Concurrency theory

Lecture notes
December 4, 2018

Roland Meyer
Sebastian Muskalla

Prakash Saivasan

TU Braunschweig
Winter term 2017/2018



Contents

Contents

L

Introduction

Petri nets and well-structured transition systems

Petri nety

Syntax and semantics of Petri nets

Algorithmic problems

Petri net coverability

Rackoft’s algorithm for coverability|

Lipton’s hardness result

oY [ [N [W

Petri net reachability

Generalized Markingg

Covering graphs

Precovering graphg

Marked graph transition sequencey

Decomposing MGIS

Weak memory models

4

Total store ordering

B SO reaclia5|||t9|

)

TS0 reachability in a bounded number of rounds

10 Robustness against TSO

[races and trace-based robustness

Minimal violations and locality|

Instrumentation

rReferences

10
10
16

22
26
36

52
53
54
59
67
72

81
82
89

101

109
110
116
123

127



Contents

Preface

These are the lecture notes accompanying the course “Concurrency theory” taught at
TU Braunschweig in the winter term of 2017/2018.

Unfortunately, we cannot guarantee the correctness of these notes. In case you spot a
bug, please send a mail to us: s.muskalla@tu-bs.de.

Roland Meyer, Sebastian Muskalla, Prakash Saivasan

Braunschweig, December 4, 2018

Literature

The content of this lecture overlaps with the contents of past iterations of “Concurrency
theory”. The lecture notes for parts of the lecture are based on Roland Meyer’s notes, in
particular on his texed lecture notes from 2011:

tcs.cs.tu-bs.de/documents/lecturenotes/conctheo2011.pdf

For the rest of the lecture, we mostly use the original papers as sources. The beginning
of each section will contain information on the material on which the content is based.


https://tcs.cs.tu-bs.de/documents/lecturenotes/conctheo2011.pdf

1. Introduction

1. Introduction

The overall topic of this lecture is the verification of concurrent systems. We will ap-
proach this by considering types of automata that can model the behavior of such sys-
tems and solving their algorithmic problems.

Concurrent systems
A concurrent system is a collection of components (e.g. threads)
+ running asynchronously or synchronously,

« running concurrently, e.g. interleaved on one core, on several cores of one CPU,
on several CPUs of the same machine or one multiple machines (distribution),
and

« communicating in some way, e.g. via shared memory or messages.
Verification

Verification is one of the biggest active research areas within Theoretical Computer Sci-
ence. Its most basic problem is the verification problem: Given a system Sys and a spec-
ification Spec, does the behavior of the system satisfy the specification, Sys E Spec? The
difficulty of this problem arises from the fact that one usually only has a syntactic de-
scription of the system (e.g. the source code of a program), but the specification talks
about the runtime behavior of the system. Even in the simple case where the system is
a sequential Java program and the specification is given by a designated error location
in the source code that should not be reached, the problem is undecidable. (It corre-
sponds to the control state reachability problem for Turing machines, a variant of the
undecidable halting problem.)

Research in verification tackles this problem in various ways.

There are semi-decision procedures for verification that do not always terminate, but if
they terminate, their result is correct. For example, to solve the above problem, one
can enumerate possible computations of the program. If one finds a valid computation
reaching the error location, the answer to the verification problem is negative.

Approximation techniques replace a complex system by a system from a simpler class
for which the verification problem is decidable. For example, one can model a recursive
program, more precisely its control flow, by a pushdown system, for which control state
reachability can be checked in polynomial time. There are two types of approximations:



1. Introduction

« An overapproximation is a system whose behavior subsumes the behavior of the
original system. If one is able to prove an overapproximation to be sound, i.e. all
possible behaviors satisfy the specification, this also holds true for the original
system. If the overapproximation has a bad computation, it may not be clear
whether this computation is also a computation of the original system.

« An underapproximation is a system whose behavior is a subset of the behavior of
the original system. If one is able to find a bad computation of an underapproxi-
mation, then also the original system has a bad computation.

All these techniques may be combined. Some semi-decision procedures iteratively re-
fine approximations of the systems until they can find a bad computation or prove the
system correct. Still, it may happen that procedure does not terminate since none of
the two cases applies within a finite number of steps.

For approximation techniques, it is crucial that efficient techniques are available for the
algorithmic problems of the class of systems that is used to approximate. In this lecture,
we will therefore consider types of automata that can be used for modeling concurrent
systems and discuss their algorithmic problems.

Models for concurrent systems

(1) Automata on a distributed alphabet. Assume the simple case in which each com-
ponent of the system is modeled by a finite automaton. If all components are synchro-
nized by some external clock, the system can be modeled by the product automaton.
This automaton can be explicitly constructed and algorithms for finite automata can
be applied.

If we assume that the automaton run asynchronously, interesting behavior can occur.
Consider for example an automaton over the alphabet {a, b} generating ab and an au-
tomaton over the alphabet {c, d} generating cd. If we give their parallel composition
an interleaving semantics, we obtain that it can generate all possible interleavings
of ab, cd, i.e. the set of words {abcd, acbd, acdb, cdab, cadb, cabd}. Now assume that
there is some action s that is in the alphabet of both automata on which the automata
synchronize. If the automata generate asb resp. csd, the set of possible interleavings
is reduced to {acsbd, acsdb, casbd, casdb}. Research in this area studies the structure
of languages generated by such automata over distributed alphabets that run asyn-
chronously, but synchronize on some actions.

(2) Multi-pushdown systems. A multi-pushdown system is a system with several
stacks that can be used independently. Such systems occur if we assume that each



1. Introduction

component of a concurrent system is modeled by a pushdown system, and we then
construct the product. A multi-pushdown system is much more powerful than a reg-
ular pushdown system; Unfortunately, it is already too powerful. The tape of a Turing
machine can be modeled by two stacks, the one containing the part of the tape that
is on the left of the read-head, the other containing the part on the right. Moving the
head can be implemented by popping from one stack and pushing onto the other. Con-
sequently, multi-pushdown systems are Turing-complete and all interesting problems,
e.g. control state reachability, are undecidable.

To overcome this problem, one may only look at a restricted set of computations. For
example, one may consider bounded context switching, i.e. one only considers com-
putations that can be split into k phases (where k is some fixed number) such that in
each phase, only one of the stacks is used. This corresponds to restricting the com-
munication between the components of the concurrent system. Research in this area
focuses on understanding which restrictions lead to verification problems becoming
decidable.

(3) Petri nets. Petri nets are an automata model in which a concurrent system can be
modeled natively (i.e. without taking the product of several systems). Petri nets are the
first topic that we will consider in the lecture. We refer the reader to Section [ for a
detailed explanation and an example.

(4) Well-structured transition systems. Well-structured transition systems (WSTS)
are a general class of systems to which some algorithmic techniques for Petri nets can
be extended. The idea is to order the state space such that larger states have a richer
behavior. An important example of WSTSs that are not Petri net-like are lossy channel
systems.

A (perfect) channel system is a system that uses LIFO-queues (last in, first out) as stor-
age. The transitions of the system can perform enqueue and dequeue actions. Unfor-
tunately, perfect channel system are Turing-complete. In a lossy channel system, we
assume that at any point in time, the channel may lose some of its content.

Network protocols can be modeled as a lossy channel system, because for any network
communication (e.g. TCP/IP), one has to assume that packages can be lost. A protocol
should be correct even if package losses occur.



1. Introduction

(5) Weak memory models. Consider the following parallel program, a simplification
of the so-called Dekker mutex.

x=y=0.
x=T; y=T1
if(y ==0){ if(x ==0){
[ [critical section [ [critical section
} }

If we assume that the program is executed under an interleaving semantics, mutual
exclusion holds. At most one thread can enter the critical section: Assoon as one thread
signals that it wants to enter the critical section by setting x resp. y to 1, the other thread
will see this and cannot enter anymore.

Such aninterleaving semantics corresponds to a strong memory model like sequential
consistency (SC) in which all writes made by one thread are instantly visibly to all other
threads. This is not feasibly in practice, as it would essentially slow down the speed of
execution to the speed of the communication between the threads. Even when we
assume that both threads runs on two CPUs of the same machine, this may lead to a
90% decrease of performance (e.g. the Intel Xeon E3-1285V6 processor has up to 4.5
GHz, but DDR4-3200 SDRAM has only 400 MHz memory clock).

This problem is solved by introducing buffers: A write will not be directly written to
the main memory, but it will be buffered. At some later point, the buffer content will
be batch-processed into the memory and then become visible to the other threads.
Theoreticians model this by introducing weak memory models, e.g. the total store or-
dering (TSO) as memory model for the x86 architecture. A write command is split into
the issue-event and the store-event, where the latter marks the point in time when the
write has landed in main memory.

Under a weak memory model, programs that are correct under SC might become in-
correct. In the above example, mutual exclusion does not hold anymore. Consider the
following execution:

—_

. Left thread issues the write x = 1

N

. Right thread issues the writey = 1

w

. Left thread reads y = 0 from the main memory and enters the critical section

N

. Right thread reads x = 0 from the main memory and enters the critical section

5. The write x = 1 is stored in the main memory

7



1. Introduction

6. The write y = 1 is stored in the main memory

To rule out this unwanted behavior, some sort of synchronization has to be enforced.
x86-Assembly provides a memory fence command (MFENCE) that makes the execution
of a thread stop until all its writes have been stored in the main memory. Inserting a
memory fence after the write of each thread fixes the example.

This leads to two interesting questions for researchers in theory:

« Can the behavior of programs executed under a weak memory model (e.g. with
delayed stores and memory fences) still be verified? How does the complexity
of the verification problem change when going from strong to weak memory
models?

« Understanding the behavior of a parallel program under interleaving seman-
tics/a strong memory model is already difficult. Can one prove that if the pro-
gram satisfies some conditions that are easy to understand by a programmer, its
behavior under a weak memory model is the same as the behavior under a strong
memory model?

The latter question is of particular interest because (1) a programmer cannot be ex-
pected to know neither the internals of the implementation of the architecture nor the
theory on memory models and (2) verifications tools — even if they exist — are usually
to slow to be applicable to large-scale software systems.



Part Il.
Petri nets and well-structured transition
systems



2. Petri nets

2. Petrinets

We introduce the syntax and semantics of Petri nets and some algorithmic problems
that we want to solve in the next sections.

Sources

This content of this section can be found in any standard textbook on Petri nets,
e.g. [Rei85]. The presentation of Petri nets chosen here differs a bit from the one that
is commonly used in the literature, see below.

Syntax and semantics of Petri nets

2.1 Definition: Petri nets
A Petrinetis a tuple N = (P, T, in, out) where

+ Pis a finite set of places,
« Tis a finite set of transitions with PN T = @, and

. the functions
inout:T- P —> N

assign to each transition t € T a vector in(t) resp. out(t) € N’ of incoming
resp. outgoing multiplicities. For a transition t € T and a place p € P the in-
coming multiplicity in(t, p) is the multiplicity of the arc from p to t. Similarly, the
outgoing multiplicity out(t, p) is the multiplicity of the arc from t to p.

2.2 Remark

A function of type P — N that assigns each place a number can be seen as a vectorin N’
A function of type T - P — N, which is shorthand for T - (P - N can be equivalently
seen as a function of type T x P - N or as a function of type T — N’ We may also see
it as matrix in N™° having one entry for each transition and place.

We obtain a graphic representation of a Petri net as follows: We draw places as circles
and transitions as boxes. If in(t,p) # 0 for some t, p, we draw an arc from p to t, and
label this arc by in(t, p). Similarly, we draw an arc from t to p if out(t, p) # 0, and we label
it with this number if out(t, p). If the multiplicity is 1, we often omit the label of the arc.

10



2. Petri nets

2.3 Example
Consider the Petrinet N = (P, T, in, out) with

P= {p07p17p27€07€17W07W1}7
I= {t07 t17t27 t37 t47 tS};

and in, out specified by the following tables.

inlt, t t, t; ta ts outlty, t & t; t ts
po|1 0 00 00O p, |00 1T O0O0O
p,/001 0000 p|1T000O0TO0O
p,|0 0 1 000 p,|0O1 0000
6|10 1 00 10 6|0 0 1 0 0 1
10 0 1 0 0 1 & 1o 1 00 1 0
We|0O 000 1T 0 w /0 OO T 10 1
w,|0 0 0 0 0 1 w, |0 00 0 1 0

This Petri net actually represents a concurrent system, we will explain this later in Exam-

ple .5.

2.4 Remark

The multiplicities are also called weights in the literature.

11



2. Petri nets

In the literature, usually in and out are combined into a single flow matrix
F:(TUP)x(TuP) >N

such that F(p, t) = in(t, p) is the incoming weight, and F(t, p) = out(t, p) is the outgo-
ing weight. With this view, a Petri net is a triple (P, T, F). We can easily convert one
representation into the other and will use them interchangeably during the lecture.

2.5 Example
The flow matrix for the Petri net from Example 2.3 is the following.

Flto i & &3 &ty t5|po p1 P2 o € Wo Wy

Here, the entry of the cell in row x and column y contains F(x, y). If the cell is empty, the

corresponding value is zero.

We are now able to define the semantics of Petri nets. This includes defining the pos-
sible configurations of a Petri net and their computational behavior, i.e. how computa-
tions may lead from one configuration to another. We start by defining the configura-

tions.

2.6 Definition: Marking
A marking of a Petrinet N = (P, T, in, out) is a vector M: P - N that assigns each place

p € P anumber M(p) of tokens.

12



2. Petri nets

Petri nets differ from other automata models that you may know (finite automata, Push-
down automata, Turing machines) in that their configurations do not consist of a con-
trol state. This reflects the fact that they were designed to model concurrent systems:
A Petri net does usually not represent a single program, but a collection of interacting
components. Each component is in some state, which can be represented by consid-
ering markings in which several places carry a token. We can even represent multiple
instances of the same component in the same state by assigning more than one token
to a place. We will come back to this when discussing the meaning of Example 2.3,

2.7 Definition: Firing relation
Let N = (P, T, in, out) be a Petri net and let M € N” be a marking for N.

For a transition t € T, we say that tis enabled in M if M > in(t), i.e. for all p € P, we have
M(p) = in(t, p). We write M [t > in this case.

An enabled transition can be fired leading to the new marking
M =M —in(t) + out(t) ,

i.e. the marking M' with M'(p) = M(p) — in(t, p) + out(t, p). We write M [t > M’ in this case.

Intuitively, firing transition t first consumes in(t, p) many tokens from each place p. The
transition being enabled guarantees that every place carries the number of tokens
needed. Then, out(t, p) many tokens are produced on each place p.

2.8 Definition: Firing sequence

We extend the notion of firing to sequences: For a sequence o € T of transitions, we
write M [0 > M' if firing the transitions in o successively leads from marking M to mark-
ing M'. This implies that for every decomposition ¢ = 0,.t.0,, we have that t is enabled
in the marking M; with M M;. We call such a o a (valid) firing sequence.

A computation of a Petri net is a sequence
Mo [ > My [ My [ [ 2> M,

of markings and transitions.

We call the vector e(t) = out(t) — in(t) (i.e. the vector e € N” with e(t), = in(t), — out(t),)

the effect of transition t The effect of a transition sequence o is the sum of the effects
|o]-1

of the transitions occurring in 0, e(0) = ) ._; e(0;) is the effect of 0.

13



2. Petri nets

Note that an initial marking together with a valid firing sequence uniquely specifies
a computation. Similarly, a sequence of marking specifies a computation if the differ-
ences between the markings are the effects of enabled transitions that exist in the net.
This will allow us to sometimes to see a computation just as a sequence of transitions
or markings instead of a sequence of both.

2.9 Example
We equip the Petri net from Example with the marking M, = (1,0,0,1,0,0,0),
i.e. the marking that assigns one token to py and ¢, and no tokens elsewhere.

Note that the Petri net represents a simple concurrent system:

- The places py, p1, p> represent a controller thread. The places w,, w,; represent
worker threads. The places ¢,, ¢; form a semaphore (lock).

- Initially, the lock is not held, as My(€,) = 1,My(¢;) = 0. Initially, the controller
thread is in state p,. Initially, there is no worker thread.

« During the net, worker threads can be created by firing transition t;. This will
spawn a new worker thread in state w,

« The controller may freely move to state p, by firing t,.

« The places p, and w; are critical sections of their respective thread. Only one
thread can be in one of those states at a time (i.e. we have at most one token
assigned to them). This is ensured because the transitions ¢, t, need to take the
lock by moving the token from ¢, to ¢;. The lock is released when the threads
leave the critical section by transition t,, resp. ts.

In the following computation, we spawn 3 worker threads, let the controller enter the
critical section, let each worker thread enter the critical section, and let the controller
enter the critical section again.

tatstatsts

o O o - o o -

o w o —- O o -
o w —= O —= O O
o w o —= O —= O
- N = O O = O
o w —= O = O O

14



2. Petri nets

When we discuss algorithms, we will analyze their complexity, i.e. their worst-case mem-
ory and time consumption. This analysis will always be in terms of the input size. As
in input is formed by Petri nets and markings, we will need to assign a size to these
objects.

2.10 Definition

Let N be a Petri net and let M be a marking for N. The size |M| of the marking M is the
size of the numbers occurring in M encoded in binary. We assume that each entries
needs at least one bit.

M| = Tlog M(p)]+1.

peEP

Similarly, the size |[N| of the Petri net N is the encoding of the ingoing and outgoing
multiplicities in binary.

IN] = > [login(t, p)] +[log out(t, p)] + 2.

teT peP

2.11 Remark
« We assume a dense encoding here, as we represent each entry using at least one
bit. In a sparse encoding, we would only measure non-zero entries.

- Foramarking M, let m be its maximal entry, m = max,ep M(p). We have
M| € O(|P] - [logm]+1).
Similarly, let m" be the maximal multiplicity of any arc in the Petri net N,

m' = max max{i(t, p), o(t,p)} .
teT,peP

We have

IN| € O(|P| - |T] - [log m'] +1).

- A Petri net of polynomial size can have exponential multiplicities, as 2" can be
encoded in binary using n bits. This will play an important role when we analyze
algorithms.

If one considers an unary encoding of markings and multipliticies, i.e. we would
define |M| = Zpep M(p) + 1, we would get different complexity results.

15



2. Petri nets

Algorithmic problems

The most basic algorithmic problem is reachability.

2.12 Definition
Petri net reachability (PNREACH)
Decide: Petrinet N, initial marking M,, final marking M
Decide: s there a firing sequence o € T such that M, [0 > Mg?

Petri net reachability is known to be decidable, but there is no algorithm that is known
to have primitive-recursive complexity. This means that all known algorithms need
unimaginable running times in the worst case, even for tiny examples. Please read Re-
mark .1 for a more detailed discussion.

2.13 Remark

Usually, a Petri net is considered in conjunction with a fixed initial marking, and some-
times also with a fixed final marking that should be reached. This is for example the
case in the input for PNREACH.

In the following, when we write that (N, M,) or (N, My, M) is a Petri net, we mean that N
is a Petri net and M,, M are markings for N, where we consider M, as the initial and My
as the final marking.

2.14 Definition

We say that marking My is reachable from marking M, in the Petri net N if there is a
valid firing sequence o with M, [0 > M. This is the case if and only if (N, My, M;) is a
YES-instance of the Petri net reachability problem.

We use R(N, M,) to denote all markings reachable from M,,
R(N.Mo) = {M e N" | 30 € T": My [0> M}

We furthermore define the reachability graph RG(N, M,), a directed graph whose set
of vertices is R(N, My) and in which we have an arc M - M’ (for M, M' € R(N, M,)) if there
is a transition t such that M [t > M.

Obviously, M is reachable from M, if and only if M; € R(N, M,). Note that R(N, M) may
be infinite.

16



2. Petri nets

In case R(N, M,) is a finite set, we can explicitly construct RG(N, M,): We initially add M,
as a vertex, and then for each vertex M not yet considered do the following: For each
transition t, check whether t is enabled in M. If so, compute M with M [t > M. If M is
not yet a vertex, add it. Draw an arc from M to M.

If R(N, M,) is finite, at some point, no new vertices will be added anymore (all transitions
are either not enabled or lead to vertices that are already present). If R(N, M,) is infinite,
the algorithm will not terminate.

This makes it interesting for us to consider the finiteness problem for Petri nets.

2.15 Definition
Petri net finiteness

Decide: Petrinet N, initial marking M,
Decide: Is R(N, M,) finite?

The problem is also called the boundedness problem due to the following definition
and lemma.

2.16 Definition
Let k € N be a natural number. A Petri net (N, M) is called k-bounded or k-safe if each
component of every marking M € R(N, M,) is bounded by k,

R(N.Mo) € {M e N* | p e P:M(p) <k} ={0,....K}".

2.17 Lemma
Let (N, M,) be a Petri net. R(N, M,) is finite if and only if there is a k € N such that (N, M,)
is k-bounded.

We will later see an algorithm that decides finiteness.

2.18 Remark

A k-bounded Petri net is actually a finite state system. Still, seeing it as Petri net pro-
vides a compact representation. For example, an 1-safe Petri net of polynomial size can
represent a finite state system of exponential size.

Even if finiteness is decidable, we are actually very much interested in Petri nets for
which R(N, M,) is infinite. One of the key features of Petri nets is that we can model an
unbounded number of threads (as we did in Example 2.3). We will consider Petri net

17



2. Petri nets

reachability much later in this lecture. Furthermore, we will consider coverability in the
next section, a weaker variant of reachability, for which efficient algorithms are known.

The difficulty of the reachability problem has sparked interest in necessary conditions
for reachability that are easy to check. If they are violated, we are sure that the marking
under consideration is not reachable. Even if they are hold, it might be non-reachable.
There is plethora of research on this, we will just consider one very simple example, the
marking equation.

Assume that M, [0_> M for some transition sequence o € T*. We then need to have
M, + e(o) = M.

Recall that e(0) = Z,lf(l)_1 e(o;) = ZJS(')_1 o(o;) — i(o;). In particular, the order of the tran-

sitions in 0 does not matter, only the number of their occurrences is important. For
each transition t7, let ¢; denote the number of occurrences of t in 0. We then have

e(0) = Y er i elt).
Consequently, if My is reachable from M,,
- then there is a sequence o such that M, [0 > M,
- then there is a sequence o such that M, + e(o) = M;,

« then for each t € T, there is a number ¢, such that My + ) ¢, - e(t) = M.

The last property can be phrased as a problem of linear algebra by introducing some
notations. We can use the functionsi,o € T - P - N to defined matrices:

2.19 Definition

The forward matrix F € N is the matrix with F,: = in(t,p). The backward matrix
B € N7 is the matrix with B, , = out(t, p). The connectivity matrix C € 7" is their
difference, C = B - F.

2.20 Lemma
Let o be a transition sequence, and let (as above) be ¢; be the number of occurrences

of transition t € Tin 0. Let us see these numbers as a vector ¢ € N'. Then the effect of

ois

As a consequence, we can formulate a necessary condition for reachability.

18



2. Petri nets

2.21 Lemma
Let (N, My, M;) be a Petrinet. Any sequence o € T* with M, [0 > M;satisfies the marking
equation

Mo+ C xc=M

where the vector c is defined as above.
The contraposition of this lemma is used to provide a sufficient condition for non-

reachability.

2.22 Corollary
Let (N, My, M) be a Petri net. If the marking equation

C'Csz—MO

has no solution ¢, then M, is not reachable.

Whether the above system of equations has a solution can be easily checked using tech-
niques from linear algebra.

Note that one can quite easily construct examples such that the marking equation has
a solution, but M is still not reachable.

Exercises

2.23 Exercise: Traffic lights and Petri nets
Consider the Petri net given by the following graphic representation.

AN
')
g—>y[< >Dry+g

@

a) Write down the netas atuple N = (P, T, in, out).

19



2. Petri nets

b) The net should model a traffic light, but it contains a bug and exhibits unwanted
behavior. Show a valid firing sequence (from the initial marking indicated in the
graphic representation) reaching a bad marking.

Modify the net to fix the problem. The resulting net should be 1-safe.

¢) Model two traffic lights handling a road crossing by using two such Petri nets.

2.24 Exercise: The marking equation
Consider the following Petri net.

@ﬁgﬁ}@

ps

a) Write down the connectivity matrix C of the Petri net.

b) Argue that the marking My = (0,0, 1,0) that has one token in p; is not reachable
from the initial marking M, = (1,0,0,1).

c) Prove that the marking equation M — M, = C - c has a solution (i.e. there is a vector
ceN’ satisfying the equation).

2.25 Exercise: Addition and multiplication
Consider the (incomplete) Petri net containing places x, y and out depicted below.

()
(J

a) Add places and transitions to the net such that any computation of the net starting
in

additional places, transitions and arcs Q out

Mo(x) = m, My(y) = n, My(out) = 0 terminates in a marking M with M{out) = m + n.

(Terminating means that no transition is enabled anymore.)

20



2. Petri nets

b) Add places and transitions to the net such that any computation of the net starting
in
Mo(x) = m,Myly) = n,My(lout) = 0 terminates in a marking M; with
Mdout) € {0,...,m-n}.

In each part of this exercise, argue briefly that your construction is correct.

2.26 Exercise: VASS
There are other automata models that are equivalent to Petri nets, but they are less
useful to model concurrent systems.

A vector addition system with states (VASS) of dimension d € N is a tuple
A = (Q, A, qo,vy) where Q is a finite set of control states, A € Q x 7% x Qis a set of
transitions, g, € Q is the initial state and v, € N is the initial counter assignment. We
write transitions (q,a,q’) € Aasq 5 4. A configuration of a VASS is a tuple (g,v) con-
sisting of a control state g € Q and a counter assignment, a vector v € NY. The initial
configuration of interest is (g, vo). A transition (g, a, q') is enabled in some configura-
tion (g",v)ifg" = gand (v+a) € N’ (i.e.(v+a); = Oforalli € {1,....d}). In this case, it
can be fired, leading to the configuration (g', v+ a). Reachability is defined as expected.

a) Let (N, My, M) be a Petri net. Show how to construct a VASS A and a configuration
(gr, v¢) such that (qgy, v¢) is reachable from (qq, vo) in A if and only if M is reachable
from M, in N.

b) Let A be a VASS and (gy, v¢) a configuration. Show how to construct a Petri net
(N, My, M¢) such that (g, v¢) is reachable from (go, vo) in A if and only if M is reach-
able from M, in N.

¢) (Bonus exercise, not graded.) A vector addition system (VAS) is a VASS with a single
state, i.e. Q = {q,}. Show that VAS-reachability is interreducible with VASS reacha-
bility (or Petri net reachability).

21



3. Petri net coverability

3. Petri net coverability

Instead of considering Petri net reachability, we will study Petri net coverability.

Let us motivate this by an example: A typical application of concurrency theory is the
verification of mutual exclusion protocols. For this problem, the goal is to verify that
only one thread can access a critical section at a time. If we model this as a Petri net, this
means that we have to check that there is no reachable marking in which the amount
of tokens in some place ¢s modeling the critical section is 2 or larger. We do not care
about the precise amount of tokens in c¢s, and we do not care about the assignment of
tokens to other places. This means we are interested in checking whether a marking M
with M(cs) = 2is reachable. Phrased differently, we are interested in checking whether a
marking M that is larger or equal to M¢in every component is reachable, with M{cs) = 2
and M{p) = 0 forall p # cs.

3.1 Definition
Petri net coverability

Decide: Petrinet N, initial marking M,, final marking M
Decide: s there a firing sequence o € T* and a marking M € NP
such that My [0 > Mand M = M;?

As usual in this lecture, by M = My we mean that M(p) = M{p) forall p € P.
We call a computation M, [0 > M with M > M, a covering computation.

Another reason for coverability being interesting is the following monotonicity prop-
erty of Petri nets.

3.2Lemma

Let N be a Petri net and M, , M, be markings and t a transition. If M, [t > M, and M, = M,
then M, [t > M, with M5 = M;. If we had M, > M, (i.e. in addition to M, = M, there is
at least one component p with M,(p) > M, (p)), then also M, > M.

Proof:
Transition t is enabled in M, since M, = M; = in(t). Furthermore,

M, = M, + e(t) = M, +e(t) = M .

If My > M;, we have M, = M, + e(t) > M, + e(t) = M. O

22



3. Petri net coverability

We also say that larger markings are able to simulate the transition of smaller markings.
This fact can be represented by the following diagramm.

t )
M2—>M2

v/ v/

t )
M1 —_— M1
In the following, we want to prove that coverability is an EXPSPACE-complete problem.

« In Section l, we consider an Algorithm due to Rackoff that solves coverability
using exponential space.

« In Section 5, we present Lipton’s famous proof for the EXPSPACE-hardness of cov-
erability and reachability.

Exercises

3.3 Exercise: Petri net constructions

a) Let (N, My, M;) be a Petri net. Explain how to construct a Petri net (N, My, M) with
My(p) = 0 for all places but a single place p' with My(p') = 1 and M¢(p) = 0 for all
places such that
M € R(N, M) iff M, € R(N', My).

b) Let (N, My, M) be a Petri net. Explain how to construct a Petri net (N', My, M) such
that
Mg is coverable from M in N iff M is reachable from My in N'.

¢) Construct a Petri net N with only 3 places, a marking My and markings M_,,, M_._,
and M,,_, such that

« M., is reachable and coverable from M,,
« M_.._, is neither reachable nor coverable, and
« M.,._, is coverable, but not reachable.
In each part of this exercise, argue briefly that your construction is correct.

3.4 Exercise: The Ackermann function

a) The three-argument Ackermann function ¢ is defined recursively as follows.

23



3. Petri net coverability

o:N" - N

o(m,n,0) = m+n

o(m,0,1) = 0

o(m,0,2) = 1

o(m,0,x) = m forx > 2
e(m,n;x) = @(m,e(mn—-1x),x—1) forn>0andx >0

Formally prove the following equalities (e.g. using induction):

o(m,n,0) =m+n, o(m,n,1)=m-n, o(m,n,2) = m".

b) Nowadays, one usually considers the following two-parameter variant.

AN > N

A(0,n) = n+1

A(m,0) = Alm-1,1) form >0

Am,n) = Am-1,A(m,n-1)) form>0andn>0

For example, we have
A(1,2) = A(0,A(1, 1)) = A(0, A0, A(1,0))) = A(0, A0, A(0, 1)) = A(0, A0, 2)) = A0, 3) = 4.
Similar to this computation, write down a full evaluation of A(2, 3).

3.5 Exercise

3.6 Exercise: Communication-free Petri nets and SAT
A communication-free Petri net (or BPP net) is a Petri net in which each transition
consumes at most one token, i.e. we have Yt € T: ), in(t, p) € {0, 1}.

Show that the coverability problem for communication-free Petri nets is NP-hard by
reducing SAT.

To this end, show how to construct in polynomial time from a given Boolean formula
@ in conjunctive normal form communication-free Petri net (N, My, M) such that M is
coverable if and only if ¢ is satisfiable.

Hint: Introduce places for the parts of the formula. A computation of the net should first
define a variable assignment, and then evaluate the formula under the assignment.

Remark: In fact, reachability and coverability for communication-free Petri nets are NP-
complete.

24



3. Petri net coverability

3.7 Exercise: 1-safe Petri nets and Boolean programs
Recall that a Petri net (N, M) is 1-safe if we have M € {0, 1}P forall M € R(N, My).

Consider Boolean programs, sequences of labeled commands over a fixed number of
Boolean variables. For simplicity, we restrict ourselves to the following types of com-
mands:

Ze XAy ZeXVy Z« =X

if xthen goto¢; else goto ¢ goto? halt

Here, x,y, z are variables and ¢, ¢;, ¢ are labeles. The semantics of the commands are
expected.

Assume that the initial variable assignment is given by x = false for all variables x.

Assume that a Boolean program is given. Explain how to construct an equivalent 1-
safe Petri net. Equivalent means that the unique execution of the Boolean program is
halting if and only if a certain marking is coverable.

Remark: This proves that coverability for 1-safe Petri nets is PSPACE-hard. In fact, cov-
erability and reachability for 1-safe Petri nets are PSPACE-complete.

25



4. Rackoff’s algorithm for coverability

4. Rackoff’s algorithm for coverability

We prove the following result.

4.1 Theorem: Rackoff 1978 [Rac78]
The Petri net coverability problem can be solving using exponential space in terms of
the input.

Sources
This subsection is based on the original paper [Rac78] and on Roland Meyer’s notes on
the topic:

tcs.cs.tu-bs.de/documents/ConcurrencyTheory_WS_20162017/rackoff.pdf

The algorithm that we construct to prove Theorem |.1] is a brute force enumeration of
all computations up to a certain length. To be precise, we proceed as follows:

1. We show that if a covering computation exists, then there is one of doubly expo-
nential length.

2. We show that all such computations can be enumerated and tested using expo-
nential space.

Proving the first step is the tricky part. To do so, we relax the enabledness-condition of
Petri nets. Instead of considering markings in N’ we consider pseudo markings in 7"
in which only the first i components need to stay non-negative, where 0 < i < |P|. We
then prove a variant of the theorem for each i by induction, i.e. we iteratively increase
the number of components that are treated properly. The case in which i is the number
of places yields the desired result.

Throughout this section, (M, My, M) is the fixed Petri net of interest. We will assume that
the places are ordered, i.e.P = {1, ..., ¢} for some number ¢ € N. This can be enforced
by an appropriate renaming. We furthermore us n = [N| + |M¢| + |M,| to denote the size
of the encoding of the input net.

4.2 Definition
Leti € {0,...,€¢} beanumber.

A pseudo marking is a vector M € Z°. It is called i-non-negative if we have M(p) = 0
forallp € {1,...,i}. Itis called i-covering if we have M(p) = M{p) forallp € {1,...,i}.

26


https://tcs.cs.tu-bs.de/documents/ConcurrencyTheory_WS_20162017/rackoff.pdf

4. Rackoff’s algorithm for coverability

In an i-non-negative marking M, a transition t is i-enabled if we have M(p) = in(p) for all
p € {1,...,i}. Inthis case, we can fire it, yielding the new marking M’ = M+e(t) as usual.
We also write M [t > M' as it will be clear from the context which i we are considering.

An i-non-negative, i-covering computation is a sequence of markings and transitions

MOD"”]@Mz@@M”’

such that each marking M; is i-non-negative and M,,, is i-covering.

4.3 Remark
Note that every pseudo marking is 0-non-negative and 0-covering. Every sequence of
markings and transitions as above is a 0-non-negative, 0-covering computation.

An ¢-non-negative pseudo marking is a normal marking, an ¢-covering marking is cov-

ering, and an £-non-negative, ¢-covering computation is a covering computation.

4.4 Definition
For some marking Mandi € {0, ..., ¢}, we define

m(i,M) = min{|o| + 1 | M[@_> M'is a i-non-negative, i-covering computation} .

We define m(i, M) = 0 if no such computation exists.

Ourgoalis to obtain a bound form(¢, M,), i.e. the case where we treat all places properly
and consider the initial marking of interest. In the proof of the bound, we will need to
consider a different marking as initial. Therefore, we quantify over all initial markings.

4.5 Definition
Fori€{0,...,¢t}, we define

f(i) = max{m(i,M) | M € Z°}.

First note that it is not at all clear that f{i) is a well-defined natural number, as m(i, M)
could grow unboundedly for different values of M. If we prove a bound on f{i), we will
not only show that it is well-defined, but we will also obtain a bound for m(i, My) < f{i).
This is provided by the following technical lemma and proposition.

4.6 Lemma
f0) = 1.

27



4. Rackoff’s algorithm for coverability

Proof:
For each M € Z°, the empty computation M [€ > M is 0-non-negative and 0-covering.
We have m(0, M) = |e] + 1 = 1 and thus f{0) = 1. H

4.7 Proposition
Forallie {0,...,€ — 1}, we have

fli+1) < (2"-0)" +Ai).

Proof:

Recall that fii + 1) = maxye,m(i + 1,M). Hence, if we prove that
m(i + 1,M) < (2"- f(i))'.+1 + f{i) for all pseudo markings M € Z’, we are done. Let
M e Z° be an arbitrary pseudo marking.

If there is no (i + 1)-non-negative and (i + 1)-covering computation, then we have
m(i + 1, M) = 0, which obviously satisfies the desired bound. Let us therefore assume
that such a computation exists, i.e. we have

/\/I=/\/I(O)|E>/VI(1)|E>/VI(2)@...@M(m)

such that all transitions are (i+ 1)-enabled when they are fired, all markings M; are (i+1)-

)

non-negative and M™ covers M¢in the first i + 1 components.

Our goal is to transform this computation such that it remains (i + 1)-non-negative and
(i + 1)-covering, but satisfies the bound on the length. We distinguish two cases.

Case 1: In all occurring markings, the number of tokens in the first (i + 1) places is
bounded by 2" - f{i) - 1.

2"f(i)

ThismeansVj € {0,...,m},Vpe{1,...,i+1}, MU)(p) < 2" - f{i). Furthermore, we have
MU)(p) > 0 as the computation was (i + 1)-non-negative.

28



4. Rackoff’s algorithm for coverability

Assume that the computation above contains markings MY and m¥) forj < j that co-
incide on the first i + 1 components. Then, we can delete the transitions t;,q,...,t;,
obtaining the new computation

M=MO> . > M B> T > L ™

Note that since M” and MY coincide in the first (i + 1) components, transition t;,; is
(i + 1)-enabled in M?. Furthermore, for each k, M'™ and MV**) coincide on the first

(i+ 1) components.

Consequently, the newly constructed computation is (i + 1)-non-negative and (i + 1)-
covering. It still satisfies in all markings that the number of tokens on the first (i + 1)
places is bounded by 2" - (i) — 1.

2"fi) | 2"f(i)

— /

We may iteratively apply the step above to shorten the initial computation until we
arrive at a computation in which there are no two markings that coincide on the first
(i+1) places. We have |{O, 20 f) - 1}i+1 =(2"- f(i))m, i.e.thereare only (2" - f(i))i+1
many possibilities for the first (i + 1) components. Consequently, a repetition-free com-

putation consists of at most (2" . f(i))"+1 many markings. Its number of transition is thus
(2" (i))™" = 1, which is smaller than the bound for (i + 1) that we wanted to show.

Case 2: There is a marking in which some of the first (i + 1) places exceeds the bound
of 2" - f{i) — 1 many tokens.

29



4. Rackoff’s algorithm for coverability

Consider the first marking mb) (i.e. with j minimal) in which some place p contains at
least 2" - f{i) many tokens. By reordering the places appropriately, we may assume with-
out loss of generality that this happens for the place i + 1, i.e. we have

Mi+1) 22" i) .

(There might be other places that also exceed the boundin M?, which will not influence
the correctness of our proof.) Leto =t . .. t,, be the sequence of the transitions used in
the computation. We splititinto o = 0.t.0, suchthato, =t ...ty and o, = tiy; ... ty.
We can write our original computation is

ME> M > M0 o> M
Note that in the computation M MU_”, all markings admit the bound. Therefore,
we may treat it as in Case 1 and can assume that it has length at most (2” - f{i))"" - 1.

Now consider M?. We know that there s a i-non-negative, i-covering computation from
mb on, namely mb) M™ . We thus have m(i, MU)) # 0. We furthermore have
m(i,M") < f{i). By the definition of f(i), there is an i-non-negative, i-covering compu-
tation

with |ab] < f{i) - 1.

We claim that
Me> M > MY > m

is the desired (i + 1)-non-negative, (i + 1)-covering computation with

|o1.6.05] < loy | + 1+ od] < (27 AD) ™ = 1)+ 1+ (f)) = 1) = (2" )" + ) - 1.

That the bound on the length holds is clear from the inequalities above. It remains
to argue that all transitions in o5 are (i + 1)-enabled when they are fired and that the
computation is indeed (i + 1)-non-negative and (i + 1)-covering.

30



4. Rackoff’s algorithm for coverability

Since MY M was an i-non-negative and i-covering computation, we do not have
to care about the first i places; their value in each occurring marking coincides with the
value in the corresponding marking of MY M. It remains to consider to consider
placei+ 1.

Recall that n = |N| + |M{ + |M,|. By the definition of the size of the encoding of a
marking resp. Petri net, the maximal multiplicity of any arc in the net is 2". This means
in the worst case, each transition contained in 05 consumes 2" tokens on place i + 1.
Note that o) has length at most f{i) — 1.

We obtain that firing 0, consumes at most 2" - (f{(i) — 1) tokens from (i + 1). Recall that
we assumed that MU)(i + 1) is at least 2" - f{i). Therefore, we have that the number of
tokens on placei+ 1 on MU), M and any marking occurring in between is at least

(2" - i) - (2" - () — 1)) = 2".

We conclude that all transitions are (i + 1)-enabled whenever they are fired and the
computation is indeed (i + 1)-covering. We have that M is greater or equal to M; in the
first i components. Since n = |My| + [N| + [M,|, we have M{i + 1) < 2" < M(i + 1), so the
computation is also i + 1-covering. This finishes the proof. ]

The proposition gives us a recursively defined bound for f{i). We will combine it with
Lemma B.7 to obtain a non-recursive bound. We start by giving a simpler recursive
bound.

4.8 Lemma
Define g(0) = 2>” and g(i + 1) = (g(i))*". We have f{i) < g(i) for all i.

Proof:
Before we can prove the main statement of the lemma, we have to show that
2" < g(i) for all i. We proceed by induction on i.

Base case, i = 0.
We have 2" = 2" < g(0) = 2

Inductive step, i — i + 1.

31



4. Rackoff’s algorithm for coverability

We have
2n-((i+1)+1) _ 2n-(i+1) . 2n < g(l) . 2n
< g(i) - 9(0) < g(i) - g(i)
= (g(i)* < (g(i))"
=g(i+1)

We can now prove the statement of the lemma by induction.

3n

Base case, i = 0. We have f{(i) = 1 < 8 £ 27" = g(0) using Lemmaf.6.

Inductive step,i - i+ 1.

We have
fli+1) < (2" )" + (i)

by Proposition 7. Note that this expression is monotonous in f{i), so we may use the
induction hypothesis to obtain

fli+1) < (2" g(i)"" + g(i)
= (2")"" - g™ + gli)
- (2n.(i+1)) . g(i)i+1 " g(l) .

Using the statement that we have proven above, we finally obtain

fli+1) < (277) - ()" + g(i)
W\i+1

< g(i) - g(i)
<2-g(i)- gli

+g(i)

i+1

- ==

Here, we have used that i + 1 is at most the number of places ¢,and n = |N| = €. ]

We can now use this lemma to obtain a non-recursive bound.

4.9 Lemma
We have

a) g(t) < vl

32



4. Rackoff’s algorithm for coverability

b) (3n)" <2"'°9" where cis a constant independent of n.

Proof:

a) By definition, we have ,
g(t) =(...(23”)3”...) ,

where we have ¢ + 1 powers of 3n. We iteratively us the power law (ab)C = a” to

obtain
(3n)(€+1) (3n)n

g(t)=2 <2
b) We have

(3n)" = (3-2°")" < (2. 2°")’

2|ogn+2 n < 24logn n
(24nlogn ) ( )

We combine all results to obtain the following proposition.

4.10 Proposition
cnlogn

If M¢is coverable from M,, then there is a covering computation of length at most 2,
where c is a constant not dependent on the size of the input.

Proof:
The definition of m(¢, My), m(¢, M,) < f(¢), Lemma .8 and Lemma £.9. O

We have finally obtained that if there is a covering computation M [0 > M (with M = M),

cnlogn

then there is one with |o| < 2 . We have to construct an algorithm that uses this

fact to decide coverability.

Proof of Rackoff’s theorem, Theorem {.1:
We have to prove that there is a deterministic algorithm using exponential space check-
ing whether a covering computation exists.

We first construct a non-deterministic algorithm that does this. The algorithm keeps
track of a marking M and a counter ¢

1ZM(—M0
2:2¢c<«<0

33



4. Rackoff’s algorithm for coverability

2c-n logn

3: whilec<2 do

4 ce—c+1

5 Guess a transition t.

6: Verify that it is enabled in M
7 Compute the marking M’ with M [t > M’
8 Me M
9 if M = M;then
0 return true

11: end if
12: end while
13: return false

cnlogn

If the verification that t is enabled fails or the algorithm reaches ¢ > 2>, itreturns
false.

Using Proposition |.T0, it is clear that the algorithm has a computation returning true
if and only if M; is coverable from M.

We still need to argue that the algorithm can be implemented using exponential
space. The algorithm needs to store ¢, which can be done via a binary encoding us-

cnlogn _ zc_n logn

ing log 2 many bits.

We furthermore need to store the marking M. Note that any marking M that occurs
assigns to each place at most

2c-n logn n 2c-n logn
Mo + 2 2" <2

2c‘n logn
<2

n+1
-2

+n+1

many tokens. (Here, we have used |M,| < n.) This number can be represented in binary

cnlogn

using at most 2 + n + 1 many bits.

To finish the proof, we need to convert the non-deterministic algorithm to a determin-
istic one. Savitch’s theorem proves that NEXPSPACE = EXPSPACE, yielding a determin-
istic algorithm for coverability using only exponential space. O

Exercises

4.11 Exercise: Rackoff’s bound
Consider the Petrinet N = ({1, 2, 3,4}, {a, b, ¢, x}, in, out) with multiplicities as depicted

34



4. Rackoff’s algorithm for coverability

below. The initial marking of interest is M, = (1,0,0,O)T and the final marking is
My = (1,0, 10, 100)".

Compute the values m(3, M,) and f(3) and argue why they are correct.

35



5. Lipton’s hardness result

5. Lipton’s hardness result

We prove that all interesting properties of general Petri nets are EXPSPACE-hard. More

precisely, they require at least 200

space, where n is the size of the encoding of the
input. Interesting properties include reachability and coverability. By this, we obtain

that Rackoff’s algorithm for coverability is in the optimal complexity class.

Sources
The result was proven by Lipton in 1976 [Lip76]. Our presentation is based on Roland
Meyer’s handwritten notes on the topic:

tcs.cs.tu-bs.de/documents/ConcurrencyTheory _SS_2015/lipton_part_1_week_3.pdf
tcs.cs.tu-bs.de/documents/ConcurrencyTheory _SS_2015/lipton_part_2_week_3.pdf

These notes are based on a survey paper by Javier Esparza [Esp98].

The result follows from the following theorem.

5.1 Theorem: Lipton 1976 [Lip76]

A deterministic Turing machine of size n with exponential space consumption (in n) can
be simulated by a Petri net of size (’)(nz). This Petri net can be constructed in polynomial
time.

Here, we assume that that the Turing machine is running on the empty input. This
means we reduce the following problem that is known to be EXPSPACE-hard.

Turing machine acceptance on empty input with exponential space bound

Decide: Turing machine M of size n with space consumption bounded by 2"
Decide: Does M accept the empty word?

Unfortunately, it is technically challenging to encode a Turing machine into a Petri net.
The Petri net is essentially a type of (concurrent) counter machine, while the Turing
machine uses an ordered tape as storage. It is not clear how to represent a tape cell
(that has one of finitely many symbols as content) by a place (that carries an unbounded
number of tokens). To overcome this, we will need some intermediary steps.

Our approach:

Turing machine — counter program — PN program — Petri net

36


https://tcs.cs.tu-bs.de/documents/ConcurrencyTheory_SS_2015/lipton_part_1_week_3.pdf
https://tcs.cs.tu-bs.de/documents/ConcurrencyTheory_SS_2015/lipton_part_2_week_3.pdf

5. Lipton’s hardness result

From Turing machines to counter programs:

A counter program is a goto-program that manipulates a fixed number of non-
negative counters, variables that store a natural number. (A more formal definition
will be given later.) In a bounded counter program, the variables are not incremented
beyond some fixed bound.

5.2 Theorem

A deterministic Turing machine M of size n can be simulated by a counter program c 4
consisting of O(n) commands such that M halts on the empty tape if and only if ¢,
halts.

If M uses at most 2" cells, then the counters in ¢, are bounded by 2.

The program ¢, can be constructed in polynomial time.

Proof sketch:
We assume without loss of generality that the Turing-Machine uses {0, 1} as tape alpha-
bet.

We represent the tape content of the Turing machine by two stacks. Assume the Turing
machine is in configuration w q v, i.e. w € {0, 1}" is the tape content to the left of the
head, v € {0, 1 }* is the rest of the stack, and the first letter of v is the content of the cell
to which the head is pointing. Then the first stack contains w, where the first symbol is
stored at the bottom and the last symbol is stored at the top. The second stack contains
v where the first symbol is stored at the top and the last symbol is stored at the bottom.
Moving the head can now be realized by popping from one stack and pushing onto the
other.

A stack over {0, 1} can be simulated by two counters. One counter holds the natural
number represented by the stack content, where the least significant bit represents
the topmost entry of the stack. Operations on the stack can be simulated my manip-
ulating this number. For example, pushing 1 onto the stack representing value v € N
is implemented by setting the stack value to 2v + 1. The second counter is needed as
auxiliary storage to be able to implement the operations.

Combining these two insights, we obtain that the tape of a Turing machine can be
simulated by four counters.

If the tape size is at most 2" then so is the size of each of the stacks. The natural num-
bers that occur as counter values are obtained by seeing the stacks as binary numbers.
Consequently, the numbers may be exponential in the size of the stack. We obtain that
if the tape has at most size 2" then the counters are bounded by 22n. O

37



5. Lipton’s hardness result

5.3 Remark
« In fact, one could further reduce the numbers of counters needed to simulate a
tape from 4 to 2 by using an encoding in terms of prime numbers [Min67]. Using

this technique, one would obtain that if the tape contains at most 2" cells, the

2
counter values are bounded by 2>, which is triply exponential.

« The first part of the theorem holds independently of the second one: A counter
program can simulate a Turing machine even if its space consumption is not
bounded. In fact, counter programs over two counters are Turing complete and
all interesting properties (like halting) are undecidable.

By the above theorem, it is clear that the following problem is EXPSPACE-hard, so it is
sufficient to reduce it to Petri net coverability.

Halting problem for counter programs with doubly-exponentially bounded counters

Decide: A counter program ¢ with counter values bounded by 27
Decide: Does c halt?

We proceed to give a formal definition of counter programs.

5.4 Definition: Counter program
A counter program over a set of counter variables xy, . . . , x,,, consists of a sequence of
labeled commands

to: cmdy;
¢;: cmdy;
t,: cmdg;

Each cmd; is of one of the following types:

« Increment:
cmd; = xj++
where Xx; is a counter.
- Decrement:
Cmd,~ = Xj——

where X; is a counter.

38



5. Lipton’s hardness result

Unconditional jump:
cmd; = goto ¢,

where ¢ is a label.

Conditional jump / Zero test:
cmd; = if x; = 0 then goto ¢, else goto ¢,

where x; is a counter and ¢,, ¢, are labels.

Halt:
cmd; = halt.

We require that each command has a distinct label. When writing down programs, we

sometimes omit the labels of commands that do not occur as the target location of a

jump. We will later assume without loss of generality that the last labeled command is
t,:halt;

The semantics is as expected:

A configuration of the program is a label ¢ together with an assignment
M€ {0, ..., b} of the variables.

If the command for the current label € is x;++, then the value of x; is incremented
and the program goes to the next label ¢, ;.

If the command for the current label ¢ is x;}——, then the value of ; is decremented
and the program goes to ¢.;.

This can only happen if the current value of x; is non-zero. If it is zero, the execu-
tion gets stuck.

If the command for the current label is goto ¢, then the program goes to ¢, with-
out changing the variable assignment.

If the command for the current label is if x; = 0 then goto ¢, else goto ¢,
then the program goes to ¢, or £,,,, depending on whether the value of x; in the
current variable assignment is 0.

If the command for the current label is halt, the execution halts.

39



5. Lipton’s hardness result

In the initial configuration, the program is at ¢, and all variables have value 0.

Note that counter programs are deterministic: There is a unique computation of a pro-
gram from the initial configuration. This computation might be infinite, get stuck be-
cause of a blocked decrement, or it might reach a halt command.

The halting problem for counter programs is, given a counter program, checking
whether the unique execution of the program reaches a halt-command.

Simulating zero tests:

In the following, we will only consider counter programs in which the counter values
2" . .

never go above 2° , where n is the number of commands. Our goal is to translate such

a counter program into an equivalent Petri net.

When translating a counter program into a Petri net, increments, decrements, halting
and unconditional jumps can be easily modeled. The problem are the zero tests: A
transition of a Petri net can only check that a marking has at least a certain number of
tokens in a place, but it cannot check that there is no token in a place.

The absence of zero tests is the crucial difference between Petri nets and counter pro-
grams. Any extension of Petri nets that allows for zero tests makes them Turing com-
plete and thus the reachability problem becomes undecidable. (But there are “mild”
extensions of Petri nets that do still have a decidable reachability problem.)

To be able to model zero tests, we can use that the counters are bounded. We represent
the counter variable x; by two places: The number of tokens on place x; is the value of
x;, the number of tokens on place )TJ is the bound minus this value. We will maintain the

invariant

Incrementing and decrementing x; can now be done by moving tokens from Xx; to x;
respectively the other way around. Checking that x; is non-zero can be done by decre-
menting it and incrementing it again: If it was zero, the decrement blocks the execution.
Instead of testing that x; is zero, we can test that M(x;) = 2
The problem is the initialization of the places: Since we assume that the initial values
of the counters is 0, we need to have x; = 2% in the initial marking., We cannot define

our initial marking like this, since log 2* =2"isnot polynomial, but exponential in n.

Lipton’s famous trick is a procedure that allows a polynomially-sized Petri net to create
exactly 2% tokens on a place. Understanding this trick is the fundamental part of the
proof of the following theorem.

40



5. Lipton’s hardness result

5.5 Theorem: Lipton 1976 [Lip76]
A counter program with n commands and counters bounded by 2% can be simulated
by a Petri net of size (’)(nz). This Petri net can be constructed in polynomial time.

PN programs and Petri nets:

Towards a proof of the theorem, we would need to construct for each command of
the counter program an equivalent part of the Petri net. Doing this directly is possible,
but messy. We instead opt for introducing PN programs and using them as another
intermediary step.

5.6 Definition: PN program
A PN program over a set of counter variables xg, . . ., X, is a sequence of labeled com-
mands, just as a counter program.

The halt command, and increment, decrement and unconditional jump are valid com-
mands, just as for counter programs. We furthermore have the following types of com-
mands

« Nondeterministic branching:
cmd; = goto €, or goto ¢,

where ¢,, £, are labels.

When executing this command, the execution will nondeterministically either
continue at label ¢, or at label ¢,, without changing the variable assignment.

« Subroutine call & return:
cmd; = calld,,

cmd; = return
When executing call ¢, the execution will continue at label £,,, but it will store
the label ¢; from which the call was made.
When return is executed inside this subroutine, then the execution will con-

tinue at label ¢, 4, i.e. the location at which the routine was called.

5.7 Remark

It might seem like the semantics of PN programs requires us to keep track of an un-
bounded call stack (to be able to return to the correct location). We will actually only
consider well-structured programs, in which

41



5. Lipton’s hardness result

« unconditional jumps will only jump inside the current subroutine,

. . N . N . t
. there is an order on the routines, i.e. the program consists of a main routine, 1°
. d .
level subroutines, 2™ level subroutines and so on. We guarantee that a level k
subroutine only calls subroutines of level k + 1 and higher.

By those two conditions, the height of the call stack is bounded by some number that
can be extracted from the syntax of the program.

5.8 Remark

In contrast to counter programs, PN programs are non-deterministic. There is not a
unique execution anymore. The halting problem is now checking whether an execu-
tion exists that reaches halt.

To a PN program, we can assign an equivalent Petri net. In the following, we show how
to do this for all commands but subroutine calls and returns.

5.9 Definition: Petri net semantics of PN programs, Part 1
To a PN program, we can associate a Petri net with one place for each counter variable
x one place for each label ¢;, and a special place for halt. The transitions are as follows.

o) o)
X++ []—»Q X X—— []«—Q X
oo () i ()

Encoding of €;: x++; Encoding of €;: x——;
o) o)
halt [ ] gotofi [ ]
e o
Encoding of ¢;: halt; Encoding of ¢;: goto ¢;

42



5. Lipton’s hardness result

Encoding of ¢;: goto ¢, or goto ¢,;

It remains to see how subroutine calls and returns are handled. Before defining this
formally, we consider an example.

5.10 Example
Consider the following example program.

to: callts;
t;: callts;
t,: halt

t;: gotot,orgotots;
t,: return;

¢s: return;

The lines 0, 1, 2 form the main routine, the lines 3,4, 5 a 1% level subroutine.

43



5. Lipton’s hardness result

The following Petri net is the net associated to this program.

-

callts

— J—

o wait for ¢,

return (from ¢;) [ ]

calle, [

¢, wait for ¢, Q
return (from ¢;) %}

()

l
halt ?
halt Q

Q return from ¢;

We can now define the construction in general. Note that we chose not to make con-

cepts like subroutines formal.

5.11 Definition: Petri net semantics of PN programs, Part 2

The Petri net associated to a PN program has a return place for each subroutine. Any

return inside the routine will be modeled as a transition moving the token to the re-

turn place.

A routine call is modeled using two transitions: When the procedure is called, two to-

kens are produced, one on the entry location of the routine, and one on a special wait

44



5. Lipton’s hardness result

place. The return transition consumes a token from the return location of the procedure
and one from the wait place.

Overall, we obtain that a PN program with at most n commands (and therefore also at
most n counters) can be modeled as a Petri net of at most O(n) transitions and O(n)
places. The size of this net is consequently in O(nz).

Note that this representation is compact: Since the programs we consider are well-
structured, we could unfold them to get rid of subroutines. In the example, we could
create two copies of the subroutine 4,5, 6, one copy for the first call and one for the
second.

5.12 Proposition
A PN program has a halting execution if and only if in the associated Petri net, the mark-
ing that requires one token on the halt-place is coverable.

Consequently, it is sufficient to show that we simulate a counter program by a PN pro-
gram.

From counter programs to PN programs:

We will now prove the following: Given a counter program with n commands and coun-
ters bounded by 22n, we can construct a PN program with O(n) commands in polyno-
mial time such that the unique execution of the counter program halts if and only if the
PN program has a halting execution.

Recall that for each variable x of the counter program, the PN program will have vari-
ables x, x and we will have the invariant

Initially, all variables have value 0. The PN program np that we construct is of the shape

NP = NP;jyie; NP, -

In np,,;, the variables X are set to 2° . After executing it, the invariant will hold. The
second part np;,, will simulate the given counter program, maintaining the invariant.

The construction of the simulation, np;,:

We will first discuss how to construct np;,,, assuming that the variables have been ini-
tialized correctly.

45



5. Lipton’s hardness result

« Each command x++ in the counter program is replaced by x++; x—— in the PN
program.

« Each command x—- in the counter program is replaced by x——; x++ in the PN
program.

« halt and goto ¢ commands remain unchanged.

We still have to show how a zero test
¢:if x=0thengoto{,elsegoto?,
can be modeled. Do this end, we design a macro
Test,(x, €, €,)

that replaces each zero test. Its behavior is specified as follows.

5.13 Definition: Specification of the macro Test,(x, ¢,, ¢,,)
« If Test,(x, t,, ¢,,) is executed starting from a variable assignment in which x = 0
holds, then some execution of the macro leads to ¢, and no execution leads to ¢,,,.

« If Test,(x, t,, €,,) is executed starting from a variable assignment in which x > 0
holds, then some execution of the macro leads to ¢,, and no execution leads to
t,.

« There might be executions that do get stuck.

« The macro Test, has no side effects: In any execution reaching ¢, or ¢,,, the vari-
able assignment will be unchanged.

To define Test,(x, t,, £,,), we introduce another macro Test,(x, £,, £,,). It is s easier to
design, but it has a side effect: After an execution leading to ¢,, the values of xand x are
swapped. Other than that, its specification coincides with the one of Test,,.

To cancel the swapping out, we swap twice.

5.14 Definition: Macro Test,(x, ¢,, t,,)

t: Test,(X, Coonts tnz); // Swaps x and X
Ceont: Testp(X, €, €,,);  //Undoes the swap

46



5. Lipton’s hardness result

Note that if x is zero, after executing Test,(x, €.ont, €;), We will have x = 2’ andx = 0.
Therefore, we have to test x for being zero in the next line.

The idea for the construction of Test(x, ,, t,,) is the following: If x > 0, this can be
verified by incrementing and decrementing again. If x = 0, we have x = 22n, which can
be verified by decrementing x by 2% We non-deterministically guess which is the case.
Execution in which the wrong choice is picked block.

Assume that we had already constructed a subroutine Dec,x that decrements x by 2.

5.15 Definition: Specification of the subroutine Dec,

« The routine uses an auxiliary variable s,,.
« If theinitial value of s, is strictly less then 2%, any execution of Dec, will get stuck.

« Ifthe value of s, is at least 2%, then all executions of Dec,, that reach a return com-
mand have the effect

n n

2 - - 2
Sp e S, —2°, S,e<S5,+2

and there is at least one such execution.

« There are no other side effects.

Using this subroutine, we finally define Test(x, ,, t,,).

5.16 Definition: Macro Test,(x, ¢,,¢,,)

g0t o Cyositive OF 8OLO €l0p;  // guess nondeterministically

Cpositive:  X——3 X++; // verify x > 0
goto €, // verified non-zero
Cloop:  X—=; X++; // move xtos,
Spt+;S,——;
g0t O Ceyir OF OO Clopp; // guess whether moving is finished
Ceiv: CallDec,; // check whether s, = v
gotot,; // verified zero

Note that even if x = 0 does hold, the execution of Test,(x, £,, £,,) might get stuck if in
the loop, the value on x is not completely moved to s,,.

It remains to construct the subroutine Dec,. We will do this inductively, i.e. we will first
define Dec, and then construct Dec;,;, assuming that we have already defined Dec;.
The specification of each Dec; is similar to the specification of Dec,, with 2 replaced

47



5. Lipton’s hardness result

by 2. In the definition of Dec;,, we will use Test;(x, £,, £,,), which is defined just like
Test,(x, ¢, ¢,,), butit calls Dec; instead of Dec,,.

1

0
In the base case, we need to decrement s, by by 2> = 2' = 2. This is done by the

following routine.

5.17 Definition: Subroutine Dec,

S0
S0
Sot++;
§0++;

return;

Assume we have already constructed Dec;, a program decrementing s, by 2%, and

Test;(x, ¢,, ¢,,). We now show how to construct Dec;,,, a program decrementing by
i+1

2° .

We use the following trick:

i+1 i i
In other words: To decrement by 2>, we decrement 2° times by 2.

We implement this using two nested loops. More precisely, we use loop variables y;
and z; that are initially set to 27 Each execution of the loop body of the inner loop
decrements z; as well as s, by one. As soon as z; hits 0, one execution of the loop body of
the outer loop is finished, and we decrease y; by one. When y; hits 0, we have executed
the outer loop 27 times and have successfully decremented s, by 22 .27 = 22,“.

5.18 Definition: Subroutine Dec;,; _
Assume that initially, we have y; = z; = 2 and y; = z; = 0. The initialization phase will
initialize these variables accordingly.

Couter: Yim—3 Yit+; // one execution of outer loop starts
Cnner:  Zi——; Zi++; // one execution of inner loop starts
Siv1——; Sip1++; // the crucial decrement

Testi(z;, Cinnerdones tinner);  // check whether inner loop if finished
Cinnerdone: 1€STi(Vi, Couterdones touter);  // check whether outer loop if finished

Couterdone:  FETUrN // decremented by 2.7

48



5. Lipton’s hardness result

Executing subroutine Dec;,; is possible without getting stuck if we initially have
i+1

s;=2> ands; =0.

Note that after the inner loop has been finished, we have moved the tokens from z; to
z, i.e.we havez = 2> and z; = 0. Asdiscussed earlier, Test(z;, €innerdone, Cinner) SWapSs the
values of z; and z; so that the variables are prepared for the next iteration outer loop.

Similarly, after the outer loop has finished, y; and y; are swapped, which is undone by
Testi(y;, Couterdone, Couter) SO that the variables can be reused in the next call of Dec;, ;.

We can finally combine everything and define np,,.

5.19 Definition: Program np,;,,
The program npy;,, consists of the subroutines Dec,, . ..,Dec, and the given counter
program, modified as follows:

« Each increment x++ is replaced by x++; x——.
« Each decrement x—— is replaced by x——; x++.

« Each zero test if x = 0 then goto ¢, else goto ¢, is replaced by the code of
the macro Test,(x, ¢,, £,,) as defined above.

The construction of the initialization, np,,;:
The initialization has to set the variables to the values required by the simulation.
* Xq,...,Xalready have initial value 0.

- Foreach i, s; y; and z; already have initial value 0.

« Xi,..., X, need to be initialized to 2° .
. Foreachi€ {0,...,n},5 needs to be initialized to 2°.
. Foreachi€{0,...,n—1},y;and z need to be initialized to 2°.

Note that in Dec,, we only use y,_; and z,_;, so we do not need the counters y, and z,,.

We will define for each i a macro Incvs,...,vy) that increments the values of
Vi,...,Vy, by 2. Assume we had done this. Then we can define the initialization pro-

gram as follows.

5.20 Definition: Program np,,;
The program np;,;; is

49



5. Lipton’s hardness result

Inco(EOJ/o;Zo);
Inc1(§1ay1az1);

Incn—1(§n—1ayn—1vzn—1);
INC(Sn, X1, - -+, Xk );

It remains to construct for each i the macro Incj(v,, ..., Vv,,). We proceed similar to the
definition of Dec;.

5.21 Definition: Macro Inc;(v,,..., V)
The program Incy(vs, ..., Vy)is

Vit++; Vit

Vi t++; Vi ++;

0
It increments each v; by 2 = 2' =27,

For each i, the program Inc;(vy, ..., Vy) is defined as follows.
Coutert Yi——3 Yit+; // one execution of outer loop starts
Cinnert  Zi——3 Zi++; // one execution of inner loop starts
Vit Vit // the crucial increments
Vit Vit

Test (2, Cinnerdones tinner);  // check whether inner loop if finished
{/)innerdone: TeSt;‘(Yia €outerdonea €outer); // check whether outer Ioop if finished
Couterdone: /1 ere, the next part of the program should continue

Note that in Inc;q(vy,...,Vy), we use Testi(z, Cimnerdone, Cinner)- THis requires that
the variables s;,y;,z for j < i are already initialized. This is the case, as when
INCiyi(vs, ..., Vi) is used in np;,;, the Inc(s;, y;, z;) that perform that initialization have
already been executed.

Furthermore, Inc;, (v, ..., Vv,,) manipulates the variables y; and z.. Note that the calls
of Test; (respectively the subsequent calls of Dec; will only use y; and z; forj < i -1, so
this is not a problem.

50



5. Lipton’s hardness result

Complexity analysis

It remains to consider the resulting PN program and show that its size is indeed in O(n).
It consists of several parts:

« The program for the initialization phase uses Incy, ..., Inc,.

The Incy,...,Inc,_; increment 3 variables each, so they are of size constant in
n and their total size is in O(n). Inc, increments k + 1 variables, and k < n, so its
size isin O(n).

« The program for the simulation phase is obtained by replacing each command

of the counter program by a constant number of commands. Its total size is in in
O(n).

- The code for the subroutines Decy, . . ., Dec, is of constant size each. Their total
size isin O(n).

Adding everything, we obtain that we can simulate a counter program of size n with
counters bounded by 2 by a PN program of size O(n). The size of the associated Petri
netisin O(nz). This finishes the proof of Theorem B.5. Together with Theorem 5.2, we
obtain the desired result Theorem B.1].

We conclude that Petri net coverability is EXPSPACE-hard. Coverability can be easily
reduced to reachability, so reachability is also EXPSPACE-hard, see Exercise B.3.

51



6. Petri net reachability

6. Petri net reachability

In this section, we want to study the Petri net reachability problem, proving that it is
decidable.

Recall Definition

Definition: Petri net reachability

Petri net reachability (PNREACH)
Decide: Petri net N, initial marking M, final marking M
Decide: Is there a firing sequence o € T* such that M, [0 > M;?

6.1 Remark: The history of the Petri net reachability problem

The history of the Petri net reachability problemis a long one and it does not yet have a
happy end. Petri nets were introduced by Carl Adam Petri (PhD thesis “Kommunikation
mit Automaten” 1962, some sources claim he invented Petri nets 1939 at the age of 13).
For a long time, it was unclear whether the Petri net reachability problem is decidable,
i.e. whether there is an algorithm to solve it.

When complexity theory arose in the 1960s, it became clear that Petri net reachabil-
ity is at least PSPACE-hard. This means that any algorithm solving it requires at least
a polynomial amount of space, and, unless P = PSPACE holds, a superpolynomial
amount of time. In 1976, Lipton has proven that it is even EXPSPACE-hard [Lip76],
i.e. any algorithm solving it requires at least an exponential amount of space, and, un-
less EXP = EXPSPACE, a superexponential amount of time. (These lecture notes contain
a proof of Lipton’s result based on the presentation in [Esp98], see TheoremB.1].) At this
time, it was still not clear whether such an algorithm actually exists. To quote Lipton
himself: “My theorem would have been wiped out, if someone had been able to prove
that the reachability problem was undecidable.” [Lip09].

In 1977, Sacerdote and Tenney gave a partial proof of decidability [ST77]. In 1981, this
proof was completed by Mayr [May81]], finally proving that Petri net reachability is de-
cidable. As the proof was highly complicated, simplified versions were later published
by Kosaraju [Kos82] and Lambert [Lam92]. All these proofs rely on a decomposition of
the reaching firing sequences, later dubbed Kosaraju-Lambert-Mayr-Sacerdote-Tenney
(KLMST) decomposition by Leroux.

Recently, Leroux has done a lot of work on Petri net reachability. In 2009, he published
a proof of decidability [Ler09; Ler10] that uses the techniques from the previous proofs
(Mayr, Kosajaru, Lambert), but obtains a different algorithm. He shows that if the final
marking is not reachable, then there is a forward-inductive invariant, a set of a special

52



6. Petri net reachability

shape containing all reachable markings but not the final marking. Forward-inductive
invariants can be shown to have a finite representation, so if an invariant exists, it can
be found by brute-force enumeration. This yields a semi-algorithm for unreachability
which then can be combined with a semi-algorithm for reachability, e.g. one that enu-
merates all computations.

In 2011, he published a different proof [Ler11b; Ler11a] that results in the same algo-
rithm, but obtains the fact that an forward-inductive invariant has to exist without rely-
ing on the KLMST decomposition. Later, he published a simplified version of this alter-
native proof [Ler12]. (See also a later article of him together with Finkel on the proofs
using inductive invariants [FL14; FL15].)

Until 2015, the exact time complexity of Mayr’s algorithm was unknown, but it was
clear that the KLMST decompositionmay need non-primitive recursive time. In 2015,
Lerouxand Schmitz [LS15]. proved that the algorithm is what they call cubic Ackermann,
i.e. roughly the Ackermann function applied to itself applied to itself applied to the size
of the net

The fact that even 30 years after Mayr’s proof, new proofs for a solved problem are pub-
lished at the best conferences shows on the one hand how complicated the original
proof is, and on the other hand that the interest in the topic is unbroken. Closing the
huge gap between the EXPSPACE lower bound and the non-primitive recursive upper
bound remains one of the biggest open problems of Theoretical Computer Science.

The goal of this section is to prove the following theorem.

6.2 Theorem: [May81; Kos82; Lam92; Ler09; Ler10; Ler11b; Ler11a; Ler12]
Petri net reachability is decidable.

Sources
The proof presented here is an adapted version of Lambert’s proof [Lam92].

In the following let N = (P, T, in, out) with initial marking M, and final marking M¢be the
Petri net instance of interest.

Generalized Markings

6.3 Remark
A generalized marking for a net is an element of NZ,, where N, = N U {w}. The natural

53



6. Petri net reachability

order < on N is extended to N, by settingn < w foralln € N,. The (strict) product
order on NZ, is as usual:

M<M iff M(p)<M(p)VpeP,

M<M iff M<MandM+M
iff Vp e P:M(p)<M(p)and3p' € P:M(p) < M'(p).

We extend the firing relation to generalized markings. We have
MIE>M iff M =M+e(t)=M~—in(t) + out(t) .

Here, the operations plus and minus should be read component-wise, and they are
extended to NZ, by settingw +n=w—-n=wforalln € N. (The cases w + wand w — w
can remain undefined as they will never occur.)

As we are interested in reachability and not in coverability, the product order < on NZ,
is too imprecise. Instead, we define a new order £, on NZ, as follows.

6.4 Definition
For two generalized markings M, M' € Nf,, we have

M=, M iff VpePwith M (p) < w:M(p)=M(p).

We say that M is under M.

In words: Whenever a component of M' is not w, it coincides with the corresponding
component of M. For w-components of M, the corresponding components of M may
be arbitrary. This means that we may introduce new w-componments along .

6.5 Lemma

a) £, isa partial order, i.e. reflexive, antisymmetric and transitive.

b) =, is monotonic in the following sense: Let M £, M'and let M" € N, . Then we have
M+M' s, M +M".

Covering graphs

We will now introduce covering graphs, a standard tool to decide the coverability prob-
lem. Here, we will define the coverability graph along a graph that acts a finite control.

54



6. Petri net reachability

6.6 Remark
Recall that a finite T-(arc)-labeled directed graph, just called graph in the following, is
atuple

G=(V,R)

where Vis finite set of vertices, R € V x T x Vis the set of labeled arcs.

We write g —t>G q ifr=(qg,t,q) € R. If the graph is clear from the context, we omit the
subscript G and write just g 5 q.

A path in G is a sequence of vertices and transitions

t t ty
do—>4q ... >(,.

Wecallo =t ...t, the word of labels along the path.

We write q, 5 qg, if there is a path from g, to g, labeled by o.

For some vertex g;, the trace language of G from g; is
L(G,qo) = {0 €T 'q, 2 g, for some g, € V} ,

the set of all sequences that occur as labels along paths from g;, no matter where the
path ends.

For some vertices g;, gs € V the language of paths or reachability language from g; to
qris
£(G, a0 ={oeT | %> ai}.

the set of all sequences that occur as labels along paths from g; to gy.

Similarly, for a Petri net N and markings M, M', we define the trace lanugage
L(N,M) ={o e T | M[a>M"for some M"}
and the reachability language

LINNMM)={oeT |M[c>M}

It is no coincidence that we have used T as the set of labels in the remark above. We
willindeed by interest in graphs whose transitions are labeled by transitions of the Petri
net.

55



6. Petri net reachability

6.7 Definition

Let N be a Petri net together with a generalized (!) initial marking M; and let G be a T-
labeled graph together with a vertex g;. A covering graph for N from M; along G from
q; is a directed, T-arc-labeled graph G = (V, R) that is obtained from an execution of
Algorithm .8 below. Here, V C Q x NZ, is a finite set of vertices of the shape (g, M) and
R € V x T x Vare arcs labeled by transitions of the Petri net.

6.8 Algorithm: Computing a covering graph

Input: N Petri net, M; generalized marking, G graph, g; vertex

Output: Graph G
Initialize G as the empty tree /| We first create a tree
Create an unmarked vertex labeled by (g;, M;).
while There is an unmarked vertex, say v labeled by (g, M) do

Mark v

forall g g'in A (for some t, g') do

if M [t > M, (in particular, t is enabled in M) then

Define M' € N, by

w, if there is an ancestor of v labebled by (g, M,)
M (p) = with M, < M, and M,(p) < Mq(p) ,
Myp), else .

Add a new vertex v’ with label (g', M')
Add an arc (v, V') labeled by t
if v has a (strict) ancestor with the same label then

‘ Mark v // Do not consider it again
end if
end if
end for
end while
Merge vertices that have the same label /| Convert the tree
return G

Depending on the order in which we pick the vertices and transitions during the algo-
rithm, we might end up with a different graph G. Let CG(N, M;, G, g;) denote the set of
all possible covering graphs.

In the following, we will always rely on the following properties that are independent
from the element of CG(N, M;, G, g;) that we pick.

56



6. Petri net reachability

6.9 Proposition: Classical properties of covering graph
Let G € CG(N, M;, G, q)).

a) We may compute one member of CG(N, M;, G, g;).
b) Each graphin CG(N, M;, G, g;) is finite.
c) Forany arc (g, M) —t>g (g',M)in G, we have M [t > M, with M, £, M.

d) Ifo € L(N,M;)n L(G, g;,q ), then we have o € L(G, (g;, M), (g', M')) for some M with
M; +e(o) £, M.

e) For each vertex (g,M) of G and each number n € N, we can compute
o, € L(N,M;) n L(G, g;, q) such that M; M,, for some M,, with

M(p) #+ w = M,(p) = M(p),
M(p) = w = M,(p)=n.

Proof:

a) and b) are due to the fact that < on NZ, is a well-quasi ordering.

¢) is by the construction of the arcs in G, and d) is obtained from c) using induction.

e) Take a path from (g;, M;) to (g;, M;) in G. By inserting pumps, we obtain a firing se-

quence that is enabled in M;. Insert pumps appropriately to get the desired o,,. 0

Intuitively, c) and d) state that the arcs of the covering graph are an overapproximation
of the behavior of the Petri net: For the non-w components, the covering graph actually
provides the correct behavior, but it may introduce w-components.

In turn, e) states that whenever the covering graph introduces an w in some compo-
nent, there is actually a firing sequence in this Petri net that brings the component to
an arbitrarily high value.

6.10 Definition & Proposition: Covering
Let G € CG(N, M;, G, q,).

a) Thereis a vertex (g;, M) in G such that M is the largest marking over M; in g,
meaning for any vertex (g;, M') of G, M; £, M'implies M' £, M.

b) We have M; £, M.
c) Misindependent of the choice of G € CG(N, M;, G, g;).

We call M the the covering of (N, M;, G, g;), denoted by C(N, M;, G, g,).

57



6. Petri net reachability

Proof:

We will show that given two markings M', M" over M, from arbitrary covering graphs,
we can compute one in G that dominates both. Applying this fact inductively yields all
statements of the proposition.

Pick M', M" such that (g;, M'), (g;, M") are vertices of some G', G" € CG(N, M, G, q;)
andM; £, M, M; £, M".

We prove that there is a vertex (g;, M) of G such that M' £, M, M" £, M.

By Part e) of Proposition .9, for any n € N, we may pick sequences o', 0" € L(G, g;, q;)
such that

- M; [ > M, where M, (p) = Mi(p) if M'(p) = Mi(p), and M;(p) > Mi(p) + n else,
- M; [ > M,, where My(p) = Mi(p) if M"(p) = Mi(p), and My(p) > Mi(p) + n else,

Consider these sequences for some n that is larger than any finite (non-w) number oc-
curring in a vertex of G. (Meaning it is larger than any number M(p) # w for any vertex
(@.M)ingG)

Now consider the marking M; with M, Ms;. By Part d) of Proposition .9, we have
a path in G from (g;, M;) to some (g;, M) with

M; = M; +e(o’) + e(c") S, M.

We have that if M'(p) or M"(p) is w, then M5(p) = n. Since n is larger than any number
occurring in G, we need to have have M(p) = w.

If M'(p) and M"(p) are not w, we have

Mi(p) = M(p) = Mi(p) and  My(p) = M'(p) = My(p)

and consequently M;(p) = M5(p). We conclude that M; £, M,M' £, M,and M" £, M as
desired.

This allows us to show that there is a largest marking M over M; in G by considering the
finite set of markings over M; in G and applying the proof inductively.

Now assume that there is some other G" for which this largest marking is different, say
M. We apply the proof above again to construct a marking M in G that is even larger.

This yields a contradiction to the construction of M unless M = M = M. O

58



6. Petri net reachability

6.11 Definition: Covering sequences
Let N be a Petri net with a generalized initial marking M;, and G a graph with a vertex g;
Let M = C(N, M;, G, g;) be the covering of (N, M;, G, g;).

We call a sequence 0 € L(G, g;,q;) n L(N, M;) such that

for all p with M;(p) # w: e(o,p)=0

a covering sequence.

We denote by CS(N, M;, G, g;) the set of all covering sequences.

Intuitively spoken, a covering sequence o has
- arbitrary effect on the w-components of M;,
« strictly positive effect on the w-components of M,

- zero effect on the remaining components.

6.12 Proposition
CS(N, M;, G, g;) is non-empty and we may compute one of its elements.

Proof:

We apply Part e) of Proposition 6.9 to the vertex (g;, M) and n = (max,ep Mi(p)) + 1. We
obtain that we can compute a firing sequence 0 £(G, g;, q) such that M; [0 > M’ and for
all p, M(p) # w implies M'(p) = M(p) = M;(p) and M(p) = w implies M'(p) = n.

Consider a component p such that M(p) # w. In this case, we also have M;(p) # w since
M; £, M. We have M'(p) = M(p) = M;(p) and conclude e(o, p) = 0.

For p with M(p) = w, we have M'(p) = n > M;(p). This implies e(a, p) > 0 as desired. [

Precovering graphs

6.13 Remark
Let G = (V, R) be a directed graph.

The strongly connected component (SCC) of a vertex g € Vis the subgraph induced
by all vertices g’ such that there is a path from g to g' and a path from ¢’ to g. Note that
g is one such a vertex, consequently, each SCC is non-empty.

59



6. Petri net reachability

The graph G is called strongly connected if the graph itself is a SCC of one (and then
all) of its vertices.

6.14 Definition
Let N be a Petri net. A precovering graph on N is a strongly connected, finite, directed,
T-arc-labeled graph G = (V, R) with V ¢ N, if for all

t . .
m-cm'inG, wehavem/[t>m,withm,s, m".

In other words, the edges of G are an overapproximation of the firing relation that is
precise on the non-w components, but may introduce new w components We will now
see that actually, no new w components can be introduced.

6.15 Definition & Proposition
Let G be a precovering graph for N. For each place p, m(p) is either w in all vertices of G,
or in none of them.

We may define
Q(G)={peP|Vme V:m(p) = w},

the set of w-components in G.
Proof:

Assume there is a component p such that there are vertices m,m' of G with
m(p) = w # m'(p). Since G is strongly connected by definition, there is a path

1

m=mg)2¢ My 26 ... 2 Myy=m .

By the property of the edges in G, we obtain that m" has more w-components than m,
a contradiction. ]

6.16 Corollary
Let G be a precovering graph for N. For any edge m 5S¢ m'in G, we have m > m'.

For any two vertices m,m" and any o € £(G,m,m'), we have m [0 > m'.

The first decomposition result shows that subgraphs of precovering graphs are again
precovering graphs.

6.17 Lemma
Any strongly-connected subgraph of a precovering graph is again a precovering graph.

60



6. Petri net reachability

Proof: Clear from the definition. O]

The second decomposition result relates covering graphs and precovering graphs.

6.18 Proposition
Let G be a precovering graph for N and let m; be a vertex. Let M; € NZ, with M; £, m;.
Consider a covering graph G € CG(N, M;, G, m;) of N along G from m;.

a) All vertices (m, M) of G satisfy M =, m.

b) The projection

m VG) - NZ
(mM) » M

is injective.

¢) Each SCC of the the graph m,(G) is a precovering graph for N.

The graph m,(G) is obtained by projecting all vertices to their second component and
leaving the arcs unchanged. Since the projecting is injective, it cannot happen that
m,(G) has multiple vertices with the same label.

Proof:
Let (m, M) be a vertex of G.

By Part e) of Proposition B.9, for any n, there is 0, € L£(G, m;, m) such that we have
M; M, with M(p) # w implies M,(p) = M(p) and M(p) = w implies M,(p) = n.

By Corollary .16, 0, € L(G, m;, m) implies m; m. Thus,
M, =M, +e(c,) £, m;+e(o,) =m.

Here, we have used that <, is monotonous, Lemma B.5.

The non-w components of m; coincide with the corresponding components of M; since
M; £, m;. Consequently, the non-omega components of m coincide with the corre-
sponding components of all M,,, which in turn coincide with the corresponding com-
ponents of M. We conclude M £, m.

Assume that the projecting is not injective, i.e. there are vertices (m, M) and (m', M) with
m # m'. By part a), we have M £, mand M £, m'. Because m and m' are vertices of a
precovering graph, they have the same w-components, Proposition .T5. Additionally,

61



6. Petri net reachability

the non-w components coincide since they coincide with the corresponding compo-
nent of M each. We conclude m = m’, a contradiction.

A strongly connected component of 7,(G) is finite, directed, strongly-connected and T-
labeled. It remains to check the property of the arcs. Any arc M 5 M'in 1m,(G) isinduced
by some arc (m, M) 5 (m',M')in G. By Part c) of Proposition .9, we have that M [t > M,
with M, £, M', which is exactly as desired. O

We will now be interested in initiated precovering graphs (IPGs), tuples (G, m) where
G is a precovering graph for N and mis a vertex.

Decomposing precovering graphs

6.19 Remark

Let (V, R) be a graph and g;, g € V. Any path from g; to g can be obtained from a cycle-
free path (i.e. a path in which no intermediary vertex is repeated) by inserting cycles,
i.e. paths from g to g for some g in the appropriate places.

6.20 Proposition: First IPG decomposition
Let (G, m) be an IPG for N. Let M be a generalized marking with M £, m.

« Ifm=C(N,M,G,m):
Forany o € CS(N,M, G,m), T € L(G, m, m), there are integers k., k; such that for
anyk € N

kzk = M >
k2K = oreCS(N,M,G,m).

« Ifm+ C(N,M, G, m):
We can compute a finite subset £ ¢ T  (possibly empty) and for each
s=5;...5, € Lasequence of IPGs

(Go, mg), (G7, m3) ... (G, m})
such that

M = mj,
Vi:Q(G;) & Q(G)
Vi:m? mls + e(5i+1) éw mf+1 .

62



6. Petri net reachability

Furthermore, for all T € £(G, m, m) with M [T_>, thereisans = s, ...s, € L such
that

T=To)51T(1)S2 - - - SnT(n)

for suitable 1 € £(G;, mj, m;).

Proof:
« Assumem = C(N,M, G, m):

We first show that M [o= > for k = k,. Since M £, m, we only need to worry about
the components that are w in m, but not in M. Recall that a covering sequence for
m has positive effect on the w-components of m and non-negative effect on the
other components. Iterating o often enough will load to a marking high enough
so that T becomes fireable.

To show that o*7 € CS(N, M, G, m) for k = k;, we need to show that

0"t € £(G, m, m), which is true by definition,

M [« >, which is true if we pick k. = k,

that "1 has zero effect on the non-w components of m, which is true since

it is contained in £(G, m, m),

that is has strictly positive effect on the w components of m, which is true
for k large enough, since o was a covering sequence.

« Assumem # C(N,M, G, m):
Compute G € CG(N,M, G, m).

Let T € L£(G,m,m) such that M [T>. By Part d) of Proposition 6.9, we have
1€ L(G,(m,M),(m, M) for some M with M + e(t) £, M.

Define L, as the set of all cycle-free paths from (m, M) to (m, M’). Let

m=(mM D 5 (m M)

be one such path.

We define s = s, ...s, as the transitions used along this path. We furthermore
define the sequence of the m; as the sequence of the second components in the
path, in particular



6. Petri net reachability

For each i, let G; be the maximal SCC of m1,(G) containing m;. Using M £, m and
Proposition .18, each (G;, m;) is indeed an IPG.

We have

!

mo 5> mg + e(s1) S, mi ... B> m, . +efs,) £, my =M

by using Part c) of Proposition 6.9.

By showing that M' = m;, has strictly less w-components than m, we may con-
clude that each m; has strictly less w-components than m, yielding Q(G;) € Q(G).

First note that we have M' £, m by Part a) of Proposition since (m,M) is a
vertex of G. It remains to show that M' # m.

If M = m, then we would have M £, m = M. Consequently, we have
m £, C(N,M, G, m), since C(N,M, G, m) is the largest vertex over the initial ver-
tex (m, M). Furthermore, we have C(N, M, G, m) £, m, since (m, C(N,M, G, m))is a
vertex of G, again by Part a) of Proposition 6.18. We conclude m = CS(N, M;, A, m;),
a contradiction to the assumption.

Finally, consider the path in G from (m, M) to (m, M) induced by 1. We may write
this path as some cycle-free path 7' with some cycles inserted at the appropriate
places. Consider the element s’ induced by 1’ as above. Using the fact that G itself
was a precovering graph, we obtain the desired property.

To finish the proof, let £ be the collection of all s obtained as above for all com-
putation T € £(G, (m, M), (m, M')) with M [T>. Because G contains only finitely
many vertices that may be used as (m, M'), and for each such vertex there are only
finitely many cycle-free paths, £ is finite and can be computed.

6.21 Definition
a) The reverse of a Petrinet N = (P, T, in, out) is the Petri netN*" = (P, T, out, in).

Vv

b) Forasequenceo =t,...t, € T, itsreverseiso  =t,...t.

c) Let G = (V, R) be a graph. Its reverse G' = (V,R™") is obtained by inverting all arcs,
R = {q' Sge q l q S q € R} :

6.22 Lemma
Let N be a Petri net.

64



6. Petri net reachability

a) IfM[c > M'inN, then M Min N™".

b) If Gis a precovering graph for N, then G*" is a precovering graph for N,

Proof: Immediate from the definitions. O

6.23 Proposition: Second IPG decomposition
Let (G, m) be an IPG for N. Let M be a generalized marking with M £, m.

- Ifm=C(N*',M,G*", m):
Forany 6™ € CS(N*',M, G, m), T € L(G*™', m, m), there are integers k., k; such
thatforany k e N

kzk = M
kzk, = (6™)7T € CS(N®',M,G*",m).

- Ifm = C(N*',M,G*", m):
We can compute a finite subset £ ¢ T (possibly empty) and for each
s=5;...5, € Lasequence of IPGs

(Go, mg), (G7,my) ... (G, my)
such that

M=m,
Vi:Q(G;) € Q(G)

Viim; 52> m] - e(s;) S, mi_, .

Furthermore, for all T € £(G, m, m) with M >, thereisans = s, ...s, € £ such
that
T=Te)51T(1)S2 - - - SnT(n)

for suitable 1 € £(G;, mj, m;).
Proof: Combine Lemma with Proposition 6.20. O
Let 7 be a path in G = (V, R). We define the occurrence vector ¥(1) € N as the vector
that counts how often each arc is used. For a subset E C R, we let W(r7); denote the

vector in N© obtained from W(m) by omitting components corresponding to arcs not in
E.

65



6. Petri net reachability

6.24 Proposition: Third IPG decomposition

Let (G, m) be an IPG for N. Let E C R(G) be a non-empty strict subset of the arcs of G and
let F ¢ N be a finite set of vectors. We can compute a finite subset £ € T" (possibly
empty) and foreach s =5, ...s, € L a sequence of IPGs

(Go, mo), (Gy,m3)...(Gy, M)

such that

Vit|R(G})| < |R(G)]
Vizm; My -

Furthermore, for all T € £(G, m, m) that occur as some path 7 such that W(m)l; € F,
thereisan s € £ such that

T= T(O)S1T(1)Sz .. -SnT(n)
for suitable 1 € £(G;, m;, m;).
Proof:
Let G = (V,R). Define G' = (V,R\ E).

Consider T € £(G, m, m) such that for a corresponding path m, we have W(m) ! € F. We
may write

M = T11(0)0171(1)02 . . . OpTT(p)

where 0 = 0;...0, such that W(s)I; = W(m)P: € Fand W(s)tg\e = 0, i.e. o contains
exactly the arcs used in i in E.

..........

Go=m
dn=m
si = (i1, ai)

By construction, each m; is a path from g; to g; in the modified graph G'. Let us apply
remark p.T9, so we may write each 71 as a cycle-free path "2:‘) from g; to g; with cycles
inserted appropriately.

66



6. Petri net reachability

We define

1 1 1 1

o = N(O).01.ﬂ(1).02 c. Gnﬂ(n) ,

as the path from m to m in G in which all cycles inside the 77 have been removed. Let
s € T" be the associated sequence of transitions.

We define the sequence of the m; as the sequence of the associated markings of G and
we let G; by the SCC of m; in G'.

We have to check some properties:
S S
«m=my=m,:
Clear.
- Q(G) = Q(G) = Q(a):
By Proposition B.T5.
* mls m?+1:
By Corollary 6.16.
R(G})| < IR(G)I:
We have

[R(G)| < |R(G)] = IR(G) \ E] < |R(G)
since E is non-empty.
« The decomposition of T is by construction.

It remains to argue that if we do this construction for all possible 1, we obtain a finite
set £ of all possible s. To this end, note that there are only finitely many possible o since

.....

77777

cycle free paths from g; to g; in G'. O

Marked graph transition sequences

6.25 Definition
Let N be a Petri net A graph-transition sequence is sequence

Z/{ = (607 mO)a t1 ) (G1 3 m‘l)v t2> ety tna (Gna mn)

where each t; € Tis a transition of N, and each (G;, m;) is an IPG for N.

67



6. Petri net reachability

A marked graph-transition sequence (MGTS) (U{, ¢) is a graph-transition sequence as
above together with a function

o : {0,....n} > N xN
(Gi,m;)resp.i = (M, M}™)

such that
i t
M <, m; and M <, m;
for all i.

We call M}" resp. M?™" the input resp. output marking of (G;, m;). We call M" (4, ) = M}y
the input, M°“(U4, ) = Mo the output marking of (U, ¢).

The language of a MGTS is the set of transitions sequences that contain the sequence
of the t; and such that the parts in the between are paths in the corresponding G; that
respect the input- and output marking. This is formalized by the following definition.

6.26 Definition
Let (U, @) be a MGTS for Petri net n. The language L(U, @) is the set set of all sequences

T= T(o)t1 T(1)t2 .. tnT(n)

o, (o> pig™ (52> o> )™ (2> iy (> gy o> "
with y” £, M, u0* =, M for all i,
6.27 Example
Let (N, My, M) be a Petri net instance.

We consider the MGTS (U, ¢,), where U, consists of the single IPG (Gy, m,) and
¢(0) = (My, My). Here, G, = ({(7)}, {d) 5a ’ te T}) and mg = @.

In other words, U is the trivial approximation of the Petri net.

We have that L(Uy, @) is the set of all sequences T such that T € £(Gy, @, @) such that
there are u", u®"* with

I,lin Iz> IJOUt
and " 5, M"(U, @) = My and u**" 5, M (U, ¢) = My.

68



6. Petri net reachability

Now note that T € £(G,, &, @) is satisfied by all T € T*. Since My, M; are in N° and
contain no w-components, we have that the only only choices for ,uin and " are M,
and M, themselves. Consequently, we have that

LUy, @o) = {T € T | My [T> M} = L(N, Mo, M) .

Our examples shows that it is easy to construct an MGTS that has the same language
of the Petri net. This implies that handling languages of arbitrary MGTS is as hard as
handling Petri net firing sequences. In the following, we want to find a condition on a
MGTS that implies that its languages can be described using linear algebra.

6.28 Definition
Let N be a Petri net and let (4, ¢) be a MGTS.

Let R = [|iR(G,) be the disjoint union of all arcs occurring in any G;. Define

C = {0,...,i} x (P P) be the set of components occurring in the collection of the

RuUC

M:" and M. In the following, we will consider vectors x € N<“ that have one entry x,,

out

for each arc r of some G, and entries x"(p) and x°
M resp. M,

(pb) for each component p of some

Such a vector is associated to a transition sequence
T= T(o)t1 T(1)t2 e t,,T(n) € E(Ll, <p)

if there are

- foreachia path m; in G; from m; to m; such that 7 is the sequence of transitions
occurring along m;, such that xI,) is the occurrence vector W(n(,-)) of

« We have
in out in out out in out
X [0 >x; [52>x; Xy [ Xpoy [ X, 0> X,
in in _out out
andx; s, M, x; S, M.

It is easy to see that we indeed have at least one vector associated to any T € L(U, ¢).

6.29 Definition
The characteristic equation of a MGTS (i, ¢) is the following linear system of equa-

69



6. Petri net reachability

tions:
Foralli€ {0,...,ifandp € P

X'p)=Mp) M *w (1)
Fp) = M) M #w (2)
X:‘?A —x" = e(ti1) ifi£n-1 (3)
F-x"= Y X(n)-elt) (4)
r=(q,t,q')€R(G))
and foreach i € {0, ..., i} and each vertexm € V(G;)
=" (5)
r=(q,t,m) r=(m,t,q')
incoming inm outgoing from m
6.30 Proposition
RuUC

Any vector x € N associated to some element of u € L(U, ¢) indeed satisfies the

characteristic equation.

Proof sketch:

This is clear by the definition of the characteristic equation.
(1) formalizes x" £, M",

(2) formalizes x*" <, M,

(3) formalizes x™* [t >

(5) formalizes that each x4, is indeed the occurrence vector of some path 71 in G;
from m to m. Note that requiring that we enter each vertex as often as we leave it
is sufficient and necessary.

(4) formalizes that the effect induced e any such path 71 indeed satisfies

in out
X,' +e= Xi

70



6. Petri net reachability

6.31 Definition
Let N be a Petri net, (U, ¢) be a MGTS and let Ax = b be its characteristic equation. A
MGTS (U, @) is perfect iff forall i € {0, ..., n}

m; = (N, M}, G, m;) = (N, M}, G, m)
and Ax = 0 has a solution x such that

XrR = T
X'(p)=1 ifM(p) = w

out

x(p) 21 M (p) = w

Excursion: Some linear algebra

6.32 Theorem
Let Ax = b be a system of equations over Z. It is decidable whether an integer solution
x exists, and if it does, we may compute one.

6.33 Lemma
Let Ax = 0 be a homogeneous linear system of equations over Z where we consider
solutions x € N°.

Either there is strictly positive solution x € N with x = T, or the set
z:{iec|vXe N Ax=0 = x =0},
of components that have to be 0 in any solution is non-empty.

Proof:
If Ax = 0 has no solution at all, there is nothing to show.

Let us assume that Z is empty, i.e. there is no component i such that Ax = 0 implies

x; = 0. In this case, we may pick for each component i a solution X" e N such that

) )

(i , _ ((
x;' > 0. Now considerx =3 . -x".

We have

Ax = ZAXU) = ZO=O

ieC ieC
and x is strictly positive as
X; = Zx,w Zxﬁ') >0.
jec

71



6. Petri net reachability

This proves the desired statement. [

6.34 Theorem
Let Ax = i be a linear system of equations over Z. The set

Z={i€C|VxeNC:Ax=O = x,-=0},

can be computed. If Z # @, then forany i € Z, x; can only take a finite number of
possible values in any solution of Ax = b. We may compute the set

V= {XFZ |x€ NP,AX= b}

of all (combinations of) such values.

We may compute a vector x, with xo1z = T and Ax, = 0, called maximal support
solution of Ax = 0.

- End of excursion -

Using the linear algebra and Lambert’s pumping lemma, which we skip here, one can
prove the following theorem.

6.35 Theorem
Let (U4, ) be a perfect MGTS. Then we have that L(U, ¢) is non-empty if and only if its

out

characteristic equation Ax = b has an integer solution and t;,; is enabled in M;"".

By Theorem .32, we obtain that for perfect MGTS, language emptiness is decidable.

6.36 Corollary
For perfect MGTS, it is decidable whether L(U4, ¢).

Decomposing MGTS

Assume we could prove the following theorem.

6.37 Theorem
We can compute a finite set of perfect MGTS I such that

LN Mo, M) = | £t 9)

(U, p)er

72



6. Petri net reachability

This would yield, the decidability of Petri net reachability, Theorem p.2.

Proof of Theorem 6.2;
By Theorem .37, we can compute a finite of perfect MGTS I such that

LINMo.M) = | ] LU, )
(U, p)er

We have

M is reachable from M, in N
iff L(N,My,M;) + @
iff (U, p)eT:L(IU,p)o .

The latter property is decidable using the fact that I' is finite and computable and Corol-

lary B.36. O

It remains to prove B.37. To this end, we show that we can start with an arbitrary MGTS
and decompose it further.

6.38 Definition
A decomposition of (£, ¢) be a MGTS into a finite (possibly empty) set I means that

(C1) each (U', ') € Tis obtained from (U4, @) by replacing each G, by some MGTS,

(C2) LU, ¢) = U gper LU ¢)

(C3) foreach (', ¢') € T, we have
MU', @) Sy MU, @) and MU', @) S, MU, @) .

6.39 Theorem: Decomposition theorem
For any MGTS, we can compute a perfect set of MGTS it decomposes into.

Proof:
Let (4, ) be the given MGTS and let Ax = b be the characteristic equation.

73



6. Petri net reachability

Decomposing non-perfect MGTS

If it is perfect, there is nothing to do, so assume it is not. We consider each possible rea-

son for (U, @) not being perfect, and show that each of them leads to a decomposition.

(1M

(2)
3)

Assume that there is an i and a place p such that M:-n(p) = w, but any solution of
Ax = 0 has x"(p) = 0. Using Theorem [6.34, we can compute the finite set of values
V that x;”(p) can take in any solution of Ax = b. Consider the set I' of MGTS obtained
from (U, @) that contains for each v € V a MGTS (U, ¢,) obtained by setting M"(p)
to v. This means I' contains one MGTS for each possible value.

We claim that I is a decomposition of (U4, ¢). Conditions C1 and C3, it remains to
argue for language equivalence, C2,

LW.o)=JL. o).

vey

Since M"(p) = w, which is no restriction, we obtain that the right-hand side is a
subset of the left-hand side. For the other inclusion, take any T € L(U, ¢), and let x
be an associated vector. By Proposition b.30, x satisfies the characteristic equation.
This means we have x"(p) = v € V. It is easy to check that T € L(U, ¢,) holds.

As (1), but for output places.

Assume that there is an arc r in some R(G;) such that Ax = 0 implies x(r) = 0. Using
Theorem B.34, we can compute the finite set of values V that x(r) can take in any
solution of Ax = b.

Consider the third IPG decomposition, Proposition 6.24 for E = {e} and F = V. The
propositions allows us to compute a set £ € T* and for each s, . . . s, a sequence of
IPGs

(Go: M), (G, m3).... (Gp, )

such that

S S
m; =mgy=m,

vj:Q(G;) = Q(G)
Vji|R(G;)| < R(G;)]
vj:m; M

74



6. Petri net reachability

We define I to be the set of MGTS {(U4, ¢,) | s € L}, where U; is obtained by replac-
ing G; by the graph transition sequence

(Gév m3)51(GS1.7mi)52 e Sn(GfH m;) .

It remains to define ¢.. To this end, consider some 1 such that
IJin D 'uout
with g™ £, M, 1" =, M** and write

T=To)51T(1)S2 - - - SnT(n) -

We have
in in s . =
u ur s, m for each j by Prop.
in out s . S . .
= u Y S, m; since G; is a precovering graph
in in s . s s
— u T since mj (22> .

out

for some sequences of markings uji-”, U
We define the ¢, by setting
(Co, mp) v (M}, mi)

(Cf-,m;)l—)(m;,m;) 0<j<n
(G i) = (i, 7).

(The markings for the other IPGs from the original MGTS remain unchanged.) This
is a valid marking since M" <, m; = m},and M*"* £, m; = m’.. For all other markings
in between, we even have equality by our definition of ¢..

Checking conditions C1 and C3 is easy. Language equivalence, C2, follows from
Proposition by choosing a suitable s € £ as discussed above.

Assume there is an i such that m; # C(N, M, G, m,-),

We apply the first IPG decomposition, Proposition .20, to obtain a set £ € S and
foreachs =s,...s, € L asequence of IPGs

(Go, mo), (Gy,mi)... (Gp, my)

75



6. Petri net reachability

such that
M = mp
Vj:Q(G)) ¢ Q(G))
vj:m; m; + e(s;) S, My -

We define T to be the set of MGTS {(U, @,) | s € L}, where U; is obtained by replac-
ing G; by the graph transition sequence

(th mf))s1(Gs17mi)52 s Sn(an mf)) .

It remains to define ¢,, we do this by setting

(Go, mo) = (M, mp)
(G, m;) » (m;,m]) 0<j<n

(G, my) = (miy, M)

where M still has to be defined. The markings for the other IPGs from the original

MGTS remain unchanged.
For ¢, to be a valid marking and for Condition (C3) to hold, M}°”t should satisfy

out S out out
M7 s, m, and M, S, M; .

This is possible if and only if m}, and M agree on their non-w components, i.e. if
and only if the following property holds:

out

vp:m(p) # wand M £ w = mj,(p) = M (p).

Assume that the property holds. We can now define

w my(p) = w and M7 (p) = w ,

i) < | ) mi(p) = wand MP(p) # o,

' m;(p) my(p) # w and M;"(p) = w
my(p) = M"(p)  else.

out out

In other words set M""" to be the component-wise minimum of M;"" and m;. We

obtain that M is the largest marking that satisfies M°"* <, m}, and M =, M.

76



6. Petri net reachability

Unfortunately, the desired property, i.e. M*"* and m’, agreeing on their non-w com-
ponents might be violated for some of the s € L. The solution is to remove the
corresponding MGTS (U, ¢.) from T, i.e. we want I to only contain the MGTS (U, ¢.)
for which m;, satisfies the above property.

Let us argue that this new set I' is a valid decomposition. Condition (C1) is clearly
satisfied, and we have chosen the new I such that (C3) also holds by construction.

It remains to check that the language is preserved, Condition (C2), which is non-
trivial as we have removed some of the s.

To this end, we consider a firing sequence in L(U, ¢) and show that it is in the lan-
guage of a (U, ¢,) for some s that we have not removed. It is sufficient to consider
an infix of the firing sequence corresponding to the G; that we replace.

Let T € T such that
'uin D 'uout

with g™ £, M, u®" =, M and write
T=T)51T(1)S2 - - - SnT(n)

for some s € £ with 1y € £(G;, m}, m)).

Since y" £, Mi" = mj, and for all j, m’ + e(s;) <,, mj,; by Proposition 5.20, we have

out < t

u’" =, m;. Since we also have u™
out

such that m; (p) # w and M?"(p) #+ w

<, M by assumption, we have for each p

my(p) = 1" (p) = M (p) -

Consequently, m;, satisfies the property that we have required above and the cor-
responding (U, @,) is contained in the new I.

(5) If there is an i such that m; # C(Nrev, MM G, mi), we proceed as in the previous
case using the second IPG decomposition, Proposition 6.23.

The algorithm

We now construct an algorithm that computes the decomposition of the initially given
MGTS.

Let 7 be the empty tree
Construct a new root node (U, @)
while 7 has a leaf (I/', ¢') that is not perfect do

77



6. Petri net reachability

Compute " using one of the cases (1) - (5) // at least one of the cases is
applicable

for (U4, p,) € I do

‘ Construct a child (U, ¢,) of (U, ')

end for
end while
return 7

Soundness

As

gume the algorithm terminates. In this case, define I to be the set of all leaves of

the tree. Note that each leaf is perfect; Otherwise, the algorithm would not have termi-

na

ted. To conclude that I is a decomposition of the original MGTS (U4, ¢), note that each

branching in the tree corresponds to a decomposition that preserves the language.

Consequently, the union of the languages of all leaves is still the language of the ini-

tia
Te

As
co
ea

By
Pa

lly given MGTS.
rmination

sume that the algorithm does not terminate. Because the computation of the [ ac-
rding to (1) - (5) always terminates, this means 7 is becoming infinitely large. Because
¢h M is finite, the tree has finite out-degree.

Konig's Lemma, an infinite tree with finite out-degree needs to contain an infinite
th, say
(u> q)) = (Z/{O7 QDo), (u1 ) (P1), (u2> (pZ)a s

Consider two successive entries (U;, ¢;), (U1, @;1,) in the chain and note that since the

latter is a child of the first in the tree, it is obtained by applying one of the cases (1) - (5).

In

the cases (1) and (2), the number of w-components int the input or output marking

strictly decreases. In the remaining cases, we replace one IPG in (U4, ¢;) by potentially

multiple IPGs that all have either strictly less w-components (case (4) and (5)) or strictly

less arcs. This allows us to conclude that the chain cannot be infinite.

]

Recall Theorem B.37, which directly implies the decidability of Petri net reachability 6.2.

6.40 Theorem
We|can compute finite set of perfect MGTS I such that

£(N7 MO7Mf) = U E(uv (p)
(U p)em

78



6. Petri net reachability

Proof:
Consider the MGTS (U, ¢,) from Examples 6.27. As noted there, we have

‘c(Nv M07Mf) = £(u07 (pO) .

We may now apply the decomposition theorem, Theorem .39, to compute a finite set
I such that

LN, Mo, M) = LU, 05) = | ] LU, 9)

(U,p)er

as desired. O

Exercises

6.41 Exercise: Counter programs
You may use additional counter variables to solve these problems. In each part of this
exercise, you may use the previous parts as subroutines.

Let n be some fixed number.
a) Presenta counter program Set,(x;) that sets the value of counter variable x; to n.

b) Present a counter program Double(x;) that doubles the current value of counter
variable x;.

c) Present a counter program Power,(x;) that sets the value of counter variable x; to
2"

d) Presenta counter program Square(x;) that squares the value of counter variable x;,
i.e. the new value is v2, where v is the old value.

In each part of this exercise, argue briefly that your program is correct.
6.42 Exercise: Using a unary encoding

Assume that we measure the size of Petri nets and markings by taking the
unary encoding of the numbers, i.e. we redefine |M| = XPGPU + M(p)) and

IN| = ) 7 pep(1 + in(o, t) + out(t, p)).
a) Does the coverability problem get any easier using this assumption?

Hint: Inspect the proof of Lipton’s result.

79



6. Petri net reachability

b) Discuss whether Rackoff’s bound can be improved, proving

fi+1)<(n- i)™ +Ai).

80



Part Il.
Weak memory models

81



7. Total store ordering

7. Total store ordering

Two of the main components of a modern computer are the CPU, which can quickly
perform arithmetic computations but has only a limited amount of local registers as
storage, and the memory (including the CPU cache, the main memory, and hard disk
drives) from resp. to which the register content can be loaded resp. stored. In parallel
programming, one usually uses the shared memory as a means of communication be-
tween threads, i.e. via a lock, a memory location that is set to 1 by a thread to signal that
it needs exclusive access to a certain part of the memory for the time being. The cor-
rectness of such mechanisms relies on the assumption of having an underlying strong
memory model, meaning that any write done by one thread becomes immediately
visible to the other threads.

Such a model would require the CPU to wait in front of each memory access until it can
be sure that all operations by other threads have become visible. As the clock rate of
a modern CPU is roughly ten times as high as the clock rate of the main memory, this
would make parallel programming unusably slow. To solve the problem, the designers
of the CPU architectures have devised several tricks.

Here, we want to consider the x86 architecture common in processors for desktop com-
puters and servers. In this architecture, any store made to the main memory is first put
into a buffer. At some points in time, the content of the buffer is batch-processed into
the main memory. This uses the fact that writing several stores to the main memory at
once is faster than doing it successively for each store. To make synchronization mech-
anisms like locks work, x86 assembly provides a special memory fence command that
ensures that the buffer has been emptied and all writes done by the thread have be-
come visible to other threads.

When programming in a high level language like C++, programmers do not have to
worry about this, but the people writing the compiler that translate the code into as-
sembly as well as people directly writing assembly code need to make sure that they
use the synchronization mechanisms like memory fences in the appropriate places.

It is a challenge to verify parallel programs under the assumption that they are not exe-
cuted under a strong memory model. Here, we want to abstract away implementation
details like the size of the buffer, the frequency with which it is emptied, and so on. Al-
though this data might be available, it may change between different CPUs with the
x86 architecture, and the correctness of a program should not rely on them. Instead,
we define a weak memory model that describes the behavior of the memory in the
x86 architecture in principle and is valid for all CPUs with this architecture.

82



7. Total store ordering

The memory model used for x86 is called total store ordering (TSO). The name means
that there is a total order on the points in time at which the stores to the memory be-
come visible to all threads. (Other memory models may allow that a store operation
first become visible to some threads.)

Before considering verification problems for x86 programs executed under TSO, we first
define a simplified version of x86 assembly and its semantics under TSO.

7.1 Definition: Syntax of parallel programs
The parallel programs we consider are defined by the following grammar.

{(prog) == program (name) (thread)* |/ Name and finite list of threads
(thread) := thread(threadid) // |dentifier
regs (reg)” // List of local registers used by the thread
init (label) // Label of the initial instruction
begin (linst)*end // List of label instructions
end
(linst) == (label) : (inst); goto(label);
(inst) == (reg) « mem[(reg)] // Load
| mem[(reg)] « (reg) /| Store
| mfence // Memory fence
| (reg) « (expr) // Local assignment
| assert (expr) // Assertion

Here, we assume the following:
- The threads identifiers (threadid) are distinct numbers,

. the registers (reg) are chosen from a finite set of names (later, we will use
X,y,r,...),and no register is shared between threads,

- thelabels (/abel) are strings, and each command has a distinct label (later, we will
use ty, t,...),

« the program comes with a finite data domain DOM whose elements can be used
as register content as well as as memory addresses,

« DOM contains the value 0,

- expressions (expr) are build from register names and a finite set of functions from
a function domain DOM of (multi-parameter) functions defined on DOM, and

83



7. Total store ordering

- we implicitly require that each thread only accesses its own registers and only
jumps to its own labeled instructions.

7.2 Remark

Our version of assembly lacks features usually present, e.g. conditional jumps with
which conditionals (if-then-else) and loops can be realized. It would be easy to add
such features to the language without adapting the theory that we will develop in the
following. The only reason why we choose not do so is to keep the language simple
and focus on the interaction with the memory.

It remains to define the semantics of a parallel program executed under TSO. Each
thread has a store buffer. Stores made by a thread are buffered locally and later prop-
agated to the main memory in a FIFO manner. As long as a store is in a buffer, it is not
visible to other threads. The thread that issued the store can do a early read from its
own buffer, i.e. instead of loading the value from the main memory, it loads the last
value stored to the address by itself.

Before we formally define the transition relation, we consider an example.

7.3 Example: Dekker’s mutex

Consider the following parallel program. Note that it uses a simplified notation (i.e. the
threads are separated by two lines) and does not follow the grammar from the defini-
tion, but it can easily be transformed.

t:  mem[x] « 1;gotot;; t:  mem[y] « 1;gotot;;
t;:  r< mem[y]; gotots; t: ' « mem[x]; gotot,;
t,:  assertr==0;gotof,; || ¢;: assertr == 0;gotot,;
€12 [/ critical section ., [/ critical section

Executed under a strong memory model, mutual exclusion holds, i.e.itis not possible to
reach a configuration in which both threads are in the critical section. Either one thread
executes the first two lines of its code before the other even starts running. In this case,
the assertin this thread is successful and it can enter the critical section, while the other
thread blocks as soon as it reaches the assert. If both threads execute the store in their
first line before any of them loads the value written by the other, both threads block.

Executed under TSO, the program may exhibit unwanted behavior: Both threads may
issue the store, which gets put in the local buffer. Both threads then load value 0 into
their register, since this value is taken from the main memory that does not yet contain

84



7. Total store ordering

the issued store. The assert is successful in both threads and they both enter the critical
section.

This situation is depicted in the following graphic.

Main memory
Thread 1 Buffer Buffer Thread 2
,,,,,,,,,,,,,, -0 Lo
Ces x:=1 y=0 y:=1 Ces2
r=0 r=0

Let us now formally define the semantics of parallel programs under TSO. We first define
the configurations, and then the transition relation between configurations.

7.4 Definition: Semantics of parallel programs under TSO: Configurations
Consider a program P with threads t,, ..., t,. Assume that i is the thread identifier of
thread t;, €y is its initial label and it declares the set of registers R;.

Let TID = {1,. .., n} denote the set of thread identifiers, LAB the set of all labels used by
all threads and VAR = DOM U | J._,
registers).

, Ri denote the set of all locations (addresses and

-----

A configuration of P is an element from the set
CF = (TID - LAB) x (VAR = DOM) x (TID - (DOM x DOM)") ,

i.e. a tuple of the shape
cf = (pc, val, buf)

where

« pc: TID — LAB is the program counter, assigning to each thread i € TID the label
pc(i) € LAB of the instruction in its code that should be executed next,

- val: (VAR - DOM) is the valuation, assigning to registers r from some R; their
value val(r) and to addresses a their value val(a) in the main memory, and

- bufisthe collection of local buffers, i.e.for each thread i € TID, bufii)is a sequence
of tuples (a,v) € DOM x DOM that is currently buffered. We write such tuples
as a := v, meaning that value v should be stored at address a. The left-hand

85



7. Total store ordering

side of the sequence is the CPU side end of the buffer (i.e. a store a := v that is
issued is prepended), the right-hand side is the memory side (i.e. when a store
gets propagated to the main memory, the rightmost element of the sequence is
deleted).

The initial configuration is
cfo = (pcy, valy, bufo)

where pc(i) = €y is the initial label for each threads i, the buffer is empty for all threads,
bufy(i) = €, and all values are initialized to zero, valy(x) = 0 for all x € VAR.

7.5 Definition: Semantics of parallel programs under TSO: Transition relation

The transition relation -5 is defined in an operational way. We provide calculus rules
describing how the transition between configurations are induced by each part of the
syntax.

Assume we are in configuration cf = (pc, val, buf) with pc(i) = ¢ for some thread i, and
we want to execute the labeled instruction ¢: (inst); gotot'. We define pc' = pc[i := ¢']
as the new program counter after executing this instruction.

The transition relation »1sg is the smallest relation -so € CF X CF satisfying the follow-

ing rules.

<inst> = r « mem[r'],a = val(r'), buf(i), = (a:=v).
(EARLY) [r] (r), bufi),, = ( )-B

(pc, val, buf) =150 (pc', vallr := v], buf)

The conditions on the top of the line are the premise of the rule, they need to be sat-
isfied for the rule to be applicable. Here, buf{i),, is the restriction of the buffer buf{i) to
stores to address a. In other words, we require that (a := v) is the most recent store
issued by thread i to address a that has not yet been propagated to the main memory,
where a is the value in register r'. In this case, we can perform an early read from the
buffer instead of loading the value from the main memory.

<inst> = r « mem([r'], a = val(r), buf(i), =&, v=val(a
(LOAD) [r] (), bufii),, (a)

(pc, val, buf) —1so (pc’, vallr := v], buf)

If the buffer contains no store to address g, its value is loaded from the main memory.

<inst> = mem([r] « r',a = val(r),v = val(r')

STORE) e val, bu) ~rso (pC',val, bufli = (a 1= v).buf(]])

86



7. Total store ordering

Stores do not immediately land in the main memory, but are instead prepended to the
buffer of the thread that issued them.

buf(i') = B.(a :=v)
(pc, val, buf) =150 (pc, valla := v], buf[i' := B])

(UPDATE)

At a later point in time, the earliest store in some buffer that has not yet been propa-
gated to the main memory can be used to update val. Here, i' is an arbitrary thread with
non-empty buffer. Note that this rule does not update the program counter as we did
not execute any instruction.

<inst> = mfence, buf(i) = €

MFENCE
( ) (pC7 Va/7 bUf) =750 (pC,, Val7 bUf)

An mfence command blocks the thread until its buffer content has been propagated to
the main memory (via the update rule). It does not change the buffer or the valuation.

<inst> = asserte, [e] # 0

ASSERT
( ) (pC, Val7 bUf) 750 (pclu Vala bUf)

An assertion can only be taken if the expression that is asserted is non-zero. Here, [e]
should be the valuation of the expression e that is obtained by replacing register names
r by their current value val(r), and names of functions by the corresponding functions
from FUN.

<inst>=ree e] =v
(pc, val, buf) >1so (pc’, vallr := v], buf)

(ASSIGN)

Similarly, a local assignment changes the register content.

Exercises

7.6 Exercise: Sequential consistency

In the memory model SC (sequential consistency), we assume that access to the main
memory is atomic. More formally, the transition relation - is defined similar to =150,
but the rule (STORE) is replaced by the rule (SCSTORE).

<inst> = mem([r] « r',a = val(r), v = val(r)
(pC, Val7 bUf) —sc (pC', Val[a = V:|7 bUf)

(SCSTORE)

87



7. Total store ordering

Note that the buffer will never be used, i.e. early reads and updates from the buffer

never occur.

a) Explain the following statement and argue that it is true: There is a correspondence
between all executions of a multi-threaded program under SC and the single exe-
cution of all single-threaded programs obtained by shuffling the source code of the
threads.

b) Let P be a program. We define fency(P) as the program that we obtain from P by in-
serting an mfence instruction directly after every store operation (i.e. mem[r] « r').

Argue whether the following statement is correct: The program P executed under
SC has the same behavior as fency(P) does under TSO.

Here, you may use control-state reachability (see below) as a suitable definition for

“having the same behavior”.

7.7 Exercise: SCreachability is in PSPACE
The (control-state) reachability problem for SC is defined as follows.

SC-Reachability
Decide: Program P over DOM, program counter pc

Decide: s there a computation cf, =< (pc, buf, val) for some buf, val?

a) Reduce SC-Reachability to Petri net coverability. Explain which places are needed
by the net, and how each instruction in the program can be simulated by Petri net

transitions.

b) Conclude that SC-Reachability can be solved in PSPACE. Here, you may assume that
the size of DOM is encoded in unary.

88



8. TSO reachability

8. TSO reachability

In this section, we will consider the TSO reachability problem.

8.1 Definition
TSO reachability

Decide: Program P, program counter pc

Decide: pc € Reachqso(P)?,
i.e. is there a computation cf, =1 (pc, val, buf) for some val, buf?

We will prove that this problem is decidable. To be precise, we show how to construct a
lossy channel system L, that simulates P. In particular, for each program counter pc, we
have a set of corresponding state in L, such that pcis reachable by P if and only if one of
the corresponding states is reachable in Lp. Since reachability in lossy channel systems
can be decided using Abdulla’s backwards search, TSO reachability is decidable.

We will construct lossy channel systems Lg, L,l, L,Zg, Lf,, Lp such that each of them more
closely models TSO resp. fixes problems in earlier versions.

Modeling P as LCS Lg:

The fundamental idea behind modeling TSO programs as lossy channel systems is that
shared memory communication is a lot like message passing in lossy channel system:
A store might be overwritten before it is seen by another thread. Therefore, we can
understand the TSO buffers as lossy channels.

Consequently, we may construct a lossy channel system Lg whose control states are
(TID - LAB) x VAR x DOM ,

meaning a control state is of the form (pc, val), storing for each thread i the next instruc-
tion pc(i), the content of the local registers val(r;) and for each address a its value val(a)
in the main memory.

Furthermore, we have one channel per thread, each channel storing a sequence of sym-
bols from DOM x DOM, i.e. buffered stores of the shape a :=v.

The transition relation between the control states is induced by the transition relation
—150 between TSO configurations. (We will later provide a formal definition.)

89



8. TSO reachability

Towards L,l:

The underlying well-quasi order for LCSs is Higman'’s subword ordering. This is not a
simulation relation for TSO. Indeed, consider the following program.

to: r < mem[x]; gotot;; || o2 mem[y] « 1;gotot;;
t,: assertr == 1;gototy; || ;: mem[x] « 1;gototy;
€. r < mem[y]; gotots; || €5

t3: assertr == 0; gototy;

Consider the configuration
Cf= ((€O7€ZI,X =y = 0)7(E’X =1 y = 'I))

of Lg directly corresponding to a TSO configuration. (For simplicity, we have not shown
the content of the registers in the configuration here.) Compare it to the configuration

cf = ((€o, €3, x =y =0),(g,x:=1)).

By the ordering of configurations for LCS that is induced by Higman'’s subword ordering
on the channels, we have cf > cf. Since it should be a simulation ordering, this means
that for every state reachable from cf, there should be a larger state reachable from cf.
Because the order requires equality of the control states, this in particular means that
if a certain program counter is reachable from cf, it also has to be reachable from cf.

Now note that under TSO, we can reach program counter ¢,, £, from cf by letting the
store x := 1 land in main memory and then executing the instructions in the left thread.
This is not possible under TSO from cf: The store x := 1 needs to land so that ¢, can be
reached in the left thread. Since the buffer is FIFO, this means that the store y := 1 has
also landed, this means that the assert in ¢; will block and ¢, cannot be reached.

Problem: Lossiness gives inconsistent memory configurations.

Fix: We fix this problem by modifying the LCS to obtain L;. In LL, the issuing of a store
sends a whole memory snapshot to the channel. The snapshot contains the values for
all memory addresses as currently seen by the thread.

90



8. TSO reachability

For example, the configurations of Ly corresponding to ¢fand cf are

oofusernalf;21) ;20
ofusermal ;1)

Note that they are incomparable.
The above problem has vanished.
Towards L,ZJ:

Still, some behavior under L,l is not possible under TSO. Consider the following pro-

gram.

to: mem[y] « 0;gotot;; || €2 mem[x] « 1;gotot;;

2L ¢;: r < mem[x]; gototy;
t,: assert r == Ogotots;
5

Note that (¢;, ¢;) is not TSO-reachable: TSO can only load from 1 from x (either via an
early read or from main memory), since the store in £, needs to have been performed. A
configuration with program counter (¢, ;) is reachable in LL, namely by the following
sequence of transitions,

((to, to,x = y = 0), (€, €))

=0 =1

%o [ (6, 6,x=y=0), X , X // Buffer both stores

y =0/)\y =0

, x =0 )
=750 ((fnfnx =1,y=0), (( 0 ), e)) // Update main memory
y =

>1s0 (61,61, x=y=0),(¢, €)) // Update main memory
%o (6, 65,x=y=0), (g, &) // Execute load and assert

Problem: Threads do not synchronize on memory updates and may use values that
are no longer in memory.

91



8. TSO reachability

Fix: Instead of having one buffer per thread, we let all threads share the same buffer.

In our example, we could e.g. have the configuration

R e |

Now we get the opposite problem: Some TSO behavior is not possible in Lf,. Consider

Towards L,3>:

the following example program.

mem[x] < 1 (1)(2) | r; « mem[y]; (12) | mem[y] « 1;  (3)(14) || ra « mem[x];

mem[x] « 2; (6)(7) || assertr, ==2; (13) || r; « mem[x]; (4) assertr, == 2
r, « mem[y]; (15) || assertr; ==1; (5) mem[y] « 2;
assertr, ==1; (16) :

Here, we have omitted the labels and the gotos to save space. Each instruction jumps
to the next instruction in the same thread. The numbers after each instruction denote
their order in a certain execution, see below.

Under TSO, it is possible to execute the final instruction in each thread, namely by the
execution described as follows:

(1) First thread issues store x := 1.

(2) This store lands in main memory.

(3) Third thread issues store y := 1.

(4) Third thread loads x = 1 from the main memory.
(5) Third thread takes the assert.

(6) First thread issues store x := 2.

(7) This store lands in main memory.

(8) Fourth thread loads x = 2 from the main memory.
(9) Fourth thread takes the assert.

(10) Fourth thread issues store y := 2.

92

Y



8. TSO reachability

(11) This store lands in main memory.

(12) Second threads loads y = 2 from the main memory.
(13) Fourth thread takes the first assert.

(14) Storey := 1 issued by the third thread in (3) lands.
(15) Second thread loads y = 1 from the main memory.

(16) Second thread takes the second assert.

In L,Zg, this is not possible because operations in the buffer will be propagated to the
memory in the order in which they entered the buffer. This means that the second
thread will not be able to load y = 2 before loading y = 1.

Problem: In Lﬁ, memory updates are forced to occur in the same order as the corre-
sponding stores. In TSO, memory updates can be performed in opposite order if the
stores stem from different threads.

Fix: We add to each thread a pointer to a position inside the buffer. From the per-
spective of some thread t whose pointer is pointing to some entry m of the buffer, the
buffer looks as follows:

buf = buf ) m ) buf'
—— —

-
past memory states current memory state  future memory states

Updates of the main memory are simulates by moving the pointer to the left.

A possible channel content in Lf) might look as follows:

Sl bhesd b Ry b

T T T T
ty ta ts ty

We give a more detailed explanation of this construction later.

8.2 Remark

It is problematic that a the LCS channels are lossy, since the current memory state of a
thread could be forgotten. To disallow this, we consider lossy channel systems with
strong symbols. In this symbols, the symbols occurring in the channel are from a union
of sets M w S: Symbols from M can be lost as in normal LCS, symbols from S are strong
symbols that cannot be lost.

93



8. TSO reachability

For the reachability problem to be decidable, we need that there is some bound k € N
such that in each reachable state, each channel contains at most k strong symbols.
Lossy channel with a bounded number of strong symbols can be encoded into LCS.
We refer the reader to Exercise B.g for the details.

In our case, the number of strong symbols that occur is the number of threads and
therefore bounded.

Towards L,

3
Problem: In L, early reads are not modeled.

Fix: Remember the last store to an address.

Similar to remembering the current memory snapshot of each state, this is done by
introducing additional strong symbols. As we have at most one last store per combina-
tion of thread on address, the number of occurrences of such symbols is bounded.

Formal construction of L,

Given a program P, we define the LCS with strong symbols L,
LP = (Qa do, C7 M) S) _))

where
« Q=TID - LAB x VAR - DOM are the control states consisting of pc and val
« C = {buf} is the single channel,
« M = DOM — DOM are the normal messages, i.e. memory snapshots, and

« S=DOM - DOM x (TID x DOM u {€} x P(TID)) \ (DOM — DOM x {€} - {@}) are
the strong symbols.

A strong symbol is of the shape (mem, Iw, threads) where mem € DOM — DOM is a
memory snapshot. The last write Iw is either (i, a) € TID x DOM if the snapshot contains
the last write to an address a by a thread g, or € if this snapshot does not contain the last
write of any thread. The set threads < TID is the set of threads pointing to this snapshot,
i.e. the set of threads that have this snapshot as their current memory state. We disal-
low memory snapshots in S that do neither contain the last write by any thread, nor
have any thread pointing to them. Such snapshots can be represented by the normal
symbols in M.

94



8. TSO reachability

In any reachable state, the number of strong symbols will be bounded by
|TID| - [DOM| - |TID|, since for each address a € DOM, there are at most |TID| many last
writes to it (one per thread), and for each thread in TID, we need to store one pointer.

It remains to define the transition relation —. Assume we are in control state
(pc,val) € Q with pci = €. We define the transitions depending on the instruction
labeled by €.

8.3 Remark
In the following, we will describe transitions that actually need to be realized using a
sequence of transitions each. This can be done by adding helper control states.

We in particular have several transitions that check whether the buffer contains a cer-
tain entry. This can be done by rotating through the buffer: We add a special marker
at the end of the buffer and then proceed to move elements from the front to the back
of the buffer. This allows us to touch each entry of the buffer. As soon as we see our
marker again, we have rotated once through the buffer.

Any entry that is lost during the rotation could have also been lost at some other point
in the computation.

We refer the reader to Exercise B.g for the details.
. Store ¢:mem[r] « r’; gotot":

For val(r) = a and val(r') = v, we have an LCS transition from state (pc, val) pro-
ceeding as follows:

1. Check whether the buffer contains a strong symbol of the shape
(mem, (t, a), threads). If yes, replace it by (mem, €, threads). (This is because
after this instruction, we will have a new last store to a by thread t).

2. Enqueue (val,, [a = v],(a,t), @) into the buffer. (We restrict val to DOM
and do not store the content of the registers in the memory snapshot.)

3. Go to control state (pc[t := ¢'], val[a := v]).

. Load £:r « mem[r']; gotot":
For each val(r') = a, there are two transitions. For early reads:

1. Assert that the buffer contains some entry (mem., (t, a), threads).
2. Go to control state (pc[t := ¢'], val[r := mem(a)]).

For loads from the main memory:

95



8. TSO reachability

1. Assert that the buffer contains no entry (mem, (t, a), threads), i.e. we cannot
perform an early read.

2. Find the entry of the buffer (mem', Iw, threads') with t € threads', i.e.find the
current memory state of t.

3. Go to control state (pc[t := ¢'], val[r := mem'(a)]).
« Memory fence:

1. Assert that the head of the buffer is of the shape (mem, Iw, threads) with
t € threads.

2. Go to control state (pc[t := ¢'], val).
« Update:
1. Assert that the buffer is of the shape buf = w;.m,.m,.w, where
m, = (mem;, lw;, threads;)
m, = (mem;, lw,, threads,) with t € threads, ,
i.e. m, is the current memory state of thread t.
2. Replace m; and m, by m} and m,, defined by

m; = (memy, Ilw, \ {(t, %)}, threads, U {t})

m, = (mem,, lw,, threads, \ {t}) ,

i.e. m; is now the new memory state of thread t. The buffer has now the
shape w;.m}.m5.ws,.

3. Go to the control state (pc, val').

« The rules for assertions and local assignments are straightforward and do not
involve the buffer. In both cases, we use the register valuations (stored in val in
the control state) to compute the value [e] of the expression e. Because there are
only finitely many possible values, this can be encoded in the control states.

An assert e blocks if [e] is zero, otherwise, we go to control state (pc[t := €], val).

In the case of an assignment r <« e we go to the control state
(pc[t := €], vallr := [e]]).

96



8. TSO reachability

8.4 Theorem: Atig, Bouajjani, Burckhardt, Musuvathi [Ati+10; Ati+12]

Fora program P, one can construct alossy channel system (with strong symbols) L, such
that a control state pc is reachable by a TSO execution of P if and only if pc is reachable
in Lp.

Now recall that reachable in lossy channel systems is decidable using Abdulla’s back-
wards search.

8.5 Corollary
Control-state reachability under TSO is decidable.

We will not give a formal proof of Theorem B.4, but we will present some argumentation
explaining why the construction of L, is correct.

Shuffling regular languages: The construction makes use of the following automata-
theoretic trick: Assume you want to shuffle two languages £(A,), £L(A,), where A; and
A, are automata over disjoint alphabets X, 2,, ; N X, = @. Recall that the shuffle is the
set of all possible interleavings obtained from a word from each language,

L(A) w L(A,) = {W €(Zu5,)" | projs, (w) € L(A,), projs_(w) € E(Az)} .
(Note that this is not the general definition as it relies on the fact that ¥, and X, are
disjoint.)

To construct an automaton accepting the shuffle we first modify the automata A; and
A,. Let A] be the automaton over ¥, U I, obtained from A, by adding for each control
state g and each letter a from %, a self-looping transition g 5 g. Similarly, let A, be
obtained from A, by adding a %;-labeled self-loop to each control state of A,.

We have
L(A)) N L(A) = L(A) w L(A)

so the product automaton A; x A, accepts the shuffle.

Applying the trick to TSO: Consider two threads executing under TSO.

97



8. TSO reachability

Thread 2

Shared
memory

Thread 1

This can be applied to TSO because the main memory sees a shuffle of the stores issued
by both threads: The stores issued by one thread still arrive in their correct order, but
the stores of the other thread might interleave at any point.

Thread 2

n Shared
memory

Thread 1

Using the trick explained above, we may instead assume that each thread has its own
memory. We add loops to each thread that may produce arbitrary writes, seemingly
coming from the other thread. An intersection then enforces that those writes were
actually issued by the other thread.

Thread 2 T Mem 2

Thread 1 FE Mem 1

Since the channels are FIFO, the stores leave the buffer in the order in which they are
putin. Instead of guessing the buffered stores of the other thread at the memory (and
later verifying the guesses using the intersection), we let the each thread already guess
the stores of the other thread when inserting commands into the buffer.

98



8. TSO reachability

Thread 2 7 Mem 2

N

Thread 1 v Mem 1

Now the content of both buffers is the same, but they may be propagated into the main
memory at different speed: The buffer content of Thread 1 might bec o n t e n,
with the store t already in its memory, while Thread 2 has already seen the storese, n, t
and hasonly ¢ o n tremaining in its buffer. We may model this scenario by having
one buffer and for each thread having a pointer into the buffer, e.g.

c on t e n t.
th f

Exercises

8.6 Exercise: Generalised Lossy Channel Systems

Consider the following variant of LCS: Assume one of the symbols s € M is strong,
i.e. can not be lost during sending or receiving in any channel, but the channels can
contain at most k € N instances of symbol s in total. A transition that wants to send the
k + 1% instance of symbol 5s is blocked.

Such an LCS with strong symbol s can be represented by a standard LCS with states
Qx{0, ..., k}, where Qis the set of states of the original system. The resulting transitions
are schematically represented below (for 0 < < k).

|
You are asked to give an implementation of (q;,/)—>(g,, i + 1) by several lossy transi-
tions. Your model should check that precisely i symbols s are present in the channel ¢
before appending the extras.

Hint: Take M U # as the alphabet of the resulting Ics]

99



8. TSO reachability

Remark: One can show similarly that LCSes with a whole set S of strong symbol, where
the total number of strong symbols per channel is bounded, can be simulated by stan-
dard LCS.

100



9. TSO reachability in a bounded number of rounds

9. TSO reachability in a bounded number of rounds

As discussed in the previous section, reachability under TSO is decidable. The draw-
back is that the algorithm we discussed reduces the problem to reachability in lossy-
channel systems and thus inherits its bad complexity. To overcome this problem, we
present an underapproximation algorithm. Instead of checking whether a given pro-
gram counter can be reached by an arbitrary computation, we check whether it can be
reached by a computation in which each thread is only active for a bounded number of
rounds. If such a computation exists, then the answer to the unrestricted reachability
problem is also positive. If it does not exist, the target state might be unreachable or
the bound on the number of rounds might be chosen too low.

In practice, reachability queries are used to detect bugs in programs (e.g. one is inter-
ested whether a state in which more than one thread is in the critical section can be
reached). In most practical examples, bugs can be found with a low bound on the
number of rounds, so we expect this this underapproximation technique to be useful.
Nevertheless, for each bound k, one can construct a program such that a certain state
is not reachable in k rounds, but in k + 1 rounds.

Our goal is to show how to modify a given program P into a program P' whose size is
linear in the size of P such that

Reachieo"*(P) = Reachsc(P') .

In other words, the target state is reachable in P under TSO in k rounds if and only if
the equivalent location is reachable in P under the strong memory model sequential
consistency (SC).

In sequential consistency, the buffer is not used and all stores and loads communicate
directly with the main memory. We may either define SC by replacing the rule (STORE)
by a rule that stores directly to the main memory without using the buffer, see Exer-
cise [7.6, or we may obtain the set of SC computations as the subset of TSO computa-
tions in which each (UPDATE) happens directly after the corresponding (STORE).

Reachability under SCis a standard problem to which many verification techniques ap-
ply. In particular, it can be solved in PSPACE (assuming the size of domain of values is
given in unary), see Exercise [/.7. Consequently, the resulting algorithm(s) have a much
better complexity than the algorithm for unrestricted TSO reachability.

9.1 Remark
When defining parallel programs, we have omitted instructions for e loops, conditions,

101



9. TSO reachability in a bounded number of rounds

conditional jumps and non-determinism. In this section, we will assume that we have
such constructs available for SC. The proof for the PSPACE membership of SC reachabil-
ity can be adapted to allow these instructions. Furthermore, there are standard tools
for SC reachability that support these commands.

In particular, we assume that we have an instruction for non-deterministic branching,
i.e. an instruction of the shape

gotot; or gotot, .

Itinduces two transitions, one in which the computation continues at ¢; and one where
it continues at ¢,. Note that our transition relation was non-deterministic anyhow, since
we cannot choose which thread becomes active at some point in time. Consequently,
adding this instruction does not increase the complexity of the reachability problem.

We furthermore assume that there is a way to make a sequence of instructions of a
thread atomic. While such an atomic block of instructions is executed, other threads
cannot interfere: As soon as the first instruction is executed, all instructions in the block
have to be executed before any other thread may become active again.

Sources

The theory from this section is from the paper [ABP11]]. The presentation is based on

Roland Meyer’s handwritten notes on the topic,
tcs.cs.tu-bs.de/documents/ConcurrencyTheory_WS_20172018/notes/tso_bounded_round_reachability

We will first formally define what a round is, then define the bounded-round reachabil-
ity problem and finally explain how the reduction outlined above works.

9.2 Definition

We start by augmenting the transition relation: We redefine —+5o to be a subset of
CF x TID x CF, i.e. we augment each transition by the identifier of the thread that was
used for the transition. We have cf —i>TSO cf if cf =150 cf according to our old defini-
tion and an instruction of thread i was executed or buffer content of thread i has been
propagated to the main memory.

A computation
in—1

i i i>
0 = cfy =150 €fi =150 €, =150 ... —>7150 Cf

can be written as a sequence of phases

0 =0(.0;...0p

102


https://tcs.cs.tu-bs.de/documents/ConcurrencyTheory_WS_20172018/notes/tso_bounded_round_reachability.pdf

9. TSO reachability in a bounded number of rounds

such that in each phase o, all transitions are made by the same thread i(j), i.e.

i(0) i(0) i(0)

0p = cfy —>150 €fi —150 - .- —T150 Cfn0
i(m) i(m) i(m)
Om = Cfnm_1 >Ts0 Cfnm_1+1 7TSO - - - TSO Cfnm = Cfn

We assume that each phase in the decomposition is maximal, i.e. we have i(j) # i(j + 1)
forallj.

A k-round computation is a computation o such that in its phase decomposition, for
each thread j, there are at most k phases o; with i(j) = i.

We use

Reachrso(P)k = {pc: TID - LAB | 3o = cfy 750 (pc, val, buf)k-round computation}
to denote the set of locations reachable by k-round computations.
We are interested in the following decision problem.

9.3 Definition
TSO bounded round reachability

Decide: Program P, program counter pc, bound k € N

Decide: pc € Reach’3""*(P), i.e. is pc reachable by a k-round computation?

Here, we focus on the 2-round case, i.e. we assume that each thread is active at most 2
times. The arguments can be generalized to the k-round case for larger k.

Fix some 2-round computation o = 0, ... 0,,. Note that for each thread i, there are two
phases in which it is active, say oé, and o"1 (which may be empty).

We fixsome thread t € TID and try to understand the communication of this thread with
the rest of the thread. The computation looks as depicted by the following graphic.

other threads o7 other threads o} other threads

103



9. TSO reachability in a bounded number of rounds

Here, circles (o) mark points in time when a store is issued using the (STORE) rule, and
for each circle, the corresponding bullet () marks the point in time the store gets prop-
agated to the main memory by the (UPDATE) rule. (We say that the store “does land")

We make a few observations that altogether will lead us to the definition of the modi-

fied program P'.

Observation 1: The program counter pc(t), the register valuation val(r,) for registers
of t and the buffer content buf{t) is the same at the end of o}, and at the beginning of
o', since other threads cannot interfere with these things.

Observation 2: Stores issue by thread t can only land during a phase of thread t.

This is simply because we defined the augmented transition relation accordingly.

Observation 3: Stores land in the order they were issued.

.. . . ape t t t t
This is because the buffer is FIFO. There is a decomposition o, = 0.0, of g, such that
. . t . t . . t . t
all stores issued in 0, land during o, and all stores issued in o, land during o;.

9.4 Remark

Actually, it may also happen that some stores issued during oy stay in the buffer un-
til the end of the computation and do not land at all. Because the buffer is FIFO, this
would imply that all stores issued during o} also never land. In the following, we will
not consider this special case. It can be dealt with using the same methods outlined
below.

Consequence for other threads: Between the two phases of thread t, for each ad-
dress g, the others threads may see the last store to address a that was made by thread
t and has already landed in main memory during oy. All earlier writes by thread t to
address a have already landed and memory and were overwritten by the last write to
a that has landed. All later writes will not land until phase o?.

104



9. TSO reachability in a bounded number of rounds

How to execute aload: To execute a load under TSO, we need to know

« whether a store to the address is still buffered (i.e. whether an early read should

occur),
- if so, we need the value of the most recent such store
- if not, we need the value from the main memory.

Since during a phase in which thread t is active, stores issued by other threads do not
land (Observeration 2), the buffer of t itself is the only buffer influencing the outcome
of aload by thread t. Therefore, to execute a load, we only need the content of the main
memory at the beginning of the current phase, and the most recent store issued by the
active thread i to the address.

To model this, we introduce a function
view: DOM - DOM

such that view(a) returns the value that should be loaded from address a by the cur-
rently active thread.

- The modified program P" will store view(a) for all addresses a in the memory,

- aload from address a in the original program P will be translated into a load of
the value view(a).

« at a beginning of each phase, view will be updated such that it reflects the view
of the thread that is currently active,

- stores made by the thread will immediately update view.

How to execute a store: How a store issued by thread t should be handled depends
on whether we are in o}, or in oj.

Since the other threads do not interfere during o}, the value for some address a they
see in the main memory is the last value written to this address written during o}, (Here,
we assume that the last write to a is indeed done by thread t). Consequently, we can as-
sume that all stores in o}, go directly into the main memory. This is exactly the behavior
of stores under SC.

They stores issued during o, will land at some point during o', but since other threads
do not interfere during o}, we may assume that they land at the beginning of o'. Since
the buffer is FIFO, later stores during o} will overwrite earlier stores to the same address.

105



9. TSO reachability in a bounded number of rounds

Consequently, it is sufficient to store the last value stored per address. To this end, for
each address a and each thread t, program P’ will additionally store two values

mask(a) and queue/a)

where mask,(a) is non-zero if and only if there is a store buffered by t to address a. In
this case, queue,(a) is the value of the last such store. These values will be used at the
beginning of o} to update the main memory.

We now show how to create from P a program P’ such that to the 2-round computation
o in P (under TSO), there is a 2-round computation in P’ (under SC) that reaches an
equivalent configuration.

Simulating P by P
The code for program P' is obtained by modifying the code of program P.

We use atomic blocks to enforce that the computation of P' proceeds in rounds. For
simplicity, we may assume that the code of thread i in P’ consists of k copies of the code
of P, where kis the number of rounds. Each copy forms an atomic block that is executed
without other threads interfering.

Assertions and local assignments remain unchanged. Memory fences may be omitted,
as we assume that P' is executed under SC.

All loads from address a in P will instead load view(a) in P'. The rest of the code will be
updated to keep view consistent.

Simulating the first round o}, of some thread t: We use non-deterministic branching
to guess the break between oy, and o};. In other words, we have two copies of the
code of thread t.

- The first copy corresponds to 0y,. In it, all stores go directly to the main memory,
as explained above. View a is also updated.

After each store operation in this part of the code, non-deterministic branching is
used to guess whether we stay inside it, or whether we jump to the second copy.

. The second copy corresponds to oh;,. Whenever a store operation, say
mem[r] « r'is performed, the following happens. Let a = val(r) be the target
address of the store, and let v = val(r') be the value that should be stored.

- mem[a] is not updated, as the store will not yet land in the main memory,

106



9. TSO reachability in a bounded number of rounds

- view(a)is setto v, as the store willimmediately become visible to the current
thread. Note that loads by thread t will load from view to simulate early
reads.

- mask.(a) will be set to 1 toindicate that there is a pending store for address a
queue,(a) will be set to v to store the value that should land in main memory
later during o).

After the simulation of og in P', the main memory (aside from view, mask, queue) is equal
to the main memory after the execution of oy in P under TSO. Consequently, the other
threads will not notice the difference. The active thread t itself does not notice the
difference as it loads from view.

Simulating the second round o%: Recall that we can assume that all pending stores
from o}, land at the beginning of 0. We iterate over all addresses a and do the following:
If mask,(a) is 0, then there is no pending store for a. If mask(a) is 1, then there is a pend-
ing store for a and we use it to update the main memory i.e. we set val(a) = queue,(a).

We rebuild view so that view(a) again consistently contains the value that should be
loaded for address a by thread t by setting view(a) = val(a) for all a.

Similar to o}, 07 decomposes into two parts: Stores issued during the first part still land
during o} and thus can be directly written to the main memory and view. Stores issued
during the second part do not land in the main memory at all (as there is no later phase
during which they could land). We again guess non-deterministically the break point
between the parts. In the second part, we let store operations update view(a), but do
not update the main memory at all.

More than two rounds

If we have more than two rounds, each round decomposes into several parts: the part
containing the stores landing during the same phase, the part containing the stores
landing during the next phase, ..., the part containing the stores landing in the last
phase (and maybe the stores not landing at all). We thus need mask;; and queue;,
where j is the round during which the store should land. We leave the details to the
reader as an exercise, Exercise P.8.

9.5 Remark

In the explanation here, we have creates the code in P' out of several copies of P, which
will lead to a polynomial blowup of the program size. By storing additional values in
the memory, we can get rid of this blowup:

107



9. TSO reachability in a bounded number of rounds

« Instead of having one copy per round, we have just one copy and a memory loca-
tion round, that stores in which round the thread is. Whenever the behavior of P’
should depend on the round, we query the value of round; and use conditional
statements.

. Instead of having two copies, one for o}, and one for o}, we have a memory
location part that stores in which part we are. Instead of non-deterministically
jumping to the second copy, we non-deterministically set part to 1. Whenever
the behavior of P’ should depend on the part in which the round is, we query the
value of part and use conditional statements.

Using these tricks, we can create a version of P' whose size is linear in the size of P.

9.6 Theorem: Atig, Bouajjani, Parlato, CAV 2011 [ABP11]
For a program given P, we can construct a program P' whose size is linear in the size of
P such that Reach’5""%(P) = Reachsc(P).

Using the PSPACE-completeness of SC reachability, see Exercise [/.7, we obtain the fol-
lowing corollary.

9.7 Corollary
TSO bounded round reachability (with k encoded in unary) is PSPACE-complete.

Exercises

9.8 Exercise: Bounded round reachability for k > 2

Describe the general case for the bounded round TSO-reachability problem that was
described in the lecture. Let P be a parallel program with n € N threads and a bound
k € N on the number of rounds that each thread can make. Explain how to construct
a program P' such that for each program counter pc in P and its equivalent program
counter pc’in P', the following holds.

pc is TSO-reachable in Piff pc’ is SC-reachable in P'.

Note: You do not have to give a formal construction. It is sufficient to list the additional
global variables needed, explain their meaning and how they are used by P'.

108



10. Robustness against TSO

10. Robustness against TSO

We consider a different approach to overcome the high complexity of the TSO reacha-
bility problem. A programmer usually thinks in terms of sequential consistency, where
each possible execution of the program corresponds to a certain interleaving of the
source code of all threads. In fact, understanding parallel programs executed under SC
already turns out to be difficult.

Hence, any behavior of a program that it exhibits under TSO, but not under SC, should
be considered a programming error. We should have

BTSO(P) = Bsc(P) )

where B is an appropriate definition of behavior. If this holds, we call P robust against
(execution under) TSO.

The first problem is finding this appropriate definition of behavior. On the one hand,
the notion of behavior should be strong enough to guarantee that the executions of
the program under TSO are not too drastically different from its execution under SC.
In particular, a program that is bug-free when executed under SC should be bug-free
under TSO. On the other hand, we want a weak notion: If we enforce that the compu-
tations are very similar, we will disallow many TSO-computations and a program will
not be robust unless it makes excessive use if memory fences, which decreases perfor-
mance. In the end, our goal is to come up with an algorithm to check robustness.

Unfortunately, weaker notions are harder to check. For example, consider defining
B = Reach, i.e. we say that a program is robust if the locations it can reach by TSO
computations are the same as the locations it can reach by SC computations. This is
the weakest notion that makes any sens. For a weaker notion, a program could be ro-
bust although it can reach an error location under TSO, but not under SC. The bad thing
is that checking robustness for this notation is just checking TSO reachability for a poly-
nomial number of locations, and thus as hard as TSO reachability.

In this section, we consider trace-based robustness. This is stronger than the equiv-
alence of reachability sets (in particular, it implies this equivalence), but still weak
enough to allow some relaxed TSO executions that cannot happen under SC. As we
will show here, checking robustness for this notion is PSPACE-complete. As in the pre-
vious section, we reduce checking robustness to checking SC reachability in a modified
program, so standard tools apply.

109



10. Robustness against TSO

Sources

The theory from this section is from the papers [BMM11]] and [BDM13]. The presenta-
tion is based on Roland Meyer’s handwritten notes on the topic,
tcs.cs.tu-bs.de/documents/ConcurrencyTheory_WS_20172018/notes/tso_robustness.pdf

Traces and trace-based robustness

We start by defining traces. To this end, we augment the transition relation by addi-
tional labels as in the previous section, but this time, we put more information into the
labels. We define the set of actions as

ACT = TID x ({isu, loc} U ({Id, st} x DOM x DOM)) .

Each transition will be labeled by an element from ACT, i.e. a tuple (i, op), where i is the
identifier of the thread that performed the operation (as in the previous section) and
op is the operation that was performed. The operation op is either a local action loc
(an assertion, a register assignment or a memory fence), the issue of a store isu, a load
(Id, a, v) which may be an early read or a load from the main memory, or a store (st, a, v)
that lands in the main memory. Here, a is the address and v is the value as expected.

For the sake of completeness, we give the formal definition of the labeled transition
relation.

10.1 Definition

Consider the same setting as in [7.5, i.e. we consider an instruction of thread i that is
executed. Let »1s0 € CF X ACT x CF be the smallest relation satisfying the following
rules.

<inst> = r « mem(r],a = val(r), buf(i), =(a=v).p

(EARLY) (i,ld,a,v)
(pc, val, buf) —)TSO (pc', vallr := v], buf)
<inst> =r < mem[r],a =val(r),buf(i), =¢,v=valla
(LOAD) [,/:('m) (r'), bufi),, (a)
(pc, val, buf) ——+so (pc’, vallr := v], buf)
(STORE) <inst> = mem[r] « r',a = val(r),v = val(r)

(pc, val, buf) MTSO (pc, val, buffi := (a = v).buf(i)])

buf(i') = B.(a = v)

(UPDATE)

(i' st,a,v)

(pc, val, buf) —1s0 (pc, valla = v], buf[i" := B])

110


https://tcs.cs.tu-bs.de/documents/ConcurrencyTheory_WS_20172018/notes/tso_robustness.pdf

10. Robustness against TSO

<inst> = mfence, buf(i) = €

(pC, Val, bUf) MTSO (pC’, Vala bUf)

(MFENCE)

<inst> = asserte, [e] # 0

(ASSERT)

(pC, Va/7 bUf) M)TSO (pclu Val, bUf)
<inst>=ree [e] =v

(pC7 VCII, bUf) M)TSO (pC', Val[r = V]7 bUf)

(ASSIGN)

Note that we have flattened nested tuples e.g. we write (i, st, a, v) instead of (i, (st, a, v)).

To a computation 0 = cf, =15 cf We associate the sequence of transition labels
T € ACT" of the augmented transition relation, and we write cf, QTSO cf. Because we
want to relate TSO computations to SC computations, we are interested in reaching a
configuration in which the buffer has been completely emptied. We formally define
the set of TSO computations as

Crso(P) = {T € ACT" | cf, 5150 cf where cf = (pc, val, buf) with buf(i) = € for all i} )

We define the set of SC computations Csc(P) as the subset of Crso(P) in which each issue
(i,isu) is followed by the corresponding store (i, st, a, v). This means we assume that
each store is buffered and then directly propagated to the main memory. The resulting
effect is as if the store would be written directly to the main memory.

10.2 Example
Consider the main part of Dekker’s mutex again.

to: mem[x] « 1;gotot;; || €52 mem[y] « 1;gotot;;

t,: r < mem[y];gototy; || €1 r « mem[x]; gotot,;

The following sequence is a TSO computation, but not an SC computation:
= (t1 ) iSU).(t-I ) /d7 Y, 0)(t27 iSU)(tz, $t7 )4 )'(t27 Id7 X, 0)(t1 ) St7 X, 1 ) .
The store that is issued in the first action is propagated to the main memory by the very

last action.

We could define our behavior based on C (i.e. a program would be robust if
Crso(P) = Csc(P)), but this would be very strong notion, as it would forbid any compu-
tation that actually uses the buffer. Instead, we abstract the computation into a trace,
a graph that captures its shape.

111



10. Robustness against TSO

10.3 Definition
Let T € Cy50(P) be a computation. Its trace Tr(t) is a node-labeled graph

TI’(T) = (Na )\7 _)p07 st _)src)

where
- Nis a finite set of nodes,
« A:N - ACT is the labeling function, and
* Spo, 2st, 2gc € N X Nare relations:

- the program order —, relates operations of each thread by the order
in which the corresponding instructions occur in the source code, i.e. if
then the instruction corresponding to n is followed by a goto

(n, n') e_)por

to the instruction corresponding to n’,

- the store order —; (also called coherence relation) relates stores to the
same address in the order they land in main memory, i.e.if (n, n') €, then
store n' overwrites the value of some address a that was previously set by n,
and

- the source relation —, (also called reads-from relation) relates loads to the
store from which they read, i.e. if (n, n') €., then n'is aload that reads the
value from address a written by store n.

It is defined by induction on 7. The trace associated to the empty computation ¢ is the
empty graph.

Assume that Tr(t) = (N, A, =40, =4, =) is the trace of 1. Then the trace of r.act is
Tr(T'GCt) = (N U {n}v A’7 _)'pov _)Istv _)Isrc)

where n is a new or already existing node, depending on act.

If act = (t, st, a, v), then pick the unique minimal node n with respect to -, labeled
with A(n) = (t,isu). Set A" = A[n := act] and —,,=—p,. Intuitively, when a store lands in
main memory, it replaces the issue node of the store in the trace. Because the buffer of
each thread is FIFO, we need to find the minimal issue node.

If act is of a different type, we add a fresh node n ¢ NandsetA' = A u {n := act}. Let
n; be the unique maximal node with respect to -, with thread identifier t. We set

1

~00="po U{(n¢, n)}. (Node n, might not exist if act is the first operation by thread t; In

this case, we do not modify —,.)

112



10. Robustness against TSO

For stores, i.e. act = (t, st,a, v), we also need to update the store order. Let n, be the
maximal node with respect to —; labeled by (%, st, a, *) (i.e. the last store to address a
by any thread). We set - ,=— U{(n,, n)}. If n, does not exist (i.e. if act is the first store
to address a) or act is not a store, we have »,=—.

If actis a store oraload, we also need to update the source relation. (Otherwise, we have
S =) Ifact = (t,Id,a,v), let n, be the maximal node with respect to —; labeled
by (¥, st, a, ) (i.e. the last store to address a by any thread). We set -, .=— U{(n,, n)}.
Intuitively, n reads the value written by the last store to address a that has already been
propagated to main memory. (Node n, may not exist if act loads the initial value; In this

case, we do not modify —.)

Note that this may introduce an inconsistent entry: act might load value vand n, might
store some other value v'. This can happen if act performs an early read of a store g := v
that has been issued by thread t but has not landed in main memory. We will fix this
problem when this store a := v lands.b

If act = (t, st, a, v), we need to update the source relation for all loads in the same thread
that can perform an early read form this store (but not for loads from other threads that
still saw the old value in the main memory). Let Early be the set of actions n' € N with
n -,
follow the issuing of the store. We set

n"and A(n) = (t,Id,a,v), i.e. all loads of the same thread from address a that

1

o™ (_)src \{(*7 n') | n e Earl)/}) U {(n7 n') | ne Early} .

We write
Trrso(P) = Tr(Crso(P)) = {Tr(1) | T € Crso(P)}

to denote the set of all traces (of TSO computations) of P, and similarly,
Trsc(P) = Tr(Csc(P)) for the set of SC traces. Traces provide the right notion of robust-
ness.

10.4 Definition
A parallel program P is (trace-)robust against TSO if Trso(P) = Trsc(P).

Note that trace-based robustness is strictly stronger than state-based robustness (i.e. re-
quiring Reachyso(P) = Reachgc(P).

10.5 Lemma
If Trrso(P) = Trsc(P) holds, then we also have Reachyso(P) = Reachsc(P). The reverse
implication does not hold.

113



10. Robustness against TSO

Proof: Exercise[10.19. Il

Checking robustness is the following decision problem.

10.6 Definition

(Trace-based) Robustness

Decide: Program P
Decide: Is Probust, i.e. does Trso(P) = Trsc(P) hold?

We will now first develop a criterion that allows us to check for a trace Tr(t) whether
Tr(t) € Trsc(P) holds. Afterwards, we discuss how one can check whether all TSO traces
of a program satisfy the criterion, i.e. whether Triso(P) S Trsc(P) holds. (Note that the
other inclusion always holds.)

Our criterion should take a Tr(r) and tell us whether there is a SC-computation
T € Csc(P) such that Tr(t) = Tr(tr). Computation 7' essentially consists of the same
actions as 7, they are just scheduled in a different order. In particular, each store needs
to be immediately scheduled after the corresponding issue, but this is already taken
care of by the fact that in the trace, the store and the issue are represented by a single
vertex.

To obtain the criterion, we first define a new order, the happens-before relation -,
on Tr(1). The idea is that any SC-scheduling of the actions in T has to respect —,,: If
act -, act', then act has to be scheduled before act'.

We first note that the three relations that we have already defined should be subsets of

hb-

* po € ~hp!
Just as a TSO scheduling, an SC scheduling has to respect the program order. Ac-
tions coming from instructions of the same thread need to be scheduled in the

order in which the instructions appear in the source code.

* g & hpt
If some load I/d should read the value written by some store st, i.e. st -, Id, then
in particular, st needs to be scheduled before /d.

* ¢ & 2hp!
If some store st' should overwrite the value written by some other store st, ie
st > st', then in particular, st needs to be scheduled before st'.

114



10. Robustness against TSO

The relation obtained by uniting —,,, 2. and - does not yet characterize the SC
schedulability of a trace. We need to add one more relation that is derived from —;
and -, as follows.

10.7 Definition: Conflict relation
Let Tr(t) = (N, A, =po, =, =src) be a trace. The conflict relation - S N x N is defined
as follows:

Id >4 st iff 3st €N:st = Idand st - st

or Id loads the initial value and st is the first store on the address .

lllustration:

Intuitively, the load Id reads the value from some some store st' that is then overwritten
by the store st. Consequently, /d needs to be scheduled before st, otherwise it would
read the value stored by st. Here, it is important that under SC early reads are not pos-
sible.

We combine all these relation into a single relation, the (SC-)happens-before relation
hp = Ppo U g U 25 U 25 .

10.8 Example
Consider the computation

= (t1 ) iSU).(t1 9 ld7 Y, O)(t27 iSU)(tz, St7 y1)'(t27 Id7 X, 0)(t1 ) St7 X, 1)

from Example[T0.2. Its associated trace is as follows:

(t175t7X71) (t275t7y71)

of of

(t1 ) /dvp;a 0) (tZa Id7p)o(7 O)

115



10. Robustness against TSO

As one can see, the happens-before relation forms a cycle. It turns out that this is in fact
the general criterion for not being an SC trace. If -, contains a cycle, we have some
action act with act —>;,'b act, i.e. it should be scheduled strictly before itself, which is
impossible.

10.9 Lemma: Shasha & Snir, TOPLAS 1988 [ShSn88]
Let Tr(1) € Trrso(P) be a trace. We have Tr(t) € Trsc(P) iff =, is acyclic.

Proof sketch:
For one direction, one can prove that under SC, all computations have traces with
acyclic happens-before relations.

For the other direction, note that if -, for Tr(1) is acyclic, then its reflexive and transitive
closure -, is antisymmetric. This means -, is a partial order. Any partial order can
be extended to a total order. Let —,. be the total order we obtain by extending -,
The SC-computation T we obtain be scheduling the instructions in the source code as
given by = has Tr(t) = Tr(1) € Trsc(P) as desired.

We leave the details to the reader, see Exercise [10.22. O
Let us call a trace Tr(t) € Tryso(P) violating if it is not contained in Trsc(P). The lemma of
Sasha and Snir provides a semantic criterion for a single trace to be violating. It is not
at all clear how to check whether a program is robust, i.e. whether all its (potentially
infinitely many) traces are non-violating. In the rest of this section, we want to show

that it can be checked in PSPACE whether a violating trace exists. To this end, we will
proceed as follows:

(1) We define minimal violations, computations whose trace are violating in which the
number of delayed stores and the delay are minimal.

(2) We study the shape of these violations. We will see that it is sufficient that one single
thread (the “attacker”) is delaying stores.

(3) We devise an algorithm to detect such violations.

For (2), we need combinatorial reasoning. For (3), we need algorithm design.

Minimal violations and locality

The key to showing that robustness is to show that it is sufficient to consider computa-
tions in which a single thread delays its stores. We start by defining minimal violations.

116



10. Robustness against TSO

10.10 Definition: Minimal violation
Consider a computation 7 = a.a.8.b.y € Cyso(P) with Thread(a) = Thread(b) = t. Here,
Thread(a) refers to the thread to which operation a belongs.

The distance between a and b in tis defined as §,(a, b) = |B !, |i.e. itis the number of
operations of t that appear in .

The number of delays in T is given as #(1) = X, seO:(isu, st) i.e. it is the sum of the
distance between all the issues and stores that appear in 7.

A violating computation 1 is minimal if #(t) is minimal among the number of delays
for all the violating computations.

Clearly, if there is a violating computation at all, then there is a minimal one. There may
be different computations with the same minimal number of delays. In this case, all of
them are minimal.

We wish to prove the following theorem which states that in any minimal violation, only
a single thread delays its store.

10.11 Theorem: Locality
In a minimal violation, only a single thread re-orders its action.

Towards proving this theorem, we will prove a sequence of auxiliary lemmas that will
be used in the proof of the theorem.

10.12 Lemma
Consider any minimal violation of the form t = a.isu..st.y € Cyso(P), where isu, st are
issue and store instructions of a thread t. Then one of the following holds.

« B l;= €i.e. there are no instructions of t in 3

« B l;= B'.Id.B" with addr(ld) # addr(st) and B" contains only store instruction.
Here Id refers to a load instruction and addr refers to the address to which the
load/store instruction performs its action.

In words: A store is either not delayed at all, or it is delayed beyond a load instruction
of the same thread that loads a different address.

117



10. Robustness against TSO

Proof:
Let us suppose that 8 contains one or more actions of t, otherwise we are already done.

Case: All actions of t are stores:

Consider the computation 7' = a.B.isu.st.y. Clearly, T’ is also a valid TSO computation.
Moreover T’ has the same trace as 7, but #(t') < #(t), which contradicts the minimality
of 1.

Case: Not all actions of t are stores:

Let a be the last non-store action in 8 |;, then 8 can be decomposed as 8 = 3;.a.5,.
This means that all actions of t in 8, are stores. Notice that a cannot be a fence since
stores cannot be delayed beyond a fence. Then one of the following holds.

1. ais aisu action.
2. ais alocal action.
3. ais aload action.

For the Cases [l, P and for the Case B with addr(a) = addr(st), we can easily obtain
T = a.isu.B;.B,.st.a. We have that ' is a valid TSO computation with the same trace.
Furthermore, #(t') < #(t) which contradicts the minimality of 7. O

We next introduce the happens-before-through relation. Informally, an action a hap-
pens before b through S, if the happens before relation between a and b can be traced
through B.

10.13 Definition: Happens-before through
Let T = a.a.8.b.y € Ciso(P). We say a happens-before b through  if there are sub-
sequences ¢; . ..c, of a.8.b such that ¢; =y, ¢y Or ¢ —>;0 Ciy1 forall0 < i < nand

Co=4da,c, =b.

We write a -, b though 8.

The following lemma states that the happens before relation is robust against inser-
tions. This is easy to see since to establish the relation, we only need a subsequence.

10.14 Lemma
Considert = a.a.B.b.yandt = a'.a.'.b.y such that Vt,t l;= T ;. Moreover assume
that B is a subsequence of B'. Then if a —;,, b through 8, then a -}, b through f'.

118



10. Robustness against TSO

In the following proposition, we establish a crucial structural property on the shape of
a minimal violating computation. This will be used later to prove Theorem [10.11].

10.15 Proposition: Dichotomy
For any minimal violation T = a.a..b.y, one of the following holds.

1. a -, bthough B.

2. Thereis ' = a.8,.b.a.B,.y, such that Tr(t') = Tr(t) and 7' |, = 1 |, forall t.

In words, a minimal violation either contains a happens-before-through relation be-
tween two commands, or they can be reordered to be next to each other while preserv-
ing the trace. If we apply dichotomy to an issue and its corresponding delayed store, we
obtain an happens-before-through (the case that they can be reordered cannot occur,
as it would contradict minimality).

Proof:

Since proving ([ v P) is the same as proving = [l = P, we will be proving the latter, i.e.
we will assume — [l and prove P. We will proceed by induction on the length of 8. We
will additionally strengthen our hypothesis as follows.

In addition to the property P}, we will additionally show that 3, is a subsequence of .
Base case: We assume |B| = 0,7 = a.a.b.y and a »y,, b.

Case Thread(a) = Thread(b):

We have a —>;0 borb —>;0 a. Since we assume a »y, b, b —>;o a has to hold. Conse-
quently, b is a store action delayed beyond a. Swapping a and b will avoid the delay to
give T = a.b.a.y. This already contradicts minimality since both T and T’ have the same
trace.

Case Thread(a) # Thread(b):
One of the following is true.

- One of the action is local
- The actions access different address

- Both are load instructions

119



10. Robustness against TSO

In all the three cases, swapping the action produces the required 7.

Inductive case: For this, we will assume that the statement is true for all 8’ with || = n.
Consider T = a.a.B.c.b.y with |B.c| = n+ 1. Suppose a »,, b through B.c, then we have
at least one of @ #y,, cand ¢ #y, b.

Case a -, ¢ through §:

In this case we can apply induction hypothesis to aand c. We obtaint = a.8,.c.a.8,.b.y
with Tr(t) = Tr(t') and T {; = T |, for all threads t. Now suppose a -, b through B, in
T, then we also have a -, b through 8 - ciin 7. Hence we have a -+, b through 3, in
7. We can apply the induction hypothesis again to obtain 7 = a.8,.c.8,,.ba.B,,.y with
Tr(t") = Tr(t) and " l;= T’ ;. We further have that 3, is a subword of 3,, which is a
subword of 3.c as required.

Case c »y, b:

In this case, we apply the induction hypothesis to b and c. We obtain T = a.a..b.cy
with Tr(t) = Tr(t) and T |;= T |, for all threads t. We apply the induction hypothesis
to 7' to get the required t° = a.B,.b.a.B,.c.y with Tr(t") = Tr(f') and 7" |, = " |, for all
threads t, and 3, is a sub-sequence of 3. O

10.16 Corollary
Consider a minimal violation of the form

T=T -isU-T, - Id - 15 - st 14,

where st is the store corresponding to isu. Then Tr(t) contains the cycle st —>;o Id -, st.
Proof:
Notice that st —>’,§o Id already holds since isu was issued before the /d.

To show that Id —;,, st, we will argue that Id -/, st through 15. Using dichotomy,
Proposition [T0.T5, one of the following holds:

1. Id —;,, stthrough T;

2. A computation T obtained by re-ordering of Id and st has the property
Tr(f) =Tr(t)and T ;= T |;.

Notice that is impossible since this would violate T |;= 1 l;, where
t = Thread(ld) = Thread(st). Hence from [I], we get the desired result. H

120



10. Robustness against TSO

With these results in place, we are now ready to prove the main Theorem [10.11]. Recall
that we wanted to prove that in a minimal violation, only one thread re-orders its action.

Proof:

Consider a minimal violation 1. Towards a contradiction, we will assume that at least
two threads delay stores. By Lemma we have that each store is delayed past a
load of the same thread.

Let st, be the overall last store that was delayed in 7, and let t, = Thread(st,) be the
corresponding thread. Let /d, be the last load that was overtaken by st, (i.e. Id, was the
last load that happened before st,). Similarly, let st; be the overall last store delayed in
some thread t; # t, and let Id, be the last load overtaken by st1.

One of the following three situations has to occur.

/—\/—\

1.7 = T] /d] T2 St1 T3 /d2 T4 Stz TS
T

2. T = T-| Id2 T2 /d] T3 St] T4 Stz TS
T

3. T = T Id1 T Id2 T3 Sty T4 Sty Ts

We argue in each of the cases that 7 is not minimal.

Case 1:

Remove the red part, i.e. consider ' = t,./d,.7,.5t,.T,, where 1, contains all the stores
of t, issued before st;. Clearly, #(1') < # (). Furthermore, the trace of T’ contains a
cycle: We have st, —>;o Id, and Id, -, st;. Thus, T is a a violating computation, a
contradiction to the minimality of t.

Case 2:

Notice that starting from Id,, thread t, does not do any actions except to delay
stores until st, (boy Lemma [T0.72). This means /d, and all the program-order later ac-
tions of t, can be removed without effecting the feasibility of the computation. Let
T = 1,.7,.ld, .15.5t,.74.5t,. Notice that we also removed 75 since this part can have loads
of other threads that can depend on the stores of t,. Clearly #(t') < #(t) and Tr(1') is
cyclic, a contradiction to the minimality of t.

Case 3: Consider ' = 1,./d,.1,.Id,.T3.5t,.(t, 1, ).st,, obtained by deleting 75 and by
deleting from 7, all the actions that do not belong to thread t,. We still have Id, -1, st;

121



10. Robustness against TSO

through 1,/d,T5, so 7' is cyclic. (Otherwise, we are done by dichotomy.) We also have
#(1') < #(1). We apply dichotomy, Proposition [T0.T5, to obtain that Id, -, st, through
T3 - sty - T4 lt,. Moreover, we also have st, —>;o Id,. By Lemma [T0.72, we can de-
duce that /d, is the last program order action of thread t; in 7. We delete it to get
T = 11.75.0d,.T3.5t;.(T4 Ly, )-Sty. We further have #(1") < #(1') < #(1) and Tr(1") is cyclic
since st, —>;o Id, -, st, continues to hold, a contradiction to minimality. [

Having proved that at most one thread needs to delay its store for any (minimal) vi-
olation to occur, we next would like to characterize the set of all possible (minimal)
violations as a simpler structure. Our aim is to define such a simple structure and prove
robustness by proving absence of this simple structure in the program. For this, we will
define what is called an attack.

10.17 Definition: Attack on robustness

An attack is a triple A = (t,, st, Id) where t, is the thread called the attacker, st, Id are
the store and load instructions of t4. A TSO witness T for A is a computation of the form
shown below that satisfies the properties listed below.

—
T =T isUT, Idy T35 sty T4

(W1) Only t, delays stores.

(W2) sty is the first store instruction of the attacker that is delayed. Id, is the last load
action of t, overtaken by st,.

(W3) For all actions actin Id, - T5 - st,, we have Id, —p,, act.
(W4) Sequence 14 only contains the stores of the attacker that were issued before Id,.

(W5) All these stores st and st satisfy addr(st) # addr(ld,).

If a TSO witness for an attack A exists then we call the attack feasible.

10.18 Theorem
Program P is robust iff no attacks are feasible.

Proof:

For the = direction, notice that a TSO witness of an attack already comes with a
happens-before cycle

122



10. Robustness against TSO

+
Sta —);0 ldA ~hb Sta

For the other direction, we will show that if Pis not robust, then there is a feasible attack.
For this, let us assume that P is not robust, i.e. the set of violating computations is non-
empty. We select a minimal violation T, i.e. a violating computation 7 such that #(1)
is minimal. By Theorem [T0.T1, we know that only one thread t, uses its buffer. The
attack that we are going to define will use this thread t, as attacker. Hence, [l holds by

construction.

Initially, the attacker t, executes under SC-semantics and stores immediately follow
their issue. Eventually, the attacker starts delaying the store. Let st; be the first store
that is delayed by the attacker. Similarly let /d, be the last load that is overtaken (which
has to exist by Lemma [10.12.) This already gives us .

The computations looks as depicted in the following figure.

/—\
T =T isUT, Idy T35 sty T4

We get Id, —p,, sty and B by dichotomy, Proposition [T0.T5. With a cycle of the form
sty —>;0 Id, -, sta, we can already stop with the last action of 13, T, only needs to
contain stores of the attacker that have been delayed past Id,. We can further also
assume that Id, to be the last program order action of the attacker. From this, we get .

Finally we get [ by a straight forward application of Lemma [T0.72. O
Instrumentation

TODO: Still missing.

Exercises

10.19 Exercise: Trace robustness strictly implies reachability robustness
Prove the following Lemma from the lecture.

123



10. Robustness against TSO

a) If Trrso(P) = Trsc(P) for some program, then Reachrso(P) = Reachrso(SC).

Here, Reachiso(P) =  {pc|cfy >7so (pc, val, buf) with buf(i) = e for all i} and
Reachsc(P) is obtained by restricting the definition to computations in which
each issue (STORE) is followed by the store (UPDATE).

b) The reverse implication does not hold.

10.20 Remark: Relations

Recall the following basic definitions for relations.
Let Nbe asetandlet << N x N be a relation.

Recall that N is reflexive if x < x for all x € N. It is antisymmetric if x < y and y < ximply
x =y (forall x,y € N). Itis transitive if x < yand y < zimply x < z (for all x, y, z € N). If all
three properties hold, we call < a partial order.

A partial order is called total (or linear) if any two elements are comparable, i.e.
Vx,y E Nix<yory<x.

We let <* denote the reflexive-transitive closure of <, the smallest subset of N x N that
contains < and is reflexive and transitive.

We may see (N, <) as a directed graph. We call < acyclic if this graph does not contain a

non-trivial cycle xo < x; < ... < X, < Xq. (Cycles of the shape x, < X are trivial.)

10.21 Exercise: Relations
Let N be a finite set and let < € N x N be a relation.

a) Explain how to construct <* from < within a finite number of steps.
b) Prove that <" is a partial order (i.e. antisymmetric) if and only if < is acyclic.

c) Now assumethat <, is some partial order. Prove that thereis a total order <, € NxN

containing <, i.e. $pp € So.

d) (Bonus exercise, not graded.) Do b) and ¢) still hold if N is infinite?

10.22 Exercise: Shasha and Snir
Prove the Lemma by Shasha and Snir:

A trace Tr(t) € Trrso(P) is in Trsc(P) if and only if its happens-before relation —y, is
acyclic.

124



10. Robustness against TSO

Proceed as follows:

a) Show that for traces of SC computations, =y, is necessarily acyclic.

b) Show how from a trace with acyclic -,;,, one can construct an SC computation 7'
with Tr(t') = Tr(1).

Hint: Use Exercise [T0.21].
10.23 Exercise

Consider two traces T = a.a.b.y and T = a'.a.8.b.y’ where thread(c) # thread(a) and
thread(c) # thread(b) for all c in 3. Prove the following:

If a =y, b in Trrso(T) then a =1, bin Tryso(T)

10.24 Exercise
Consider the following program implementing an instance of the non-blocking write
protocol by H. Kopetz and J. Reisinger:

¢, : h < mem[g]; gotot, €1 h < mem[g]; gotot;,

¢, : mem[g] « h+1; gotot; t10: mem[g] « h+ 1; gotot;;
t;: mem[x] « 42; gotot, €, © mem[x] « 43; gotot;,
€, : mem[g] « h+ 2; gotots €, mem[g] « h+2;

ts: r< mem[g]; gotots

ts: v« mem[x]; gotot,

t;: s < mem[g]; gotots

tg : assertr #sVrisodd; gotots
€3 : assertr=sAriseven;

Note that there are two instructions labeled by 5. Assume that when executing gotots,
the execution non-deterministically jumps to any of them.

Prove that the program is not robust under TSO. Initially assume mem[g] = 0 and g # x.

10.25 Exercise
Consider a computation T = ty.act;.1, € Csc(P) where for all act, in 7, we have
act, -, act,. Show that the computation t.act satisfies act, -y, act if and only if

1. there is an action act, in act,.t, with thread(act,) = thread(act), or
2. actis aload whose address is stored in act,.15, or

3. actis a store (with issue) whose address is loaded or stored in act;.7, .

125



10. Robustness against TSO

10.26 Exercise: The one and only
Consider again the program from Exercise [10.24.

Check whether the following attacks are feasible:
a) Ay = (t, €, ts),

b) Ay = (ty, €11, ).

126



References

References

[ABP11]

[Ati+10]

[Ati+12]

[BDM13]

[BMM11]

[Esp98]

[FL14]

[FL15]

[Kos82]

[Lam92]

[Ler09]

[Ler10]

[Ler11a]

[Ler11b]

[Ler12]

M. F. Atig, A. Bouajjani, and G. Parlato. Getting Rid of Store-Buffers in TSO Anal-
ysis. In: CAV. 2011, pp. 99-115.

M. F. Atig, A. Bouajjani, S. Burckhardt, and M. Musuvathi. On the verification
problem for weak memory models. In: POPL. 2010, pp. 7-18.

M. F. Atig, A. Bouajjani, S. Burckhardt, and M. Musuvathi. What’s Decidable
about Weak Memory Models? In: ESOP. 2012, pp. 26-46.

A.Bouajjani, E. Derevenetc, and R. Meyer. Checking and Enforcing Robustness
against TSO. In: ESOP. 2013, pp. 533-553.

A. Bouajjani, R. Meyer, and E. Méhlmann. Deciding Robustness against Total
Store Ordering. In: ICALP. 2011, pp. 428-440.

J. Esparza. Decidability and Complexity of Petri Net Problems - An Introduction.
In: Lectures on Petri Nets I: Basic Models, Advances in Petri Nets. Springer,
1998, pp. 374-428.

A. Finkel and J. Leroux. Neue, einfache Algorithmen fiir Petrinetze. In: Infor-
matik Spektrum 37.3 (2014), pp. 229-236.

A. Finkel and J. Leroux. Recent and simple algorithms for Petri nets. In: Soft-
ware and System Modeling 14.2 (2015), pp. 719-725.

S. R. Kosaraju. Decidability of Reachability in Vector Addition Systems (Prelimi-
nary Version). In: STOC. 1982, pp. 267-281.

J. Lambert. A structure to decide reachability in Petri nets. In: Theoretical Com-
puter Science 99.1 (1992), pp. 79-104.

J. Leroux. The General Vector Addition System Reachability Problem by Pres-
burger Inductive Invariants. In: LICS. 2009, pp. 4-13.

J. Leroux. The General Vector Addition System Reachability Problem by Pres-
burger Inductive Invariants. In: Logical Methods in Computer Science 6.3
(2010).

J. Leroux. Vector Addition System Reachability Problem: A Short Self-contained
Proof. In: LATA. 2011, pp. 41-64.

J. Leroux. Vector addition system reachability problem: a short self-contained
proof. In: POPL. 2011, pp. 307-316.

J. Leroux. Vector Addition Systems Reachability Problem (A Simpler Solution).
In: Turing-100. 2012, pp. 214-228.

127



References

[Lip09]

[Lip76]

[LS15]

[May81]

[Min67]
[Rac78]

[Rei85]

[ShSn88]

[ST77]

R. J. Lipton. An EXPSPACE Lower Bound. https://rjlipton.wordpress.
com/2009/04/08/an-expspace-lower-bound/. Blog. 2009.

R. J. Lipton. The Reachability Problem Requires Exponential Space. Tech. rep.
Yale University, Department of Computer Science, 1976.

J.Leroux and S. Schmitz. Demystifying Reachability in Vector Addition Systems.
In: LICS. 2015, pp. 56-67.

E. W. Mayr. An Algorithm for the General Petri Net Reachability Problem. In:
STOC. 1981, pp. 238-246.

M. L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, 1967.

C. Rackoff. The covering and boundedness problems for vector addition sys-
tems. In: TCS 6.2 (1978).

W. Reisig. Petri nets: An Introduction. Monographs in Theoretical Computer
Science. An EATCS Series. Springer, 1985.

D. E. Shasha and M. Snir. Efficient and Correct Execution of Parallel Programs
that Share Memory. In: ACM Trans. Program. Lang. Syst. 10.2 (1988), pp. 282-
312.

G.S. Sacerdote and R. L. Tenney. The Decidability of the Reachability Problem
for Vector Addition Systems (Preliminary Version).1n: STOC. ACM, 1977, pp. 61—
76.

128


https://rjlipton.wordpress.com/2009/04/08/an-expspace-lower-bound/
https://rjlipton.wordpress.com/2009/04/08/an-expspace-lower-bound/

	1 Introduction
	I Petri nets and well-structured transition systems
	2 Petri nets
	 Syntax and semantics of Petri nets
	 Algorithmic problems

	3 Petri net coverability
	4 Rackoff's algorithm for coverability
	5 Lipton's hardness result
	6 Petri net reachability
	 Generalized Markings
	 Covering graphs
	 Precovering graphs
	 Marked graph transition sequences
	 Decomposing MGTS


	II Weak memory models
	7 Total store ordering
	8 TSO reachability
	9 TSO reachability in a bounded number of rounds
	10 Robustness against TSO
	 Traces and trace-based robustness
	 Minimal violations and locality
	 Instrumentation


	References

