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We study the different dynamical regimes in a nonlocal Fokker-Planck equation
and use formal asymptotics to derive reduced evolutionary models for different
small-parameter limits.

Nonlocal Fokker-Planck equations were introduced in [2] to model many-particle
storage systems such as lithium-ion batteries or interconnected rubber balloons.
In the simplest case, see also [3], the equations read

τ∂t%(t, x) = ∂x

(
ν2∂x%(t, x) +

(
H ′(x)− σ(t)

)
%(t, x)

)
,

σ(t) =

∫
R
H ′(x)%(t, x) dx+ τ ˙̀(t) .

Here, % is a time-dependent probability measure, x ∈ R denotes the state of a
single particle, H is a generic double-well potential, and τ , ν are two parameters.
Moreover, ` is a prescribed function of time that controls the first moment, that
means we have ∫

R
x%(t, x) dx = `(t)

for any solution, provided that the initial data are admissible.
Numerical simulations as displayed in Figure 1, as well as heuristic arguments

indicate that for 0 < τ, ν � 1 there exists mainly two dynamical regimes.
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Figure 1. Typical solutions with ˙̀ > 0 for slow (left) and fast reac-
tions (right). The solid curves in Black and Gray represent the evolu-
tion of σ and the phase fraction µ =

∫
R sgn(x)% dx, respectively.

The fast reaction regime corresponds to

τ = exp

(
− b

ν2

)
, 0 < b < bcrit, 0 < ν � 1,

so phase transitions due to large deviations are possible. The main difficulty,
however, is to understand how Kramers’ formula [4] can be applied to an effective
potential Hσ(x) = H(x)− σ that depends implicitly on time t via the dynamical
constraint `.
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As main result on fast reactions, we show the existence of two constants σb and
db such that the limit dynamics for ν → 0 and ˙̀ > 0 is governed by

σ(t) =

{
σb for t1 < t < t2,
H ′(`(t)) else,

µ̇(t) =

{
db ˙̀(t) for t1 < t < t2,
0 else.

Here, the times t1 < t2 are uniquely defined by H ′(`(ti)) = σb and H ′′(`(ti)) > 0.

In the slow reaction regime we have

ν = exp
(
−a
τ

)
, 0 < a < acrit, 0 < τ � 1,

and mass exchange according to Kramers’ formula is not relevant anymore. In-
stead, the limit dynamics is governed by (i) quasi-stationary transport of either
single-peak or two-peaks configurations, and (ii) a sequence of singular times cor-
responding to switching, merging, and splitting of peaks. We refer to Figure 2 for
an illustration, and to [1] for more details.
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Figure 2. Flowchart of the limit dynamics with slow reactions, ˙̀ > 0,
and `(0) � 0. Intervals of quasi-stationary transport are interrupted
by several types of singular events.
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