
Complexity Theory

Lecture Notes

October 27, 2016

Prof. Dr. Roland Meyer

TU Braunschweig
Winter Term 2016/2017

Preface

These are the lecture notes accompanying the course Complexity Theory
taught at TU Braunschweig. As of October 27, 2016, the notes cover 11 out
of 28 lectures. The handwritten notes on the missing lectures can be found
at http://concurrency.cs.uni-kl.de. The present document is work in
progress and comes with neither a guarantee of completeness wrt. the con-
tent of the classes nor a guarantee of correctness. In case you spot a bug,
please send a mail to roland.meyer@tu-braunschweig.de.

Peter Chini, Judith Stengel, Sebastian Muskalla, and Prakash Saivasan
helped turning initial handwritten notes into LATEX, provided valuable feed-
back, and came up with interesting exercises. I am grateful for their help!

Enjoy the study!

Roland Meyer

i

Introduction

Complexity Theory has two main goals:

• Study computational models and programming constructs in order to
understand their power and limitations.

• Study computational problems and their inherent complexity. Com-
plexity usually means time and space requirements (on a particular
model). It can also be defined by other measurements, like random-
ness, number of alternations, or circuit size. Interestingly, an impor-
tant observation of computational complexity is that the precise model
is not important. The classes of problems are robust against changes
in the model.

Background:

• The theory of computability goes back to Presburger, Gödel, Church,
Turing, Post, Kleene (first half of the 20th century).

It gives us methods to decide whether a problem can be computed (de-
cided by a machine) at all. Many models have been proven as powerful
as Turing machines, for example while-programs or C-programs. The
ChurchTuring conjecture formalizes the belief that there is no notion
of computability that is more powerful than computability defined by
Turing machines. Phrased positively, Turing machines indeed capture
the idea of computability.

• Complexity theory goes back to ”On the computation complexity of
algorithms” by Hartmanis and Stearns in 1965 [?]. This paper uses
multi-tape Turing machines, but already argues that concepts apply
to any reasonable model of computation.

ii

Contents

1 Crossing Sequences and Unconditional Lower Bounds 1
1.1 Crossing Sequences . 1
1.2 A Gap Theorem for Deterministic Space Complexity 5

2 Time and Space Complexity Classes 8
2.1 Turing Machines . 8
2.2 Time Complexity . 11
2.3 Space Complexity . 12
2.4 Common Complexity Classes 14

3 Alphabet reduction, Tape reduction, Compression and
Speed-up 17
3.1 Alphabet Reduction . 17
3.2 Tape Reduction . 18
3.3 Compression and linear Speed-up 20

4 Space vs. Time and Non-determinism vs. Determinism 22
4.1 Constructible Functions and Configuration Graphs 22
4.2 Stronger Results . 25

5 Savitch’s Theorem 28

6 Space and Time Hierarchies 31
6.1 Universal Turing Machine . 32
6.2 Deterministic Space Hierarchy 35
6.3 Further Hierarchy Results . 37

7 Translation 39
7.1 Padding and the Translation Theorems 39
7.2 Applications of the Translation Theorems 40

8 Immerman and Szelepcsényi’s Theorem 42
8.1 Non-reachability . 43
8.2 Inductive counting . 45

iii

9 Summary 48

10 L and NL 50
10.1 Reductions and Completeness in Logarithmic Space 50
10.2 Problems complete for NL . 54
10.3 Problems in L . 59

11 Models of computation for L and NL 62
11.1 k-counter and k-head automata 62
11.2 Certificates . 64

12 P and NP 65
12.1 The Circuit Value Problem 65
12.2 Cook and Levin’s Theorem 65
12.3 Context-free languages, Dynamic Programming and P 65

13 PSPACE 66
13.1 Quantified Boolean Formula is PSPACE-complete 66
13.2 Winning strategies for games 66
13.3 Language theoretic problems 66

14 Alternation 67
14.1 Alternating Time and Space 67
14.2 From Alternating Time to Deterministic Space 67
14.3 From Alternating Space to Deterministic Time 67

15 The Polynomial Time Hierarchy 68
15.1 Polynomial Hierarchy defined via alternating Turing machines 68
15.2 A generic complete problem 68

A Landau Notation 69

iv

Chapter 1

Crossing Sequences and
Unconditional Lower Bounds

Goal: We establish an unconditional lower bound on the power of a uni-
form complexity class.

• The term unconditional is best explained by its opposite. If we show
a conditional lower bound — say NP-hardness — we mean that the
problem is hard under the assumption that P 6= NP. An unconditional
lower bound does not need such an assumption. Unconditional lower
bounds are rare, even proving SAT 6∈ DTIME(n3) seems out of reach.

• Uniformity means that we use one algorithm (one Turing Machine) to
solve the problem for all inputs. Non-uniform models may use different
algorithms (popular in circuit complexity) for different instances.

To get the desired lower bound, we employ a counting technique called
crossing sequences. Crossing sequences are vaguely related to fooling sets
in automata theory.

1.1 Crossing Sequences

Let COPY = {w#w |w ∈ {a, b}∗ }. This language is not context free and
hence not regular.

Goal 1.1. Show an upper and a lower bound for COPY :

• Upper bound : COPY can be decided in quadratic time.

• Lower bound : COPY cannot be decided in subquadratic time (on a
1-tape DTM (deterministic Turing machine)).

1

Recall 1.2. 1. When we refer to a problem written as a set, deciding the
problem means deciding membership for that set. Given x ∈ {a, b}∗,
does x ∈ COPY hold?

2. We assume that all tapes of a Turing machine are right-infinite: To
the left, they are marked by $. From this marker, one can only move
to the right and $ cannot be overwritten. Unless otherwise stated, we
will assume that the TM only halts on $.

3. The time and the space requirements of a TM are measured relative
to the size of the input. Without further mentioning, this size will be
referred to as n.

4. O-notation = asymptotic upper bound (≤, read as no more than):

O(g(n)) := { f : N→ N | ∃c ∈ R+ ∃n0 ∈ N ∀n ≥ n0 : f(n) ≤ c · g(n) } .

o-notation = asymptotic strict upper bound (<, read as less than):

o(g(n)) := { f : N→ N | ∀c ∈ R+ ∃n0 ∈ N ∀n ≥ n0 : f(n) ≤ c · g(n) } .

Lemma 1.3. COPY ∈ DTIME(n2).

The proof is left as an exercise to the reader.

Definition 1.4. The crossing sequence of M on input x at position i is the
sequence of states of M when moving its head from cell i to cell i + 1 or
from cell i + 1 to cell i. To be precise, we mean the state that is reached
after the transition. We denote the crossing sequence by CS (x, i).

Picture missing If q is a state in an odd position of the crossing sequence,
then M moves its head from left to right. If it is a state in an even position,
M moves from right to left. Transitions staying in cell i do not contribute
to the crossing sequence.

Lemma 1.5 (Mixing Lemma). Consider words x = x1.x2 and y = y1.y2. If
CS (x, |x1|) = CS (y, |y1|), then

x1.x2 ∈ L(M) if and only if x1.y2 ∈ L(M).

Sketch. Intuitively, the crossing sequence is all that M remembers about x2

resp. y2 when operating on the left part x1. Since the crossing sequences are
assumed to coincide, M will behave the same on x1, independent of whether
x2 or y2 is on the right. Since the $ symbol (on which we accept) is on the
left, we are done.

The next lemma states that the crossing sequences (their length) form a
lower bound on the time complexity of a TM. If the TM is guaranteed to
move on every transition, even equality holds. The proof is immediate by
the definition of crossing sequences.

2

Lemma 1.6 (Fundamental Inequality). TimeM (x) ≥
∑

i≥0 |CS (x, i)|.

We are now prepared to show the unconditional lower bound.

Theorem 1.7. COPY 6∈ DTIME(o(n2)).

Proof. Let M be a 1-tape DTM for COPY . Consider inputs of the form

w1.w2#w1.w2 with |w1| = |w2| = n.

We have: ∑
w2∈{a,b}n

TimeM (w1.w2#w1.w2)

(Lemma 1.6) ≥
∑

w2∈{a,b}n

3n∑
ν=2n+1

|CS (w1.w2#w1.w2, ν)| (1.1)

=
3n∑

ν=2n+1

∑
w2∈{a,b}n

|CS (w1.w2#w1.w2, ν)| . (1.2)

Consider ν with 2n+ 1 ≤ ν ≤ 3n. Denote the average length of the crossing
sequences from the set Crossν := {CS (w1.w2#w1.w2, ν) |w2 ∈ {a, b}n } by

lν :=

∑
w2∈{a,b}n |CS (w1.w2#w1.w2, ν)|

2n
.

Claim 1.8. At least half (which means 2n

2 = 2n−1) of the crossing sequences
from Crossν have length ≤ 2lν .

Claim 1.9. The crossing sequences from Crossν are pairwise distinct.

Claim 1.10. The number of crossing sequences of length ≤ 2lν is bounded
by (|Q|+ 1)2lν , where Q is the set of states of M .

We add +1 because the sequence may be shorter.

By Claim 1.8 to Claim 1.10, we have

(|Q|+ 1)2lν ≥ 2n−1 .

Note that we need the fact that the crossing sequences are different to enforce
the inequality. Since

(|Q|+ 1)2lν = (2log(|Q|+1))2lν = 2log(|Q|+1)2lν ,

monotonicity of logarithms yields log(|Q|+ 1)2lν ≥ n− 1. Hence, there is a
constant c (depending on Q but not depending on n and not on ν) so that

lν ≥ cn . (1.3)

With this lower bound,

3

Claim 1.11.
∑

w2∈{a,b}n TimeM (w1.w2#w1.w2) ≥ 2ncn2 .

Since there are only 2n words w2, Claim 1.11 implies

TimeM (w1.w2#w1.w2) ≥ cn2

for all least one w2. This concludes the proof of Theorem 1.7.

Claim 1.8 is the following statement.

Lemma 1.12. If 1
n

∑n
i=1wi = d, at least half of the wi have a value ≤ 2d.

Proof. Assume at least half of the wi have a value > 2d. Then

n∑
i=1

wi >
n

2
· 2d = nd .

From this we can deduce

1

n

n∑
i=1

wi >
nd

n
= d .

This contradicts the assumption.

Proof of Claim 1.9. Towards a contradiction, consider two words u 6= v of
length |u| = |v| = n and assume CS (w1.u#w1.u, ν) = CS (w1.v#w1.v, ν).
Recall that 2n+ 1 ≤ ν ≤ 3n. By Lemma 1.5, we have

w1.u#w1.u ∈ L(M) iff w1.u#w1.v ∈ L(M) .

Since the former word is a member of COPY but the latter is not, and since
M is assumed to accept COPY , this is a contradiction.

Proof of Claim 1.11. ∑
w2∈{a,b}n

TimeM (w1.w2#w1.w2)

((In)equalities (1.1) and (1.2)) ≥
3n∑

ν=2n+1

∑
w2∈{a,b}n

|CS (w1.w2#w1.w2, ν)|

(Definition lν) =
3n∑

ν=2n+1

2nlν

(Inequality (1.3)) ≥
3n∑

ν=2n+1

2ncn

= 2ncn2 .

4

1.2 A Gap Theorem for Deterministic Space Com-
plexity

Recall that the input tape of a space-bounded TM is read only. The TM
can only write to (and read from) its work tape. If s(n) : N→ N is a space
bound for the work tape, we will assume s(n) > 0 for all n ∈ N. The reason
is that we need a position for the head. The function s(n) is unbounded if for
all m ∈ N there is an n ∈ N so that m < s(n). Note that s(n) is unbounded
if and only if s(n) /∈ O(1).

Goal 1.13. Show that o(loglog(n)) work tape is no better than having no
tape at all.

Theorem 1.14. DSPACE(o(loglog(n))) = DSPACE(O(1)).

The inclusion from right to left is left as an exercise to the reader. We will
prove the reverse inclusion.

Definition 1.15. Consider a TM M = (Q,Σ,Γ, $, , δ, q0, qacc, qrej) (the
precise definition will be given in Section 2.1). A small configuration of M
consists of:

• the current state (in Q),

• the content of the work tape (in Γ∗), and

• the head position on the work tape.

The small configuration omits the input word and the head position on the
input tape.

Definition 1.16. The extended crossing sequence of M on input x at posi-
tion i, ECS (x, i), is the sequence of small configurations of M when moving
its head from cell i to i+ 1 or from cell i+ 1 to i on the input tape.

Lemma 1.17. Let M be s(n)-space bounded. The number of extended cross-

ing sequences on inputs of length n is at most 22ds(n)
, where d is a constant

(depending on M but not on the input).

Proof. Let M = (Q,Σ,Γ, $, , δ, q0, qacc, qrej) be the s(n)-space-bounded TM
of interest. The number of small configurations on inputs of length n is
bounded by |Q| |Γ|s(n) s(n). Since s(n) > 0, we have

|Q| |Γ|s(n) s(n) ≤ cs(n),

where c is a constant depending only on Q and Γ but not on n.

5

In an extended crossing sequence, no small configuration may appear twice
in the same direction. Otherwise, a (large) configuration of M would appear
twice in the computation. As M is deterministic it would be stuck in an
infinite loop. Since M is assumed to halt, this cannot happen. Thus, there
are at most

(cs(n) + 1)︸ ︷︷ ︸
left

cs(n) · (cs(n) + 1)︸ ︷︷ ︸
right

cs(n)
= (cs(n) + 1)2cs(n) ≤ 22ds(n)

different extended crossing sequences on inputs of length n, where d > 0 is
a constant (again dependent on M but not on the input).

Proof of Theorem 1.14. Towards a contradiction, assume there was a lan-
guage L ∈ DSPACE(o(loglog(n))) with L /∈ DSPACE(O(1)). Then there is a
1-tape DTM M with L = L(M) and space bound s(n) ∈ o(loglog(n))\O(1).
We will show that M cannot exist.

Since s(n) ∈ o(loglog(n)), there is an n0 ∈ N so that for all n ≥ n0 we have

s(n) <
1

2d
loglog(n) .

Here, d is the constant from Lemma 1.17. With this, we can deduce

22ds(n)
< 22d

1
2d

loglog(n)

=
(

22loglog(n)
) 1

2
= n

1
2 ≤ n

2
. (1.4)

By the fact that s(n) is unbounded, there is an input x′ so that

s0 := SpaceM (x′) > max{ s(n) | 0 ≤ n ≤ n0 }.

Let x be the shortest input with s0 = SpaceM (x). By the definition of s0

we have |x| > n0. Otherwise, SpaceM (x) = s0 > s(|x|) ≥ SpaceM (x), which
is a contradiction.
By Lemma 1.17 and Inequality (1.4), the number of extended crossing se-

quences is smaller than |x|2 . Hence, there are positions i < j < k with

ECS (x, i) = ECS (x, j) = ECS (x, k).

Indeed, if there were at most two positions for each extended crossing
sequence, we would get |x| < 2 · |x|2 = |x|, which is a contradiction.

Now we shorten the input x by cutting out either the sequence from i to j
or the sequence from j to k. Since every small configuration on x appears
in at least one of the two shortened strings, M will use the same space on at
least one of the two strings. This contradicts the choice of x as the shortest
input with space bound s0.

6

The above theorem can be phrased as follows: If M runs in o(loglog(n))
space, then M accepts a regular language.

Theorem 1.18. DSPACE(O(1)) = REG.

The relationship is non-trivial as a space-bounded TM may visit an input
symbol arbitrarily often whereas a finite automaton will see it only once.
We conclude the section with an example that complements Theorem 1.14:
Starting from DSPACE(loglog(n)), we obtain non-regular languages.

Example 1.19. Consider the language

L := { bin(0)# bin(1)# · · ·# bin(n) |n ∈ N }.

It can be shown that L is not regular but in DSPACE(loglog(n)). With the
Theorems 1.14 and 1.18, we conclude that we cannot do better: L does not
lie in DSPACE(o(loglog(n))).

7

Chapter 2

Time and Space Complexity
Classes

Goal: The goal in this chapter is to introduce the basic complexity classes.
They have proven to be useful because:

• they characterize important problems like computing, searching/guess-
ing, playing against an opponent and

• they are robust under reasonable changes to the model: P is the same
class of problems no matter whether we take polynomial-time Tur-
ing machines, polynomial-time while programs, polynomial-time RAM
machines or polynomial-time C++ programs.

2.1 Turing Machines

Goal 2.1. Define different types of Turing Machines: deterministic TMs,
non-deterministic TMs, multi-tape TMs, recognizers and deciders.

Definition 2.2. A deterministic 1-tape Turing machine (TM) is a 9-tuple

M = (Q,Σ,Γ, $, , δ, q0, qacc, qrej),

where:

• Q is a finite set of states with initial state q0, accepting state qacc and
rejecting state qrej ,

• Σ is the finite input alphabet not containing nor $,

• Γ is the tape alphabet with Σ ⊆ Γ. ∈ Γ is the blank symbol, $ ∈ Γ is
the left endmarker,

• δ : Q× Γ −→ Q× Γ× {L,R} is the transition function.

8

We have the following requirements on M :

• The endmarker is never overwritten:

∀p ∈ Q ∃q ∈ Q : δ(p, $) = (q, $, R)

• Once the machine halts, it no longer writes:

∀b ∈ Γ ∃d, d′ : δ(qacc, b) = (qacc, b, d) and δ(qrej , b) = (qrej , b, d
′)

For the semantics of a Turing machine we also define the notion of configu-
rations and a transition relation among configurations:

Definition 2.3. Let M = (Q,Σ,Γ, $, , δ, q0, qacc, qrej) be a Turing machine.

a) A configuration of M is a triple u q v ∈ Γ∗ × Q × Γ∗. The idea behind
this notation is that M ’s head is on the first symbol of v, the machine is
in state q and the tape content is uv.

b) The transition relation →⊆ (Γ∗×Q×Γ∗)× (Γ∗×Q×Γ∗) is defined by:

u.a q b.v → u q′ a.c.v, if δ(q, b) = (q′, c, L)

u.a q b.v → u.a.c q′ v, if δ(q, b) = (q′, c, R).

A configuration u q is understood to be equivalent to u q .

c) The initial configuration of M on input w ∈ Σ∗ is q0 $.w.

d) A configuration of the form u qacc v is called accepting. Similarly, a con-
figuration of the form u qrej v is called rejecting.
Accepting and rejecting configurations are also called halting configura-
tions.

e) The Turing machine M accepts input w, if there is a sequence of config-
urations:

c1 → c2 → · · · → cn,

where c1 is the initial configuration of M on input w and cn is an accept-
ing configuration.

f) The language of M is defined by:

L(M) := {w ∈ Σ∗ |M accepts w }.

Definition 2.4. A language L ⊆ Σ∗ is called (Turing) recognizable or re-
cursively enumerable, if L = L(M) for some Turing machine M .

Remark 2.5. When a TM is started on an input, there are three possible
outcomes:

9

1. M may accept, so it reaches an accepting configuration,

2. M may reject, so it reaches a rejecting configuration or

3. M may loop, which means that M does not halt.

Hence, M may fail to accept by rejecting or by looping. Distinguishing
looping from taking a long time to accept or reject is rather difficult. In
Complexity Theory, we are only interested in machines that halt on all
inputs, i.e., that never loop. Such machines are called deciders. They are
also said to be total.

Definition 2.6. A language L ⊆ Σ∗ is called (Turing) decidable or recursive,
if L = L(M) for a decider M .

Remark 2.7. A multitape Turing machine is defined like an ordinary Turing
machine but with several tapes. Initially, the input is on the first tape and
the remaining tapes are empty. The transition function allows reading,
writing and moving the head on some or even on all tapes simultaneously.
Formally, δ is a function:

δ : Q× Γk −→ Q× Γk × {L,R, S}k

Theorem 2.8. For every multitape Turing machine M there is a 1-tape
Turing machine M ′ with L(M) = L(M ′). Hence, a language is recognizable
if and only if some multitape Turing machine recognizes it.

Remark 2.9. A nondeterministic Turing machine (NTM) may, at any
point in a computation proceed according to several possibilities. Formally,
the transition function takes the form:

δ : Q× Γ −→ P(Q× Γ× {L,R})

The computation of a nondeterministic Turing machine is a tree where the
branches correspond to different possibilities of the machine. If some branch
of the tree leads to an accepting configuration, the machine accepts the input.
The language of a NTM M is defined to be:

L(M) := {w ∈ Σ∗ | some branch of M started on w accepts }

M is called total or a decider if for every input w ∈ Σ∗ all branches halt.

Theorem 2.10. For every (total) NTM M there is a (total) DTM M ′ with
L(M) = L(M ′). Hence, a language is recognizable if and only if some NTM
recognizes it. Moreover, a language is decidable if and only if some NTM
decides it.

Recall 2.11. Recapitulation of the notions: Decidable and Semidecidable:

10

• A property P : Σ∗ −→ B is called decidable, if {x ∈ Σ∗ |P (x) = true }
is a recursive set. This means there is a total TM that accepts the
input strings having property P , and rejects the strings that violate
P .

• A property P is called semidecidable, if {x ∈ Σ∗ |P (x) = true } is a
recursively enumerable set.

In short, the notions recursive and recursively enumerable apply to sets,
while the notions decidable and semidecidable apply to properties. But they
are interchangeable:
P is decidable ⇔ {x ∈ Σ∗ |P (x) = true } is recursive.
A is recursive ⇔ ”x ∈ A” is decidable.
P is semidecidable ⇔ {x ∈ Σ∗ |P (x) = true } is recursively

enumerable.
A is recursively enumerable ⇔ ”x ∈ A” is semidecidable.

2.2 Time Complexity

Goal 2.12. Define the two basic time complexity classes DTIMEk(t(n)) and
NTIMEk(t(n)).

Definition 2.13. Let M be a Turing machine which is potentially nonde-
terministic and which may have several tapes. Let x ∈ Σ∗ be an input of
M .

a) We define the computation time of M on x to be:

TimeM (x) := max

{
number of transitions on p

∣∣∣∣∣ p is a computation

path of M on x

}
If M does not halt on some path, we set TimeM (x) :=∞. Note that for
a deterministic Turing machine, there is precisely one computation path.

b) For n ∈ N, we define the time complexity of M as :

TimeM (n) := max{TimeM (x) | |x| = n }

This measures the worst case behavior of M on inputs of length n.

c) Let t : N→ N be some function. We say that M is t-time-bounded (also
written t(n)-time-bounded), if TimeM (n) ≤ t(n) for all n ∈ N.

Definition 2.14. Let t : N→ N be a function. Then we set:

DTIMEk(t(n)) :=

{
L(M)

∣∣∣∣∣ M is a k-tape DTM that is a decider

and t(n)-time-bounded

}

NTIMEk(t(n)) :=

{
L(M)

∣∣∣∣∣ M is a k-tape NTM that is a decider

and t(n)-time-bounded

}

11

We also write DTIME(t(n)) and NTIME(t(n)) if we assume the Turing ma-
chine to have one tape.

Note 2.15. Sublinear time is not meaningful for Turing machines that do
not have random access to the input. The problem is that the machine
cannot read the whole input on the tape:
Let M be a deterministic Turing machine and assume there is an n ∈ N so
that M reads at most n−1 symbols of the input x, for every x with |x| = n.
Then there are words a1, . . . , am with |ai| < n for 1 ≤ i ≤ m so that:

L(M) =
m⋃
i=1

ai.Σ
∗.

2.3 Space Complexity

Goal 2.16. Define the two basic space complexity classes DSPACEk(s(n))
and NSPACEk(s(n)).

Remark 2.17. Different from the case of time complexity, it is interesting
to study computations that run in sublinear space. Therefore, we will as-
sume that a Turing machine has an extra input tape. This tape is read only
and not counted towards the consumption of space. An illustration of such
a machine is given in Figure 2.1.
Technically, read-only amounts to requiring that wherever the Turing ma-
chine reads a symbol, it has to write the same symbol.

Definition 2.18. Let M be a Turing machine which is potentially nonde-
terministic, which has an additional input tape and which may have several
work tapes.

a) Let x ∈ Σ∗ be an input of M and let c be a configuration of M on x.
Then the space consumption of c is defined by:

Space(c) := max{ |w| |w is a work tape content of c }.

b) The space consumption of x is defined to be:

SpaceM (x) := max

{
Space(c)

∣∣∣∣∣ c is a configuration that occurs

in a computation of M on x

}
If the space grows unboundedly, we set SpaceM (x) :=∞.

c) For n ∈ N, we define the space complexity of M as:

SpaceM (n) := max{SpaceM (x) | |x| = n }.

Like for the time complexity, this measures the worst case space con-
sumption of M on inputs of length n.

12

Input tape

Work tapes ...

Optional
output tape

Finite control
states

Figure 2.1: A Turing machine with additional input tape which is read only,
several work tapes and an optional output tape. Those machines are used to
define the notion of space complexity in Definition 2.18. The red dots in the
tapes represent the positions of the machine’s heads. These are controlled
by a finite number of states.

d) Let s : N→ N be some function. We say that M is s-space-bounded (also
written s(n)-space-bounded), if SpaceM (n) ≤ s(n) for all n ∈ N.

Definition 2.19. Let s : N→ N be a function. Then we define:

DSPACEk(s(n)) :=

L(M)

∣∣∣∣∣∣∣
M is a k-tape DTM with extra input

tape that is a decider

and s(n)-space-bounded

NSPACEk(t(n)) :=

L(M)

∣∣∣∣∣∣∣
M is a k-tape NTM with extra input

tape that is a decider

and s(n)-space-bounded

Example 2.20. Consider the following language:

L = {x ∈ {a, b}∗ | the number of as in x equals the number of bs in x }.

Then L is in DSPACE(O(log n)).

13

Proof. We give a construction of a Turing machine that is O(log n)-space-
bounded and that decides L:
We read the input from left to right. On the work tape, we keep a binary
counter. There are two cases:

1. If we read a, we increment (+1) the binary counter.

2. If we read b, we decrement (−1) the binary counter.

We will accept the input if the counter value reached in the end is 0. This
clearly decides the language L. For the space consumption, note the follow-
ing:
In every step, we store a number ≤ |x| in binary on the work tape. This
needs log |x| bits. The construction also requires us to increment and decre-
ment in binary. But this does not cause any space overhead. Hence, the
constructed Turing machine needs at most O(log n) space.

2.4 Common Complexity Classes

Definition 2.21. We now define the common robust complexity classes:

L :=DSPACE(O(log n)) (aka LOGSPACE)

NL :=NSPACE(O(log n)) (aka NLOGSPACE)

P :=
⋃
k∈N

DTIME(O(nk)) (aka PTIME)

NP :=
⋃
k∈N

NTIME(O(nk))

PSPACE :=
⋃
k∈N

DSPACE(O(nk))

NPSPACE :=
⋃
k∈N

NSPACE(O(nk))

EXP :=
⋃
k∈N

DTIME
(

2O(nk)
)

(aka EXPTIME)

NEXP :=
⋃
k∈N

NTIME
(

2O(nk)
)

(aka NEXPTIME)

EXPSPACE :=
⋃
k∈N

DSPACE
(

2O(nk)
)

NEXPSPACE :=
⋃
k∈N

NSPACE
(

2O(nk)
)
.

We will also consider complement complexity classes:

14

Definition 2.22. Let C ⊆ P({0, 1}∗) be a complexity class. Then we define
the complement complexity class of C to be:

co-C := {L ⊆ {0, 1}∗ |L ∈ C where L = {0, 1}∗ \ L }.

Note that co-C is not the complement of C, but it contains the complements
of the sets in C. Intuitively, a problem in co-C contains the ”no”-instances
of a problem in C.

Example 2.23. Consider the following problem:

UNSAT := {ϕ a formula in CNF |ϕ is not satisfiable }

Then UNSAT = SAT and since SAT is a problem in NP, we get that UNSAT
is in co-NP.

Remark 2.24. Goals of Complexity Theory are:

• to understand the aforementioned common complexity classes in more
detail. What are the problems they capture ? What do their algo-
rithms look like ?

• to understand the relationship among the classes.

The next theorem is a simple observation that focuses on the second goal:

Theorem 2.25. If C is a deterministic time or space complexity class, then:
C = co-C. In particular, we have: L = co-L, P = co-P and PSPACE =
co-PSPACE.

The proof is left as an exercise.

Definition 2.26. A complexity class C is said to be closed under comple-
ment, if for all L ∈ C we have L ∈ C.

Remark 2.27. As a direct consequence of the definition, we get the follow-
ing equivalences:

C = co-C ⇔ C is closed under complement

⇔ co-C is closed under complement

Further basic inclusions that focus on the second goal of Remark 2.24 are
given in the following lemma:

Lemma 2.28. Let t, s : N → N be two functions. Then these inclusions
hold:

DTIME(t(n)) ⊆ NTIME(t(n))

DSPACE(s(n)) ⊆ NSPACE(s(n))

DTIME(t(n)) ⊆ DSPACE(t(n))

NTIME(t(n)) ⊆ NSPACE(t(n)).

15

Proof. Since any deterministic Turing machine is also nondeterministic one,
the first two inclusions are clear. To prove the latter two inclusions, note
that a machine can only scan/write one cell per step. So the tape usage is
bounded by the time.

16

Chapter 3

Alphabet reduction, Tape
reduction, Compression and
Speed-up

Goal: We show that the definition of the basic complexity classes is robust
in the sense that it does not depend on the details of the Turing machine
definition. These details are the tape alphabet, the number of tapes and
constant factors. As a consequence, we do not have to be too accurate
about these details. This will simplify proofs a lot.
Technically, we show that a one tape Turing machine with tape alphabet
{$, , 0, 1} can simulate the other features efficiently.

3.1 Alphabet Reduction

We will use the following notion of simulation:

Definition 3.1. Let M and M ′ be two Turing machines over the input
alphabet Σ. Then M ′ is said to simulate M , if ∀x ∈ Σ∗ we have: x ∈ L(M)
if and only if x ∈ L(M ′).

Lemma 3.2 (Alphabet Reduction:). Let M = (Q,Σ,Γ, $, , δ, q0, qacc, qrej)
be a decider that is t(n)-time bounded. Then there is a decider

M ′ = (Q, {0, 1}, {$, , 0, 1}, $, , δ, q0, qacc, qrej)

that is C · log |Γ| · t(n)-time bounded and for all x ∈ Σ∗ we have:

x ∈ L(M) if and only if bin(x) ∈ L(M ′).

Here, bin(−) is a fixed binary encoding for the letters in Γ.
Moreover we have that M ′ is deterministic if and only if M is deterministic
and that M ′ has k tapes if and only if M has k tapes.

17

Proof. The Turing machine M ′ will mimic the operations of M on the binary
encoding of the alphabet. To this end, it will:

• use log |Γ| steps to read from each tape the log |Γ| bits encoding a
symbol of Γ.

• use its local state to store symbols it has read.

• use M ’s transition function/relation to compute the symbols that M
writes and the state that M enters.

• store this information in the (control) state of M ′.

• use log |Γ| steps to write the encoding into the tapes.

The number of states of M ′ is bounded by the number C · |Q| · |Γ|k log |Γ|.
We get the factor |Q| since we store the states of M , the factor |Γ|k since
M uses k tapes and M ′ stores the symbols it has read and the factor log |Γ|
for counting from 1 up to log |Γ|.

3.2 Tape Reduction

For the tape reduction, we first show a general construction that we then
analyze with respect to its time and space usage.

Theorem 3.3 (Tape Reduction). For every k-tape Turing machine M ,
there is a one tape Turing machine M ′ that simulates M . Moreover, M ′

is deterministic if and only if M is deterministic and if M uses an addi-
tional input tape, M ′ will also use an additional input tape.

Proof. M ′ simulates one step of M by a sequence of steps. The idea is to
store k tapes into one single tape. This tape will be understood as divided
into 2k tracks. Technically, the tape alphabet is:

Γ′ := (Γ× {∗,−})k ∪ Σ ∪ {$, }

The (2` − 1)-st component of a letter in Γ′ stores the content of the `-th
tape. The (2`)-th component, which is in {∗,−}, marks the position of the
head on the `-th tape by ∗. There is precisely one ∗ on the 2`-th track, the
remaining symbols are −. For an illustration of the construction, consider
Figure 3.1.

A step of M is simulated by M ′ as follows: M ′ always starts on the left
endmarker $. It moves to the right until it finds the first pure blank symbol
. Note that is neither a vector containing nor a vector containing −.

On the way, M ′ stores the k symbols where the heads of M point to. Once
M ′ has collected all k symbols, it can simulate a transition of M . It moves
back to the start and, on its way, makes the changes to the tape that M
would make. When arriving at $, M ′ changes the control state.

18

. . . 0 0 1 1 0 . . .

. . . 0 1 0 . . .

...
...

. . . 0 1 1 . . .

. . . 0 0 1 1 0 . . .

. . . − − ∗ − − . . .

. . . 0 1 0 . . .

. . . − − − ∗ − . . .

...
...

. . . 0 1 1 . . .

. . . − ∗ − − − . . .

Figure 3.1: The different tapes of the Turing machine are combined in one
tape with different tracks. The 2` − 1-st track keeps the content of tape `,
the 2`-th track stores the position of the tape’s head. One symbol in the
new tape alphabet is represented by a column in the big tape.

Definition 3.4. Let t, s : N→ N be two functions. Define:

DTIMESPACEk(t, s) :=

L(M)

∣∣∣∣∣
M is a k -tape DTM with extra input

tape that is a decider and that is

t(n)-time-bounded and s(n)-space-bounded

NTIMESPACEk(t, s) :=

L(M)

∣∣∣∣∣
M is a k -tape NTM with extra input

tape that is a decider and that is

t(n)-time-bounded and s(n)-space-bounded

We again drop the index if there is only one work tape.

Lemma 3.5. For all functions t, s : N→ N, we have:

DTIMESPACEk(t, s) ⊆ DTIMESPACE(O(t · s), s) and

NTIMESPACEk(t, s) ⊆ NTIMESPACE(O(t · s), s)

Proof. Consider L(M) ∈ DTIMESPACEk(t, s). The Turing machine M ′ from
Theorem 3.3 simulates each step of M by O(s(n)) steps. Since M makes
at most t(n) steps, M ′ makes at most O(t(n) · s(n)) steps. Hence, M ′ is
O(t(n) · s(n))-time-bounded. Note that M ′ does not use more space than
M does. This completes the first inclusion.
For the second inclusion, we may use the same arguments again since The-
orem 3.3 also works in the nondeterministic case.

Corollary 3.6. For all function t : N→ N, we have:

DTIMEk(t) ⊆ DTIME(O(t2)) and

NTIMEk(t) ⊆ NTIME(O(t2))

19

Proof. Let M be a t(n)-time bounded Turing machine. We observed in
Lemma 2.28, that in t(n)-steps, M can visit only t(n)-cells. Thus, we can
deduce: SpaceM (n) ≤ t(n) and L(M) ∈ DTIMESPACEk(t, t). Using Lemma
3.5 we get that

DTIMESPACEk(t, t) ⊆ DTIMESPACE(O(t2), t) ⊆ DTIME(O(t2)).

Hence, L(M) ∈ DTIME(O(t2)).

Remark 3.7 (Oblivious Turing-Machines:). The construction in Theorem
3.3 can be modified to ensure that M ′ is oblivious: This means that the
head movement of M does not depend on the input, but only on the input
length. Formally, for every x ∈ Σ∗ and i ∈ N, the location of each of M ’s
heads at the i-th step of execution on input x is only a function in |x| and i.
The fact that every Turing machine can be simulated by an oblivious ma-
chine will simplify proofs.

3.3 Compression and linear Speed-up

The following tape compression result shows that we do not need to care
about constant factors: Every Turing machine M can be simulated by a
machine M ′ that use only a constant fraction of the space used by M .

Lemma 3.8 (Tape Compression). For all 0 < ε ≤ 1 and for all functions
s : N→ N, we have:

DSPACE(s(n)) ⊆ DSPACE(dε · s(n)e) and

NSPACE(s(n)) ⊆ NSPACE(dε · s(n)e)

The statement can be understood as being the converse of the alphabet
reduction, see Lemma 3.2. Rather than distributing one symbol to several
cells, we enlarge the tape alphabet to store several symbols in one symbol.
The idea can be compared to having a 64 bit architecture that is able to
store more information per cell than an 8 bit architecture.

Proof. let c :=
⌈

1
ε

⌉
and let M be a single-tape deterministic Turing machine.

We simulate M by a another DTM M ′ with tape alphabet:

Γ′ := Γc ∪ Σ ∪ {$, }.

A block of c cells is encoded into one cell of M ′. So instead of s(n) cells, M ′

only uses ⌈
s(n)

c

⌉
≤ dε · s(n)e

cells. For the inequality, note that c ≥ 1
ε ≥ 1⇒ s

c ≤ ε · s⇒
⌈
s
c

⌉
≤ dε · se.

20

M ′ can simulate M step by step. To this end, M ′ stores the position of M ’s
head inside a block of c cells in its control states. The head of M ′ always
points onto the block where M ’s head is currently in.

• If M moves its head and does not leave a block, M ′ does not move the
head but only changes the symbol and the control state.

• If M moves its head and leaves a block, M ′ changes the symbol, moves
his head and adjusts the control state.

A similar trick also works for the time consumption of a Turing machine.
This is called Linear Speed-Up:

Lemma 3.9 (Linear Speed-Up). For all k ≥ 2, all t : N → N and all
0 < ε ≤ 1, we have:

DTIMEk(t(n)) ⊆ DTIMEk(n+ ε(n+ t(n))) and

NTIMEk(t(n)) ⊆ NTIMEk(n+ ε(n+ t(n)))

As before, the idea is to store c ∈ N cells into one new cells. Formally, we
will copy the input and compress it. This costs n + εn steps since we read
from left to right and go back to the beginning. To get the speed-up, M ′

now has to simulate c-steps of M with just a single step.

• If M stays within the c cells of one block, this is no problem: we can
precompute the outcome of the c-steps.

• This gets harder if M moves back and forth between two cells that
belong the neighboring blocks. In this case, M ′ stores three blocks in
its finite control, the current block B, the block to the left of B, and
the block to the right of B. With those three blocks, M ′ can simulate
any c steps of M in its finite control. After this simulation, M ′ updates
the tape content and if M has left block B, then M ′ has to update
the blocks in its finite control.

21

Chapter 4

Space vs. Time and
Non-determinism vs.
Determinism

Goal: We want to prove more relations between space and time classes
like in Lemma 2.28. In particular, we are interested in the inclusions:
NTIME(t(n) ⊆ DSPACE(t(n)) and NSPACE(s(n) ⊆ DTIME(2O(s(n))). Be-
fore proving this, we need to define the notion of a constructible function.

4.1 Constructible Functions and Configuration
Graphs

Goal 4.1. We will first define a notion of constructible functions that can
be computed in a time/space economic way. After this, we will treat con-
figuration graphs of Turing machines.

Definition 4.2. Let s, t : N→ N be two functions with t(n) ≥ n.

a) The function t(n) is called time constructible, if there is an O(t(n))-
time-bounded deterministic Turing machine that computes the function
1n 7→ bin(t(n)).
Computing the function means that the result value is supposed to appear
on a designated output tape, when the machine enters its accepting state.
This output tape is a write-only tape.

b) The function s(n) is called space constructible, if there is an O(s(n))-
space-bounded DTM that computes the function 1n 7→ bin(s(n)).

Example 4.3. Most of the elementary functions are time and space con-
structible. For example: n, n log n, n2 and 2n.

Definition 4.4. Let M be a Turing machine.

22

a) The set of all configurations of M is denoted by Conf(M). The transition
relation among configurations is denoted by →M .

b) The configuration graph of M is a graph, defined by

CG(M) := (Conf(M),→M).

Remark 4.5. The configuration graph is typically infinite. However, to find
out whether M accepts an input x ∈ Σ∗, all we have to do is find out whether
we can reach an accepting configuration from the initial configuration c0(x).
The task is undecidable in general, but it becomes feasible when the Turing
machine is time or space bounded.

Lemma 4.6. Let s : N → N be a function so that s(n) ≥ log n and let
M be an s(n)-space-bounded Turing machine. Then there is a constant c,
depending only on M , so that M on input x ∈ Σ∗ can reach at most cs(|x|)

configurations from c0(x).

Proof. Let M = (Q,Σ,Γ, $, , δ, q0, qacc, qrej) be a k-tape Turing machine. A
configuration of M is described by the current state, the content of the work
tapes, the position of the heads on the work tapes and the position of the
head on the input tape. Therefore, the number of configurations is bounded
by:

|Q| ·
(
|Γ|s(|x|)

)k
· s(|x|)k · (|x|+ 2).

Since s(n) ≥ log n, there is a c, depending on |Q| , |Γ| and k, so that

|Q| ·
(
|Γ|s(|x|)

)k
· s(|x|)k · (|x|+ 2) ≤ cs(|x|).

Note that we used the assumption s(n) ≥ log n to bound |x|+ 2.

Since we require deciders to always halt, an immediate consequence of this
estimation is given in the following lemma.

Lemma 4.7. Let s : N → N be a function so that s(n) ≥ log n. Then we
have:

DSPACE(s(n)) ⊆ DTIME(2O(s(n))) and

NSPACE(s(n)) ⊆ NTIME(2O(s(n))).

Proof. Let L ∈ NSPACE(s(n)). Then L = L(M) for an NTM M that is
a decider and s(n)-space bounded. Assume, M would repeat a configura-
tion. Then, in a computation path, there is a loop. Since the computation
tree contains all possible computation paths, there are also paths which go
through the loop an unbounded number of times. So we get an infinite path.
But this contradicts the fact that M is a decider. Hence, the running time
of M is bounded by the number of reachable configurations. By Lemma 4.6,
this is: cs(n) ∈ 2O(s(n)).

23

Space constructible functions are particularly interesting because they can
be used to enforce termination. Intuitively, under the assumption of space
constructibility, the Turing machine knows the space bound it is operating
under.

Definition 4.8. Let s : N → N be a space constructible function so that
s(n) ≥ log n and let L ⊆ Σ∗. We say that a non-deterministic Turing
machine M is an s(n)-weak recognizer of L, if

• L = L(M) and

• for every w ∈ L there is an accepting path c0(x) → · · · → cm with
Space(c) ≤ s(n) for all configurations c on the path.

Proposition 4.9 (Self-Timing Technique). Let s : N → N be a space con-
structible function so that s(n) ≥ log n and let L ⊆ Σ∗. If there is an
s(n)-weak recognizer M of L, then there is also a non-deterministic Turing
machine M ′ that decides L is space O(s(n)).

Proof. Since M is an s(n)-weak recognizer, every x ∈ L has an accepting
path c0(x)→ · · · → cm with Space(c) ≤ s(n) for all configurations c on the
path. Now assume there are duplicate configurations on the path: there are
i < j so that ci = cj . Then the path is of the form:

c0(x)→ · · · → ci → · · · → cj → · · · → cm.

But then we can cut out the loop and get the path:

c0(x)→ · · · → ci → cj+1 → · · · → cm,

which is still accepting and space-bounded by s(n). If we eliminate all
duplicate configurations, the result is an accepting path of length bounded
by cs(n), since there are at most cs(n) configurations under the space bound
s(n), see Lemma 4.6.

Hence, we know that M also has a short accepting path. Now construct
M ′ to simulate M for cs(n) steps. If M accepts/rejects before this bound is
reached, M ′ will accept/reject. If the bound is reached, M ′ will reject.
To enforce termination after the time bound, the idea is to add to M a
counter that keeps track of how many steps have been taken so far. The
space usage for this is O(log cs(n)) = O(s(n)). If a computation of M ′

reaches a length longer than cs(n), the machine rejects. This turns M ′ into
a decider.

Besides checking the length of the computation, M ′ will make sure that the
computation obeys the space bound. To this end, it initially marks s(n) cells
on the work tape, which can be done because s(n) is space-constructible.

24

If the computation reaches a configuration that leaves this s(n) cells, M ′

rejects.

Altogether, M ′ will still accept L as it will find all short and s(n)-space
bounded accepting computations of M . The space used by M ′ on input
x ∈ Σ∗ is bounded by:

s(n)︸︷︷︸
configurations of M

+ O(s(n))︸ ︷︷ ︸
step counter

= O(s(n)).

Remark 4.10. A consequence of the self-timing technique in Proposition
4.9 is that we could have defined the complexity classes in a more liberal
way: via weak recognizers.

4.2 Stronger Results

Goal 4.11. We want to improve the inclusions NSPACE(s(n)) ⊆
NTIME(2O(s(n))) and NTIME(t(n)) ⊆ NSPACE(t(n)) from Lemma 4.7 and
Lemma 2.28 to:

NSPACE(s(n)) ⊆ DTIME(2O(s(n))) and

NTIME(t(n)) ⊆ DSPACE(t(n)).

We directly start with the second inclusion. The result makes use of a
space-economic way to store a stack for a depth-first search in a tree. An
illustration of the idea used in the proof can be seen in Figure 4.1.

Theorem 4.12. Let t : N→ N be a function, then we have:

NTIME(t(n)) ⊆ DSPACE(t(n)).

Proof. Let M be a non-deterministic Turing machine that is t(n)-time-
bounded. To discover an accepting configuration of M deterministically,
we do a depth-first search on the computation tree of M . We construct the
tree on-the-fly and accept if an accepting configuration is encountered.
The depth of the tree is t(n) and each configuration needs t(n) space.
Hence, a simple solution that stores a stack of configurations needs O(t(n)2)
space. But there is a more efficient way:

There exists a k that only depends on M such that every non-deterministic
choice in the computation tree of M is at most k-ary. Since we only have
to reconstruct the path from the initial configuration to the configuration
currently visited, we only need to store the choices we made on this path.

25

Computation tree:

c0

c1

c2

c3

Stack that stores
the configura-
tions:

c3

c2

c1

c0

Stack that stores
the choice made:

0

2

1

0

Figure 4.1: To perform a depth-first search in the computation tree of the
Turing machine, we need to store a stack. Instead of saving a configuration in
each stack frame, we only store the choices that we made on a path through
the tree. This is enough to reconstruct the path and it is a significant saving
of space.

There are at most k choices, so that in each stack frame we only need con-
stant space. Hence, we can reconstruct the current configuration in O(t(n))
space: Start with the initial configuration c0(x) and then simulate M using
the stack to resolve choices.

Theorem 4.13. Let s : N→ N be a function so that s(n) ≥ log n. Then we
have the following inclusion:

NSPACE(s(n)) ⊆ DTIME(2O(s(n))).

Proof. Let us first assume that s(n) is space constructible. We use this
assumption to determine the set of all configurations that use space at most
s(n). To enumerate the configurations, we encode them as strings:

• The states are given numbers and we write them down in unary.

• To separate the components of a configuration we use a fresh symbol
(i.e. #).

The strings encoding each configuration have length at most d · s(n), for
some constant d.

For the actual enumeration, we first mark d · s(n) cells. This can be
done since s(n) is space constructible. We use these cells as reference to
enumerate all strings of length d · s(n) in lexicographic order. For each of

26

the enumerated strings, we check whether it is a configuration. Altogether,
the enumeration can be done in 2O(s(n)) time.

On the resulting set of configurations, we do a reachability check. We
may do a least fixed point and mark the reachable configurations (An
alternative would be to enumerate the edges and to do a graph traversal).
To this end, we repeatedly scan all configurations and mark them if they
are reachable via the transition function δ. One scan needs 2O(s(n)) time
and we have to do at most 2O(s(n)) scans. Hence, the reachability check
needs 2O(s(n)) · 2O(s(n)) = 2O(s(n)) time.

To get rid of the assumption of space constructibility, we do the above proce-
dure for a fixed space bound s = 0, 1, 2, If we encounter a configuration
that needs more space than s, we set s := s + 1. We eventually hit s(n)
in which case no configuration needs more space. The time requirement is
then:

s(n)∑
s=0

ds =
ds(n)+1 − 1

d− 1
∈ 2O(s(n)).

27

Chapter 5

Savitch’s Theorem

Goal: The most important question in Theoretical Computer Science is
the question whether P = NP. A similar question arises for the classes
DPSPACE and NPSPACE. The relation between them was solved rather
early by Walter Savitch. In this chapter, we will prove Savitch’s Theorem:

Theorem 5.1 (Savitch, 1970). Let s : N→ N be a function so that s(n) ≥
log n. Then we have:

NSPACE(s(n)) ⊆ DSPACE(s(n)2).

In particular, NPSPACE = DPSPACE and typically referred to as PSPACE.

For proving the theorem, we generalize acceptance of a Turing machine to
the problem PATH in a directed graph, the configuration graph. A proper
definition is given below:

Definition 5.2. The following problem is called PATH:
Given: Configurations c1, c2, and a time bound t.
Question: Can we get from c1 to c2 in at most t steps.

Our goal is to solve PATH deterministically in s(n)2 space. Since the config-
uration graph has size 2O(s(n)), we want to solve reachability in a directed
graph with n nodes deterministically in (log n)2 space.
The main idea to achieve this space bound is to search for an intermediate
configuration c and recursively check

• whether c1 can get to c in t
2 steps and

• whether c can get to c2 in t
2 steps.

If we reuse the space for each of the checks, we obtain a significant saving
of space. Figure 5.1 provides an illustration of the procedure.

28

c1

c0

...

c

...

cm

c2

t
2

t
2

t

Figure 5.1: In order to check whether c1 can reach c2 in at most t steps, we
look for an intermediate configuration c so that c1 can reach c in at most t

2
steps and c can reach c2 in at most t

2 steps. This is applied recursively.

The algorithm needs space for storing a stack. Each stack frame has to hold
c1, c2, the current intermediate configuration c and the counter t, stored in
binary. Since t ∈ 2O(s(n)), by Lemma 4.7, such a frame can be stored in
O(s(n)). The depth of the recursion is log t. Hence, the stack needs the
following space:

O(s(n))︸ ︷︷ ︸
stack height

· O(s(n))︸ ︷︷ ︸
stack frame

= O(s(n)2)

Proof. We may assume that s(n) is space constructible. Otherwise we
can apply the enumeration trick from Theorem 4.13. Since the given
NTM M is s(n)-space bounded, we also know that it is cs(n)-time
bounded by Lemma 4.7. In Theorem 4.13, we also discussed how config-
urations of M can be encoded as strings of length d·s(n) over an alphabet Γ.

Let α, β ∈ Γd·s(n). We write

α
≤k−→ β

if α and β represent configurations of M and α can go to β in at most k
steps without exceeding the space bound s(n). The deterministic algorithm
will now check if

cinit
≤k−→ cacc,

where cinit and cacc denote the initial and the accepting configurations of
M . We can assume cacc to be unique: by deleting the tape content, moving
left, and only then accept.

The function to check α
≤k−→ β is described by the deterministic algorithm,

Algorithm 1. It is clear that we have:

sav(α, β, k) = true iff α
≤k−→ β

29

Algorithm 1 sav(α, β, k)

1: if k = 0 then
2: return (α = β)
3: end if
4: if k = 1 then
5: return (α→ β)
6: end if
7: if k > 1 then
8: for all γ ∈ Γd·s(n) enumerated in lexicographical order do
9: if γ is a configuration then

10: bool aleft := sav(α, γ, dk2e)
11: bool aright := sav(γ, β, bk2c)
12: if aleft ∧ aright then
13: return true
14: end if
15: end if
16: end for
17: return false
18: end if

For the space requirement, consider the following: the depth of the recursion
is log(cs(n)) = O(s(n)). Each stack frame contains α, β, γ and the value k
stored in binary. This needs 3·d·s(n)+log(cs(n)) = O(s(n)) space. Together,
we obtain the space bound: O(s(n)2). We can get rid of the constant using
tape compression, see Lemma 3.8.

30

Chapter 6

Space and Time Hierarchies

Goal: In this chapter, we show that higher space and time bounds lead to
more powerful Turing machines. We will use Universal Turing machines to
separate space and time classes by strict inclusions.

Recall 6.1 (The proof technique diagonalization). Show the existence of a
language L with certain properties, i.e. space requirements, that cannot be
decided by a Turing machine taken from a given set {M1,M2, . . .}. To this
end, start with some language L1, decided by M1 and having the property.
For i > 1, change the language Li−1 to Li so that Li still has the property
but none of M1, . . . ,Mi−1 decides Li. The limit of this construction is the
language L, we are looking for.

For the following Lemma, we provide two different proofs. The first one
makes use of an uncountable set, the second proof uses the diagonalization
technique described above.

Lemma 6.2. There are undecidable languages.

First proof. The set of languages over {0, 1} is P({0, 1}∗) and therefore un-
countable. The set of Turing machines is countable. Hence, there are lan-
guages which cannot be decided by Turing machines.

Second proof. Let x1, x2, . . . be an enumeration of all binary strings and
M1,M2, . . . an enumeration of all Turing machines over {0, 1}. Define the
language:

L = {xi ∈ {0, 1}∗ |Mi(xi) = 0 }

An illustration of the language L can be found in Figure 6.1.

Now assume that there exists a Turing machine M that decides L. Then
there is an i ∈ N such that M = Mi. Now consider the string xi ∈ {0, 1}.
then there are two cases:

31

M1

M2

M3

M4

...

x1 x2 x3 x4 . . .

1

0

0

1

. . .

Figure 6.1: The strings x2 and x3 are not accepted by the Turing machines
M2, respectively M3. Hence, these two elements are in the language L.
Since x1 and x4 are accepted by M1, respectively M4, these two strings are
not in L.

• If M(xi) = 1 then Mi(xi) = 1. So, xi /∈ L but M(xi) = 1, which is a
contradiction.

• If M(xi) = 0, then Mi(xi) = 0. So, xi ∈ L, but M(xi) = 0, which is
again a contradiction.

Hence, L cannot be decided by a Turing machine. This finishes the proof.

6.1 Universal Turing Machine

Goal 6.3. To make use of diagonalization, we have to encode and simulate
Turing machines. For the encoding, we will use a Gödel numbering of Turing
machines, for the simulation we will make use of a universal Turing machine.
The size of the encoding that we use will be a constant since we fix our Turing
machine. So there is no need to be space efficient and indeed, we will see
that we encode TMs unary. In contrast to this, the universal Turing machine
has to be efficient. It has to obey space and time bounds.

Let us start with the encoding of deterministic Turing machines into {0, 1}∗.

Definition 6.4. Let M = (Q,Σ,Γ, $, , δ, qinit, qacc, qrej) be a k-tape deter-
ministic Turing machine. Moreover, let

Q = {qinit︸︷︷︸
=q1

, qacc︸︷︷︸
=q2

, qrej︸︷︷︸
=q3

, . . . , q|Q|}

32

be the set of states and

Γ = { σ1︸︷︷︸
=γ1

, . . . , σ|Σ|︸︷︷︸
=γ|Σ|

, $︸︷︷︸
=γ|Σ|+1

, ︸︷︷︸
=γ|Σ|+2

, . . . , γ|Γ|}

be the tape alphabet. We encode a transition

δ(qi, γi1 , . . . , γik) = (qj , γj1 , . . . , γjk , d1, . . . , dk),

where a direction di is given by

di =

−1 (left)

0 (stay)

1 (right)

as the following string in {0, 1}∗:

0i︸︷︷︸
state

1 0i1︸︷︷︸
letter on
tape 1

1 . . . 1 0ik︸︷︷︸
letter on
tape k

1 . . .

. . . 0j︸︷︷︸
new
state

1 0j1︸︷︷︸
new letter

tape 1

1 . . . 1 0jk︸︷︷︸
new letter

tape k

1 02+d1︸ ︷︷ ︸
direction
tape 1

1 02+dk︸ ︷︷ ︸
direction
tape k

If we concatenate all these strings, separated by 11, we get the encoding of
the transition function δ, denoted by enc(δ).
The encoding of M is then defined to be the string:

enc(M) = 0k︸︷︷︸
tapes

11 0|Q|︸︷︷︸
states

11 0|Γ|︸︷︷︸
tape

alphabet

11 0|Σ|︸︷︷︸
first |Σ|

elements of Γ
are letters from

the input alphabet

11 enc(δ)︸ ︷︷ ︸
transitions

If x = x1 . . . xn is an input string from Σ∗ then we denote by 〈M,x〉 the
string:

〈M,x〉 = enc(M) 1111 0x1 1 0x2 1 . . . 1 0xn

Theorem 6.5. There is a 1-tape deterministic Turing machine U so that U
on input 〈e, x〉 computes E(x), where E is a deterministic Turing machine,
e = enc(E) and x ∈ Σ∗E.
If E uses s(n) space, then U uses O(|e| · s(n)) space for the simulation and
for each step of E, U does O(|e|2 · s(n)) steps.

The machine U from Theorem 6.5 is called universal for the class of de-
terministic Turing machines. U can also be modified to a nondeterministic
machine that is universal for the class of NTMs. As an intuition, universal
machines can be understood as assembly interpreters written in assembly.

33

︸ ︷︷ ︸
|QE | cells

Encoding of qj Encoding of E’s work tapes

Figure 6.2: U ’s tape is separated into two parts. First, the encoding of E’s
current state is stored. This needs |QE | cells. The remaining tape is used
to store the encoding of E’s work tapes.

Proof idea. Let E have k tapes. The machine U will store them on one tape
using the tape reduction trick from Theorem 3.3. Hence, the letters of U
will have 2k tracks.
But there is a problem since there is no bound on the size of the work
alphabet ΓE . Nevertheless, we have to fix ΓU . The solution to this is to
store a symbol

γ1

m1
...
γk
mk

 ∈ (ΓE × {∗,−})k

as a string of length |ΓE | of the form:
f(γ1)
g(m1)

...
f(γk)
g(mk)

 ∈ ({0, 1}2k)|ΓE |,

where f(γj) := 0j 1|ΓE |−j , g(∗) := 1|ΓE | and g(−) := 0|ΓE |.

The current state qj of E is stored as the string 0j 1|QE |−j of length |QE |.
We store this string at the beginning of U ’s work tape, followed by the
above encoding of the tapes of E. An illustration can be found in Figure
6.2

The simulation of one transition of E works as follows: U goes through the
encoding of E’s transition function to find the first entry, where the state
matches the current state of E. To this end, U will compare the 0s after
the 11 for enc(δ) symbol by symbol to see whether they match the current
state of E, stored at the beginning of the work tape.
If the state does not match, U goes to the next entry of the transition
function. If a transition for the state is found, U will go over the work tape

34

to check whether the current symbols match what the transition expects.
If the symbols do not match, U will move to the next transition. If the
symbols do match, U moves back over the tape and performs the required
changes.

If E obeys the space bound s(n) then the tape of U uses O(|e| · s(n)) space
since a symbol of ΓkE is stored as a string of length |ΓE | ≤ |e|.
To simulate one step of E, U has to find the right transition. To this end, it
will scan, for any transition of E, the whole tape 2 times: first, it compares
the symbols to find the transition. If U did not find the matching transition,
it will move back. If the right transition is found, it has to move back to
perform the changes. Hence, the time requirement to simulate a single step
of E is

O(|e| · 2 · |e| s(n)) = O(|e|2 s(n)).

6.2 Deterministic Space Hierarchy

Goal 6.6. We want to make use of the universal Turing machine to separate
deterministic space classes. The corresponding result will be called deter-
ministic space hierarchy and as a consequence, we will get our first strict
inclusion involving the robust complexity classes: L (PSPACE.

Theorem 6.7 (Deterministic Space Hierarchy). Let s2(n) ≥ log n be space
constructible and let s1 = o(s2). Then we have:

DSPACE(s1) (DSPACE(s2).

And in particular: L (PSPACE.

Proof. Let U be the universal Turing machine from Theorem 6.5. We
construct a deterministic machine M that is s2-space-bounded and so that
L(M) 6∈ DPSPACE(s1). This means that L(M) cannot be decided by a
s1-space-bounded DTM.

As an input, M gets a string y ∈ {0, 1}∗, interpreted as y = 〈e, x〉, where
e = enc(E) and E is a Turing machine. Then M outputs the following:

M(〈e, x〉) =

{
1, if E does not accept y in space s2(|y|)
0

To this end, M works the following way:

1. Mark s2(|y|) cells on the tape. Note that we need the space con-
structibility of s2 here.

35

2. Let y = 〈e, x〉. Check whether e is a valid encoding of a DTM E. This
can be done in log |y| space.

3. Now M simulates E on input y (not x). To this end, M behaves like
the universal Turing machine U .

4. On an extra tape, M counts the steps of U , using a ternary counter
with s2(|y|) digits. Hence, the machine can count up to 3s2(|y|).

5. If during the simulation, U leaves the marked space, M rejects.

6. If the simulation makes more than 3s2(|y|) steps, M accepts.

7. If E halts, M also halts and:

→ if E accepts, M will reject.

→ if E rejects, M will accept.

Then M is s2-space-bounded and for the language of M , we have:

L(M) = { 〈e, x〉 |E does not accept 〈e, x〉 in space s2(|〈e, x〉|) }

To show that L(M) /∈ DSPACE(s1), we proceed by contradiction and
assume there is a deterministic Turing machine N that is s1-space-
bounded and total so that L(N) = L(M). We can assume that N has
one work tape and an extra input tape. Let e be the encoding of N and
let y = 〈e, x〉 for an sufficiently long input string x. We distinguish two cases:

If y is in L(M) then M accepts y. By definition of M , either the simulation
of N terminated or N makes more than 3s2(|y|) steps.

→ If the simulation of N terminated then N rejected y. But then we
have that y /∈ L(N) = L(M) which is a contradiction.

→ For the latter case, note that N cannot make more than

cs1(|y|)(s1(|y|) + 2)(|y|+ 2)

steps since N is s1-space-bounded and a decider. If N would make
more steps then it would enter an infinite loop.
Since x was chosen to be rather long and s1 = o(s2), the following
inequality holds:

log 3 · s2(|y|) > log c · s1(|y|) + log(s1(|y|) + 2) + log(|y|+ 2)

But this is equivalent to:

3s2(|y|) > cs1(|y|)(s1(|y|) + 2)(|y|+ 2)

Hence, N does not make more than 3s2(|y|) steps and the second case
does not occur at all.

36

If y is not in L(M) then M ran out of space or N terminated.

→ If the simulation of N terminated, we have that N accepted y. Hence,
y ∈ L(N) = L(M). But this is a contradiction.

→ Like above we show that this case cannot happen. Since N is s1-space-
bounded, the simulation via U needs |e| ·s1(|y|) space by Theorem 6.5.
The length of the input string x and the fact that s1 = o(s2) imply
the following inequality:

|e| · s1(|y|) ≤ s2(|y|).

Hence, M cannot run out of space and this case does not occur.

Finally, L(M) cannot be in the class DSPACE(s1). This completes the proof.

6.3 Further Hierarchy Results

Goal 6.8. The universal Turing machine can be used to derive further
hierarchy results. We state a separation theorem for time complexity classes,
similar to Theorem 6.7 and we use Savitch’s Theorem to prove a hierarchy
result for nondeterministic space complexity classes.

In Theorem 6.5 we observed that the universal Turing machine is slower than
the given Turing machine by a quadratic factor. This influences the next
separation theorem - it is not as effective as for space complexity classes.

Lemma 6.9 (Deterministic Time Hierarchy). Let t2 be time constructible
and let t21 = σ(t2). Then we have:

DTIME(t1) (DTIME(t2).

And in particular: P (EXP.

There exists a more efficient construction of a universal Turing machine due
to Hennie and Stearns. This allows us to strengthen Lemma 6.9.

Theorem 6.10 (Hennie and Stearns, 1966). Let t2 be time constructible
and let t1 · log(t1) = σ(t2). Then we have:

DTIME(t1) (DTIME(t2).

For nondeterministic space, we can combine the Deterministic Space Hier-
archy with Savitch’s theorem.

37

Theorem 6.11 (Nondeterministic Space Hierarchy). Let s2(n) ≥ log n be
space constructible and let s1 = o(s2). Then we have:

NSPACE(s1) (NSPACE(s2
2).

And in particular: NL (PSPACE.

Proof. From Savitch’s Theorem, 5.1, we know that NSPACE(s1) ⊆
DSPACE(s2

1). Since s1 = o(s2) implies s2
1 = o(s2

2), we may apply the DSH,
Theorem 6.7, and obtain: DSPACE(s2

1) (DSPACE(s2
2). But this is certainly

contained in NSPACE(s2
2) which proves the claim.

38

Chapter 7

Translation

Goal: Assume we have a certain inclusion about two complexity classes.
We want to introduce a technique to get out of this more inclusions, usually
among larger complexity classes, without putting more effort into it.

To achieve this, we need two things. First, we have to artificially extend the
input by a new symbol - this is called padding. A padded language is not
more complicated than the original language but it has reduced computa-
tional effort in the sense that the input words are now larger.
Then we have to prove translation theorems that allow us to switch between
the original language and the padded language.

7.1 Padding and the Translation Theorems

Definition 7.1. Let L ⊆ Σ∗ be a language and f : N→ N a function with
f(n) ≥ n. Moreover, let # be a symbol not in Σ. Then we set:

Padf (L) := {x#f(|x|)−|x| |x ∈ L }.

This is a language in Σ ∪ {#} and we call it padded language of L.

Note 7.2. Padding turns a word in L of length n into a word from L#∗

of length f(n). Hence, the content of the word does not change, only its
length.

Now we state the translation theorems. They show that it is possible to
switch between a language and its padded language. The theorems also
show that the computational effort decreases when switching to Padf (L):

Theorem 7.3 (Translation for time). Let f, g be functions with f(n), g(n) ≥
n and let g be monotone and time constructible. Given 1n, let 1f(n) be
computable in time g(f(n)). Then we have for L ⊆ Σ∗:

a) Padf (L) ∈ DTIME(O(g)) if and only if L ∈ DTIME(O(g ◦ f)) and

39

b) Padf (L) ∈ NTIME(O(g)) if and only if L ∈ NTIME(O(g ◦ f)).

Proof. We proof Part a, the proof for Part b is similar.

First, let Padf (L) ∈ DTIME(O(g)) and let x ∈ Σ∗ be an input string. We
check x ∈ L in DTIME(O(g(f(|x|)))) as follows. We compute

y = x#f(|x|)−|x|

in time O(g(f(|x|))). Since |y| = f(|x|), we can check y ∈ Padf (L) in time
O(g(|y|)) = O(g(f(|x|))) and by definition of Padf (L), we have:

y ∈ Padf (L) if and only if x ∈ L.

For the other direction, let L ∈ DTIME(O(g ◦ f)) and let x ∈ (Σ ∪ {#})∗
be an input. We check in DTIME(O(g(|x|))) time whether x ∈ Padf (L) as
follows. First, we check in time |x| ≤ g(|x|) whether x has the form w#∗

for some w ∈ Σ∗. If this is not the case, we can reject x.
Let x = w#|x|−|w|. Now we compute 1g(|x|) in time O(g(|x|)). This works
as g is time constructible and the binary representation can be converted to
unary in O(g(|x|)) steps. Then we check in time g(|x|) whether

|x| = f(|w|)

holds. To this end, we compute 1f(|w|) in time g(f(|w|)). If the machine
wants to compute more than g(|x|) steps, we reject. But why should we do
this: since g is monotonic, we have:

g(f(|w|)) > g(|x|)⇒ f(|w|) > |x| .

If we managed to compute 1f(|w|), we can compare it to 1|x|. If |x| 6= f(|w|),
reject. Otherwise, we have: x = w#f(|w|)−|w|. Finally, we check in time
O(g(f(|w|))) = O(g(|x|)) whether w ∈ L.

Theorem 7.4 (Translation for space). Let g(n) ≥ log n be space con-
structible. Let f(n) ≥ n so that given an input 1n we can compute bin f(n)
in space g(f(n)). Then we have for L ⊆ Σ∗:

a) Padf (L) ∈ DSPACE(g) if and only if L ∈ DSPACE(g ◦ f) and

b) Padf (L) ∈ NSPACE(g) if and only if L ∈ NSPACE(g ◦ f).

7.2 Applications of the Translation Theorems

Remark 7.5. As a consequence of the translation results, it is more likely
that larger complexity classes will collapse. Phrased differently, to show a
separation among complexity classes one should consider the lower end of
the hierarchy.

40

A first application of Theorem 7.4 is given by the following lemma:

Lemma 7.6. The following implication holds true:

DSPACE(n) 6= NSPACE(n)⇒ L 6= NL.

Proof. We proceed by contraposition and assume NL ⊆ L. From this we
derive the contradiction NSPACE(n) ⊆ DSPACE(n). To this end, let L be in
NSPACE(n). Since n can be written as n = log ◦ exp, we may apply Theorem
7.4 and get:

Padexp(L) ∈ NSPACE(O(log n)) = NL.

By our assumption we have that NL ⊆ L = DSPACE(O(log n)). Thus, we
can apply the translation for space again and get

L ∈ DSPACE(O(log ◦ exp)) = DSPACE(n).

Note that the last equality uses tape compression.

The next theorem shows that P and the class of deterministic, context-
sensitive languages are different classes. We benefit from the translation
theorems and from the deterministic space hierarchy, Theorem 6.7.

Theorem 7.7. We have that P 6= DSPACE(n). Hence, P is not the class of
deterministic, context-sensitive languages.

Proof. Consider a language L ∈ DSPACE(n2)\DSPACE(n). Such a language
exists by the deterministic space hierarchy, Theorem 6.7. Set f(n) = n2.
We get Padf (L) ∈ DSPACE(n) by Theorem 7.4. If now DSPACE(n) = P, we
would get:

Padf (L) ∈ DTIME(O(nk))

for some k ∈ N. With Theorem 7.3, we get that

L ∈ DTIME(O((n2)k)) = DTIME(O(n2k)).

But then L ∈ P = DSPACE(n). But this contradicts the choice of L.

Remark 7.8. Today, it is know that P 6= DSPACE(n), but it is not known
whether P (DSPACE(n) or DSPACE(n) (P. It is also not known whether
DSPACE(log n) = P.

41

Chapter 8

Immerman and
Szelepcsényi’s Theorem

Goal: In this chapter we want to prove that the class NL is closed
under complement. To this end, we need the theorem of Immerman and
Szelepcényi. It shows that for s(n) ≥ log n, the class NSPACE(s(n)) is
closed under complement.

The theorem is of particular importance. It is not only used to show
NL = co-NL, the space analogue to NP vs co-NP, it also solves the sec-
ond LBA problem posed by Kuroda in 1964:
Kuroda showed that nondeterministic, linear bounded automata (nonde-
terministic Turing machines with linear space bound) accept precisely the
context-sensitive languages. But there were two more open problems:

(1) Are the languages accepted by nondeterministic, linear bounded au-
tomata those languages that are accepted by deterministic, linear
bounded automata ? Phrased in our terms, this is the question whether
the equality

NSPACE(O(n)) = DSPACE(O(n))

holds.

(2) Are the languages accepted by nondeterministic, linear bounded au-
tomata closed under complement ? So, do we have the equality

NSPACE(O(n)) = co-NSPACE(O(n)) ?

Kuroda also showed that ¬(2) ⇒ ¬(1). But this implication did not help,
as Immerman and Szelepcsényi proved (2) to hold.
Nowadays, Problem (1) is still open.

The theorem was proven independently in 1987 and 1988 by

42

• Neil Immerman - University of Massachusetts Amhorst - and

• Rbert Szelepcsényi - student in Bratislava, Slovakia.

Both of them received the Gödel-Prize in 1995. With their theorem they
brought the method of inductive counting to complexity theory.

Theorem 8.1 (Immerman and Szelepcsényi, 1988 and 1987). For a function
s(n) ≥ log n, we have:

NSPACE(s(n)) = co-NSPACE(s(n)).

In particular, we get: NL = co-NL.

8.1 Non-reachability

The key of the proof is to show that non-reachability in a graph can be
solved in nondeterministic logarithmic space. To this end, we consider the
problem PATH:
Given: A directed graph G with nodes s and t.
Problem: Show that there is no path from s to t.

Note that if we can show that PATH ∈ NL, the theorem of Immerman and
Szelepcsényi follows.

Theorem 8.2. We have that PATH ∈ NL.

To check that t is not reachable from s, the idea is to enumerate all nodes
that are reachable from s and to check that t is not among them. But it is
not clear how to enumerate all these nodes in logarithmic space. Instead,
we use a different approach: we ensure that all nodes reachable from s were
enumerated via counting.

Assume we are given N , the number of nodes reachable from s. In Section
8.2, we show how to compute N in NL. The nondeterministic counting
of the reachable nodes works as follows: we introduce a counter count,
initially set to 0. For any node v, we guess if v is reachable from s and in
that case, we guess a path from s to v. If we guess a wrong path, we reject.
If we guess a right path and it turns out that v = t, we can reject since
then, t is reachable from s. Otherwise, we increase count by 1 since we
have found a reachable node different from t.
At the end, we compare count and N . We have guessed reachability of any
v correctly if and only if count = N . Hence, we accept. Otherwise, we
reject since our guess was wrong for a node v.

43

Algorithm 2, also called unreach(G, s, t), is based on the above idea and
due to Lemma 8.4, it checks in NL whether t is not reachable from s in
the graph G. Note that this depends heavily on nondeterminism! There
are many executions of unreach(G, s, t) that guess wrong at some point and
reject at the end. But due to the nondeterministic acceptance criterion,
it is enough to have one execution of unreach(G, s, t) that accepts. This
execution always guesses correctly and increases count up to N .

Algorithm 2 unreach(G, s, t)

1: count := 0
2: for every node v do
3: guess whether v is reachable from s
4: if the guess is true then
5: guess a path from s to v of length ≤ n
6: if the guessed path does not lead to v then
7: return false // Wrong path or wrong guess
8: else
9: if v = t then

10: return false // t is reachable from s
11: else
12: count+ + // Another reachable node v 6= t found
13: end if
14: end if
15: end if
16: end for
17: if count < N then
18: return false // Guessed incorrectly about reachability for a v
19: else
20: return true // t is unreachable from s
21: end if

Remark 8.3. Since we can compute N in NL, see Section 8.2, and Algo-
rithm 2 runs in NL, see Lemma 8.4, we can solve PATH in NL and we proved
the theorem of Immerman and Szelepcsényi.

Lemma 8.4. Algorithm 2, describing the function unreach(G, s, t), has a
computation that returns true if and only if t is not reachable from s.
Moreover, the algorithm runs in nondeterministic logarithmic space.

Proof. The algorithm makes sure it enumerates all nodes reachable from s
by comparing count with N . It accepts if and only if t was not one of the
N nodes reachable from s.
The integers N and count can be at most n, so they can be written down
in binary at length log n. Hence, the algorithm runs in NL.

44

8.2 Inductive counting

The key idea to compute N , nowadays called method of inductive counting,
is to inductively compute the values

R(i) := #nodes reachable from s in ≤ i steps.

Note that N = R(n). So if we can compute R(n), we can return that value.
Algorithm 3 makes use of this idea.

Algorithm 3 #reach(G, s)

1: R(0) := 0 // Only s reachable from s in 0 steps.
2: for i = 1, . . . , n do
3: R(i) := 0 // Initialize R(i)
4: for every node v do
5: // Try all nodes u reachable from s in ≤ i− 1 steps.
6: // Check if v is reachable from such a u in ≤ 1 steps.
7: count := 0
8: for every node u do
9: guess whether u is reachable from s in ≤ i− 1 steps

10: if the guess is true then
11: guess a path from s to u of length ≤ i− 1
12: if the guessed path does not lead to u then
13: return false
14: else
15: count+ + // If u is reachable, count it in
16: if (u = v) or (u→ v) then
17: R(i) + +
18: goto(4) // Go to next iteration of ”for v” loop.
19: end if
20: end if
21: end if
22: end for // Loop for u
23: if count < R(i− 1) then
24: return false // Wrong guess about reachability for a u
25: end if
26: end for // Loop for v
27: end for // Loop for i
28: return R(n)

Remark 8.5. To count up to R(i), Algorithm 3 makes use of the following
fact: a node v is reachable from s in ≤ i steps if and only if there exists a
node u, reachable from s in ≤ i− 1 steps so that u = v or u→ v.

45

v

s

u1

u2

p

q

Figure 8.1: The blue marked area represents the nodes that are reachable
from s in at most i − 1 steps. Suppose the algorithm wants to check if the
node v is reachable in at most i steps. Then it looks for a witness that is
reachable in at most i− 1 steps. If the algorithm arrives at u1 and guesses
the path p right, it will notice that there is no edge between u1 and v. Hence,
u1 is no witness. The node u2 is also reachable in at most i − 1 steps and
there is an edge to v. So, u2 is a witness and the algorithm increases R(i)
by one.

Hence, provided the algorithm computed the right value of R(i − 1), it is
possible to compute R(i): for any node v, we test if there is a witness u so
that the above fact is satisfied. We guess for any node u if it is reachable
in ≤ i− 1 steps. If we guessed a right path then we increase count by one.
After this, we test whether u = v or u→ v. If this does not fail, we increase
R(i) since we found a witness for v.
If we do not find a witness for v, we have to check whether count = R(i−1).
Only in that case we have checked all nodes u that are reachable in ≤ i− 1
steps for being a witness. If count < R(i − 1) then we have guessed wrong
about the reachability of some u and we cannot ensure that v is really
unreachable.
An illustration of the algorithm can be found in Figure 8.1.

Lemma 8.6. Algorithm 3, describing the function #reach(G, s), computes
the number of nodes reachable from s.
Moreover, the algorithm runs in nondeterministic logarithmic space.

Proof. We proceed by induction on i and show that upon termination of the
iteration for i, we have:

R(i) = #nodes reachable from s in ≤ i steps.

Base case: i = 0. Then we have R(0) = 1 and this is correct.
Induction step: i − 1 → i. By induction, the equality holds for R(i − 1).
The algorithm increments R(i) on a node v if and only if v is reachable in
≤ i steps.

46

To see this, note that R(i) is not incremented only if all nodes at distance
≤ i − 1 from s were tried and v is not reachable in ≤ 1 steps from any of
them. We are sure to check all nodes at distance ≤ i − 1 by comparing
count with R(i− 1).

At any point, Algorithm 3 only needs to remember two successive values
R(i − 1) and R(i). So it can reuse space when computing R(1), . . . , R(n),
and can be made run in NL.

Summary: To check that t is not reachable from s, we first run Algorithm
3 to compute N . Then we run Algorithm 2 with that N . Since both (non-
deterministic) algorithms run in logarithmic space, the total space required
by the procedure is O(log n).

47

Chapter 9

Summary

Goal: In the previous chapters we have proven many results about
the relations among the robust complexity classes. Now our goal is to
summarize our results and to create an overview.

Consider the following picture. So far, this is our understanding of the
relationship among the robust complexity classes:

L NL P

NP

co-NP

PSPACE EXP NEXP EXPSPACE⊆ ⊆
S vs T ⊆

⊆

⊆
S vs T

⊆
S vs T

⊆
S vs T

⊆ ⊆
S vs T

co-L co-NL co-P DPSPACE

NPSPACE

co-PSPACE

co-EXP co-EXPSPACE

=

= = =
=

=

= =I&S

Savitch

(DSH
(NSH

(DTH

Remark 9.1. Some of the above showed relations are immediately clear:
all deterministic classes are a subset of the corresponding nondeterministic
class, see Lemma 2.28, and they are equivalent to their co-class, see Theo-
rem 2.25. Other relations are more involved: all inclusions marked by the
abbreviation S vs T, meaning Space versus Time, are due to the results of
Chapter 4. We also get some equivalences:

• NL = co-NL is due to Immerman and Szelepcsnyi’s Theorem, see The-
orem 8.1.

48

• DPSPACE = NPSPACE and the other equivalences involving PSPACE
follow from Savitch’s Theorem, see Theorem 5.1.

We also know about three strict inclusions:

• NL (PSPACE follows from the nondeterministic space hierarchy
(NSH), see Theorem 6.11.

• P (EXP is a consequence of the deterministic time hierarchy (DTH),
Theorem 6.9.

• PSPACE (EXPSPACE is due to the deterministic space hierarchy
(DSH), see Theorem 6.7.

So far, the aforementioned strict inclusions are the only known strict inclu-
sions in

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP

but it is believed that all these inclusions are actually strict.

49

Chapter 10

L and NL

Goal: We defined the robust complexity classes to capture interesting
computational phenomena. Our goal in this and the following chapters is to
study each of these classes in more detail.
Before we start looking at particular problems, we define the notion of a
complete problem for a class. These characterize the computational phe-
nomena captured by a complexity class:

• complete problems lie in the class. This means that they can be solved
with the given resources.

• complete problems are hard for the class. This means that every prob-
lem in the class can be reduced to them.

After having defined what a complete problem exactly is, we start looking at
the classes L and NL. We do not only want to understand the computational
problems that can be solved using logarithmic space but we also want
to study alternative models of computations that characterize L and NL.
Recall that a requirement on the robust complexity classes was that they
should be insensitive to the choice of the model of computation.

We will see that NL is all about paths: existence and absence. A hint on this
was already given by Immerman & Szelepcsnyi. The class L mainly focuses
on basic arithmetic operations.

10.1 Reductions and Completeness in Logarith-
mic Space

Goal 10.1. In order to explain the notion of a complete problem, we first
need to introduce the concept of many one reductions. We are especially
interested in reductions that are computable in logspace.

50

Definition 10.2. Let R be a set of functions from Σ∗1 → Σ∗2. A language
A ⊆ Σ∗1 is R-many-one reducible to a language B ⊆ Σ∗2, if there is a function
f ∈ R so that for all x ∈ Σ∗1 we have:

x ∈ A⇔ f(x) ∈ B.

We call f the reduction and we also write: A ≤Rm B.

Remark 10.3. Intuitively, A ≤Rm B means that membership in A can be
checked by deciding membership in B. The notion many-one refers to the
fact that the reduction need not to be injective. Injective reductions are
called one-one.

Definition 10.4. Let C be a complexity class, R a set of functions and B
a language.

a) The language B is called C-hard with respect to R-many-one reductions,
if for all A ∈ C we have that A ≤Rm B. Intuitively, this means that B is
at least as hard as any problem in C.

b) B is called C-complete with respect to R-many-one reductions, if B is
C-hard wrt. R-many-one reductions and B ∈ C. Intuitively, B is the
hardest problem in C.

We also phrase B ∈ C as: C is an upper bound, and B is C-hard as: C is a
lower bound.

Remark 10.5. A reduction will only be of interest if it satisfies the following
two properties:

a) It should not have too much computational power: it should be weaker
than the presumably harder one of the two complexity classes we are
comparing. Otherwise, the considered source-problem may already be
computed by the reduction itself and not by the target-problem.
In particular, if A is R-many-one reducible to B and B ∈ C, then it
should also follow that A ∈ C. In short: C should be closed under
R-many-one reductions.

b) Reducibility should be transitive. In particular, if A is C-hard and we
have that A ≤Rm B, then B should also be C-hard.

Now that we have stated our restrictions, we need to figure out which choices
of the set of functions R are suitable. In fact, we will consider two different
kinds of functions:

• The polynomial-time computable functions (≤log
m) and

• the logarithmic-space computable functions (≤poly
m).

51

In the literature, many-one reductions are also called Karp reductions. There
are also so-called Turing reductions that may invoke the harder problem
multiple times, like an oracle. Turing reductions are useful for proving un-
decidability results.

Definition 10.6. A function f : Σ∗1 → Σ∗2 is called logspace computable if
there is a deterministic Turing machine M with

• read-only input tape over Σ1,

• write-only (this means: write and move right) output tape over Σ2 and

• read-write work tape over Γ,

so that M is a decider whose work tape is O(log n)-space bounded and M
has written f(x) ∈ Σ∗2 onto the output tape when halting on input x. We
call M logspace transducer.

A language A ⊆ Σ∗1 is logspace-many-one reducible to a language B ⊆ Σ∗2,
if there exists a logspace computable function f : Σ∗1 → Σ∗2 so that for all
x ∈ Σ∗1 we have:

x ∈ A⇔ f(x) ∈ B.

Now we show that the definition of logspace reductions really satisfies the
transitivity requirement:

Lemma 10.7. Let f : Σ∗1 → Σ∗2 and g : Σ∗2 → Σ∗3 be logspace computable
functions, then so is g ◦ f .

In particular: if A ≤log
m B and B ≤log

m C, then A ≤log
m C.

Proof. Let f and g be computed by the logspace-bounded deterministic
Turing machines M and N . Note that |f(x)| is polynomial in |x|. This is
due to Lemma 4.7, a logspace-bounded Turing machine can run at most a
polynomial number of steps.

To compute g ◦ f , we want to simulate the machine N on input f(x). But
we cannot just compute f(x) by M in advance since it would not fit onto a
logspace-bounded work tape. Instead, we will make use of lazy evaluation.

Technically, during the simulation of N , a subroutine will provide the sym-
bols of f(x) on demand. Whenever N wishes to read the i-th symbol of
f(x), we compute this symbol as follows:

• The index i is given to a subroutine that simulates M on input x from
scratch.

52

• The simulator starts to compute f(x). It counts and throws away all
symbols up to the i-th.

• Then it returns the i-th symbol to the caller and stops.

For this construction, we need space to simulate the work tapes of M and N
and two counters that count up to |f(x)|. One counter is the head position
of N on f(x), the second one is used by the subroutine that computes the
i-th symbol of f(x). Altogether, we need O(log |x|) cells.

The following lemma states that polynomial time reductions are as least as
powerful as logspace reductions. In fact, it is even known that polynomial
time reductions are strictly stronger than logspace reductions.

Lemma 10.8. Let A and B be two languages. If A ≤log
m B then A ≤poly

m B.

Proof. The proof is easy, just apply Lemma 4.7.

Besides transitivity, we also wanted that our reductions do not have too
much computational power, see Remark 10.5. The next lemma shows that
for the class L, the logspace reductions are already too powerful:

Lemma 10.9. For all languages A ⊆ Σ∗, we have that A ∈ L if and only if
A ≤log

m {0, 1}. Moreover, any language A ∈ L so that A 6= ∅ and A 6= Σ∗ is
L-complete.

Hence, a reduction is only meaningful in a class that is computationally
stronger than the reduction itself.

Note that the basic classes are closed under logspace reductions:

Lemma 10.10. Let A ≤log
m B. If B ∈ L,NL or P, then we get that A ∈ L,NL

or P, respectively.

Finally, we can state a Lemma which shows the importance of hard problems.
If a hard problem can be shown to be solvable with less computational effort
then the whole class will collapse:

Lemma 10.11. Let A be a language.

a) If A is NL-hard under logspace many-one reductions and A ∈ L then
NL = L.

b) If A is P-hard under logspace many-one reductions and A ∈ NL then
P = NL.

53

10.2 Problems complete for NL

Goal 10.12. In this section we want to state the first NL-complete problem:
PATH. We will give a precise definition and prove the completeness. To
achieve the latter, we have to show that every problem in NL admits
a reduction to PATH since we do not have another NL-hard problem
yet. Our approach will be to construct a logspace-reduction from any
nondeterministic Turing machine that is O(log n)-space bounded to PATH.

Once we have shown the hardness of PATH, the hardness of another problem
can be shown by reducing from PATH to the problem.

Definition 10.13. Let PATH denote the following problem:

Input: A directed graph G = (V,E) and s, t ∈ V .
Question: Is there a path from s to t in G ?

We use the notation ACYCPATH to refer to the same problem with the
restriction that G is an acyclic graph.

Theorem 10.14. The problem PATH is NL-complete.

Proof. We have two show two things, membership: PATH ∈ NL and
hardness: PATH is NL-hard.

The first can easily be shown: construct a Turing machine M that works as
follows: initially, it stores the node u = s and a counter c on the tape. The
counter holds the initial value 0. At each step, M guesses a vertex v that
is reachable from the current vertex u. The vertex v is compared with t. If
they are equal, we accept. If not, c gets increased and M continues with
the next step. If c reaches the value n and the last guessed node is not t,
we reject.
This needs O(log n) space since we only need to store the current node and
a binary counter. We also know that it works correctly: if a path between
s and t exists, there is also a path of length at most n. Hence, there is a
computation of M that finds this path.

Let A be a problem in NL and let M be the nondeterministic O(log n)-space
bounded Turing machine that solves A: L(M) = A. We show that there
exists a logspace computable function fM so that given an input x, the
image fM (x) = (G, s, t) satisfies: G is a directed graph, s and t are nodes
in G and

M accepts x⇔ G contains a path from s to t.

The graph G is the configuration graph of M on input x. Hence, the nodes
are the possible configurations of M on x and for c1, c2 configurations

54

of M , there is an edge (c1, c2) if c2 is a possible next configuration
of c1. The node s is defined to be the initial configuration while t is
defined to be the unique accepting configuration of M . We can always
assume M to have exactly one accepting configuration since we can just
clear the tape, walk all the way left until we reach $ and enter a special state.

Now assume that M accepts x. Then there is a computation of M that
accepts x and this corresponds to a path from s to t in the configuration
graph G. Vice versa, if there is a path from s to t in G then there is also a
computation of M accepting x.

Now it remains to show that fM is logspace computable. The transducer
that outputs (G, s, t) on input x describes G by listing all its nodes and
edges.
The listing of the nodes is done as follows: each node in G is a configuration
of M on input x and can hence be represented by a string of length d · log |x|.
The transducer enumerates all strings of length at most d · log |x| and tests
each for being a valid configuration. It writes those strings onto the output
tape that pass the test. Thus, we have the listing of nodes.
The listing of edges is done similarly: the transducer now enumerates pairs
of strings of length at most d · log |x|. The two components of a pair are
tested for being configurations c1 and c2. Now the transducer tests if the
transition relation of M induces c1 → c2. If this is the case, it writes the
pair of strings onto the output tape.
With the above description, creating the listings needs an O(log n)-space
bounded work tape. Hence, we constructed a logspace transducer that com-
putes fM .

Note 10.15. The configuration graph of a terminating Turing machine is
always acyclic. So the above reduction also shows that ACYCPATH is NL-
complete. In fact, there is a direct reduction from PATH.

Theorem 10.16. We have that PATH ≤log
m ACYCPATH and in particular:

ACYCPATH is NL-complete.

Proof. This will be handled in the exercises.

A famous result due to Cook, Levin and Karp shows that 3-SAT is NL-
complete. The restriction of SAT to two literals per clause, denoted by
2-SAT, is easier to solve:

Theorem 10.17. The problem 2-SAT is NL-complete.

To show membership of 2-SAT in NL, we proceed as follows: we show
that 2-SAT ∈ NL, then we have that 2-SAT ∈ co-NL. By the theorem of

55

Immerman and Szelepcsényi, Theorem 8.1, we get that 2-SAT is also in NL.

To get the hardness of 2-SAT, we will give a reduction from the problem
ACYCPATH. Note that, due to the next lemma, ACYCPATH is also NL-
hard.

Lemma 10.18. Let C be a complexity class so that co-C = C, R a set
of functions and A a language that is C-hard with respect to R-many-one
reductions. Then A is also C-hard with respect to R-many-one reductions.

Proof. This will be proven in the exercises.

Now we start showing membership of 2-SAT.

Lemma 10.19. The problem 2-SAT is in NL.

The key idea is construct, from a 2-CNF formula F , a graph GF as follows:

• We get a vertex for each variable of F and their negations.

V (GF) = {x |x is a variable in F } ∪ {¬x |x is a variable in F }.

• We get edges α → β and ¬β → ¬α if ¬α ∨ β is a clause in F . Ad-
ditionally, for clauses consisting of just one literal α, we get the edge
¬α→ α.

E(GF) =
⋃

¬α∨β is a

clause of F

({(α, β)} ∪ {(¬β,¬α)}) ∪
⋃
α is a

clause of F

{(¬α, α)}.

Note that the edges of GF correspond to implications. The clause ¬α∨ β is
equivalent to the implications α→ β and ¬β → ¬α. For clauses consisting
of one literal, we have: α⇔ α ∨ α⇔ ¬¬α ∨ α⇔ ¬α→ α.
Hence, also the paths in GF correspond to implications since implications
are transitive.
Also note that GF has a symmetry: we have α→ β if and only if ¬β → ¬α.

Let us consider an example of the construction:

Example 10.20. Let F be the formula (¬x ∨ y) ∧ (¬y ∨ z) ∧ (x ∨ ¬z) ∧
(z ∨ y). Constructing GF yields a graph with vertex set V (GF) =
{x, y, z,¬x,¬y,¬z} and edges

E(GF) = {(x, y), (¬y,¬x), (y, z), (¬z,¬y), (z, x), (¬x,¬z), (¬z, y), (y, z)}.

An illustration is given in Figure 10.1.

56

¬x ¬y

¬z

x y

z

Figure 10.1: The construction explained below Lemma 10.19 applied to the
formula F = (¬x ∨ y) ∧ (¬y ∨ z) ∧ (x ∨ ¬z) ∧ (z ∨ y).

Lemma 10.21. A 2-CNF formula F is unsatisfiable if and only if there are
paths in GF leading from x to ¬x and from ¬x to x for a variable x.

Proof. Assume that the two paths exist but still assignment ϕ satisfies F .
Without loss of generality, we may assume that ϕ(x) = 1. The case, where
ϕ(x) = 0 is symmetric.
By negation, we get that ϕ(¬x) = 0. Since there is a path from x to ¬x in
GF , there is an edge α → β on the path so that ϕ(α) = 1 and ϕ(β) = 0.
The edge α→ β corresponds to the clause ¬α ∨ β in F . This evaluates to:

ϕ(¬α ∨ β) = ¬ϕ(α) ∨ ϕ(β) = 0.

Thus, we have ϕ(F) = 0 which is a contradiction.

To prove the other direction of the lemma, we show that the absence of such
paths lead to satisfiability. To this end, we construct a satisfying assignment
as follows: we pick a node α so that there is no path from α to ¬α and assign
truth values.

• To all nodes reachable from α, we assign true.

• To all nodes that reach ¬α, we assign the value false.

We do this until every node has a truth value.

We assign a truth value to all nodes: let α be an unlabeled literal. Then
also ¬α is unlabeled. If we cannot pick α since there is a path from α
to ¬α, we are sure that there is no path from ¬α to α since this would

57

contradict the assumption. Hence, we choose ¬α.

The resulting assignment is well-defined. Assume there is a literal β so
that β and ¬β are assigned the same truth value. Then there are two
cases: there is a literal α so that either there are paths from α to β
and ¬β or β and ¬β both reach ¬α. We focus on the first case since
the second case is symmetric. So let α →∗ β and α →∗ ¬β. By the
symmetry of GF we also get paths ¬β →∗ ¬α and β →∗ ¬α. But then
we also have a path from α to ¬α which is a contradiction to the choice of α.

The resulting assignment satisfies F . If α is a literal that is assigned true,
it cannot reach a literal that is labeled by false since in this case α itself
would be labeled by false. Hence, there are no paths leading from true to
false and the assignment satisfies F .

Example 10.22. We construct the assignment from the proof of Lemma
10.21 on the graph GF from Example 10.20. The vertices are labeled as
follows: (x, 1), (y, 1) and (z, 1). The negated variables are labeled by 0 each.
This means that the assignment that sets all variables to true satisfies the
formula F . An illustration is given in Figure 10.2.

(¬x, 0) (¬y, 0)

(¬z, 0)

(x, 1) (y, 1)

(z, 1)

Figure 10.2: The graph from Example 10.20 with the labeling of the vertices
as in the proof of Lemma 10.21. We can see that assigning true to all
variables satisfies the formula F .

Now we can prove Lemma 10.19.

Proof. We show that 2-SAT is in NL. By the discussion below Theorem
10.17 we then get that actually 2-SAT is in NL.

58

Given a 2-CNF formula F , we need to test whether F is unsatisfiable. Con-
struct the graph GF as we did for Lemma 10.21. This can be done in NL.
Now we guess a variable x. From Theorem 10.14 we know that we can
find paths from x to ¬x and from ¬x to x in logarithmic space. Hence,
2-SAT ∈ NL.

Lemma 10.23. The problem 2-SAT is NL-hard.

Proof. We give a logspace reduction from ACYCPATH to 2-SAT. Note that
ACYCPATH is NL-hard by Lemma 10.18.
Let (G, s, t) be an ACYCPATH instance. We construct a 2-CNF formula F
as follows: the underlying set of variables of F is given by

{x,¬x |x is a vertex of G }.

For each edge x→ y in G, we introduce a clause ¬x ∨ y. Moreover, we add
the clauses s and ¬t for the start and the target vertex. Now it is easy to
see that this 2-SAT instance is satisfiable if and only if there is no path from
s to t in G.
Note that the construction can be done in logarithmic space.

10.3 Problems in L

Goal 10.24. The board game NIM is a simple 2 player game. Computers
for finding winning strategies for NIM were already developed in 1940. One
of these computers was able to beat Ludwig Erhard in 1951 at the Berliner
Industrieaustellung. In this section, we want to show that NIM can actually
be decided in L.

Definition 10.25. The NIM game is defined as follows: Given is a
collection of piles of sticks. The players alternately take turns and in a
move, a player removes an arbitrary non-zero number of sticks from a single
pile. The player who removes the very last stick wins the game.
The NIM problem is then defined as:
Input: A collection of piles 〈s1, . . . , sk〉 encoded in binary.
Question: Does Player P1 have a winning strategy from this position ?

Example 10.26. Let Player P1 start the game from position 〈2, 2, 1〉. As-
sume the following turns:

〈2, 2, 1〉 P1−→ 〈2, 2, 0〉 P2−→ 〈1, 2, 0〉 P1−→ 〈1, 1, 0〉 P2−→ 〈0, 1, 0〉 P1−→ 〈0, 0, 0〉

In this case, P1 wins.

Theorem 10.27. The problem NIM is in L.

59

To prove the theorem, we first have to develop a deeper understanding of
the semantics of NIM like we did for 2-SAT. To this end, we will need the
following definition:

Definition 10.28. We assume that a position 〈s1, . . . , sk〉 is arranged in a
matrix with rows s1, . . . , sk and least significant bit first encoding. Such a
position is called balanced if every column contains an even number of 1s.

Example 10.29. The position〈2, 2, 1〉 is encoded by the matrix0 1
0 1
1 0

In the first column, there is an odd number of 1s. Hence, this position is
unbalanced.

Finding a winning strategy relies on the following observation.

Lemma 10.30. Let 〈s1, . . . , sk〉 = S be a position.

a) If S is unbalanced, there is a move that leads to a balanced position.

b) If S is balanced, every move leads to an unbalanced position.

Proof. The proof is left to the reader.

Example 10.31. Let us label the moves of Example 10.26 by b if a move
is balanced and by u if a move is unbalanced. We obtain:

〈2, 2, 1〉︸ ︷︷ ︸
u

P1−→ 〈2, 2, 0〉︸ ︷︷ ︸
b

P2−→ 〈1, 2, 0〉︸ ︷︷ ︸
u

P1−→ 〈1, 1, 0〉︸ ︷︷ ︸
b

P2−→ 〈0, 1, 0〉︸ ︷︷ ︸
u

P1−→ 〈0, 0, 0〉︸ ︷︷ ︸
b

Here, P1 always does a move that leads to a balanced position. Hence, P2

always generates an unbalanced position.
Note that in a balanced position that is not 〈0, 0, 0〉, P2 cannot take the last
stick since there are sticks on at least 2 piles. This means that P2 cannot
win when he is in a balanced position. Now the winning strategy of player
P1 is to force P2 in balanced positions. In fact, this only depends on the
initial position.

Lemma 10.32. Player P1 has a winning strategy if and only if the initial
position is unbalanced.

Proof. Let the initial position be unbalanced. Then P1 chooses a move that
leads to a balanced position. In a balanced position, the opponent P2 cannot
win and any move that P2 can do, leads to an unbalanced position. Now
P1 again moves from an unbalanced position and does the same as before.
Hence, P1 has a winning strategy.
If the initial position is balanced, then the opponent P2 has a winning strat-
egy. He always starts from an unbalanced position and chooses the move
that generates a balanced position.

60

Hence, NIM reduces to checking whether the initial position 〈s1, . . . , sk〉
is unbalanced. This can easily be done in deterministic logarithmic space
since we only have to flip bits in any column. This proves Theorem 10.27.

Further problems in L are for example addition and multiplication:

Lemma 10.33. Consider the two sets

ADD = { (x, y, z) |x, y, z are encoded in binary and x+ y = z }
MUL = { (x, y, z) |x, y, z are encoded in binary and x · y = z }.

Then, deciding whether a triple (x, y, z) is in the set ADD or MUL is in L.

Proof. The proof is left to the reader.

61

Chapter 11

Models of computation for L
and NL

Goal: The complexity classes L and NL were defined via Turing machines.
Now a natural question arises: are there other computation models charac-
terizing L or NL ? In fact, we will see in this chapter that we can characterize
the classes in terms of special automata and certificates.

11.1 k-counter and k-head automata

Goal 11.1. We start with the definition of k-counter two way automata
and k-head two way automata. Our goal is to prove the equivalent power
of k-counter two way automata with linearly bounded semantics, k-head two
way automata and logspace-bounded Turing machines.

Definition 11.2. A k-counter two way automaton (kCA) is a tuple A =
(Σ, Q,C,→, q0, qf), where Σ is an alphabet, Q is a finite set of states, C is
a set of k counters, q0 is the initial state, qf is the final state and

→⊆ Q× Σ× {L,R} × P(C)︸ ︷︷ ︸
counters to be

tested for
being zero

× P(C)︸ ︷︷ ︸
counters to be

increased by one

× P(C)︸ ︷︷ ︸
counters to be

decreased by one

×Q.

Intuitively, a transition rule from → works like a transition rule of a Turing
machine: it reads the current state and letter and then moves the head left
or right while changing the state. But in addition to that, it also acts on
the set of counters C and changes the counter values.

a) The semantics of a kCA A on input x is defined in terms of configurations:
ConfAx = Q× ZC × [1, |x|]. Such a configuration holds the current state,
the current counter values and the current head position. The transition
relation among configurations →⊆ ConfAx ×ConfAx is defined as expected.

62

b) A kCA A is said to have linearly bounded semantics if the counters of
A, on input x, can have value at most |x| (or − |x|). Transitions that
increment or decrement these counters are disabled.

The following famous theorem of Minsky shows that it is reasonable to bound
the semantics of a k-counter automata. If we would not, the automata would
be too powerful.

Theorem 11.3 (Minsky, 1967). 2-counter automata are Turing complete.
This means we can simulate any Turing machine via 2-counter automata.

Before we show that we actually arrive at L and NL using the linearly
bounded semantics, we briefly introduce another automaton model.

Definition 11.4. A k-head two way automaton is a finite automaton with
k heads and into the input. The heads can be moved simultaneously during
a transition. Note that there is no work tape and the input is read-only.

Theorem 11.5. A language L

(1) is decided by a logspace bounded (non-) deterministic Turing machine if
and only if

(2) it is decided by a (non-) deterministic k-counter two way automaton
with linearly bounded semantics if and only if

(3) it is decided by a (non-) deterministic k-head two way automaton.

Proof. We show the implications (1) ⇒ (2) and (3) ⇒ (1). The implication
(2) ⇒ (3) will be treat in the exercises.

First, let N be a O(log n)-space-bounded (non-) deterministic Turing
machine with one work tape. We can assume that the tape alphabet is
{0, 1}. Our goal is to simulate N via a kCA A, where the counter values
are non-negative integers.

First, we show how to implement basic operations using a kCA.

• Duplicate the value of a counter c: we zero-out two other counters d
and e and then we repeatedly decrement c while incrementing d and
e.

• Double the value of a counter c: we zero-out a counter d. Then we
repeatedly decrement c while incrementing d twice.

• Halve the value of a counter c: we zero-out a counter d. Then we
repeatedly decrement c twice while incrementing d once.

63

• Check whether the value of a counter c is even: duplicate c and repeat-
edly subtract 2 from the copy. Then see whether the process leaves
remainder 1.

• Add or subtract the value of a counter c to or from another counter
d: for adding, increment d while decrementing c. For subtracting,
decrement both until c reaches value 0.

Now we explain how to mimic configurations of N with a kCA. Given a
configuration, the work tape content can be understood as a c · log n-bit
binary number. We break this number up into c blocks of log n bits like in
Figure 11.1. Each block will be represented by a counter of A.

(¬x, 0) (¬y, 0)

(¬z, 0)

Figure 11.1: blubb

We also need to simulate the work tape head. To this end, we store the
currently scanned block in A’s finite control states. The position of the head
in the block is stored in a counter: the i-th cell in a block is represented by
the counter value 2i.
The position of N ’s and A’s input heads coincide. Also the control states of
N are represented by the control states of A. The kCA A also needs some
finite number of scratch counters so that it can perform the above mentioned
operations.

11.2 Certificates

64

Chapter 12

P and NP

Text...

12.1 The Circuit Value Problem

12.2 Cook and Levin’s Theorem

12.3 Context-free languages, Dynamic Program-
ming and P

65

Chapter 13

PSPACE

Text...

13.1 Quantified Boolean Formula is PSPACE-
complete

13.2 Winning strategies for games

13.3 Language theoretic problems

66

Chapter 14

Alternation

Text...

14.1 Alternating Time and Space

14.2 From Alternating Time to Deterministic
Space

14.3 From Alternating Space to Deterministic
Time

67

Chapter 15

The Polynomial Time
Hierarchy

Text...

15.1 Polynomial Hierarchy defined via alternating
Turing machines

15.2 A generic complete problem

68

Appendix A

Landau Notation

We will usually measure the complexity of an algorithm by functions c :
N → N which take a size n and return the largest resource consumption
for any input of size n. Instead of describing this function exactly, we will
characterize it by its membership in classes of functions.
We are especially interested in how the resource cost scales with the size
of the input. In particular, we are interested in asymptotic bounds, which
characterize the behavior of a function from a certain point on. Furthermore,
our notation of complexity should ignore multiplicative constants.
The Landau notation provides a formalization of those concepts.

Intuition:

f ∈ Θ(g) f ∈ O(g) f ∈ o(g) f ∈ Ω(g) f ∈ ω(g)

”f = g” ”f ≤ g” ”f < g” ”f ≥ g” ”f > g”

Θ-Notation: The class Θ(g) should be the class of all functions, which
behave asymptotically like g.

Definition A.1. Let g : N→ N be a function. We define Θ(g) to be the set
of all functions f : N → N such that there is an index n0 ∈ N and positive
multiplicative constants c1, c2 such that from n0 on, f(n) is bounded by
c1 · g(n) from below and by c2 · g(n) from above.

Θ(g) = { f : N→ N | ∃n0 ∈ N, c1, c2 ∈ R+ : ∀n ≥ n0 : c1·g(n) ≤ f(n) ≤ c2·g(n) }

Remark A.2. We make use of the following notations:

• By abuse of notation, one also writes f = Θ(g) instead of f ∈ Θ(g).

• Sometimes, one writes f(n) ∈ Θ(g(n)) instead of f ∈ Θ(g).

Example A.3. We want to prove 1
2n

2 − 3n ∈ Θ(n2). This shows that the
highest occurring power of n dominates the other terms asymptotically.

69

Proof. We need to find c1, c2 such that from some n0 on, the following
inequalities are fulfilled:

c1 · n2 ≤ 1

2
n2 − 3n ≤ c2 · n2.

We may divide all terms by n2 to get

c1 ≤
1

2
− 3

n
≤ c2.

Using this inequality, c2 = 1
2 , c1 = 1

14 seem like a reasonable choice, and one
can indeed verify that from n0 = 7 on, both inequalities hold.

Example A.4. For any polynomial f =
∑d

i=0 ain
i with a positive constant

in front of the term of the highest degree (i.e. ad > 0), we have f ∈ Θ(nd).

O-Notation: The class O(g) should be the class of all functions, which
are asymptotically bounded by g from above:

Definition A.5. Let g : N→ N be a function. We define O(g) to be the set
of all functions f : N→ N such that there is an index n0 ∈ N and a positive
multiplicative constant c1 such that from n0 on, f(n) is bounded by c · g(n)
from above.

O(g) = { f : N→ N | ∃n0 ∈ N, c ∈ R+ : ∀n ≥ n0 : f(n) ≤ c · g(n) }

Example A.6. Let f(n) = a · n + b for positive constants a, b. Then
f ∈ O(n),

Proof. Choose c = a+ b, n0 = 1. We have for all n ∈ N, n ≥ n0 = 1:

a · n+ b ≤ a · n+ b · n = (a+ b) · n = c · n.

Example A.7. By definition, O(1) is the set of all functions f : N → N,
which are bounded from above by a constant c = c · 1 from a certain index
n0 on. But since each f has only finitely many values f(0), ..., f(n0 − 1)
which may violate f(n) ≤ c, we may choose c′ = max{c, f(0), ..., f(n − 1)}
and get f(n) ≤ c′ for all n ∈ N. This shows that O(1) is actually the set of
all bounded functions f : N→ N.

Remark A.8. For all g : N→ N:

Θ(g) ⊆ O(g).

70

o-Notation: The class o(g) should be the class of all functions, which
are asymptotically strictly bounded by g from above. To achieve this, the
definition quantifies over arbitrary small constants.

Definition A.9. Let g : N→ N be a function. We define o(g) to be the set
of all functions f : N→ N such that for all positive multiplicative constants
c, there is an index nc ∈ N such that from nc on, f(n) is strictly bounded
by c · g(n) from above.

o(g) = { f : N→ N | ∀c ∈ R+ : ∃nc ∈ N : ∀n ≥ n0 : f(n) < c · g(n) }

Example A.10.
2n2 6∈ o(n2).

Proof. For c = 3, we have that 2n2 ≤ 2n3 holds for no n ≤ 1.

Ω-Notation: The class Ω(g) should be the class of all functions, which are
asymptotically bounded by g from below.

Definition A.11. Let g : N → N be a function. We define Ω(g) to be the
set of all functions f : N → N such that there is an index n0 ∈ N and a
positive multiplicative constant c1 such that from n0 on, f(n) is bounded
by c · g(n) from below.

Ω(g) = { f : N→ N | ∃n0 ∈ N, c ∈ R+ : ∀n ≥ n0 : c · g(n) ≤ f(n) }

Remark A.12.
Θ(g) = O(g) ∩ Ω(g)

Proof. Exercise!

ω-Notation: The class ω(g) should be the class of all functions, which are
asymptotically strictly bounded by g from below.

Definition A.13. Let g : N → N be a function. We define ω(g) to be
the set of all functions f : N → N such that for all positive multiplicative
constants c, there is an index nc ∈ N such that from nc on, f(n) is strictly
bounded by c · g(n) from below.

ω(g) = { f : N→ N | ∀c ∈ R+ : ∃nc ∈ N : ∀n ≥ n0 : c · g(n) < f(n) }

71

Rules:

Lemma A.14. If f ∈ Θ(g) and g ∈ Θ(h), then f ∈ Θ(h).

Proof. Choose c = cg · ch and n0 = max{ng, nh}.

Remark A.15. The above lemma also holds for o, O, ω, Ω instead of Θ.
Membership in these classes is transitive.

Lemma A.16. For all functions f : N→ N, we have f ∈ Θ(f)

Proof. Choose c1 = c2 = 1, n0 = 0.

Remark A.17. The above lemma also holds for O, Ω. Membership in these
classes is reflexive.
It does not hold for o and ω.

Lemma A.18. Membership in Θ is symmetric: f ∈ Θ(g) ⇐⇒ g ∈ Θ(f).
This does not hold for the other classes.

Some exercises:

Example A.19. Let f, g : N → N. We define max(f, g) as the function
with (max f, g)(n) = max{f(n), g(n)} for all n ∈ N. Claim:

max(f, g) ∈ Θ(f + g)

Proof. Choose n0 = 0, c1 = 1
2 , c2 = 1. We have

c1 · (f(n) + g(n)) ≤ c · 1((max(f, g))(n) + (max(f, g))(n))

= c · 1 · 2 · (max(f, g))(n)

= (max(f, g))(n)

for all n ∈ N.
We furthermore have that (max(f, g))(n) is either equal to f(n) or to g(n),
but

(max(f, g))(n) ≤ 1 · (f(n) + g(n))

holds in both cases.

Example A.20.
o(g) ∩ ω(g) = ∅

for any function g : N→ N.

Proof. Let g be any function. Towards a contradiction, assume that there
is a function f ∈ o(g) ∩ ω(g). This means that for any constant c ∈ R+,
there are indices n1 and n2 such that c · g(n) < f(n) for all n ≥ n1 and
f(n) < c · g(n) for all n ≥ n2. But then, for n ≥ max{n1, n2}, we would
have c ·g(n) < f(n) < c ·g(n). This inequality does not hold for any positive
constant c and any n ∈ N.

72

	Crossing Sequences and Unconditional Lower Bounds
	Crossing Sequences
	A Gap Theorem for Deterministic Space Complexity

	Time and Space Complexity Classes
	Turing Machines
	Time Complexity
	Space Complexity
	Common Complexity Classes

	Alphabet reduction, Tape reduction, Compression and Speed-up
	Alphabet Reduction
	Tape Reduction
	Compression and linear Speed-up

	Space vs. Time and Non-determinism vs. Determinism
	Constructible Functions and Configuration Graphs
	Stronger Results

	Savitch's Theorem
	Space and Time Hierarchies
	Universal Turing Machine
	Deterministic Space Hierarchy
	Further Hierarchy Results

	Translation
	Padding and the Translation Theorems
	Applications of the Translation Theorems

	Immerman and Szelepcsényi's Theorem
	Non-reachability
	Inductive counting

	Summary
	L and NL
	Reductions and Completeness in Logarithmic Space
	Problems complete for NL
	Problems in L

	Models of computation for L and NL
	k-counter and k-head automata
	Certificates

	¶ and NP
	The Circuit Value Problem
	Cook and Levin's Theorem
	Context-free languages, Dynamic Programming and ¶

	PSPACE
	Quantified Boolean Formula is PSPACE-complete
	Winning strategies for games
	Language theoretic problems

	Alternation
	Alternating Time and Space
	From Alternating Time to Deterministic Space
	From Alternating Space to Deterministic Time

	The Polynomial Time Hierarchy
	Polynomial Hierarchy defined via alternating Turing machines
	A generic complete problem

	Landau Notation

