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Abstract

Research has shown that 7% to 23% of a typical source code system consists of cloned
code. Some clones are introduced intentionally, but a majority is unintenionally cre-
ated. To find these clones, several code clone detection tools have been developed. They
are used in several fields such as detection of software plagiarism, malware detection
or code quality enhancing. However, this process is very computation intensive and
takes a lot of time depending on the size of the source code. There’s a technique called
code obfuscation to further complicate the detection of code clones. The aim of code
obfuscation is to obscure source code fragments (in this case code clones).
The purpose of this study is to investigate the effects of source code obfuscation on the
performance of code clone detection tools. To this end, we conducted a case study to
evaluate the robustness of these tools.
For the case study, we developed an obfuscator to automatically apply several obfus-
cations on copies of the subject system. We then analyzed the obfuscated copies in
combination with the original code with four clone detectors, each using a different
technique (textual, token, AST, PDG).
Our results reveal that the token- and tree-based detection technique are robust against
simple transformations, but are vulnerable against more complex ones. In contrast,
the PDG-based technique is more robust against complex obfuscations. Finally, the
textual-based technique showed no robustness against obfuscations at all.





Contents

List of Figures vii

List of Tables ix

List of Code Listings xi

1 Introduction 1

2 Background 3
2.1 Code Clone Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Code Clone Types . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.1.1 Type I . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.1.2 Type II . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1.3 Type III . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1.4 Type IV . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.1.5 Code Clone Terms . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Clone Detection Process . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Clone Detection Techniques . . . . . . . . . . . . . . . . . . . . 9

2.1.3.1 Textual . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3.2 Token-based . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3.3 Tree-based . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3.4 PDG-based / Semantics-Aware . . . . . . . . . . . . . 11

2.2 Code Obfuscation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Algorithms of Obfuscation . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Applications of Code Obfuscation . . . . . . . . . . . . . . . . . 15

3 Framework 17
3.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Renaming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.2 Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.3 Contraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.4 Loop Transformation . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.5 Conditional Transformation . . . . . . . . . . . . . . . . . . . . 20



vi Contents

3.3 Obfuscator Implementation . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Evaluation 25
4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3.1 Robustness of Text-Based Clone Detection . . . . . . . . . . . . 27
4.3.2 Robustness of Token-Based Clone Detection . . . . . . . . . . . 29
4.3.3 Robustness of PDG-Based Clone Detection . . . . . . . . . . . . 31
4.3.4 Robustness of Tree-Based Clone Detection . . . . . . . . . . . . 35

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.5 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Related Work 39

6 Conclusion 41

7 Future Work 43

A Appendix 45

Bibliography 47



List of Figures

2.1 A Generic Clone Detection Process [RCK09] . . . . . . . . . . . . . . . 8

2.2 Java Code to Token Example . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Java Code to AST Example . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Java Code to PDG Example . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Classifications of Obfuscations [CC97] . . . . . . . . . . . . . . . . . . . 14

3.1 ARTIFICE - Program Flow Chart . . . . . . . . . . . . . . . . . . . . . 21

3.2 Java Model Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 JPLAG (detected clones are highlighted) . . . . . . . . . . . . . . . . . 28

4.2 Cross-Project Clones (Red = Cross-Project, Green = Internal) . . . . . 32

4.3 Scorpio - Loop Obfuscation Results (Top: Original/Original, Bottom:
Obfuscated/Original) - Cloned PDG nodes are highlighted . . . . . . . 34

4.4 AST Code Clone - Expansion(with highlighted difference) . . . . . . . 36

4.5 AST Code Clone - Renaming(with highlighted difference) . . . . . . . . 37



viii List of Figures



List of Tables

4.1 Clone Detection Results - Textual (Match-length 5 (String Token)) . . 28

4.2 Clone Detection Results - Token (Match-length 9 (Java Token)) . . . . 30

4.3 Clone Detection Results - PDG (Match-length 5 (PDG Node)) . . . . . 33

4.4 Clone Detection Results - AST (Match-length 10 (Tree Nodes)) . . . . 36

4.5 Robustness of Detection Techniques . . . . . . . . . . . . . . . . . . . . 37



x List of Tables



List of Code Listings

2.1 Original Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Type I - Code Clone . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Type II - Code Clone . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Type III - Code Clone . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.5 Type IV - Original Code . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.6 Type IV - Code Clone . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1 Layout Obfuscation using Renaming . . . . . . . . . . . . . . . . . . . 19
3.2 Control Obfuscation by Expansion . . . . . . . . . . . . . . . . . . . . 19
3.3 Control Obfuscation by Contraction . . . . . . . . . . . . . . . . . . . . 19
3.4 Control Obfuscation by Loop Transfomation I . . . . . . . . . . . . . . 20
3.5 Control Obfuscation by Loop Transfomation II . . . . . . . . . . . . . . 20
3.6 Control Obfuscation by Conditional Transformation . . . . . . . . . . . 20
4.1 Loop Transformation with Tokenization . . . . . . . . . . . . . . . . . . 31
A.1 ARTIFICE - Transformations . . . . . . . . . . . . . . . . . . . . . . . 45



xii List of Code Listings



1. Introduction

Reusing code fragments in software systems is a common activity during development.
Usually, it is performed in an ad-hoc fashion by intentionally copy, paste and modify
(if necessary), or by unintentionally writing equal code with minor differences from
another fragment. Such fragments are known as code clones.
Former research has shown, that 7% to 23% of typical code is a result of cloning code
fragments. With this significant amount of clones it is important to analyze the effects
of code cloning [Bak95] [RC08].
Commonly, code clones are considered to have a negative effect on the overall quality
and reliability of source code. For instance, software maintenance can be made more
difficult - if a bug is detected in one fragment, all similar fragments have to be checked.
Due to the increase of redundant code, code quality and code understanding suffers
from bad design and more time is needed to understand the code. Furthermore, resource
requirements increase due to the higher growth rate of the system size [RC07]. However,
there are certain benefits that come from code cloning, which includes a clean software
architecture [KG06].

Software plagiarism is another domain, where code clones are relevant. Instead of
analyzing one single software system for code clones, it is possible to find code clones
between two or more systems. If the result identifies the majority of the systems as
code clones, it is possible that one of the systems is a copy of the other, or certain parts
are copied.

To detect replicated code fragments, a variety of code clone detectors have been de-
veloped. Code clone detectors serve the purpose to analyze one or more systems to
identify similar parts, extract them and present them in a user-readable format to the
user for further actions. This is done by different detection techniques that depend on
different source code representations. The majority of developed detectors are text-,
token-, tree- or PDG-based [RCK09]. Each technique has its own strengths and weak-
nesses. Existing studies evaluated code clone detectors for their performance to find
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code clones, and then rate them depending on their results [RCK09] [RC07]. However,
little is known why certain detectors have better or worse results.

Goal of this Thesis

The goal of this thesis, is to evaluate the robustness of different code clone detection
techniques considering obfuscated code. Here, we will use a code obfuscator to obscure
an existing software system, which will be analyzed by different code clone detectors.
We will analyze the results of this process, to identify the effect of certain code trans-
formations. This will give a conclusion, if and why the detectors are robust against
certain transformations.

Finally, we present and discuss our results, especially whether and why different tech-
niques are prone to different obfuscations. Our subject system is Java project consisting
of 21 source files and 2415 lines of code. The developed obfuscator is used to apply
different transformations on several copies of the original project.

Structure of the Thesis

This thesis is structured as follows: In Section 2, we present the required background
knowledge to further understand the thesis. There, we present the basics of code cloning
while discussing the types of code clones and a typical code clone detection process.
Additionally, we present four code clone detection implementations, with each one us-
ing a different technique. Code obfuscation builds the second part of the background
section. We present a code obfuscation, classify different transformations and discuss
the application of code obfuscation.

In Section 3, we introduce the code obfuscator ARTIFICE we created. There we
discuss several requirements the obfuscator has to meet and give an insight of our
implementation. Additionally, a quick survey of obfuscations the obfuscator can apply
is given.

In Section 4, we present the conducted case study. We will present how we approached
the study and discuss our set-up. Then, we discuss the results of four different code clone
detection processes and analyze them, to evaluate the robustness of each technique. At
last, we summarize our evaluation and evaluate its threats to validity.

Finally, we give a summary of this thesis, discuss works that are related to this work,
and give an outlook for future work.



2. Background

In this section we provide the theoretical foundation for further understanding of this
thesis. The first part introduces the basics of code clone detection, with a brief overview
of detection techniques and important terms used in that field. In the second part, we
give an introduction to the concept of code obfuscation.

2.1 Code Clone Detection

During the development/evolution phase of a software system it often occurs that the
developer reuses existing code fragments by copy/pasting, thus creating code clones.

There are several reasons for a developer to clone existing code, for example: A huge
part of code clones gets introduced because of a time limit that is assigned to the
developer. To spare time, he uses the easy way and looks for similar existing solutions
and adapts it to the current problem. Sometimes code clones are intentionally created
for the benefit of a clean and understandable software architecture [KG06].

While some code clones are intentionally created and beneficial, there are several draw-
backs that come with code cloning. Frequent code cloning results in a high growth rate
of the system, thus increasing the resource requirements. That may create a problem
for compact devices or other devices with limited resources. Maintenance costs rise
with every code clone, especially if a bug is found in the original fragment. Not only
does the original fragment require bugfixing, every fragment that derived from it needs
to be handled with. Extensive cloning may introduce bad design, making it difficult to
understand and reuse the part of the system [Joh94] [AM02] [JM96].

If the code clones in a software system show a detrimental effect on the code quality, a
code clone detector can be used to detect potential code clones. Found clones can then
be handled with.
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There are other tasks where clone detection grants a huge benefit. Some of these are:

• Detection of malicious software: Different malicious software families may
contain parts where they are similar. Clone detection can be used to find similar-
ities between two families, and find evidence of its malicious intends [WL06].

• Detection of plagiarism and copyright infringements: Similar code be-
tween to software systems can signalize a copyright infringement if the origi-
nal code is not intended for free use. Clone Detectors can find these infringe-
ments [Bak95].

• Code compacting: Source code size can be reduced if the clones get eliminated
[WKCG03].

2.1.1 Code Clone Types

Two fragments can be similar in two different ways: they can have a similarity in their
source code or they are similar in their functionalities without being textually similar.
Each domain contains different code clone types where a code clone can be assigned to.
The types are the following:

• Textual Similarity:

Type I: Identical code fragments except for variations in whitespace, layout and
comments.

Type II: Structurally/syntactically identical fragments except for variations in
identifiers, literals, types, layout and comments.

Type III: Statements can be changed, added or removed in addition to variations
in identifiers, literals, types, layout and comments.

• Functional Similarity:

Type IV: Two or more code fragments that perform the same computation but
implemented through different syntactic variants.

2.1.1.1 Type I

A Type I clone is a code clone fragment which is identical to the original fragment.
Only whitespace(new lines, blanks, ...), comments and layout changes are allowed to
differ between both fragments.

1 int b = 20;
2 int c = 0;
3 for {int a = 0; a < b; a++} {
4 b = a + b; // comment
5 c = b; // another comment
6 }

Listing 2.1: Original Code
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A Type I clone of the original fragment could be as follows:

1 int b=20;
2 int c=0;
3 for{int a=0;a<b;a++}{ //comment
4 b=a+b;
5 c=b;} //another comment

Listing 2.2: Type I - Code Clone

These two fragment are essentially the same after removing blanks and reordering the
brackets. Even with the changed layout and the different comments, it still would be
a clone. A capable clone detector is likely to find each Type I clone because of its
simplicity. Only line-by-line detectors would have problems, because the location of
brackets can create different lines.

2.1.1.2 Type II

A Type II clone inherits all properties of a Type I clone. In Addition, all user-defined
identifiers can be different from the original. Let’s consider listing 2.1 as the original
again. A Type II clone could be as follows:

1 int d=10;
2 int e=5;
3 for {int i =0;i<e;i++}
4 {
5 d = i + d; // comment
6 e = d; } // another comment

Listing 2.3: Type II - Code Clone

Compared to the original fragment some changes in the layout and whitespace were
introduced. Furthermore, all identifiers have been changed but the syntactic structure
remains the same.

2.1.1.3 Type III

A Type III clone is a copied fragment that has all characteristics of a Type II clone,
with the addition that statements can be added, deleted or changed. With listing 2.1
as original, a Type III clone could be:

1 int d=10;
2 int e=5;
3 for {int i =0;i<e;i++}
4 {
5 d = i + d; // comment
6 d = d; // new statement
7 e = d;
8 } // another comment

Listing 2.4: Type III - Code Clone

With the addition of the new statement, the fragment becomes a Type III clone.
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2.1.1.4 Type IV

In contrast to the other types, Type IV clones do not rely on textual similarities. Rather,
two code fragments have to be similar in a semantic way, which means that the clone is
not necessarily a copy of the original. A behavioral clone exists, if two fragments have
the same pre-/postconditions. An example of a Type IV clone would be the following:

1 int i = 1;
2 int j = 1;
3 for (i=1; i<=f; i++)
4 j=j∗i;

Listing 2.5: Type IV - Original Code

This code snippet computes the factorial value of ’f’, where ’j’ is the result. Listing 2.6
realizes the same computation with a recursive function.

1 int factorial(int f) {
2 if (f == 0)
3 return 1;
4 else
5 return f ∗ factorial(f−1) ;
6 }

Listing 2.6: Type IV - Code Clone

We can see that both fragments have the same behavior with equal input. For example:
With f = 6 as input, the result of both computations will be 720. With no structural
nor textual similarities, the code fragment has to be a Type IV clone.

2.1.1.5 Code Clone Terms

In addition to the four code clone types, there are other terms frequently used by
clone detection software. The following section introduces important terms for further
understanding.

Exact Clones: Exact clones are code fragments that are identical to each other, with
the exception of changes in whitespace, layout and/or comments. An exact clone is
basically referring to a Type I clone.

Near-Miss Clones: Near-miss clones are clones with changes in whitespace, layout,
comments, and identifiers. That includes that all near-miss clones are Type II clones.

False-Positive Clones: False-positive clones are code fragments that are identified as
clones. However, they are no code clones at all. Simple or repetitive structures often
lead to these matches.

Semantic Clones: A semantic clone is another term for a Type IV clone. They are
clones that are functional similar but are not necessarily syntactically similar.

Clone Pair: Two code fragments build a clone pair, if they are similar to each other.
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2.1.2 Clone Detection Process

The aim of clone detection is to find fragments of high similarity. Due to the fact
that it is not known beforehand which code fragments are used multiple times, the
clone detector has to compare every possible fragment with each other. Even in smaller
software systems this process consumes a high value of resources. To counter this
problem, it is necessary to reduce the amount of possible fragments before performing
the comparison. This section provides a brief description of every clone detection process
step [RC07] [RCK09]. Figure 2.1 gives a graphical representation of the process.

1. Preprocessing:
At first, the source code is partitioned and the source and comparison units are
determined. This phase involves three steps.

The first step is to remove uninteresting parts from the source code. This includes
generated code(e.g., IDE generated UI parts), which may produce false-positives
and embedded code from different languages(e.g, SQL embedded code).

The next step is to partition the remaining code into source units. These source
units are the largest fragments involved in the clone detection. Source units
can be at any level of granularity, for example, files, classes, functions/methods,
begin-end blocks, statements, or sequences of source lines.

Finally, the comparison unit is determined. Depending on the actual clone detec-
tion technique (Section 2.1.3), the source unit is further partitioned into smaller
parts(e.g., lines, tokens,..).

2. Transformation:
If the clone detection technique is other than textual, the source code has to be
transformed into the corresponding representation. Depending on the technique,
the transformation is performed as :

Tokenization: Each line of the source code is divided into small tokens depending
on the rules of the programming language.

Parsing: The source code is parsed into a parse tree or an abstract syntax tree.

Generating PDG: Semantics-aware approaches generate program dependency
graphs (PDGs) from the source code, where the source and comparison units are
represented as sub-graphs.

Some tools include a normalization phase during the transformation. The normal-
ization includes: Removal of comments and whitespace, normalizing of identifiers
or removing differences between layout and spacing - called pretty-printing.

3. Match Detection:
The transformed code is analyzed during this phase. Every transformed com-
parison unit is compared to each other with the help of a comparison algorithm.
Adjacent similar units are aggregated to form larger units. The result of this
phase is a clone pair list.
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Figure 2.1: A Generic Clone Detection Process [RCK09]
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4. Formatting:
Because of the transformation, the clone pair list obtained by the comparison
algorithm does not correspond to the actual source code. Therefore, the clone
pair list is converted into a new clone pair list corresponding to the original code.

5. Post-Processing:
False-positive clones are filtered out with the help of manual analysis or automated
heuristics during this phase.

6. Aggregation:
Finally, some tools reduce the amount of data by aggregation clone pairs into
cluster, classes, groups etc..

2.1.3 Clone Detection Techniques

The following section introduces the basics of different clone detection processes. Fur-
thermore, we give a short example of an actual implementation for each technique.
Based on the information that is used during the process and the analysis technique,
the techniques can be classified as one of the following main categories: textual, token-
based, tree-based or PDG-based.

2.1.3.1 Textual

Textual approaches are based on the comparison of line or string sequences. While
they mostly work with raw source code, some transformations or normalization can
be applied such as comment and whitespace removal. Text-based techniques are not
very robust against changes (e.g., structural changes such as the beginning/ending of
a block), but on the positive side they are language independent. When two or more
sequences are compared and identified as similar, the detector returns clone pairs with
their maximum possible length. An example for a textual detector is the common diff

file comparison utility, which tries to find differences between two files by finding the
longest common subsequences.

2.1.3.2 Token-based

In a token-based approach, the source code is parsed into a sequences of tokens. Fig-
ure 2.2 is an example for transforming actual java source code into a token represen-
tation.The transformed sequences are then compared to each other to find duplicates.
Once the clone pairs are found, the original code fragments are returned.

The token-based clone detector that is used for the experiment in this thesis is JPLAG
by Pretchelt et al. [LP]. It is a java based software plagiarism detector, which is basically
a cross-project code clone detector. The detection is split in two phases. In the first
phase, the source code is parsed into tokens. Comments and whitespace do not produce
a token, since they are easily changed. Every relevant code fragment is parsed into a
program specific token (see Figure 2.2).
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Figure 2.2: Java Code to Token Example

The second phase is the detection phase. At first two token strings are compared to each
other. The aim is to find substrings which meet the following requirements: token A
can only be matched with exactly one token B. Substrings are to be found independent
of their position in the string. Additionally, long substring matches are preferred over
short ones.

The biggest contiguous matches are then marked, to exclude them from the comparison.
This process is repeated until no more matches can be found.

2.1.3.3 Tree-based

A tree-based detector parses the source code into a parse tree or an abstract syntax
tree (AST). The AST represents the syntactic structure of the parsed source code with
abstracted representations for every element. Then, a tree matching algorithm is used
to search for similar subtrees to detect the code clones. Once the clones are found, the
corresponding source code of the subtrees is returned as clone pairs.

Figure 2.3: Java Code to AST Example

An example for a tree-based clone detector is CloneDigger by Bulychev et al. [BM09].
At first, the source code is parsed to an abstract syntax tree where each statement is
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considered a root of its own subtree. Then, the detector identifies similar statements
by using anti-unification (basically a generalization of statements [Rey70]). Similar
statements are partitioned in clusters, where every cluster is marked by an ID. When
the clustering is completed, duplicate clone fragments are found by finding identical
sequences of cluster IDs. At last, identified code sequences are examined for overall
similarity. In this phase, every pair of candidate sequences is checked for overall simi-
larity at the statement level, again using anti-unification. When the statements surpass
several thresholds, they are reported as a code clone pair.

2.1.3.4 PDG-based / Semantics-Aware

Semantic-Aware approaches aim at analyzing the behavior of the source code, rather
than their syntactical similarities. A highly abstracted source code representation -
called program dependency graph (PDG) is obtained that carries the semantic infor-
mation of the source. The PDG contains the data and control flow, thus ignoring
the syntactic structure. After obtaining the PDG, a subgraph matching algorithm is
applied to discover similar subgraphs. These graphs are then returned as clones.

Figure 2.4: Java Code to PDG Example

A PDG-based clone detector is Scorpio by Higo et. al [HK11]. Its basic comparison
algorithm consists of 4 steps after parsing the source code to a dependency graph. The
first step is to hash all PDG nodes based on their contents. Nodes with similar hash
values are classified as an equivalence class.
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The next step is to find similar subgraphs. Therefore, a pair of nodes from one equiv-
alence class is selected, which build the starting point for the comparison. If the pre-
decessors (or successors) have the same hash value, then they are considered part of a
similar subgraph. This is repeated, until the hash value of the predecessors(successors)
is different. The pairs of identified similar subgraphs are clone pairs. In step 3, clone
pairs that are subsumed by another clone pair are removed from the set, since they are
part of a bigger clone pair. Finally, clone pairs sharing the same subgraph (e.g, (s1, s2)
and (s2, 3) build the clonesets (s1, s2, s3)).

2.2 Code Obfuscation

During the development of a software system, a lot of know how of the developers is
incorporated in the system. A software system is therefore a knowledge base for algorith-
mical problem-solving strategies. The compiled source code contains this knowledge.
Unfortunally, there are certain (tool-assisted) possibilities to decompile every source
code despite several protection mechanisms, thus enabling other developers to gain the
encoded knowledge (illegally, if the source code is under copyright).

A creator of an application has different possibilities to protect his intellectual property.
This includes legal security means such as copyrights or technical means such as server-
side execution(application is running on a server, and the user never receives a physical
copy) or encoding the program. Another possibility is to obfuscate(e.g., an extreme
change of the layout) the source code, thus making the analysis more complex.

However, code obfuscation can be used the other way around as well. A competitor of a
software developer can acquire the source code of an application by reverse engineering.
He then develops a similar application using the acquired source code. Code obfuscation
is then applied, to make it harder to find the similarities regarding the original program.

This section gives a short definition of code obfuscation and its terminology and shows
a basic algorithm of code obfuscation.

2.2.1 Definition

Code Obfuscation is the process of changing the source code of an application while
keeping its functionality. This may be done through means such as the changing of
layout, renaming of identifiers, reordering, cloning of methods and much more.
Collberg et al. [CC97] defined an obfuscating transformation as follows:

DEFINITION (OBFUSCATING TRANSFORMATION)

Let P
τ→ P ′ be a transformation of a source program P into a target program P ′.

P
τ→ P ′ is an obfuscating transformation, if P and P ′ have the same observable

behavior. More precisely, in order P
τ→ P ′ to be a legal obfuscating transformation the

following conditions must be hold:
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• If P fails to terminate or terminates with an error condition, then P ′ may or may
not terminate.

• Otherwise, P ′ must terminate and produce the same output as P .

Observable behavior in this context means the behavior the user experiences, not equal
behavior. The result of P’ has always to be the same as the result of P. However, P’ does
not have to be equally efficient and can be different during the execution for instance,
regarding performance or memory consumption.

There is a variety of obfuscating transformations that can be applied to source code.
Four groups have been proposed by Collberg to classify several obfuscating transforma-
tions. [CC97] Figure 2.5 shows some examples for the categories.

Layout Obfuscation: Layout obfuscations aim at making the source code unread-
able. Operations of these categories do not require a lot of computational work but can
easily get de-obfuscated. Obfuscating transformations that belong to this category are
removing of comments, scrambling of identifiers and formatting changes.

Data Obfuscation: Data obfuscations affect the data and data structures. This
may be done by splitting variables, promoting variables (i.e, int to integer object) or
restructuring arrays.

Control Obfuscation: Control Obfuscations obscure the control flow of the exe-
cution. These transformations affect the aggregation (break up or merge statements),
ordering (randomizing the order of statements) or computations (insertion of new dead-
/redundant code, algorithmic changes) of a program. Because these transformations
alter the overall control flow of the underlying program, a high computational overhead
is necessary, but yields a high degree obfuscation.

Preventive Obfuscation: All aforementioned obfuscations can get detected and
reverted by applications known as deobfuscators. Preventive transformations do not
aim at obscuring the program to a human reader. Rather, they try to make known
automatic deobfuscations techniques more difficult.

The quality of each transformation differs from each other depending on how good they
obscure the program or how computationally intensive they are. An obfuscation can
be evaluated by the following four criteria:

• Potency: Amount of obscurity added to the program by the obfuscation

• Resilience: Difficulty of how to break the obfuscation by an automated deob-
fuscator

• Stealth: Quality of how good the obfuscation blends in with the rest of the
program

• Cost: Amount of computational resources consumed by the execution of the
obfuscation
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Figure 2.5: Classifications of Obfuscations [CC97]

2.2.2 Algorithms of Obfuscation

A general obfuscation algorithm was proposed in [CC97]. The top-level loop and
general structure of an obfuscation tool is:

Algorithm 1 Basic Obfuscation Algorithm

while !(Done(A)) do
S := SelectCode(A);
T := SelectTransform(S);
A := Apply(T, S);

end while

SelectCode determines the next source code object(S) (e.g., a for statement) that is to
be obfuscated. This object is then passed to the SelectTransformation function, that
analyzes the given source code object and returns the transformation (T), which will be
applied to S. At last, Apply performs the transformation T on the source code object S
and updates the application. The algorithm terminates, when a specific event occurs -
for example: no more transformations can be applied on the source code A, A exceeds
a specific size or a certain degree of obfuscation is applied.
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2.2.3 Applications of Code Obfuscation

Code obfuscation can be used for a variety of purposes by either legitimate software de-
velopers or malware authors. The main purpose of obfuscation is to protect software. As
mentioned earlier, an obfuscated code will hinder the program to get reverse-engineered,
thus saving its intellectual property. Moreover, code obfuscation can be used for wa-
termarking by introducing special code - named ’markers’. As a result, granting the
ability to clearly identify the version or the author of a program. Furthermore, code
obfuscation can serve as a brain teaser - here known as recreational obfuscation. The
participants aim is to either analyze an obfuscated program’s function or obfuscate a
given program as best as possible. [IOC]

On the other side, code obfuscation can be used for malicious intents, too. Virus
creators can obfuscate their virus code, to create a new generation of their virus, thus
hindering virus scanners to identify them as such. Moreover, Obfuscation may be used
for concealing plagiarized software against plagiarism detection.
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For the execution of the experiment different obfuscated versions of the the original
source code of an application are required. They build the comparison set for the
code clone detectors. Depending on the size of the source code, it would be very
time-consuming and error-prone to obfuscate a whole Java project, if made manually.
Therefore, we developed a simple code obfuscator as an Eclipse plugin, that applies
different source code transformations that are intended to obfuscate the source code.

This section introduces the code obfuscator we developed for the experiment. The first
part specifies some requirements the obfuscator has to meet. The second part describes
the implemented transformations and classifies them. Finally, we present the overall
program flow of the obfuscator.

3.1 Requirements

The aim of the code obfuscator is to provide a fast way to obfuscate any given source
code automatically. To achieve this, several requirements must be met:

• Eclipse Plugin:
The Eclipse IDE offers a variety of functions and frameworks which support the
development of source-code based operations - most importantly the Java Devel-
opment Tools (JDT) and the Language Tool Kit (LTK). The JDT Core package
provides the developer with APIs for navigating through the Java element tree
and manipulating structured Java documents, thus supporting the developer with
algorithms for the selection of code to be obfuscated. With the addition of the
LTK package, which provides an API for refactoring, Eclipse offers the perfect
environment for Java source code obfuscations.

• Implementation of Obfuscations:
The code obfuscation can be split in 2 phases. The first phase is to find and select
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potential source code fragments for obfuscation. The second phase applies the
code obfuscation to the source code through code refactoring. These phases have
to be implemented for every chosen obfuscation to work properly.

• Selectable Obfuscations:
For the experiment, we need to be able to analyze the effect of every single ob-
fuscation. If the source code is obfuscated with all obfuscations at once, we are
not able to identify the effect of them separately. Therefore, the obfuscator must
have the ability to let the user select, which obfuscations he wants to apply.

• Syntactically-correct Transformations:
The definition of obfuscating transformations demands, that the observable be-
havior of the obfuscated program in comparison to the original program needs to
be the same. Furthermore, the obfuscated program must terminate and produce
the same output as the original. Therefore we need the implemented transforma-
tions to be syntactically correct regarding the Java language and the outcome of
the original program.

• Logging:
For the evaluation of each clone detection result, it is necessary to know where
code was obfuscated and the amount of obfuscations performed on the original
source code. Additionally, the logging allows to build a correlation between the
code clone detection results and the performed obfuscation. Therefore, we need a
logger for creating a log file which contains all necessary data of the obfuscation
process.

• Simple Interface:
The obfuscations do not need extensive user-input except for selecting active
obfuscation. Therefore, a simple-user interface (status overview, checkboxes, ...)
is sufficient for our purposes.

3.2 Transformations

For the purpose of the experiment, we need viable transformations to test the robustness
of the clone detectors. Therefore, we decided to use simple transformations that can
be done by anyone, for example a student who is trying to obscure a program for an
assignment which is not his own work. The used transformations are presented in
this section. A summarized view of the transformations is presented in the appendix
(Chapter A).

3.2.1 Renaming

The renaming transformation changes user-defined identifiers (fields, variables and
methods). Without any user input, the identifiers are named sequentially (m1,m2, ...
for methods, v1, v2, ... for fields/variables). However, the user can define new names by
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himself. Following the definition of code clone types, a Type II clone is created by the
transformation, while the transformation itself is a layout obfuscation. We present an
example for such listing in Listing 2.1:

1 class foo{ class foo{
2
3 public int a = 0; public int v1 = 0;
4 public int testMethod(int b) { public int m1(int v2) {
5 return int c = a + b; return int v3 = v1 + v2;
6 } }

Listing 3.1: Layout Obfuscation using Renaming

3.2.2 Expansion

Basically, the assignment operators(+=, -=, *=, /=) are eliminated but their logic
and semantics will be reconstructed. These new statements contain changes compared
to the original or new statements are introduced. Consequently, the original and the
transformed code fragment form a Type III clone. Moreover, this transformation is a
control obfuscation. The basic replacements are the following:

1 ...
2 i++; i = i + 1;
3
4 a += i; a = a + i;
5
6 a = ++i; i = i + 1;
7 a = i;
8
9 a = i++; a = i;
10 i = i + 1;
11 ...

Listing 3.2: Control Obfuscation by Expansion

3.2.3 Contraction

Contraction is the opposite to the expansion obfuscations. Instead of eliminating assign-
ment or increment/decrement operators, this operation converts possible statements to
the shortened statement. Similar to the expansion obfuscation, it creates a Type III
clone and is a control obfuscation. Basic replacements are presented here:

1 ...
2 i = i + 1; i++;
3
4 i = i + x; i += 0 + (x);
5 ...

Listing 3.3: Control Obfuscation by Contraction
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3.2.4 Loop Transformation

The loop transformations aim at swapping for and while loops. It creates a Type III
clone, but since for and while loops are treated differently, it can be regarded as a Type
IV clone. The obfuscation is a control obfuscation. The following is an example of a
conversion from for to while:

1 for(int i = 0; i < 20; i++} { int i = 0;
2 \\Execution block while(i < 20) {
3 } //Execution block
4 i++;
5 }

Listing 3.4: Control Obfuscation by Loop Transfomation I

The backwards transformation is presented in listing 3.5.

1 int i = 0; int i = 0;
2 while(i < 20) { for(;i < 20;)
3 //Execution block //Execution Block
4 i++; i++;
5 } }

Listing 3.5: Control Obfuscation by Loop Transfomation II

3.2.5 Conditional Transformation

In Java, an if-else condition statement can be converted to a shortened expression
statement, if both blocks contain an assignment with the same variable on the left.
The conditional transformation performs this conversion. Furthermore, it converts the
shortened form to the standard if-else statement. Hence, this transformation creates a
Type III clone and is an control obfuscation.

1 if (a == b) a = (a == b) ? b : 0;
2 a = b;
3 else
4 a = 0;

Listing 3.6: Control Obfuscation by Conditional Transformation

3.3 Obfuscator Implementation

In the last section we presented the obfuscations the obfuscator is capable of. In order
to apply them practically, we developed an Eclipse plug-in called ARTIFICE.

The ARTIFICE obfuscater plug-in consists of four main parts - user-interface, logging
unit, data-converter and refactoring unit. The interface handles all user-input (activat-
ing/deactivating obfuscations), while the logging unit logs all obfuscations made and
gives a summary of the whole process. The data-converter creates renaming jobs (e.g.,
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a bundle of method and new method name) prior to the obfuscation process for more
customization possibilities. Finally, the refactoring unit performs two tasks: finding
possible code fragments for all obfuscations (except renamings) and performing every
obfuscation through refactoring.

In Figure 2.1, we show an overview of the general process of our tool. In the following,
we present detailed internals for the different phases of this process.

Figure 3.1: ARTIFICE - Program Flow Chart
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1. Initialization: At the beginning, the user has to select a Java project in the
project explorer of Eclipse. This project contains all Java files that get obfuscated
during the process.Then, these files are saved in map containing the compilation
unit (represents the .java source file) of the file as key ,and a renamingList as
value. The renamingList will contain every method, field and variable with their
respective new name. This data is created in Select Code I. Finally, the logging
unit is initialized for further use.

2. User Customization: After the initialization of necessary parts, the program
opens a dialog where the user can customize specific points. Among others, these
include the activation/deactivation of obfuscations and customizable names for
every renaming obfuscation. After finishing the customization process, the actual
obfuscation starts.

3. Select Code I (Renaming): This step handles the first part of code selection.
Here, the data converter searches for specific elements offered by the JDT Core
package [JDT]. The package defines the classes that compose a Java program. It
uses a hierarchical model that represents the structure of a Java program (Java
Model).

Figure 3.2: Java Model Example

Starting from the root of the model (IJavaModel), the program walks through
the hierarchy to find every IF ield for fields and IMethod for methods. However,
ILocalV ariable is no part of the Java model, therefore the program analyzes
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the program’s AST to find variables. This information is then used to create
a renaming job. The job is build from the corresponding IJavaElement and a
corresponding new name. When every compilation unit has been searched, the
program proceeds to the next part.

4. Obfuscate I (Renaming): With the information saved in a renaming job,
we can use the renaming function of Eclipse to perform the obfuscation. Every
necessary condition check is covered by Eclipse, as well as a project-wide trans-
formation. Furthermore, every obfuscation is logged by the logging unit.

5. Select Code II: The next step is to apply the other obfuscations, if at least
one of them has been activated by the user. For selecting the code, the program
searches for AST elements corresponding to the selected transformation (e.g.,
WhileStatement or ForStatement for the loop transformation). Then, the sur-
rounding elements are examined. If they allow the specific obfuscation, the AST
element can be obfuscated.

When the obfuscation of this fragment is complete, the next AST element is
examined. It is important to mention, that the refactoring is not performed on
the currently loaded compilation unit. In fact, a single refactoring is performed
on an image of the original source code. If no errors occurred during the process,
the original compilation unit is overwritten by the image. Since an element of the
Java AST is dependent on its offset and length, we have to consider that a single
change will influence every following element. Consequently, we have to reload
the compilation unit after every successful refactoring. Only then the next code
fragment can be selected.

In case that no more corresponding code fragments for the current obfuscation
can be found, either the next activated obfuscation is handled with or the process
is finished.

6. Obfuscate II: Here, the previously selected code is committed to a customized
refactoring process not provided as a standard eclipse refactoring function. First,
to allow the obfuscation, some conditions have to be checked such as if the compi-
lation unit is error free. Then, the AST of a parent node of the edited AST node
forms the starting point. Then, an image of this AST is created. The editing is
applied to this image first. When the transformation of the image is completed,
the change is applied on the actual AST. Finally, the file is rewritten based on
the new AST. The obfuscation is now applied. During this, the code is changed
based on the obfuscation (Section 3.2) and the change is logged by the logging
unit.

7. Finalization: After every obfuscation process is completed, the logging unit
stores the information gathered throughout the process into a log file. The obfus-
cation is now done.
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4. Evaluation

The Oxford Dictionary defines robust as the ability ”to withstand or overcome adverse
conditions”. Robustness is the quality of being robust. In computer science, robustness
is the ability of a computer system to cope with errors during execution or the ability
of an algorithm to continue to operate despite abnormalities in input, calculations, etc.

The input for a code clone detector is the source code of a system. With the general
purpose of code clone detectors in mind, we can assume that the detector will find a
code clone even if a specific fragment is changed (the abnormality). Therefore, the
robustness of a code clone detector is the ability find code clones despite changes, that
doesn’t result in syntactical changes (obfuscations).

With the following case study, we want to evaluate the robustness of each code clone
technique regarding our presented obfuscations. First, we describe the setup of our
study and the methodology to assess the robustness of detection techniques against
code obfuscations. Afterwards, we present our results and interpret them. Finally, we
discuss threats to validity that may limit the results of our study.

4.1 Setup

At first, and maybe most important requirement, we need a comprehensible subject
software system, suitable to demonstrate the functionality of our obfuscation. There-
fore, we used a remake of the classic PacMan game as test subject. The game works
as follows: The player controls the pacman with the aim to gather all white dots in
a maze, while being followed by four ghosts. If a ghost touches the pacman the game
ends. If the player gathered a bigger white dot, the ghost flee from pacman and he can
destroy them. The ghosts respawn after a little while.

For the detection process we used the following detectors: JPLAG (v.2.2.1) is used
for the text- and token-based detection. It is widely known and a reliable plagiarism
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detector tool, that is able to detect clones in a variety of languages (Text, C, C++,
C#, Java).
CloneDigger (Revision 211) is used for the AST-based clone detection, which uses anti-
unifaction( [Rey70]) to find clones among Python and Java source code files.
At last, we use Scorpio(v201103030634) for the PDG-based detection. Scorpio uses a
modified program dependency graph with an additional execution edge between two
nodes, to overcome some limitations of PDG-based clone detection.

4.2 Methodology

For the analysis of the robustness, we need a comprehensible, reproducible testing
method. Therefore, we used the following way to conduct the experiment:

• Preparation: Before we can use a clone detector we need obfuscated copies of a
original program. Therefore, we used the code obfuscator to create these copies,
where every possible combination builds a new obfuscated copy. A copy with a
single applied obfuscation will give a direct insight of the robustness regarding
the specific obfuscation. Combined obfuscations will show if the detection rate
decreases linear (results add up) or if the detector is more vulnerable regarding
certain combinations of obfuscations at the same time.

1. At first, we provide a (theoretical) reasoning about the robustness of the specific
technique. With the knowledge of the functionality of the technique, we can
estimate how much impact the obfuscation may have on the detection rate. Later,
we will compare our presumption with the actual results.

2. The first test is to use the clone detector with the original and a copy of the
original. The detection rate between these two will likely result in a 100% percent
match. If the detection tool does not give the option to disable clone detection
inside a project itself, further analysis is necessary to find groups of code clones
that can be ignored. We use the result of this initial clone detection as reference
values for all other comparisons, because this allows us to evaluate the relative
change impact, an obfuscation may have on the detection technique. Depending
on the tool it may offer different values such as number of code clones or lines
of cloned code. This step is necessary because we need a numerical value for the
comparison to rate the impact of an obfuscation.

3. Each obfuscated copy is then checked by the clone detector with the original as
reference.

4. Then, the results of each detection process will be presented in a summary table.
The name of each obfuscation step corresponds to the obfuscations applied on the
code (R - Renaming, E - Expansion, C - Contraction, L - Loop Transformation,
I - Conditional Transformation).
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5. The last step is to evaluate the results regarding its robustness and compare it to
the initial reasoning.

The software systems consists of 21 source files with 2415 lines of the code. The original
source code is copied sixteen times (one for each obfuscation combination), on which
we used the described ARTIFICE obfuscator. The obfuscator was able to apply 616
renaming obfuscations (120 methods, 155 fields, 341 variables), 54 expansions, 8 con-
tractions, 34 loop transformations and 0 conditional transformations. Every obfuscated
copy was tested for full functionality, to ensure that the obfuscations didn’t introduce
errors and didn’t alter its behavior.

4.3 Results

In the following, we present the results for every clone detector. Based on these results,
we discuss and assess the robustness of each detection tool. Furthermore, we put
the result in the context of the actual, underlying detection technique and discuss its
influence on the robustness we measured.

4.3.1 Robustness of Text-Based Clone Detection

Text-based code clone detectors rely solely on the textual representation of the source
code. Only minor transformations are performed, such as whitespace, comments and
layout is normalized. This makes is difficult for the clone detector to detect Type II,
III and IV clones. Therefore, we assume that every obfuscation has an impact on the
detection rate of the detector. For instance, renaming will affect the clone detector
the most since it affects nearly every line of code. We assume that the robustness of a
textual clone detector is generally low.

For our analysis, we used JPLAG as our textual clone detector. Although, it is used as a
Java token-based clone detector, it has an integrated text clone detector as well. JPLAG
presents its result in different ways: A side-by-side file comparison with highlighted code
clones and a similarity value in percent between two files. Additionally, the detector
counts the string tokens of each code clone, which can be used to describe the size of
a code clone. Adding each value of each code clone up, will result in the size of cloned
code. Therefore it is possible to calculate the number of code clones and a value similar
to cloned lines. These values strongly relate to each other. The more code clones exist,
the less string tokens are contained in a code clone, since one code clone ends when
a difference between two files is found. The next characters are not considered as a
code clone until the minimal match length is reached. Only then a next code clone
can be found. The smaller the size of code clones is, the smaller is the similarity. In
Figure 4.1, we can see that a clone is finished when there is a difference between these
two fragments and the next string tokens are not part of a code clone. A new code
clone is found after the difference. Therefore, the code clone amount is increased by
one, but the size of code clones is decreased.
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Figure 4.1: JPLAG (detected clones are highlighted)

We used the default settings for JPLAG. Hence, the minimal match length is set to 5
string tokens. Smaller similar strings are not considered a code clone. We present the
result of the clone detection before and after obfuscation in Table 4.1.

Obfuscated Project Code Clone Amount Size of Code Clones Similarity in %
Original 21 14513 99,8

C 29 14505 99,8
E 68 14497 99,3

EC 74 14481 99,2
L 96 13875 96,7

CL 104 13867 96,7
EL 113 13860 96,2

ECL 119 13844 96,1
R 608 8461 59

RE 608 8461 59
RC 608 8461 59

REC 608 8461 59
RL 576 8046 56,6

REL 576 8046 56,6
RCL 576 8046 56,6

RECL 576 8046 56,6

Table 4.1: Clone Detection Results - Textual (Match-length 5 (String Token))

As we can see, the comparison between the original and a non-obfuscated copy did
not score 100%. The side-by-side view reveals, that the beginning of every java file
(package declaration) and the last block ending brackets are not considered as part of
a code clone. This may be an internal error that creates the deviation.

The contraction obfuscation has the same similarity as the original comparison. How-
ever, we can see an increase in code clone amount and accumulated size of the code
clones. Since there are only eight contractions applied, it disturbed the detector pretty
well. Eight new code clones were found and the size decreased by eight, which means
that all obfuscations influenced the detector.
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JPLAG behaves similar with the expansion obfuscations. A decrease of 0.5% in similar-
ity and 47 more code clones were found. There were more expansions than contractions,
and as a result they had more impact on the result.

The combination of contraction and expansion resulted in nearly combined values. The
size decreased by sixteen, double of the amount of contractions. However, only six
more code clones where found. Due to the minimal match length, some strings were
not considered part of a code clone, because two obfuscations were surrounding the
part.

The loop transformation resulted in a decrease of 3.1% and an increase of 75 more code
clones. Additionally, the size decreased by 638. Considering the small amount of loop
transformations, the code clone detector could not identify the similarity. The trans-
formation from for to while changed the whole initialization of the loop, and thus has
a considerable impact on the detection rate. The combination with expansion, contrac-
tion or both added little obfuscation, since a lot expansions were made to the updater
of the for loops. These fragments were already affected by the loop transformation.

As expected, the renaming obfuscation had the highest impact. The similarity decreased
by 40.8%, 508 more code clones were found and the size of the code clones decreased by
6052. A huge part of the code is affected by the renaming, since every statement contains
variables or fields. The combination with expansion or contraction did not change the
result, since these code lines are already affected by the renaming obfuscation. With
the addition of the loop transformation, the code clone amount decreases but the size
decreases as well. This is a result of the minimal match-length, since more code is not
part of a code clone.

In summary, we can say that the results correspond with our assumption at the begin-
ning. Every obfuscation decreased the ability of the code clone detector to find code
clones, with the renaming obfuscation as the best obfuscation. However, renaming
obfuscation can be detected, if the detector normalizes identifiers.

Overall, the robustness of a textual-based clone detector can be considered very low,
since every obfuscation decreased the similarity between the original source code and
die obfuscated code.

4.3.2 Robustness of Token-Based Clone Detection

The token-based detector parses the whole source code and works on a token sequence
as representation of the code. During creation of this token sequence, identifiers, whites-
pace and layout are normalized. Therefore, the clone detector should be able to detect
Type I and II clones. However, Type III and IV clones represent a difficulty for the
clone detector, since they interrupt a token chain. We assume that renaming has little
to no effect on the detection rate, because of the normalization of identifiers. The other
obfuscations should have a detrimental effect on the clone detector, since they change
statements to a different appearance, which will result in different tokens.
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Again, we used JPLAG for the detection. This time however, the source code is ana-
lyzed with the token-based technique. The size of code clones is calculated by adding
the amount of tokens in each code clones up. For this detection process, we used the
default settings with the minimal match-length set to nine tokens. We present the
results of the clone detection in relation to the obfuscations in Table 4.2.

Obfuscated Project Code Clone Amount Size of Code Clones Similarity in %
Original 20 3073 99,8

C 20 3073 99,8
E 20 3073 99,8

EC 20 3073 99,8
R 38 2973 96,6

RC 38 2973 96,6
RE 38 2973 96,6

REC 38 2973 96,6
L 45 2821 91,6

EL 45 2821 91,6
CL 45 2821 91,6
RL 45 2821 91,6

RCL 45 2821 91,6
ECL 45 2821 91,6
REL 45 2821 91,6

RECL 45 2821 91,6

Table 4.2: Clone Detection Results - Token (Match-length 9 (Java Token))

The comparison between two original copies of the source code resulted in a similarity of
99.8%. One java source file contained only four tokens and thus, the detector was unable
to detect the clone with the default settings, since the file was too small. Consequently,
we use the values of this comparison as reference values.

The expansion and contraction obfuscations or the combination of both did not alter
the result of the detection process. JPLAG parses each assignment into an ASSIGN

token. Therefore, the detector was able to identify the similarity between the original
and the obfuscated source code.

The renaming obfuscation resulted in an increase of 18 code clones, while the size of
code clones decreased by 100 tokens and the similarity by 3.2%. As presented in the
appendix (Chapter A), the renaming obfuscation always splits variable declaration and
initialization. Normally, the detector is able to find the similarity, since both before
and after the obfuscations the tokens remain the same (before: VARDEF ASSIGN;, after:
VARDEF; ASSIGN;). However, the same has to be applied to the initializer of a for

loop, thus changing the order of the tokens. BEGINFOR(VARDEF ASSIGN;...) is the
standard order, but the renaming obfuscations changes the order to VARDEF; BEGIN-

FOR(ASSIGN;...). Consequently, a clone always ends with every for loop, since the
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tokens doesn’t match at that point and thus decreasing the similarity. A combination
with expansion or contraction does not alter the result.

The results of the comparison between the original program and the program after loop
transformation shows an increase of 25 code clones, with a decrease in size by 252 tokens
and a decrease in similarity by 8.2%. Both, the transformation from for to while as
well as the backwards transformation interrupted code clones.

1 for(int i = 0; i < 10; i++){ BEGINFOR, VARDEF, ASSIGN, ASSIGN
2 .. code clone ...
3 } ENDFOR
4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
5 int i = 0; VARDEF, ASSIGN
6 while(i < 10) { BEGINWHILE
7 ... code clone ...
8 i++; ASSIGN
9 } ENDWHILE

Listing 4.1: Loop Transformation with Tokenization

Listing 4.1 shows an example of such transformation with the respective tokenization.
If the code fragment, enclosed by the loop, exceeds the threshold for minimum clone
length, it is detect as a code clone. However, the beginning and the end of both loops
are not considered part of the code clone. We can see that JPLAG uses different token
for each loop (beginning and end), which results in a difference between the code files
and thus ending a code clone. Furthermore, the reordering of the initialization and the
updater result in bigger difference.
A combination with expansion, contraction and renaming does not result in a different
outcome. The changes that altered the results in the renaming/original comparison,
are applied in the loop transformation, too.

Overall, the token-based approach performs better than expected. The renaming obfus-
cation is detected (except in a for loop). Additionally, the expansion and contraction
obfuscations had no effect on the clone detector. However, more complex obfuscations
such as the loop transformation represent a problem for JPLAG, since it is very depen-
dent on the specific tokens. Even if two tokens represent a similar procedure, it is not
capable to identify the similarity.

In summary, we argue that token-based clone detection is very robust against simple
obfuscations, that target one line. An obfuscation that affects a larger code fragment
of multiple lines however is a problem hence, the detector is not robust against them.

4.3.3 Robustness of PDG-Based Clone Detection

Instead of relying directly on the source code, the pdg-based code clone technique ana-
lyzes the program and data flow. The obfuscations made by the obfuscator create Type
II and III clones. The loop transformation can be seen as creating a Type IV clone.
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Because PDG-based clone detection uses a program dependence graph as representa-
tion, it should have the same detection rate as if no obfuscations were applied on the
code. However, the loop transformation may have an impact.

We used the PDG-based tool Scorpio for the detection [HK11]. The detector combines
similar code fragments into a cloneset, which consists of the description of every found
clone (number of PDG nodes, location,..). This information is presented in a side-by-
side view to analyze each code clone. With the knowledge of the number of nodes and
the amount of code clones (min. two) in a cloneset, we can calculate the size of code
clones. The number of nodes is equal for all clones and thus the size is calculated by
multiplying both values with each other.

Since Scorpio does not offer the possibility to detect clones between projects only, we
need to analyze which clonesets consists of at least one clone in the original source code
and one clone in the obfuscated source code. To this end, the cross-project clones are
identified programmatically by analyzing the XML result file made by Scorpio.

Generally, applying an obfuscation may lead to one of the following two results. First,
there is the possibility to eliminate a cloneset after obfuscation, that normally contains
two clones of two systems. The obfuscation changes one clone in the obfuscated project
and the detector is not able to detect this clone again. Therefore, the cloneset would only
consist of one code fragment, thus making it no clone at all. Additionally, only cross-
project clones are relevant in this case study. Let’s consider a cross-project cloneset
consisting of three code clones(e.g, two in the original code and one in the copy of
the original). After the obfuscation the detector can not find the clone in the copy,
thus reducing the number of clones in the cloneset to two. However, these two clones
are only in the original code. Consequently, the cloneset is no longer a cross-project
cloneset, thus making the cloneset irrelevant for the case study. Figure 4.2 is of visual
representation of this principle.

Figure 4.2: Cross-Project Clones (Red = Cross-Project, Green = Internal)

We used a minimal match-length of five PDG nodes (5 statements), because it created
satisfactory results in comparison to other match-lengths. Furthermore, merging of
statements is activated. This merges consecutive duplicate statements to one PDG
node. Other settings are set to default, as seen in its description [SC]. We present the
results of our clone detection in Table 4.3
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Obfuscated Project Total Clones Cross-Project Clones
Clonesets Size of Clones Clonesets Size of Clones Similarity in %

Original 117 3333 79 2601 100
C 118 3290 71 2466 94.8
L 120 3232 76 2326 89.4
E 114 3142 71 2242 86.2

EL 118 3161 71 2232 85.8
CL 125 3215 68 2180 83.8
EC 117 3120 65 2134 82.0

ECL 117 3120 65 2134 82.0
R 143 3159 54 1383 53.2

RL 143 3128 53 1366 52.5
RC 137 3072 48 1316 50.6

REL 141 3118 49 1308 50.3
RCL 137 3080 45 1286 49.4

RECL 133 3020 45 1268 48.8
RE 133 2922 45 1164 44.8

REC 133 2910 41 1120 43.1

Table 4.3: Clone Detection Results - PDG (Match-length 5 (PDG Node))

The reference value for the following results is the size of clone value of the original
detection process, which resulted in 2601 PDG nodes that are part of cross-project
clonesets.

The contraction obfuscation shows a decrease of 135 nodes, despite the small amount
of obfuscations applied. A deeper analysis, shows that the majority of contractions
affected clonesets with only 5 PDG nodes, which is the minimal match-length. With
the applied obfuscation, the clone only consists of four nodes that are part of a code
clone and thus it is not identified as a clone. However, even if the match-length is set
to four, the obfuscation still has an effect on the size, since at least one PDG node is
missing. Consequently, the contraction creates a different data flow. The combination
with other obfuscations shows a similar effect on the size of clones.

The loop obfuscation decreases the size of code clones by 275 PDG nodes. Considering
the complexity of the transformation and the number of applied obfuscations, it is a
rather small effect on the result. Generally, most of the transformations are detected
as part of a code clone. However, the transformation from for to while is partially
detected only. The updater of a for loop is the last statement of the while loop block
after the obfuscation. The updater is part of a code clone before obfuscation. However,
after their obfuscation it is not. This is shown in Figure 4.3. Consequently, it results
in at least one less PDG node. If the code clone is smaller than the match-length after
obfuscation, it is not a clone at all.



34 4. Evaluation

Figure 4.3: Scorpio - Loop Obfuscation Results (Top: Original/Original, Bottom: Ob-
fuscated/Original) - Cloned PDG nodes are highlighted

A combination with another obfuscation shows little to no effect. However, sometimes
the result is better for the detector with the loop transformation applied (RE vs. REL).
This is a result of the while to for transformation. The boolean expression of a loop
is part of a code clone before and after obfuscation. The initialization of a loop counter
is not detected as part of a clone in for loop. However, it is part of a code clone with
the transformed while loop, resulting in an increased size of code clones.

The expansion shows a considerable effect on the detection rate of Scorpio, by decreasing
the detected size of clones by 359. The obfuscation transforms increment/decrement
statements to assignment statements. These assignment statements are not part of a
code clone after obfuscation, which decreases the size by either one or the code clone
does not match the minimal match length, thus making it no code clone at all.

Renaming should have no effect on the detection rate. But as a matter of fact, the results
show that this obfuscation has even a more observable influence on the detection result
than each single obfuscation. In particular, this transformation decreases the size of
clones by 1218 PDG nodes. The analysis of the results shows, that the detector has no
problem with single renamings on one PDG node and such nodes are still part of code
clone. However, when a node is increasingly affected by the renaming obfuscation, it
loses its status as part of a code clone. The result is, that a huge amount of clones are
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either reduced or not a code clone at all, thus declining the size of code clones. The
combination with expansion, further decreases the size of clones.

Surprisingly, every obfuscation affected the size of clones, with renaming as the most
effective one. The only obfuscation with little to no effect is the loop obfuscation.

The result does not match the with our assumption at the beginning. In the paper
which presents the algorithm of Scorpio [HK11], it is mentioned, that PDG based clone
detection is not very suitable for detection contiguous clone detection, whereas other
technique perform better in such environment. This can be an explanation of the results.
Primarily, PDG based technique aim at detecting special clones, for example the loop
obfuscation was detected fairly well.

4.3.4 Robustness of Tree-Based Clone Detection

The tree-based detector uses an abstract syntax tree as work object. Similar to the
token-based approach whitespace, layout and identifiers are normalized. Type I and II
clones should be detectable by this clone detector. Also, the loop transformation could
be easily detected, since the AST representation of a for and while loop are very similar.

For this analysis, we used AST-based clone detector CloneDigger. It creates a HTML
file for the results, where each found clonepair is presented. The difference between
each clone in a clone pair is highlighted by the use of the diff tool. Furthermore, the
size of each clone and the number of clones are calculated.

Since CloneDigger analyzes source code files for internal clones, we need to consider the
crossproject clones (discussed in Section 4.3.3). To find the influence of the obfuscations,
we can compare the code of clonepairs between the original result with the obfuscated.

The minimal match length is set to 10 AST-nodes with a maximal distance of 200.
CloneDigger ends a clone, if the differences between each clone of a clone pair exceeds
the distance. Considering the amount of obfuscations done by the renaming obfuscation,
a clone is ended rather quickly. Therefore, the distance is set so high. A smaller
minimal match length creates more precise results. However, the amount of clones
greatly increases and and thus makes it difficult to analyze the results. Additionally,
the results reflect similar influences (e.g, a minimal match length of 4 changes the
similarity of E to around 96%). Therefore, a minimal match length of 10 is sufficient.
The results are presented in Table 4.4.

The expansion obfuscation decreases the size of cross project clones by 79 AST nodes
and thus shows an influence on the detection rate. However, most of the affected code
fragments are part of a code clone.

Therefore, we can assume that the detector is robust against this obfuscation. However,
some code fragments, which are not affected by the obfuscation, are not part of a code
clone. It is not identifiable why they are excluded, since there was no change.

The contraction obfuscation decreased the size of crossproject clones by 117. There
are no code fragments that are affected by the obfuscation which are part of a code
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Obfuscated Project Total Clones Cross-Project Clones
Clones Size of Clones Clones Size of Clones Similarity in %

Original 38 2005 22 1793 100
E 41 1926 25 1714 95.6
C 40 1888 24 1676 93.4

EC 43 1809 27 1597 89.0
L 57 1597 41 1385 77.2

EL 58 1565 42 1353 75.5
CL 58 1493 42 1281 71.4

ECL 59 1461 43 1249 69.7
R 53 868 42 730 40.7

RL 54 878 42 730 40.7
RC 53 868 42 730 40.7

RCL 54 878 42 730 40.7
RE 50 828 39 690 38.5

REL 51 838 39 690 38.5
REC 50 828 39 690 38.5

RECL 51 838 39 690 38.5

Table 4.4: Clone Detection Results - AST (Match-length 10 (Tree Nodes))

Figure 4.4: AST Code Clone - Expansion(with highlighted difference)

clone, thus decreasing the size. Therefore, the clone detector is not robust against a
contraction obfuscation. A combination between expansion and contraction combines
the two effects mentioned above.

The result of the loop obfuscation shows a decrease of 408 AST nodes. The clone pairs
presented in the result file do not contain code fragments with a for or while loop,
thus decreasing the size of crossproject clones. Therefore, the detector is not robust
against such transformation. A combination with expansion and contraction combines
the effects mentioned above.

Despite normalizing identifiers, the renaming obfuscation has the highest influence on
the detection rate. The size of crossproject clones decreases by 1063. However, a huge
part of affected fragments are part of code clones.

The decrease of the size of clones is a result of the separation of declaration and initial-
ization of a variable. Due to this separation, a new AST node is created and another
node is changed. No affected code fragment is part of a code clone, thus decreasing
the size. Combining this obfuscation with contraction and loop has no influence, since
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Figure 4.5: AST Code Clone - Renaming(with highlighted difference)

these parts are already affected by the renaming (e.g, the initializer of a for loop). The
combination with expansion increases the effect slightly.

In summary, the AST-based clone detection technique is robust against renaming, and
expansion, thus matching with our assumption. However, the contraction obfuscations
and loop obfuscation weren’t found by the detector. The effects of renaming show, that
this technique is not robust against reordering or adding/deleting statements.

4.4 Summary

In this thesis, we conducted a case study to determine the robustness of four code clone
detection techniques with one representative code clone detector for each technique.
We created sixteen different version of the subject system, where each version was
obfuscated with a different combination with our obfuscator ARTIFICE. Then, each
version with the original version was analyzed by the clone detectors. Finally, we
analyzed the results to determine the robustness. This let to the results presented in
Table 4.5

Renaming Expansion Contraction Loop Transformation
Textual (JPLAG) low low low low

Token-based (JPLAG) high high high low
AST-based (CloneDigger) high high low low

PDG-based (Scorpio) medium low low high

Table 4.5: Robustness of Detection Techniques

JPLAG was used for both, textual and token-based. The robustness of textual based
detection techniques can be considered as very low. Every obfuscation affected the
results and led to lower similarity. The renaming obfuscation is the most effective one,
since nearly every line of code is affected.

In contrast to the textual-based technique, the token-based detection technique re-
vealed a high robustness against simple obfuscations. Expansion, contraction as well
as renaming showed little to no effect. However, the more complex loop transformation
decreased the similarity by nearly 10% with only 34 transformations.

The AST-based technique showed a high robustness against obfuscations, as long no
reordering or adding/deletion of statements affected the AST-Tree of the source code.
Simple renaming and expansion were detected very well. However, the contraction and
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loop transformation decreased the result with every applied obfuscation. Additionally,
when initialization and declaration of a variable is split, it is not detected anymore,
since a node is added to the tree.

The PDG-based detection technique is robust against more complex obfuscations. The
loop transformation had little effect on the detection rate. In combination with other
obfuscations, it proofed to beneficial for the detector. The results showed a better
detection rate with the loop transformation applied. However, code fragments that were
affected by expansion and contraction were not part of a code clone, thus decreasing the
similarity. Therefore it is not robust against these obfuscations. Scorpio detected code
fragment that were affected by renaming. However, the more renamings are applied on
one PDG node, the less likely it is part of a code clone.

4.5 Threats to Validity

There are two main topics that can attack the validity of this case study: the imple-
mentation of the technique in the specific clone detector, and the source code of the
subject system.

The different representation that are used by the clone detectors are not always clearly
defined. A token for example, is simply a string of characters. However, it is not
defined that a token has to be exactly one line, statement, number, literal or similar.
The interpretation of a token is implemented in the software tool and thus dependent
on the implementation. CCFinder [KKI02] parses one line of code into much more
tokens than JPlag. Therefore, the results are most likely different. However, the clone
detection tools are often cited and known for its reliability. Therefore, we can use them
as representation for their respective technique.

The results are highly dependent on the subject system and its source files. The obfus-
cator is only able to transform as much statements as the source files offer. However, not
every system has the same amount of obfuscatable statements. For example, the Pac-
Man project contains 8 possible contraction statements and 54 expansion statements.
Based on the results of each clone detection process, we can argue that the expansion
obfuscation has more impact than the contraction obfuscation. However, with a deeper
analysis of the source code and the detection results, we are able to assess certain ten-
dencies regarding each obfuscation. These tendencies are independent from the subject
system.
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The survey by Roy et. al [RC07] is a summary of the research on clone detection
and discusses the theory of clone cloning, taxonomies, and detection techniques. Ad-
ditionally, they summarized several experiments including an evalutation of precission
and recall of different clone detectors. Furthermore, they conducted an experiment
concerning the robustness of code clone techniques, too. Overall, the results resemble
the results of this thesis. However, the results give only a short evalutation for each
technique and don’t offer an insight why several transformations affect the detection
rate.

Juergens et al. [JDH10] conducted an experiment to evaluate how well existing clone
detection approaches detect similarity in 109 independently developed variations of the
same functionality. In other words, the aim of this experiment is to evaluate the per-
formance of detection tool regarding behavioral similar code clones (Type IV clones).
Their results indicate that current techniques are not capable of finding functional
similar code fragments, since the two used clone detectors (ConQAT [JDH09] and
DECKARD [JMSG07]) achieved a recall (ratio of detected clone pairs) of less than
1%.
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6. Conclusion

In this thesis we conducted an empirical study to evaluate the effect of code obfuscations
on the detection rate of different code clone detection tools. Since each tool uses a
different clone detection technique, we can make a statement about the robustness of
each technique.

Code clones are copied code fragments in the source code of the system, which occur
either intentionally or unintentionally. To detect code clones, there are several available
software tools. There are four main detection techniques used by the tools - textual,
token-based, AST-based, PDG-based. They parse the source code in to the specific
representation on which the tools perform the analysis, and then present the code
clones in a user-friendly format.

We developed the code obfuscator ARTIFICE, to easily apply several code obfuscations
on a software system. It is developed as an Eclipse plugin with a simple interface
and can perform renaming, expansion, contraction, loop and conditional obfuscations.
Furthermore, the respective code transformations are saved in a logfile.

We presented an empirical to evaluate the robustness of each clone detection technique
using a representative clone detector. We used a software system consisting of 2415 lines
of code as the subject system. Several copies of this system were made, on which we
applied different obfuscation combinations using the obfuscator. Each obfuscated copy
combined with the original source code was analyzed by each clone detector separately.
The results were used to evaluate the robustness of the detection techniques.

The textual-based detection was performed by using the text analysis of JPLAG. The
results showed a considerably low robustness against every applied obfuscation. Espe-
cially the renaming obfuscation decreased the similarity between the original and the
obfuscated copy by 41%.

JPLAG was used for the token-based detection, too. The robustness against simple
obfuscations that target one line of code can be considered as high. Renaming, ex-
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pansion and contraction didn’t change the detection results. However, the splitting of
declaration and initialization of variables performed by the renaming obfuscation and
the loop transformation affected the result. Therefore, the token-based approach is not
robust against more complex obfuscations.

The AST-based detection was performed by using CloneDigger. As long as the AST
of the source code is not affected by the addition/deletion of statements or reordering,
the robustness of this technique is high. Code fragments that are changed by expansion
or simple renaming are part of a code clone after obfuscation. Therefore, the detector
is robust against these obfuscations. However, loop transformation, contraction and
splitting declaration and initialization of variables decreased the similarity considerably.

We used Scorpio for the PDG-based detection. The results showed that the robustness
against loop transformation is high, since effect on the similarity was little. However,
code fragments that were affected by expansion and contraction were not part of a code
clone after obfuscation. Therefore it is not robust against these obfuscations. Scorpio
detected code fragment that were affected by renaming. However, the more renamings
are applied on one PDG node, the less likely it is part of a code clone.

In summary, we constitute that every clone detection technique(except textual-based) is
robust against at least one obfuscation. However, each tool showed weaknesses although
we used simple transformations only. We assume that advanced transformations such
as reordering or code addition (of dead code) reveal additional vulnerabilities. Fur-
thermore, we showed that there is a danger, that plagiarized software can be made
unrecognizable. Therefore, there is the necessity to find new methods and approaches
to counter this danger.
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In this thesis, we evaluated the effect of different obfuscations on the detection rate of
several clone detectors and gave an insight of the robustness of clone detection tech-
niques. However, there are several topics to evaluate in future works.

The obfuscator ARTIFICE, we developed, is able to apply simple obfuscation on source
code, where the majority targets single lines of code. We showed the robustness against
these obfuscations in our results. However, there are a lot more complex transformation
we did not implement. Reordering of statements, inlining and outlining of methods or
changing object types are some examples, which highly influence the program and data
flow and will result in a much more obfuscated source code. Therefore, the impact on
the results of a clone detection process is to be tested.

For each clone detection technique we used one representative clone detector and eval-
uated its results. With the results, we could assess tendencies towards the robustness
against several obfuscations. However, it is possible that other clone detectors have
slightly different results. Therefore, it necessary to check whether the results match
with the stated tendencies. Furthermore, with more results from each clone detection
technique it is possible to give generalized statements regarding the robustness of clone
detection tools. Additionally, with an analysis on a larger software system, it is possible
to get more precise results, since it will contain more fragments that can be obfuscated.

We analyzed why different obfuscation have an effect on the detection rate of clone
detection tools. With the results and the insight how clone detection works, you can
work on effective ways to enhance the robustness against these obfuscations, if the clone
detection technique allows so. Therefore, it is possible to enhance the effectiveness of
clone detection software.
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A. Appendix

1 \\Expansion
2 [variable]++; −−> [variable] = [variable] + 1;
3 [variable]−−; −−> [variable] = [variable] − 1;
4 \\if variable is of type byte, the righthand side is cast to byte
5
6 [variable] += ...; −−> [variable] = [variable] + (...);
7 [variable] −= ...; −−> [variable] = [variable] − (...);
8 [variable] ∗= ...; −−> [variable] = [variable] ∗ (...);
9 [variable] /= ...; −−> [variable] = [variable] / (...);
10
11 \\Contraction
12 [variable] = ...+ [variable] + ...; −−> [variable] += ... + 0 + ...;
13 [variable] = [variable] − ...; −−> [variable] −= 0 − ...;
14 \\variable has to be outside brackets
15
16 [variable] = [variable] + 1; −−> [variable]++:
17 [variable] = [variable] − 1; −−> [variable]−−;
18
19 \\Renaming (all references are renamed accordingly)
20 [type] [variable]; −−> [type] [newVariable];
21
22 [type] [variable] = [value];
23 −−−>
24 [type] [newVariable];
25 [newVariable] = [value];
26
27 [type] [field]; −−> [type] [newField];
28 [type] [field] = [value]; −−> [type] [newField] = [value];
29
30 ...[method]... −−> ...[newMethod]...
31
32 \\Loop transformation
33 \\for to while
34 for([initialization]; [expression]; [updater])
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35 [loopStatement];
36 −−−>
37 [renamedInitialization];
38 while([renamedExpression]) {
39 [LoopStatement];
40 [renamedUpdater];
41 }
42 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
43 for([initialization]; [expression]; [updater]) {
44 [loopStatements]
45 }
46 −−−>
47 [renamedInitialization];
48 while([renamedExpression]) {
49 [LoopStatements];
50 [renamedUpdater];
51 }
52
53 \\while to for
54 while([expression]) {
55 [LoopStatements];
56 [updater];
57 }
58 −−−>
59 for(;[expression];) {
60 [LoopStatements];
61 [updater];
62 }
63
64 \\Conditional transformation
65 [variable] = [expression] ? [value1]: [value2];
66 <−−>
67 if([expression]
68 [variable] = [value1];
69 else
70 [variable] = [value2]

Listing A.1: ARTIFICE - Transformations
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