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Preface

These are the lecture notes accompanying the course “Concurrency theory” taught at
TU Braunschweig in the winter term of 2017/2018.

Unfortunately, we cannot guarantee the correctness of these notes. In case you spot a
bug, please send a mail to us: s.muskalla@tu-bs.de .

Roland Meyer, Sebastian Muskalla, Prakash Saivasan

Braunschweig, December 4, 2018

Literature

The content of this lecture overlapswith the contents of past iterations of “Concurrency
theory”. The lecture notes for parts of the lecture are based on RolandMeyer’s notes, in
particular on his texed lecture notes from 2011:

tcs.cs.tu-bs.de/documents/lecturenotes/conctheo2011.pdf

For the rest of the lecture, wemostly use the original papers as sources. The beginning
of each section will contain information on the material on which the content is based.
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1. Introduction

1. Introduction

The overall topic of this lecture is the verification of concurrent systems. We will ap-
proach this by considering types of automata that can model the behavior of such sys-
tems and solving their algorithmic problems.

Concurrent systems

A concurrent system is a collection of components (e.g. threads)

• running asynchronously or synchronously,

• running concurrently, e.g. interleaved on one core, on several cores of one CPU,
on several CPUs of the same machine or one multiple machines (distribution),
and

• communicating in some way, e.g. via shared memory or messages.

Verification

Verification is one of the biggest active research areas within Theoretical Computer Sci-
ence. Its most basic problem is the verification problem: Given a system Sys and a spec-
ification Spec, does the behavior of the system satisfy the specification, Sys ⊧ Spec? The
difficulty of this problem arises from the fact that one usually only has a syntactic de-
scription of the system (e.g. the source code of a program), but the specification talks
about the runtime behavior of the system. Even in the simple case where the system is
a sequential Java program and the specification is given by a designated error location
in the source code that should not be reached, the problem is undecidable. (It corre-
sponds to the control state reachability problem for Turing machines, a variant of the
undecidable halting problem.)

Research in verification tackles this problem in various ways.

There are semi-decision procedures for verification that do not always terminate, but if
they terminate, their result is correct. For example, to solve the above problem, one
can enumerate possible computations of the program. If one finds a valid computation
reaching the error location, the answer to the verification problem is negative.

Approximation techniques replace a complex system by a system from a simpler class
forwhich the verification problem is decidable. For example, one canmodel a recursive
program,more precisely its control flow, by a pushdown system, forwhich control state
reachability canbe checked in polynomial time. There are two types of approximations:
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1. Introduction

• An overapproximation is a systemwhose behavior subsumes the behavior of the
original system. If one is able to prove an overapproximation to be sound, i.e. all
possible behaviors satisfy the specification, this also holds true for the original
system. If the overapproximation has a bad computation, it may not be clear
whether this computation is also a computation of the original system.

• An underapproximation is a systemwhose behavior is a subset of the behavior of
the original system. If one is able to find a bad computation of an underapproxi-
mation, then also the original system has a bad computation.

All these techniques may be combined. Some semi-decision procedures iteratively re-
fine approximations of the systems until they can find a bad computation or prove the
system correct. Still, it may happen that procedure does not terminate since none of
the two cases applies within a finite number of steps.

For approximation techniques, it is crucial that efficient techniques are available for the
algorithmic problems of the class of systems that is used to approximate. In this lecture,
wewill therefore consider types of automata that can be used formodeling concurrent
systems and discuss their algorithmic problems.

Models for concurrent systems

(1) Automata on adistributed alphabet. Assume the simple case inwhich each com-
ponent of the system is modeled by a finite automaton. If all components are synchro-
nized by some external clock, the system can be modeled by the product automaton.
This automaton can be explicitly constructed and algorithms for finite automata can
be applied.

If we assume that the automaton run asynchronously, interesting behavior can occur.
Consider for example an automaton over the alphabet {a, b} generating ab and an au-
tomaton over the alphabet {c, d} generating cd. If we give their parallel composition
an interleaving semantics, we obtain that it can generate all possible interleavings
of ab, cd, i.e. the set of words {abcd, acbd, acdb, cdab, cadb, cabd}. Now assume that
there is some action s that is in the alphabet of both automata on which the automata
synchronize. If the automata generate asb resp. csd, the set of possible interleavings
is reduced to {acsbd, acsdb, casbd, casdb}. Research in this area studies the structure
of languages generated by such automata over distributed alphabets that run asyn-
chronously, but synchronize on some actions.

(2) Multi-pushdown systems. A multi-pushdown system is a system with several
stacks that can be used independently. Such systems occur if we assume that each
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1. Introduction

component of a concurrent system is modeled by a pushdown system, and we then
construct the product. A multi-pushdown system is much more powerful than a reg-
ular pushdown system; Unfortunately, it is already too powerful. The tape of a Turing
machine can be modeled by two stacks, the one containing the part of the tape that
is on the left of the read-head, the other containing the part on the right. Moving the
head canbe implementedbypopping fromone stack andpushingonto theother. Con-
sequently, multi-pushdown systems are Turing-complete and all interesting problems,
e.g. control state reachability, are undecidable.

To overcome this problem, one may only look at a restricted set of computations. For
example, one may consider bounded context switching, i.e. one only considers com-
putations that can be split into k phases (where k is some fixed number) such that in
each phase, only one of the stacks is used. This corresponds to restricting the com-
munication between the components of the concurrent system. Research in this area
focuses on understanding which restrictions lead to verification problems becoming
decidable.

(3) Petri nets. Petri nets are an automata model in which a concurrent system can be
modeled natively (i.e. without taking the product of several systems). Petri nets are the
first topic that we will consider in the lecture. We refer the reader to Section 2 for a
detailed explanation and an example.

(4) Well-structured transition systems. Well-structured transition systems (WSTS)
are a general class of systems to which some algorithmic techniques for Petri nets can
be extended. The idea is to order the state space such that larger states have a richer
behavior. An important example of WSTSs that are not Petri net-like are lossy channel
systems.

A (perfect) channel system is a system that uses LIFO-queues (last in, first out) as stor-
age. The transitions of the system can perform enqueue and dequeue actions. Unfor-
tunately, perfect channel system are Turing-complete. In a lossy channel system, we
assume that at any point in time, the channel may lose some of its content.

Network protocols can bemodeled as a lossy channel system, because for any network
communication (e.g. TCP/IP), one has to assume that packages can be lost. A protocol
should be correct even if package losses occur.
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1. Introduction

(5) Weak memory models. Consider the following parallel program, a simplification
of the so-called Dekker mutex.

x = y = 0.
x = 1; y = 1;
if(y == 0) { if(x == 0) {//critical section //critical section} }

If we assume that the program is executed under an interleaving semantics, mutual
exclusionholds. Atmostone threadcanenter the critical section: As soonasone thread
signals that it wants to enter the critical section by setting x resp. y to 1, the other thread
will see this and cannot enter anymore.

Suchan interleaving semantics corresponds toa strongmemorymodel like sequential
consistency (SC) in which all writesmade by one thread are instantly visibly to all other
threads. This is not feasibly in practice, as it would essentially slow down the speed of
execution to the speed of the communication between the threads. Even when we
assume that both threads runs on two CPUs of the same machine, this may lead to a
90% decrease of performance (e.g. the Intel Xeon E3-1285V6 processor has up to 4.5
GHz, but DDR4-3200 SDRAM has only 400 MHz memory clock).

This problem is solved by introducing buffers: A write will not be directly written to
the main memory, but it will be buffered. At some later point, the buffer content will
be batch-processed into the memory and then become visible to the other threads.
Theoreticians model this by introducingweakmemorymodels, e.g. the total store or-
dering (TSO) as memory model for the x86 architecture. A write command is split into
the issue-event and the store-event, where the latter marks the point in timewhen the
write has landed in main memory.

Under a weak memory model, programs that are correct under SC might become in-
correct. In the above example, mutual exclusion does not hold anymore. Consider the
following execution:

1. Left thread issues the write x = 1

2. Right thread issues the write y = 1

3. Left thread reads y = 0 from the main memory and enters the critical section

4. Right thread reads x = 0 from the main memory and enters the critical section

5. The write x = 1 is stored in the main memory
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6. The write y = 1 is stored in the main memory

To rule out this unwanted behavior, some sort of synchronization has to be enforced.
x86-Assembly provides amemory fence command (MFENCE) that makes the execution
of a thread stop until all its writes have been stored in the main memory. Inserting a
memory fence after the write of each thread fixes the example.

This leads to two interesting questions for researchers in theory:

• Can the behavior of programs executed under a weak memory model (e.g. with
delayed stores and memory fences) still be verified? How does the complexity
of the verification problem change when going from strong to weak memory
models?

• Understanding the behavior of a parallel program under interleaving seman-
tics/a strong memory model is already difficult. Can one prove that if the pro-
gram satisfies some conditions that are easy to understand by a programmer, its
behavior under aweakmemorymodel is the sameas thebehavior under a strong
memory model?

The latter question is of particular interest because (1) a programmer cannot be ex-
pected to know neither the internals of the implementation of the architecture nor the
theory on memory models and (2) verifications tools – even if they exist – are usually
to slow to be applicable to large-scale software systems.
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Part I.
Petri nets and well-structured transition
systems

9



2. Petri nets

2. Petri nets

We introduce the syntax and semantics of Petri nets and some algorithmic problems
that we want to solve in the next sections.

Sources
This content of this section can be found in any standard textbook on Petri nets,
e.g. [Rei85]. The presentation of Petri nets chosen here differs a bit from the one that
is commonly used in the literature, see below.

Syntax and semantics of Petri nets

2.1 Definition: Petri nets
A Petri net is a tuple N = (P, T, in, out)where

• P is a finite set of places,

• T is a finite set of transitionswith P ∩ T = ∅, and

• the functions
in, out∶ T → P → N

assign to each transition t ∈ T a vector in(t) resp. out(t) ∈ N
P of incoming

resp. outgoing multiplicities. For a transition t ∈ T and a place p ∈ P the in-
coming multiplicity in(t, p) is the multiplicity of the arc from p to t. Similarly, the
outgoing multiplicity out(t, p) is the multiplicity of the arc from t to p.

2.2 Remark
A function of type P → N that assigns each place a number can be seen as a vector inNP.
A function of type T → P → N, which is shorthand for T → (P → N can be equivalently
seen as a function of type T × P → N or as a function of type T → N

P. We may also see
it as matrix in N

T×P having one entry for each transition and place.

We obtain a graphic representation of a Petri net as follows: We draw places as circles
and transitions as boxes. If in(t, p) ≠ 0 for some t, p, we draw an arc from p to t, and
label this arc by in(t, p). Similarly, we draw an arc from t to p if out(t, p) ≠ 0, andwe label
it with this number if out(t, p). If the multiplicity is 1, we often omit the label of the arc.
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2. Petri nets

2.3 Example
Consider the Petri net N = (P, T, in, out)with

P = {p0, p1, p2, l0, l1,w0,w1},
T = {t0, t1, t2, t3, t4, t5},

and in, out specified by the following tables.

in t0 t1 t2 t3 t4 t5
p0 1 0 0 0 0 0
p1 0 1 0 0 0 0
p2 0 0 1 0 0 0
l0 0 1 0 0 1 0
l1 0 0 1 0 0 1
w0 0 0 0 0 1 0
w1 0 0 0 0 0 1

out t0 t1 t2 t3 t4 t5
p0 0 0 1 0 0 0
p1 1 0 0 0 0 0
p2 0 1 0 0 0 0
l0 0 0 1 0 0 1
l1 0 1 0 0 1 0
w0 0 0 0 1 0 1
w1 0 0 0 0 1 0

The following figure gives a graphical representation of this Petri net.

p0

p1

p2

l0 l1

w0

w1

t0

t1

t2

t3

t4

t5

This Petri net actually represents a concurrent system, wewill explain this later in Exam-
ple 2.5.

2.4 Remark
The multiplicities are also calledweights in the literature.
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2. Petri nets

In the literature, usually in and out are combined into a single flowmatrix

F∶ (T ∪ P) × (T ∪ P) → N

such that F(p, t) = in(t, p) is the incoming weight, and F(t, p) = out(t, p) is the outgo-
ing weight. With this view, a Petri net is a triple (P, T, F). We can easily convert one
representation into the other and will use them interchangeably during the lecture.

2.5 Example
The flow matrix for the Petri net from Example 2.3 is the following.

F t0 t1 t2 t3 t4 t5 p0 p1 p2 l0 l1 w0 w1

t0 1
t1 1 1
t2 1 1
t3 1
t4 1 1
t5 1 1

p0 1
p1 1
p2 1
l0 1 1
l1 1 1
w0 1
w1 1

Here, the entry of the cell in row x and column y contains F(x, y). If the cell is empty, the
corresponding value is zero.

We are now able to define the semantics of Petri nets. This includes defining the pos-
sible configurations of a Petri net and their computational behavior, i.e. how computa-
tions may lead from one configuration to another. We start by defining the configura-
tions.

2.6 Definition: Marking
A marking of a Petri net N = (P, T, in, out) is a vector M∶ P → N that assigns each place
p ∈ P a number M(p) of tokens.
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2. Petri nets

Petri nets differ fromother automatamodels that youmay know (finite automata, Push-
down automata, Turing machines) in that their configurations do not consist of a con-
trol state. This reflects the fact that they were designed to model concurrent systems:
A Petri net does usually not represent a single program, but a collection of interacting
components. Each component is in some state, which can be represented by consid-
ering markings in which several places carry a token. We can even represent multiple
instances of the same component in the same state by assigningmore than one token
to a place. We will come back to this when discussing the meaning of Example 2.3.

2.7 Definition: Firing relation
Let N = (P, T, in, out) be a Petri net and let M ∈ N

P be a marking for N.

For a transition t ∈ T, we say that t is enabled in M if M ⩾ in(t), i.e. for all p ∈ P, we have
M(p) ⩾ in(t, p). We write M t in this case.

An enabled transition can be fired leading to the new marking

M′ = M − in(t) + out(t) ,
i.e. themarkingM′ withM′(p) = M(p)− in(t, p)+out(t, p). WewriteM t M′ in this case.

Intuitively, firing transition t first consumes in(t, p)many tokens from each place p. The
transition being enabled guarantees that every place carries the number of tokens
needed. Then, out(t, p)many tokens are produced on each place p.

2.8 Definition: Firing sequence
We extend the notion of firing to sequences: For a sequence σ ∈ T∗ of transitions, we
write M σ M′ if firing the transitions in σ successively leads frommarking M to mark-
ing M′. This implies that for every decomposition σ = σ1.t.σ2, we have that t is enabled
in the marking M1 with M σ1 M1. We call such a σ a (valid) firing sequence.

A computation of a Petri net is a sequence

M0 t0 M1 t1 M1 t2 . . . tn Mn−1

of markings and transitions.

We call the vector e(t) = out(t) − in(t) (i.e. the vector e ∈ N
P with e(t)p = in(t)p − out(t)p)

the effect of transition t The effect of a transition sequence σ is the sum of the effects
of the transitions occurring in σ, e(σ) = ∑∣σ∣−1

i=0 e(σi) is the effect of σ.
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2. Petri nets

Note that an initial marking together with a valid firing sequence uniquely specifies
a computation. Similarly, a sequence of marking specifies a computation if the differ-
ences between the markings are the effects of enabled transitions that exist in the net.
This will allow us to sometimes to see a computation just as a sequence of transitions
or markings instead of a sequence of both.

2.9 Example
We equip the Petri net from Example 2.3 with the marking M0 = (1, 0, 0, 1, 0, 0, 0),
i.e. the marking that assigns one token to p0 and l0 and no tokens elsewhere.

Note that the Petri net represents a simple concurrent system:

• The places p0, p1, p2 represent a controller thread. The places w0,w1 represent
worker threads. The places l0, l1 form a semaphore (lock).

• Initially, the lock is not held, as M0(l0) = 1,M0(l1) = 0. Initially, the controller
thread is in state p0. Initially, there is no worker thread.

• During the net, worker threads can be created by firing transition t3. This will
spawn a new worker thread in state w0

• The controller may freely move to state p1 by firing t0.

• The places p2 and w1 are critical sections of their respective thread. Only one
thread can be in one of those states at a time (i.e. we have at most one token
assigned to them). This is ensured because the transitions t1, t4 need to take the
lock by moving the token from l0 to l1. The lock is released when the threads
leave the critical section by transition t2, resp. t5.

In the following computation, we spawn 3 worker threads, let the controller enter the
critical section, let each worker thread enter the critical section, and let the controller
enter the critical section again.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
1
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
t3t3t3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
1
0
3
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
t0t1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1
0
1
3
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
t2t0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0
1
0
3
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
t4t5t4t5t4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0
0
1
2
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
t5t1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1
0
1
3
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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2. Petri nets

Whenwediscuss algorithms,wewill analyze their complexity, i.e. theirworst-casemem-
ory and time consumption. This analysis will always be in terms of the input size. As
in input is formed by Petri nets and markings, we will need to assign a size to these
objects.

2.10 Definition
Let N be a Petri net and let M be a marking for N. The size ∣M∣ of the marking M is the
size of the numbers occurring in M encoded in binary. We assume that each entries
needs at least one bit. ∣M∣ = ∑

p∈P
⌈logM(p)⌉ + 1 .

Similarly, the size ∣N∣ of the Petri net N is the encoding of the ingoing and outgoing
multiplicities in binary.

∣N∣ = ∑
t∈T

∑
p∈P

⌈log in(t, p)⌉ + ⌈log out(t, p)⌉ + 2 .

2.11 Remark

• We assume a dense encoding here, as we represent each entry using at least one
bit. In a sparse encoding, we would only measure non-zero entries.

• For a marking M, let m be its maximal entry, m = maxp∈P M(p). We have

∣M∣ ∈ O(∣P∣ ⋅ ⌈logm⌉ + 1) .
Similarly, let m′ be the maximal multiplicity of any arc in the Petri net N,

m′ = max
t∈T,p∈P

max{i(t, p), o(t, p)} .
We have ∣N∣ ∈ O(∣P∣ ⋅ ∣T∣ ⋅ ⌈logm′⌉ + 1) .

• A Petri net of polynomial size can have exponential multiplicities, as 2n can be
encoded in binary using n bits. This will play an important role when we analyze
algorithms.

If one considers an unary encoding of markings and multipliticies, i.e. we would
define ∣M∣ = ∑p∈P M(p) + 1, we would get different complexity results.
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2. Petri nets

Algorithmic problems

The most basic algorithmic problem is reachability.

2.12 Definition
Petri net reachability (PNREACH)

Decide: Petri net N, initial marking M0, final marking Mf

Decide: Is there a firing sequence σ ∈ T∗ such that M0 σ Mf?

Petri net reachability is known to be decidable, but there is no algorithm that is known
to have primitive-recursive complexity. This means that all known algorithms need
unimaginable running times in the worst case, even for tiny examples. Please read Re-
mark 6.1 for a more detailed discussion.

2.13 Remark
Usually, a Petri net is considered in conjunction with a fixed initial marking, and some-
times also with a fixed final marking that should be reached. This is for example the
case in the input for PNREACH.

In the following, when wewrite that (N,M0) or (N,M0,Mf) is a Petri net, wemean that N
is a Petri net and M0,Mf are markings for N, where we consider M0 as the initial and Mf

as the final marking.

2.14 Definition
We say that marking Mf is reachable from marking M0 in the Petri net N if there is a
valid firing sequence σ with M0 σ Mf. This is the case if and only if (N,M0,Mf) is a
YES-instance of the Petri net reachability problem.

We use R(N,M0) to denote all markings reachable from M0,

R(N,M0) = {M ∈ N
P »»»»» ∃σ ∈ T∗∶M0 σ M} .

We furthermore define the reachability graph RG(N,M0), a directed graph whose set
of vertices is R(N,M0) and in whichwe have an arcM → M′ (forM,M′ ∈ R(N,M0)) if there
is a transition t such that M t M′.

Obviously, Mf is reachable from M0 if and only if Mf ∈ R(N,M0). Note that R(N,M0)may
be infinite.
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2. Petri nets

In case R(N,M0) is a finite set, we can explicitly construct RG(N,M0): We initially add M0

as a vertex, and then for each vertex M not yet considered do the following: For each
transition t, check whether t is enabled in M. If so, compute M′ with M t M′. If M′ is
not yet a vertex, add it. Draw an arc from M to M′.

If R(N,M0) is finite, at somepoint, no new verticeswill be added anymore (all transitions
are either not enabled or lead to vertices that are already present). If R(N,M0) is infinite,
the algorithm will not terminate.

This makes it interesting for us to consider the finiteness problem for Petri nets.

2.15 Definition
Petri net finiteness
Decide: Petri net N, initial marking M0

Decide: Is R(N,M0) finite?
The problem is also called the boundedness problem due to the following definition
and lemma.

2.16 Definition
Let k ∈ N be a natural number. A Petri net (N,M0) is called k-bounded or k-safe if each
component of every marking M ∈ R(N,M0) is bounded by k,

R(N,M0) ⊆ {M ∈ N
P »»»»» ∀p ∈ P∶M(p) ⩽ k} = {0, . . . , k}P .

2.17 Lemma
Let (N,M0) be a Petri net. R(N,M0) is finite if and only if there is a k ∈ N such that (N,M0)
is k-bounded.

We will later see an algorithm that decides finiteness.

2.18 Remark
A k-bounded Petri net is actually a finite state system. Still, seeing it as Petri net pro-
vides a compact representation. For example, an 1-safe Petri net of polynomial size can
represent a finite state system of exponential size.

Even if finiteness is decidable, we are actually very much interested in Petri nets for
which R(N,M0) is infinite. One of the key features of Petri nets is that we can model an
unbounded number of threads (as we did in Example 2.3). We will consider Petri net
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2. Petri nets

reachability much later in this lecture. Furthermore, wewill consider coverability in the
next section, a weaker variant of reachability, for which efficient algorithms are known.

The difficulty of the reachability problem has sparked interest in necessary conditions
for reachability that are easy to check. If they are violated, we are sure that themarking
under consideration is not reachable. Even if they are hold, it might be non-reachable.
There is plethora of research on this, wewill just consider one very simple example, the
marking equation.

Assume that M0 σ Mf for some transition sequence σ ∈ T∗. We then need to have

M0 + e(σ) = Mf .

Recall that e(σ) = ∑∣σ∣−1
i=0 e(σi) = ∑∣σ∣−1

i=0 o(σi) − i(σi). In particular, the order of the tran-
sitions in σ does not matter, only the number of their occurrences is important. For
each transition tT, let ct denote the number of occurrences of t in σ. We then have
e(σ) = ∑t∈T ct ⋅ e(t).
Consequently, if Mf is reachable from M0,

• then there is a sequence σ such that M0 σ Mf,

• then there is a sequence σ such that M0 + e(σ) = Mf,

• then for each t ∈ T, there is a number ct such that M0 +∑t∈T ct ⋅ e(t) = Mf.

The last property can be phrased as a problem of linear algebra by introducing some
notations. We can use the functions i, o ∈ T → P → N to defined matrices:

2.19 Definition
The forward matrix F ∈ N

P×T is the matrix with Fp,t = in(t, p). The backward matrix
B ∈ N

P×T is the matrix with Bp,t = out(t, p). The connectivity matrix C ∈ Z
P×T is their

difference,C = B − F .

2.20 Lemma
Let σ be a transition sequence, and let (as above) be ct be the number of occurrences
of transition t ∈ T in σ. Let us see these numbers as a vector c ∈ N

T. Then the effect of
σ is

e(σ) = C ⋅ c .

As a consequence, we can formulate a necessary condition for reachability.

18



2. Petri nets

2.21 Lemma
Let (N,M0,Mf)beaPetri net. Any sequenceσ ∈ T∗withM0 σ Mf satisfies themarking
equation

M0 + C × c = Mf

where the vector c is defined as above.

The contraposition of this lemma is used to provide a sufficient condition for non-
reachability.

2.22 Corollary
Let (N,M0,Mf) be a Petri net. If the marking equation

C ⋅ c = Mf −M0

has no solution c, then Mf is not reachable.

Whether the above systemof equations has a solution canbe easily checkedusing tech-
niques from linear algebra.

Note that one can quite easily construct examples such that the marking equation has
a solution, but Mf is still not reachable.

Exercises

2.23 Exercise: Traffic lights and Petri nets
Consider the Petri net given by the following graphic representation.

r

y

g

y → r r → ry

g → y ry → g

a) Write down the net as a tuple N = (P, T, in, out).
19
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b) The net should model a traffic light, but it contains a bug and exhibits unwanted
behavior. Show a valid firing sequence (from the initial marking indicated in the
graphic representation) reaching a bad marking.

Modify the net to fix the problem. The resulting net should be 1-safe.

c) Model two traffic lights handling a road crossing by using two such Petri nets.

2.24 Exercise: The marking equation
Consider the following Petri net.

p0 p1 p2

p3

t0 t1

a) Write down the connectivity matrix C of the Petri net.

b) Argue that the marking Mf = (0, 0, 1, 0) that has one token in p3 is not reachable
from the initial marking M0 = (1, 0, 0, 1).

c) Prove that the marking equation Mf −M0 = C ⋅ c has a solution (i.e. there is a vector
c ∈ N

T satisfying the equation).

2.25 Exercise: Addition andmultiplication
Consider the (incomplete) Petri net containing places x, y and out depicted below.

x

y

additional places, transitions and arcs out

a) Add places and transitions to the net such that any computation of the net starting
in
M0(x) = m,M0(y) = n,M0(out) = 0 terminates in a marking Mf with Mf(out) = m + n.

(Terminating means that no transition is enabled anymore.)
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2. Petri nets

b) Add places and transitions to the net such that any computation of the net starting
in
M0(x) = m,M0(y) = n,M0(out) = 0 terminates in a marking Mf with
Mf(out) ∈ {0, . . . ,m ⋅ n}.

In each part of this exercise, argue briefly that your construction is correct.

2.26 Exercise: VASS
There are other automata models that are equivalent to Petri nets, but they are less
useful to model concurrent systems.

A vector addition system with states (VASS) of dimension d ∈ N is a tuple
A = (Q,Δ, q0, v0) where Q is a finite set of control states, Δ ⊆ Q × Z

d × Q is a set of
transitions, q0 ∈ Q is the initial state and v0 ∈ N

d is the initial counter assignment. We
write transitions (q, a, q′) ∈ Δ as q

a
−→ q′. A configuration of a VASS is a tuple (q, v) con-

sisting of a control state q ∈ Q and a counter assignment, a vector v ∈ N
d. The initial

configuration of interest is (q0, v0). A transition (q, a, q′) is enabled in some configura-
tion (q′′, v) if q′′ = q and (v + a) ∈ N

d (i.e. (v + a)i ⩾ 0 for all i ∈ {1, . . . , d}). In this case, it
can be fired, leading to the configuration (q′, v+a). Reachability is defined as expected.

a) Let (N,M0,Mf) be a Petri net. Show how to construct a VASS A and a configuration(qf, vf) such that (qf, vf) is reachable from (q0, v0) in A if and only if Mf is reachable
from M0 in N.

b) Let A be a VASS and (qf, vf) a configuration. Show how to construct a Petri net(N,M0,Mf) such that (qf, vf) is reachable from (q0, v0) in A if and only if Mf is reach-
able from M0 in N.

c) (Bonus exercise, not graded.) A vector addition system (VAS) is a VASSwith a single
state, i.e. Q = {q0}. Show that VAS-reachability is interreducible with VASS reacha-
bility (or Petri net reachability).
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3. Petri net coverability

Instead of considering Petri net reachability, we will study Petri net coverability.

Let us motivate this by an example: A typical application of concurrency theory is the
verification of mutual exclusion protocols. For this problem, the goal is to verify that
only one thread can access a critical section at a time. If wemodel this as a Petri net, this
means that we have to check that there is no reachable marking in which the amount
of tokens in some place cs modeling the critical section is 2 or larger. We do not care
about the precise amount of tokens in cs, and we do not care about the assignment of
tokens to other places. This means we are interested in checking whether a markingM
withM(cs) ⩾ 2 is reachable. Phraseddifferently, weare interested in checkingwhether a
markingM that is larger or equal toMf in every component is reachable, withMf(cs) = 2
and Mf(p) = 0 for all p ≠ cs.

3.1 Definition
Petri net coverability

Decide: Petri net N, initial marking M0, final marking Mf

Decide: Is there a firing sequence σ ∈ T∗ and a marking M ∈ N
P

such that M0 σ M and M ⩾ Mf?

As usual in this lecture, by M ⩾ Mf we mean that M(p) ⩾ Mf(p) for all p ∈ P.

We call a computation M0 σ M with M ⩾ Mf a covering computation.

Another reason for coverability being interesting is the following monotonicity prop-
erty of Petri nets.

3.2 Lemma
LetNbe a Petri net andM1,M2 bemarkings and t a transition. IfM1 t M′

1 andM2 ⩾ M1,
then M2 t M′

2 with M′
2 ⩾ M′

1. If we had M2 > M1 (i.e. in addition to M2 ⩾ M1, there is
at least one component p with M2(p) > M1(p)), then also M′

2 > M′
1.

Proof:
Transition t is enabled in M2 since M2 ⩾ M1 ⩾ in(t). Furthermore,

M′
2 = M2 + e(t) ⩾ M1 + e(t) = M′

1 .

If M2 > M1, we have M′
2 = M2 + e(t) > M1 + e(t) = M′

1.
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3. Petri net coverability

We also say that larger markings are able to simulate the transition of smaller markings.
This fact can be represented by the following diagramm.

M1 M′
1

M2 M′
2

t

t

⩽ ⩽

In the following, wewant to prove that coverability is an EXPSPACE-complete problem.

• In Section 4, we consider an Algorithm due to Rackoff that solves coverability
using exponential space.

• In Section 5, we present Lipton’s famous proof for the EXPSPACE-hardness of cov-
erability and reachability.

Exercises

3.3 Exercise: Petri net constructions

a) Let (N,M0,Mf) be a Petri net. Explain how to construct a Petri net (N′
,M′

0,M
′
f) with

M′
0(p) = 0 for all places but a single place p′ with M′

0(p′) = 1 and M′
f(p) = 0 for all

places such that
Mf ∈ R(N,M0) iff M′

f ∈ R(N′
,M′

0).
b) Let (N,M0,Mf) be a Petri net. Explain how to construct a Petri net (N′

,M′
0,M

′
f) such

that
Mf is coverable from M0 in N iff M′

f is reachable from M′
0 in N′.

c) Construct a Petri net N with only 3 places, a marking M0 and markings Mc∧r,M¬c∧¬r

and Mc∧¬r such that

• Mc∧r is reachable and coverable from M0,

• M¬c∧¬r is neither reachable nor coverable, and

• Mc∧¬r is coverable, but not reachable.

In each part of this exercise, argue briefly that your construction is correct.

3.4 Exercise: The Ackermann function

a) The three-argument Ackermann function φ is defined recursively as follows.

23



3. Petri net coverability

φ∶N3
→ N

φ(m, n, 0) = m + n
φ(m, 0, 1) = 0
φ(m, 0, 2) = 1
φ(m, 0, x) = m for x > 2
φ(m, n, x) = φ(m, φ(m, n − 1, x), x − 1) for n > 0 and x > 0

Formally prove the following equalities (e.g. using induction):

φ(m, n, 0) = m + n, φ(m, n, 1) = m ⋅ n, φ(m, n, 2) = mn
.

b) Nowadays, one usually considers the following two-parameter variant.

A∶N2
→ N

A(0, n) = n + 1
A(m, 0) = A(m − 1, 1) for m > 0
A(m, n) = A(m − 1,A(m, n − 1)) for m > 0 and n > 0

For example, we have

A(1, 2) = A(0,A(1, 1)) = A(0,A(0,A(1, 0))) = A(0,A(0,A(0, 1))) = A(0,A(0, 2)) = A(0, 3) = 4 .

Similar to this computation, write down a full evaluation of A(2, 3).
3.5 Exercise

3.6 Exercise: Communication-free Petri nets and SAT
A communication-free Petri net (or BPP net) is a Petri net in which each transition
consumes at most one token, i.e. we have ∀t ∈ T∶∑p∈P in(t, p) ∈ {0, 1}.
Show that the coverability problem for communication-free Petri nets is NP-hard by
reducing SAT.

To this end, show how to construct in polynomial time from a given Boolean formula
φ in conjunctive normal form communication-free Petri net (N,M0,Mf) such that Mf is
coverable if and only if φ is satisfiable.

Hint: Introduceplaces for theparts of the formula. A computationof thenet should first
define a variable assignment, and then evaluate the formula under the assignment.

Remark: In fact, reachability and coverability for communication-free Petri nets are NP-
complete.
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3. Petri net coverability

3.7 Exercise: 1-safe Petri nets and Boolean programs
Recall that a Petri net (N,M0) is 1-safe if we have M ∈ {0, 1}P for all M ∈ R(N,M0).
Consider Boolean programs, sequences of labeled commands over a fixed number of
Boolean variables. For simplicity, we restrict ourselves to the following types of com-
mands:

z ← x ∧ y z ← x ∨ y z ← ¬x

if x then goto lt else goto lf goto l halt

Here, x, y, z are variables and l, lt, lf are labeles. The semantics of the commands are
expected.

Assume that the initial variable assignment is given by x = false for all variables x.

Assume that a Boolean program is given. Explain how to construct an equivalent 1-
safe Petri net. Equivalent means that the unique execution of the Boolean program is
halting if and only if a certain marking is coverable.

Remark: This proves that coverability for 1-safe Petri nets is PSPACE-hard. In fact, cov-
erability and reachability for 1-safe Petri nets are PSPACE-complete.
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4. Rackoff’s algorithm for coverability

We prove the following result.

4.1 Theorem: Rackoff 1978 [Rac78]
The Petri net coverability problem can be solving using exponential space in terms of
the input.

Sources
This subsection is based on the original paper [Rac78] and on RolandMeyer’s notes on
the topic:

tcs.cs.tu-bs.de/documents/ConcurrencyTheory_WS_20162017/rackoff.pdf

The algorithm that we construct to prove Theorem 4.1 is a brute force enumeration of
all computations up to a certain length. To be precise, we proceed as follows:

1. We show that if a covering computation exists, then there is one of doubly expo-
nential length.

2. We show that all such computations can be enumerated and tested using expo-
nential space.

Proving the first step is the tricky part. To do so, we relax the enabledness-condition of
Petri nets. Instead of considering markings in N

P, we consider pseudo markings in Z
P

in which only the first i components need to stay non-negative, where 0 ⩽ i ⩽ ∣P∣. We
then prove a variant of the theorem for each i by induction, i.e. we iteratively increase
the number of components that are treated properly. The case inwhich i is the number
of places yields the desired result.

Throughout this section, (M,M0,Mf) is the fixedPetri net of interest. Wewill assume that
the places are ordered, i.e. P = {1, . . . , l} for some number l ∈ N. This can be enforced
by an appropriate renaming. We furthermore us n = ∣N∣+ ∣Mf∣+ ∣M0∣ to denote the size
of the encoding of the input net.

4.2 Definition
Let i ∈ {0, . . . , l} be a number.

A pseudo marking is a vector M ∈ Z
P. It is called i-non-negative if we have M(p) ⩾ 0

for all p ∈ {1, . . . , i}. It is called i-covering if we have M(p) ⩾ Mf(p) for all p ∈ {1, . . . , i}.
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4. Rackoff’s algorithm for coverability

In an i-non-negativemarkingM, a transition t is i-enabled if we haveM(p) ⩾ in(p) for all
p ∈ {1, . . . , i}. In this case, we can fire it, yielding the newmarkingM′ = M+e(t) as usual.
We also write M t M′ as it will be clear from the context which i we are considering.

An i-non-negative, i-covering computation is a sequence of markings and transitions

M0 t1 M1 t2 M2 t3 . . . tm Mm

such that each marking Mi is i-non-negative and Mm is i-covering.

4.3 Remark
Note that every pseudo marking is 0-non-negative and 0-covering. Every sequence of
markings and transitions as above is a 0-non-negative, 0-covering computation.

An l-non-negative pseudomarking is a normal marking, an l-coveringmarking is cov-
ering, and an l-non-negative, l-covering computation is a covering computation.

4.4 Definition
For some marking M and i ∈ {0, . . . , l}, we define

m(i,M) = min{∣σ∣ + 1 ∣M σ M′ is a i-non-negative, i-covering computation} .
We define m(i,M) = 0 if no such computation exists.

Ourgoal is toobtain abound form(l,M0), i.e. the casewherewe treat all placesproperly
and consider the initial marking of interest. In the proof of the bound, we will need to
consider a different marking as initial. Therefore, we quantify over all initial markings.

4.5 Definition
For i ∈ {0, . . . , l}, we define

f(i) = max{m(i,M) »»»»»M ∈ Z
P} .

First note that it is not at all clear that f(i) is a well-defined natural number, as m(i,M)
could grow unboundedly for different values of M. If we prove a bound on f(i), we will
not only show that it is well-defined, but we will also obtain a bound for m(i,M0) ⩽ f(i).
This is provided by the following technical lemma and proposition.

4.6 Lemma
f(0) = 1.
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Proof:
For each M ∈ Z

P, the empty computation M ε M is 0-non-negative and 0-covering.
We have m(0,M) = ∣ε∣ + 1 = 1 and thus f(0) = 1.

4.7 Proposition
For all i ∈ {0, . . . , l− 1}, we have

f(i + 1) ⩽ (2n ⋅ f(i))i+1 + f(i) .
Proof:
Recall that f(i + 1) = maxM∈ZP m(i + 1,M). Hence, if we prove that
m(i + 1,M) ⩽ (2n ⋅ f(i))i+1 + f(i) for all pseudo markings M ∈ Z

P, we are done. Let
M ∈ Z

P be an arbitrary pseudo marking.

If there is no (i + 1)-non-negative and (i + 1)-covering computation, then we have
m(i + 1,M) = 0, which obviously satisfies the desired bound. Let us therefore assume
that such a computation exists, i.e. we have

M = M(0) t1 M(1) t2 M(2) t3 . . . tm M(m)
such that all transitions are (i+1)-enabledwhen they are fired, all markingsMi are (i+1)-
non-negative and M(m) covers Mf in the first i + 1 components.

Our goal is to transform this computation such that it remains (i+ 1)-non-negative and(i + 1)-covering, but satisfies the bound on the length. We distinguish two cases.

Case 1: In all occurring markings, the number of tokens in the first (i + 1) places is
bounded by 2n ⋅ f(i) − 1.

2nf(i)

This means∀j ∈ {0, . . . ,m},∀p ∈ {1, . . . , i + 1}, M(j)(p) < 2n ⋅ f(i). Furthermore, we have
M(j)(p) ⩾ 0 as the computation was (i + 1)-non-negative.
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4. Rackoff’s algorithm for coverability

Assume that the computation above contains markings M(j) and M(j′) for j < j′ that co-
incide on the first i + 1 components. Then, we can delete the transitions tj+1, . . . , tj′ ,
obtaining the new computation

M = M(0) t1 . . . tj M(j) tj′+1 M̂(j′+1) tj′+2 . . . M̂(m)
.

Note that since M(j) and M(j′) coincide in the first (i + 1) components, transition tj′+1 is(i + 1)-enabled in M(j). Furthermore, for each k, M(j′+k) and M̂(j′+k) coincide on the first(i + 1) components.

Consequently, the newly constructed computation is (i + 1)-non-negative and (i + 1)-
covering. It still satisfies in all markings that the number of tokens on the first (i + 1)
places is bounded by 2n ⋅ f(i) − 1.

2nf(i) 2nf(i)
⩽ (2nf(i))i+1

We may iteratively apply the step above to shorten the initial computation until we
arrive at a computation in which there are no two markings that coincide on the first(i+1)places. Wehave »»»»»{0, . . . , 2n ⋅ f(i) − 1}i+1»»»»» = (2n ⋅ f(i))i+1, i.e. there are only (2n ⋅ f(i))i+1
many possibilities for the first (i+ 1) components. Consequently, a repetition-free com-
putation consists of at most (2n ⋅ f(i))i+1 manymarkings. Its number of transition is thus(2n ⋅ f(i))i+1 − 1, which is smaller than the bound for f(i + 1) that we wanted to show.

Case 2: There is a marking in which some of the first (i + 1) places exceeds the bound
of 2n ⋅ f(i) − 1 many tokens.

2nf(i)
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Consider the first marking M(j) (i.e. with j minimal) in which some place p contains at
least 2n ⋅ f(i)many tokens. By reordering the places appropriately, wemay assumewith-
out loss of generality that this happens for the place i + 1, i.e. we have

M(j)(i + 1) ⩾ 2n ⋅ f(i) .
(Theremight beother places that also exceed thebound inM(j), whichwill not influence
the correctness of our proof.) Let σ = t1 . . . tm be the sequence of the transitions used in
the computation. We split it into σ = σ1.tj.σ2 such that σ1 = t1 . . . tj−1 and σ2 = tj+1 . . . tm.
We can write our original computation is

M σ1 M(j−1) tj M(j) σ2 M(m)
.

Note that in the computation M σ1 M(j−1), all markings admit the bound. Therefore,
we may treat it as in Case 1 and can assume that it has length at most (2n ⋅ f(i))i+1 − 1.

NowconsiderM(j). Weknow that there is a i-non-negative, i-covering computation from
M(j) on, namely M(j) σ2 M(m). We thus have m(i,M(j)) ≠ 0. We furthermore have
m(i,M(j)) ⩽ f(i). By the definition of f(i), there is an i-non-negative, i-covering compu-
tation

M(j)
σ′2 M̂

with ∣σ′2∣ ⩽ f(i) − 1.

We claim that
M σ1 M(j−1) tj M(j)

σ′2 M̂ .

is the desired (i + 1)-non-negative, (i + 1)-covering computation with

∣σ1.tj.σ
′
2∣ ⩽ ∣σ1∣ + 1 + ∣σ′2∣ ⩽ ((2n ⋅ f(i))i+1 − 1) + 1 + (f(i) − 1) = (2n ⋅ f(i))i+1 + f(i) − 1 .

2nf(i)
⩽ (2nf(i))i+1 ⩽ f(i)

That the bound on the length holds is clear from the inequalities above. It remains
to argue that all transitions in σ′2 are (i + 1)-enabled when they are fired and that the
computation is indeed (i + 1)-non-negative and (i + 1)-covering.
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Since M(j)
σ′2 M̂ was an i-non-negative and i-covering computation, we do not have

to care about the first i places; their value in each occurringmarking coincides with the
value in the corresponding marking of M(j)

σ′2 M̂. It remains to consider to consider
place i + 1.

Recall that n = ∣N∣ + ∣Mf∣ + ∣M0∣. By the definition of the size of the encoding of a
marking resp. Petri net, the maximal multiplicity of any arc in the net is 2n. This means
in the worst case, each transition contained in σ′2 consumes 2n tokens on place i + 1.
Note that σ′2 has length at most f(i) − 1.

We obtain that firing σ′2 consumes at most 2n ⋅ (f(i) − 1) tokens from (i + 1). Recall that
we assumed that M(j)(i + 1) is at least 2n ⋅ f(i). Therefore, we have that the number of
tokens on place i + 1 on M(j)

, M̂ and any marking occurring in between is at least

(2n ⋅ f(i)) − (2n ⋅ (f(i) − 1)) ⩾ 2n
.

We conclude that all transitions are (i + 1)-enabled whenever they are fired and the
computation is indeed (i + 1)-covering. We have that M̂ is greater or equal to Mf in the
first i components. Since n = ∣Mf∣ + ∣N∣ + ∣M0∣, we have Mf(i + 1) ⩽ 2n ⩽ M̂(i + 1), so the
computation is also i + 1-covering. This finishes the proof.

The proposition gives us a recursively defined bound for f(i). We will combine it with
Lemma 4.7 to obtain a non-recursive bound. We start by giving a simpler recursive
bound.

4.8 Lemma
Define g(0) = 23n and g(i + 1) = (g(i))3n. We have f(i) ⩽ g(i) for all i.
Proof:
Before we can prove the main statement of the lemma, we have to show that
2n⋅(i+1) ⩽ g(i) for all i. We proceed by induction on i.

Base case, i = 0.

We have 2n⋅1 = 2n ⩽ g(0) = 23n.

Inductive step, i → i + 1.
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We have

2n⋅((i+1)+1) = 2n⋅(i+1) ⋅ 2n ⩽ g(i) ⋅ 2n

⩽ g(i) ⋅ g(0) ⩽ g(i) ⋅ g(i)
= (g(i))2 ⩽ (g(i))3n
= g(i + 1) .

We can now prove the statement of the lemma by induction.

Base case, i = 0. We have f(i) = 1 < 8 ⩽ 23n = g(0) using Lemma 4.6.

Inductive step, i → i + 1.

We have
f(i + 1) ⩽ (2n ⋅ f(i))i+1 + f(i)

by Proposition 4.7. Note that this expression is monotonous in f(i), so we may use the
induction hypothesis to obtain

f(i + 1) ⩽ (2n ⋅ g(i))i+1 + g(i)
= (2n)i+1 ⋅ g(i)i+1 + g(i)
= (2n⋅(i+1)) ⋅ g(i)i+1 + g(i) .

Using the statement that we have proven above, we finally obtain

f(i + 1) ⩽ (2n⋅(i+1)) ⋅ g(i)i+1 + g(i)
⩽ g(i) ⋅ g(i)i+1 + g(i)
⩽ 2 ⋅ g(i) ⋅ g(i)i+1
⩽ 2 ⋅ g(i) ⋅ g(i)n = 2g(i)n+1
⩽ g(i)n+2 ⩽ g(i)3n
= g(i + 1) .

Here, we have used that i + 1 is at most the number of places l, and n ⩾ ∣N∣ ⩾ l.

We can now use this lemma to obtain a non-recursive bound.

4.9 Lemma
We have

a) g(l) ⩽ 2(3n)n
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b) (3n)n ⩽ 2c⋅n log n, where c is a constant independent of n.

Proof:

a) By definition, we have

g(l) = (. . . (23n)3n . . .)3n ,
where we have l+ 1 powers of 3n. We iteratively us the power law (ab)c = abc to
obtain

g(l) = 2(3n)(l+1) ⩽ 2(3n)n .
b) We have

(3n)n = (3 ⋅ 2log n)n ⩽ (22 ⋅ 2log n)n
= (2log n+2)n ⩽ (24 log n)n
= 24n log n

.

We combine all results to obtain the following proposition.

4.10 Proposition
IfMf is coverable fromM0, then there is a covering computationof length atmost 22c⋅n log n

,
where c is a constant not dependent on the size of the input.

Proof:
The definition of m(l,M0), m(l,M0) ⩽ f(l), Lemma 4.8 and Lemma 4.9.

Wehave finally obtained that if there is a covering computationM σ M (withM ⩾ Mf),
then there is one with ∣σ∣ ⩽ 2c⋅n log n. We have to construct an algorithm that uses this
fact to decide coverability.

Proof of Rackoff’s theorem, Theorem 4.1:
Wehave to prove that there is a deterministic algorithmusing exponential space check-
ing whether a covering computation exists.

We first construct a non-deterministic algorithm that does this. The algorithm keeps
track of a marking M and a counter c

1: M ← M0

2: c ← 0
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3: while c ⩽ 22c⋅n log n

do
4: c ← c + 1
5: Guess a transition t.
6: Verify that it is enabled in M
7: Compute the marking M′ with M t M′

8: M ← M′

9: if M ⩾ Mf then
10: return true
11: end if
12: end while
13: return false

If the verification that t is enabled fails or the algorithm reaches c > 22c⋅n log n

, it returns
false.

Using Proposition 4.10, it is clear that the algorithm has a computation returning true
if and only if Mf is coverable from M0.

We still need to argue that the algorithm can be implemented using exponential
space. The algorithm needs to store c, which can be done via a binary encoding us-
ing log 22c⋅n log n

= 2c⋅n log n many bits.

We furthermore need to store the marking M. Note that any marking M that occurs
assigns to each place at most

M0 + 22c⋅n log n

⋅ 2n ⩽ 22c⋅n log n

⋅ 2n+1

⩽ 22c⋅n log n+n+1

many tokens. (Here, we have used ∣M0∣ ⩽ n.) This number can be represented in binary
using at most 2c⋅n log n + n + 1 many bits.

To finish the proof, we need to convert the non-deterministic algorithm to a determin-
istic one. Savitch’s theorem proves that NEXPSPACE = EXPSPACE, yielding a determin-
istic algorithm for coverability using only exponential space.

Exercises

4.11 Exercise: Rackoff’s bound
Consider the Petri netN = ({1, 2, 3, 4}, {a, b, c, x}, in, out)withmultiplicities as depicted
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below. The initial marking of interest is M0 = (1, 0, 0, 0)T and the final marking is
Mf = (1, 0, 10, 100)T.

1 x

2

c

a

b

3

4

Compute the values m(3,M0) and f(3) and argue why they are correct.

35



5. Lipton’s hardness result

5. Lipton’s hardness result

We prove that all interesting properties of general Petri nets are EXPSPACE-hard. More
precisely, they require at least 2O(√n) space, where n is the size of the encoding of the
input. Interesting properties include reachability and coverability. By this, we obtain
that Rackoff’s algorithm for coverability is in the optimal complexity class.

Sources
The result was proven by Lipton in 1976 [Lip76]. Our presentation is based on Roland
Meyer’s handwritten notes on the topic:

tcs.cs.tu-bs.de/documents/ConcurrencyTheory_SS_2015/lipton_part_1_week_3.pdf

tcs.cs.tu-bs.de/documents/ConcurrencyTheory_SS_2015/lipton_part_2_week_3.pdf

These notes are based on a survey paper by Javier Esparza [Esp98].

The result follows from the following theorem.

5.1 Theorem: Lipton 1976 [Lip76]
Adeterministic Turingmachine of size nwith exponential space consumption (in n) can
be simulatedby aPetri net of sizeO(n2). This Petri net canbe constructed inpolynomial
time.

Here, we assume that that the Turing machine is running on the empty input. This
means we reduce the following problem that is known to be EXPSPACE-hard.

Turing machine acceptance on empty input with exponential space bound

Decide: Turing machineM of size n with space consumption bounded by 2n

Decide: DoesM accept the empty word?

Unfortunately, it is technically challenging to encode a Turing machine into a Petri net.
The Petri net is essentially a type of (concurrent) counter machine, while the Turing
machine uses an ordered tape as storage. It is not clear how to represent a tape cell
(that has oneof finitelymany symbols as content) by aplace (that carries anunbounded
number of tokens). To overcome this, we will need some intermediary steps.

Our approach:

Turing machine ⟶ counter program ⟶ PN program ⟶ Petri net
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From Turing machines to counter programs:

A counter program is a goto-program that manipulates a fixed number of non-
negative counters, variables that store a natural number. (A more formal definition
will be given later.) In a bounded counter program, the variables are not incremented
beyond some fixed bound.

5.2 Theorem
A deterministic TuringmachineM of size n can be simulated by a counter program cM
consisting of O(n) commands such that M halts on the empty tape if and only if cM
halts.

IfM uses at most 2n cells, then the counters in cM are bounded by 22n

.

The program cM can be constructed in polynomial time.

Proof sketch:
Weassumewithout loss of generality that the Turing-Machine uses {0, 1} as tape alpha-
bet.

We represent the tape content of the Turingmachine by two stacks. Assume the Turing
machine is in configuration w q v, i.e. w ∈ {0, 1}∗ is the tape content to the left of the
head, v ∈ {0, 1}∗ is the rest of the stack, and the first letter of v is the content of the cell
to which the head is pointing. Then the first stack contains w, where the first symbol is
stored at the bottomand the last symbol is stored at the top. The second stack contains
vwhere the first symbol is stored at the top and the last symbol is stored at the bottom.
Moving the head can nowbe realized by popping fromone stack and pushing onto the
other.

A stack over {0, 1} can be simulated by two counters. One counter holds the natural
number represented by the stack content, where the least significant bit represents
the topmost entry of the stack. Operations on the stack can be simulated my manip-
ulating this number. For example, pushing 1 onto the stack representing value v ∈ N

is implemented by setting the stack value to 2v + 1. The second counter is needed as
auxiliary storage to be able to implement the operations.

Combining these two insights, we obtain that the tape of a Turing machine can be
simulated by four counters.

If the tape size is at most 2n, then so is the size of each of the stacks. The natural num-
bers that occur as counter values are obtained by seeing the stacks as binary numbers.
Consequently, the numbersmay be exponential in the size of the stack. We obtain that
if the tape has at most size 2n, then the counters are bounded by 22n

.
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5.3 Remark

• In fact, one could further reduce the numbers of counters needed to simulate a
tape from 4 to 2 by using an encoding in terms of prime numbers [Min67]. Using
this technique, one would obtain that if the tape contains at most 2n cells, the

counter values are bounded by 222n

, which is triply exponential.

• The first part of the theorem holds independently of the second one: A counter
program can simulate a Turing machine even if its space consumption is not
bounded. In fact, counter programs over two counters are Turing complete and
all interesting properties (like halting) are undecidable.

By the above theorem, it is clear that the following problem is EXPSPACE-hard, so it is
sufficient to reduce it to Petri net coverability.

Halting problem for counter programs with doubly-exponentially bounded counters

Decide: A counter program c with counter values bounded by 22n

Decide: Does c halt?

We proceed to give a formal definition of counter programs.

5.4 Definition: Counter program
A counter program over a set of counter variables x0, . . . , xm consists of a sequence of
labeled commands

l0∶ cmd0;

l1∶ cmd1;

⋮

ln∶ cmdn;

Each cmdi is of one of the following types:

• Increment:
cmdi = xj++

where xj is a counter.

• Decrement:
cmdi = xj−−

where xj is a counter.
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• Unconditional jump:
cmdi = goto lk

where lk is a label.

• Conditional jump / Zero test:

cmdi = if xj = 0 then goto lz else goto lnz

where xj is a counter and lz, lnz are labels.

• Halt:
cmdi = halt .

We require that each command has a distinct label. When writing down programs, we
sometimes omit the labels of commands that do not occur as the target location of a
jump. We will later assume without loss of generality that the last labeled command is
ln∶ halt;

The semantics is as expected:

• A configuration of the program is a label l together with an assignment
M ∈ {0, . . . , b}k of the variables.

• If the command for the current label lk is xj++, then the value of xj is incremented
and the program goes to the next label lk+1.

• If the command for the current label lk is xj−−, then the value of xj is decremented
and the program goes to lk+1.

This can only happen if the current value of xj is non-zero. If it is zero, the execu-
tion gets stuck.

• If the command for the current label is goto lk, then the programgoes to lk with-
out changing the variable assignment.

• If the command for the current label is if xj = 0 then goto lz else goto lnz,
then the program goes to lz or lnz, depending on whether the value of xj in the
current variable assignment is 0.

• If the command for the current label is halt, the execution halts.
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In the initial configuration, the program is at l0 and all variables have value 0.

Note that counter programs are deterministic: There is a unique computation of a pro-
gram from the initial configuration. This computation might be infinite, get stuck be-
cause of a blocked decrement, or it might reach a halt command.

The halting problem for counter programs is, given a counter program, checking
whether the unique execution of the program reaches a halt-command.

Simulating zero tests:

In the following, we will only consider counter programs in which the counter values
never go above 22n

, where n is the number of commands. Our goal is to translate such
a counter program into an equivalent Petri net.

When translating a counter program into a Petri net, increments, decrements, halting
and unconditional jumps can be easily modeled. The problem are the zero tests: A
transition of a Petri net can only check that a marking has at least a certain number of
tokens in a place, but it cannot check that there is no token in a place.

The absence of zero tests is the crucial difference between Petri nets and counter pro-
grams. Any extension of Petri nets that allows for zero tests makes them Turing com-
plete and thus the reachability problem becomes undecidable. (But there are “mild”
extensions of Petri nets that do still have a decidable reachability problem.)

To be able tomodel zero tests, we can use that the counters are bounded. We represent
the counter variable xj by two places: The number of tokens on place xj is the value of
xj, the number of tokens on place xj is the boundminus this value. Wewill maintain the
invariant

xj + xj = 22n

.

Incrementing and decrementing xj can now be done by moving tokens from xj to xj

respectively the other way around. Checking that xj is non-zero can be done by decre-
menting it and incrementing it again: If it was zero, thedecrement blocks the execution.
Instead of testing that xj is zero, we can test that M(xj) = 22n

.

The problem is the initialization of the places: Since we assume that the initial values
of the counters is 0, we need to have xj = 22n

in the initial marking., We cannot define
our initial marking like this, since log 22n

= 2n is not polynomial, but exponential in n.

Lipton’s famous trick is a procedure that allows a polynomially-sized Petri net to create
exactly 22n

tokens on a place. Understanding this trick is the fundamental part of the
proof of the following theorem.
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5.5 Theorem: Lipton 1976 [Lip76]
A counter program with n commands and counters bounded by 22n

can be simulated
by a Petri net of sizeO(n2). This Petri net can be constructed in polynomial time.

PN programs and Petri nets:

Towards a proof of the theorem, we would need to construct for each command of
the counter program an equivalent part of the Petri net. Doing this directly is possible,
but messy. We instead opt for introducing PN programs and using them as another
intermediary step.

5.6 Definition: PN program
A PN program over a set of counter variables x0, . . . , xm is a sequence of labeled com-
mands, just as a counter program.

The halt command, and increment, decrement and unconditional jump are valid com-
mands, just as for counter programs. We furthermore have the following types of com-
mands

• Nondeterministic branching:

cmdi = goto le or goto lo

where le, lo are labels.

When executing this command, the execution will nondeterministically either
continue at label le or at label lo, without changing the variable assignment.

• Subroutine call & return:
cmdi = call lsr

cmdi′ = return

When executing call lsr, the execution will continue at label lsr, but it will store
the label li from which the call was made.

When return is executed inside this subroutine, then the execution will con-
tinue at label li+1, i.e. the location at which the routine was called.

5.7 Remark
It might seem like the semantics of PN programs requires us to keep track of an un-
bounded call stack (to be able to return to the correct location). We will actually only
considerwell-structured programs, in which
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• unconditional jumps will only jump inside the current subroutine,

• there is an order on the routines, i.e. the program consists of a main routine, 1st

level subroutines, 2nd level subroutines and so on. We guarantee that a level k
subroutine only calls subroutines of level k + 1 and higher.

By those two conditions, the height of the call stack is bounded by some number that
can be extracted from the syntax of the program.

5.8 Remark
In contrast to counter programs, PN programs are non-deterministic. There is not a
unique execution anymore. The halting problem is now checking whether an execu-
tion exists that reaches halt.

To a PN program, we can assign an equivalent Petri net. In the following, we show how
to do this for all commands but subroutine calls and returns.

5.9 Definition: Petri net semantics of PN programs, Part 1
To a PN program, we can associate a Petri net with one place for each counter variable
x one place for each label li, and a special place for halt. The transitions are as follows.

li

li+1

xx++

Encoding of li∶ x++;

li

halt

halt

Encoding of li∶ halt;

li

li+1

xx−−

Encoding of li∶ x−−;

li

lk

goto lk

Encoding of li∶ goto lk;
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li

le lo

Encoding of li∶ goto le or goto lo;

It remains to see how subroutine calls and returns are handled. Before defining this
formally, we consider an example.

5.10 Example
Consider the following example program.

l0∶ call l3;

l1∶ call l3;

l2∶ halt
l3∶ goto l4 or goto l5;

l4∶ return;
l5∶ return;

.

The lines 0, 1, 2 form the main routine, the lines 3, 4, 5 a 1st level subroutine.
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The following Petri net is the net associated to this program.

l0

l0 wait for l4

l1

l1 wait for l4

l2

halt

l3

l4 l5

return from l3

call l3

return (from l3)

call l4

return (from l3)

halt

We can now define the construction in general. Note that we chose not to make con-
cepts like subroutines formal.

5.11 Definition: Petri net semantics of PN programs, Part 2
The Petri net associated to a PN program has a return place for each subroutine. Any
return inside the routine will be modeled as a transition moving the token to the re-
turn place.

A routine call is modeled using two transitions: When the procedure is called, two to-
kens are produced, one on the entry location of the routine, and one on a special wait
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place. The return transition consumes a token fromthe return locationof theprocedure
and one from the wait place.

Overall, we obtain that a PN program with at most n commands (and therefore also at
most n counters) can be modeled as a Petri net of at most O(n) transitions and O(n)
places. The size of this net is consequently inO(n2).
Note that this representation is compact: Since the programs we consider are well-
structured, we could unfold them to get rid of subroutines. In the example, we could
create two copies of the subroutine 4, 5, 6, one copy for the first call and one for the
second.

5.12 Proposition
A PNprogramhas a halting execution if and only if in the associated Petri net, themark-
ing that requires one token on the halt-place is coverable.

Consequently, it is sufficient to show that we simulate a counter program by a PN pro-
gram.

From counter programs to PN programs:

Wewill nowprove the following: Given a counter programwith n commands and coun-
ters bounded by 22n

, we can construct a PN program with O(n) commands in polyno-
mial time such that the unique execution of the counter programhalts if and only if the
PN program has a halting execution.

Recall that for each variable x of the counter program, the PN program will have vari-
ables x, x and we will have the invariant

x = 22n

− x .

Initially, all variables have value 0. The PN program np that we construct is of the shape

np = npinit; npsim .

In npinit, the variables x are set to 22n

. After executing it, the invariant will hold. The
second part npsim will simulate the given counter program, maintaining the invariant.

The construction of the simulation, npsim:

We will first discuss how to construct npsim, assuming that the variables have been ini-
tialized correctly.
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• Each command x++ in the counter program is replaced by x++; x−− in the PN
program.

• Each command x−− in the counter program is replaced by x−−; x++ in the PN
program.

• halt and goto lcommands remain unchanged.

We still have to show how a zero test

l∶ if x = 0 then goto lz else goto lnz

can be modeled. Do this end, we design a macro

Testn(x, lz, lnz)
that replaces each zero test. Its behavior is specified as follows.

5.13 Definition: Specification of the macro Testn(x, lz, lnz)
• If Testn(x, lz, lnz) is executed starting from a variable assignment in which x = 0
holds, then some execution of themacro leads to lz and no execution leads to lnz.

• If Testn(x, lz, lnz) is executed starting from a variable assignment in which x > 0
holds, then some execution of the macro leads to lnz and no execution leads to
lz.

• There might be executions that do get stuck.

• Themacro Testn has no side effects: In any execution reaching lz or lnz, the vari-
able assignment will be unchanged.

To define Testn(x, lz, lnz), we introduce another macro Test′n(x, lz, lnz). It is s easier to
design, but it has a side effect: After an execution leading to lz, the values of x and x are
swapped. Other than that, its specification coincides with the one of Testn.

To cancel the swapping out, we swap twice.

5.14 Definition: Macro Testn(x, lz, lnz)
l∶ Test′n(x, lcont, lnz); // Swaps x and x

lcont∶ Test′n(x, lz, lnz); // Undoes the swap

46



5. Lipton’s hardness result

Note that if x is zero, after executing Test′n(x, lcont, lnz), we will have x = 22n

and x = 0.
Therefore, we have to test x for being zero in the next line.

The idea for the construction of Test′n(x, lz, lnz) is the following: If x > 0, this can be
verified by incrementing and decrementing again. If x = 0, we have x = 22n

, which can
be verified by decrementing x by 22n

. We non-deterministically guess which is the case.
Execution in which the wrong choice is picked block.

Assume that we had already constructed a subroutine Decnx that decrements x by 22n

.

5.15 Definition: Specification of the subroutine Decn

• The routine uses an auxiliary variable sn.

• If the initial value of sn is strictly less then 22n

, any execution of Decn will get stuck.

• If the value of sn is at least 22n

, then all executions of Decn that reach a return com-
mand have the effect

sn ← sn − 22n

, sn ← sn + 22n

,

and there is at least one such execution.

• There are no other side effects.

Using this subroutine, we finally define Test′n(x, lz, lnz).
5.16 Definition: Macro Test′n(x, lz, lnz)

goto lpositive or goto lloop; // guess nondeterministically
lpositive∶ x−−; x++; // verify x > 0

goto lnz; // verified non-zero
lloop∶ x−−; x++; // move x to sn

sn++; sn−−;
goto lexit or goto lloop; // guess whether moving is finished

lexit∶ call Decn; // check whether sn = 22n

goto lz; // verified zero

Note that even if x = 0 does hold, the execution of Test′n(x, lz, lnz)might get stuck if in
the loop, the value on x is not completely moved to sn.

It remains to construct the subroutine Decn. We will do this inductively, i.e. we will first
define Dec0 and then construct Deci+1, assuming that we have already defined Deci.
The specification of each Deci is similar to the specification of Decn, with 22n

replaced
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by 22i

. In the definition of Deci+1, we will use Test′i(x, lz, lnz), which is defined just like
Test′n(x, lz, lnz), but it calls Deci instead of Decn.

In the base case, we need to decrement sn by by 220

= 21 = 2. This is done by the
following routine.

5.17 Definition: Subroutine Dec0

s0−−;
s0−−;
s0++;
s0++;
return;

Assume we have already constructed Deci, a program decrementing sn by 22i

, and
Test′i(x, lz, lnz). We now show how to construct Deci+1, a program decrementing by
22i+1

.

We use the following trick:

22i+1

= 22⋅2i

= 22i+2i

= 22i

⋅ 22i

.

In other words: To decrement by 22i+1

, we decrement 22i

times by 22i

.

We implement this using two nested loops. More precisely, we use loop variables yi

and zi that are initially set to 22i

. Each execution of the loop body of the inner loop
decrements zi aswell as sn byone. As soon as zi hits 0, one execution of the loopbody of
the outer loop is finished, and we decrease yi by one. When yi hits 0, we have executed
the outer loop 22i

times and have successfully decremented sn by 22i

⋅ 22i

= 22i+1

.

5.18 Definition: Subroutine Deci+1

Assume that initially, we have yi = zi = 22i

and yi = zi = 0. The initialization phase will
initialize these variables accordingly.

louter∶ yi−−; yi++; // one execution of outer loop starts
linner∶ zi−−; zi++; // one execution of inner loop starts

si+1−−; si+1++; // the crucial decrement
Test′i(zi, linnerdone, linner); // check whether inner loop if finished

linnerdone∶ Test′i(yi, louterdone, louter); // check whether outer loop if finished

louterdone∶ return // decremented by 22i

⋅ 22i
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Executing subroutine Deci+1 is possible without getting stuck if we initially have
si = 22i+1

and si = 0.

Note that after the inner loop has been finished, we have moved the tokens from zi to
zi, i.e. we have zi = 22i

and zi = 0. As discussed earlier, Test′i(zi, linnerdone, linner) swaps the
values of zi and zi so that the variables are prepared for the next iteration outer loop.

Similarly, after the outer loop has finished, yi and yi are swapped, which is undone by
Test′i(yi, louterdone, louter) so that the variables can be reused in the next call of Deci+1.

We can finally combine everything and define npsim.

5.19 Definition: Program npsim

The program npsim consists of the subroutines Dec0, . . . , Decn and the given counter
program, modified as follows:

• Each increment x++ is replaced by x++; x−−.

• Each decrement x−− is replaced by x−−; x++.

• Each zero test if x = 0 then goto lz else goto lnz is replaced by the code of
the macro Testn(x, lz, lnz) as defined above.

The construction of the initialization, npinit:

The initialization has to set the variables to the values required by the simulation.

• x1, . . . , xk already have initial value 0.

• For each i, si, yi and zi already have initial value 0.

• x1, . . . , xk need to be initialized to 22n

.

• For each i ∈ {0, . . . , n}, si needs to be initialized to 22i

.

• For each i ∈ {0, . . . , n − 1}, yi and zi need to be initialized to 22i

.

Note that in Decn, we only use yn−1 and zn−1, so we do not need the counters yn and zn.

We will define for each i a macro Inci(v1, . . . , vm) that increments the values of
v1, . . . , vm by 22i

. Assume we had done this. Then we can define the initialization pro-
gram as follows.

5.20 Definition: Program npinit

The program npinit is
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Inc0(s0, y0, z0);
Inc1(s1, y1, z1);
⋮

Incn−1(sn−1, yn−1, zn−1);
Incn(sn, x1, . . . , xk);

It remains to construct for each i the macro Inci(v1, . . . , vm). We proceed similar to the
definition of Deci.

5.21 Definition: Macro Inci(v1, . . . , vm)
The program Inc0(v1, . . . , vm) is

v1++; v1++;

⋮

vm++; vm++;

It increments each vj by 2 = 21 = 220

.

For each i, the program Inci+1(v1, . . . , vm) is defined as follows.

louter∶ yi−−; yi++; // one execution of outer loop starts
linner∶ zi−−; zi++; // one execution of inner loop starts

v1++; v1++; // the crucial increments
⋮

vm++; vm++;

Test′i(zi, linnerdone, linner); // check whether inner loop if finished
linnerdone∶ Test′i(yi, louterdone, louter); // check whether outer loop if finished
louterdone∶ // here, the next part of the program should continue

Note that in Inci+1(v1, . . . , vm), we use Test′i(zi, linnerdone, linner). This requires that
the variables sj, yj, zj for j ⩽ i are already initialized. This is the case, as when
Inci+1(v1, . . . , vm) is used in npinit, the Incj(sj, yj, zj) that perform that initialization have
already been executed.

Furthermore, Inci+1(v1, . . . , vm)manipulates the variables yi and zi. Note that the calls
of Test′i (respectively the subsequent calls of Deci will only use yj and zj for j ⩽ i − 1, so
this is not a problem.
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Complexity analysis

It remains to consider the resulting PN program and show that its size is indeed inO(n).
It consists of several parts:

• The program for the initialization phase uses Inc0, . . . , Incn.

The Inc0, . . . , Incn−1 increment 3 variables each, so they are of size constant in
n and their total size is inO(n). Incn increments k + 1 variables, and k ⩽ n, so its
size is inO(n).

• The program for the simulation phase is obtained by replacing each command
of the counter program by a constant number of commands. Its total size is in in
O(n).

• The code for the subroutines Dec0, . . . , Decn is of constant size each. Their total
size is inO(n).

Adding everything, we obtain that we can simulate a counter program of size n with
counters bounded by 22n

by a PN program of sizeO(n). The size of the associated Petri
net is in O(n2). This finishes the proof of Theorem 5.5. Together with Theorem 5.2, we
obtain the desired result Theorem 5.1.

We conclude that Petri net coverability is EXPSPACE-hard. Coverability can be easily
reduced to reachability, so reachability is also EXPSPACE-hard, see Exercise 3.3.
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6. Petri net reachability

In this section, we want to study the Petri net reachability problem, proving that it is
decidable.

Recall Definition 2.12

Definition: Petri net reachability

Petri net reachability (PNREACH)

Decide: Petri net N, initial marking M0, final marking Mf

Decide: Is there a firing sequence σ ∈ T∗ such that M0 σ Mf?

6.1 Remark: The history of the Petri net reachability problem
The history of the Petri net reachability problem is a long one and it does not yet have a
happy end. Petri nets were introduced by Carl AdamPetri (PhD thesis “Kommunikation
mit Automaten” 1962, some sources claim he invented Petri nets 1939 at the age of 13).
For a long time, it was unclear whether the Petri net reachability problem is decidable,
i.e. whether there is an algorithm to solve it.

When complexity theory arose in the 1960s, it became clear that Petri net reachabil-
ity is at least PSPACE-hard. This means that any algorithm solving it requires at least
a polynomial amount of space, and, unless P = PSPACE holds, a superpolynomial
amount of time. In 1976, Lipton has proven that it is even EXPSPACE-hard [Lip76],
i.e. any algorithm solving it requires at least an exponential amount of space, and, un-
less EXP = EXPSPACE, a superexponential amount of time. (These lecture notes contain
a proof of Lipton’s result based on the presentation in [Esp98], see Theorem 5.1.) At this
time, it was still not clear whether such an algorithm actually exists. To quote Lipton
himself: “My theoremwould have been wiped out, if someone had been able to prove
that the reachability problem was undecidable.” [Lip09].

In 1977, Sacerdote and Tenney gave a partial proof of decidability [ST77]. In 1981, this
proof was completed by Mayr [May81], finally proving that Petri net reachability is de-
cidable. As the proof was highly complicated, simplified versions were later published
by Kosaraju [Kos82] and Lambert [Lam92]. All these proofs rely on a decomposition of
the reaching firing sequences, later dubbedKosaraju-Lambert-Mayr-Sacerdote-Tenney
(KLMST) decomposition by Leroux.

Recently, Leroux has done a lot of work on Petri net reachability. In 2009, he published
a proof of decidability [Ler09; Ler10] that uses the techniques from the previous proofs
(Mayr, Kosajaru, Lambert), but obtains a different algorithm. He shows that if the final
marking is not reachable, then there is a forward-inductive invariant, a set of a special
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shape containing all reachable markings but not the final marking. Forward-inductive
invariants can be shown to have a finite representation, so if an invariant exists, it can
be found by brute-force enumeration. This yields a semi-algorithm for unreachability
which then can be combined with a semi-algorithm for reachability, e.g. one that enu-
merates all computations.

In 2011, he published a different proof [Ler11b; Ler11a] that results in the same algo-
rithm, but obtains the fact that an forward-inductive invariant has to exist without rely-
ing on the KLMST decomposition. Later, he published a simplified version of this alter-
native proof [Ler12]. (See also a later article of him together with Finkel on the proofs
using inductive invariants [FL14; FL15].)

Until 2015, the exact time complexity of Mayr’s algorithm was unknown, but it was
clear that the KLMST decompositionmay need non-primitive recursive time. In 2015,
Leroux andSchmitz [LS15]. proved that the algorithm iswhat they call cubicAckermann,
i.e. roughly the Ackermann function applied to itself applied to itself applied to the size
of the net

The fact that even 30 years after Mayr’s proof, new proofs for a solved problem are pub-
lished at the best conferences shows on the one hand how complicated the original
proof is, and on the other hand that the interest in the topic is unbroken. Closing the
huge gap between the EXPSPACE lower bound and the non-primitive recursive upper
bound remains one of the biggest open problems of Theoretical Computer Science.

The goal of this section is to prove the following theorem.

6.2 Theorem: [May81; Kos82; Lam92; Ler09; Ler10; Ler11b; Ler11a; Ler12]
Petri net reachability is decidable.

Sources
The proof presented here is an adapted version of Lambert’s proof [Lam92].

In the following letN = (P, T, in, out)with initial markingM0 and finalmarkingMf be the
Petri net instance of interest.

Generalized Markings

6.3 Remark
A generalizedmarking for a net is an element ofNd

ω, whereNω = N ∪ {ω}. The natural
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order ⩽ on N is extended to Nω by setting n ⩽ ω for all n ∈ Nω. The (strict) product
order on N

d
ω is as usual:

M ⩽ M′ iff M(p) ⩽ M′(p)∀p ∈ P ,

M < M′ iff M ⩽ M′ and M ≠ M′

iff ∀p ∈ P∶M(p) ⩽ M′(p) and ∃p′ ∈ P∶M(p) < M′(p) .
We extend the firing relation to generalized markings. We have

M t M′ iff M′ = M + e(t) = M − in(t) + out(t) .
Here, the operations plus and minus should be read component-wise, and they are
extended toN

d
ω by setting ω + n = ω − n = ω for all n ∈ N. (The cases ω + ω and ω − ω

can remain undefined as they will never occur.)

As we are interested in reachability and not in coverability, the product order ⩽ on N
d
ω

is too imprecise. Instead, we define a new order ≦ω on N
d
ω as follows.

6.4 Definition
For two generalized markings M,M′ ∈ N

d
ω, we have

M ≦ω M′ iff ∀p ∈ P with M′(p) < ω∶M(p) = M′(p) .
We say that M is underM′.

In words: Whenever a component of M′ is not ω, it coincides with the corresponding
component of M. For ω-components of M′, the corresponding components of M may
be arbitrary. This means that we may introduce new ω-componments along ≦ω.

6.5 Lemma

a) ≦ω is a partial order, i.e. reflexive, antisymmetric and transitive.

b) ≦ω ismonotonic in the following sense: LetM ≦ω M′ and letM′′ ∈ N
P
ω. Thenwe have

M +M′′ ≦ω M′ +M′′.

Covering graphs

Wewill now introduce covering graphs, a standard tool to decide the coverability prob-
lem. Here, we will define the coverability graph along a graph that acts a finite control.
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6.6 Remark
Recall that a finite T-(arc)-labeled directed graph, just called graph in the following, is
a tuple

G = (V, R)
where V is finite set of vertices, R ⊆ V × T × V is the set of labeled arcs.

We write q
t
−→G q′ if r = (q, t, q′) ∈ R. If the graph is clear from the context, we omit the

subscript G and write just q
t
−→ q′.

A path in G is a sequence of vertices and transitions

q0
t1
−→ q1

t2
−→ . . .

tn
−→ qn .

We call σ = t1 . . . tn the word of labels along the path.

We write q0
σ
−→ qn if there is a path from q0 to qn labeled by σ.

For some vertex qi, the trace language of G from qi is

L(G, q0) = {σ ∈ T∗
»»»»»» qi

σ
−→ qn for some qn ∈ V} ,

the set of all sequences that occur as labels along paths from qi, no matter where the
path ends.

For some vertices qi, qf ∈ V the language of paths or reachability language from qi to
qf is

L(G, qi, qf) = {σ ∈ T∗
»»»»»» q0

σ
−→ qf} ,

the set of all sequences that occur as labels along paths from qi to qf.

Similarly, for a Petri net N and markings M,M′, we define the trace lanugage

L(N,M) = {σ ∈ T∗ ∣M σ M′′ for some M′′}
and the reachability language

L(N,M,M′) = {σ ∈ T∗ ∣M σ M′}
It is no coincidence that we have used T as the set of labels in the remark above. We
will indeed by interest in graphswhose transitions are labeled by transitions of the Petri
net.
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6.7 Definition
Let N be a Petri net together with a generalized (!) initial marking Mi and let G be a T-
labeled graph together with a vertex qi. A covering graph for N fromMi along G from
qi is a directed, T-arc-labeled graph G = (V, R) that is obtained from an execution of
Algorithm 6.8 below. Here, V ⊂ Q × N

P
ω is a finite set of vertices of the shape (q,M) and

R ⊆ V × T × V are arcs labeled by transitions of the Petri net.

6.8 Algorithm: Computing a covering graph
Input: N Petri net, Mi generalized marking, G graph, qi vertex
Output: Graph G

Initialize G as the empty tree //We first create a tree
Create an unmarked vertex labeled by (qi,Mi).
while There is an unmarked vertex, say v labeled by (q,M) do

Mark v
for all q

t
−→ q′ in A (for some t, q′) do

if M t Mt (in particular, t is enabled in M) then
Define M′ ∈ N

P
ω by

M′(p) = ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ω , if there is an ancestor of v labebled by (q′,Ma)

with Ma ⩽ Mt and Ma(p) < Ma(p) ,
Mt(p) , else .

Add a new vertex v′ with label (q′,M′)
Add an arc (v, v′) labeled by t
if v′ has a (strict) ancestor with the same label then

Mark v // Do not consider it again
end if

end if
end for

end while
Merge vertices that have the same label // Convert the tree
return G

Depending on the order in which we pick the vertices and transitions during the algo-
rithm, we might end up with a different graph G. Let CG(N,Mi,G, qi) denote the set of
all possible covering graphs.

In the following, we will always rely on the following properties that are independent
from the element of CG(N,Mi,G, qi) that we pick.
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6.9 Proposition: Classical properties of covering graph
Let G ∈ CG(N,Mi,G, qi).
a) We may compute one member of CG(N,Mi,G, qi).
b) Each graph in CG(N,Mi,G, qi) is finite.
c) For any arc (q,M) t

−→G (q′,M′) in G, we have M t Mt with Mt ≦ω M′.

d) If σ ∈ L(N,Mi)∩L(G, qi, q
′), then we have σ ∈ L(G, (qi,Mi), (q′,M′)) for someM′ with

Mi + e(σ) ≦ω M′.

e) For each vertex (q,M) of G and each number n ∈ N, we can compute
σn ∈ L(N,Mi) ∩ L(G, qi, q) such that Mi σn Mn for some Mn with

M(p) ≠ ω ⟹ Mn(p) = M(p) ,
M(p) = ω ⟹ Mn(p) ⩾ n .

Proof:
a) and b) are due to the fact that ⩽ on N

d
ω is a well-quasi ordering.

c) is by the construction of the arcs in G, and d) is obtained from c) using induction.

e) Take a path from (qi,Mi) to (qi,Mi) in G. By inserting pumps, we obtain a firing se-
quence that is enabled in Mi. Insert pumps appropriately to get the desired σn.

Intuitively, c) and d) state that the arcs of the covering graph are an overapproximation
of thebehavior of the Petri net: For the non-ω components, the coveringgraph actually
provides the correct behavior, but it may introduce ω-components.

In turn, e) states that whenever the covering graph introduces an ω in some compo-
nent, there is actually a firing sequence in this Petri net that brings the component to
an arbitrarily high value.

6.10 Definition & Proposition: Covering
Let G ∈ CG(N,Mi,G, qi).
a) There is a vertex (qi,M) in G such that M is the largest marking over Mi in qi,

meaning for any vertex (qi,M
′) of G, Mi ≦ω M′ implies M′ ≦ω M.

b) We have Mi ≦ω M.

c) M is independent of the choice of G ∈ CG(N,Mi,G, qi).
We call M the the covering of (N,Mi,G, qi), denoted by C(N,Mi,G, qi).
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Proof:
We will show that given two markings M′

,M′′ over Mi from arbitrary covering graphs,
we can compute one in G that dominates both. Applying this fact inductively yields all
statements of the proposition.

Pick M′
,M′′ such that (qi,M

′), (qi,M
′′) are vertices of some G ′

,G ′′ ∈ CG(N,Mi,G, qi)
and Mi ≦ω M′, Mi ≦ω M′′.

We prove that there is a vertex (qi,M) of G such that M′ ≦ω M,M′′ ≦ω M.

By Part e) of Proposition 6.9, for any n ∈ N, we may pick sequences σ′, σ′′ ∈ L(G, qi, qi)
such that

• Mi σ′ M1, where M1(p) = Mi(p) if M′(p) = Mi(p), and M1(p) > Mi(p) + n else,

• Mi σ′′ M2, where M2(p) = Mi(p) if M′′(p) = Mi(p), and M2(p) > Mi(p) + n else,

Consider these sequences for some n that is larger than any finite (non-ω) number oc-
curring in a vertex of G. (Meaning it is larger than any number M̃(p) ≠ ω for any vertex(q̃, M̃) in G.)

Now consider the marking M3 with Mi σ′σ′′ M3. By Part d) of Proposition 6.9, we have
a path in G from (qi,Mi) to some (qi,M)with

M3 = Mi + e(σ′) + e(σ′′) ≦ω M .

We have that if M′(p) or M′′(p) is ω, then M3(p) ⩾ n. Since n is larger than any number
occurring in G, we need to have have M(p) = ω.

If M′(p) and M′′(p) are not ω, we have

Mi(p) = M′(p) = M1(p) and Mi(p) = M′′(p) = M2(p)
and consequently Mi(p) = M3(p). We conclude that Mi ≦ω M, M′ ≦ω M, and M′′ ≦ω M as
desired.

This allows us to show that there is a largest marking M overMi in G by considering the
finite set of markings over Mi in G and applying the proof inductively.

Now assume that there is some other G ′′ for which this largest marking is different, say

M. We apply the proof above again to construct a marking M in G that is even larger.

This yields a contradiction to the construction of M unless M = M = M.
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6.11 Definition: Covering sequences
Let N be a Petri net with a generalized initial marking Mi, and G a graph with a vertex qi

Let M = C(N,Mi,G, qi) be the covering of (N,Mi,G, qi).
We call a sequence σ ∈ L(G, qi, qi) ∩ L(N,Mi) such that

for all p with Mi(p) ≠ ω: e(σ, p) ⩾ 0
and e(σ, p) > 0 iff M(p) = ω

a covering sequence.

We denote by CS(N,Mi,G, qi) the set of all covering sequences.

Intuitively spoken, a covering sequence σ has

• arbitrary effect on the ω-components of Mi,

• strictly positive effect on the ω-components of M,

• zero effect on the remaining components.

6.12 Proposition
CS(N,Mi,G, qi) is non-empty and we may compute one of its elements.

Proof:
We apply Part e) of Proposition 6.9 to the vertex (qi,M) and n = (maxp∈P Mi(p)) + 1. We
obtain that we can compute a firing sequence σL(G, qi, q) such that Mi σ M′ and for
all p, M(p) ≠ ω implies M′(p) = M(p) = Mi(p) and M(p) = ω implies M′(p) ⩾ n.

Consider a component p such that M(p) ≠ ω. In this case, we also have Mi(p) ≠ ω since
Mi ≦ω M. We have M′(p) = M(p) = Mi(p) and conclude e(σ, p) = 0.

For pwithM(p) = ω, we haveM′(p) ⩾ n > Mi(p). This implies e(σ, p) > 0 as desired.

Precovering graphs

6.13 Remark
Let G = (V, R) be a directed graph.

The strongly connected component (SCC) of a vertex q ∈ V is the subgraph induced
by all vertices q′ such that there is a path from q to q′ and a path from q′ to q. Note that
q is one such a vertex, consequently, each SCC is non-empty.
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The graph G is called strongly connected if the graph itself is a SCC of one (and then
all) of its vertices.

6.14 Definition
Let N be a Petri net. A precovering graph on N is a strongly connected, finite, directed,
T-arc-labeled graph G = (V, R)with V ⊆ N

P
ω if for all

m
t
−→G m′ in G, we have m t mt with mt ≦ω m′

.

In other words, the edges of G are an overapproximation of the firing relation that is
precise on the non-ω components, butmay introduce new ω componentsWewill now
see that actually, no new ω components can be introduced.

6.15 Definition & Proposition
Let G be a precovering graph for N. For each place p, m(p) is either ω in all vertices of G,
or in none of them.

We may define
Ω(G) = {p ∈ P ∣ ∀m ∈ V∶m(p) = ω} ,

the set of ω-components in G.

Proof:
Assume there is a component p such that there are vertices m,m′ of G with
m(p) = ω ≠ m′(p). Since G is strongly connected by definition, there is a path

m = m(0) −→G m(1) −→G . . . −→G m(k) = m′
.

By the property of the edges in G, we obtain that m′ has more ω-components than m,
a contradiction.

6.16 Corollary
Let G be a precovering graph for N. For any edge m

t
−→G m′ in G, we have m t m′.

For any two vertices m,m′ and any σ ∈ L(G,m,m′), we have m σ m′.

The first decomposition result shows that subgraphs of precovering graphs are again
precovering graphs.

6.17 Lemma
Any strongly-connected subgraph of a precovering graph is again a precovering graph.
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Proof: Clear from the definition.

The second decomposition result relates covering graphs and precovering graphs.

6.18 Proposition
Let G be a precovering graph for N and let mi be a vertex. Let Mi ∈ N

P
ω with Mi ≦ω mi.

Consider a covering graph G ∈ CG(N,Mi,G,mi) of N along G from mi.

a) All vertices (m,M) of G satisfy M ≦ω m.

b) The projection

π2 ∶ V(G) → N
P
ω(m,M) ↦ M

is injective.

c) Each SCC of the the graph π2(G) is a precovering graph for N.

The graph π2(G) is obtained by projecting all vertices to their second component and
leaving the arcs unchanged. Since the projecting is injective, it cannot happen that
π2(G) has multiple vertices with the same label.

Proof:
Let (m,M) be a vertex of G.

By Part e) of Proposition 6.9, for any n, there is σn ∈ L(G,mi,m) such that we have
Mi σn Mn with M(p) ≠ ω implies Mn(p) = M(p) and M(p) = ω implies Mn(p) ⩾ n.

By Corollary 6.16, σn ∈ L(G,mi,m) implies mi σn m. Thus,

Mn = Mi + e(σn) ≦ω mi + e(σn) = m .

Here, we have used that ≦ω is monotonous, Lemma 6.5.

The non-ω components ofmi coincidewith the corresponding components ofMi since
Mi ≦ω mi. Consequently, the non-omega components of m coincide with the corre-
sponding components of all Mn, which in turn coincide with the corresponding com-
ponents of M. We conclude M ≦ω m.

Assume that the projecting is not injective, i.e. there are vertices (m,M) and (m′
,M)with

m ≠ m′. By part a), we have M ≦ω m and M ≦ω m′. Because m and m′ are vertices of a
precovering graph, they have the same ω-components, Proposition 6.15. Additionally,
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the non-ω components coincide since they coincide with the corresponding compo-
nent of M each. We conclude m = m′, a contradiction.

A strongly connected component of π2(G) is finite, directed, strongly-connected and T-
labeled. It remains to check the property of the arcs. Any arcM

t
−→ M′ in π2(G) is induced

by some arc (m,M) t
−→ (m′

,M′) in G. By Part c) of Proposition 6.9, we have that M t Mt

with Mt ≦ω M′, which is exactly as desired.

We will now be interested in initiated precovering graphs (IPGs), tuples (G,m) where
G is a precovering graph for N and m is a vertex.

Decomposing precovering graphs

6.19 Remark
Let (V, R) be a graph and qi, qf ∈ V. Any path from qi to qf can be obtained from a cycle-
free path (i.e. a path in which no intermediary vertex is repeated) by inserting cycles,
i.e. paths from q to q for some q in the appropriate places.

6.20 Proposition: First IPG decomposition
Let (G,m) be an IPG for N. Let M be a generalized marking with M ≦ω m.

• If m = C(N,M,G,m):
For any σ ∈ CS(N,M,G,m), τ ∈ L(G,m,m), there are integers kτ, k

′
τ such that for

any k ∈ N

k ⩾ kτ ⟹ M σkτ

k ⩾ k′τ ⟹ σkτ ∈ CS(N,M,G,m) .
• If m ≠ C(N,M,G,m):
We can compute a finite subset L ⊆ T∗ (possibly empty) and for each
s = s1 . . . sn ∈ L a sequence of IPGs

(Gs
0,m

s
0), (Gs

1,m
s
1) . . . (Gs

n,m
s
n)

such that

M = ms
0

∀i∶Ω(Gs
i ) ⊊ Ω(G)

∀i∶ms
i

si+1 ms
i + e(si+1) ≦ω ms

i+1 .
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Furthermore, for all τ ∈ L(G,m,m) with M τ , there is an s = s1 . . . sn ∈ L such
that

τ = τ(0)s1τ(1)s2 . . . snτ(n)
for suitable τ(i) ∈ L(Gs

i ,m
s
i ,m

s
i ).

Proof:

• Assume m = C(N,M,G,m):
We first show that M σkτ for k ⩾ kτ. Since M ≦ω m, we only need to worry about
the components that areω inm, but not inM. Recall that a covering sequence for
m has positive effect on the ω-components of m and non-negative effect on the
other components. Iterating σ often enoughwill load to amarking high enough
so that τ becomes fireable.

To show that σkτ ∈ CS(N,M,G,m) for k ⩾ k′τ, we need to show that

– σkτ ∈ L(G,m,m), which is true by definition,

– M σkτ , which is true if we pick k′τ ⩾ kτ,

– that σkτ has zero effect on the non-ω components of m, which is true since
it is contained in L(G,m,m),

– that is has strictly positive effect on the ω components of m, which is true
for k large enough, since σ was a covering sequence.

• Assume m ≠ C(N,M,G,m):
Compute G ∈ CG(N,M,G,m).
Let τ ∈ L(G,m,m) such that M τ . By Part d) of Proposition 6.9, we have
τ ∈ L(G, (m,M), (m,M′)) for some M′ with M + e(τ) ≦ω M′.

Define Lτ as the set of all cycle-free paths from (m,M) to (m,M′). Let
π = (m,M) s1

−→ . . .
sn
−→ (m,M′)

be one such path.

We define s = s1 . . . sn as the transitions used along this path. We furthermore
define the sequence of thems

i as the sequence of the second components in the
path, in particular

ms
0 = M, ms

n = M′
.
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For each i, let Gs
i be the maximal SCC of π2(G) containing ms

i . Using M ≦ω m and
Proposition 6.18, each (Gs

i ,m
s
i ) is indeed an IPG.

We have

ms
0

s1 ms
0 + e(s1) ≦ω ms

1 . . . sn ms
n−1 + e(sn) ≦ω ms

n = M′

by using Part c) of Proposition 6.9.

By showing that M′ = ms
n has strictly less ω-components than m, we may con-

clude that eachms
i has strictly less ω-components thanm, yielding Ω(Gs

i ) ⊆ Ω(G).
First note that we have M′ ≦ω m by Part a) of Proposition 6.18 since (m,M′) is a
vertex of G. It remains to show that M′ ≠ m.

If M′ = m, then we would have M ≦ω m = M′. Consequently, we have
m ≦ω C(N,M,G,m), since C(N,M,G,m) is the largest vertex over the initial ver-
tex (m,M). Furthermore, we have C(N,M,G,m) ≦ω m, since (m, C(N,M,G,m)) is a
vertex ofG, again by Part a) of Proposition 6.18. We concludem = CS(N,Mi,A,mi),
a contradiction to the assumption.

Finally, consider the path in G from (m,M) to (m,M′) induced by τ. We may write
this path as some cycle-free path π′ with some cycles inserted at the appropriate
places. Consider the element s′ inducedby π′ as above. Using the fact thatG itself
was a precovering graph, we obtain the desired property.

To finish the proof, let L be the collection of all s obtained as above for all com-
putation τ ∈ L(G, (m,M), (m,M′)) with M τ . Because G contains only finitely
many vertices thatmaybe used as (m,M′), and for each such vertex there are only
finitely many cycle-free paths, L is finite and can be computed.

6.21 Definition

a) The reverse of a Petri net N = (P, T, in, out) is the Petri netNrev = (P, T, out, in).
b) For a sequence σ = t1 . . . tn ∈ T∗, its reverse is σrev = tn . . . t1.

c) Let G = (V, R) be a graph. Its reverse Grev = (V, Rrev) is obtained by inverting all arcs,

Rrev = {q′ t
−→Grev q

»»»»»» q t
−→G q′ ∈ R} .

6.22 Lemma
Let N be a Petri net.
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a) If M σ M′ in N, then M′
σrev M in Nrev.

b) If G is a precovering graph for N, then Grev is a precovering graph for Nrev.

Proof: Immediate from the definitions.

6.23 Proposition: Second IPG decomposition
Let (G,m) be an IPG for N. Let M be a generalized marking with M ≦ω m.

• If m = C(Nrev
,M,Grev

,m):
For any σrev ∈ CS(Nrev

,M,Grev
,m), τ ∈ L(Grev

,m,m), there are integers kτ, k
′
τ such

that for any k ∈ N

k ⩾ kτ ⟹ M (σrev)kτrev
k ⩾ k′τ ⟹ (σrev)kτrev ∈ CS(Nrev

,M,Grev
,m) .

• If m ≠ C(Nrev
,M,Grev

,m):
We can compute a finite subset L ⊆ T∗ (possibly empty) and for each
s = s1 . . . sn ∈ L a sequence of IPGs

(Gs
0,m

s
0), (Gs

1,m
s
1) . . . (Gs

n,m
s
n)

such that

M = ms
n

∀i∶Ω(Gs
i ) ⊊ Ω(G)

∀i∶ms
i

si ms
i − e(si) ≦ω ms

i−1 .

Furthermore, for all τ ∈ L(G,m,m)with M τrev , there is an s = s1 . . . sn ∈ L such
that

τ = τ(0)s1τ(1)s2 . . . snτ(n)
for suitable τ(i) ∈ L(Gs

i ,m
s
i ,m

s
i ).

Proof: Combine Lemma 6.22 with Proposition 6.20.

Let π be a path in G = (V, R). We define the occurrence vector Ψ(π) ∈ N
R as the vector

that counts how often each arc is used. For a subset E ⊂ R, we let Ψ(π)↾E denote the
vector inN

E obtained from Ψ(π) by omitting components corresponding to arcs not in
E.
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6.24 Proposition: Third IPG decomposition
Let (G,m) be an IPG forN. Let E ⊂ R(G) be a non-empty strict subset of the arcs ofG and
let F ⊂ N

E be a finite set of vectors. We can compute a finite subset L ⊆ T∗ (possibly
empty) and for each s = s1 . . . sn ∈ L a sequence of IPGs

(Gs
0,m

s
0), (Gs

1,m
s
1) . . . (Gs

n,m
s
n)

such that

m = ms
0 = ms

n

∀i∶Ω(Gs
i ) = Ω(G)

∀i∶∣R(Gs
i )∣ < ∣R(G)∣

∀i∶ms
i

si+1 ms
i+1 .

Furthermore, for all τ ∈ L(G,m,m) that occur as some path π such that Ψ(π)↾E ∈ F,
there is an s ∈ L such that

τ = τ(0)s1τ(1)s2 . . . snτ(n)
for suitable τ(i) ∈ L(Gs

i ,m
s
i ,m

s
i ).

Proof:
Let G = (V, R). Define G′ = (V, R \ E).
Consider τ ∈ L(G,m,m) such that for a corresponding path π, we have Ψ(π)↾E ∈ F. We
may write

π = π(0)σ1π(1)σ2 . . . σnπ(n)
where σ = σ1 . . . σn such that Ψ(s)↾E = Ψ(π)↾E ∈ F and Ψ(s)↾R\E = 0⃗, i.e. σ contains
exactly the arcs used in π in E.

We define the sequences of vertices (q′i)i∈{0,...,n−1} and (qi)i∈{0,...,n}.
q0 = m

qn = m

si = (q′i−1, qi)
By construction, each π(i) is a path from qi to q′i in the modified graph G′. Let us apply
remark 6.19, so we may write each π(i) as a cycle-free path π′(i) from qi to q′i with cycles
inserted appropriately.
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We define
σ′ = π′(0).σ1.π

′(1).σ2 . . . σnπ
′(n) ,

as the path from m to m in G in which all cycles inside the π(i) have been removed. Let
s ∈ T∗ be the associated sequence of transitions.

We define the sequence of thems
i as the sequence of the associatedmarkings of G and

we let Gs
i by the SCC of ms

i in G′.

We have to check some properties:

• m = ms
0 = ms

n:
Clear.

• Ω(Gs
i ) = Ω(G′) = Ω(G):

By Proposition 6.15.

• ms
i

si+1 ms
i+1:

By Corollary 6.16.

• ∣R(Gs
i )∣ < ∣R(G)∣:

We have ∣R(Gs
i )∣ ⩽ ∣R(G′)∣ = ∣R(G) \ E∣ < ∣R(G)∣

since E is non-empty.

• The decomposition of τ is by construction.

It remains to argue that if we do this construction for all possible τ, we obtain a finite
setL of all possible s. To this end, note that there are only finitelymany possible σ since
F is finite. Consequently, there are only finitely many different sequences (q′i)i∈{0,...,n−1}
and (qi)i∈{0,...,n}. For each of the finitely many parts (qi, q

′
i), there are only finitely many

cycle free paths from qi to q′i in G′.

Marked graph transition sequences

6.25 Definition
Let N be a Petri net A graph-transition sequence is sequence

U = (G0,m0), t1, (G1,m1), t2, . . . , tn, (Gn,mn)
where each ti ∈ T is a transition of N, and each (Gi,mi) is an IPG for N.
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6. Petri net reachability

Amarked graph-transition sequence (MGTS) (U , φ) is a graph-transition sequence as
above together with a function

φ ∶ {0, . . . , n} → N
P
ω × N

P
ω(Gi,mi) resp. i ↦ (Min

i ,M
out
i )

such that
Min

i ≦ω mi and Mout
i ≦ω mi

for all i.

We callMin
i resp.Mout

i the input resp. outputmarking of (Gi,mi). We callMin(U , φ) = Min
0

the input, Mout(U , φ) = Mout
n the output marking of (U , φ).

The language of a MGTS is the set of transitions sequences that contain the sequence
of the ti and such that the parts in the between are paths in the corresponding Gi that
respect the input- and output marking. This is formalized by the following definition.

6.26 Definition
Let (U , φ) be aMGTS for Petri net n. The languageL(U , φ) is the set set of all sequences

τ = τ(0)t1τ(1)t2 . . . tnτ(n)
such that τ(0) ∈ L(Gi,mi,mi) and there are sequences (μin

i )i∈{0,...,n}, (μout
i )i∈{0,...,n} in N

P.

μin
0

τ(0) μout
0

t1 μin
1

τ(1) μout
1

t2 . . . μout
n−1

tn μin
n

τ(n) μout
n

with μin
i ≦ω Min

i , μ
out
i ≦ω Mout

i for all i.

6.27 Example
Let (N,M0,Mf) be a Petri net instance.

We consider the MGTS (U0, φ0), where U0 consists of the single IPG (G0,m0) and
φ(0) = (M0,Mf). Here, G0 = ({ω⃗}, {ω⃗ t

−→ ω⃗
»»»»»» t ∈ T}) and m0 = ω⃗.

In other words, U0 is the trivial approximation of the Petri net.

We have that L(U0, φ0) is the set of all sequences τ such that τ ∈ L(G0, ω⃗, ω⃗) such that
there are μin

, μout with
μin τ μout

and μin ≦ω Min(U , φ) = M0 and μout ≦ω Mout(U , φ) = Mf.
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6. Petri net reachability

Now note that τ ∈ L(G0, ω⃗, ω⃗) is satisfied by all τ ∈ T∗. Since M0,Mf are in N
P and

contain no ω-components, we have that the only only choices for μin and μout are M0

and Mf themselves. Consequently, we have that

L(U0, φ0) = {τ ∈ T∗ ∣M0 τ Mf} = L(N,M0,Mf) .
Our examples shows that it is easy to construct an MGTS that has the same language
of the Petri net. This implies that handling languages of arbitrary MGTS is as hard as
handling Petri net firing sequences. In the following, we want to find a condition on a
MGTS that implies that its languages can be described using linear algebra.

6.28 Definition
Let N be a Petri net and let (U , φ) be a MGTS.

Let R = ⨆⋅ iR(Gi) be the disjoint union of all arcs occurring in any Gi. Define
C = {0, . . . , i} × (P ⊔⋅ P) be the set of components occurring in the collection of the
Min

i andMout
i . In the following, wewill consider vectors x ∈ N

R∪C that have one entry xr,i

for each arc r of some Gi and entries xin
i (p) and xout

i (pb) for each component p of some
Min

i resp. Mout
i .

Such a vector is associated to a transition sequence

τ = τ(0)t1τ(1)t2 . . . tnτ(n) ∈ L(U , φ)
if there are

• for each i a path π(i) in Gi frommi tomi such that τ(i) is the sequence of transitions
occurring along π(i), such that x↾R(Gi) is the occurrence vector Ψ(π(i)) of π(i)

• We have

xin
1

τ(0) xout
1 t1 xin

2
τ(1) xout

2 t2 . . . xout
n−1 tn xin

n
τ(n) xout

n

and xin
i ≦ω Min

i , x
out
i ≦ω Mout

i .

It is easy to see that we indeed have at least one vector associated to any τ ∈ L(U , φ).
6.29 Definition
The characteristic equation of a MGTS (U , φ) is the following linear system of equa-
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tions:
For all i ∈ {0, . . . , i} and p ∈ P

xin
i (p) = Min

i (p) if Min
i ≠ ω (1)

xout
i (p) = Mout

i (p) if Mout
i ≠ ω (2)

xin
i+1 − xout

i = e(ti+1) if i ≠ n − 1 (3)
xin
i − xout

i = ∑
r=(q,t,q′)∈R(Gi) x(r) ⋅ e(t) (4)

and for each i ∈ {0, . . . , i} and each vertex m ∈ V(Gi)
∑

r=(q,t,m)
incoming in m

x(r) = ∑
r=(m,t,q′)

outgoing from m

x(r) (5)
.

6.30 Proposition
Any vector x ∈ N

R∪C associated to some element of u ∈ L(U , φ) indeed satisfies the
characteristic equation.

Proof sketch:
This is clear by the definition of the characteristic equation.

(1) formalizes xin
i ≦ω Min

i ,

(2) formalizes xout
i ≦ω Mout

i ,

(3) formalizes xout
i ti

(5) formalizes that each x↾R(Gi) is indeed the occurrence vector of some path π(i) in Gi

from m to m. Note that requiring that we enter each vertex as often as we leave it
is sufficient and necessary.

(4) formalizes that the effect induced e any such path π(i) indeed satisfies

xin
i + e = xout

i .
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6.31 Definition
Let N be a Petri net, (U , φ) be a MGTS and let Ax = b be its characteristic equation. A
MGTS (U , φ) is perfect iff for all i ∈ {0, . . . , n}

mi = C(N,Min
i ,Gi,mi) = C(Nrev

,Mout
i ,Grev

i ,mi)
and Ax = 0 has a solution x such that

x↾R ⩾ 1⃗

xin
i (p) ⩾ 1 if Min

i (p) = ω

xout
i (p) ⩾ 1 if Mout

i (p) = ω

Excursion: Some linear algebra

6.32 Theorem
Let Ax = b be a system of equations overZ. It is decidable whether an integer solution
x exists, and if it does, we may compute one.

6.33 Lemma
Let Ax = 0 be a homogeneous linear system of equations over Z where we consider
solutions x ∈ N

C.

Either there is strictly positive solution x ∈ N
C with x ⩾ 1⃗, or the set

Z = {i ∈ C »»»»» ∀x ∈ N
C∶Ax = 0 ⟹ xi = 0} ,

of components that have to be 0 in any solution is non-empty.

Proof:
If Ax = 0 has no solution at all, there is nothing to show.

Let us assume that Z is empty, i.e. there is no component i such that Ax = 0 implies
xi = 0. In this case, we may pick for each component i a solution x(i) ∈ N

P such that
x(i)i > 0. Now consider x = ∑i∈C x((i)).
We have

Ax = ∑
i∈C

Ax(i) = ∑
i∈C

0 = 0

and x is strictly positive as
xi = ∑

j∈C
x(j)i ⩾ x(i)i > 0 .
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This proves the desired statement.

6.34 Theorem
Let Ax = i be a linear system of equations overZ. The set

Z = {i ∈ C »»»»» ∀x ∈ N
C∶Ax = 0 ⟹ xi = 0} ,

can be computed. If Z ≠ ∅, then for any i ∈ Z , xi can only take a finite number of
possible values in any solution of Ax = b. We may compute the set

V = {x↾Z »»»»» x ∈ N
P
,Ax = b}

of all (combinations of ) such values.

We may compute a vector x0 with x0↾Z ⩾ 1⃗ and Ax0 = 0, called maximal support
solution of Ax = 0.

– End of excursion –

Using the linear algebra and Lambert’s pumping lemma, which we skip here, one can
prove the following theorem.

6.35 Theorem
Let (U , φ) be a perfect MGTS. Then we have that L(U , φ) is non-empty if and only if its
characteristic equation Ax = b has an integer solution and ti+1 is enabled in Mout

i .

By Theorem 6.32, we obtain that for perfect MGTS, language emptiness is decidable.

6.36 Corollary
For perfect MGTS, it is decidable whether L(U , φ).
Decomposing MGTS

Assume we could prove the following theorem.

6.37 Theorem
We can compute a finite set of perfect MGTS Γ such that

L(N,M0,Mf) = ⋃(U ,φ)∈ΓL(U , φ)
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6. Petri net reachability

This would yield, the decidability of Petri net reachability, Theorem 6.2.

Proof of Theorem 6.2:
By Theorem 6.37, we can compute a finite of perfect MGTS Γ such that

L(N,M0,Mf) = ⋃(U ,φ)∈ΓL(U , φ)
We have

Mf is reachable from M0 in N
iff L(N,M0,Mf) ≠ ∅
iff ∃(U , φ) ∈ Γ∶L(U , φ)∅ .

The latter property is decidable using the fact that Γ is finite and computable and Corol-
lary 6.36.

It remains to prove 6.37. To this end, we show that we can start with an arbitrary MGTS
and decompose it further.

6.38 Definition
A decomposition of (U , φ) be a MGTS into a finite (possibly empty) set Γ means that

(C1) each (U ′
, φ′) ∈ Γ is obtained from (U , φ) by replacing each Gi by some MGTS,

(C2) L(U , φ) = ⋃(U ,φ)∈Γ L(U , φ)
(C3) for each (U ′

, φ′) ∈ Γ, we have

Min(U ′
, φ′) ≦ω Min(U , φ) and Mout(U ′

, φ′) ≦ω Mout(U , φ) .
6.39 Theorem: Decomposition theorem
For any MGTS, we can compute a perfect set of MGTS it decomposes into.

Proof:
Let (U , φ) be the given MGTS and let Ax = b be the characteristic equation.
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Decomposing non-perfect MGTS

If it is perfect, there is nothing to do, so assume it is not. We consider each possible rea-
son for (U , φ) not being perfect, and show that each of them leads to a decomposition.

(1) Assume that there is an i and a place p such that Min
i (p) = ω, but any solution of

Ax = 0 has xin
i (p) = 0. Using Theorem 6.34, we can compute the finite set of values

V that xin
i (p) can take in any solution of Ax = b. Consider the set Γ ofMGTS obtained

from (U , φ) that contains for each v ∈ V a MGTS (U , φv) obtained by setting Min
i (p)

to v. This means Γ contains one MGTS for each possible value.

We claim that Γ is a decomposition of (U , φ). Conditions C1 and C3, it remains to
argue for language equivalence, C2,

L(U , φ) = ⋃
v∈V

L(U , φv) .
Since Min

i (p) = ω, which is no restriction, we obtain that the right-hand side is a
subset of the left-hand side. For the other inclusion, take any τ ∈ L(U , φ), and let x
be an associated vector. By Proposition 6.30, x satisfies the characteristic equation.
This means we have xin

i (p) = v ∈ V . It is easy to check that τ ∈ L(U , φv) holds.
(2) As (1), but for output places.

(3) Assume that there is an arc r in some R(Gi) such that Ax = 0 implies x(r) = 0. Using
Theorem 6.34, we can compute the finite set of values V that x(r) can take in any
solution of Ax = b.

Consider the third IPG decomposition, Proposition 6.24 for E = {e} and F = V . The
propositions allows us to compute a set L ⊆ T∗ and for each s1 . . . sn a sequence of
IPGs (Gs

0,m
s
0), (Gs

1,m
s
1) . . . (Gs

n,m
s
n)

such that

mi = ms
0 = ms

n

∀j∶Ω(Gs
j ) = Ω(G)

∀j∶∣R(Gs
j )∣ < ∣R(Gi)∣

∀j∶ms
j

sj+1 ms
j+1 .
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We define Γ to be the set of MGTS {(Us, φs) ∣ s ∈ L}, where Us is obtained by replac-
ing Gi by the graph transition sequence

(Gs
0,m

s
0)s1(Gs

1,m
s
1)s2 . . . sn(Gs

n,m
s
n) .

It remains to define φs. To this end, consider some τ such that

μin τ μout

with μin ≦ω Min
i , μ

out ≦ω Mout
i and write

τ = τ(0)s1τ(1)s2 . . . snτ(n) .
We have

μin τ(0) . . . tj μin
j ≦ω ms

j for each j by Prop. 6.24

⟹ μin τ(0) . . . tjτ(j) μout
j ≦ω ms

j since Gs
j is a precovering graph

⟹ μin τ(0) . . . tjτ(j)tj+1 μin
j+1 ≦ω ms

j+1 since ms
j

tj+1 ms
j+1

for some sequences of markings μin
j , μ

out
j .

We define the φs by setting

(Cs
0,m

s
0) ↦ (Min

i ,m
s
0)(Cs

j ,m
s
j ) ↦ (ms

j ,m
s
j ) 0 < j < n(Cs

n,m
s
n) ↦ (ms

n,M
out
i ) .

(The markings for the other IPGs from the original MGTS remain unchanged.) This
is a validmarking sinceMin

i ≦ω mi = ms
0 andMout

i ≦ω mi = ms
n. For all othermarkings

in between, we even have equality by our definition of φs.

Checking conditions C1 and C3 is easy. Language equivalence, C2, follows from
Proposition 6.24 by choosing a suitable s ∈ L as discussed above.

(4) Assume there is an i such that mi ≠ C(N,Min
i ,Gi,mi),

We apply the first IPG decomposition, Proposition 6.20, to obtain a set L ⊆ S and
for each s = s1 . . . sn ∈ L a sequence of IPGs

(Gs
0,m

s
0), (Gs

1,m
s
1) . . . (Gs

n,m
s
n)
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such that

Min
i = ms

0

∀j∶Ω(Gs
j ) ⊊ Ω(Gi)

∀j∶ms
j

sj+1 ms
j + e(sj) ≦ω ms

j+1 .

We define Γ to be the set of MGTS {(Us, φs) ∣ s ∈ L}, where Us is obtained by replac-
ing Gi by the graph transition sequence

(Gs
0,m

s
0)s1(Gs

1,m
s
1)s2 . . . sn(Gs

n,m
s
n) .

It remains to define φs, we do this by setting

(Gs
0,m

s
0) ↦ (Min

i ,m
s
0)(Gs

j ,m
s
j ) ↦ (ms

j ,m
s
j ) 0 < j < n(Gs

n,m
s
n) ↦ (ms

n,M
′out
i ) .

whereM′out
i still has to be defined. Themarkings for the other IPGs from the original

MGTS remain unchanged.

For φs to be a valid marking and for Condition (C3) to hold, M′out
i should satisfy

M′out
i ≦ω ms

n and M′out
i ≦ω Mout

i .

This is possible if and only if ms
n and Mout

i agree on their non-ω components, i.e. if
and only if the following property holds:

∀p∶ms
n(p) ≠ ω and Mout

i ≠ ω ⟹ ms
n(p) = Mout

i (p) .
Assume that the property holds. We can now define

M′out
i (p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
ω ms

n(p) = ω and Mout
i (p) = ω ,

Mout
i (p) ms

n(p) = ω and Mout
i (p) ≠ ω ,

ms
n(p) ms

n(p) ≠ ω and Mout
i (p) = ω ,

ms
n(p) = Mout

i (p) else.

In other words set M′out
i to be the component-wise minimum of Mout

i and ms
n. We

obtain that M′out
i is the largest marking that satisfies M′out

i ≦ω ms
n and M′out

i ≦ω Mout
i .
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Unfortunately, the desired property, i.e. Mout
i and ms

n agreeing on their non-ω com-
ponents might be violated for some of the s ∈ L. The solution is to remove the
correspondingMGTS (Us, φs) from Γ, i.e. wewant Γ to only contain theMGTS (Us, φs)
for which ms

n satisfies the above property.

Let us argue that this new set Γ is a valid decomposition. Condition (C1) is clearly
satisfied, and we have chosen the new Γ such that (C3) also holds by construction.

It remains to check that the language is preserved, Condition (C2), which is non-
trivial as we have removed some of the s.

To this end, we consider a firing sequence in L(U , φ) and show that it is in the lan-
guage of a (Us, φs) for some s that we have not removed. It is sufficient to consider
an infix of the firing sequence corresponding to the Gi that we replace.

Let τ ∈ T∗ such that
μin τ μout

with μin ≦ω Min
i , μ

out ≦ω Mout
i and write

τ = τ(0)s1τ(1)s2 . . . snτ(n)
for some s ∈ Lwith τ(j) ∈ L(Gs

j ,m
s
j ,m

s
j ).

Since μin ≦ω Min
i = ms

0, and for all j, ms
j + e(sj) ≦ω ms

j+1 by Proposition 6.20, we have
μout ≦ω ms

n. Since we also have μout ≦ω Mout
i by assumption, we have for each p

such that ms
n(p) ≠ ω and Mout

i (p) ≠ ω

ms
n(p) = μout

i (p) = Mout
i (p) .

Consequently, ms
n satisfies the property that we have required above and the cor-

responding (Us, φs) is contained in the new Γ.

(5) If there is an i such that mi ≠ C(Nrev
,Mout

i ,Grev
i ,mi), we proceed as in the previous

case using the second IPG decomposition, Proposition 6.23.

The algorithm

We now construct an algorithm that computes the decomposition of the initially given
MGTS.

Let T be the empty tree
Construct a new root node (U , φ)
while T has a leaf (U ′

, φ′) that is not perfect do
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Compute Γ′ using one of the cases (1) - (5) // at least one of the cases is
applicable

for (Us, φs) ∈ Γ′ do
Construct a child (Us, φs) of (U ′

, φ′)
end for

end while
return T

Soundness

Assume the algorithm terminates. In this case, define Γ to be the set of all leaves of
the tree. Note that each leaf is perfect; Otherwise, the algorithmwould not have termi-
nated. To conclude that Γ is a decompositionof the originalMGTS (U , φ), note that each
branching in the tree corresponds to a decomposition that preserves the language.
Consequently, the union of the languages of all leaves is still the language of the ini-
tially given MGTS.

Termination

Assume that the algorithm does not terminate. Because the computation of the Γ′ ac-
cording to (1) - (5) always terminates, thismeansT is becoming infinitely large. Because
each Γ′ is finite, the tree has finite out-degree.

By König’s Lemma, an infinite tree with finite out-degree needs to contain an infinite
path, say (U , φ) = (U0, φ0), (U1, φ1), (U2, φ2), . . . .
Consider two successive entries (Ui, φi), (Ui+1, φi+1) in the chain and note that since the
latter is a child of the first in the tree, it is obtained by applying one of the cases (1) - (5).

In the cases (1) and (2), the number of ω-components int the input or output marking
strictly decreases. In the remaining cases, we replace one IPG in (Ui, φi) by potentially
multiple IPGs that all have either strictly less ω-components (case (4) and (5)) or strictly
less arcs. This allows us to conclude that the chain cannot be infinite.

Recall Theorem 6.37, which directly implies the decidability of Petri net reachability 6.2.

6.40 Theorem
We can compute finite set of perfect MGTS Γ such that

L(N,M0,Mf) = ⋃(U ,φ)∈ΓL(U , φ)
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Proof:
Consider the MGTS (U0, φ0) from Examples 6.27. As noted there, we have

L(N,M0,Mf) = L(U0, φ0) .
We may now apply the decomposition theorem, Theorem 6.39, to compute a finite set
Γ such that

L(N,M0,Mf) = L(U0, φ0) = ⋃(U ,φ)∈ΓL(U , φ)
as desired.

Exercises

6.41 Exercise: Counter programs
You may use additional counter variables to solve these problems. In each part of this
exercise, you may use the previous parts as subroutines.

Let n be some fixed number.

a) Present a counter program Setn(xj) that sets the value of counter variable xj to n.

b) Present a counter program Double(xj) that doubles the current value of counter
variable xj.

c) Present a counter program Powern(xj) that sets the value of counter variable xj to
2n.

d) Present a counter program Square(xj) that squares the value of counter variable xj,
i.e. the new value is v2, where v is the old value.

In each part of this exercise, argue briefly that your program is correct.

6.42 Exercise: Using a unary encoding
Assume that we measure the size of Petri nets and markings by taking the
unary encoding of the numbers, i.e. we redefine ∣M∣ = ∑p∈P(1 + M(p)) and∣N∣ = ∑t∈T,p∈P(1 + in(o, t) + out(t, p)).
a) Does the coverability problem get any easier using this assumption?

Hint: Inspect the proof of Lipton’s result.
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b) Discuss whether Rackoff’s bound can be improved, proving

f(i + 1) ⩽ (n ⋅ f(i))i+1 + f(i) .
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7. Total store ordering

Two of the main components of a modern computer are the CPU, which can quickly
perform arithmetic computations but has only a limited amount of local registers as
storage, and the memory (including the CPU cache, the main memory, and hard disk
drives) from resp. to which the register content can be loaded resp. stored. In parallel
programming, one usually uses the shared memory as a means of communication be-
tween threads, i.e. via a lock, amemory location that is set to 1 by a thread to signal that
it needs exclusive access to a certain part of the memory for the time being. The cor-
rectness of suchmechanisms relies on the assumption of having an underlying strong
memory model, meaning that any write done by one thread becomes immediately
visible to the other threads.

Such amodel would require the CPU towait in front of eachmemory access until it can
be sure that all operations by other threads have become visible. As the clock rate of
a modern CPU is roughly ten times as high as the clock rate of the main memory, this
wouldmake parallel programming unusably slow. To solve the problem, the designers
of the CPU architectures have devised several tricks.

Here,wewant to consider the x86architecture common inprocessors for desktop com-
puters and servers. In this architecture, any store made to the main memory is first put
into a buffer. At some points in time, the content of the buffer is batch-processed into
the main memory. This uses the fact that writing several stores to the main memory at
once is faster than doing it successively for each store. To make synchronization mech-
anisms like locks work, x86 assembly provides a specialmemory fence command that
ensures that the buffer has been emptied and all writes done by the thread have be-
come visible to other threads.

When programming in a high level language like C++, programmers do not have to
worry about this, but the people writing the compiler that translate the code into as-
sembly as well as people directly writing assembly code need to make sure that they
use the synchronization mechanisms like memory fences in the appropriate places.

It is a challenge to verify parallel programs under the assumption that they are not exe-
cuted under a strongmemory model. Here, we want to abstract away implementation
details like the size of the buffer, the frequency with which it is emptied, and so on. Al-
though this data might be available, it may change between different CPUs with the
x86 architecture, and the correctness of a program should not rely on them. Instead,
we define a weak memory model that describes the behavior of the memory in the
x86 architecture in principle and is valid for all CPUs with this architecture.
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Thememory model used for x86 is called total store ordering (TSO). The namemeans
that there is a total order on the points in time at which the stores to the memory be-
come visible to all threads. (Other memory models may allow that a store operation
first become visible to some threads.)

Before considering verificationproblems for x86programsexecutedunder TSO,wefirst
define a simplified version of x86 assembly and its semantics under TSO.

7.1 Definition: Syntax of parallel programs
The parallel programs we consider are defined by the following grammar.

⟨prog⟩ ∶∶= program ⟨name⟩ ⟨thread⟩∗ // Name and finite list of threads⟨thread⟩ ∶∶= thread⟨threadid⟩ // Identifier
regs ⟨reg⟩∗ // List of local registers used by the thread
init ⟨label⟩ // Label of the initial instruction
begin ⟨linst⟩∗end // List of label instructions

end⟨linst⟩ ∶∶= ⟨label⟩ ∶ ⟨inst⟩;goto⟨label⟩;⟨inst⟩ ∶∶= ⟨reg⟩ ← mem[⟨reg⟩] // Load∣ mem[⟨reg⟩] ← ⟨reg⟩ // Store∣ mfence //Memory fence∣ ⟨reg⟩ ← ⟨expr⟩ // Local assignment∣ assert ⟨expr⟩ // Assertion

Here, we assume the following:

• The threads identifiers ⟨threadid⟩ are distinct numbers,

• the registers ⟨reg⟩ are chosen from a finite set of names (later, we will use
x, y, r, . . .), and no register is shared between threads,

• the labels ⟨label⟩ are strings, and each command has a distinct label (later, wewill
use l0, l1, . . .),

• the program comeswith a finite data domainDOMwhose elements can be used
as register content as well as as memory addresses,

• DOM contains the value 0,

• expressions ⟨expr⟩ are build from register names and a finite set of functions from
a function domain DOM of (multi-parameter) functions defined on DOM, and
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• we implicitly require that each thread only accesses its own registers and only
jumps to its own labeled instructions.

7.2 Remark
Our version of assembly lacks features usually present, e.g. conditional jumps with
which conditionals (if-then-else) and loops can be realized. It would be easy to add
such features to the language without adapting the theory that we will develop in the
following. The only reason why we choose not do so is to keep the language simple
and focus on the interaction with the memory.

It remains to define the semantics of a parallel program executed under TSO. Each
thread has a store buffer. Stores made by a thread are buffered locally and later prop-
agated to the main memory in a FIFO manner. As long as a store is in a buffer, it is not
visible to other threads. The thread that issued the store can do a early read from its
own buffer, i.e. instead of loading the value from the main memory, it loads the last
value stored to the address by itself.

Before we formally define the transition relation, we consider an example.

7.3 Example: Dekker’s mutex
Consider the following parallel program. Note that it uses a simplified notation (i.e. the
threads are separated by two lines) and does not follow the grammar from the defini-
tion, but it can easily be transformed.

l0∶ mem[x] ← 1;gotol1;
l1∶ r ← mem[y];gotol2;
l2∶ assert r == 0;gotolcs1;
lcs1∶ // critical section

»»»»»»»»»»»»»»»»»»»
»»»»»»»»»»»»»»»»»»»
l
′
0∶ mem[y] ← 1;gotol1;
l
′
1∶ r′ ← mem[x];gotol2;
l
′
2∶ assert r′ == 0;gotolcs2;
lcs2∶ // critical section

Executedunder a strongmemorymodel,mutual exclusionholds, i.e. it is not possible to
reach a configuration inwhich both threads are in the critical section. Either one thread
executes the first two lines of its code before the other even starts running. In this case,
the assert in this thread is successful and it can enter the critical section, while the other
thread blocks as soon as it reaches the assert. If both threads execute the store in their
first line before any of them loads the value written by the other, both threads block.

Executed under TSO, the program may exhibit unwanted behavior: Both threads may
issue the store, which gets put in the local buffer. Both threads then load value 0 into
their register, since this value is taken from themainmemory that does not yet contain
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the issued store. The assert is successful in both threads and they both enter the critical
section.

This situation is depicted in the following graphic.

Thread 1

lcs1

r = 0

Thread 2

lcs2

r′ = 0

Buffer

x ∶= 1

Buffer

y ∶= 1

Main memory

x = 0

y = 0

Let usnow formally define the semantics of parallel programsunder TSO.Wefirst define
the configurations, and then the transition relation between configurations.

7.4 Definition: Semantics of parallel programs under TSO: Configurations
Consider a program P with threads t1, . . . , tn. Assume that i is the thread identifier of
thread ti, l0,i is its initial label and it declares the set of registers Ri.

Let TID = {1, . . . , n} denote the set of thread identifiers, LAB the set of all labels used by
all threads and VAR = DOM ∪ ⋃i=1,...,n Ri denote the set of all locations (addresses and
registers).

A configuration of P is an element from the set

CF = (TID → LAB) × (VAR → DOM) × (TID → (DOM × DOM)∗) ,
i.e. a tuple of the shape

cf = (pc, val, buf)
where

• pc∶ TID → LAB is the program counter, assigning to each thread i ∈ TID the label
pc(i) ∈ LAB of the instruction in its code that should be executed next,

• val∶ (VAR → DOM) is the valuation, assigning to registers r from some Ri their
value val(r) and to addresses a their value val(a) in the main memory, and

• buf is the collectionof localbuffers, i.e. for each thread i ∈ TID, buf(i) is a sequence
of tuples (a, v) ∈ DOM × DOM that is currently buffered. We write such tuples
as a ∶= v, meaning that value v should be stored at address a. The left-hand
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side of the sequence is the CPU side end of the buffer (i.e. a store a ∶= v that is
issued is prepended), the right-hand side is the memory side (i.e. when a store
gets propagated to the main memory, the rightmost element of the sequence is
deleted).

The initial configuration is
cf0 = (pc0, val0, buf0)

where pc0(i) = l0,i is the initial label for each threads i, the buffer is empty for all threads,
buf0(i) = ε, and all values are initialized to zero, val0(x) = 0 for all x ∈ VAR.

7.5 Definition: Semantics of parallel programs under TSO: Transition relation
The transition relation→TSO is defined in an operational way. We provide calculus rules
describing how the transition between configurations are induced by each part of the
syntax.

Assume we are in configuration cf = (pc, val, buf) with pc(i) = l for some thread i, and
we want to execute the labeled instruction l∶ ⟨inst⟩;gotol′. We define pc′ = pc[i ∶= l

′]
as the new program counter after executing this instruction.

The transition relation→TSO is the smallest relation→TSO ⊆ CF× CF satisfying the follow-
ing rules.

<inst> = r ← mem[r′], a = val(r′), buf(i)↾a
= (a ∶= v).β

(EARLY) (pc, val, buf) →TSO (pc′, val[r ∶= v], buf)
The conditions on the top of the line are the premise of the rule, they need to be sat-
isfied for the rule to be applicable. Here, buf(i)↾a is the restriction of the buffer buf(i) to
stores to address a. In other words, we require that (a ∶= v) is the most recent store
issued by thread i to address a that has not yet been propagated to the main memory,
where a is the value in register r′. In this case, we can perform an early read from the
buffer instead of loading the value from the main memory.

<inst> = r ← mem[r′], a = val(r′), buf(i)↾a
= ε, v = val(a)

(LOAD) (pc, val, buf) →TSO (pc′, val[r ∶= v], buf)
If the buffer contains no store to address a, its value is loaded from the main memory.

<inst> = mem[r] ← r′, a = val(r), v = val(r′)
(STORE) (pc, val, buf) →TSO (pc′, val, buf[i ∶= (a ∶= v).buf(i)])
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Stores do not immediately land in themainmemory, but are instead prepended to the
buffer of the thread that issued them.

buf(i′) = β.(a ∶= v)
(UPDATE) (pc, val, buf) →TSO (pc, val[a ∶= v], buf[i′ ∶= β])

At a later point in time, the earliest store in some buffer that has not yet been propa-
gated to themainmemory can be used to update val. Here, i′ is an arbitrary threadwith
non-empty buffer. Note that this rule does not update the program counter as we did
not execute any instruction.

<inst> = mfence, buf(i) = ε
(MFENCE) (pc, val, buf) →TSO (pc′, val, buf)

Anmfence command blocks the thread until its buffer content has been propagated to
the main memory (via the update rule). It does not change the buffer or the valuation.

<inst> = assert e, JeK ≠ 0
(ASSERT) (pc, val, buf) →TSO (pc′, val, buf)

An assertion can only be taken if the expression that is asserted is non-zero. Here, JeK
should be the valuation of the expression e that is obtainedby replacing register names
r by their current value val(r), and names of functions by the corresponding functions
from FUN.

<inst> = r ← e, JeK = v
(ASSIGN) (pc, val, buf) →TSO (pc′, val[r ∶= v], buf)

Similarly, a local assignment changes the register content.

Exercises

7.6 Exercise: Sequential consistency
In thememorymodel SC (sequential consistency), we assume that access to themain
memory is atomic. More formally, the transition relation→SC is defined similar to→TSO,
but the rule (STORE) is replaced by the rule (SCSTORE).

<inst> = mem[r] ← r′, a = val(r), v = val(r′)
(SCSTORE) (pc, val, buf) →SC (pc′, val[a ∶= v], buf)
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Note that the buffer will never be used, i.e. early reads and updates from the buffer
never occur.

a) Explain the following statement and argue that it is true: There is a correspondence
between all executions of a multi-threaded program under SC and the single exe-
cution of all single-threaded programs obtained by shuffling the source code of the
threads.

b) Let P be a program. We define fency(P) as the program that we obtain from P by in-
serting an mfence instruction directly after every store operation (i.e. mem[r] ← r′).

Argue whether the following statement is correct: The program P executed under
SC has the same behavior as fency(P) does under TSO.

Here, you may use control-state reachability (see below) as a suitable definition for
“having the same behavior”.

7.7 Exercise: SC reachability is in PSPACE
The (control-state) reachability problem for SC is defined as follows.

SC-Reachability

Decide: Program P over DOM, program counter pc
Decide: Is there a computation cf0 →

∗
SC (pc, buf, val) for some buf, val?

a) Reduce SC-Reachability to Petri net coverability. Explain which places are needed
by the net, and how each instruction in the program can be simulated by Petri net
transitions.

b) Conclude that SC-Reachability can be solved in PSPACE. Here, youmay assume that
the size of DOM is encoded in unary.
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8. TSO reachability

In this section, we will consider the TSO reachability problem.

8.1 Definition
TSO reachability

Decide: Program P, program counter pc
Decide: pc ∈ ReachTSO(P)?,

i.e. is there a computation cf0 →
∗
TSO (pc, val, buf) for some val, buf?

Wewill prove that this problem is decidable. To be precise, we showhow to construct a
lossy channel system LP that simulates P. In particular, for each program counter pc, we
have a set of corresponding state in LP such that pc is reachable by P if and only if one of
the corresponding states is reachable in LP. Since reachability in lossy channel systems
can be decided using Abdulla’s backwards search, TSO reachability is decidable.

We will construct lossy channel systems L0
P, L

1
P, L

2
P, L

3
P, LP such that each of them more

closely models TSO resp. fixes problems in earlier versions.

Modeling P as LCS L0
P:

The fundamental idea behindmodeling TSO programs as lossy channel systems is that
shared memory communication is a lot like message passing in lossy channel system:
A store might be overwritten before it is seen by another thread. Therefore, we can
understand the TSO buffers as lossy channels.

Consequently, we may construct a lossy channel system L0
P whose control states are

(TID → LAB) × VAR × DOM ,

meaning a control state is of the form (pc, val), storing for each thread i the next instruc-
tion pc(i), the content of the local registers val(ri) and for each address a its value val(a)
in the main memory.

Furthermore, we have one channel per thread, each channel storing a sequence of sym-
bols from DOM × DOM, i.e. buffered stores of the shape a ∶= v.

The transition relation between the control states is induced by the transition relation
→TSO between TSO configurations. (We will later provide a formal definition.)
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Towards L1
P:

The underlying well-quasi order for LCSs is Higman’s subword ordering. This is not a
simulation relation for TSO. Indeed, consider the following program.

l0∶ r ← mem[x];gotol1; l
′
0∶ mem[y] ← 1;gotol′1;

l1∶ assert r == 1;gotol2; l
′
1∶ mem[x] ← 1;gotol′2;

l2∶ r ← mem[y];gotol3; l
′
2∶ . . .

l3∶ assert r == 0;gotol4;
l4∶ . . .

Consider the configuration

cf = ((l0, l′2, x = y = 0), (ε, x ∶= 1 . y ∶= 1))
of L0

P directly corresponding to a TSO configuration. (For simplicity, we have not shown
the content of the registers in the configuration here.) Compare it to the configuration

cf′ = ((l0, l′2, x = y = 0), (ε, x ∶= 1)) .
By the ordering of configurations for LCS that is inducedbyHigman’s subword ordering
on the channels, we have cf′ ⩾ cf. Since it should be a simulation ordering, this means
that for every state reachable from cf′, there should be a larger state reachable from cf.
Because the order requires equality of the control states, this in particular means that
if a certain program counter is reachable from cf′, it also has to be reachable from cf.

Now note that under TSO, we can reach program counter l4, l
′
2 from cf′ by letting the

store x ∶= 1 land inmainmemory and then executing the instructions in the left thread.
This is not possible under TSO from cf: The store x ∶= 1 needs to land so that l2 can be
reached in the left thread. Since the buffer is FIFO, this means that the store y ∶= 1 has
also landed, this means that the assert in l3 will block and l4 cannot be reached.

Problem: Lossiness gives inconsistent memory configurations.

Fix: We fix this problem bymodifying the LCS to obtain L1
P. In L1

P, the issuing of a store
sends a wholememory snapshot to the channel. The snapshot contains the values for
all memory addresses as currently seen by the thread.
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For example, the configurations of L1
P corresponding to cf and cf′ are

cf1 = ((l0, l′2, x = y = 0), (ε, ( x ∶= 1
y ∶= 1

) . ( x ∶= 0
y ∶= 1

)))
cf′1 = ((l0, l′2, x = y = 0), (ε, ( x ∶= 1

y ∶= 0
))) .

Note that they are incomparable.

The above problem has vanished.

Towards L2
P:

Still, some behavior under L1
P is not possible under TSO. Consider the following pro-

gram.

l0∶ mem[y] ← 0;gotol1; l
′
0∶ mem[x] ← 1;gotol′1;

l1∶ . . . l
′
1∶ r ← mem[x];gotol′2;
l
′
2∶ assert r == 0gotol′3;
l
′
3∶ . . .

Note that (l1, l′3) is not TSO-reachable: TSO can only load from 1 from x (either via an
early read or frommainmemory), since the store in l

′
0 needs to have beenperformed. A

configuration with program counter (l1, l′3) is reachable in L1
P, namely by the following

sequence of transitions,

((l0, l′0, x = y = 0), (ε, ε))
→

2
TSO ((l1, l′1, x = y = 0), (( x ∶= 0

y ∶= 0
), ( x ∶= 1

y ∶= 0
))) // Buffer both stores

→TSO ((l1, l′1, x = 1, y = 0), (( x ∶= 0
y ∶= 0

), ε)) // Update main memory

→TSO ((l1, l′1, x = y = 0), (ε, ε)) // Update main memory

→
2
TSO ((l1, l′3, x = y = 0), (ε, ε)) // Execute load and assert

Problem: Threads do not synchronize on memory updates and may use values that
are no longer in memory.
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Fix: Instead of having one buffer per thread, we let all threads share the same buffer.

In our example, we could e.g. have the configuration

((l1, l′1, x = y = 0), ( x ∶= 1
y ∶= 0

)( x ∶= 1
y ∶= 0

)) .
Towards L3

P:

Now we get the opposite problem: Some TSO behavior is not possible in L2
P. Consider

the following example program.

mem[x] ← 1; (1) (2) r2 ← mem[y]; (12) mem[y] ← 1; (3) (14) r4 ← mem[x]; (8)
mem[x] ← 2; (6) (7) assert r2 == 2; (13) r3 ← mem[x]; (4) assert r4 == 2; (9)
⋮ r2 ← mem[y]; (15) assert r3 == 1; (5) mem[y] ← 2; (10) (11)

assert r2 == 1; (16) ⋮ ⋮

⋮

Here, we have omitted the labels and the gotos to save space. Each instruction jumps
to the next instruction in the same thread. The numbers after each instruction denote
their order in a certain execution, see below.

Under TSO, it is possible to execute the final instruction in each thread, namely by the
execution described as follows:

(1) First thread issues store x ∶= 1.

(2) This store lands in main memory.

(3) Third thread issues store y ∶= 1.

(4) Third thread loads x = 1 from the main memory.

(5) Third thread takes the assert.

(6) First thread issues store x ∶= 2.

(7) This store lands in main memory.

(8) Fourth thread loads x = 2 from the main memory.

(9) Fourth thread takes the assert.

(10) Fourth thread issues store y ∶= 2.
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(11) This store lands in main memory.

(12) Second threads loads y = 2 from the main memory.

(13) Fourth thread takes the first assert.

(14) Store y ∶= 1 issued by the third thread in (3) lands.

(15) Second thread loads y = 1 from the main memory.

(16) Second thread takes the second assert.

In L2
P, this is not possible because operations in the buffer will be propagated to the

memory in the order in which they entered the buffer. This means that the second
thread will not be able to load y = 2 before loading y = 1.

Problem: In L2
P, memory updates are forced to occur in the same order as the corre-

sponding stores. In TSO, memory updates can be performed in opposite order if the
stores stem from different threads.

Fix: We add to each thread a pointer to a position inside the buffer. From the per-
spective of some thread t whose pointer is pointing to some entry m of the buffer, the
buffer looks as follows:

buf = buf′ÍÒÒÒÒÑÒÒÒÒÏ
past memory states

. mÍÑÏ
current memory state

. buf′′ÍÒÒÒÒÒÑÒÒÒÒÒÏ
future memory states

.

Updates of the main memory are simulates by moving the pointer to the left.

A possible channel content in L3
P might look as follows:

( x ∶= 1
y ∶= 1

)
↑
t2

( x ∶= 2
y ∶= 2

)( x ∶= 2
y ∶= 0

)
↑
t4

( x ∶= 1
y ∶= 0

)
↑
t3

( x ∶= 0
y ∶= 0

)
↑
t1

We give a more detailed explanation of this construction later.

8.2 Remark
It is problematic that a the LCS channels are lossy, since the current memory state of a
thread could be forgotten. To disallow this, we consider lossy channel systems with
strong symbols. In this symbols, the symbols occurring in the channel are fromaunion
of sets M ∪⋅ S: Symbols from M can be lost as in normal LCS, symbols from S are strong
symbols that cannot be lost.
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For the reachability problem to be decidable, we need that there is some bound k ∈ N

such that in each reachable state, each channel contains at most k strong symbols.
Lossy channel with a bounded number of strong symbols can be encoded into LCS.
We refer the reader to Exercise 8.6 for the details.

In our case, the number of strong symbols that occur is the number of threads and
therefore bounded.

Towards LP

Problem: In L3
P, early reads are not modeled.

Fix: Remember the last store to an address.

Similar to remembering the current memory snapshot of each state, this is done by
introducing additional strong symbols. As we have at most one last store per combina-
tion of thread on address, the number of occurrences of such symbols is bounded.

Formal construction of LP

Given a program P, we define the LCS with strong symbols LP

LP = (Q, q0, C,M, S,→)
where

• Q = TID → LAB × VAR → DOM are the control states consisting of pc and val

• C = {buf} is the single channel,

• M = DOM → DOM are the normal messages, i.e. memory snapshots, and

• S = DOM → DOM × (TID × DOM ∪ {ε} ×P(TID)) \ (DOM → DOM × {ε} → {∅}) are
the strong symbols.

A strong symbol is of the shape (mem, lw, threads) where mem ∈ DOM → DOM is a
memory snapshot. The last write lw is either (i, a) ∈ TID×DOM if the snapshot contains
the last write to an address aby a thread a, or ε if this snapshot does not contain the last
write of any thread. The set threads ⊆ TID is the set of threads pointing to this snapshot,
i.e. the set of threads that have this snapshot as their current memory state. We disal-
low memory snapshots in S that do neither contain the last write by any thread, nor
have any thread pointing to them. Such snapshots can be represented by the normal
symbols in M.
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8. TSO reachability

In any reachable state, the number of strong symbols will be bounded by∣TID∣ ⋅ ∣DOM∣ ⋅ ∣TID∣, since for each address a ∈ DOM, there are at most ∣TID∣many last
writes to it (one per thread), and for each thread in TID, we need to store one pointer.

It remains to define the transition relation →. Assume we are in control state(pc, val) ∈ Q with pci = l. We define the transitions depending on the instruction
labeled by l.

8.3 Remark
In the following, we will describe transitions that actually need to be realized using a
sequence of transitions each. This can be done by adding helper control states.

We in particular have several transitions that check whether the buffer contains a cer-
tain entry. This can be done by rotating through the buffer: We add a special marker
at the end of the buffer and then proceed tomove elements from the front to the back
of the buffer. This allows us to touch each entry of the buffer. As soon as we see our
marker again, we have rotated once through the buffer.

Any entry that is lost during the rotation could have also been lost at some other point
in the computation.

We refer the reader to Exercise 8.6 for the details.

• Store l∶mem[r] ← r′;gotol′:
For val(r) = a and val(r′) = v, we have an LCS transition from state (pc, val) pro-
ceeding as follows:

1. Check whether the buffer contains a strong symbol of the shape(mem, (t, a), threads). If yes, replace it by (mem, ε, threads). (This is because
after this instruction, we will have a new last store to a by thread t).

2. Enqueue (val↾DOM[a ∶= v], (a, t),∅) into the buffer. (We restrict val to DOM
and do not store the content of the registers in the memory snapshot.)

3. Go to control state (pc[t ∶= l
′], val[a ∶= v]).

• Load l∶ r ← mem[r′];gotol′:
For each val(r′) = a, there are two transitions. For early reads:

1. Assert that the buffer contains some entry (mem, (t, a), threads).
2. Go to control state (pc[t ∶= l

′], val[r ∶= mem(a)]).
For loads from the main memory:
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8. TSO reachability

1. Assert that the buffer contains no entry (mem, (t, a), threads), i.e. we cannot
perform an early read.

2. Find the entry of the buffer (mem′
, lw, threads′)with t ∈ threads′, i.e. find the

current memory state of t.

3. Go to control state (pc[t ∶= l
′], val[r ∶= mem′(a)]).

• Memory fence:

1. Assert that the head of the buffer is of the shape (mem, lw, threads) with
t ∈ threads.

2. Go to control state (pc[t ∶= l
′], val).

• Update:

1. Assert that the buffer is of the shape buf = w1.m1.m2.w2 where

m1 = (mem1, lw1, threads1)
m2 = (mem1, lw2, threads2) with t ∈ threads2 ,

i.e. m2 is the current memory state of thread t.

2. Replace m1 and m2 by m′
1 and m2, defined by

m′
1 = (mem1, lw1 \ {(t,∗)}, threads1 ∪ {t})

m′
2 = (mem2, lw2, threads2 \ {t}) ,

i.e. m′
1 is now the new memory state of thread t. The buffer has now the

shape w1.m
′
1.m

′
2.w2.

3. Go to the control state (pc, val′).
• The rules for assertions and local assignments are straightforward and do not
involve the buffer. In both cases, we use the register valuations (stored in val in
the control state) to compute the value JeK of the expression e. Because there are
only finitely many possible values, this can be encoded in the control states.

An assert e blocks if JeK is zero, otherwise, we go to control state (pc[t ∶= l
′], val).

In the case of an assignment r ← e, we go to the control state(pc[t ∶= l
′], val[r ∶= JeK]).
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8. TSO reachability

8.4 Theorem: Atig, Bouajjani, Burckhardt, Musuvathi [Ati+10; Ati+12]
For aprogramP, one can construct a lossy channel system (with strong symbols) LP such
that a control state pc is reachable by a TSO execution of P if and only if pc is reachable
in LP.

Now recall that reachable in lossy channel systems is decidable using Abdulla’s back-
wards search.

8.5 Corollary
Control-state reachability under TSO is decidable.

Wewill not give a formal proof of Theorem8.4, butwewill present someargumentation
explaining why the construction of LP is correct.

Shuffling regular languages: The constructionmakes use of the following automata-
theoretic trick: Assume you want to shuffle two languages L(A1),L(A2), where A1 and
A2 are automata over disjoint alphabets Σ1, Σ2, Σ1 ∩Σ2 = ∅. Recall that the shuffle is the
set of all possible interleavings obtained from a word from each language,

L(A1) L(A2) = {w ∈ (Σ1 ∪⋅ Σ2)∗ ∣ projΣ1
(w) ∈ L(A1),projΣ2

(w) ∈ L(A2)} .
(Note that this is not the general definition as it relies on the fact that Σ1 and Σ2 are
disjoint.)

To construct an automaton accepting the shuffle we first modify the automata A1 and
A2. Let A

′
1 be the automaton over Σ1 ∪⋅ Σ2 obtained from A1 by adding for each control

state q and each letter a from Σ2 a self-looping transition q
a
−→ q. Similarly, let A′2 be

obtained from A1 by adding a Σ1-labeled self-loop to each control state of A2.

We have
L(A′1) ∩ L(A2)′ = L(A1) L(A2)

so the product automaton A1 × A2 accepts the shuffle.

Applying the trick to TSO: Consider two threads executing under TSO.
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8. TSO reachability

Thread 1

Thread 2

Shared
memory

This can be applied to TSObecause themainmemory sees a shuffle of the stores issued
by both threads: The stores issued by one thread still arrive in their correct order, but
the stores of the other thread might interleave at any point.

Thread 1

Thread 2

Shared
memory

Using the trick explained above, we may instead assume that each thread has its own
memory. We add loops to each thread that may produce arbitrary writes, seemingly
coming from the other thread. An intersection then enforces that those writes were
actually issued by the other thread.

⋂

Thread 1

Thread 2

Mem 1

Mem 2

•

•

Since the channels are FIFO, the stores leave the buffer in the order in which they are
put in. Instead of guessing the buffered stores of the other thread at the memory (and
later verifying the guesses using the intersection), we let the each thread already guess
the stores of the other thread when inserting commands into the buffer.
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⋂

Thread 1

Thread 2

Mem 1

Mem 2

•

•

Now the content of both buffers is the same, but theymaybepropagated into themain
memory at different speed: The buffer content of Thread 1 might be c o n t e n,
with the storet already in itsmemory, while Thread2has already seen the storese,n,t
and has only c o n t remaining in its buffer. We may model this scenario by having
one buffer and for each thread having a pointer into the buffer, e.g.

c o n t e
↑
t2

n t
↑
t1

.

Exercises

8.6 Exercise: Generalised Lossy Channel Systems
Consider the following variant of LCS: Assume one of the symbols s ∈ M is strong,
i.e. can not be lost during sending or receiving in any channel, but the channels can
contain at most k ∈ N instances of symbol s in total. A transition that wants to send the
k + 1st instance of symbol 5s is blocked.

Such an LCS with strong symbol s can be represented by a standard LCS with states
Q×{0, . . . , k}, whereQ is the set of statesof theoriginal system. The resulting transitions
are schematically represented below (for 0 ⩽ i < k).

(q1, i) (q2, i + 1)c!s

You are asked to give an implementation of (q1, i) c!s
⟶(q2, i + 1) by several lossy transi-

tions. Your model should check that precisely i symbols s are present in the channel c
before appending the extra s.

Hint: Take M ∪# as the alphabet of the resulting lcs]
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8. TSO reachability

Remark: One can show similarly that LCSes with a whole set S of strong symbol, where
the total number of strong symbols per channel is bounded, can be simulated by stan-
dard LCS.
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9. TSO reachability in a bounded number of rounds

9. TSO reachability in a bounded number of rounds

As discussed in the previous section, reachability under TSO is decidable. The draw-
back is that the algorithm we discussed reduces the problem to reachability in lossy-
channel systems and thus inherits its bad complexity. To overcome this problem, we
present an underapproximation algorithm. Instead of checking whether a given pro-
gram counter can be reached by an arbitrary computation, we check whether it can be
reached by a computation inwhich each thread is only active for a bounded number of
rounds. If such a computation exists, then the answer to the unrestricted reachability
problem is also positive. If it does not exist, the target state might be unreachable or
the bound on the number of rounds might be chosen too low.

In practice, reachability queries are used to detect bugs in programs (e.g. one is inter-
ested whether a state in which more than one thread is in the critical section can be
reached). In most practical examples, bugs can be found with a low bound on the
number of rounds, so we expect this this underapproximation technique to be useful.
Nevertheless, for each bound k, one can construct a program such that a certain state
is not reachable in k rounds, but in k + 1 rounds.

Our goal is to show how to modify a given program P into a program P′ whose size is
linear in the size of P such that

Reachk-rounds
TSO (P) = ReachSC(P′) .

In other words, the target state is reachable in P under TSO in k rounds if and only if
the equivalent location is reachable in P under the strong memory model sequential
consistency (SC).

In sequential consistency, the buffer is not used and all stores and loads communicate
directly with the main memory. We may either define SC by replacing the rule (STORE)
by a rule that stores directly to the main memory without using the buffer, see Exer-
cise 7.6, or we may obtain the set of SC computations as the subset of TSO computa-
tions in which each (UPDATE) happens directly after the corresponding (STORE).

Reachability under SC is a standard problem to whichmany verification techniques ap-
ply. In particular, it can be solved in PSPACE (assuming the size of domain of values is
given in unary), see Exercise 7.7. Consequently, the resulting algorithm(s) have amuch
better complexity than the algorithm for unrestricted TSO reachability.

9.1 Remark
When defining parallel programs, we have omitted instructions for e loops, conditions,
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9. TSO reachability in a bounded number of rounds

conditional jumps and non-determinism. In this section, we will assume that we have
such constructs available for SC. The proof for the PSPACEmembership of SC reachabil-
ity can be adapted to allow these instructions. Furthermore, there are standard tools
for SC reachability that support these commands.

In particular, we assume that we have an instruction for non-deterministic branching,
i.e. an instruction of the shape

gotol1 or gotol2 .

It induces two transitions, one inwhich the computation continues at l1 andonewhere
it continues at l2. Note that our transition relationwas non-deterministic anyhow, since
we cannot choose which thread becomes active at some point in time. Consequently,
adding this instruction does not increase the complexity of the reachability problem.

We furthermore assume that there is a way to make a sequence of instructions of a
thread atomic. While such an atomic block of instructions is executed, other threads
cannot interfere: As soon as the first instruction is executed, all instructions in the block
have to be executed before any other thread may become active again.

Sources
The theory from this section is from the paper [ABP11]. The presentation is based on
Roland Meyer’s handwritten notes on the topic,
tcs.cs.tu-bs.de/documents/ConcurrencyTheory_WS_20172018/notes/tso_bounded_round_reachability.pdf

We will first formally define what a round is, then define the bounded-round reachabil-
ity problem and finally explain how the reduction outlined above works.

9.2 Definition
We start by augmenting the transition relation: We redefine →TSO to be a subset of
CF × TID × CF, i.e. we augment each transition by the identifier of the thread that was
used for the transition. We have cf

i
−→TSO cf′ if cf →TSO cf′ according to our old defini-

tion and an instruction of thread i was executed or buffer content of thread i has been
propagated to the main memory.

A computation
σ = cf0

i0
−→TSO cf1

i1
−→TSO cf2

i2
−→TSO . . .

in−1
−−−→TSO cfn

can be written as a sequence of phases

σ = σ0.σ1 . . . σm
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9. TSO reachability in a bounded number of rounds

such that in each phase σj, all transitions are made by the same thread i(j), i.e.
σ0 = cf0

i(0)
−−→TSO cf1

i(0)
−−→TSO . . .

i(0)
−−→TSO cfn0

⋮

σm = cfnm−1

i(m)
−−−→TSO cfnm−1+1

i(m)
−−−→TSO . . .

i(m)
−−−→TSO cfnm = cfn

We assume that each phase in the decomposition is maximal, i.e. we have i(j) ≠ i(j + 1)
for all j.

A k-round computation is a computation σ such that in its phase decomposition, for
each thread i, there are at most k phases σj with i(j) = i.

We use

ReachTSO(P)k = {pc∶ TID → LAB ∣ ∃σ = cf0 →
∗
TSO (pc, val, buf)k-round computation}

to denote the set of locations reachable by k-round computations.

We are interested in the following decision problem.

9.3 Definition
TSO bounded round reachability

Decide: Program P, program counter pc, bound k ∈ N

Decide: pc ∈ Reachk-rounds
TSO (P), i.e. is pc reachable by a k-round computation?

Here, we focus on the 2-round case, i.e. we assume that each thread is active at most 2
times. The arguments can be generalized to the k-round case for larger k.

Fix some 2-round computation σ = σ1 . . . σm. Note that for each thread i, there are two
phases in which it is active, say σi

0 and σi
1 (which may be empty).

Wefix some thread t ∈ TID and try tounderstand the communicationof this threadwith
the rest of the thread. The computation looks as depicted by the following graphic.

other threads σt
0 other threads σt

1 other threads

◦ ◦ ◦ ◦ ◦• • • • •
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9. TSO reachability in a bounded number of rounds

Here, circles (◦) mark points in time when a store is issued using the (STORE) rule, and
for each circle, the corresponding bullet (•) marks the point in time the store gets prop-
agated to the main memory by the (UPDATE) rule. (We say that the store “does land”.)

We make a few observations that altogether will lead us to the definition of the modi-
fied program P′.

Observation 1: The program counter pc(t), the register valuation val(rt) for registers
of t and the buffer content buf(t) is the same at the end of σt

0 and at the beginning of
σt

1, since other threads cannot interfere with these things.

Observation 2: Stores issue by thread t can only land during a phase of thread t.

This is simply because we defined the augmented transition relation accordingly.

Observation 3: Stores land in the order they were issued.

This is because the buffer is FIFO. There is a decomposition σt
0 = σt

00.σ
t
01 of σt

0 such that
all stores issued in σt

00 land during σt
0 and all stores issued in σt

01 land during σt
1.

σt
00 σt

01 σt
1

◦ ◦ ◦ ◦ ◦• • • • •

9.4 Remark
Actually, it may also happen that some stores issued during σt

0 stay in the buffer un-
til the end of the computation and do not land at all. Because the buffer is FIFO, this
would imply that all stores issued during σt

1 also never land. In the following, we will
not consider this special case. It can be dealt with using the same methods outlined
below.

Consequence for other threads: Between the two phases of thread t, for each ad-
dress a, the others threadsmay see the last store to address a that wasmade by thread
t and has already landed in main memory during σt

0. All earlier writes by thread t to
address a have already landed and memory and were overwritten by the last write to
a that has landed. All later writes will not land until phase σt

1.
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9. TSO reachability in a bounded number of rounds

How to execute a load: To execute a load under TSO, we need to know

• whether a store to the address is still buffered (i.e. whether an early read should
occur),

• if so, we need the value of the most recent such store

• if not, we need the value from the main memory.

Since during a phase in which thread t is active, stores issued by other threads do not
land (Observeration 2), the buffer of t itself is the only buffer influencing the outcome
of a load by thread t. Therefore, to execute a load, we only need the content of themain
memory at the beginning of the current phase, and themost recent store issued by the
active thread i to the address.

To model this, we introduce a function

view∶DOM → DOM

such that view(a) returns the value that should be loaded from address a by the cur-
rently active thread.

• The modified program P′ will store view(a) for all addresses a in the memory,

• a load from address a in the original program P will be translated into a load of
the value view(a).

• at a beginning of each phase, view will be updated such that it reflects the view
of the thread that is currently active,

• stores made by the thread will immediately update view.

How to execute a store: How a store issued by thread t should be handled depends
on whether we are in σt

00 or in σt
01.

Since the other threads do not interfere during σt
0, the value for some address a they

see in themainmemory is the last valuewritten to this addresswritten during σt
00 (Here,

we assume that the last write to a is indeed done by thread t). Consequently, we can as-
sume that all stores in σt

00 godirectly into themainmemory. This is exactly the behavior
of stores under SC.

They stores issued during σt
01 will land at some point during σt

1, but since other threads
do not interfere during σt

1, wemay assume that they land at the beginning of σt
1. Since

the buffer is FIFO, later stores during σt
1 will overwrite earlier stores to the same address.
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9. TSO reachability in a bounded number of rounds

Consequently, it is sufficient to store the last value stored per address. To this end, for
each address a and each thread t, program P′ will additionally store two values

maskt(a) and queuet(a)
where maskt(a) is non-zero if and only if there is a store buffered by t to address a. In
this case, queuet(a) is the value of the last such store. These values will be used at the
beginning of σt

1 to update the main memory.

We now show how to create from P a program P′ such that to the 2-round computation
σ in P (under TSO), there is a 2-round computation in P′ (under SC) that reaches an
equivalent configuration.

Simulating P by P′

The code for program P′ is obtained by modifying the code of program P.

We use atomic blocks to enforce that the computation of P′ proceeds in rounds. For
simplicity, wemay assume that the code of thread i in P′ consists of k copies of the code
of P, where k is the number of rounds. Each copy forms an atomic block that is executed
without other threads interfering.

Assertions and local assignments remain unchanged. Memory fences may be omitted,
as we assume that P′ is executed under SC.

All loads from address a in P will instead load view(a) in P′. The rest of the code will be
updated to keep view consistent.

Simulating the first round σt
0 of some thread t: Weuse non-deterministic branching

to guess the break between σt
00 and σt

01. In other words, we have two copies of the
code of thread t.

• The first copy corresponds to σt
00. In it, all stores go directly to the main memory,

as explained above. View a is also updated.

After each store operation in this part of the code, non-deterministic branching is
used to guess whether we stay inside it, or whether we jump to the second copy.

• The second copy corresponds to σt
01. Whenever a store operation, say

mem[r] ← r′ is performed, the following happens. Let a = val(r) be the target
address of the store, and let v = val(r′) be the value that should be stored.

– mem[a] is not updated, as the store will not yet land in the main memory,
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9. TSO reachability in a bounded number of rounds

– view(a) is set to v, as the storewill immediately becomevisible to the current
thread. Note that loads by thread t will load from view to simulate early
reads.

– maskt(a)will be set to 1 to indicate that there is a pending store for addressa
queuet(a)will be set to v to store the value that should land inmainmemory
later during σt

1.

After the simulationofσt
0 inP′, themainmemory (aside from view,mask, queue) is equal

to the main memory after the execution of σt
0 in P under TSO. Consequently, the other

threads will not notice the difference. The active thread t itself does not notice the
difference as it loads from view.

Simulating the second round σt
1: Recall that we can assume that all pending stores

fromσt
0 land at thebeginningofσt

1. We iterate over all addressesa anddo the following:
Ifmaskt(a) is 0, then there is no pending store for a. Ifmaskt(a) is 1, then there is a pend-
ing store for a and we use it to update the main memory i.e. we set val(a) = queuet(a).
We rebuild view so that view(a) again consistently contains the value that should be
loaded for address a by thread t by setting view(a) = val(a) for all a.
Similar to σt

0, σ
t
1 decomposes into two parts: Stores issued during the first part still land

during σt
1 and thus can be directly written to themainmemory and view. Stores issued

during the second part do not land in themainmemory at all (as there is no later phase
during which they could land). We again guess non-deterministically the break point
between the parts. In the second part, we let store operations update view(a), but do
not update the main memory at all.

More than two rounds

If we have more than two rounds, each round decomposes into several parts: the part
containing the stores landing during the same phase, the part containing the stores
landing during the next phase, ..., the part containing the stores landing in the last
phase (and maybe the stores not landing at all). We thus need maskj,t and queuej,t

where j is the round during which the store should land. We leave the details to the
reader as an exercise, Exercise 9.8.

9.5 Remark
In the explanation here, we have creates the code in P′ out of several copies of P, which
will lead to a polynomial blowup of the program size. By storing additional values in
the memory, we can get rid of this blowup:
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9. TSO reachability in a bounded number of rounds

• Instead of having one copy per round, we have just one copy and amemory loca-
tion roundt that stores in which round the thread is. Whenever the behavior of P′

should depend on the round, we query the value of roundt and use conditional
statements.

• Instead of having two copies, one for σt
00 and one for σt

01, we have a memory
location part that stores in which part we are. Instead of non-deterministically
jumping to the second copy, we non-deterministically set part to 1. Whenever
the behavior of P′ should depend on the part in which the round is, we query the
value of part and use conditional statements.

Using these tricks, we can create a version of P′ whose size is linear in the size of P.

9.6 Theorem: Atig, Bouajjani, Parlato, CAV 2011 [ABP11]
For a program given P, we can construct a program P′ whose size is linear in the size of
P such that Reachk-rounds

TSO (P) = ReachSC(P′).
Using the PSPACE-completeness of SC reachability, see Exercise 7.7, we obtain the fol-
lowing corollary.

9.7 Corollary
TSO bounded round reachability (with k encoded in unary) is PSPACE-complete.

Exercises

9.8 Exercise: Bounded round reachability for k > 2
Describe the general case for the bounded round TSO-reachability problem that was
described in the lecture. Let P be a parallel program with n ∈ N threads and a bound
k ∈ N on the number of rounds that each thread can make. Explain how to construct
a program P′ such that for each program counter pc in P and its equivalent program
counter pc′ in P′, the following holds.

pc is TSO-reachable in P iff pc′ is SC-reachable in P′.

Note: You do not have to give a formal construction. It is sufficient to list the additional
global variables needed, explain their meaning and how they are used by P′.
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10. Robustness against TSO

We consider a different approach to overcome the high complexity of the TSO reacha-
bility problem. A programmer usually thinks in terms of sequential consistency, where
each possible execution of the program corresponds to a certain interleaving of the
source code of all threads. In fact, understanding parallel programs executed under SC
already turns out to be difficult.

Hence, any behavior of a program that it exhibits under TSO, but not under SC, should
be considered a programming error. We should have

BTSO(P) = BSC(P) ,
where B is an appropriate definition of behavior. If this holds, we call P robust against
(execution under) TSO.

The first problem is finding this appropriate definition of behavior. On the one hand,
the notion of behavior should be strong enough to guarantee that the executions of
the program under TSO are not too drastically different from its execution under SC.
In particular, a program that is bug-free when executed under SC should be bug-free
under TSO. On the other hand, we want a weak notion: If we enforce that the compu-
tations are very similar, we will disallow many TSO-computations and a program will
not be robust unless it makes excessive use if memory fences, which decreases perfor-
mance. In the end, our goal is to come up with an algorithm to check robustness.

Unfortunately, weaker notions are harder to check. For example, consider defining
B = Reach, i.e. we say that a program is robust if the locations it can reach by TSO
computations are the same as the locations it can reach by SC computations. This is
the weakest notion that makes any sens. For a weaker notion, a program could be ro-
bust although it can reach an error location under TSO, but not under SC. The bad thing
is that checking robustness for this notation is just checking TSO reachability for a poly-
nomial number of locations, and thus as hard as TSO reachability.

In this section, we consider trace-based robustness. This is stronger than the equiv-
alence of reachability sets (in particular, it implies this equivalence), but still weak
enough to allow some relaxed TSO executions that cannot happen under SC. As we
will show here, checking robustness for this notion is PSPACE-complete. As in the pre-
vious section, we reduce checking robustness to checking SC reachability in amodified
program, so standard tools apply.
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Sources
The theory from this section is from the papers [BMM11] and [BDM13]. The presenta-
tion is based on Roland Meyer’s handwritten notes on the topic,
tcs.cs.tu-bs.de/documents/ConcurrencyTheory_WS_20172018/notes/tso_robustness.pdf

Traces and trace-based robustness

We start by defining traces. To this end, we augment the transition relation by addi-
tional labels as in the previous section, but this time, we put more information into the
labels. We define the set of actions as

ACT = TID × ({isu, loc} ∪ ({ld, st} × DOM × DOM)) .
Each transition will be labeled by an element from ACT, i.e. a tuple (i, op), where i is the
identifier of the thread that performed the operation (as in the previous section) and
op is the operation that was performed. The operation op is either a local action loc
(an assertion, a register assignment or a memory fence), the issue of a store isu, a load(ld, a, v)whichmay be an early read or a load from themainmemory, or a store (st, a, v)
that lands in the main memory. Here, a is the address and v is the value as expected.

For the sake of completeness, we give the formal definition of the labeled transition
relation.

10.1 Definition
Consider the same setting as in 7.5, i.e. we consider an instruction of thread i that is
executed. Let →TSO ⊆ CF × ACT × CF be the smallest relation satisfying the following
rules.

<inst> = r ← mem[r′], a = val(r′), buf(i)↾a
= (a = v).β

(EARLY) (pc, val, buf) (i,ld,a,v)
−−−−−−→TSO (pc′, val[r ∶= v], buf)

<inst> = r ← mem[r′], a = val(r′), buf(i)↾a
= ε, v = val(a)

(LOAD) (pc, val, buf) (i,ld,a,v)
−−−−−−→TSO (pc′, val[r ∶= v], buf)

<inst> = mem[r] ← r′, a = val(r), v = val(r′)
(STORE) (pc, val, buf) (i,isu)

−−−−→TSO (pc′, val, buf[i ∶= (a = v).buf(i)])
buf(i′) = β.(a = v)

(UPDATE) (pc, val, buf) (i′,st,a,v)
−−−−−−→TSO (pc, val[a = v], buf[i′ ∶= β])
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<inst> = mfence, buf(i) = ε
(MFENCE) (pc, val, buf) (i,loc)

−−−−→TSO (pc′, val, buf)
<inst> = assert e, JeK ≠ 0

(ASSERT) (pc, val, buf) (i,loc)
−−−−→TSO (pc′, val, buf)

<inst> = r ← e, JeK = v
(ASSIGN) (pc, val, buf) (i,loc)

−−−−→TSO (pc′, val[r ∶= v], buf)
Note that we have flattened nested tuples e.g. wewrite (i, st, a, v) instead of (i, (st, a, v)).
To a computation σ = cf0 →

∗
TSO cf we associate the sequence of transition labels

τ ∈ ACT∗ of the augmented transition relation, and we write cf0
τ
−→TSO cf. Because we

want to relate TSO computations to SC computations, we are interested in reaching a
configuration in which the buffer has been completely emptied. We formally define
the set of TSO computations as

CTSO(P) = {τ ∈ ACT∗ »»»»» cf0 τ
−→TSO cf where cf = (pc, val, buf)with buf(i) = ε for all i} .

Wedefine the set of SCcomputationsCSC(P) as the subset of CTSO(P) inwhich each issue(i, isu) is followed by the corresponding store (i, st, a, v). This means we assume that
each store is buffered and then directly propagated to themainmemory. The resulting
effect is as if the store would be written directly to the main memory.

10.2 Example
Consider the main part of Dekker’s mutex again.

l0∶ mem[x] ← 1;gotol1;
l1∶ r ← mem[y];gotol2; »»»»»»»»»»

»»»»»»»»»» l
′
0∶ mem[y] ← 1;gotol1;
l
′
1∶ r′ ← mem[x];gotol2;

The following sequence is a TSO computation, but not an SC computation:

τ = (t1, isu).(t1, ld, y, 0).(t2, isu)(t2, st, y1).(t2, ld, x, 0).(t1, st, x, 1) .
The store that is issued in the first action is propagated to themainmemory by the very
last action.

We could define our behavior based on C (i.e. a program would be robust if
CTSO(P) = CSC(P)), but this would be very strong notion, as it would forbid any compu-
tation that actually uses the buffer. Instead, we abstract the computation into a trace,
a graph that captures its shape.
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10.3 Definition
Let τ ∈ CTSO(P) be a computation. Its trace Tr(τ) is a node-labeled graph

Tr(τ) = (N, λ,→po,→st,→src)
where

• N is a finite set of nodes,

• λ∶N → ACT is the labeling function, and

• →po,→st,→src ⊆ N × N are relations:

– the program order →po relates operations of each thread by the order
in which the corresponding instructions occur in the source code, i.e. if(n, n′) ∈→po, then the instruction corresponding to n is followed by a goto
to the instruction corresponding to n′,

– the store order →st (also called coherence relation) relates stores to the
same address in the order they land inmainmemory, i.e. if (n, n′) ∈→st, then
store n′ overwrites the value of some address a that was previously set by n,
and

– the source relation→src (also called reads-from relation) relates loads to the
store fromwhich they read, i.e. if (n, n′) ∈→src, then n′ is a load that reads the
value from address a written by store n.

It is defined by induction on τ. The trace associated to the empty computation ε is the
empty graph.

Assume that Tr(τ) = (N, λ,→po,→st,→src) is the trace of τ. Then the trace of τ.act is

Tr(τ.act) = (N ∪ {n}, λ′,→′
po,→

′
st,→

′
src)

where n is a new or already existing node, depending on act.

If act = (t, st, a, v), then pick the unique minimal node n with respect to →po labeled
with λ(n) = (t, isu). Set λ′ = λ[n ∶= act] and →

′
po=→po. Intuitively, when a store lands in

mainmemory, it replaces the issue node of the store in the trace. Because the buffer of
each thread is FIFO, we need to find the minimal issue node.

If act is of a different type, we add a fresh node n /∈ N and set λ′ = λ ∪ {n ∶= act}. Let
nt be the unique maximal node with respect to →po with thread identifier t. We set
→
′
po=→po ∪{(nt, n)}. (Node nt might not exist if act is the first operation by thread t; In

this case, we do not modify→po.)
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For stores, i.e. act = (t, st, a, v), we also need to update the store order. Let na be the
maximal node with respect to→st labeled by (∗, st, a,∗) (i.e. the last store to address a
by any thread). We set→′

st=→st ∪{(na, n)}. If na does not exist (i.e. if act is the first store
to address a) or act is not a store, we have→′

st=→st.

Ifact is a storeor a load,wealsoneed toupdate the source relation. (Otherwise,wehave
→
′
src=→src.) If act = (t, ld, a, v), let na be the maximal node with respect to →st labeled

by (∗, st, a,∗) (i.e. the last store to address a by any thread). We set→′
src=→src ∪{(na, n)}.

Intuitively, n reads the valuewritten by the last store to address a that has already been
propagated tomainmemory. (Node na may not exist if act loads the initial value; In this
case, we do not modify→′

src.)

Note that thismay introduce an inconsistent entry: actmight load value v and na might
store some other value v′. This can happen if act performs an early read of a store a ∶= v
that has been issued by thread t but has not landed in main memory. We will fix this
problem when this store a ∶= v lands.b

If act = (t, st, a, v), we need to update the source relation for all loads in the same thread
that can perform an early read form this store (but not for loads fromother threads that
still saw the old value in the main memory). Let Early be the set of actions n′ ∈ N with
n →

∗
po n′ and λ(n) = (t, ld, a, v), i.e. all loads of the same thread from address a that

follow the issuing of the store. We set

→
′
src= (→src \{(∗, n′) ∣ n′ ∈ Early}) ∪ {(n, n′) ∣ n′ ∈ Early} .

We write
TrTSO(P) = Tr(CTSO(P)) = {Tr(τ) ∣ τ ∈ CTSO(P)}

to denote the set of all traces (of TSO computations) of P, and similarly,
TrSC(P) = Tr(CSC(P)) for the set of SC traces. Traces provide the right notion of robust-
ness.

10.4 Definition
A parallel program P is (trace-)robust against TSO if TrTSO(P) = TrSC(P).
Note that trace-based robustness is strictly stronger than state-based robustness (i.e. re-
quiring ReachTSO(P) = ReachSC(P).
10.5 Lemma
If TrTSO(P) = TrSC(P) holds, then we also have ReachTSO(P) = ReachSC(P). The reverse
implication does not hold.
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Proof: Exercise 10.19.

Checking robustness is the following decision problem.

10.6 Definition

(Trace-based) Robustness
Decide: Program P
Decide: Is P robust, i.e. does TrTSO(P) = TrSC(P) hold?

We will now first develop a criterion that allows us to check for a trace Tr(τ) whether
Tr(τ) ∈ TrSC(P) holds. Afterwards, we discuss how one can check whether all TSO traces
of a program satisfy the criterion, i.e. whether TrTSO(P) ⊆ TrSC(P) holds. (Note that the
other inclusion always holds.)

Our criterion should take a Tr(τ) and tell us whether there is a SC-computation
τ′ ∈ CSC(P) such that Tr(τ) = Tr(τ′). Computation τ′ essentially consists of the same
actions as τ, they are just scheduled in a different order. In particular, each store needs
to be immediately scheduled after the corresponding issue, but this is already taken
care of by the fact that in the trace, the store and the issue are represented by a single
vertex.

To obtain the criterion, we first define a new order, the happens-before relation →hb

on Tr(τ). The idea is that any SC-scheduling of the actions in τ has to respect →hb: If
act →+

hb act′, then act has to be scheduled before act′.

We first note that the three relations that we have already defined should be subsets of
→hb:

• →po ⊆→hb:
Just as a TSO scheduling, an SC scheduling has to respect the program order. Ac-
tions coming from instructions of the same thread need to be scheduled in the
order in which the instructions appear in the source code.

• →src ⊆→hb:
If some load ld should read the value written by some store st, i.e. st →src ld, then
in particular, st needs to be scheduled before ld.

• →st ⊆→hb:
If some store st′ should overwrite the value written by some other store st, ie
st →st st

′, then in particular, st needs to be scheduled before st′.
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The relation obtained by uniting →po,→src and →st does not yet characterize the SC
schedulability of a trace. We need to add one more relation that is derived from →st

and→src as follows.

10.7 Definition: Conflict relation
Let Tr(τ) = (N, λ,→po,→st,→src) be a trace. The conflict relation→cf ⊆ N × N is defined
as follows:

ld →cf st iff ∃st′ ∈ N∶ st′ →src ld and st′ →st st

or ld loads the initial value and st is the first store on the address .

Illustration:

∃st′ ld st
st

src cf

Intuitively, the load ld reads the value from some some store st′ that is then overwritten
by the store st. Consequently, ld needs to be scheduled before st, otherwise it would
read the value stored by st. Here, it is important that under SC early reads are not pos-
sible.

We combine all these relation into a single relation, the (SC-)happens-before relation

→hb =→po ∪ →src ∪ →st ∪ →cf .

10.8 Example
Consider the computation

τ = (t1, isu).(t1, ld, y, 0).(t2, isu)(t2, st, y1).(t2, ld, x, 0).(t1, st, x, 1)
from Example 10.2. Its associated trace is as follows:

(t1, st, x, 1)

(t1, ld, y, 0)

(t2, st, y, 1)

(t2, ld, x, 0)po po

cfcf
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As one can see, the happens-before relation forms a cycle. It turns out that this is in fact
the general criterion for not being an SC trace. If →hb contains a cycle, we have some
action act with act →

+
hb act, i.e. it should be scheduled strictly before itself, which is

impossible.

10.9 Lemma: Shasha & Snir, TOPLAS 1988 [ShSn88]
Let Tr(τ) ∈ TrTSO(P) be a trace. We have Tr(τ) ∈ TrSC(P) iff→hb is acyclic.

Proof sketch:
For one direction, one can prove that under SC, all computations have traces with
acyclic happens-before relations.

For theother direction, note that if→hb for Tr(τ) is acyclic, then its reflexive and transitive
closure →

∗
hb is antisymmetric. This means →∗

hb is a partial order. Any partial order can
be extended to a total order. Let →sc be the total order we obtain by extending →

∗
hb.

The SC-computation τ′ we obtain be scheduling the instructions in the source code as
given by→sc has Tr(τ) = Tr(τ′) ∈ TrSC(P) as desired.
We leave the details to the reader, see Exercise 10.22.

Let us call a trace Tr(τ) ∈ TrTSO(P) violating if it is not contained in TrSC(P). The lemma of
Sasha and Snir provides a semantic criterion for a single trace to be violating. It is not
at all clear how to check whether a program is robust, i.e. whether all its (potentially
infinitely many) traces are non-violating. In the rest of this section, we want to show
that it can be checked in PSPACE whether a violating trace exists. To this end, we will
proceed as follows:

(1) We defineminimal violations, computations whose trace are violating in which the
number of delayed stores and the delay are minimal.

(2) We study the shapeof these violations. Wewill see that it is sufficient that one single
thread (the “attacker”) is delaying stores.

(3) We devise an algorithm to detect such violations.

For (2), we need combinatorial reasoning. For (3), we need algorithm design.

Minimal violations and locality

The key to showing that robustness is to show that it is sufficient to consider computa-
tions in which a single thread delays its stores. We start by defining minimal violations.
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10.10 Definition: Minimal violation
Consider a computation τ = α.a.β.b.γ ∈ CTSO(P) with Thread(a) = Thread(b) = t. Here,
Thread(a) refers to the thread to which operation a belongs.

The distance between a and b in τ is defined as δτ(a, b) = ∣β ↓τ ∣ i.e. it is the number of
operations of t that appear in β.

The number of delays in τ is given as #(τ) = Σisu,st∈τδτ(isu, st) i.e. it is the sum of the
distance between all the issues and stores that appear in τ.

A violating computation τ is minimal if #(τ) is minimal among the number of delays
for all the violating computations.

Clearly, if there is a violating computation at all, then there is aminimal one. Theremay
be different computations with the same minimal number of delays. In this case, all of
them are minimal.

Wewish toprove the following theoremwhich states that in anyminimal violation, only
a single thread delays its store.

10.11 Theorem: Locality
In a minimal violation, only a single thread re-orders its action.

Towards proving this theorem, we will prove a sequence of auxiliary lemmas that will
be used in the proof of the theorem.

10.12 Lemma
Consider any minimal violation of the form τ = α.isu.β.st.γ ∈ CTSO(P), where isu, st are
issue and store instructions of a thread t. Then one of the following holds.

• β ↓t = ε i.e. there are no instructions of t in β

• β ↓t = β′.ld.β′′ with addr(ld) ≠ addr(st) and β′′ contains only store instruction.
Here ld refers to a load instruction and addr refers to the address to which the
load/store instruction performs its action.

In words: A store is either not delayed at all, or it is delayed beyond a load instruction
of the same thread that loads a different address.
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Proof:
Let us suppose that β contains one ormore actions of t, otherwise we are already done.

Case: All actions of t are stores:
Consider the computation τ′ = α.β.isu.st.γ. Clearly, τ′ is also a valid TSO computation.
Moreover τ′ has the same trace as τ, but#(τ′) < #(τ), which contradicts the minimality
of τ.

Case: Not all actions of t are stores:
Let a be the last non-store action in β ↓t , then β can be decomposed as β = β1.a.β2.
This means that all actions of t in β2 are stores. Notice that a cannot be a fence since
stores cannot be delayed beyond a fence. Then one of the following holds.

1. a is a isu action.

2. a is a local action.

3. a is a load action.

For the Cases 1, 2 and for the Case 3 with addr(a) = addr(st), we can easily obtain
τ′ = α.isu.β1.β2.st.a. We have that τ′ is a valid TSO computation with the same trace.
Furthermore,#(τ′) < #(τ)which contradicts the minimality of τ.

We next introduce the happens-before-through relation. Informally, an action a hap-
pens before b through β, if the happens before relation between a and b can be traced
through β.

10.13 Definition: Happens-before through
Let τ = α.a.β.b.γ ∈ CTSO(P). We say a happens-before b through β if there are sub-
sequences c1 . . . cn of a.β.b such that ci →hb ci+1 or ci →

∗
po ci+1 for all 0 ⩽ i ⩽ n and

c0 = a, cn = b.

We write a →
+
hb b though β.

The following lemma states that the happens before relation is robust against inser-
tions. This is easy to see since to establish the relation, we only need a subsequence.

10.14 Lemma
Consider τ = α.a.β.b.γ and τ′ = α′.a.β′.b.γ′ such that ∀t, τ ↓t = τ′ ↓t . Moreover assume
that β is a subsequence of β′. Then if a →

+
hb b through β , then a →

+
hb b through β′.
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In the following proposition, we establish a crucial structural property on the shape of
a minimal violating computation. This will be used later to prove Theorem 10.11.

10.15 Proposition: Dichotomy
For any minimal violation τ = α.a.β.b.γ, one of the following holds.

1. a →
+
hb b though β.

2. There is τ′ = α.β1.b.a.β2.γ, such that Tr(τ′) = Tr(τ) and τ′ ↓t = τ ↓t for all t.

In words, a minimal violation either contains a happens-before-through relation be-
tween two commands, or they can be reordered to be next to each other while preserv-
ing the trace. If we apply dichotomy to an issue and its correspondingdelayed store, we
obtain an happens-before-through (the case that they can be reordered cannot occur,
as it would contradict minimality).

Proof:
Since proving (1 ∨ 2) is the same as proving ¬ 1 ⟹ 2, we will be proving the latter, i.e.
we will assume ¬ 1 and prove 2. We will proceed by induction on the length of β. We
will additionally strengthen our hypothesis as follows.

In addition to the property 2, we will additionally show that β2 is a subsequence of β.

Base case: We assume ∣β∣ = 0, τ = α.a.b.γ and a ↛hb b.

Case Thread(a) = Thread(b):
We have a →

∗
po b or b →

∗
po a. Since we assume a ↛hb b, b →

+
po a has to hold. Conse-

quently, b is a store action delayed beyond a. Swapping a and b will avoid the delay to
give τ′ = α.b.a.γ. This already contradicts minimality since both τ and τ′ have the same
trace.

Case Thread(a) ≠ Thread(b):
One of the following is true.

• One of the action is local

• The actions access different address

• Both are load instructions
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In all the three cases, swapping the action produces the required τ′.

Inductive case: For this, wewill assume that the statement is true for all β′ with ∣β′∣ = n.
Consider τ = α.a.β.c.b.γ with ∣β.c∣ = n+ 1. Suppose a ↛

∗
hb b through β.c, then we have

at least one of a ↛
∗
hb c and c ↛hb b.

Case a ↛
∗
hb c through β:

In this casewe can apply induction hypothesis to a and c. We obtain τ′ = α.β1.c.a.β2.b.γ
with Tr(τ) = Tr(τ′) and τ′ ↓t = τ ↓t for all threads t. Now suppose a →

∗
hb b through β2 in

τ′, then we also have a →
∗
hb b through β ⋅ c in τ. Hence we have a ↛

∗
hb b through β2 in

τ′. We can apply the induction hypothesis again to obtain τ′′ = α.β1.c.β21.ba.β22.γ with
Tr(τ′′) = Tr(τ′) and τ′′ ↓t = τ′ ↓t . We further have that β22 is a subword of β2, which is a
subword of β.c as required.

Case c ↛hb b:
In this case, we apply the induction hypothesis to b and c. We obtain τ′ = α.a.β.b.c.γ
with Tr(τ) = Tr(τ′) and τ ↓t = τ′ ↓t for all threads t. We apply the induction hypothesis
to τ′ to get the required τ′′ = α.β1.b.a.β2.c.γ with Tr(τ′′) = Tr(τ′) and τ′′ ↓t = τ′′ ↓t for all
threads t, and β2 is a sub-sequence of β.

10.16 Corollary
Consider a minimal violation of the form

τ = τ1 ⋅ isu ⋅ τ2 ⋅ ld ⋅ τ3 ⋅ st τ4 ,

where st is the store corresponding to isu. Then Tr(τ) contains the cycle st →+
po ld →

+
hb st.

Proof:
Notice that st →+

po ld already holds since isu was issued before the ld.

To show that ld →
+
hb st, we will argue that ld →

+
hb st through τ3. Using dichotomy,

Proposition 10.15, one of the following holds:

1. ld →
+
hb st through τ3

2. A computation τ′ obtained by re-ordering of ld and st has the property
Tr(τ′) = Tr(τ) and τ′ ↓t = τ ↓t .

Notice that 2 is impossible since this would violate τ′ ↓t = τ ↓t , where
t = Thread(ld) = Thread(st). Hence from 1, we get the desired result.
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With these results in place, we are now ready to prove the main Theorem 10.11. Recall
thatwewanted toprove that in aminimal violation, only one thread re-orders its action.

Proof:
Consider a minimal violation τ. Towards a contradiction, we will assume that at least
two threads delay stores. By Lemma 10.12 we have that each store is delayed past a
load of the same thread.

Let st2 be the overall last store that was delayed in τ, and let t2 = Thread(st2) be the
corresponding thread. Let ld2 be the last load that was overtaken by st2 (i.e. ld2 was the
last load that happened before st2). Similarly, let st1 be the overall last store delayed in
some thread t1 ≠ t2 and let ld1 be the last load overtaken by st1.

One of the following three situations has to occur.

1. τ = τ1 ld1 τ2 st1 τ3 ld2 τ4 st2 τ5

2. τ = τ1 ld2 τ2 ld1 τ3 st1 τ4 st2 τ5

3. τ = τ1 ld1 τ2 ld2 τ3 st1 τ4 st2 τ5

We argue in each of the cases that τ is not minimal.

Case 1:
Remove the red part, i.e. consider τ′ = τ1.ld1.τ2.st1.τst, where τst contains all the stores
of t2 issued before st1. Clearly, #(τ′) < #(τ). Furthermore, the trace of τ′ contains a
cycle: We have st1 →

+
po ld1 and ld1 →

+
hb st1. Thus, τ′ is a a violating computation, a

contradiction to the minimality of τ.

Case 2:
Notice that starting from ld2, thread t2 does not do any actions except to delay
stores until st2 (by Lemma 10.12). This means ld2 and all the program-order later ac-
tions of t2 can be removed without effecting the feasibility of the computation. Let
τ′ = τ1.τ2.ld1.τ3.st1.τ4.st2. Notice that we also removed τ5 since this part can have loads
of other threads that can depend on the stores of t2. Clearly #(τ′) < #(τ) and Tr(τ′) is
cyclic, a contradiction to the minimality of τ.

Case 3: Consider τ′ = τ1.ld1.τ2.ld2.τ3.st1.(τ4 ↓t2 ).st2, obtained by deleting τ5 and by
deleting from τ4 all the actions that do not belong to thread t2. We still have ld1 →

∗
hb st1
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through τ2ld2τ3, so τ′ is cyclic. (Otherwise, we are done by dichotomy.) We also have
#(τ′) ⩽ #(τ). We apply dichotomy, Proposition 10.15, to obtain that ld2 →

∗
hb st2 through

τ3 ⋅ st1 ⋅ τ4 ↓t2 . Moreover, we also have st2 →
∗
po ld2. By Lemma 10.12, we can de-

duce that ld1 is the last program order action of thread t1 in τ′. We delete it to get
τ′′ = τ1.τ2.ld2.τ3.st1.(τ4 ↓t2 ).st2. We further have#(τ′′) < #(τ′) ⩽ #(τ) and Tr(τ′′) is cyclic
since st2 →

∗
po ld2 →

∗
hb st2 continues to hold, a contradiction to minimality.

Having proved that at most one thread needs to delay its store for any (minimal) vi-
olation to occur, we next would like to characterize the set of all possible (minimal)
violations as a simpler structure. Our aim is to define such a simple structure and prove
robustness by proving absence of this simple structure in the program. For this, wewill
define what is called an attack.

10.17 Definition: Attack on robustness
An attack is a triple A = (tA, st, ld) where tA is the thread called the attacker, st, ld are
the store and load instructions of tA. A TSOwitness τ for A is a computation of the form
shown below that satisfies the properties listed below.

τ = τ1 isu τ2 ldA τ3 stA τ4

(W1) Only tA delays stores.

(W2) stA is the first store instruction of the attacker that is delayed. ldA is the last load
action of tA overtaken by stA.

(W3) For all actions act in ldA ⋅ τ3 ⋅ stA, we have ldA →
∗
hb act.

(W4) Sequence τ4 only contains the stores of the attacker that were issued before ldA.

(W5) All these stores st and stA satisfy addr(st) ≠ addr(ldA).
If a TSO witness for an attack A exists then we call the attack feasible.

10.18 Theorem
Program P is robust iff no attacks are feasible.

Proof:
For the ⇒ direction, notice that a TSO witness of an attack already comes with a
happens-before cycle
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stA →
∗
po ldA →

+
hb stA

For the other direction, wewill show that if P is not robust, then there is a feasible attack.
For this, let us assume that P is not robust, i.e. the set of violating computations is non-
empty. We select a minimal violation τ, i.e. a violating computation τ such that #(τ)
is minimal. By Theorem 10.11, we know that only one thread tA uses its buffer. The
attack that we are going to define will use this thread tA as attacker. Hence, 1 holds by
construction.

Initially, the attacker tA executes under SC-semantics and stores immediately follow
their issue. Eventually, the attacker starts delaying the store. Let stA be the first store
that is delayed by the attacker. Similarly let ldA be the last load that is overtaken (which
has to exist by Lemma 10.12.) This already gives us 2.

The computations looks as depicted in the following figure.

τ = τ1 isu τ2 ldA τ3 stA τ4

We get ldA →
∗
hb stA and 3 by dichotomy, Proposition 10.15. With a cycle of the form

stA →
∗
po ldA →

∗
hb stA, we can already stop with the last action of τ3, τ4 only needs to

contain stores of the attacker that have been delayed past ldA. We can further also
assume that ldA to be the last program order action of the attacker. From this, we get 4.

Finally we get 5 by a straight forward application of Lemma 10.12.

Instrumentation

TODO: Still missing.

Exercises

10.19 Exercise: Trace robustness strictly implies reachability robustness
Prove the following Lemma from the lecture.

123



10. Robustness against TSO

a) If TrTSO(P) = TrSC(P) for some program, then ReachTSO(P) = ReachTSO(SC).
Here, ReachTSO(P) = {pc ∣ cf0 →∗

TSO (pc, val, buf)with buf(i) = ε for all i} and
ReachSC(P) is obtained by restricting the definition to computations in which
each issue (STORE) is followed by the store (UPDATE).

b) The reverse implication does not hold.

10.20 Remark: Relations
Recall the following basic definitions for relations.

Let N be a set and let ⩽ ⊆ N × N be a relation.

Recall that N is reflexive if x ⩽ x for all x ∈ N. It is antisymmetric if x ⩽ y and y ⩽ x imply
x = y (for all x, y ∈ N). It is transitive if x ⩽ y and y ⩽ z imply x ⩽ z (for all x, y, z ∈ N). If all
three properties hold, we call ⩽ a partial order.

A partial order is called total (or linear) if any two elements are comparable, i.e.
∀x, y ∈ N∶ x ⩽ y or y ⩽ x.

We let ⩽∗ denote the reflexive-transitive closure of ⩽, the smallest subset of N × N that
contains ⩽ and is reflexive and transitive.

Wemay see (N,⩽) as a directed graph. We call ⩽ acyclic if this graph does not contain a
non-trivial cycle x0 ⩽ x1 ⩽ . . . ⩽ xm ⩽ x0. (Cycles of the shape x0 ⩽ x0 are trivial.)

10.21 Exercise: Relations
Let N be a finite set and let ⩽ ⊆ N × N be a relation.

a) Explain how to construct ⩽∗ from ⩽within a finite number of steps.

b) Prove that ⩽∗ is a partial order (i.e. antisymmetric) if and only if ⩽ is acyclic.

c) Nowassume that⩽po is somepartial order. Prove that there is a total order⩽to ⊆ N×N
containing ⩽po, i.e. ⩽po ⊆ ⩽to.

d) (Bonus exercise, not graded.) Do b) and c) still hold if N is infinite?

10.22 Exercise: Shasha and Snir
Prove the Lemma by Shasha and Snir:

A trace Tr(τ) ∈ TrTSO(P) is in TrSC(P) if and only if its happens-before relation→hb is
acyclic.
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10. Robustness against TSO

Proceed as follows:

a) Show that for traces of SC computations,→hb is necessarily acyclic.

b) Show how from a trace with acyclic →hb, one can construct an SC computation τ′

with Tr(τ′) = Tr(τ).
Hint: Use Exercise 10.21.

10.23 Exercise
Consider two traces τ = α.a.b.γ and τ′ = α′.a.β.b.γ′ where thread(c) ≠ thread(a) and
thread(c) ≠ thread(b) for all c in β. Prove the following:

If a →hb b in TrTSO(τ) then a →
+
hb b in TrTSO(τ′)

10.24 Exercise
Consider the following program implementing an instance of the non-blocking write
protocol by H. Kopetz and J. Reisinger:

l1 ∶ h ← mem[g]; gotol2 l9 ∶ h ← mem[g]; gotol10
l2 ∶ mem[g] ← h + 1; gotol3 l10 ∶ mem[g] ← h + 1; gotol11
l3 ∶ mem[x] ← 42; gotol4 l11 ∶ mem[x] ← 43; gotol12
l4 ∶ mem[g] ← h + 2; gotol5 l12 ∶ mem[g] ← h + 2;
l5 ∶ r ← mem[g]; gotol6
l6 ∶ v ← mem[x]; gotol7
l7 ∶ s ← mem[g]; gotol8
l8 ∶ assert r ≠ s ∨ r is odd; gotol5
l8 ∶ assert r = s ∧ r is even;

Note that there are two instructions labeled by l8. Assume thatwhen executing gotol8,
the execution non-deterministically jumps to any of them.

Prove that the program is not robust under TSO. Initially assumemem[g] = 0 and g ≠ x.

10.25 Exercise
Consider a computation τ = τ1.act1.τ2 ∈ CSC(P) where for all act2 in τ2 we have
act1 →

∗
hb act2. Show that the computation τ.act satisfies act1 →

∗
hb act if and only if

1. there is an action act2 in act1.τ2 with thread(act2) = thread(act), or
2. act is a load whose address is stored in act1.τ2, or

3. act is a store (with issue) whose address is loaded or stored in act1.τ2 .
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10. Robustness against TSO

10.26 Exercise: The one and only
Consider again the program from Exercise 10.24.

Check whether the following attacks are feasible:

a) A1 = (t1, l4, l5) ,
b) A2 = (t2, l11, l6) .
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