, we can construct a two-counter machine that

simulates it.

The proof of the proposition uses a famous trick due to Minsky [Min67]. Let ¢ € N be a
d-dimensional vector of counter values. Let p;, p,, . . ., p, be the first d prime numbers.
We define the prime encoding primenc(¢) of ¢ to be the number

primenc(¢) = p;" - p;2 - ps* EN.
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10.16 Example
Consider ¢, = 10,¢, = 5,¢c, = 0. We have

primenc(¢) = 2'°-3°-5° = 1024 - 243 - 1 = 248832..

Instead of storing ¢, it will be sufficient to store the single number primenc(¢). For this
to be valid, it is crucial that the value of ¢ can be recovered from primenc(¢).

10.17 Lemma
The prime encoding is unique: If primenc(¢) = primenc(é), then ¢ = é.

Proof:
Assume that primenc(¢) = primenc(é). Consequently, we have
P P2 e pa =it Py e py”
Note that both expressions are prime decompositions of primenc(¢). By the fundamen-

tal theorem of arithmetic, the prime factorization of a number is unique. Thus, we have
GG=e6,...,cg=¢egandc =é. [

It remains to implement the required operations in the form of a two counter machine.

Proof of Proposition 10.14:

Assume that we are given a counter machine Aqy of some fixed dimension d. We con-
struct a two-counter machine A,qy that uses two counters. The first counter v will be
used to store the prime encoding. The second counter h is used as a helper for inter-
mediary storage.

More formally, to the configuration (q,¢) of Acy, we associate the configuration
(g, primenc(¢), 0) of A,cu. The two-counter machine will use additional control states
and reach intermediary configurations in which the helper is non-zero.

We consider (g, 1, 0) as the initial configuration for A,cy, as primenc(0,0,...,0) = 1.

It remains to explain how each type of transition of Ay, can be simulated by A,cy. Here,
we will consider operations for the second counter y of Acy, which corresponds to the
prime number 3. The simulation of the operations for the other counters is similar. How-
ever, the later counters will need more control states, as the associated prime number
becomes bigger. Here, it is important that d is arbitrary but fixed.

- To simulate a transition of the type g %, p, we add a transition g %, p to Axcm.
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++
- To simulate a transition of the type g AL p, observe that this rule induces transi-
tions of the shape

(q7Qon")'9(p>gocy+1>-“)a

and that

primenc(c,, ¢, + 1,...) = 2%-3%""... =3.2%.3%... = 3. primenc(c,, ¢, .. .) .

Consequently, we simulate an increment of ¢, by tripling the value of v. This is
implemented by the following gadget.

@ noop m v=0 @ h=0 @

h++ h++

The gadget takes configuration (g, ¢, 0) first to configuration (t, 0, 3-¢,), and then
to configuration (p, 3 - ¢,, 0) as desired.

- Transitions of type g 5 p can be implemented very similarly to the case y + +.
Here, we have to divide the current value of v by 3.

<:§:> noop //;\\ v=0 //A\\ h=0 <:§:>
v+ + h--

Note that it may occur that a run of the machine gets stuck in the loop that decre-
ments v. This will happen if and only if the initial value ¢, is not divisible by 3,
which in turn corresponds to the value of y being 0 in the vector encoded by v. If
yis 0, the transition y — — is not enabled, so the fact that our gadget blocks is not
a problem.

« Asmentioned above, testing y for being non-zero corresponds to testing whether
¢, is divisible by 3. Transitions of type g LiaA p are implemented by the following
gadget.
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@ noop N v=0 @ h=0 @

From configuration (g, ¢,, 0), we can reach state t if and only if ¢, is divisible by
3. In this case, we reach configuration (t, 0, ¢,). Finally, we arrive in configuration
(p, c,, 0) as desired.

. y=0 L .
- To simulate g — p, we use a gadget similar to the previous one.

Here, we can only reach t if the initial value of vis either 1 or 2 modulo 3, i.e. if it is
not divisible by 3. In this case, we restore the original counter value and proceed

to state p.

Again, each transition of Acy has been replaced by a constant number of transitions of
Ascm- The size of A,y is linear in the size of Acy, assuming that the dimension d is fixed.
|

10.18 Remark

As we have seen, control state reachability games over counter machines are not decid-
able. However they are still determined: These are reachability games over a countable
graph with finite outdegree, as the number of outgoing transitions in a configuration
is bounded by the finitely many rules in —. Thus, these games satisfy the assumptions
that we made in Section @, and (uniform positional) determinacy applies.

A similar argumentation holds for games over Turing machines.
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Exercises

10.19 Exercise: Counter machines

Show how to construct a counter machine of dimension d = 2 with two control states
Go, gr such that there is a transition sequence from (gy, n, m, . . .) that reaches gy if and
only if

a) n=zm,
b) n<m,
c) nisdivisiblebym.

Hint: You may use an arbitrary constant number of additional counters.

10.20 Exercise: Primality testing

Show how to construct a counter machine of dimension d = 1 with two states q, g¢
such that there is a transition sequence from (g, n, . . .) that reaches state g if and only
if n is not a prime number. Explain your construction.

Hints: You may use an arbitrary constant number of additional counters. You can use
non-determinism. You may split your construction into smaller parts (gadgets) and ex-
plain later how these should be combined.

10.21 Exercise: One-counter automata as pushdowns
Prove that one-counter automata can be simulated by pushdown systems.

Recall that a pushdown system is an automaton (Q, ) with memory S*, where Sis some
finite stack alphabet. The transition rules in — are of the shape

for symbols a € S. There is a transition ((g,m) = (p,m')) € Tif
h ,
. thereisaruleqg LaliN pandm = m.q,or
« thereisaruleg AN pandm=m'a.

(Here, we use the convention that the right end of the word m encodes the top of stack.)
Note that a pop a transition is only enabled when a is indeed the top of stack.

Assume that some one-counter automaton Aqca = (Q', =') with states g, ¢ is given.
Show how to construct a pushdown system Apps = (Q, =) with Q' € Q over a suitable
stack alphabet such that g, is reachable in Agca from (g, 0) if and only if g, is reachable
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in Apps from some suitable initial configuration. Briefly argue that your construction is
correct.

10.22 Exercise: Integer counter machines

An integer counter machine of dimension d is defined similarly to a counter machine
of dimension d. However, the counters can reach negative values, i.e. the memory is
Z°. A transition of type g N p is enabled even if the value of counter x; is zero.

a) Let Acw be an integer counter machine of dimension d, and qg, gr control states.
Show how to construct a counter machine Ay with states g, and g; such that gy is
reachable from (qo, 0, . . ., 0) in Ay if and only if g¢ is reachable from (gq, 0, . .., 0) in

ACM .

b) Let Acy be a counter machine of dimension d, and gy, g; control states. Show how
to construct an integer counter machine A,y with states g, and gy such that gy is
reachable from (qo, 0, . . ., 0) in Ay if and only if g¢ is reachable from (gq, 0, . .., 0) in

ACM .

In both cases, argue briefly that your construction is correct.
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In the previous section, we have seen that control state reachability games on counter
machines are undecidable. In the proof, we have not even used the game aspect; we
have relied on the fact that already verification problems for counter machines are un-
decidable. In this section, we want to weaken the computational model to so-called
counter nets. In contrast to counter machines, almost all verification problems for
counter nets are decidable. However, games on these automata remain undecidable.

Sources
The content of this section is common knowledge in the theory of perfect information
games and does not follow any particular source.

Counter nets

We start by introducing counter nets, restricted counter machines that cannot perform
zero tests.

11.1 Definition

A counter net of dimension d € N, is defined similar to a counter machine of dimension
d, see Definition [10.3. However, the set of operations that is allowed in the definition
of the transition rules - € Q x NOps x Q is restricted. Let X = {xq, ..., x4} be the set of
counters. We have

NOps = {noop} U U{x+ +,x——}.

XEX

We call the counters of a counter net partially blind. They are partially blind, because

we cannot test them for being zero. However, they are only partially blind, because

we are still able to assert that a counter has a positive value: After a transition of type
.

g — p has been taken, we know that the previous value of counter x was non-zero;
otherwise the transition would not have been enabled.

11.2 Remark

The reader familiar with automata theory might see that counter nets are just a variant
of vector addition systems with states (VASS) (or, equivalently, Petri nets). To be pre-
cise, counter nets are VASS in which the transition multiplicities are encoded in unary.
In a VASS, we allow transitions of type g RN p for arbitrary constants m. This in partic-
ular allows having a transition g ﬂ) p that adds an exponential value to the counter,
but it can be encoded in binary using log 2" = n bits. In our definition of counter nets,
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such a transition would need to be decomposed into 2" many increments, which will
need at least 2" bits.

Thus, the binary representation that one usually considers for VASS is more succinct.

Counter nets have decidable verification problems: Intuitively, the computational
power of counter machines relies on having zero tests. Removing them limits their
capabilities, but makes many problems decidable.

11.3 Theorem
The control state reachability problem for counter nets is:

« in EXPSPACE for arbitrary dimension, i.e. it can be solved using exponential space
and doubly exponential time,

« EXPSPACE-hard for arbitrary dimension, i.e. it cannot be solved using less than
exponential space, and, unless EXPSPACE = EXP, not in exponential time or less,

« NL-complete for dimension 2.

The result follows from the corresponding results for VASS resp. Petri nets, namely
« an EXPSPACE algorithm for coverability (Rackoff 1978 [Rac78]),
« the EXPSPACE-hardness of coverability and reachability (Lipton 1976 [Lip76])

« the NL-completeness of coverability in the case of two-dimensional unary VASS.
The NL-hardness is by the NL-hardness of the PATH problem for directed graphs.
The membership in NL is implies by the membership of reachability for two-
dimensional unary VASS, proven in [ELT16].

The last result is explicitly for VASS encoded in unary. Rackoff’s result talks about VASS
encoded in binary, but trivially also works for VASS encoded in unary. Lipton’s hardness
proof works for both VASS encoded in binary or unary, as his construction never makes
use of transitions that decrement or increment a counter by more than one.

11.4 Remark

The proofs and more information on Rackoff’s and Lipton’s result can be found in
our lecture notes on concurrency theory, available at https://tcs.cs.tu-bs.de/
documents/lecturenotes/conctheo2017. pdf.
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11. Undecidable games over counter nets

Games on counter nets

Surprisingly, games over two-counter nets are undecidable. This is in sharp contrast
with the decidability of control state reachability.

11.5 Theorem
The problem of deciding the winner of a control state reachability game on a counter
net of dimension d > 1 is undecidable.

In the proof of the theorem, we will reduce the control state reachability problem for
two-counter machines, which is undecidable by Corollary [0.12. Using the game as-
pect, we can simulate zero tests.

Proof:
Let A,cm = (Q, =) be a given two-counter machine with counters x and y. Let g, gr be
a designated initial and halting state, respectively.

We show how to construct a two-counter net Ay = (Qg U Qo, —') such that there
is a transition sequence from (qo, 0, 0) to (g, n, m) for A,cy if and only if the existen-
tial player has a winning strategy for the control state reachability game with respect
to Anets (90, 0, 0) and g;. As the control state reachability problem for two-counter ma-
chines is undecidable, Corollary [10.12, the desired result follows.

We will construct Aye: as follows:
Qo =0Q,

i.e.the states owned by the existential player are precisely the states of the two-counter
machine A,cy. The states owned by Qg consist of helper states, at most one per transi-
tion plus an additional deadlock state dead.

Each transition of A,y will be replaced by a constant number of transitions in Aye.. We
will demonstrate how this translations works for transitions involving the first counter
x. The transitions for counter y can be implemented similarly.

- Transitions of type g %, p. q =, p and g = p can be inserted into Aycw
without any change. Observe that the semantics of two-counter machines and

two-counter nets coincides for these transitions.

« A transition of type g LGN p is replaced by the following gadget.

X—- X+ +
O )
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The semantics is as desired: The transition labeled by x—— can only be taken if the
value of counter x is non-zero. The increment x + + restores the former counter
value.

« A transition of type g = p can be replaced by a gadget. We let the existential
player claim that x = 0 in a transition that is labeled by noop. The resulting state
is owned by the universal player [I. She can now check whether this claim is true:
If yes, she proceeds to state p, where O is in control. If the counter is non-zero,
she moves to a deadlock.

@ noop noop @

X - -

We see that 0 can move to state dead if and only if the existential player has lied

and the counter was non-zero, because only in this case, the transition x — — is
enabled. If the counter was zero, as claimed by O, 0 has no choice but to use the
transition that leads to p.

We claim that the translation is correct: The existential player has a winning strategy for
reaching state gy if and only if g was reachable in the two-counter machine.

For one direction, assume that gy is reachable in the two-counter machine, and let

op op, opy

(q07070) - (q17c17d1) ... (qk7ck7dk) = (qf7nam)

be the associated sequence of transitions. It induces a winning strategy for O: In con-
figuration (g;, ¢;, d;), use the transition labeled by op;,, if it is not a (non-)zero test. If
op;, is x # 0, use the corresponding transition labeled by x — —. If op,, is x = 0, use the
corresponding transition labeled by noop. (And similar for counter y.) Since the transi-
tion sequence defining the strategy was valid in the counter-machine, the transitions
corresponding to zero tests are only taken when the counter value is actually zero. Con-
sequently, 0 has no choice but to use the move that leads to the next state; the tran-
sition leading to dead is not enabled as the counter cannot be decremented. Hence,
the strategy induces a unique play of the game that visits all configuration (g;, ¢;, d;). In
particular, it visits state g, and the play is winning.

For the other direction, we show that if g is not reachable, then O cannot have a win-
ning strategy. To this end, we show that O has a winning strategy. This strategy is
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11. Undecidable games over counter nets

very simple: Whenever O is in control, she uses the move to the state dead if possi-
ble. To prove that this strategy is indeed winning for [J, consider an arbitrary play p
from (qgy, 0, 0) that is conform to the strategy. Towards a contradiction, assume that the
play visits g, p = (qo,0) ... (gs, n, m). Consider the sequence of transitions of the two-
counter machine that corresponds to the play. Since gy is not reachable by assumption,
this is not a valid transition sequence. The only reason for it not being valid can be that
a zero test transition was used although the corresponding counter was non-zero. This
contradicts the definition of the strategy for OJ, which would have taken the move to
the state dead in this case. [ |
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12. Context-free games

We conclude our study of games on the (infinite) configuration graphs of automata
by considering a case in which reachability games can be decided: We study context-
free games, here formalized using Pushdown systems. We will show that control state
reachability games on the configuration graphs of pushdown systems are decidable
(i.e.the winner can be computed). For the proof, we will study Walukiewicz’s reduction,
which allows us to turn the infinite state pushdown game into a finite state reachability
game. This reduction can be seen as the most important contribution in the area of
algorithmic game theory for infinite state games.

Sources
The presentation is loosely based on Walukiewicz's paper [WalO1].

Another presentation of the material can be found in [ZKW].

Pushdown games

Recall the definition of Pushdown systems.

12.1 Definition: Pushdown system
Let A be a finite stack alphabet. A pushdown system (PDS) P = (Q, ) over A is an
automaton with memory A*. As usual Qis a finite set of control states, and — is a set of
transition rules of the form

- CcQx0ps,xQ,

where
Ops, = {noop} U {push,,, pop, | a € A}

is the set of stack operations.

The configurations are of the shape (g, m), where m € A” is the stack content. Here,
we fix the convention that the rightmost symbol of m encodes the top-of-stack.

The semantics of PDS is as expected. Push operations add a letter to the top of the stack,
pop operations remove the top-of-stack. A transition labeled by pop, is only enabled
when a € A is indeed the top-of-stack.

For the sake of completeness, we give the formal definition.
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12.2 Definition: Semantics of pushdown systems
The configuration graph of a PDS P over A is (Q x A*, R), where

(g, m),(p,w)) € R

. . noop
« w = mand there is a transition ruleg — p, or

. . push
- w = m.a and there is transition rule g — p, or

. e Pop,
« m = w.a and there is transition rule g — p.

We will now consider the same setting as in the previous section: We assume that an
ownership partitioning Q = Qg ¥ Qp, an initial configuration (go, m) and a final state g
are given, and we ask whether the existential player has a strategy to enforce reaching
(gs, w) (for some w) from (gq, m).

Here, we will always assume that in the initial configuration the stack is empty, i.e.(qo, €)
is the initial position. Note that in this configuration, no pop transition is enabled.

12.3 Example
We presenta PDS game that is a modified version of an example by Zimmermann [ZKW].
Considerthe PDSP = (QqwQo, —) over the stack alphabet { L, a} given by the following

(@)

push |

<::E%£::>::::) push,

noop

graphical representation.

g2 [ Popq

pop

@
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12. Context-free games

The associated configuration graph is as follows.

(q17 J-a(Ja)

(92, Laaa) | —o— -

(q27 J-aa) pop,

(92, La)

(92, 1)

Pop, POPq pop,

pop

Obviously, O has a strategy to reach gy, namely by pushing L in g, and then directly
going to g,. Even if she decides to use the push, transition finitely often, she will win
because [0 has no choice but to move to g¢.

Before proceeding with the theory, let us clarify some notation needed in the rest of
the section. Let

(QOamo)ﬂ(thﬂﬂ)...

be a computation of a pushdown system, i.e. a sequence of configurations
(g;,m;) € Q x A" where each (gj,1, m;,1) results from (g;, m;) by applying a transition
rule. Assume that (g;,;, m;,;) is obtained from (g;, m;) by applying a push-operation,

push, .
say rule g — g;,1. In particular, we then have m;,; = m;.b.

ush
(i, Mi) === (qis1, m;.b) .
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Either b stays on the stack for the rest of the computation, or there is a corresponding
pop in which b is removed from the stack for the first time:

pushy, Popy
cee \(q,‘, m;) — (qi+17mi'b)l SAERRRREREE - (qjﬂ m;.b) — (qj+17mi) -
push bon the stack corresponding pop

During the time that b is on the stack, the prefix m; of the stack content is not modified.
The index j + 1 at which the corresponding pop just has occurred can be identified as
the smallest index ¢ > i such that m, = m;.

The goal of the rest of this section is to prove the following theorem.

12.4 Theorem: Walukiewicz 1996 [Wal01]
Control state reachability games on the configuration graphs of Pushdown systems
(PDS games) are decidable.

Actually, Walukiewicz has shown that even Parity games are decidable. For the sake of
simplicity, we only discuss the case of control state reachability. The extensions of the
result are discussed in Remark [12.76.

Walukiewicz'’s reduction

The proof of the theorem relies on Walukiewicz’s reduction. From it, we cannot only
derive the decision procedure, but it also gives us the strategies that are needed for
PDS games.

12.5 Theorem: Walukiewicz'’s reduction

Given a control state reachability game on a PDS ™, we can effectively construct a
reachability game G on a finite graph G = (Vg W Vo, R) with respect to some winning
set B € V and an initial position x € V such that O wins G™ if and only if she wins G~
from x.

The decidability of PDS games follows immediately from the reduction: The finite state
game can, once it has been computed, easily be solved using the attractor construction.

12.6 Remark

The size of the underlying graph of G is exponential in the number of states of the PDS.
Furthermore, QFS can be constructed in exponential time. Since reachability games can
be solved in linear time, overall we obtain an EXP algorithm for solving PDS games.
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12. Context-free games

One can in fact show that this is optimal: Control state reachability games on PDS are
EXP-complete. Walukiewicz’s paper [Wal01] contains an indirect proof of this fact. For
a proof which is more accessible, see [MSS05].

The construction is quite complicated. We provide a sequence of explanations, each
explanation going into more details than the previous, finally culminating in the formal
definition

High-level idea: Storing only the top-of-stack

The fundamental idea behind the construction of G is the following: Instead of storing
the unbounded stack content, we only store the top-of-stack: We will consider posi-
tions of shape (g, a), where g € Qis a state and a € A is a single symbol. This obviously
results in a finite-state game, as Q x A is a finite set.

In G™, transitions labeled by noop can be executed normally. Push and pop transitions
need to be modified: If after using transition rule g Pty s in position (g, a), we would
simply moveto (s, b), we would forget a. This becomes a problem when the correspond-
ing pop transition, say s’ DoPe p, occurs. As we store the top-of-stack, we can verify that
the transition is indeed enabled, but it is not clear what the new top-of-stack should be
as we have forgotten the former top-of-stack a.

This problem is solved as follows. Whenever a push should be performed in a play of

G™, the corresponding play of G" splits into two plays:

- Either the push is performed. After the corresponding pop occurs, the play ends.

« Or we skip the subplay of G™* between the push that we want to perform and
the corresponding pop.

. . - .. push
More precisely, consider the position (g, a) of G"™. For a transition g —> s, there are
two possible continuations of the play.

- Either, the push can be performed. The play moves to position (s, b). As soon as
pop, occurs, the play will end.

« Or, the play can move to position (p, a) for some state p. We assume that the
subplay in which b is on the stack, i.e. the sequence of transitions

push, 1 POPy
g—™>5—>>...—™S§ —™>

has been skipped. Note that after pop,, indeed symbol a should (again) be the
top-of-stack.
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This idea is depicted in Figure .

Play in g™

stack

height @

(s,m.a.b) (s',m.a.b)
pusPVv ~ Vjpb
b on the stack
(g, m.a) (p,m.a)

O,
@

(q07 g)
time
Corresponding plays in G=:
(p,a)
(q07 £) (q7 G)
OJEEN
, Popy
(57 b) @ (S ’ b) Dea;Iock
time

Figure 1: The idea behind the construction of G"=.
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12. Context-free games

This approach clearly solves the above-mentioned problem: Since the play ends after
the top-of-stack has been popped, it does not hurt to forget the rest of the stack con-
tent.

However, there are a few missing holes that are crucial for the correctness of the reduc-
tion:

« Which player wins in case the game ends after a pop?

« Which state(s) p are eligible for jumping to them (instead of performing the
push)?

Guess & check

These problems are solved by a guess and check approach. The fundamental idea
behind guess and check is to guess information non-deterministically, use it, and later
check that the guess has been correct. This replaces a deterministic upfront computa-
tion of the information.

In our case, the guess and check approach is used whenever a push should be per-
formed. We guess the states p that we can can be reached by the corresponding pop.

In a guess and check algorithm, normally the guessed information is first used, and later
verified. Here, we can exploit that we are in a game setting, and have two types non-
determinism - one for each player — at hand. We give the power of making the guess
to the existential player. After it has been made, the universal player decides whether
to trust and use the guess, or whether it should be verified. In the notation of Figure [,
at the end of (1), the existential player can make a guess, but then we give the universal
player the choice between verifying the guess, (2), or trusting it, (3.

Let us clarify what the guessed information is and how it is used. Whenever a push
push, should be performed, the existential player is allowed to make a prediction
which states p can be reached with the corresponding pop,. Afterwards, it is the uni-
versal players choice to decide:

« Whether to verify the prediction by performing the push. In this case, the play
continues until the corresponding pop, occurs.

« Whether to trust the prediction and jump to one of the states proposed by the
existential players. This skips the subplay in which b would be on the stack.

More formally, the prediction picked by the existential player is a set P € Q of states.
The reason why we need a set of states (instead of a single state) is that in the play that
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unfolds after the push has been performed, both players may influence the outcome.
We comment on this in more detail in Remark [T2.7.

« Assume the universal player wants to verify the prediction. The push is performed
and the play goes on. If the corresponding pop occurs, we know precisely the
state p in which the play is. The existential played wins if p is contained in her
prediction (p € P), else (p ¢ P) the universal player wins.

« If the universal player trusts the prediction P, she can pick an arbitrary statep € P
that is contained in the prediction. The play then continues from state p with
unchanged top-of-stack.

This in particular fills in the holes in the construction mentioned above.

We explain the details of the construction on an example play.

1. Assume the play is in position (g, a) (i.e. a € A is the top-of-stack, the rest of the
stack is not stored). Furthermore assume that player 7%, the owner of g € Qg,
wants to execute a push transition, say g Pushe, .

2. The play moves to the position Push((g, a), (s, b)) in which the intention to exe-
cute this push is signaled. In this position, the existential player O is in control
(independent of which player owns g). She is allowed to make a prediction P € Q.
The prediction should be the set of control states that can be reached after pop,
has occurred, the pop corresponding to the push, that ¥r wants to perform.

3. After the prediction is chosen, the play moves to a state Predict((q, a), (s, b), P)
storing the prediction and the push. In this state, the universal player Ois in con-
trol. She has two choices:

+ She can trust the prediction. In this case, she can pick an arbitrary state
p € P. The play continues as if the transition sequence

pushy,

(g, ) (5,6) —> ... —> (s, b) —> (p,a)

would have been played: We are in control state p € P and the top-of-stack
isaagain (since bwas just popped). We say that the part of the play between
push and pop has been skipped.

+ She can doubt the prediction and verify it. The push operation is actually
performed, and the prediction is stored, i.e. we go to position

(s,b,P).
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12. Context-free games

4. If another push operation is performed, this process repeats. The new prediction
replaces the old one, i.e. we store at most one prediction at a time.

5. Consider the case that a pop operation should be performed. Say we are in state
(s', b, P), and the owner of s" has selected the transition s’ Do, p. Note that P is
the prediction that was made by O just before b was pushed. In particular, we are
in the case that O wants to verify precisely this prediction.

The game moves to a special positions Pop(p, P) storing the target state of the
pop and the prediction. This position is a deadlock. It is winning for the existen-
tial player if p € P, i.e. p is as predicted, and winning for universal player if p ¢ P.

12.7 Remark

a)

Note that we need a set of states P as prediction instead of just a single state: The
play that unfolds after a push has been performed also depends on the behavior of
0. A strategy for O cannot guarantee that a unique state is reached.

However, it would be too coarse to just consider the set of all states that are reach-
able with the desired pop: The existential player O can influence the play that hap-
pens after the push, so she may be able to avoid some undesirable states.

We will later see that a strategy sgDs forOon QPDS induces for each push a (unique)

prediction Pfor G". Namely, it defines the set of states reachable by a corresponding
pop in plays in which O conforms to sgDS, while O can be pick arbitrary moves. The
choice among the states in P corresponds to the choices that (0 can make in g™
between push and corresponding pop. Intuitively, P contains one state p for each
strategy of O for QPDS.

The construction indirectly enforces that the existential player is honest with her
prediction, i.e. she has to choose a set of states P such that each state in Pis actually

reachable, and any state that she cannot prevent being reached is contained in P.

+ In case she picks a set P that is too big (i.e. it contains states that are unreach-
able), there are two cases: If the additional states are good for O, then O will
never use these states when skipping subplays. If the additional states are
good forJ, then Ois free to skip to one of these states (although reaching the
state might not have been possible in the original PDS game), and O might
lose unnecessarily.

« If she picks a set P that is too small (i.e. it misses out some states that the game
might reach), then O can win by verifying the prediction and reaching one of
those missing states.
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Hence, a winning strategy for O for G" will never pick such a prediction.

c) Note thatif Pis valid prediction, in the sense that the existential player will not lose
if O decides to verify, then so is P U {gy}. If the universal player skips and jumps to
state gy, she loses instantly.

Formal definition of the construction

It remains to formally state the construction of G". For simplicity, all positions of the
game will maintain a prediction (unlike in the example play above, where we started
with having no prediction). Hence, positions of G" are essentially of the shape (g, a, P),
where g € Qis a control state, a € A is the top-of-stack, and P € Q is the current
prediction. To model the empty stack, we also allow a = € and define A, = A v {€}.

The game will also have intermediary positions of shape Push((q,a,P),(s,b)),
Predict((q, a, P), (s, b, P')), Verify(s, b, P'), Skip(p,a,P), and Pop(p,P) to implement the
mechanism described before. The meaning of the states Push((q,a,P),(s,b)),
Predict((q, a, P), (s, b, P')), and Pop(p, P) has been explained before. The positions of
type Predict((q, a, P), (s, b, P')) and Verify(s, b, P') are additional intermediary positions to
signal that the universal player has just decided to skip respectively verify a prediction.
They are actually not strictly required for the correctness of the construction. However,
their presence will greatly simplify the proof of correctness.

The initial configuration is (g, €, @), consisting of the initial state, the empty stack and
the empty prediction. As € cannot be popped, starting with the empty prediction does
not hurt.

A state is winning if it is of the shape (g, a, P), i.e. we have reached the desired con-
trol state, or if a pop has occurred that leads to a state that is in the current prediction.
Formally, the latter case will correspond to positions of the shape Pop(p, P) with p € P.
Before finally giving the formal definition, we present a part of the game arena of g™
for the game from Example [12.3. This should be helpful to visualize the construction.

12.8 Example
Consider the PDS game from Example [12.3. The associated finite-state game is as fol-
lows.
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(q07 g, Q)

. push
// Transition gg —— q

PUSh((q07 &,

// Prediction {gr} // Other predictions

Predict((qo, €, @), (g1, L, {g¢}))

//Verfy/ \//Skp%—’ﬂh L2 g

Verify(q:, L. {qr}) Skip(ar, €, 2)

h
// Perform qq P, a1

(g1, L,{qs)

push,
g —— q1 noop
g —q,

(92, 1,{qs})

/1y 225 g

Pop(qr, {gr})

The states Pop(qr, {g¢}) and (gr, €, @) are deadlocks that are winning for the existential
player. Hence, the existential player indeed has a winning strategy for G". Similar to
the winning strategy for G™* that we discussed in Example [12.3, it picks the moves
90 Push, g, and ¢, N g,. Additionally, it needs to pick the prediction {gy}.

We leave it as an exercise for the reader to check that picking e.g. the set {g, g¢} as
prediction will not result in a winning strategy.
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12.9 Definition: QFS
To the PDS game, we associate the finite state game QFS on G = (V, R), where Vis defined
in Figure P and R is defined in Figure 3.

The ownership of positions of type (g, a, P) is given by the ownership of q. All push-
positions are owned by O, as she has to make a prediction. All predict-positions are
owned by [J, as she has to choose between verifying the prediction and skipping the
subplay. Ownership on all other types of positions does not matter, as they have at
mMost one successor.

Formally, we have

owner(q, a, P) =w iffqg e Qg VgeQ,aeA,PCQ,
owner(Push((q, a, P), (s, b))) =0 Vg,s€Qael,beAPcQ,
owner(Predict((q, a, P), (s,b,P))) =0 Vg,s€Qa€eN, beAPPCQ,
owner(Pop(p, P)) =0 VpeQ,PcQ,
owner(Verify(s, b, P')) =0 VseQ,beA P cQ,
owner(Skip(p, a, P)) =0 VpeQ,aelh, PcQ.

The winning set that O has to reach consists of all positions (g, a, Q') where the control
state is grand of all pop-positions where the control state is contained in the prediction:

B = { (qf7av’D) | GEAE,PQQ }
u { Pop(p,P) | peP, a€elh,PSQ } cV.

The initial position of interest is
(q07 £, 0) )

i.e. we start with the empty stack and the empty prediction.

Proof of correctness

It remains to show that G” is indeed the game required for Theorem [12.5. We divide
the proof in two steps:

PDS

« Proposition [12.10: If O has a winning strategy for G, then she has one for G,

« Proposition [T2.T1]: If O has a winning strategy for G", then she has one for ™.

We start with the first direction, as it is the easier one.
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qe€Q,
{ (ga,P) | a€h,}
PcQ
// State + top-of-stack + current prediction
q,s €Q,
{ Push((g,a,P),(s,b)) | ael, beA,}
PcQ
// Owner of g wants to perform g Pk, s
q7 S € Qa
{ Predict((g,a,P),(s,b,P)) | aelb,bel, }
PP cQ

// Existential player makes a new prediction

seQ,
{ Verify(s,b,P) | beA,}
P cQ
// Universal player decides to verify - the push is performed
p€eQ,
{ Skip(p,a,P) | a€Al}
PcQ
// Universal player trusts the prediction and skips the subplay
pEQ,
{ Poplp.P) | pcq }-

// A pop has been performed, the game ends

Figure 2: The definition of the set of positions V of G~
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noo q.5 € Q’
{ (quaﬂD)_)(S?aaP) | q——p)s7 GEAE’ }
PcQ
// Transition with no operation, keep current prediction
oush, g5 €Q,
{ (q,a,P)—>Push((q,a,P),(s,b)) | qg——™s5, a€A£7b€A7 }
PcQ
ush
// Owner of g wants to perform g RN p
qv S € Q7
{ Push((g,a,P), (s, b)) > Predict((q,a,P),(s,b,P)) | a€l, beA,}
P,P'cQ
// Existential player makes a new prediction
Predict((q, a,P),(s,b,P)) - Verify(s,b,P'), q9,s €Q,
_ , ) | ael,beA }
Verify(s,b,P') — (s,b,P) PPcQ

// Universal player wants to verify the prediction, then the push is performed

Predict((q,a, P), (s, b,P)) — Skip(p,a,P), q.p,s €Q,
(g )'( )) p(p,a,P) | per. aeaben)
Sklp(p,G,P) - (p,a,P) P,P'EQ

// Universal player trusts the prediction and skips the subplay from g to p

s,p€Q,
{ (s,a,P)>Pop(p,P) | s 5p, aed, }.
PcQ

// A pop has been performed

Figure 3: The definition of the set of moves R of G .
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12.10 Proposition

PDS

If O has a winning strategy (for reaching gy) for the PDS game G~ from (g, €), then she

has a winning strategy for the finite-state reachability game G" from (9o, €, @).

Proof:

Towards a proof, we fix a winning strategy for G™. Since the PDS game is also a reach-
ability game (although on an infinite graph), positional determinacy (Theorem #.4) ap-
plies, and there is a uniform positional winning strategy sgDS. (Note that this strategy is
positional, but it still works on the configuration consisting of control state and stack
content.) Our goal is to translate sgDS into a winning strategy s(F)S for g"~.

Construction of the strategy

We construct sg‘ as a non-positional winning strategy. To be able to apply SEDS, we need

PDS

to recover from a play of G”a position of G, i.e. a full configuration consisting of

control state and stack content.

Formally, let p™ =  pop;...px be a finite play of G” from (go, €, @).

We define the associated stack content assoc(pFS) as follows: Let
Verify(p,, by, Py), Verify(p,, by, P,), . . ., Verify(py, by, Pc) be the sequence of all verify

P .
positions in p ~ in their order of occurrence. Then

assoc(pFS) =b,b,...b,.

FS) = ¢if pFS contains no verify-positions. Indeed, the

In particular, we have assoc(p
verify-positions correspond to pushes that have been performed. The pushes that are
skipped do not contribute to the associated stack content, as in the play of ™ we

assume that the corresponding pop has also occurred.

We can now define the non-positional strategy s(F)S on plays that end with a position of
type (g, a, P) as follows.

(Pushi(q, a, P)), (s, b)),

if s (g, assoc(p™)) = (s, assoc(p").b) with g s,

(o (g.a.p) =@

<

if sty°(q, assoc(p™)) = (s, assoc(p™)) with g —=> s,

Pop(p, P),

if sgDs(q, assoc(p™)) = (s, assoc(p

F5)P°P) with g PP s

167



[ll. Games on infinite graphs

FS) FS)

Here, assoc(p )" is assoc(p ) with the rightmost symbol removed. Note that this
symbol has to be a € A whenever assoc(pFS) is non-empty. (In the case that

a=¢= assoc(pFS), a pop-transition cannot be performed anyhow.)

It remains to define s(F)S for plays p™ that end with a position of type Push((g, a, P), (s, b))).
In such a position, the existential player should make a prediction P’ € Q. Our intuition
is that P’ should contain all states that can be reached by popping b in a play conform

PDS
tosy

PDS

Consider the configuration (s, m.b) of ™ with m = assoc(p"*) in which G™ after the

push has been performed, and consider the set of all plays from (s, m.b) that conform
PDS
tosy

{pPDS play | pp?° = (s, m.b),pPDS conforming to sgDS} .

We restrict ourselves to plays in which a pop corresponding to b occurs. (There might
be plays in which b stays on the stack for the rest of the play.) Recall that the position
after which the pop has occurred is the first j such that prS = (p, m) for some state
p. This means the stack content coincides with m, the stack content before the push,
for the first time. The prediction P should consist of states p corresponding to such
configurations.

There is one more restriction we need to make: We need to avoid that the universal
player can skip the occurrence of the target control state g, in case it is between s and
p. In this case, O could avoid losing by skipping this segment of the play. To this end,
we just exclude all plays that encounter control state g; between s and p.

If the universal player decides to verify the prediction, excluding these plays will not
hurt: If the play has already visited gy, it will be won by the existential player, even if it
ends in Pop(p, P) with p ¢ P.

Formally, we define

PDS PDS

3p™ play with pg> = (s, m.b) conforming to O
PDS _

Prediction(s,m,b) ={ p € Q JjeN:p " =(p,m),

Vi <jipr>> = (p',m')withm £ m'and p' # gy

We then can define

sg’(st.Push((q, a,P), (s, b)))) = Predict((q, a, P), (s, b, P'))

with P’ = Prediction(s, assoc(p”), b) .
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Proving that the strategy is winning

To show that s(F)S is indeed winning, we want to use that sgDS is winning for QPDS.

First note that if (g, a, P) can be reached in G" by a play conforming to s(F)S, say by pFS,
then the position (g, assoc(p")) can be reached in G by a play conforming to 5(P)DS: As
long as no subplays are skipped, the play of G~ proceeds exactly as the correspond-
ing play of G™*. Whenever a subplay is skipped, the state that the play jumps to is a
state reachable by playing conforming to sgDS by the definition of Prediction(s, m, b). A
formal proof of this fact using induction is conceptually easy, but tedious.

Let us now assume towards a contradiction that pFS is a maximal play of G" conform-
ing to s(F)S that is not won by pFS. In particular, it does not contain control state g;. We

distinguish two cases:

. prFS ends with a pop-position, say Pop(p, P'), then it is not winning if and only if
p ¢ P'. However, the predictions are chosen such that this case cannot occur.

Let Predict((q, a, P), (s, b, P')) be the position in which prediction P’ was chosen.
This means P’ = Prediction(s, assoc(pf), b), where pf is the prefix of the play be-
fore the prediction was chosen. The play of G from Predict((q, a, P), (s, b, P')) to

PDS

Pop(p, P') corresponds to a play of G~ from (s, assoc(pf).b) to (p, assoc(pf)) that

is conform to sgDS. Hence, we have p € P' by definition.

PDS

- Else, i.e. iprS does not contain a pop-position, consider the play of G~ thatis cor-

responding to pFS. As already mentioned, it is conforming to the winning strategy
sgDS, and hence, it reaches state gy after finitely many steps. Since we do not allow
to skip subplays in which g occurs (see the definition of Prediction(s, m, b)), this

FS .
means that p ~ also needs to contain an occurrence of gy.

It remains to prove the other direction.

12.11 Proposition
If O has a winning strategy for the finite-state reachability game G from (go, €, @), then
she has a winning strategy for the PDS game G from (9o, €)-

Again we can assume that we are given a uniform positional winning strategy s(F)S for
g“. As QFS is finite, we can even assume that we have an explicit representation of this

strategy.
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In the following, we will not only prove the existence of a strategy G™, but we will also
discuss how to obtain a finite representation.

The game arena of G™ isinfinite-state: Even single configurations (g, m) cannot be rep-
resented using bounded space. However, we would like to obtain a strategy that only
needs to process a bounded amount of information in each step. The control states
themselves provide too little information for this approach to work. Thus, we consider
strategies that work on the finite set of transition rules — of the pushdown system. This
means the strategy will read the moves of the game that have been used.

Unfortunately, it is not easily possible to obtain such a strategy that is finite-state or
even positional. The strategy that we construct will need unbounded memory. To be
precise, we will build a so-called pushdown strategy, a strategy that maintains an un-
bounded stack as storage.

We give the idea behind the construction of the strategy and then argue why it needs
unbounded memory.

In the notation of Figure [I, the strategy sg is winning both the play 2) in which the
push is performed, as well as the play (3) in which the subplay is skipped. This will
be guaranteed, as the universal player has to choose between verifying and skipping:
Whenever a position of type Predict((q, a, P), (s, b, P')) is in the winning region of O, then
both Verify(s, b, P') and Skip(p', a, P) (for all p € P') also have to be in the winning region.

The idea for the construction of sgDS is as follows: After a push has been made, say

(g, m.a) - (s, m.a.b), the strategy first simulates s(F)S from Verify(s, b, P'). Since s(F)S is win-

ning, it is guaranteed that if b is ever popped, we land in a state p with p € P'. From this
. FS .

moment on, we can simulate s from Skip(p, a, P) on.

However, this will require us to keep track of one prediction for every push that has
been performed: After b has been popped in our example, a is again the top-of-stack.
To behave properly (i.e. as required by 58), we need to know again the prediction that
was made when a was pushed. Since the number of pushes is not bounded, we will
need an unbounded storage.

The automaton implementing the strategy will always maintain the prediction for the
current top-of-stack in the control state. When a push happens, it stores the current
prediction on the stack and picks a new prediction for the new top-of-stack (quided by
the strategy s(F)S). When a pop happens, the current prediction can be forgotten and the
correct prediction for the new top-of-stack is recovered from the stack.

We formally introduce pushdown strategies, define sgDS and finally prove the correct-

ness.
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12. Context-free games

12.12 Definition

A pushdown strategy for players¥is defined by a (deterministic) pushdown transducer
T that reads the moves of a game G = (V, R) (with fixed initial state x,) and outputs the
moves of vt. More formally, the transducer is a tuple

T= (QT7 R7 R7 AT» dro, 67 0)

where

Qy is a finite set of internal control states,

* g € Qris the initial state associated to x,,

the set of moves R is the input as well as the output alphabet,

A7 is the stack alphabet of T,

+ 6 € Qr X Rx Ops,, x Qris the transition relation, and

0: Q; - Ris the output function that determines a the successor o(gy) that is put
out depending on the current internal state gr € Qr.

The transition relation contains pairs of the shape

(qu r, Op7pT) ;

meaning that when the transducer is in state g; € Qrand reads move r € R of the game,
it can perform operation op (i.e. noop or push, or pop, for some a € A7) on its stack and
go to state p;r € Qr.

We require that T is deterministic in the following sense: If there is a transition
(gr,r,0p, pr) € & for some g € Qr, r € R where the operation is op = noop or a push
(op = push, for some a € A;), then there is no other transition (g7, r, op’, p7) for this g;
and r. Furthermore, for each g; € Qr,r € Rand a € Ay, there is at most one pr such that

(qTa r, popaapT) €.
(The transducer should also guarantee that it does not deadlock and whenever it out-

puts a position, this is actually a valid successor, but we leave these assumptions im-
plicit.)
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For such a transducer, we define its configuration config(pr) € Qr x AT after reading
some finite sequence of moves pr € R* inductively by

Conﬁg(&‘) = (qT07 E) )
config(pr'.r) = (pr, m)

where (qr, m') = config(pr'), (qr,r, op, pr) € 8, and m is the result of applying op to m',
i.e.m.a=m"and op = pop,, orm' = mand op = noop, orm = m'.a and op = push,,.

The strategy induced by the transducer can then by defined by

s;{ : Playsy, - V
play ~ o(qr) where(qr, m) = config(play) .

12.13 Remark

Comparing to the definition of finite-state strategies (and the corresponding transduc-
ers) in Definition [/.10 we have made several changes that go beyond allowing a stack
as storage.

+ As discussed argued above, the transducer now reads moves instead of states.

- Consequently, the initial state is associated to a fixed initial position of the game.
The trick of choosing the real starting state by reading the first position of the
game which we have employed in Definition does not work for transducers
that read moves: A trivial play p, consists of one position, but of no move.

« Although the transducer should be deterministic, we have formalized its transi-
tions by a relation instead of a function. This is because we allow several pop-
transitions (for different stack symbols) to be present at the same time, i.e. we
may have (gr, r, pop,, Pa), (Gr, I, POP,, P») € 6. However, at most one of these
transitions is enabled in any configuration, namely the one that pops the current
top-of-stack. This allows the transducer to obtain information about the old top-
of-stack whenever a pop-occurs.

The same concept can also be realized using a transition function, but at the cost
of more syntax.

It remains to implement the strategy described before by a pushdown transducer T.
Formally, we have
T= (QT7 -, QT7 dro, 67 O) )

where the components are specified below.
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The states Qr are precisely the positions of G"” of type (g, a, P). In particular, the state
of the transducer stores the control state g of the PDS, the current top-of-stack a, and
the prediction P for the push which pushed a.

Qr=1{(g9,a,P)|g€ Q,ae A, ,PcQ}.

The initial state is g = (go, €, @), the initial state of G".

The stack alphabet of Tis also the set Q; of states of shape (g, a, P). Whenever a push
is performed, the current state is stored on the stack. On a pop, the state is taken from
the current top-of-stack.

To define the transition relation, note that our transducer will not read a move r € R
from the infinite set of transitions of the pushdown system, but it will read g 2 p €-,
the rule which induces transition r. Note that — is a finite set. For example, if the move
(g, m) = (p, m.a) occurs in the game, the transducer will read g i p. (To be consis-
tent with the definition above, one can assume that the transducers reads transitions,
but that all transitions that are induced by the same rule cause the same behavior.)

« Upon reading g 2, sin state (g, a, P), the transducer performs no stack opera-
tion and moves to (s, a, P).

h
« Upon reading g P, sin state (g, a, P), the transducer performs pushg 4 p), Stor-
ing the old prediction on the stack. Let

so(Push((g, a, P), (s, b)) = Predict((q, a,P), (s, a,P)
i.e. P'is the new prediction picked by the positional strategy S(F)S. The new internal

stateis (s, b, P').

« Uponreading s DoPe, p in state (s, b, P'), the system pops the top-most stack sym-
bol, say (g, a, P). It then moves to (p, a, P).

All other cases can be undefined. Note that the definition guarantees that whenever
the transducer is in state (g, a, P), then a is indeed the top-of-stack and q is the control
state of the PDS. The transition relation is deterministic as required. Formally, we have
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6 = {{(a.aP),q=> s noop,(s,a,P))|q,5€Qaeh. PcQ)

s5(Push((g, a, P), (s, b)) =
Predict((q,a, P), (s, a, P'))

g,s€Q,ael, bel,

P,P' cQ,

push ,
U {((q> a, P)7 q —b) S, pUSh(q,a,P)a (Sa bv P )) | }

U {((S7b7P’)7$Ep—a)pa pop(q,a,P)v(p7a7P))|q7p75€ Q7b € A,GEAE,P,P' < Q}

It remains to define the output function o. Note that is sufficient to define the output

for states (g, a, P) with g € Qo. The definition of the output function is induced by the
FS Fs

strategy sg for G .

PRy if si5(q, a, P) = Push((q, a, P), (s, b)) ,

noo,

o(g.a,P)=1q =55, ifs5(g,a,P)=(s,a,P),
pop

q_")p’ ing(q,G,P)=POP(p,P).

The fact that sg’ is a valid strategy ensures that the transitions that are printed actually
exist.

To finish the proof of Proposition [T2.T1], we need to show that sgDS is indeed winning.

Proof:
We have to show that the strategy sgDs induced by the pushdown transducer T is win-

ning for G from (go, €). Let p™°° be a maximal play of G** from (gy, €) conforming to
PDS

5o -
PDS . . , FS Fs
To prove that p" ~ is won by O, we will construct an associated play p ~ of G~ conform-
ing to the strategy s(F)S. Since s(F)S is winning and T is induced by s(F)S, we will then obtain
FS PDS . . .
thatp " and alsop "~ is winning.

The main challenge for the construction of pIES is that plays in G" should not contain
pops. Therefore, for every pop occurringin pPDS, we delete the whole segment between
the corresponding push and the pop from pPDS. The result of applying this operation
exhaustively is essentially a play of G".

Formally, the construction of pFS is as follows. Initially, we have pgs = (qo, €, D). As-

Fs FS .
sume we have already constructed the prefix p,” . . . p;” corresponding to some prefix
PDS PDS PDS

po -..p; ofp . Let p,FS = (g, a, P). To construct p,-F+S1, we proceed as follows:
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. prms is obtained from ijDS

be a transitioned labeled by noop, i.e.

(9.m) > (s,m)viag =5,

then we define p; to be (s, a, P).

. prjFBS is obtained from ijDs

be a transitioned labeled by push,, i.e.

(g,m) = (s,m.b)viag LShb) s,

we distinguish two cases:

transducer.

PP5 contains the corresponding pop, i.e. if there is some index | > jthat s

Ifp
the first index such that p]-F:DS = (p, m), then we skip the part between push
and pop. More precisely, we append to the part oprS that has already been

constructed the following moves:
PUSh((qa a, ’D)> (57 b))PredICt((q7 aa P)7 (57 b7 P’))Sklp(pa a, P)(p7 a> P) )

where s(F)S(Push((q, a,P),(s,b))) = Predict((q, a, P), (s, b, P)), i.e. P' is the pre-
diction selected by s(F)S.

In the next step, we will then construct p,-Ffs (the position following (p, a, P))
depending on ijE;

P> contains no corresponding pop, then the push is actually executed:

If p
We append to the part oprS that has already been constructed the follow-

ing moves:
Push((q, a,P), (s, b)).Predict((q, a, P), (s, b, P')).Verify(s, b, P').(s, b, P') ,

where again s(F)S(Push((q, a,P), (s, b))) = Predict((qg, a, P), (s, b, P)).

In the next step, the construction proceeds by defining p,Ffs depending on

PDS
Pjs+2 -

Since any pop in pPDS has a corresponding push somewhere earlier in the
play, we do not need to consider the case that ijES is obtained by a pop.

It is again tedious to check that pIES is indeed a maximal play of G" thatis conforming
to sg. In particular, whenever a pop occurs, the state reached by the pop is contained
in the current prediction. This fact is based on the definition of transducer T which
relies on s(F)S, and the fact that pPDS is conforming to the strategy sgDS induced by the

175



[ll. Games on infinite graphs

To be precise, pFS is the play of G" in which the existential player plays conforming to
s(F)S and the universal player verifies the predictions that correspond to pushes that do
not have a corresponding pop in pPDS. For the pushes that do have a corresponding

PDS

popin pPDS, Ojumps precisely to the control state which is visited by p" " after the pop.

Since s(F)S is a winning strategy, the play pFS conforming to it must be winning. As pFS is
constructed to not contain any pop-position, this means pFS visits control state gr. Note
that if pfs = (g, a, P) for some i, then there is some index j such that the control state

PDS

of p; " is g. Combing the arguments, we obtain that pPDS visits control state grand is

winning. L

Theorem [T12.5, and subsequently Theorem [12.4, is now obtained by combining the
Propositions [12.10 and [T2.11].

Concluding remarks

12.14 Remark

The strategy that we have constructed for the proof of Proposition is not just
an arbitrary pushdown strategy, it is a so-called synchronized pushdown strategy.
This means that the transducer implementing the strategy pushes resp. pops precisely
when the pushdown system defining the game pushes resp. pops. Consequently, the
height of the stack of the pushdown system equals the height of the stack that forms
the internal storage of the strategy transducer.

Such strategies have a big advantage over arbitrary pushdown strategies. Assume that
P = (Q,-) is the underlying PDS for a pushdown game over stack alphabet A, and
let T = (Qr, R, R, Ar, gro, 6, 0) be a synchronized pushdown transducer implementing
a strategy for player s%. Since the stack heights of the PDS and T are equal, we can
construct the cross-product, which is again a pushdown system

PeT = (Q x Qr, =)

over stack alphabet A x A;. The idea is to always store the state of the PDS as well as
the state of the transducer, and whenever the current PDS state is owned by 7%, then
the next move of the system is determined by the output function of T.

The resulting PDS PeT has only one type of non-determinism, namely non-determinism
corresponding to players??. (The non-determinism for player < has been resolved using

n.
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Checking properties of the strategy defined by T can now be done by checking prop-
erties of PeT using standard algorithms for pushdown automata (e.g. a variant of the
CYK algorithm for reachability). For example, assume that one wants to check whether
T defines a strategy that is winning for a safety game, i.e. whether it guarantees that
some state gy is never reached. We can check whether any state of the shape (gr, g7) is
reachablein PeT. If and only if the result is negative Tindeed defines a winning strategy.

Recall that without the guarantee that the stack heights of two pushdown automata
are equal, their cross product is not a pushdown system. (In fact, their cross product
can be seen as a proper Turing machine, since the intersection-emptiness problem for
context-free languages is undecidable.)

12.15 Remark

In the proof of Theorem [12.5, we have only constructed strategies for the existential
player O. However, a similar construction works for the universal player: A uniform
positional winning strategy for O on G™ induces a winning strategy for O on G", and
a uniform positional winning strategy for Jon G” induces a winning strategy for CJon

G that can be implemented by a synchronized pushdown transducer.

12.16 Remark
For simplicity, we have only considered the case of control state reachability games,
while in [Wal01]], the more general case of parity games is considered.

Recall that a parity game on a pushdown system P = (Qq U Qo, —) is given by a priority
assignment Q: Q — N on the control states.

The construction of QFS needs some modifications in this case:

« All states are modified to keep track of the priorities, e.g. we consider states of
shape (g, a, P,n). On every transition, the tracked priority is updated to be the
maximum of the priorities that have been seen.

- G" is now a parity game.
- The priority of state (g, a, n, P) is the priority of g.

« Instead of choosing a single prediction, the existential player picks a family of
predictions (P,),, one prediction P, per priority.

« The universal player can pick a priority n and then some p € P, for some n and
skip the subgame. In this case, the priority n which we assume has occurred in
the subgame is the priority of the skip-position. Afterwards, the tracked priority
is reset to 0.
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- A pop-position Pop(p, n', (P,),) has even priority if and only if p € P,.. To avoid
deadlocks, we can add self-loops to pop-positions.

« All other positions have priority 0.

The proof of correctness then only requires minor changes.

12.17 Remark

The trick used in Walukiewicz's reduction is very powerful and extends to classes
of systems beyond pushdown systems, namely to higher-order computation
models (like higher-order collapsible pushdown systems or higher-order recursion
schemes) [CWO07], and to certain kinds of games on multi-pushdown systems [Set09].

The guess & check approach has a long history in the domain of program verification.
Using it in combination with the two types of non-determinism in a game comes from
the game semantics for the modal u-calculus, a certain kind of logics [EJI1].
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In this section, we look at sufficient conditions for a Gale-Stewart game being deter-
mined. We state the Borel determinacy theorem which shows that for a large class
of winning conditions, the corresponding games are determined. The theorem results
in the so-called Borel hierarchy of winning conditions: Each condition that satisfies
the requirements of the Borel determinacy theorem is in some level of the hierarchy,
which characterizes the complexity of the winning condition. The conditions that we
have looked at in Part [l of the lecture are in low levels of the hierarchy.

Sources
The presentation here partially follows [ZKW].

The Borel hierarchy and the Borel determinacy theorem

We start by recalling some notation for (sets of) sequences.

13.1 Remark
Let V be a (not necessarily) finite set. We denote by V" the set of sequences v, . . . v over
V of finite length and by V* the set of sequences vyv; . . . over V* of infinite length.

Letp™ = vy... v, p™ =ug...ur € V¥, p"™ = wow, ... € V“. Finite sequences p™, pfin’
can be concatenated, resulting in the finite-length sequence pf’”.pf'” =Vy...Vplg. ..U
A finite sequence pf'" can be concatenated with the infinite sequence p'"f, resulting in

. . fin __inf
the infinite sequencep .p =Vy...V,WoW;....

For sets of sequences, we define their concatenation element-wise. Let K, K' ¢ V* and
H c V*. We define

KK = {pﬁ".pﬁ"’ eV 'pﬁ" ek p™ e K} ,

KH = {pﬁ”.pmf eV’ |pﬁ" ek p” e H} .

Using this notation, we can define the lowest level of the hierarchy, the open sets.

13.2 Definition: Open
Let A be a set. Aset B € A” is open if it is of the shape

B=KA"

for some setK € A*.
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Intuitively, a set B is open if membership in B only depends on a finite prefix: p € V* is
fin _inf

in B = K.A” if and only if there is a partitionp = p".p"" such that pﬁ" € K.

13.3 Lemma
The notion of being open defines a topology. This means the following properties
hold:

a) @ and A” are open,
b) any union of open sets is again open, and

) intersections of finitely many open sets are open.

Proof: Exercise[13.16. [ |

13.4 Remark

In fact, the topology defined by the notion of being open above is a well-known topol-
ogy, namely the product topology on A” with respect to the discrete topology on
A.

In the discrete topology on A, each subset of A is open.

For a sequence p = pop1p, ... € A” andj € N, we define projj(p) = p;, the projection of
p to thejth component. For sets B € A”, we define proj;(B) element-wise, i.e.

proj;(B) = {proj(p) | p € B} .

In the product topology on A“, a set B ¢ A” is open if and only if it can be written as

B=|J8.

i€l

union

where | is some index set (that may be infinite, even uncountable), each B; € A” is a set
and for each i, we have that
proj(B;) = A

for all but finitely manyj € N.

(In the general definition, we would additionally require that proj,(B;) < A is open for
all i and j. Here, we consider the discrete topology on A and this condition is trivially
satisfied.)

The correspondence stated in the previous remark can be formally proven.
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13.5 Lemma
Our definition of being open coincides with the definition of being open in the product
topology.

Proof:

Assume B ¢ A” is a set such that proj,(B) = A for all but finitely many i € N. We show
that B is open. Since unions of open sets are again open, Lemma [13.3, this shows that
all open sets in the product topology are open according to our definition.

Let iy € N be the greatest index i such that proj,(B) # A. We may write
B = projo(B).proj, (B) .. . proj, (BIA”
which is open by definition.

Assume that B = K.A” is a set that is open according to our definition. We may write

K= JK"

ieN

K c A" as disjoint union

such that each kK = K n A’ contains exactly the sequences in K of length i. We get

B=|JK'A".

ieN
Note that for each set KU)A“', we have projj(K(i)A“') = Aforallj > i. This concludes the

proof. [

We can now define the further levels of the Borel hierarchy. The hierarchy consists of
two branches, the X branch and the M branch. The open sets are the lowest level of the
¥ branch.

13.6 Definition: Borel hierarchy
Let A be a set. We define a hierarchy consisting of elements 22 and n‘; for all ordinal
numbers a > 0.

Each 22 resp. n2 is a collection of subsets of A“.

. Z? contains the open sets,
. For each a > 0, M) contains the complements of sets in Xy, and

- Foreacha > 1, z‘; contains countable unions of sets in I'I?3 for0<fB<a.
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57 ={BcA”|Bopen},

Mg ={CcA”|A"\ Cex,},

22 = {B cAY|B= U C;,whereeach C; € I'Igl_ for some 3; < a} )

ieN

13.7 Remark

+ The superscript 0 that all 7_2 and n2 have is a part of the name.

« The natural numbers are a special case of ordinal numbers. Thus, the above defi-
nition in particular defines 22 and I'I?, for all natural numbers n > 0.

- We give a down to earth explanation of the first levels of the Borel hierarchy.
g p y
)=
1 = open sets,
I'I? = closed sets (complements of open sets),
>:‘2’ = countable unions of closed sets,

0 .
M, = complements of countable unions of closed sets
= countable intersection of open sets,

0 . . .
¥, = countable unions of countable intersection of open sets,

« The sets in each branch of the hierarchy form a chain:

0 0 0
3, CX,c3;C...

More generally, if a, 8 are ordinal numbers with 8 < a, then

Zg c 22 and I'Ig

+ Furthermore, each Zg contains all I'Ig for B < a, and similar for n°.

We do not give a formal proof of these properties here.

The following figure depicts the first few levels of the Borel hierarchy. It takes the prop-
erties stated in the above remark into account.
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The Borel determinacy theorem states that a game is determined if its winning condi-
tion lies in any countable level of the Borel hierarchy. We introduce the Borel algebra
to make this formal.

13.8 Definition
The Borel algebra B is the union of the sets 22 for all countable ordinals a. Equivalently,
it can be defined to be the union over n2 for all countable ordinals a.

8= |J == J m

a countable ordinal a countable ordinal

A set B ¢ A” is called Borel set if it is contained in the Borel algebra, B € B.

13.9 Remark
The natural numbers are the finite ordinals, and thus a special case of countable ordi-
nals.

Therefore, the Borel algebra in particular contains all zﬂ and I'I?7 forneN,n > 0.

The collection of open sets is closed under arbitrary unions, but not under countable
intersections or complement. The Borel algebra has these properties.
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13.10 Lemma
The Borel algebra B is the smallest collection of subsets of A” that contains the open
sets and is closed under complement, countable union and countable intersection.

We omit the proof of this lemma.

We can now state the Borel determinacy theorem: Any Borel game, i.e. any game whose
winning condition is a Borel set, is determined.

13.11 Theorem: Borel determinacy theorem, Martin 1975 [Mar75; Mar82]
Let Abe aset. If B € A” is a Borel set, then the Gale-Stewart game G(A, B) is determined.

13.12 Corollary
LetAbeasetand B € A”. If Bisin Zg or I'Ig for some countable ordinal a, then G(A, B) is

determined.

The Borel hierarchy allows us to measure the complexity of winning conditions. Let Bbe
a winning condition, then we can ask what is the least a such that z‘; resp. Zg contains
B.

In the following, we want to study the complexity of several winning conditions that
we have seen so far. Here, we consider Gale-Stewart games with reachability, parity, etc.
winning conditions. If one wants to do this for the graph games that we have studied in
the earlier sections, one can model the graph game as a Gale-Stewart game. We refer

to Exercise P.14.

13.13 Theorem
Reachability games are in Z?, but not in I'I?. Analogously, safety games are in I'I?, but
notin Z?.

Proof sketch:

Consider a reachability games with respect to the winning set V ... Its winning con-
dition is given by the set B, = V*V,..c,V*, Which is open, but not closed (i.e. not the
complement of an open set).

Analogously, let V., denote the losing set of a safety game. We have
Buin = V' \ V*V,eqenV*, which is closed, but not open. [ |

13.14 Theorem
Blchi games are in >:§, but notin I'Ig.
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Analogously, coBuichi games are in MY, but not in ).

Proof sketch:
Consider a Blichi game with respect to the winning set V,euch-

Foreachie N, let

B(I) = \\/k Vreach‘/* Vreach\/k co V*Vr each Vw

itimes

denote the set of plays that visit V,.., at least i times. Note that each 8" is open, but
not closed. Consequently, for each i, the set V' \ B of plays that visit V.. less than i
times is closed, but not open.

The union

v\ 8",

ieN
is the set of all plays that visit V.., only finitely often, is thus in 9. Its complement, the
set of all plays that visit V .., infinitely often, is in n;’.

We could argue more directly and define

B, = ﬂ B .

ieN
This is a countable intersection of open sets, thus in I'Ig. [ |

13.15 Remark

The complexity of parity games depends on the exact definition. In Section ff, we have
considered the highest priority occurring infinitely often, but restricted ourselves to a
finite number of priorities (even when the arena is infinite). With this definition, parity
games are in Zg N I'Ig, i.e.in z;’ andin n;’, but notin >:2 U I'Ig, i.e. neither in Zg norin I'Ig.
The same result holds for Muller games'

One can drop the restriction of having only finitely many priorities. However, one then
needs to define a winner in the case that Inf(Q(p)) has no well-defined maximum.? Par-
ity games of this type are in higher levels of the Borel hierarchy.

' To define Muller games on an infinite arena, one usually assumes that there is a coloring function
c:V - Cthatassigns each position one of finitely many colors. The winner now depends on the set of
infinitely occurring colors Inf(c(p)) in a play p.

% In this setting, one usually considers parity games in which the minimal priority occurring infinitely
often is determining the winner, since any non-empty set of natural numbers has a minimum, but not
necessarily a maximum.
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Exercises

13.16 Exercise: Open sets
Let Abeaset,and B,B' c A”.

a) Prove that the empty set @ ¢ A and A” itself are open.
b) Prove thatif Band B' are open, then also their union B U B' is open.

c) Prove thatif Band B' are open, then also their intersection B n B is open.

Remark: This almost proves that the notion of being open defines a topology on A”,
see Lemma [13.3. It remains to prove that arbitrary unions of open sets are open, which

can be done similar to Part b).
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14. Multiprocessor online scheduling

As a practical application of the reachability games that we studied in Section f, we
want to consider scheduling problems. A scheduling problem is of the following shape:
Given a list of jobs and a list of processors, find a scheduling, an assignments of jobs to
processors that has certain properties.

14.1 Example
Consider the well-known NP-complete partition problem.

Partition problem (PARTITION)

Given: A multiset S of natural numbers.

Question: s there a partition S = S; w S, suchthat) (o s=5 ¢ s7?

SES, :

It can be seen as a scheduling problem: Given a list of jobs, each job having a given
computation time, is there a scheduling of the jobs on two uniform processors such
that both processors finish at the exact same time?

Sources
The content of this section is based on the papers [GGN17] and [Gee+18].

A multiprocessor online scheduling problem

The problem that we will consider in the following is an online scheduling problem.
Instead of having a list of jobs that is known beforehand, we have a set of tasks that can
generate jobs at runtime. The (online) scheduler has to react at runtime to jobs that
are generated by the task without knowing when jobs will be generated in the future.

More precisely, our tasks are sporadic: Each task has a minimal interarrival time T, a
timespan that is guaranteed to elapse between two generations of jobs for the task.
Assume a job for the task is generated at time t. As soon as the minimal interarrival
time has elapsed at time t + T, a new job of the task can be generated. It may not be
generated immediately, it can be generated at an arbitrary later point in time that is
not known to the scheduler.

One might think that the worst case for the scheduler occurs if every task generates
a job immediately as soon as T has elapsed. This is not true: By allowing later genera-
tions, the future of the system becomes non-deterministic, which makes it harder for
the online scheduler that has no knowledge of the future, see Exercise [14.16.
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Each task has a computation time C, the time that a job for this task needs on the pro-
cessor to be finished.

Furthermore, each task has a relative deadline D. Whenever a job of the task is gen-
erated, say at time ¢, it needs to be finished within a timespan of length D, i.e. at time
t+D.

We will assume that we have some fixed number m of uniform processors to which
we want to schedule the jobs. We discretize the model and assume that one computa-
tion step of the processors (called tick) decreases the remaining computation time of
each scheduled job by 1. We assume that after each computation step, the jobs can be
freely migrated between processors without causing a delay. Furthermore, we assume
that each job has to be processed sequentially. This means that not more than one
processor can work on the same job during one tick.

In the following, we will formally define the resulting multiprocessor online feasibility
of sporadic tasks problem (MOFST).

14.2 Definition

The input of MOFST is a set 7 of tasks, each task T € 7 being a tuple
(C.,D,, T;) € (N {O})3 consisting of the computation time C,, the relative deadline
D,, and the minimal interarrival time T..

Such an input gives rise to a system as described above. We can model the system
naively as follows.

A configuration at time t of the system consists of

- a list of pending jobs 7, each job j specified by its remaining computation time
RCT}, and the time RD; until its deadline (at time t + RD)), and

« for each task tin 7 the minimal time NAT, until its next arrival.

Initially, we consider the configuration at time 0, with an empty list of jobs, where each
task T has earliest arrival time NAT, = 0.

In each tick, three things happen:

« The tasks may generate new jobs for eligible tasks: For each tasks T that has
NAT, = 0, a new job j may be spawned. This job has RCT; = T, and RD; = D..
If this happens, the remaining minimal interarrival time is reset, NAT, = T..

« The scheduler may select up to m jobs and decrease their remaining computa-
tion time by one. If this results in RCT; = 0, the job is deleted from the job list.
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- The time until the deadline RD; is decreased by one for each job, and for all tasks
T with NAT, > 0, NAT, is decreased by one.

If a job has a negative deadline, i.e. RD; < 0 after a time step, it has missed its deadline.

We call an input feasible for online scheduling if there is an online scheduler that sched-
ules jobs such that no job ever misses its deadline, no matter when the jobs are gener-
ated at runtime.

Multiprocessor online feasibility of sporadic tasks problem (MOFST)

Given: A set of tasks 7, a number m of processors.

Question: s the input feasible for online scheduling?

Note that the job list may contain more than one job per task while still being feasible,
namely if T, < D, for a task. In any configuration in which a job has not missed its
deadline, the number of pending jobs for task 7 is bounded by |-%-|

We want to store a state as compact as possible, in particular we want to get rid of the
job list. To this end, we assume that T, = D, for each job 1. This means that for no
task, two jobs can be pending at the same time without the earlier one already having
missed its deadline. One can get rid of this assumption, but it has to be handled with
care. Since it does not contribute to the concepts that we want to highlight here, we
omit this.

MOFST as a safety game

In the following, we will model an instance of MOFST as a safety game.

« The reachability objective is given by the losing set of configurations in which a
job will miss its deadline.

+ The existential player O represents the tasks. As usual, she wants to satisfy the
reachability objective. Her goal is to generate jobs such that a job will miss its
deadline.

« The universal player O represents the scheduler. She is trying to satisfy the com-
plementary safety objective. She needs to schedule the jobs such that no job
ever misses its deadline.

We represent configuration as above by system states S € States. A state Sis a tuple
S = (NATs, RCTs), where
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« NATs: T - N assigns to each task 1 its earliest next arrival time NAT(t) < T, and

« RCTs: T — N assigns to each task T its remaining computation time RCT(1) < C,.

In comparison to the configurations above, we have gotten rid of the job list using the
assumption that we made. Furthermore, we have dropped the time until the deadline.
We will see later that the deadlineis still implicitly given by the two values that we store.

We call a task 1 active in state S if RCTg(t) > 0. This means that for this task, there is a
pending job.

We call a task T eligible in state S if RCTg(1) = 0 and NAT(t) = 0. This means that for this
task, there is no pending job, and its minimal interarrival time has elapsed since the last
generation of a job.

It might seem strange that for a task 7 to be eligible, it needs to have RCTs(t) = 0. This
is no real restriction, since if NATs(t) = 0, but RCT¢(1) > 0, than it has missed its deadline
by the assumption T, > D, that we made.

The actions of the existential player correspond to picking a set of eligible tasks and
generating corresponding pending jobs. This resets the remaining computation time
of these jobs to their computation time. The earliest next arrival time of the jobs that
were scheduled is reset to T,.

Formally, for a state S € Statesand aset 7' ¢ {t € T | tis eligible in S}, Succo(S, T) is
the state S' with

C, iftreT’
RCTSI(T) =
RCTs(t), else,
and
T, ifreT’
NAT(7) =

NAT;, (1) else.

The moves of the universal player correspond to picking a set of active tasks and
scheduling their corresponding pending jobs. This means that their computation time
is decreased by one. Furthermore, we assume that the tick happens after the universal
player has picked the jobs that should be scheduled, meaning the earliest interarrival
time of all jobs is decreased by one.
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Formally, for a state S € States and aset 7' € {t € T | tis active in S} of size at most m
(the number of processors), Succq(S, 7°) is the state S’ with

RCTs(t) -1, ifteT

RCTo(1) =
RCT(1), else,

and NAT(t) = NAT(t) — 1 forall 7.

NATs(t) =1, NAT¢(T) > 0,
VAT, (1) - | VAT (1)
0, else.

The game arena of the scheduling game has as positions the elements of
States x {O, O}, where the second component indicates the active player. The arcs can
be partitioned into the arcs Ry originating in positions owned by the universal player,
and the arcs R originating in positions owned by the existential player,

Ro={(5,0) > (5,0)| T' c{re T |risactivein S}, |T'| < m,S = Succ(s, T')},
Ro ={(5,0) - (5,0)| T' c {r € T | ris eligible in S}, S" = Succo(s, T')} .

As one can see, the players alternately take turns.

We still need to specify the winning condition of the game. Instead of checking whether
a job has actually missed its deadline, we will check whether it surely will miss its dead-
line. To this end, we define a function Laxitys: T — Z by

Laxitys(t)= D;— ( T.— NATs(t) ) — RCT(1).

v
time since last generation

Intuitively, the laxity measures for how many steps 7 could stay idle in state S without
risking missing its deadline: We take the deadline D,, subtract the time T, — NATs(7) that
has elapsed since the last generation, and obtain the remaining time until the deadline.
In the resulting timespan, we have to schedule the job for the task for at least RCT(1)
many ticks to avoid it missing its deadlines.

If the laxity of a task is negative, it will definitely miss its deadline, even if the corre-
sponding job is scheduled consecutively in all following ticks.

14.3 Definition
The scheduling game is the reachability game on the previously defined game arena

G = (States x {0} w States x {O}, Rg W Ro)
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with respect to the winning set

B ={(S,0) | At active in S : Laxitys(t) < 0} .

Note that the winning set only consists of positions owned by the existential player.
This is because we assume that the tick happens after the universal player picked the
scheduling, so when the existential player is active, a tick has just elapsed.

14.4 Theorem

An input for MOFST is feasible if and only if the universal player has a winning
strategy for the corresponding scheduling game from the position (S;,;;, O), where
NAT;, (1) = RCTs, (1) = O for all tasks 7.

In the initial position, we assume that no job is pending and all tasks are eligible for
generation. The existential player can start by generating a set of tasks.

A winning strategy for the universal player from this position directly corresponds to a
scheduling policy.

14.5 Remark

Any play that is winning for the existential player, i.e. a play reaching a state S such that
Laxity,(t) < 0 for some active task T also contains a position (S', O) with Laxity, (1) = —1.
This allows us to redefine the winning set to

B ={(S,0) | Aractivein S : Laxity((t) = -1} .

The size of States is

E(CTJr 1) E(TT +1) < (max G +1)7" - (maxT, + 1)
Even if we assume that the number of tasks | 7| is a constant, the size is polynomial in
the numbers occurring in the tuples T € 7, meaning in their unary encoding. If we
assume that the numbers are encoded in binary, the size of States is exponential in the
size of the input.

We have now obtained a reachability game on a large, but finite game arena. It can be
solved using the attractor algorithm to determine whether the input is feasible. If the
input is feasible, a uniform positional winning strategy for the universal player is the
desired scheduling policy.
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Unfortunately, the size of the arena makes this approach impractical for real-life appli-
cations. The i-step attractors that have to be computed are very large, and the winning
strategy has to store one successor for each of the many positions owned by the uni-
versal player. Here, we will focus on the first problem. Our goal is to find compact
representations for the attractors.

We will define the concepts for general reachability games, and then use them for the
scheduling game.

TBA-simulations and attractor minimization

Let G = (VguUVo, R) be a reachability game on a finite graph with respect to the winning
set B € V. We assume that G contains no deadlocks. Note that the scheduling game
satisfies this property, since for each player, picking 7' = @ is always possible.

Recall that a relation 2 € V x Vis called a partial order if it has the following properties:
+ Reflexivity: Vx € V:x 2 x.
« Transitivity: Vx,y,z€ V:Ifx<yandy < z, thenx 2 z
« Antisymmetry: Vx,y € V:lfx 2 yandy < x,thenx = y.

In the following, we will assume that < is some fixed partial order on V.

Givenaset X ¢ Vof positions, we call x € Xa minimal element of X if there is no element
in X that is strictly smaller than x. In other words, for all y € X, x is smaller thany, x 2 y,
or they are incomparable.

We define the operator Min that takes a set X and returns Min(X) < X, the set of minimal
elements of X. It can be computed by iteratively removing non-minimal elements from
X. For each y € X, Min contains an element x that is smaller than y .

Note that the elements in Min(X) form a so-called antichain: Two non-equal elements
x # y are not comparable. Assume that one would be smaller, then the other one would

not be minimal. (Here, antisymmetry is important!)

Our aim is to define a variant of the attractor algorithm that works on minimal ele-
ments. This means that instead of Attré), we consider Min(Attré)) which is hopefully
much smaller. For this optimization to be valid, we need that Min(Attré)) is a precise
representation of Attrs. The following notion will make this formal.

! For this statement to be true, we need to guarantee that minimal elements exist. This is true because
any partial order on a finite set is well-founded.
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We call a set X upward closed (with respect to the fixed partial order <) if for each ele-
ment x € X, all elements y € V that are larger than x, are also contained in X, expressed
as formula:

Vx€eX:Vy e V:xayimpliesy € X.

Given an arbitrary set X € V, we let the upward closure of X, denoted by X 1, be the set
that contains for each element in X all larger elements:

Xt={yeV|IxeX:xay}.

It can easily be checked that the upward closure of a set X is indeed always upward
closed. To be precise, the upward closure is the smallest upward-closed set containing
X. A set Xis upward closed if and only if it is its own upward closure, X = X 1.

For upward-closed sets, the set of minimal elements considered before is an exact rep-
resentation. The original set can be recovered by taking the upward closure.

14.6 Lemma
Let X € V be upward closed, i.e. X = X 1, then X = Min(X) 1.

Proof: Exercise[14.17, Part c). [ |

It remains to characterize the partial orders such that the i-step attractors are upward-
closed.

14.7 Definition
We call < a turn based alternating simulation relation (tba-sim) if it only relates posi-
tions owned by the same player,

< c(VgxVo)u (Vox Vo),
and for all x, y € V with x 2y, the following properties hold:
- Ifx € B,theny € B.
- Ify € Vo, then for all successors x' of x, there is a successor y' of y such thatx' < y'.

- Ify € Vg, then for all successors y' of y, there is a successor x' of x such thatx' < y'.

The following diagrams represent the latter two properties.
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Intuitively, x 2 y means that it is easer for the existential player to win from y than from
X.

« The goal for the existential player is to reach B. Instead of reaching a position
X € B, the existential player can also win by reaching any larger position y, be-
cause it also has to be in B by the first condition.

« Whenever the existential player has a move in some position x, she has a better
move in any larger position y. Better means that the result of the move y' from
the larger position is larger than the result x’ of the move in the small position.

- Whenever the universal player has a move from y to y', and x < y, then there is
a move from x to some x' with X' < y'. This means that a larger position cannot
suddenly give new possibilities to the universal player.

The following proposition makes this intuition precise by stating that indeed all i-step
attractors are upward closed with respect to tba-sims.

14.8 Proposition
Let < be a tba-sim. Then for each i € N, Attré)(B) is upward closed.

Recall that
i+1

Attrgs! (B) = Attr(B) U CPreo(Attrs(B)) .

Towards a proof of the proposition, we prove the following lemma.

14.9 Lemma

Let X be upward closed, and let < be a tba-sim. Then CPreg(X) is upward-closed.

Proof:
Let x € CPrep(X) be arbitrary, and let x < y. We have to show that y € CPrep(X).

Note that we can assume that x, y are owned by the same player.

Assume that x, y € Vo are owned by the existential player. Since x € CPrep(X), x has at
least one successor x' € X. By the definition of tba-sim, there is a successor y' of y with
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x' 2 y. Weobtainy' € X 1= X. Since y is owned by the existential player, this proves
y € CPrep(X).

Assumethatx, y € Vgare owned by the universal player. By the definition of tba-sim, for
each such successor y' of y, there is a successors x' of x with x' 2 y'. Since x € CPrep(X),
all these successors x' are contained in X. Since x' 2 y', we have y' € X 1= X for all
successors y'. Thus, y € CPrep(X) as required. [ |

Proof of Proposition [14.8:
We proceed by induction on i.

In the base case i = 0, we need to show that Attrg(B) = Bis upward-closed. Let x € B,
and let x 2 y. By the first condition of being a tba-sim, we have y € B.

For the induction step, assume that Attré)(B) is upward closed. By
Lemma [14.9, CPreo(Attré)(B)) is also upward closed. To conclude that
Attrg1(B) = Attré)(B) U CPreo(Attrg) is upward closed, note that the union of
upward closed sets is upward closed in general, see Exercise [T4.177 Part b). [ |

The propositions means that each i-step attractor can be represented by its minimal
elements without losing precision. As a consequence, we can define a variant of the
attractor algorithm that directly works on the minimal elements. To this end, we define
a variant of CPre that returns the minimal elements of the controlled predecessors,

MinCPreo(X) = Min(CPrep(X 1)) .

Using MinCPre, we can state the desired variant of the attractor algorithm.

MinAttro(B)
MinAttrs,' (B)

Min(B)
Min(MinAttre(8) U MinCPreo( MinAttri(8)))

14.10 Proposition
Let < be a tba-sim. Then for each i € N,

MinAttro(B) = Min(Attro(B))  and
Attrpy(B) = MinAttri(B) 1 .

Proof: Follows easily by induction with Proposition [14.8. [
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The consequence of this proposition is that to solve the reachability game, we can it-
eratively compute the sets MinAttré)(B) until they stabilize, i.e. until we reach an index
ip with MinAttrg(B) = MinAttrg'](B). Then we know that MinAttrg(B) are the minimal
elements of the winning region of the existential player. To check whether a position
y is winning for the existential player, we have to check whether there is an element
XE MinAttrg(B) withx 2 y.

Still, we are not done. We need to identify a non-trivial tba-sim that we can use for the
algorithm. The trivial partial order {(x,x) | x € V} is a thba-sim, but for this order, the
MinAttr algorithm will just be the normal attractor algorithm. The more elements are
d-related, the smaller the sets of minimal elements will become, and the more compact
and thus more efficient the MinAttr algorithm will be. But the denser a relation s, the
harder it will be for it to satisfy the required condition for being a tba-sim.

Furthermore, if we implement the MinAttr algorithm naively, it will not lead to the de-
sired boost in performance, in fact, it will most likely exhibit a performance that is worse
than the one of the attractor algorithm.

In the first step, we need to obtain the minimal elements of B. If we do this by iteratively
removing non-minimal elements from the set B that potentially can already be very
large, this step might be very expensive.

In the following steps, we need to compute MinCPreo(MinAttrg(B)). If we do this by
definition, we will expand MinAttré)(B) to Attré)(B), then compute its controlled prede-
cessors, and minimize again.

Note that there is a third step in the MinAttr algorithm that might seem problem-
atic, namely the minimization after taking the union of MinCPreo(MinAttréj(B)) and
MinAttro(B). But we expect these sets to be small, and thus minimizing their union
in a naive way will not be very harmful.

A TBA-simulation for the scheduling game

In the following, we will move back to scheduling games. For these scheduling games,
we will define a partial order, state that it is a tba-sim, and show that the two problem-
atic operations mentioned above can be implemented in a clever way.

14.11 Definition
The idle-ext task simulation « is a relation on States x {O,} defined as follows. We
have (S, ¥¢)«(S', %) iff ¥¢ = %' and for all taks T € T, we have

i RCTs(T) < RCTSI(T),
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« RCTg(t) = 0 implies RCTg(1) = 0, and

- NATS(1) = NATg().

As stated before, the relation intuitively states that a state is larger if and only if it is
easier for the existential player, the player representing the tasks, to win from this state.
This means that each task has a longer remaining computation time (first condition)
and can be generated again earlier (third condition). The second condition might look
counter-intuitive; recall that having RCT¢(1) = 0 was a condition for a task to be eligible
for generation.

14.12 Lemma
« is a partial order.

14.13 Theorem
«is a turn based alternating simulation relation.

The proofs are left to the reader as an exercise.

In the following we explain how MinAttr%(B) = Min(B) and MinCPreg can be computed
efficiently for «.

First, we consider the computation of Min(B) for «4. Recall that
B = {(S,0) | 3t active in S : Laxity,(t) < 0}

and that
Laxity (1) = D, + NAT(t) = T, = RCTs(1) .

If we have that T is active in some state S, and Laxity(t) < 0, then
NATs(t) < T, = D, + RCT4(1) - 1,

since we have RCT, > 0.

For a single task 7, we define the set

Bad ¢ = {(5,0)|3je{1,...,C}:NATs(1) =T, =D, + C, —j ,RCT5(1) = C, = (j — 1)}
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14. Multiprocessor online scheduling

One can check that for the scheduling game with the single task 1, we have
Min(B) = Bad . It remains to extend this concept to games with several tasks. We
define B¢ to be the set of all states that are losing because of task 7, i.e.

B:r = {(5'70)

3(S,0) € Bade: NATs(t) = NATy(t) and RCT(t) = RCT(1),
Vi # T NATs(t') = T and RCTg(7) € {0, 1}

Finally, we define B as the union of the By,

Ba=|]Ba

14.14 Lemma
B1 = Min(B).

This finishes the first part of our study. We still have to show how to compute MinCPre.
Let X be an antichain, i.e. a set where the elements are pairwise incomparable. Then we
have

MinCPreg(X) = MinExPre(X n V5) u MinUnivPre(X n Vo),
where
MinExPre(Y) = Min({x € V| 3 successor x' of xwithx' € Y 1},
MinUnivPre(Y) = Min({x € V| V¥ successors x of x:x" € Y 1})

where Y is an antichain. Note that if X is an antichain, then X n Vo and X n V7 are an-
tichains, too.

From the usual definition of the controllable predecessors, the above definition might
look strange: We have a universal quantification for the existential player, the player
whose perspective we take when computing the attractor, and an existential quantifi-
cation for the universal player. When we consider XNV, all predecessors will be owned
by the universal player, thus the universal quantification is as expected. Similarly, all
predecessors of vertices in X n Vg are owned by the existential player, and we have an
existential quantification.

It might look like the statement is missing an outermost min-
imization, i.e. one could think that the definition has to be
MinCPreg(X) = Min(MinExPre(X n Vo) U MinUnivPre(X n V)) . This is not the case
since the two sets each contain only positions owned by one of the players, and a
tba-sim does not relate positions owned by different players.
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We can now consider the cases of the universal player, i.e. MinUnivPre(X n V), and the
case of the existential player, i.e. MinExPre(X n V) separately.

The case of the existential player is very easy. Instead of having to expand an antichain
Xtoits upward closure X 1, then taking the predecessors and minimizing again, we can
directly take the predecessors of the minimal elements, and then minimize.

14.15 Lemma
Let Y € Vo be an antichain. Then

MinExPre(Y) = Min({x € V| 3 successor x' of x with x' € Y}).

To get the efficient computation of MinExPre(Y) that we desire, note that it is possible
to deterministically compute the predecessors for each position x' € Y. This means that
instead of iterating over all x € V and checking their successors, we can backtrack from
the given set.

The case of the universal player is not that easy. It seems that considering some ele-
ments from Y 1 that are not in the antichain Y cannot be avoided. We refer to [GGN17]
for an algorithm that performs well in practice.

In [GGN17], several algorithms for solving scheduling games have been implemented
and compared, including the naive attractor algorithm and the optimization discussed
here. In random-generated examples, the optimized version outperforms the naive
version by a factor of about 5 in running time, and of about 10 in space consumption.

Exercises

14.16 Exercise: An intricate scheduling problem

Consider the set of tasks 7 = {14, 15, T3, T4, Ts, Ts }, Wwhere the computation time C,, the
relative deadline D,, and the minimal interarrival time T, are given by the following
table.

¢ D T,
T2 2 5
1T 1 5
3|1 2
T, 2 4 100
5|2 6 100
| 4 8 100
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14. Multiprocessor online scheduling

We assume that we have 2 processors. Recall that the jobs can be freely migrated be-
tween processors after each tick, but they have to be processed sequentially, i.e. not
both processors can work on the same job during one tick.

a) Assume that each task generates a job as soon as the minimal interarrival time has
elapsed, i.e. all tasks generate a job at time 0, 7, and 1, generate a job at time 5, 75
generates a job at time 6, and so on.

Consider the time interval [0, 8]. Show that there is a scheduling of the jobs for this
interval that makes no job miss its deadline.

Give a graphic representation of your scheduling.

b) Prove that the input is infeasible for online scheduling if we allow the tasks to delay
the generation of jobs.

Hint: Towards a contradiction, assume that an online scheduler exists. Show that by
time 8, at least one job has missed its deadline. Structure your proof as follows:

« Assume that all tasks generate a job at time 0. Note that this fixes the jobs for
thetime interval [0, 5), and since the online scheduler has no knowledge when
which job will be generated later, fixes a scheduling on the interval.

« For this fixed scheduling, there are two cases:

- Case 1: The job generated by task 75 is not scheduled on any processor in
the time interval (2, 4].

- Case 2: The job generated by task 15 is scheduled for at least one step on
a processor in the time interval (2, 4].

Show that for each of the cases, there is a possible generation of jobs that
makes a job miss its deadline.

Note: One can extend Part a) of the exercise beyond the interval [0, 8] to an infinite run.
Even if we drop the condition that each job is generated as soon as it becomes eligible
and allow arbitrary delays, but we assume that the exact time of generation is known
by the scheduler beforehand, the systems stays schedulable. This means the system
is feasible for clairvoyant scheduling, but not feasible for online scheduling. You have
proven the latter in Part b) of the exercise.

For the full, 28 pages long proof of the feasibility for clairvoyant scheduling,
see [FGB1Q].
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14.17 Exercise
Let < be a partial order on some set V.

a) Let X,Y ¢ Vbe subsets of Vwith X € Y. Provethat X1 < Y 1.
Does Min(X) € Min(Y) also hold?
b) Prove that the union of upward-closed sets is again upward closed.

c) Prove Lemma [14.6:
Let X € V be upward closed, i.e. X = X 1, then X = Min(X) 1.

Hint: Prove both inclusions separately. For one inclusion, you can use Part a).
14.18 Exercise: The subword relation

Let X be some fixed, finite, non-empty alphabet. We consider the set of words " over
>.

We define the subword relation < on * as follows: We have v < w if v can be ob-
tained from w by deleting letters. This means that w = gya, . . . a, for some g; € %, and
v=aa ...a,for0<j,<ji <...<je <k

For example, consider the alphabet {a,b} and w = aba. The words
€,a,b,aa,ab, ba,aba are smaller with respect to < than w.

a) Prove that < is a partial order.

b) Foreach of the following languages over X = {a, b, c}, each represented by a regular
expression, present their minimal elements and check whether they are upward-
closed.

. ax'bs*c
. abu b3 a u aabb
- S

Recall that =" = X" \ {¢}.

c) Letw € X be a word. How can one obtain a representation of the upward closure of
the singleton set containing w, i.e. {w} 1?
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14. Multiprocessor online scheduling

14.19 Exercise: A not so intricate scheduling problem

Consider the instance of MOFST with the tasks 7 = {1;, T,, T3} specified by the table
below, and m = 2 processors.

G D, T,
1T 1 2
L2 2 2
|1 2 2

Construct and solve the scheduling game for this input.
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15. Rabin’s tree theorem

Let us now consider a theoretical application of game theory. As discussed in the in-
troduction, the theory of games with perfect information can be used to obtain proofs
for deep results in automata theory. In this section, we will see how we can use parity
games to prove Rabin’s tree theorem. Rabin’s tree theorem states that the class of reg-
ular languages of infinite trees is closed under complementation. We will also discuss
why this result is so important. Furthermore, we will see how we can use parity games
to solve the language emptiness problem for tree automata.

Sources

The content of this section is based on Roland Meyer’s notes on the topic.
They can be found here:

37_parity_tree_automata_part_3_MSOT.pdf

Infinite ranked trees

First, let us introduce infinite trees. We will consider trees whose nodes are labeled by
letters from a finite alphabet. Each letter in the alphabet has an associated rank that
determines the number of successors in the tree.

15.1 Definition
A ranked alphabet is a finite, non-empty set X together with a function rank: X - N
assigning each symbol a rank.

If a € X and rank(a) = k, we write a, € X. We usually call just X ranked alphabet and
mean that the rank-function is implicitly given.

15.2 Definition
Let X be a ranked alphabet with rank(a) > O foralla € %.

Aninfinite ranked X-labeled tree, shortly referred to as 2-tree, is a tree 7 in which each
nodev € T islabeled byasymbola € . If the label of anodeisa € %, thenit has exactly
rank(a) many successors.

We formalize this as follows: We identify each node v with its address,
a sequence of natural numbers, i.e.in N*.

« The address of the root node is «.
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IV. Applications

« Letvbethe address of a node, and let a;, € X be the label of this node. Then also
v.0,...,v.(k = 1), are valid addresses, namely the addresses of the successors of
V.

This allows us to see 7 as an infinite, prefix closed subset of N* together with a labeling
function
label: T - X.

As for ranked alphabets, we say that 7 is a Z-Tree and mean that the labeling function
is implicitly given.

A branch of such a tree T'is an infinite path starting in the root. It can be identified with
asequence 1m € N“ such that for each i € N, the prefix of lengthiis a valid addressin T,
i.e.my...m_, € T.Foreachi e N, the prefix mym, ... m_, is the address of the i"™ node
in the path.

Note that the assumption rank(a) > 0 guarantees that all branches of any Z-tree are
infinite: There can be no leaves, since a leaf would have a label a/ with k > 0, and thus
also have k > 0 many successors. The theory can easily be extended to allow trees in
which some branches are finite, but this would lead to nasty case distinctions.

15.3 Example
Consider the ranked alphabet X = {a,,, b/;}. The following figure depicts a prefix of a
>-tree. Next to each node, the text in blue color annotates its address.

N
VN
VN

One may ask why infinite trees are of interest.
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15. Rabin'’s tree theorem

finite words

infinite words finite trees

infinite trees

Finite words can model finite executions of systems. Going from finite words to infinite
ones is needed to model reactive systems, systems that may run forever, e.g. operating
systems and database servers. Trees are needed to model branching behavior. Conse-
guently, infinite trees can model the branching behavior of reactive systems.

Parity tree automata

We cannot even represent a single infinite tree explicitly in memory, much less sets of
such trees. To solve this problem, we will consider automata that operate on such trees.
An automaton then serves as a finite description for the set of trees it accepts.

15.4 Definition
A parity tree automaton (PTA) A is given by a tuple

A= (Zvovq07_)7Q)7
where

- 2 is aranked alphabet,

Qs a finite set of control states,

+ qo € Qis the initial state,
« :Q — Nis a function assigning each state a priority, and

« 5= (2,)qe is a family of transition relations, where -,< Q X Q"™ for each
aes’.

Note that the automaton is non-deterministic: Fora symbol a and a state g, there might
rank(a

exist several (or no) vectors of states g € Q ) with (g,4) €-,.
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To check whether a tree is accepted by an automaton, we need to consider runs. For
finite words, we can see a run of a finite automaton on a word as an assignment of states
to each letter of the word (namely the state in which the automaton is after reading

each letter). Similarly, for infinite trees a run is an assignment of states to nodes of the
tree.

15.5 Definition
Let 7 be aZ-tree,and A = (X, Q, g, =, Q) a PTA.

Arunof Aon 7 is a function
run:7 - Q

that assigns each node a control state such that the following properties hold:

« run(e) = g, i.e. the root node is assigned the initial state qq.

- Foreachv € T with label(v) = a/ € X and its successors v.0....v.k — 1, we have
(run(v), (run(v0), ..., run(v.k = 1))) € >, .

This means the assignment of states is consistent with the transitions of the au-
tomaton.

A run is called accepting if on every branch  of the tree, max Inf(Q(run(rm))) is even,
i.e. the highest priority occurring infinitely often is even. Here, we have extended the
function run to branches, i.e. it takes a branch and yields the infinite sequences of states
seen on the branch. As in the previous section, we have lifted Q from single elements
to sequences in the obvious way.

15.6 Example

We consider a state labeling on the tree from Example [15.3. Next to each node, the text
in red color annotates its address.
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15. Rabin'’s tree theorem

AN
AN
T

For the given state labeling to be a prefix of a valid run of a PTA A, we need the following
conditions to hold:

d b

* (o is the initial state of A,

* (90,(q1,92)) €~
* (g1,(q3)) € >y,

* (G2.(94,95)) €~

A language L of 2-trees is a set of 2-trees (just like a language of words was just a set
of words without further restrictions).

15.7 Definition
The language £(A) of aPTA A = (X, Q, go, =, Q) is the set of all Z-trees on which A has
an accepting run,

L(A) ={T | T Z-tree, A acceptingrunof Aon T} .

15.8 Definition
A language L of X-trees is called reqgular if it is PTA-recognizable, i.e. there is a PTA
A=(%,Q,4qo,~, Q) with £ = L(A).

As suggested by the name, the regular languages of infinite trees are indeed a general-
ization of the regular languages of finite words to the setting of infinite trees.
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15.9 Definition
Let £ be a language of X-trees. Its complement L is the set of all Z-trees that are not in
L,

L={T s-tree|T ¢ L}.

Rabin’s tree theorem

We have now gathered the prerequisites to state Rabin’s tree theorem.

15.10 Theorem: Rabin'’s tree theorem

The class of regular languages of infinite, labeled, ranked trees is closed under comple-
mentation. Given a PTA A, we can effectively construct a PTA A accepting the comple-
ment language, £(A) = m

Note that the second line of the theorem provides a strictly stronger statement than the
firstline. The closure property just means that for any regular language £ of X-trees, the
complement language L is also regular. Using automata, this means that for any PTA

A, there is a PTA A accepting the complement language L(A). However, this does not
necessarily imply that we are able to explicitly construct this PTA A.

As mentioned earlier, (possibly infinite) languages of infinite trees cannot be explicitly
stored, we thus represent them by automata. In order to manipulate languages, we
want to manipulate the automata describing them. Rabin’s tree theorem tells us that
this is possible for taking the complement: To obtain a description of the complement
of a language, we construct an automaton based on the given automaton for the orig-
inal language.

15.11 Remark
One might ask whether Rabin’s tree theorem is a deep result (and we thus expect its
proof to be complicated).

We recall the closure properties of regular languages of finite words. By definition, reg-
ular languages of finite words are only closed under union, concatenation and Kleene-
star. That they are also closed under complementation is a theorem that we have seen
in a basic course on automata theory (e.g. “Theoretische Informatik 1”).

Recall that the trick for finite automata was to swap the final with the non-final states.
The question is whether this trick is also applicable here.
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First, note that even for finite automata, the trick required the automaton to be deter-
ministic. The language of a non-deterministic finite automaton is the set of all words
that have an accepting run. If we swap the final with the non-final states in such an
automaton, we obtain the set of all words that had a non-accepting run in the original
automaton. This is not the complement of the language, which is the set of all words
that had no accepting run in the original automaton.

For finite automata, the requirement of being deterministic posed no real problem,
since we can apply the powerset construction to a given non-deterministic finite au-
tomaton to obtain a language-equivalent deterministic finite automaton. For parity
tree automata, this is not possible. One can prove that for top-down tree automata,
non-determinism is strictly more powerful than determinism. This applies to parity tree
automata: There are languages of 2-trees that are regular, i.e. can be recognized by a
non-deterministic PTA, but that are not recognized by any deterministic PTA. We give

an example in Exercise [15.43.

Assume for a moment we would restrict ourselves to deterministic PTA. Note that a de-
terministic PTA has a unique run on a tree. One may ask whether the trick of swapping
final and non-final states works in this setting. Assume that some deterministic PTA
A = (Z,Q,qy,—,Q)is given. To implement the trick, we define a new priority function
0:Q-> Nby

Note that for an infinite sequence of states p, we have that max Inf(Q'(p)) is even if and
only if max Inf(Q(p)) was odd.

Consider the deterministic PTA A" = (£, Q,qo,—, Q). It does not accept the com-
plement language of L£(A): A" accepts all trees 7 in which for all branches m,
max Inf(Q'(run(m))) is even. This means that in all branches 71, max Inf(Q(run(m))) is
odd. This is not equal to the complement language, the language of trees in which
max Inf(Q(run(r))) is odd for at least one branch 1.

Together, these two issues indicate that proving Rabin’s tree theorem will be much
more involved than proving that regular languages of finite words are closed under

complementation.

To prove the theorem, we want to use parity games. Before we consider parity games
for languages, we restrict ourself to the case of a single fixed tree.

Given a X-tree 7 and a PTA A, we want to construct a parity game that is won by the
existential player if and only if the tree T is accepted by the automaton A. To this end,
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the existential player represents the automaton, she has to select transitions that result

in an accepting run. The universal player wants to show that the tree is not accepted

by choosing a branch on which the acceptance condition is not satisfied.

15.12 Definition
Let 7 beaZ-treeandletA = (Z,Q, gy, =, Q,) be a PTA.

We define the parity game G(7, A) as follows:

- Vo = T x Q, i.e. a position (v, g) of the existential player consists of an address
v €T c N* ofanodein the tree, and a state g € Q.

. Vo = TxQ, where n = max,; rank(a), i.e. positions (v, ) of the universal player
consist of addresses v and a vector of states g.

« The arcs are defined per player as follows:

R = {llv.q),(v.4))[(v.q) € Vo,3(q,G) €=, where a = label(v)}
o {((v.d),(v.,d)) | (v.d) € TxQ cVg,iefo,....k-1}}.

This means the players take turns. The existential player, representing the au-
tomaton, picks a transition that respects the old state and the label of the current
node.

The universal player iteratively picks a branch of the tree by selecting a successor
of the current node. The new state is then the corresponding component of the
state vector that was picked by the existential player earlier.

The priority function is defined as follows.

On the right-hand side, Q, refers to the priority function of the automaton A.
The vertices in Vg have no relevant priority, only the priorities of the existential
player’s positions matter, as they represent nodes of the tree in the run.

With this construction, the desired correspondence holds.

15.13 Lemma
T is accepted by A if and only if the existential player wins the parity game G(7, A) from
position (&, qy),

T e L(A) iff (e,q) ews ™.
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Proof:
Using Theorem B.7, we know that exactly one player has a positional winning strategy
from (g, qo).

A winning strategy for the existential player yields an assignment of states that guar-
antees the highest priority occurring infinitely often on each branch to be even, i.e. an
accepting run.

A winning strategy for the universal player identifies for each possible run a branch for
which the highest priority occurring infinitely often is odd, i.e. a witness for the tree to
be non-accepting.

The reader is encouraged to work out the details, see Exercise [15.45. [ |

Note that it is important that we first let the existential player pick the transition and
then let the universal player pick the successor. This allows the universal player to react
to the way in which the existential player chose to resolve the non-determinism of the

automaton.

15.14 Remark
Although the proof of Lemma is straightforward, there is something surprising
about the result.

If 7 is notin £(A), then any run of Aon T is not accepting. This means that one can find
a branch  of 7 on which max Inf(Q(run(r))) is odd. This branch is then a witness for
the run not being accepting.

The difference to the result above is that we assume that the run is given, and then
identify the branch violating the acceptance condition. In the parity game, the univer-
sal player needs to identify the violating branch on the fly: In each step, she has to
prolong the branch by one move without knowing the full run. She only knows the run
on the prefix of the tree that has been explored so far, but she does not know how the
existential player will resolve the non-determinism of the automaton on the parts of
the tree that are yet to come.

Proof approach (informal):

To prove Rabin’s tree theorem, we need to lift the parity game approach from a single
fixed tree to all trees. Nevertheless, Lemma will be very helpful. For some fixed
tree T, the universal player Odhas a positional winning strategy for G(7, .A) if and only if
T ¢ L(A). This statement is obtained by negating both sides of the equivalence stated
in Lemma and applying the positional determinacy of parity games. Hence, we

215



IV. Applications

have that £(A) is the set of all trees 7 such that O has a positional winning strategy for
Gg(T,A):

L(A) = {T Z-tree | Isg positional winning strategy for G(T,A)} .

Our goal is to construct an automaton A with £(A) = £(A) that checks precisely this
property.

However, the property contains an existential quantification, i.e. the automaton needs
to check whether there is some strategy, which is a hard task. We solve this problem
by considering a modified problem: We construct an automaton A’ that gets as input a
tree 7 and a position strategy sg. Instead of checking whether there is some strategy
that is winning, the automaton just has to check whether the given strategy is winning.

Once A’ has been constructed, we can project away the strategy component of the
input. The result of the projection is the desired automaton A that checks for the exis-
tence of a winning strategy. We comment on this final step later in more details. Note
that handling existential quantification by first extending the input and later project-
ing away the extension is a standard trick in automata theory, used e.g. in the proof of
Buchi’s theorem.

Encoding strategies / Alphabet extension:

It remains to discuss the construction of A'. One problem is that PTAs only support trees
as input. To be able to make the strategy a part of the input, we encode it in the tree.

To this end, let D = {0,...,n — 1} be the set of directions, where n = max,s rank(a),
i.e. the indices of the children that a node in a 2-tree might have. A positional strategy
for the universal player for G(7, A) can be seen as a function

so: T xQV 5D,

since a move of the universal player essentially consists of picking a successor of the
current position. Namely, the universal player picks the next node of the branch which
should be a witness for the run not being accepting.

We use currying' to rewrite it as

s T - (QS” - D) _

! Currying, named after Haskell B. Curry, is the concept of seeing a function taking several parameters, say
f:Ax B - C, as a function taking the first parameter and returning a function that takes the remaining
parameters. In the example, this would mean we define a function f:A — (B - C) such that f(a)
is the function with (f“(a))(b) = f(a,b). This is commonly implemented in functional programming
languages, to ease notation and allow for simple use of partially evaluated functions, e.g. in Haskell.
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Instead of assigning to each tuple (v, §) consisting of address and state vector a child
node so(v, §), we assign to each address v a function f{v): Q%" - D such that for each
state vector g, f{v)(g) is the selected child node.

We define S = Q%" - D as the set of functions from state vectors to child nodes. As ex-
plained above, a strategy is of type sg: 7 — S, i.e. it assigns to each address an element
from S. Note that the set S is finite.

To encode strategies into trees, we will consider trees over the extended alphabet 2 x S.
This means that for each address, we have an associated element in S (in addition to
the label from ). As explained above, such a tree can be seen as a Z-tree extended
with a strategy. Vice versa, if a -tree 7 and a strategy s are given, one can construct a
3 x S-tree that is basically 7 extended by sg.

We make this formal in the following.

15.15 Definition
Let = be a ranked alphabet. We define the enhanced ranked alphabet ¥ x S with
rank(a, s) = rank(a). We define the two projections

projy : ¥XXS - X
(a,s) » a,
projg : xS > S
(a,s) = s,

For a I x S-tree 7', we define projs(7") to be the Z-tree in which all labels (a, s) are
replaced by projs(a, s) = a.

Fora X x S-tree 7', we furthermore define s5(7), a strategy for O defined as follows:

sa(T) :+ TxQY - D
(v,q) = (projslabelr(v))(g) .

Proof approach (formal):

For the proof of Rabin’s tree theorem, we consider the language £’ of £ x S-trees T~
trees such that the strategy-component is a winning strategy for the universal player
for the acceptance game on the tree formed by the X-component,

L' ={T ¥ x S-tree | sg(7") is a winning strategy for G(proj;(7"),A)} .

We proceed as follows:
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1. We prove that projs(£') = L(A).
2. We construct a PTA A" with £(A") = L', proving that £' is regular.

3. We prove that then also projs(£') = L(A) is regular.
We finally obtain A = projs(A’) with £(A) = £(A).

The first and third step are easy, the second step is the crucial part of the proof.

Step 1: Proving that proj;(L') = £(A)

We show that projecting the strategy-component of the trees in £' away indeed gives
us the complement of £(A). By projs;(£') we mean the set of all -trees obtained by
applying projs to all = x S-trees in £, projs (L") = {proj:(T") | T' € L'}.

15.16 Lemma
projs(L') = L(A).

Proof:
By Lemma[15.T3, atree 7 is notin £(A) if and only if the universal player has a positional
strategy for the parity game G(T, A).

For any tree 7' € L', there is a positional winning strategy on G(7,A), where
T = projs(7"), namely the one defined by the strategy-parts of the labels. This means
projs(7") € L(A).

If atree T is not in £L(A), we can take the strategy and enhance the tree by putting the
strategy on each node as a second component of the label, obtaining the X x S-tree 7.
The tree 7" is in £' by definition, and we have projs(7") = T. [ |
Step 2: Constructing A' with £(A') = £, proving that £’ is regular.

This is the difficult part of the proof. To obtain A" we proceed in several steps:

+ we construct a word automaton Ay,4nches OUt Of the given PTA by decomposing it
into branches,

« we complement this word automaton to obtain a word automaton B,
- and we lift B to obtain again a tree automaton A'.

We start with explaining how to decompose a tree into its branches.
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15. Rabin'’s tree theorem

15.17 Remark
If we have rank(a) = 1 for all symbols a € T of a ranked alphabet, each I'-tree is actually
an infinite word, since there is no branching.

We call a PTA over such an alphabet a parity word automaton, and a regular language
of -trees a regular language of infinite words, or w-regular language.

15.18 Definition
Let I’ be a ranked-alphabet, and let D = {0, ...,n — 1}, where n = max,cs rank(a). We
define the ranked alphabet X' x D with rank(a, d) = 1.

Every branch m of a X'-tree 1 can be seen as a word over X' x D:
« The first component of each entry gives the label,
« the second component gives the successor that will be picked.

Given a tree 7', we can define the word-language Branches(7") of all its branches.

15.19 Example
Consider the ranked alphabet X' = {a/2,b,,}. The following figure depicts a prefix of a

N,
7N,
7N

The branch marked by the red arcs is represented by the following word over
{a,b} x {0, 1}:

Y'-tree.

(a,1)(b,1)(a,0)... € (T'sx D).

Note that compared to our previous definitions of branches, we have to put the label
inside the representation of the branch.
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In our case, the base alphabet will be £ x S, i.e. we consider a tree extended with a
strategy. In the following, we construct an automaton Ap,qnches OVEr £ X S X D that runs
on branches of such an extended tree.

LetA = (Z,Q, g0, =, Q) be the given PTA for the language that we want to complement.
We construct a parity word automaton

Abranches = (z X S X Dv Qa do, _)’7 Q)

such that a transition (g, ') is in = ; 4 if and only if there is a transition (g, §) €, of A
such that s(§) = d and g’ = g,. Note that the other components Q, g, Q coincide with
those of A.

For a X x S-tree T, this automaton checks whether the strategy-components of the
labeling is not a winning strategy for the universal player. Consider the set Branches(7”)
of branches of 7.

+ All branches that are not selected by the strategy are rejected since there is no
suitable transition for them in the transition relation -,

« A branch that is selected by the strategy is accepted if and only if there is a se-
quence of transitions of Ay,.nches l€ading to acceptance. To this sequence of tran-
sitions corresponds a sequence of transitions of A that will also ensure that the
branch in projs(7") is accepted. This means that the branch is not a witness for
the acceptance condition being violated, and thus the universal player’s strategy
is not winning.

We make this observation formal in the following lemma.

15.20 Lemma
Let 7' be a3 xStree. The strategy obtained by proj, is a winning strategy for the univer-
sal player on G(T,A), where T = projs(7"), if and only if L(Apranches) N Branches(7”) = @.

Proof:

Assume that the intersection £(Ap,anches) N Branches(7") is non-empty. Then there is a
branch mof T~ that is accepted by Apanches, and thus there is an accepting run of Ayanches
on this branch 7.

Consider the play of G(7, A) in which the universal player’s moves conform to the strat-
egy obtained by projs, and the existential players moves correspond to the transitions
picked in the run r. Since the run is accepting, the play is won by the existential player.
This proves that the universal player’s strategy cannot be winning.
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For the other direction, assume that £(Ayanches) N Branches(7') = @. Consider a play
of G(T,A) in which the universal player’s moves conform to the strategy obtained by
projs. To the play corresponds a run of L(Apanches) ON the branch m that is selected by
the universal player during the play: The existential player's moves in the play corre-
spond to transitions of A and also to transitions of Ap,anches- Since the branch mis notin
L(Apranches), this run cannot be accepting, and the play is won by the universal player.

[

Using basic set theory, we can rewrite the emptiness of the intersection as an inclusion
in the complement.

15.21 Corollary
Let 7 be a tree. The strategy obtained by proj, is a winning strategy for the universal
player on G(T,A), where T = projs(7"), if and only if Branches(7") € L(Avranches)-

Our goal is to use this corollary to prove the regularity of £'. The problem is that it is
not clear whether £(Ap,anches) is a regular language. In fact, proving the regularity of this
lecture seems to require Rabin’s tree theorem.

Luckily, L(Apranches) is just a regular language of infinite words. These are much easier to
handle than regular tree languages. We can use the following theorem without proof,
which states that parity word automata are determinizable. (Note that this is not true
for parity tree automatal)

15.22 Theorem: Safra [Saf88]
Let A,, be a parity word automaton. One can construct a deterministic parity word au-
tomaton A, with £(A,,) = L(A,,).

15.23 Remark: On the proof of Safra’s result

The proof uses the Safra-construction, another big result from automata theory. It can
be seen as an extended version of the powerset construction used to determinize finite
automata. It also leads to a blow-up in the number of states. If the original automaton

(k-log k)

had k states, its determinization has up to 2¢ states.

15.24 Remark
By deterministic, we mean that for each state g and each symbol a € %', thereis a unique
transition (g, q') €—,.

A deterministic automaton has a unique run on each infinite word. Whether the word
is in the language of the automaton depends on whether this run is accepting.
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Using the theorem, we get that regular languages of infinite words are closed under
complement. We can use the same trick as for the complementation of NFAs: We invert
the final states. Technically, this means we manipulate the priority assignment.

15.25 Corollary
Let A,, be a parity word automaton. One can construct a deterministic parity word au-
tomaton A, with £(A}) = L(A,).

Proof:

Using Theorem [15.22, we can construct the deterministic parity word automaton
A, =(I,Q, gy -, Q) We define A, = (I, Q, gy, »', Q") with Q"(q) = Q'(g) + 1. Note
that the unique run of A, on a word 1 is accepting if and only if the unique run of A,
on the word was non-accepting. We obtain £(A}) = £(A!) = £(A,). [ |

This allows us to construct a deterministic parity word automaton accepting £(Apranches)-
LetB=(ZxSxD, QB, qg, —>B, QB) be this automaton. We will use it to construct a parity
tree automaton for L.

15.26 Proposition
L'is regular.

Proof:
We define the parity tree automaton

A'=(£x5,Q% g5, ', Q°)

where the transition relation ' is defined as follows: A transition (g, §) is in =, ; if and
only if for each d € D, we have that (g, §4) €—>§75’d is the unique transition of B for the
source state g and the symbol (a, s, d). Note that the other components Q, g, Q coincide
with those of B.

Inarun of A'on atree T, it essentially simulates B along each branch of the tree.
It remains to argue that A’ indeed accepts L.

By the construction of A', a tree T is accepted by A’ if and only if B accepts each
of its branches m € Branches(7"). Since L£(B) = L(Apanches)s this means that
Branches(7") € L(Auranches)- By Corollary [15.27], this is the case if and only if the strat-
egy obtained by proj, is a winning strategy for the universal player on G(7, A), where
T = projs(7"). This was the condition for being in L' |
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Step 3: Conclude that proj;(L') = L(A) is regular

We can see the projection as a special case of the more general concept of rank-
preserving functions.

15.27 Definition
Let X,, X, be ranked alphabets. We call a function f:X; - %, rank-preserving if for all
a € ¥,, we have rank(f(a)) = rank(a).

Given a X;-tree 7, we define f{(7) to be the I, tree in which all labels a € %, are replaced
by fla) € X,. Note that since fis rank-preserving, f{(T) is indeed a valid Z,-tree.

Regular languages of infinite trees are effectively closed under rank-preserving func-
tions.

15.28 Lemma
Let £ be a regular language of X;-trees, let f: ; — X, be rank-preserving. Then

AL)={AT)|T € L}

is a regular language of %,-trees.

Proof: Exercise[15.44, Part c). [ |

For the desired statement to follow, it remains to observe that the projection onto X is
indeed rank-preserving.

15.29 Lemma
The projection projs: X X S = X is rank-preserving.

Proof:
By definition, we have rank(a, s) = rank(a). [ |

Finally, we are able to compose our results into a proof of Rabin’s tree theorem.

Proof of Theorem [15.10:
The language L' is regular by Proposition [T5.26. Furthermore, we have projs(£') = L(A)

by Lemma [15.76.

The projection is rank-preserving by Lemma [15.29. Thus, L(A) is regular by
Lemma(5.28.
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Note that the Proposition and Lemma can be strengthened to effectively
return the desired automata. This proves the second part of Rabin’s tree theorem. Note
that for the construction, we need Safra’s construction (Theorem [T15.22) which we have
not explained. [

15.30 Remark

The PTA A’ constructed in the proof of Proposition is deterministic, since the parity
word automaton B was deterministic. This means we can represent £' using a determin-
istic PTA.

At first glance, this seems to violate our result that deterministic PTAs are strictly less
expressive than non-deterministic ones (Exercise [T5.43). This contradiction is resolved
by looking in detail at the alphabet over which £' and A’ are defined: It is the enhanced
alphabet X x S.

If we project the strategy-component away to obtain the automaton A for £(A), we
may obtain a non-determinism automaton: There might be two letters (a, s) and (a, s)
for which the X-component is the same, but the strategy-component differs. For each
source state g, automaton A’ will have a unique transition for each of them. The au-
tomaton A cannot distinguish these letters, it will have (at least) two transitions for the
letter a.

This means that enhancing the tree by the strategy did not only make our theory work,
it also allows the language to be recognizable by a deterministic PTA.

To conclude this section, we want to check the emptiness of PTA languages via parity
games. Given a PTA A, we want to decide whether £(A) = @ holds, i.e. whether A is
actually the finite representation for a set consisting of at least one tree.

To do so, we construct a finite parity game G(A). The idea is to drop the 7 from the
positions in G(7,A). The T component was used to force the existential player to re-
spect the labeling of the given tree. Now we are interested in whether there is a tree. To
model this, we allow the existential player to pick an arbitrary transition, without hav-
ing to respect the label of the automaton. This means that during a play, the existential
player can construct the tree as she likes.

Formally, we define the game G(A) as follows:
. VO = Q,
. Vo = QY", where n = max,¢s rank(a),

- V=VouVa,
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15. Rabin'’s tree theorem

R = {(9,9)]q€Vo,3a3(q,q) €=}
u {((aaal))lae ng Vl:hie {07'-'7k_ 1}}
Q(q) = Qalq) ,
0(G)=0.

15.31 Proposition
The language of A is non-empty if and only if the existential player wins the parity game
G(A) from position qq,

LA #o iff goewl”.

The proof is an easy extension of the proof of Lemma [15.T3.

Note that - in contrast to the game G(7,A) - the game arena of G(A) is finite. Thus,
Zielonka’s recursive algorithm can be used to actually solve it.

If L(A) # @, then the positional winning strategy for the existential player provides a
finite description of a tree in L(A).

Monadic second-order logic over infinite binary trees / S2S

The importance of Rabin’s tree theorem comes from the relation of parity tree automata
to a certain kind of logic. Parity tree automata are equivalent to formulas in monadic
second-order (MSO) logic over infinite trees. Rabin’s tree theorem is crucial for prov-
ing the equivalence. The translation together with the decision procedure for language
emptiness means that the satisfiability of formulas in monadic second order logic over
infinite trees is decidable. The latter result is also sometimes called Rabin’s tree theo-

rem.

Without loss of generality, we will assume that all symbols in the alphabet have rank
exactly 2. For this reason, monadic second order logic over infinite trees is also called
S2S, second-order logic with 2 successors.

The following diagram depicts the translation and the algorithmic problems on each
side.

PTAA < » S2S-formula ¢
Emptiness Satisfiability
L(A) = @? AT:S(T)E @?
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15.32 Remark
Thereis also monadic second order logic over infinite words. Itis also called S1S, second
order logic with one successor. It corresponds to parity word automata.

In second-order logic, there are two types of variables:

- First-order variables, usually denoted by lowercase letters x, y, z, represent val-
ues, i.e. in our case nodes of a tree.

- Second-order variables, usually denoted by uppercase letters X, Y, Z, represent
sets of values, i.e. in our case sets of nodes of a tree.

The logic is called monadic, because second-order variables denote sets of values. In
polyadic logic, they can denote sets of tuples of values.

We will now formally introduce the syntax and semantics of S2S. We first introduce the
syntax, e.g. terms and formulas. We give a brief explanation of the meaning of the syn-
tax in italic. This should not be seen as a formal definition of the semantics.

15.33 Definition: Syntax of S2S
A (first-order) term s of S2S representing a node of a tree is

- either the symbol € representing the root node of the tree

- or a first-order variable x representing the node to which x is mapped in the assign-
ment under consideration.

An atomic formula of S2S is, for terms s, s,
- s = s expressing that s and s' should represent the same node,

- s T s expressing that s should represent an (indirect) ancestor of the node repre-
sented by s,

- P,(s) for each symbol a), € X expressing that the node represented by s is labeled by

I

Si(s,s') fori € {0, 1} expressing that s’ represents the left (if i = 0) resp. right (ifi = 1)
successor of s,

s € X for a second-order variable X expressing that the set of nodes represented by
X contains the node represented by s.

The formulas of S2S are defined inductively as follows:

« Every atomic formula is a formula.
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15. Rabin'’s tree theorem

- If @, @' are formulas, then the following are formulas

1 1

- QAP oV Ix: @ Vx: @ X VX:.

A variable is free in a formula if it is not bound by a preceding quantifier. We call a
formula ¢ closed if it has no free variables.

15.34 Remark

The syntax of S2S is the syntax of monadic second-order predicate logic with equality
over the following signature:

- £ is the only function symbol and constant (arity 0).

- The predicates are the binary predicates C,, So/,, S1/, and for each symbol a € =
the unary predicate P, ;.

Note that since the logic is monadic, all function symbols and predicates take first-order
terms as their parameters. The membership predicate x € X (that is not explicitly given
in the signature) is the only way to involve second-order variables.

To evaluate S2S - like any other kind of predicate logic - we need a structure. A struc-
ture consists of a set of data values and an interpretation of the function and predicate
symbols. We are interested in structures that are given by >-trees.

15.35 Definition
Let 7 be a Sigma-tree. Then we define S(7) to be the structure where

« the data values are 7T, i.e. the nodes (addresses) of the tree are the data val-
ues. First-order terms represent nodes, second-order variables represent sets of
nodes.

T

- Wehavee =¢€€7T,ie.cisindeed interpreted to denote the root node.

. Fortwo nodes v, v/, we have

-
v £V =true

iff v is a prefix of v/, i.e. vis an ancestor of v'.
- Fortwo nodes v, v and i € {0, 1}, we have

T

S; (v,Vv') = true

iff V' = v.i,i.e. V' is the left (i = 0) resp. right (i = 1) successor of v in the tree.
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« Foranodevanda € %, we have

T

P, (v) = true

iff label(v) = g, i.e. vis labeled by a.

To evaluate a formula, a structure S(7) is not sufficient, we also need an interpretation
Zr: (First-order Variables - T') u (Second-Order Variables - P(T)),

also called valuation or assignment. This function maps each free first-order variable x
to a node Z1(x) in T, and each second-order variable X to a set of nodes Z-(X) € 7.

The evaluation of formulas can then be defined by structural induction. Even when
the formula under consideration is closed, we will need an interpretation during the
induction after the quantifiers have been resolved.

15.36 Definition: Semantics of S2S
Let S(7) be a structure and let Z be a corresponding interpretation.

Foraterms, let

I(x) e T s =xVariable
Z(s)= .
€ =€€T s=¢

be the node of 7 represented by s.

Then we can inductively define the models or satisfies relation for formulas.

S(T), ZEs=s  ifZ(s)=ZI(s),

S(T),ZEscs ifZ(s)c’ I(s),

S(T), Tk S{(s,s) ifS](Z(s),Z(s)),

S(T),TEP,s) ifP(Z(s)),

S(T),ZEseX ifZ(s) e Z(X),

S(T),ZE-¢ if S(T),Z¥ o,

S(T),ZEon¢" ifS(T),ZFeandS(T),Zk ¢,

S(T), ZEeve' ifS(T),ZEeorS(T).ITk ¢,
S(T),ZE3Ix:¢ ifthereisve T suchthat S(T),Z[x~ v]EF ¢,
S(T), ZEVx:¢ ifforallve T wehaveS(T),Z[x v]F ¢,
S(T),ZE3X:¢ ifthereisV < T suchthatS(T),Z[X+» V]E ¢,
S(T), ZEVX:q ifforallVc T wehaveS(T),Z[X V]E@.
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If @ is closed, the initial interpretation does not matter. If S(7°) together with any inter-
pretation satisfies ¢, we write S(7) F ¢ and say that 7 satisfies ¢ or that 7 is a model
for ¢.

15.37 Example
Consider the following closed formula.

@=IXeeXAVX:XxEX > (Py(x) ATy:y € XA (Solx,y) v Si(x,¥)))
A tree is a model for ¢ if and only if it contains at least one branch labeled only by as.

15.38 Remark
€ and E are syntactic sugar, the other predicates are powerful enough to express them.

a) The formula
root(x) = Yy: =Sy(y, X) A =5;(y, x)
is satisfied by S(7), Z if and only if Z(x) is the root of T. It expresses that x has no
predecessor (and the root is the only node with this property).
b) The formula

ancestor(x,y) = VX: (x e XAVYy:y € X > Vz: (So(y,2) vV Si(y,2)) 2 z€X) >y e X

is satisfied by S(7), Z if and only if Z(x) is a prefix of Z(y). It expresses that every set
that contains x and is closed under taking the successors also has to contain y. Since
this then holds for the smallest such set, that is the set of indirect successors of x, we
have that x is an ancestor of y.

One can introduce more syntactic sugar, e.g. one usually writes s # s'and s ¢ X instead
of =(s = ") and =(s € X). The other Boolean operators like < (equivalence) and & (XOR)
can be expressed using conjunction, negation and disjunction.

The crucial algorithmic problem is (as for many other kinds of logic) satisfiability.

S2S-Satisfiability
Given: A closed S2S-formula ¢
Question: s there a tree T with S(T) F ¢?

15.39 Theorem: Rabin’s tree theorem
S2S-Satisfiability is decidable.
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The proof works as follows: We can translate a given formula ¢ into an equivalent PTA
A, and check language emptiness for A, using Proposition [T5.31]. The translation is the
following theorem.

15.40 Theorem: Rabin’s tree theorem
S2S-formulas and PTAs are equivalent:

a) Fora given closed PTA A we can effectively construct a closed S2S-formula ¢, such
that a tree models ¢, if and only if it is accepted by A,.

LA) ={T | S(T) F @4} .

b) For a given closed 525-formula ¢ we can effectively construct a PTA A, such that a
tree 7 is accepted by A, if and only if it is as a model for ¢,

L(A,)={T | S(T)E ¢}.

Sketch of the Proof:

a) Foragivenautomaton A, itis not too hard to construct a formula ¢, expressing that
A has an accepting run on a tree.

b) Given a formula, we need to construct a tree automaton.
« For the atomic formulas one can directly create PTAs.

+ Negation, conjunction and disjunction are imitated by the corresponding op-
erations complementation, union and intersection on PTA languages. (This is
where the first formulation of Rabin’s tree theorem comes into play.)

- Dealing with variables requires a trick. (This was known before in the literature
from Blichi’s theorem on the equivalence of WMSO-definable languages and
the regular languages of finite words).

Let us assume that there are only existential quantifiers. This can be enforced
by rewriting Vx: ¢ as =3x: =¢ (and similar for second-order variables).

To deal with variables, one enhances the alphabet. Instead of using X as the al-
phabet, we use X x B" x B"? where V., V, are the sets of free first- resp. second-
order variables. This means each position is labeled not only by a symbol in
%, but also by vectors of Boolean values denoting which variables are repre-
sented by the position. For a position v labeled by (a, %, X), we have Z(y) = v if
X, = 1,and similarly v € Z(Y) if Xy = 1.
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Whenever we have an existential quantifier binding a variable, we project away
the corresponding component of the vector. For first order variables y, we have
to enforce that there is a unique position with X, = 1. This can be done by
intersecting with a suitable PTA language.

Since the original formula was closed, all additional components will be pro-
jected away during the inductive construction. The final automaton will be an
automaton just over the alphabet X.

15.41 Corollary
The class of S2S-definable languages, i.e. the class of languages

L) ={T | S(T) F ¢}
where @ is a closed S25-formula, is exactly the class of regular languages of infinite trees.

15.42 Example

a) The language of A; from Exercise can be expressed by the following S25-
formula:

Pa(€)AYXVyYZ: (So(x, y)AS:(x, 2)) = ((Palx) = Poly) A Po(2)) A (Po(x) = Paly) A Pa(2)).

b) The language of A, from Exercise can be easily expressed by the following
S2S-formula:
Ax: P, (X) AVy:x#y = Pyly).

c) Expressing the language of A; is more complicated, see Exercise [15.48.

Exercises

15.43 Exercise
Consider the ranked alphabet > = {a/,, b/,}. Note that X-trees are so-called full infinite
binary trees.
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a) Considerthe PTA A, = (Z,{90, 91}, 90, =, Q) with

Describe its language L(A).

b) Considerthe PTAA, = (X,{q+,9-}, 9., =, Q) with

d
I

o =1{(9+,(9-,9-))} .
-4 = {(9+,(9+,9-)), (a+,(g-.94)), (g-,(9-,49-))},
0(g-)=0, 0(g.)=1.

Formally prove that £(A,) is exactly the set of X-trees in which exactly one node is
labeled by a.

Remark: A, is non-deterministic, and one can prove that there is no deterministic
PTA A accepting the same language.

c) Present a PTA A; whose language is the set of X-trees in which exactly one branch
contains infinitely many nodes labeled by a.

Argue that your automaton indeed has this property.

15.44 Exercise: Closure properties of regular languages of infinite trees
Prove that regular languages of infinite trees are closed under union, intersection, and
projection.

LetA =(Z,Q,qG,,—~,Q),A = (Z,Q, gy, ', Q) be PTAs over the same ranked alphabet 3.
a) Show how to construct a PTA A, with £(A,) = L(A) u L(A").
b) Show how to construct a PTA A, with £(A,) = L(A) n L(A").

Hint: Use Rabin’s tree theorem.

c) Let X' be a ranked alphabet, and ¥ - ¥’ be a rank preserving function, i.e. we
have ranks(a) = ranks(f(a)) for all a € . For a X-tree T, we define f{T) to be the
'-tree in which the label a of each node is replaced by f{a). Note that the fact that
is rank-preserving is crucial for f{7) being a X'-tree.
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For a language of X-trees £, we define
C)={AT)|T eL}.

Show how to construct a PTA As = (2, Qf, qor, =1, Qf) with L(Af) = f(L(A)).

15.45 Exercise
Let 7 be a X-tree and let A be a PTA. Consider the parity game G(7,A) as defined in

Definition [T5.72.

a) The game arena of G(7, A) is not necessarily deadlock-free.

In which case can deadlocks occur?

Modify the game arena such that it becomes deadlock free such that the validity of
Lemma is preserved.

How can one modify the automaton without changing its language such that
G(T,A) is deadlock-free without modification?

b) Assume that the existential player has a positional winning strategy so from position
(Ea qO) in g(Ta A)
Present an acceptingrunof Aon 7.
Hint: Construct the run inductively, guided by sc.

¢) Assume that the universal player has a positional winning strategy s from position
(57 qO) in g(Ta A)
For each candidate run of A on T, identify a branch on which the acceptance condi-
tion is violated.

15.46 Exercise

In this exercise, we want to apply Rabin’s tree theorem to the automaton A, from Part

a) of Exercise [15.43.

a)

Construct the set S = Q%" - D.

Hint: To avoid the following construction becoming excessively large, restrict the
domain to vectors of states that can actually occur.

b) Construct the parity word automaton Ag,anches-
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)

d)

e)

Make Ay anches deterministic by adding an error-state and the corresponding tran-
sitions. (For each symbol a, s, d, and each state g, there needs to be exactly one
transition (q,q') €—454.) Complement Ay anches to obtain the automaton B with
L(B) = L(Abranches)-

Construct the parity tree automaton A’ for £’ that simulates B on all branches of a
tree.

Project A’ to ¥ to obtain the automaton A,. Check that £(A;) = £(A,) indeed holds
by describing the language of A,.

15.47 Exercise

a)

Let A be a PTA, and assume that the existential player wins the parity game G(A)
from the initial position g.

Explain how a winning strategy for the existential player can be used to define a tree
in 7 € L(A). Make this formal by explaining the construction of the set of nodes T
and its labeling function label .

Consider automaton A, from Part b) of Exercise [15.43. Transform the automatontoa
language-equivalent automaton that has at least one transition (g, §) €—, for each
source state g and symbol a. (This will ensure that the parity game is deadlock-free.)

Construct the parity game G(A) and identify a positional winning strategy for the
existential player. How does the tree described by the strategy look like?

Hint: Restrict yourself to positions Q° of the universal player that can actually occur
during a play of the game. This prevents the game arena from becoming excessively
large.

15.48 Exercise
Consider the Alphabet X = {a/,, b/,}. Our goal is to create a closed S2S-formula for the

language L of trees in which exactly one branch contains infinitely many as (known
from Part c) of Exercise [15.43).

a)

Consider the following S2S formula that has the free second-order variable X.

Branch(X) = eeX (1)
A Yxix€X->3FyAzSe(x,y) ASi(x,2)AlyeXdzEX) (2)
A Yy(yeXAay#e)>IxxeXA(Syx,y)VvSi(xy) 3)
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15. Rabin'’s tree theorem

Here, ® is XOR and — is implication. They can be easily rewritten using negation,
conjunction, and disjunction.

Argue that Branch(X) evaluates to true under a structure S(7) and an interpretation
Zr if and only if Z+(X) is a set of positions that forms a branch of 7. Explain the
purpose of each Line (1) - (3).

In S2S, we only have an equality predicate for first-order terms. Construct a formula
Equal(X, Y) with two free second-order variables X, Y that evaluates to true under a
structure S(7) and an interpretation Z if and only if Z(X) = Z(Y).

Construct formulas Fin,(X) respectively Inf,(X) with one free second-order variable
X that evaluate to true under a structure S(7) and an interpretation Z if and only
if Z-(X) contains only finitely many respectively infinite many nodes labeled by a.

For simplicity, you may suppose that Z-(X) is a branch of 7.

Combine the previous parts of this exercises to construct a closed S2S-formula ¢~
that evaluates to true under a structure S(7) ifand only if T € L.
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