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In [2] we study the different dynamical regimes in a nonlocal Fokker-Planck equa-
tion with two parameters and use formal asymptotics to derive reduced evolutionary
models for different small-parameter limits.

1. Fokker-Planck equation with dynamical constraint

Nonlocal Fokker-Planck equations were introduced in [3] to model many-particle
storage systems such as lithium-ion batteries or interconnected rubber balloons. In
the simplest case, the equations read

τ∂t%(t, x) = ∂x

(
ν2∂x%(t, x) +

(
H ′(x)− σ(t)

)
%(t, x)

)
,

σ(t) =

∫
R
H ′(x)%(t, x) dx+ τ ˙̀(t),

(FP)

where % is a time-dependent probability measure, x ∈ R denotes the state of a single
particle, H is a generic double-well potential, and τ , ν are the small parameters.
Moreover, ` is a prescribed function of time that controls the first moment, that
means we have ∫

R

x%(t, x) dx = `(t)(C)

for any solution to (FP), provided that the initial data are admissible.
From a mathematical point of view, (FP) can be regarded as a Wasserstein

gradient flow that is driven by the dynamical constraint (C), and we readily verify

the energy law τ Ė = −D+τ ˙̀. Here, D is the Wasserstein dissipation and E denotes
the usual energy of the unconstrained Fokker-Planck equation with potential H,
see [5, 1] for details. We also refer to [4] for existence and uniqueness results on
bounded domains.

2. Different dynamical regimes

The PDE (FP) exhibits rather complicated dynamics as it involves three different
time scales: (i) the scale of the dynamical constraint, which is supposed to be
of order 1, (ii) the small relaxation time τ � 1, and (iii) Kramers’ time scale
τ exp

(
4Hσ/ν

2
)
, on which particles can move between the different wells of Hσ

due to stochastic fluctuations. Here, Hσ defined by Hσ(x) = H(x) − σx is the
time-dependent effective potential and 4Hσ denotes the energy barrier.

In order to identify relevant scaling regimes and to derive reduced limit models
we specialize to strictly increasing constraints and always suppose that initial data

Date: December 10, 2011.

1



2 MICHAEL HERRMANN BARBARA NIETHAMMER JUAN J.L. VELÁZQUEZ

are well prepared in the sense that %(0, x) can be approximated by a narrow peak
located at `(0)� 0 with H ′′

(
`(0)

)
> 0.
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Figure 1. Numerical solutions with ˙̀ > 0 in the slow reaction regime
(top row) and the fast reaction regime (bottom row). The solid curves
in Black and Gray represent t 7→

(
`(t), η(t)

)
and t 7→

(
`(t), µ(t)

)
, re-

spectively, where η =
∫
RH

′(x)%(t, x) dx and µ =
∫
R sgn(x)%(t, x) dx are

the macroscopic force and the phase fraction, respectively.

Numerical simulations as displayed in Figure 1, as well as heuristic arguments
combined with formal expansions, indicate that there exist mainly two dynami-
cal regimes, which we refer to as fast reactions and slow reactions, depending on
whether mass exchange according to Kramers’ formula is relevant or not; the moti-
vation for these nomenclatures is that Kramers derived his large deviations formula
in the context of chemical reactions [6].

condition parameter reactions

τ = a/ log(1/ν) 0 < a <∞ slow limit dynamics as in Figure 2

τ = νp 0 < p < 2
3 slow open problem

τ = νp 2
3 < p <∞ fast limit in Kramers’ formula

τ = exp(−b/ν2) 0 < b < bcrit fast Kramers’ formula

τ < exp(−bcrit/ν
2) fast quasi-stationary limit

Table 1. The different scaling regimes for 0 < τ, ν � 1.

As summarized in Table 1, each regime covers a certain range of possible scaling
relations between τ and ν, where the fast reaction regime connects naturally to the
quasi-stationary limit given by ν > 0 and τ → 0. We also emphasize, that the limit
model for τ, ν → 0 turns out to be rate-independent in the fast reaction regime,
whereas it is rate-dependent in the slow reaction regime.

3. Fast reaction regime and Kramers’ formula

Since τ = exp(−b/ν2) is exponentially small in ν2, large deviations can provide a
mass flux of order 1, but the main difficulty is to understand how Kramers’ formula
can be applied to an effective potential Hσ that depends implicitly on the time via
the dynamical constraint.

Our main findings can be described as follows. Relying on suitable inner and
outer expansions for %, we compute the mass flux F between the local wells of Hσ
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by

F (t) ≈ m−(t)r−
(
σ(t)

)
−m+(t)r+

(
σ(t)

)
, r±(σ) = c±(σ) exp

(
b− h±(σ)

ν2

)
.

Here m± approximate the masses in the wells, b is the scaling parameter, c± are
some constants of order 1, and h± denote the energy barriers between the local
maximum and either one of the wells.

Combining the asymptotic formula for the mass flux with the dynamical con-
straint (C) reveals that there is some σb such that F (t) is of order 1 if and only
if σ(t) ≈ σb, and that small perturbation via σ(t) = σb + ν2ψ(t) are sufficient
to accommodate the dynamical constraint. In this way we arrive at the following
self-consistent limit model that complies very well with the numerical results in the
bottom row of Figure 1.

Main result. For each fast reaction parameter 0 < b < bcrit there exist constants
σb and db such that the limit dynamics for ν → 0 with ˙̀ > 0 is governed by

σ(t) =

{
σb for t1 < t < t2,
H ′
(
`(t)
)

else,
µ̇(t) =

{
db ˙̀(t) for t1 < t < t2,
0 else.

Here, the times t1 < t2 are uniquely defined by H ′
(
`(ti)

)
= σb and H ′′

(
`(ti)

)
> 0.

4. Limit dynamics in the slow reaction regime

In this regime, ν = exp(−a/τ) is much smaller than τ and mass exchange ac-
cording to Kramers’ formula is not relevant anymore. Instead, the key dynamical
effect is that localized peaks can enter the unstable interval, which consists of all x
with H ′′(x) < 0. When this happens, the width of the peak starts to widen very
rapidly, but since the initial width is of order ν, the peak remains localized for some
time of order 1.

Due to the presence of unstable peaks, the dynamics of (FP) is rather compli-
cated. However, in the limit τ → 0 it is possible to derive a reduced dynamical
model that characterizes the evolution in terms of single-peak configurations (either
stable or unstable) and two-peaks configurations (either stable-stable or unstable-
stable). We refer to Figure 2 for an illustration, and to [2] for more details.

Main result. In the slow reaction limit with ˙̀ > 0, there are time intervals of
quasi-stationary transport, where either a single or two separated peaks just move
according to the dynamical constraint. These intervals are interrupted by singular
times corresponding to the following events.

(1) Switching: A stable peak becomes unstable by entering the unstable interval.
(2) Merging: The peaks of an unstable-stable configuration merge almost in-

stantaneously to form a single stable peak. A special case of merging is that
an unstable peak becomes stable by leaving the unstable interval.

(3) Splitting: An unstable peak disintegrates very rapidly and the system jumps
almost instantaneously to a stable-stable two-peaks configuration.

Transport, switching, and merging of peaks can all be understood in terms of
the two-peaks approximation, a rather simple ODE that describes how two particles
interact via the dynamical constraint. Splitting events, however, are much more
complicated and we have to employ several asymptotic methods to describe them
in detail. At first we rely on a simplified peak-widening model to derive an effective
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initial data

 switching: t = tswitching

 unstable-stable transport

 merging: t = tmergingstable transport  (in                 )       

 splitting: t = tsplitting

 mass update: mi = mi + |[mi]|
 mass splitting problem unstable transport

stable transport  (in                 )

 switching: t = tswitching

x > +x∗

x < −x∗

 trivial merging: t = tmerging

final data

 stable-stable transport

Figure 2. Flowchart of the limit dynamics in the slow reaction regime
with ˙̀ > 0. Intervals of quasi-stationary transport are interrupted by
singular events corresponding to switching, splitting, and merging of

peaks.

formula for the width of an unstable peak, which in turn allows us to compute the
(next) splitting time. We then introduce the mass splitting problem on a rescaled
time scale, which consists of solving a nonlinear and nonlocal transport equation
with well-prepared asymptotic initial data. This model serves as a black box to
determine the mass distribution between the emerging stable peaks.
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