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The diffusive lattice ODE

u̇j = pj+1 − 2pj + pj−1, pj = Φ′(uj)(1)

with bistable nonlinearity Φ′ can be regarded as a microscopic regularization of
the ill-posed PDE

∂τU = ∂2ξP, P = Φ′(U),(2)

provided that the macroscopic variables are introduced by the hyperbolic scaling.
The latter reads

τ = ε2t, ξ = εj, uj(t) = U(ε2t, εj)

with ε > 0 being the small scaling parameter. Other notably regularizations of
(2) are the Cahn-Hillard model and the viscous approximation, which add −ε2∂4ξU
and +ε2∂2ξ∂τU , respectively, to the right hand side of (2)1.

Hysteretic interface motion. A key dynamical feature of any regularization
of (2) are phase interfaces. These curves separate space-time regions in which U
attains values in different phases, that means in either one of the two connected
components of {u : Φ′′(u) > 0}; see figures 1 and 2 for illustration.

Heuristic arguments as well as numerical simulations of (1), see §2 in [3], indicate
that the effective lattice dynamics for ε → 0 can – for a wide class of initial data
– be described by a hysteretic free boundary problem. In the case of a single
interface located at ξ∗(τ), this model combines bulk diffusion

∂τU = ∂2ξP for ξ 6= ξ∗(τ)

with the Stefan condition

dξ∗
dτ
|[U ]|+ |[∂ξP ]| = |[P ]| = 0

and the hysteretic flow rule

dξ∗
dτ
|[U ]| < 0 =⇒ P = p∗,

dξ∗
dτ
|[U ]| > 0 =⇒ P = p∗,

where |[·]| denotes the jump across the interface. The same equations can – at
least on a formal level – also be derived from the viscous approximation, see [1].
The sharp interface limit of the Cahn-Hilliard equation, however, is different as
it replaces the hysteric flow rule by P = pmx, where pmx represents the Maxwell
line.
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Figure 1. Left panel. Bistable derivative Φ′ of a general double-well
potential Φ. Right panel. The hysteresis loop for phase interfaces: solid
and dashed lines represent moving and standing interfaces, respectively;
there arrows indicate the temporal jump when U undergoes a phase
transition at fixed position ξ.
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Figure 2. Cartoon of three phase interfaces: The first one (moving)
and the second one (standing) annihilate each other in a collision. The
third interface illustrates both pinning and depinning.

Rigorous analysis for a special case. Due to the existence of multiple time
scales, the rigorous justification of the above limit model is – in the case of moving
interfaces – currently out of reach; for standing interfaces, see [2]. For the piecewise
quadratic double-well potential

Φ(u) = 1
2 min

{
(1− u)2, (1 + u)2

}
, Φ′(u) = u− sgnu,(3)

however, the analysis of (1) is considerably simpler and allows us to prove the
following results:

(1) Existence of single-interface solutions: A certain class of microscopic single-
interface states is invariant under the flow of (1)+(3). In particular, the
lattice dynamics generates a single phase interface which moves since the
lattice data uj undergo a phase transition (crossing of the spinodal state
u = 0) one after another.

(2) Justification of the limit model : For macroscopic single-interface data, the
lattice solutions converge as ε→ 0 to the unique solution of the hysteretic
free boundary problem.
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The first thesis is a direct consequence of elementary ODE arguments and implies
the representation formula

pj(t) =
∑
i∈Z

gj−i(t)pi(0)− 2
∑
k≥1

χ(t∗k,∞)(t)gj−k(t− t∗k).(4)

Here, g abbreviates the discrete heat kernel and χI denotes the indicator func-
tion of the interval I. Moreover, t∗k is the kth phase transition time, which is,
however, not given a priori but depends nonlinearly on the whole solution p via
limt↗t∗k pk(t) = +1.

The representation formula (4) is crucial for passing to the limit ε → 0 as it
allows us to exploit the temporal and spation decay properties of the discrete heat
kernel. In particular, assuming that the initial data are sufficiently nice we can
derive upper bounds for the macroscopic interface speed as well as macroscopic
compactness results for the scaled lattice data in the space of Hölder continuous
functions. The convergence result then follows by combining standard arguments
with a direct justification of the hysteretic flow rule and a uniqueness result from
[4]. The details can be found in §3 of [3].
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