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We study the different dynamical regimes in a nonlocal Fokker-Planck equation
and use formal asymptotics to derive reduced evolutionary models for different
small-parameter limits.

Nonlocal Fokker-Planck equations were introduced in [2] to model many-particle
storage systems such as lithium-ion batteries or interconnected rubber balloons.
In the simplest case, see also [3], the equations read

roholt, @) = 0, (V:0s0(t, @) + (H'(2) = o(t)) elt, 7))

o(t) = /R H'(z)o(t, z)dz + 74(t).

Here, o is a time-dependent probability measure, z € R denotes the state of a
single particle, H is a generic double-well potential, and 7, v are two parameters.
Moreover, £ is a prescribed function of time that controls the first moment, that
means we have

/ zo(t, x)dx = £(t)
R

for any solution, provided that the initial data are admissible.
Numerical simulations as displayed in Figure 1, as well as heuristic arguments
indicate that for 0 < 7,v < 1 there exists mainly two dynamical regimes.
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FIGURE 1. Typical solutions with £ > 0 for slow (left) and fast reac-
tions (right). The solid curves in Black and Gray represent the evolu-
tion of o and the phase fraction u = fR sgn(x)odz, respectively.

The fast reaction regime corresponds to

b
7'exp<>7 0 < b < berit, l<rl,

2
so phase transitions due to large deviations are possible. The main difficulty,
however, is to understand how Kramers’ formula [4] can be applied to an effective
potential H,(x) = H(x) — o that depends implicitly on time ¢ via the dynamical
constraint £.



As main result on fast reactions, we show the existence of two constants o}, and
dp such that the limit dynamics for v — 0 and ¢ > 0 is governed by

[ oo for t; <t < ty, o dyl(t) forty <t <ty
olt) = { H'(£(t)) else, Alt) = { 0 else.

Here, the times t; < t3 are uniquely defined by H’ (ﬂ(tl)) =op and H” (E(tl)) > 0.

In the slow reaction regime we have
a
1/:exp<—f>7 0 < a < acit, 0< 7K1,
T

and mass exchange according to Kramers’ formula is not relevant anymore. In-
stead, the limit dynamics is governed by (i) quasi-stationary transport of either
single-peak or two-peaks configurations, and (ii) a sequence of singular times cor-
responding to switching, merging, and splitting of peaks. We refer to Figure 2 for
an illustration, and to [1] for more details.
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FIGURE 2. Flowchart of the limit dynamics with slow reactions, ¢>0,
and £(0) < 0. Intervals of quasi-stationary transport are interrupted
by several types of singular events.
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