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Abstract—The software industry is still in its infancy to widely
adopt program verification tools as part of their daily software
engineering processes. One key challenge is that many of today’s
program verifiers intent to cover numerous bug classes and are
therefore manually configurable to support users with their vary-
ing verification projects. However, configuring a program verifier
for a given verification problem requires extensive expertise, as
an ill-chosen configuration may either unnecessarily slow down
the verification process or even hinder a successful verification
at all. In particular for configurable deductive program verifiers,
this problem is barely addressed by current research. We pro-
pose GUIDO, a framework incorporating statistical hypothesis
testing to compute promising configurations automatically. With
GUIDO, domain experts channel their knowledge by formalizing
hypotheses about the impact of choosing configuration options
and let normal developers benefit.

Index Terms—Formal verification, parameterization, recom-
mendation system, formal methods, deductive verification

I. INTRODUCTION

A plethora of advances in the last decades of program
verification techniques, such as model checking [1], deductive
verification [2], or abstract interpretation [3], deliver reasons
to believe that formal methods will play a vital part in future
software engineering practices. However, as modern software
systems dramatically increase in complexity and scale, a suc-
cessful adoption by industry is still in its infancy. The shift
from theoretical research to real application by practitioners is
impeded by obstacles [4], [5], such as scalability issues, lack
of training, and the need for explicit domain knowledge only
available from a few experts. In order to address the latter obsta-
cle, there is a firm belief that tool support for formal methods
has to increase automation and decrease interaction [4], [6].

However, a challenge is that many automated program
verification tools and frameworks are configurable. While there
exist numerous techniques and heuristics for popular config-
urable model checkers (e.g., CBMC [7], CPACHECKER [8],
VERIABS [9], and PESCO [10]), automatic configuration has
seldom been considered in the context of deductive verification.
Program verifiers based on theorem proving, such as KEY [2]
or FRAMA-C [11], require user interaction to adjust their
automated proof search, when the default configuration is
insufficient. Accordingly, finding a suitable configuration for a
given verification problem is difficult as expert knowledge in
complex verification technologies (e.g., proof theory) is often
necessary [12] to understand the influence of configuration
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Fig. 1: Logarithmic scale of the total number of dissimilar configura-
tions for all versions up to v2.7.0 of the deductive program verifier
KEY [2].

options. Moreover, default configurations are often insufficient
to verify software automatically [13].

Verification systems evolve over time, and the number
of configuration options often increases with a new release.
Consequently, users are faced with a combinatorial explosion
in the number of possible configurations. For instance, the
number of configuration options for the deductive program
verifier KEY [2] increased from eleven (version 1.0.0) to 55
(version v2.7.0). As illustrated in Fig. 1, KEY v2.7.0 comprises
about half a trillion different configurations. Practitioners may
struggle to understand all the effects and influences that certain
configuration options have on verification effort and success,
and trying out all of them does not scale. Hence, in this work,
we address the research question: How can we make domain
knowledge accessible in such a way that configuring formal
verification tools becomes tractable even for less experienced
users?

For program verification, promising configurations can be
described in two dimensions. The first dimension, verifiability,
denotes whether a configuration is sufficient to verify a program
against a specification (e.g., a method contract when following
the design-by-contract paradigm [14]) automatically. Often, a
verification procedure fails even though the input program is
automatically verifiable, resulting in spurious failures that are
hard to interpret or even to identify as such. Consequently,
developers tend to refactor their programs or specifications
instead of trying another configuration [15]. The second di-
mension, verification effort, is the effort needed to perform the
verification task and may be measured differently depending
on the optimization objective (e.g., execution time, proof size,
or memory consumption).



While computing promising configurations looks like a
natural optimization problem, it is unfortunately hard to address
in practice. For instance, there exist numerous tools for perfor-
mance prediction of configurable software based on regression
techniques (e.g., SPLCONQUEROR [16], DEEPPERF [17], or
DECART [18]). However, these tools are typically highly
configurable themselves and primarily focus on performance
for general-purpose applications, which poses a challenge for
incorporating domain knowledge into the verification process.
Consequently, these tools are inflexible for the special task of
formal verification, where, in addition to verification effort,
verifiability is a major concern.

Contributions. In this work, we thrive for practicality and
propose the idea of a two-phased statistical framework for
configurable deductive verification tools called GUIDO to find
promising configurations systematically. In an offline phase,
GUIDO takes as input a set of hypotheses (i.e., structured
domain knowledge) defined by experts for their verification
tool suite. Additionally, GUIDO needs access to a benchmark
data set, which consists of a number of verification attempts for
a set of configurations. Elements of that set include verification
results, performance, and additional static analysis results of
the input program (e.g., used language constructs and control
flow properties). GUIDO then performs statistical tests on the
benchmark data set with respect to the hypotheses to compute
the costs of individual configuration options. In an online
phase, GUIDO analyzes the input program and formulates a
constrained optimization problem based on the analysis results
and accepted hypotheses to compute an optimal configuration
for the input program with respect to estimated costs. Hence,
GUIDO aims at bridging the gap between two user groups: do-
main experts are formalizing hypotheses for their configurable
verification tool individually, but only once (offline phase),
and non-experts (e.g., software developers) benefit from the
formalized domain knowledge and can apply GUIDO for their
verification tasks automatically (online phase).

To get preliminary insights whether GUIDO helps to increase
automation for configurable program verifiers, we have im-
plemented a prototype and applied it to KEY [2] in version
v2.7.0, a configurable and state-of-the-art deductive verifier for
Java programs. KEY verifies Java programs specified with the
Java Modeling Language (JML) [19], a behavioral specification
language [20] following the design-by-contract principle [14].

State of the Art. The intent of GUIDO is to reimagine the
challenge of parameter adjustment for software systems tailored
to the context of formal verification. However, performance
prediction of configurable software is a highly researched
area. Siegmund et al. [16] proposed SPLCONQUEROR, a
state-of-the-art framework using machine learning to measure
and predict the performance of configurations. Despite its
name, SPLCONQUEROR is used beyond software product lines
by a multitude of researchers to estimate the influence of
non-functional properties in configurable software [21]–[24].
Other performance prediction frameworks include CART/DE-
CART [18], FOURIERLEARNING [25], or the recently pub-

lished algorithm DEEPPERF [17]. While our approach requires
the manual formulation of hypotheses, automatically applied
general-purpose prediction frameworks fall short in at least
three categories. First, they need more data, as they have to
learn such hypotheses on their own. Second, they provide no
simple explanation why a particular configuration option is
more significant. Third, in case of a failed verification attempt,
there is no continuation mechanism applied.

Regarding applicability of GUIDO, a plethora of configurable
verification systems exists. For deductive verification, KEY is a
program verifier for Java programs and was applied successfully
to reveal serious defects in real production code [26]–[29].
Other configurable deductive program verifiers include FRAMA-
C [11] and SPEC# [6]. The long-term goal of these tools aligns
with GUIDO, which is to decrease interaction and increase
automation in verification. In a previous study [13], we even
hypothesized that there is a trade-off between verifiability and
verification effort for KEY, which we aim to investigate in the
future with GUIDO.

Another formal verification discipline controlled by a mul-
titude of configuration options is model checking. Prominent
and configurable model checkers include SPIN [30], Java
Pathfinder [31], and CPACHECKER [8]. Our typical experience
with model checkers is that most of the time experts are
consulted for applying the optimal configuration, whereas our
goal with GUIDO is to make verification tools more applicable
to practitioners by providing them with a formalized version
of such expert knowledge. In particular for model checkers,
there exist numerous baselines (e.g., heuristics and default
configurations) that can be used for a comparison with GUIDO.

II. WORKFLOW OF GUIDO

Our main research goal is to build a practical framework that
automatically predicts a promising configuration for config-
urable deductive verification tools. State-of-the-art tools for
performance prediction based on regression analysis are not
tailored for computing configurations that produce low verifi-
cation effort while also guaranteeing high verifiability. First,
the verification effort (i.e., performance) is not normally dis-
tributed [13], which is often a basic assumption for such tools.
Second, both verification effort and verifiability are difficult
to estimate in a black-box manner, as they typically depend
on the structure of the specification and implementation to be
verified. Third, collecting enough data points is difficult, as the
adoption rate for verification tools by industry is rather low [4].

Hypotheses. To mitigate these issues, we propose to analyze
the verification tasks in a white-box manner and to incorporate
domain knowledge in the form of statistical hypotheses. The
formalization of hypotheses helps us in two ways. First, instead
of letting an algorithm completely learn on its own, we already
encode partial knowledge about the effects of configuration
options, which requires less data points, and should be more
precise. Second, a formal foundation allows us to generalize our
method to more configurable verification tools. The following
example illustrates informally, how hypotheses about options
may be expressed.
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Fig. 2: Schematic workflow of GUIDO’s offline- and online-phase to compute promising configurations automatically.

Example: Hypotheses for KEY
Let poss = {oossd , oosse } be a parameter labeled One Step
Simplification, which is either Disabled (oossd ) or
Enabled (oosse ). This parameter may enable the prover
to reduce multiple proof steps into a single one during
verification. Both options are mutually exclusive, such that
exactly one of them has to be selected. Hypotheses focusing
either on verifiability or verification effort may be formulated
as follows.

Verifiability: If a specification case is verifiable with
option oosse , it is also verifiable with option oossd (i.e.,
oossd is at least as effective).

Verification effort: If the code to be verified contains
loops, the verification effort with option oossd is at least as
large as with option oosse (i.e., oosse is at least as efficient
for loop-containing programs).

Whereas the first hypothesis on verifiability is generally
applicable, the second hypothesis on verification effort only
applies in the presence of loops.

Ideally, we want to identify configurations that provide a
high degree of verifiability, but also result in low verification
effort. However, there exist reasons to believe that both criteria
are on opposite sites of a continuum [13] (i.e., a configuration
option may either improve the verification effort or verifyability,
but typically not both). Our practical idea is to purposefully
formulate hypotheses that support the search for configurations
with a reasonable trade-off.

Online and Offline Phases. Fig. 2 presents an overview of
GUIDO, which is divided into an offline training phase and an
online configuration search phase. The offline training phase
mainly consists of three steps and has to be performed for each

major release of a verification system only once. First, a set
of hypotheses on how specific configuration options influence
the verification result regarding verifiability and verification
effort has to be formalized 1 . This task is best performed
by domain experts, but can also be accomplished by analyzing
and interpreting tool tips, documentation, or publications [13].
Second, a benchmark data set is generated by applying varying
configurations for the verification of programs with varying
language and specification constructs 2 . As the configuration
space may become too large for highly-configurable verification
systems, GUIDO samples over the configuration space for the
verification benchmarks. For industrial contexts, we assume
that already enough verification projects and benchmark data
are available to be used as input data for GUIDO. Third, all
formulated hypotheses are tested using the benchmark data set
to identify the set of accepted hypotheses given a corrected
significance level. For this, we either apply a McNemar test [32]
for hypotheses regarding verifiability or a non-parametric
Wilcoxon test [33] for hypotheses regarding verification effort.
Weighted cost graphs are computed that capture the influence of
the configuration options on verification effort and verifiability
as formulated by the accepted hypotheses 3 .

In the online configuration search phase, GUIDO predicts
promising configurations for new verification tasks. A user
provides a specified program as input and, similar to the first
phase, GUIDO extracts static analysis results, such as language
and specification constructs 4 . GUIDO then uses the created
cost graphs from the offline phase and applies a score function
to rate each configuration option individually with respect to
the input program’s characteristics. The total score function
θ : o→ R ranks an option o higher compared to its alternatives
if there is evidence given by the accepted hypotheses that
o performs significantly better. To compute the total score
function θ, we define two score functions, one function θver



TABLE I: Statistics on the Application to KEY v2.7.0
Statistic Value Statistic Value
Configuration options 87 Fixed options 15
Parameters 30 Significance level α 0.05

72
Defined hypotheses 72 Accepted Hypothesis 30–34
Total configurations 663,552 Verification tasks 94
Tested configurations 2,235 Verification attempts 210,090

based on hypotheses regarding verifiability and one function
θeff based on hypotheses regarding verification effort. The
overall score of option o is then given by

θ(o) = γ ∗ θver + (1− γ) ∗ θeff , (1)

where γ ∈ [0, 1] is a user-defined parameter to shift GUIDO’s
focus to either verifiability or verification effort. The score
functions themselves are based on the effect size of the corre-
sponding hypothesis tests.

Afterwards, a ranked list of configurations is generated by
solving a constrained optimization problem, and the determined
configuration is applied to verify the input program 5 . If
the predicted configuration is insufficient for the verification
task, a continuation mechanism M is applied to compute the
next promising configuration. A timing threshold τ marks the
maximum time GUIDO spends on searching for and applying
a configuration to a given verification task. The outcome is
twofold: either (a) GUIDO finds a promising configuration in
the given time span or (b) provides the list of the applied
configurations for possible user inspection 6 .

III. ILLUSTRATIVE APPLICATION ON THE DEDUCTIVE
PROGRAM VERIFIER KEY

We applied GUIDO to the deductive program verifier KEY [2]
in development version v2.7.0. KEY v2.7.0 comprises a total of
30 parameters, and each parameter is associated with two to four
configuration options, of which exactly one has to be selected.
In particular, checkboxes are encoded as parameters comprising
two configuration options, namely true and false. We sum-
marize the most important statistics of applying GUIDO to KEY
in TABLE I, which we explain in more detail in the following.

We considered a total of 87 configuration options over the
span of 30 control parameters. For instance, the example on
hypotheses for KEY in Section II illustrates control param-
eter One Step Simplification with its configuration
options Disabled and Enabled. Typically, numerous con-
figuration options not only tune the verification algorithm
itself, but also may change what is verified (e.g., absence of
overflows, when integers are treated with the semantics of the
programming language). Consequently, a number of options can
be fixed in the beginning to already reduce the configuration
space. As we only apply KEY to Java programs, we fixed
options that would either prohibit a successful verification of
such programs or would falsify the result. In total, we fixed 15
configuration options, such that 663,552 different configurations
remain. To further reduce the configuration space, we used
three-wise sampling (i.e., t = 3) employing the ICPL sampling
algorithm [34], which is state-of-the-art for large configuration
spaces [35]. As a result, 2,235 configurations remain. Thus, we
performed a total of 210,090 verification attempts (i.e., each
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Fig. 3: Performed verification attempts and accumulated effort for
GUIDO and a trial-and-error strategy using the program verifier KEY.

configuration sample is applied to each verification task) to
compute the benchmark data set.

For deductive verification, our metric for verification effort
is twofold: either (1) execution time of the verifier, or (2)
the size (i.e., number of steps) of generated proofs. Finding
configurations that lead to a reduced proof size may help in two
ways. First, they are resource-beneficial in case of distribution,
such as with proof-carrying code [36]. Second, as proofs can
be replayed in re-verification attempts (e.g., when applied in
continuous integration), smaller proofs are replayed faster and,
thus, accumulate to less verification time [37], [38].

To capture our domain knowledge, we have formulated 72
hypotheses about verifiability and verification effort, and inves-
tigated each hypothesis as one independent experiment. We set
our significance level to the commonly practiced 5% divided
by the number of hypotheses (i.e., applying the Bonferroni-
correction to mitigate the accumulated error). All null hypothe-
ses with a p-value lower than this significance level α were
rejected, meaning the alternative hypotheses were accepted. As
illustrated in TABLE I, we accepted 30–34 hypotheses. The
reason for this variation is that we randomly assigned each
of the 94 tasks to exactly one of ten groups. To verify a task
with GUIDO, we used all tasks of the remaining nine groups
as training data (i.e., to evaluate our initial hypotheses). Hence,
we evaluated our 72 defined hypotheses for each of the ten
groups separately.

Initial Results. For an initial evaluation, we focus on the
question: How does the performance of GUIDO compare to a
trial-and-error strategy for finding relevant configurations?

In Fig. 3, we compare the performance of GUIDO to a trial-
and-error strategy, which starts at the default configuration and
continues to flip an option of a parameter randomly. In particu-
lar, configurations in GUIDO and the trial-and-error strategy are
generated until (1) a case is proven successfully, (2) a timeout
of five minutes is reached, or (3) the maximum number of
unsuccessful verification attempts is exceeded. GUIDO applies a
maximum of six configurations on a verification task. To enable
a fair comparison, we also limited the number of attempts
for the trial-and-error strategy to six. Each point on the lines
in Fig. 3 represents a verification attempt. On the horizontal
axis, we depict the number of closed proofs (i.e., successful
verification attempts) for both strategies. On the vertical axis,
we show the accumulated verification effort in minutes. With



63 verified tasks, GUIDO is able to close two more tasks than
the trial-and-error strategy (i.e., 61 verified tasks). We did not
depict the remaining 31 tasks, as none of these were closed in
the given time limit. GUIDO needed approximately 26 minutes
to run through all of them, whereas the trial-and-error strategy
needed approximately 40 minutes, which is an increase of 63%.

Effectiveness and Efficiency
This experiment illustrates that GUIDO can be more
effective for the deductive program verifier KEY than our
baseline trial-and-error strategy, while also more efficient.
GUIDO closed two more verification tasks while spending
63% less time overall.

IV. CONCLUSION AND FUTURE DIRECTION

Our on-going vision is to mainstream formal verification
and help developers adopting formal method tools in software
engineering practices. We follow this vision by focusing on
configurable verification tools and suggest that tool builders
implement means (e.g., GUIDO) to decrease the configuration
burden. As a step towards that vision, we have presented
GUIDO, a framework for the automatic configuration of de-
ductive verification tools based on domain knowledge and
statistical hypothesis testing. Although we acknowledge that
techniques from the black-box machine learning context may
outperform our chosen metric in the near future, we still believe
that capturing domain knowledge and applying it actively in
the configuration process increases accuracy while reducing the
training data needed. Moreover, to the best of our knowledge,
this is the first work that proposes a solution for automated
configuration support in the context of deductive verification,
and, as such, constitutes the current baseline.

Based on our experiments, we gained two main insights.
First, as many hypotheses could not be accepted, proper
knowledge about the influence of configuration options is hard
to deduce without tool support. Second, the one-time-effort
of formalizing expert knowledge and acquiring a benchmark
data set (for offline training) is justified by an improvement
in online performance, which is particularly important in the
context of continuous integration and frequent re-verification.

For future work, we plan to extend our evaluation signifi-
cantly by investigating more complex problems and also other
program verifiers from the theorem proving and model checking
domain.
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M. Ulbrich, Deductive software verification–The KeY book: from theory
to practice. Springer, 2016.

[3] P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fix-
points,” in Proceedings of the Symposium on Principles of Programming
Languages (POPL). ACM, 1977, pp. 238–252.

[4] M. Gleirscher and D. Marmsoler, “Formal methods: Oversold? underused?
A survey,” Computing Research Repository (CoRR), vol. abs/1812.08815,
2018. [Online]. Available: http://arxiv.org/abs/1812.08815

[5] M. Gleirscher, S. Foster, and J. Woodcock, “Assuring autonomous
systems: opportunities for integrated formal methods?” Computing
Research Repository (CoRR), vol. abs/1812.10103, 2018. [Online].
Available: http://arxiv.org/abs/1812.10103

[6] M. Barnett, M. Fähndrich, K. R. M. Leino, P. Müller, W. Schulte, and
H. Venter, “Specification and Verification: The Spec# Experience,” CACM,
vol. 54, pp. 81–91, Jun. 2011.

[7] D. Kroening and M. Tautschnig, “Cbmc–c bounded model checker,” in
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 2014, pp. 389–391.

[8] D. Beyer and M. E. Keremoglu, “Cpachecker: A tool for configurable
software verification,” in Proceedigs of the International Conference on
Computer Aided Verification (CAV). Springer, 2011, pp. 184–190.

[9] P. Darke, S. Prabhu, B. Chimdyalwar, A. Chauhan, S. Kumar, A. Basak-
chowdhury, R. Venkatesh, A. Datar, and R. K. Medicherla, “Veriabs:
Verification by abstraction and test generation,” in International Con-
ference on Tools and Algorithms for the Construction and Analysis of
Systems. Springer, 2018, pp. 457–462.

[10] C. Richter and H. Wehrheim, “Pesco: Predicting sequential combinations
of verifiers,” in International Conference on Tools and Algorithms for
the Construction and Analysis of Systems. Springer, 2019, pp. 229–233.

[11] P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and
B. Yakobowski, “Frama-c.” Springer, 2012, pp. 233–247.
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